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Abstract 

This paper focuses on real-time pedestrian detection using the Histograms of Oriented Gradients 

(HOG) feature descriptor algorithm in combination with a Linear Support Vector Machine 

(LSVM) on a Field Programmable Gate Array (FPGA). Pedestrian detection on embedded 

systems is a challenging problem since accurate recognition requires extensive computation. To 

achieve real-time pedestrian recognition on embedded systems, hardware architecture suitable 

for HOG feature extraction is proposed. HOG is considered the most accurate pedestrian 

detection algorithm in modern computer vision. In order to reduce computational complexity 

toward efficient hardware architecture, this paper proposes several methods to simplify the 

computation of the HOG feature descriptor such as conversion of the division, square root, and 

arctangent to more simple operations. The architecture is proposed on a Xilinx Zynq-7000 All 

Programmable SoC ZC702 using Verilog HDL to evaluate the real-time performance. This 

implementation processes image data at twice the pixel rate of similar software simulations and 

significantly reduces resource utilization while maintaining high detection accuracy. 
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Executive Summary 

Due to the rise in automobile use over the last century, and its continued rise today, road 

accidents have become a prominent cause of injury and death. The knowledge in the field of 

computer vision continues to grow, so too does the realization of its potential benefits in the area 

of driver safety. Over the past few years, many recognition algorithms have been proposed to 

assist in the area of driver safety, but very few of them are both accurate and fast enough for real-

time processing. This major qualifying project aims to further develop one of these algorithms 

for high accuracy and real-time performance in the area of pedestrian detection from an 

automobile.  

Detecting pedestrians in an image has proven to be a challenging task for many 

researchers due to the wide variability in possibilities. Posture, clothing, size, background, and 

weather all can be impactful on the appearance of an image. This was the motivation behind a 

robust feature extraction algorithm, namely Histograms of Oriented Gradients (HOG). The 

algorithm divides each image into a grid. Each cell of the grid is represented by a histogram 

which contains information on the orientation of the gradients within the cell. A concatenation of 

these histograms produces a final feature vector which can be used for classification with a linear 

Support Vector Machine (SVM) or other statistical classification tool. Compared to other feature 

extraction algorithms used for pedestrian detection, HOG has far better results in terms of 

accuracy. The accuracy stems from the overlapping of cells in the grid which makes the final 

feature vector more robust to local contrast in the image. This project is intended to use a 

hardware approach to HOG such that the same accuracy may be achieved in real-time. 

Software simulation laid the framework for development of the hardware architecture for 

HOG. OpenCV, an open source computer vision library, has a HOG function which was the 
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starting point for our software simulation. The function, written in C++, is a solid proof of 

concept that HOG does in fact work; however, when implemented with a webcam it becomes 

apparent that real-time constraints are not met. As a basis for the hardware implementation, a 

Matlab function was developed. The function was checked against the Matlab Computer Vision 

Toolbox’s extractHOGFeatures and once similarity was confirmed, it was tested with the SVM 

classifier. 251 out of 288 pedestrians were positively classified while all of the non-pedestrians 

were correctly classified. 

Hardware implementation is targeted on the Xilinx-7000 ZC702 evaluation kit. We 

divided the entire HOG algorithm into several modules and designed them by using Verilog 

HDL in Xilinx ISE design tools. A demo that has been successfully tested was to accept the 

image input from one laptop through HDMI IN on HDMI I/O FMC and output the image on 

another monitor through HDMI OUT. Our main idea was to modify the hardware architecture of 

the demo and add our own HOG hardware module into it that is processing video frames 

continuously. We suggest that in the future this hardware architecture be integrated into an all-

encompassing automobile computer vision device. Such a device would have various algorithms 

for all aspects of computer vision for driver assistance. This project is just one piece of the bigger 

picture. 
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Chapter 1: Introduction 

1.1 Pedestrian Detection 

Pedestrian recognition is one of the most challenging problems in the field of computer 

vision. There have been many recognition algorithms proposed for purposes such as prevention 

of traffic accidents by using vehicle cameras. For embedded systems, however, a recognition 

algorithm that achieves not only high accuracy but also real-time processing in an environment 

with limited resources is required. Pedestrian detection is also an essential and significant task in 

any intelligent video surveillance system, as it provides the fundamental information 

for semantic understanding of the video footages. 

Due to the rise in the popularity of automobiles over the last century, road accidents have 

become a major cause of fatalities. About 10 million people become traffic casualties around the 

world each year, and two to three million of these people are seriously injured [1,2]. For 

instance, in 2003, the United Nations reported almost 150,000 injured and 7,000 killed in 

vehicle-to-pedestrian accidents just in the European Union alone. 

The major challenge of pedestrian protections systems (PPSs) is the development of 

reliable on-board pedestrian detection systems. Due to the varying appearance of pedestrians 

e.g., different clothes, changing size, aspect ratio, and dynamic shape and the unstructured 

environment, it is very difficult to cope with the demanded robustness of this kind of system. 

Two problems arising in this research area are the lack of public benchmarks and the difficulty in 

reproducing many of the proposed methods, which makes it difficult to compare the approaches. 

As a result, surveying the literature by enumerating the proposals one-after-another is not the 

http://en.wikipedia.org/wiki/Video_surveillance
http://en.wikipedia.org/wiki/Semantic
http://en.wikipedia.org/wiki/Video
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most useful way to provide a comparative point of view. These challenges are summarized by 

the following points: 

 The appearance of pedestrians exhibits very high variability since they can change pose, 

wear different clothes, carry different objects, and have a considerable range of sizes 

especially in terms of height. 

 Pedestrians must be identified in outdoor urban scenarios, i.e., they must be detected in 

the context of a cluttered background, urban areas are more complex than highways 

under a wide range of illumination, and weather conditions that vary the quality of the 

sensed information e.g., shadows and poor contrast in the visible spectrum. In addition, 

pedestrians can be partially occluded by common urban elements, such as parked 

vehicles or street furniture. 

 Pedestrians must be identified in highly dynamic scenes since both the pedestrian and 

camera are in motion, which complicates tracking and movement analysis. Furthermore, 

pedestrians appear at different viewing angles. 

 The required performance is quite demanding in terms of system reaction time and 

robustness i.e., false alarms versus misdetections. 

1.2 Histogram of Oriented Gradients (HOG) 

Detecting pedestrian in images is a challenging task owing to their variable appearance 

and the wide range of poses that they can adopt. The first need is a robust feature set that allows 

the pedestrian form to be discriminated cleanly, even in cluttered backgrounds under difficult 

illumination. We study the issue of feature sets for pedestrian detection, showing that locally 

normalized Histogram of Oriented Gradient (HOG) descriptors provide excellent performance 
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relative to other existing feature sets including wavelets. For simplicity and fast processing time, 

we use linear SVM as a baseline classifier throughout the study. 

HOG are feature descriptors used in computer vision and image processing for the 

purpose of object detection. The technique counts occurrences of gradient orientation in 

localized portions of an image. This method is similar to that of edge orientation 

histograms, scale-invariant feature transform descriptors, and shape contexts, but differs in that it 

is computed on a dense grid of uniformly spaced cells and uses overlapping local contrast 

normalization for improved accuracy. 

This section gives an overview of our feature extraction chain, which is summarized in 

the figure below: 

 

Figure 1: An overview of our feature extraction and object detection chain. The detector window is tiled with a grid of 

overlapping blocks in which Histogram of Oriented Gradient feature vectors are extracted. The combined vectors are fed 

to a linear SVM for classification [3]. 

The basic idea is that local object appearance and shape can often be characterized rather 

well by the distribution of local intensity gradients or edge directions, even without precise 

knowledge of the corresponding gradient or edge positions. In practice this is implemented by 

dividing the image window into small cells, for each cell accumulating a local 1-D histogram of 

gradient directions or edge orientations over the pixels of the cell. The combined histogram 

entries form the representation. For better invariance to illumination, shadowing, etc., it is also 

useful to contrast-normalize the local responses before using them. This can be done by 

accumulating a measure of local histogram over multiple blocks and using the results to 

normalize all of the cells in the block. We will refer to the normalized descriptor blocks as 

http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Object_detection
http://en.wikipedia.org/w/index.php?title=Edge_orientation_histogram&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Edge_orientation_histogram&action=edit&redlink=1
http://en.wikipedia.org/wiki/Scale-invariant_feature_transform
http://en.wikipedia.org/wiki/Shape_context
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Histogram of Oriented Gradient (HOG) descriptors. Tiling the detection window with a dense, 

overlapping grid of HOG descriptors and using the combined feature vector in a conventional 

SVM based window classifier gives our human detection chain as shown in Figure 1. 

1. Image Window: It uses a spatial widowing method of 64 × 128 pixels. This is done to 

obtain the initial object location. The detection window will be shifted and scaled 

throughout the image and the HOG feature is extracted for each window. 

 

Figure 2: Dividing the image window into cells. 

 
Figure 3: Orientation Binning. Each cell contains 64 pixels and are binned into 9 bins according to their orientation [4]. 
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2. Gradient Computation: Point derivatives Gx and Gy are computed by convolving 

gradient mask and with the raw image. Refer equation (1.1) and (1.2). 

Gx = Mx * I  Mx = [ -1 0 1 ]     (1.1) 

Gy = My * I   My = [ -1 0 1 ]
T
    (1.2) 

Where I, is the image. 

 

3. Then the gradient magnitude (|G(x, y)|) and orientation angle (θ) are obtained. Refer 

equation (1.3) and (1.4): 

| (   )|   √  (   )     (   )     (1.3) 

 (   )         
  (   )

  (   )
     (1.4) 

4. Orientation Binning: The orientation bins are evenly spaced over 0° - 180° for 

“unsigned” gradient or 0° - 360° for “signed” gradient. The window is then split into 

a dense grid where each block is called a cell. Each pixel within a cell are placed 

within the bin based on orientation. A histogram is then created for each cell. The 

best performance obtained for human detection is by having 2 × 2 pixels per cell [12]. 

For the arctangent operation, more specific simplification is applied. The arctangent 

operation is required for computation of θ(x, y) that is used only to determine class 

of a histogram. Hence, we can simplify the arctangent operation to comparing 

operations that satisfy the following condition (1.5): 

  (   )         (   )    (   )          (1.5) 
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Figure 4: Class determination at the histogram creation step [12]. 

5. Normalization of histogram: Cells are then combined to create a block. The best 

performance obtained for human detection is by having 8 x 8 cells per block [3]. 

Later a large histogram is created by combining all generated histogram within a 

block. After it is combined, the histograms are normalized using equation (1.6) where 

Vk is the concatenation of all block vectors: 

  
  

√|  |   
     (1.6) 

6. Collection HOG over detection window: All the histogram for each block will be 

concatenated to produce a feature vector. From here the image has changed to a 1-D 

feature vector. 

7. Linear support vector machine: The feature vector is now placed in a learning 

algorithm, LSVM. This will then decide whether a pedestrian is detected or not. This 

process is described in detail in the next section.  

 

In summary, the HOG descriptor for an input image of 64 × 128 pixels is represented by 

7 × 15 blocks, where a single block consisting of 2 × 2 cells. A cell is represented by a nine bin 

histogram which are formed by storing the magnitude of the image according to their orientation. 
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This gives us a total of (7 × 15) × (2 × 2) × 9 = 3780 features. A 2-dimensional data (64 × 128) is 

converted to a 1-dimensional full feature vector (1 × 3780). 

 

Figure 5: Block normalization. Each block contains 4 cells and are normalized respective to the block [4]. 
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Figure 6: Histogram of Oriented Gradient [4]. 

 

1.3 Support Vector Machine (SVM) 

Support vector machines are supervised learning models used in modern day machine 

learning algorithms to detect patterns in data in pursuance of the overall goal of classification. 

SVM has become one of the fastest methods of modern machine learning and is currently on the 

forefront of the field for its speed and simplicity. The learning algorithm is given a set of training 

data each classified in one of two categories. The algorithm builds a model for new data to be 

placed based on the characteristics of the training data set. It is for this reason that SVM is 

considered to be a binary linear classifier. 

Training data is placed in N-dimensional space and a hyperplane separates the two 

categories. In general there can be an infinite number of hyperplanes separating the two classes. 

The “best” hyperplane, however, is one with the largest margin between the two different 

categories of data. A support vector is the vector connecting two data points in one category that 

is closest to the hyperplane. Margin is defined as the maximum distance between the support 
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vectors of the two categories assuming there are no data points within it. This is all portrayed 

graphically in Figure 7 where + represents one class of data and – represents the other. 

 

Figure 7: Visual representation of the definitions associated with SVM [13]. 

 It is clear from the figure above that the larger the margin in the model, the more 

certainty there is in making classification decisions. This is considered a classification safety 

margin: a slight error in measurement will not cause misclassification. More formally, the 

decision hyperplane can be defined by an intercept term   and a hyperplane normal vector  ⃑⃑ . 

This vector is commonly known in the machine language field as the weight vector. The 

hyperplane is perpendicular to the normal vector, and as a result all points    on the hyperplane 

satisfy equation (1.7). 

 ⃑⃑             (1.7) 

Assume the training data set is represented by   {(      )} where each member, i, is a pair of 

points    and class labels y.  The class labels take the form of +1 or -1 for simplicity and the 
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intercept term is always explicitly stated as b instead of being grouped in with the weight vector. 

Thus, the linear classifier, resulting in either +1 or -1, is represented by equation (1.8). 

 (  )      ( ⃑⃑      )     (1.8) 

The functional margin of the i
th

 data with respect to the hyperplane is represented as 

  ( ⃑⃑ 
     ). Furthermore, the functional margin of an entire dataset is twice the functional 

margin of the point with the smallest functional margin.  This geometry is previously displayed 

in Figure 7. The fundamental flaw with this approach is that the functional margin is 

underconstrained.  The functional margin can always be increased by simply scaling the weight 

vector and the intercept term. Since a large functional margin is always the goal, but it can be so 

easily scaled, more constraints on the size of the weight vector must be applied.  

 The Euclidean distance between any point and the decision hyperplane must be 

perpendicular to the hyperplane and therefore parallel to the weight vector. Denoting this 

distance as r and utilizing the weight vector’s unit vector, the point on the hyperplane closest to 

any point     is denoted in equation (1.9). 

         
 ⃑⃑ 

| ⃑⃑ |
     (1.9) 

Since this point lies on the decision boundary, thereby setting equation (1.8) to 0 it can be 

represented as equation (1.10). Solving for r gives equation (1.11). 

 ⃑⃑  (     
 ⃑⃑ 

| ⃑⃑ |
)         (1.10) 
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 ⃑⃑⃑ 

 
 ⃑⃑   

| ⃑⃑⃑ |
     (1.11) 

 The geometric margin is considered the maximum length of a line that can be drawn 

between the two support vectors as seen in Figure 7. It may also be represented as two times the 

minimum r from equation (1.11). Now it becomes clear that the margin, geometrically, is 

invariant to scaling of the hyperplane parameters because it is normalized using the length of the 

weight vector. Since the functional margin can be scaled, for large SVMs it is standard to require 

that it be greater than one for all data vectors and that it is equal to one for at least one data 

vector as shown in equation (1.12).  

  ( ⃑⃑ 
   ⃑⃑  ⃑   )        (1.12) 

Using equation (1.11) above, it is clear that the geometric margin can be represented as   
 

| ⃑⃑ |
 

and it is still our goal to maximize the geometric margin in an attempt to make the most robust 

model possible. This can be considered the same as minimizing the inverse of the geometric 

mean which leaves the formulation of a SVM as a minimization problem: 

      ⃑⃑⃑                   

 

 
 ⃑⃑⃑ 

 
 ⃑⃑⃑                   

                        {( ⃑⃑     
)}   

( ⃑⃑⃑ 
 
  ⃑⃑  ⃑   )     

Quadratic optimization problems are a well-known class of mathematical optimization 

problems and there are a wide variety of ways to solve them [11]. The details of such solutions are 

usually abstract to the user of any modern SVM packages, like SVMlite [14], and are outside of the 

scope of the work done for this major qualifying project.   
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Chapter 2: Software Simulation 

The final goal of this Major Qualifying Project is to design the HOG algorithm for use on 

an FPGA as an embedded platform for driver assistance functions. To achieve this goal, we first 

attempt to realize the algorithm in software then convert our algorithm to Verilog code and 

implement on an FPGA.  As such, this chapter has three main purposes: 

1. To delineate the variety of software implementations for the HOG algorithm. 

2. To understand how different implementations can provide different descriptors as 

outputs but still be successful in classification with SVM. 

3. To realize the necessity for hardware implementation to achieve real-time results. 

2.1 OpenCV 

OpenCV is an open source library for computer vision and machine learning [15]. The 

library, written in C++, has various interfaces including C++, C, Python, Java, and MATLAB. 

There are currently over 500 algorithms that compose the library. Here we use the C++ library 

and some built in functionality surrounding HOG and SVM. Our implementation of the 

following methodology was performed on a Windows 8 PC using eclipse for writing code and 

MinGW for compiling. OpenCV is used to check the functionality of HOG as a pedestrian 

detector from a higher level. This means that the details of the algorithm are abstract here 

because HOG is one of the built-in functions provided by OpenCV. This function provided a 

strong starting point for software simulation in that it showed us the capabilities i.e. detecting 

pedestrians and limitations i.e. speed and accuracy, of HOG in software. 

 One program that is provided in the OpenCV master sample list is peopledetect.cpp 

(Appendix A). This program detects pedestrians in an image or a series of images using the class 

HOG Descriptor which contains all of the functions associated with the HOG algorithm. The 
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OpenCV reference manual also provides a short piece of code to stream input from a webcam 

onto the computer monitor (Appendix B). A simple combination of these two functions, video 

streaming with people detection and it is evident that the HOG algorithm is successfully 

detecting people from a webcam. 

 

Figure 8: Example of the OpenCV HOG algorithm using the built-in webcam 

The code begins by setting a standard capture size for the webcam, 320 x 240. This can 

be adjusted if necessary and the function will still succeed. Then, the SVM is set using 

OpenCV’s default SVM for people detection. In an infinite loop, the detectMultiScale function 

from the HOGDescriptor class is called. This function takes the input image and outputs a 

rectangular vector containing the locations for positive pedestrian matches. Here, we choose to 

increase the window size by 1.05 in every iteration so as to detect different sizes of people in an 

image. The remainder of the code is fairly straightforward. It uses the found locations to draw a 

rectangle around detected people and output that onto the computer monitor using the imshow 

function.  The full code is shown in Appendix C.  
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It should be noted that this implementation is fairly slow and definitely not suitable for 

real-time pedestrian detection from an automobile. This is due to both of the two following 

factors. The propagation delay from the low-quality, built-in webcam is high enough to cause 

delay in real-time detection. This is more evident when the video output size on the PC monitor 

is increased because the video output is delayed when the input is in motion. Even at a 50 

percent increase in the x and y directions, it is clear that the on-screen output takes over a second 

to propagate. The other reason is in the miss-rate of the OpenCV HOG implementation. This 

miss rate will be described later in this section with still-frame photos; however, the necessity for 

hardware implementation is already becoming clear.  

 

Figure 9: Alternative example of OpenCV's HOG algorithm in conjunction with the webcam 

 Nearly identical code was used for testing on still-frame images; however, the webcam 

code is exchanged for code that takes a list of image file names as an argument and returns each 

image with the algorithm run on it one by one (Appendix D). It is with this implementation that 

the true shortcomings of the OpenCV HOG algorithm are discovered. The INRIA pedestrian 

dataset is used to test the efficiency of the algorithm.  This dataset is the original one used for 
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HOG, by Dalal and Triggs, and continues today to be the standard across the field of pedestrian 

detection [9]. With this still-frame testing it becomes clear that within different images all three 

possible scenarios exist: detected pedestrian, missed pedestrian, and false positive. Examples of 

each follow in Figure 10, Figure 11, and Figure 12. 

 

Figure 10: Detected pedestrians in an INRIA image with the OpenCV HOG algorithm 
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Figure 11: Missed pedestrian in an INRIA image with the OpenCV HOG algorithm 

 

Figure 12: False positive in an INRIA image with the OpenCV HOG algorithm 
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 All of the above findings show that the OpenCV HOG algorithm is a success, but it has 

limitations. It serves as a strong foundation for understanding the basics of HOG and how to 

implement it with C++. The limitations including speed, miss rate, and false positives are the 

motivation for investigating hardware implementation as an alternative. Prior to doing that, a less 

abstract version of the algorithm must be developed such that the hardware code can perform the 

same functions as in software. As part of this major qualifying project the aforementioned is 

implemented in Matlab. 

2.2 Matlab 

 Since the OpenCV HOG implementation is fairly abstract, Matlab is the main source of 

software testing used. Matlab, like OpenCV, has a built-in HOG algorithm. Another similarity 

between MATLAB and OpenCV as it relates to their HOG implementations is that the built-in 

functions are indeed viewable by the user. The downfall is that these functions are hundreds of 

lines of code and it is difficult to make modifications to them. This is the motivation for writing a 

separate piece of Matlab code to output an HOG descriptor and subsequently compare that 

output with the output of the built-in function. If the output is indeed usable, then the Matlab 

code could serve as the basis for writing fixed point Verilog code. 

 The Matlab Computer Vision System Toolbox provides algorithms, functions, and 

applications for the design and testing of computer vision systems. The toolbox has various 

capabilities including, but not limited to, object detection, feature extraction, feature matching 

and stereo vision. The toolbox also provides a set of video processing functions including video 

display, object annotation, and drawing graphics.  

One algorithm found in the Computer Vision System Toolbox, available in Matlab 

R2013b and later, is extractHOGFeatures. This function takes either a truecolor or grayscale 
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image as input and returns a 1-by-N feature vector as output using HOG. While the code is 

available to edit, it is lengthy and complex to alter. For the purposes of this project, it is best to 

understand the key functions and attempt to replicate it rather than try to alter the details of it. 

There are certain values that are available for editing upon calling the function from the 

command line. These values help to better understand the details of the function. A list of these 

name-value pair arguments is as follows: 

 ‘CellSize’ – size of the HOG cell specified in pixels as a 2-element vector. 

Increasing the cell size allows for larger spatial capture of information but risks 

losing small detail. Default value: [8 8] 

 ‘BlockSize’ – number of cells in a block expressed as a 2-element vector. Larger 

blocks risk losing the ability to distinguish local illumination changes. There are 

more pixels in a large block and their local changes could be lost with averaging. 

It is best to keep blocks small. Default value: [2 2] 

 ‘BlockOverlap’ – number of overlapping cells between adjacent blocks as a 2-

element vector. Large overlap values can capture more information but they result 

in larger feature vectors. It is recommended to overlap at least half of each block. 

Default value: ceil(BlockSize/2) 

 ‘NumBins’ –  number of histogram orientation bins represented as a scalar. Finer 

orientation details require more bins at the cost of larger feature vectors. Default 

value: 9 

 ‘UseSignedOrientation’ – how orientations will be represented in the binning, 

displayed as a logical scalar. Set to true, this property spaces orientations evenly 

between -180 and 180 degrees. Set to false, and the orientations are spaced evenly 
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from 0 to 180 degrees. Signed orientation is helpful to distinguish light-to-dark 

versus dark-to-light transitions in an image but it is not entirely necessary to 

positively identify a pedestrian. 

Matlab’s built-in HOG feature extraction function has an optional output which makes 

visualizing HOG much more easy. When calling the function from the Matlab command line, if 

the user specifies the visualization object, one is returned which can be plotted against the 

original image. The visualization object displays a grid of rose plots over the original image. 

Each plot shows the distribution of gradient orientation in each HOG cell. The length of each 

petal of the rose plot indicated the weight of vote that orientation made for the overall orientation 

of the cell. The plot also displays edge directions which are normal to gradient directions. These 

edge directions make it very clear what type of shape information is being encoded in an HOG 

feature vector. An image with very linear, well-defined gradients makes this clearer as shown in 

Figure 13. 

 

Figure 13: HOG visualization object vs. original image 
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 Since the details of this Matlab function are still abstract to the user, it was necessary to 

develop a new function in Matlab which the hardware implementation could be based on. SVM 

is too complex to be completed in hardware, so this Matlab function need only output a feature 

vector for an input image based on the HOG algorithm. The function, found in Appendix E, 

begins by reading an input image and converting it to grayscale so that only luminance values are 

encoded in it. The input image should be 128x64 to satisfy some of the loop conditions found 

later in the function. These variables are simple to edit, but the 128x64 implementation will be 

discussed for the remainder of this report. A [-1 0 1] mask is produced to filter the image in 

calculating the x gradient and its inverse is subsequently used to calculate the y gradient. A 

matrix the size of the image in pixels is used to store magnitudes of each gradient: the square 

root of the sum of the x and y gradients squared. Arctangent is used to store an angles matrix of 

the same size.  

Once all of the magnitudes and directions are stored, a nested for loop is used to extract 

the gradient orientations for each cell by stepping pixel by pixel through a cell and placing 

weighted votes for each orientation in its own bin addressed by cell. For example, if the pixel at 

(1,1) has direction of 15 degrees, its magnitude is added to the preexisting cell 1 bin 1 location. If 

the next pixel has an angle of 65 degrees, its magnitude is added to the preexisting cell 1 bin 4 

location. In a subsequent for loop, these bins are rearranged to be 2-dimensional for use in the 

block formation. This means that the bin values are now stored by cell instead of by pixel. 

The block formation is another nested for loop in which the cell bin votes are arranged as 

blocks and summed similar to the process described above. The block matrix is normalized using 

the Matlab norm function. The matrix is divided by the norm of itself plus 0.0001. This step is to 

ensure that extreme contrast from image to image is not lost and all orientations are scaled versus 
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themselves. The final step is to run the normalized block vector through a nested for loop once 

more to extract all of the values into a 1-by-N vector. 

To ensure that this HOG feature generation was working properly, the output was first 

checked against the output of the built-in function. Since the feature vectors can in fact be 

different and still classify pedestrians correctly when fed to an SVM, this check was simply to be 

sure that the feature vectors were within a reasonable range. Once it was discovered that the 

feature vectors were reasonably close, the true test to ensure proper functionality of the new 

feature extraction function was to train and test with an SVM. 

Matlab’s Statistics Toolbox contains two SVM related functions: svmtrain and 

svmclassify. svmtrain takes as an input a matrix of training data where every row is a new 

observation, or feature vector in this case, and every column is one feature. It also takes a 

grouping variable which is a list of categories for each of the training observations. In short, the 

svmtrain function takes a list of HOG feature vectors and their known classes (pedestrian or not 

pedestrian) and produces a SVMstruct object. This structure contains all of the information about 

the trained SVM model. svmclassify takes the SVMstruct as an input along with a list of test 

feature vectors and outputs a list of classifications for each row of the input. These functions can 

both be used for visualization of the SVM if it were in 2-dimmensions; however, HOG feature 

vectors are several thousand dimensions (one dimension for each feature) so this is not an option. 

The dataset used is the same one from the original HOG paper in 2005 by Dalal and 

Triggs [3]. The reason for this is that unlike many other modern datasets, these images are 

already in 128x64 format. There are 614 positive and 1218 negative training images. 

Additionally, there are 288 positive testing images and 453 negative testing images. Of the total 
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negative testing images, all were classified correctly. Of the total positive testing images, 251 

were classified correctly. With those facts, it becomes clear that this HOG implementation is 

successful. Perhaps if more positive training images were used, the SVM would be stronger and 

more likely to classify positive images better. 

2.3 Summary 

 The purpose of software simulation has been met. If we revisit the three goals outlined in 

the introduction to this section it is evident that they all have been fulfilled. Using the OpenCV 

implementation, it is clear that hardware acceleration is necessary for real-time constraints. The 

two different Matlab feature extraction algorithms work successfully even though their feature 

vectors can be a different size. This was confirmed using LSVM classification. The software 

simulation sets up the following chapter for the hardware implementation of HOG on an FPGA.  
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Chapter 3: Hardware Design 

Automotive driver assistance system (ADAS) designers commonly use PC-based models 

to develop the signal and image processing algorithms to implement functions such as adaptive 

cruise control, lane departure warning and pedestrian detection. Designers highly value the PC- 

based algorithm models, since such models allow them to experiment with quick evaluation and 

different processing options. However, a properly designed electronic hardware solution is 

necessary to implement the algorithms on the product.  

In this project, we investigate the entropy of grayscale monocular video data for the 

recognition of objects. Our pedestrian detection concept is also applicable to other moving 

objects. The system is running on a desktop computer with a field programmable gate array 

(FPGA) as the hardware accelerator. Thus the framework can be integrated and evaluated 

directly in a test vehicle. Our approach is based on a sliding-window method that evaluates 

image sections based on the HOG descriptor. A major contribution of our project is the 

implementation of the descriptor on dedicated hardware with minor modifications compared to 

the scheme originally proposed by Dalal and Triggs [3]. The descriptor computation for the 

entire image is performed on a Xilinx Zynq-7000 FPGA. 

3.1 Introduction to Xilinx Zynq-7000 FPGA  

The Xilinx Zynq7000 family is the Extensible Processing Platform (EPP) developed to 

achieve the levels of processing and compute performance required in high-end embedded 

applications targeting markets such as video surveillance, automotive driver assistance, factory 

automation and many others.  They are able to serve a wide range of applications including: [4] 

• Automotive driver assistance, driver information, and infotainment 

• Broadcast camera 

• Industrial motor control, industrial networking, and machine vision 
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• IP and smart camera 

• LTE radio and baseband 

• Medical diagnostics and imaging 

• Multifunction printers 

• Video and night vision equipment 

Since we tried to design an embedded processing system, the features such as lower 

system cost, sufficient performance and greater flexibility are what we need for our design. Then 

the Xilinx Zynq-7000 Extensible Processing Platform EPP is a good choice.  

3.1.1 Zynq-7000 EPP ZC702 Evaluation Kit 

The Xilinx Zynq-7000 EPP ZC702 Evaluation Kit provides developers with a complete 

development platform including hardware, development tools, IP, and pre-verified reference 

designs. Complicated exercise of the ARM processing system and Xilinx programmable logic 

architecture could be achieved with included targeted reference design. Some features are listed 

below: [4] 

 Dual ARM Cortex-A9 

 Maximum frequency:667MHz 

 85K Logic Cells 

 53,200 LUTs 

 Block RAM: 560KB 

 DSP: 220 

 1GB DDR3 DRAM 

 USB, Ethernet 
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The Xilinx Zynq-7000 is a new class of products, combining an industry-standard ARM 

processor with the scalable architecture of the Xilinx 7 series programmable logic. Its processor-

centric architecture offering FPGA programmability combined with ASIC-like performance and 

power. Also it has a complete ARM-based processing system, tightly integrated programmable 

logic and flexible array of I/O. These features make this board more suitable for ADAS 

applications. 

 

Figure 14:  1GB DDR3 DRAM on Xilinx Zynq-7000 
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Figure 15: Dual Cortex-A9 CPU in Zynq-7000 processing system [4] 

Based on a rapid prototyping idea, the Zynq-7000 can be programmed with tools from 

the Xilinx ISE design suite. It enables high-level hardware implementation of customized image 

processing applications in real-time. Each operator/link can be parameterized graphically [4]. 

3.1.2 HDMI I/O FMC Module 

The HDMI input/output FMC module provides high-definition video interfaces for FMC-

enabled baseboards. An HDMI video source can provide video content to the module. The 

module also provides an HDMI output to the video processed by the FPGA. The features of this 

module are listed below: 

 HDMI input 

 HDMI output 

 Video clock synthesizer 
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Electronic devices can process and transfer two separate types of signals: analog and 

digital. VGA signals are of the analog variety. The VGA signal commonly contains video only 

and does not contain sound, music or other audio components. In order for a computer to process 

an analog video, it must first convert the file to a digital format. Alternatively, the technology 

driving HDMI is digital. Digital signals use binary code that uses a series of ones and zeroes to 

capture, record, and output both video and audio. On Xilinx Zynq-7000 there are two FMC 

connectors so that we could have HDMI input and output (digital signals) for our project instead 

of VGA. This feature would help us decrease the signal loss because there would be no more 

conversion process between analog and digital. This is another main reason that we would prefer 

using Xilinx Zynq-7000 for our project. 

 

Figure 16: HDMI I/O FMC module block diagram [16] 



28 

 

  

 

Figure 17: Real HDMI I/O FMC module 

 

3.2 Design Specifications 

The goal of this project is to develop an FPGA-based pedestrian detection system by 

implementing a Histogram of Oriented Gradients algorithm and linear Support Vector Machine. 

There are several design specifications to be met in the implementation of this project as follow: 
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 Functionality  

o Clearly indicate detect the object of interest in the camera display  

o Able to operate in noisy condition  

o Minimal errors  

 Speed  

o Real-time detection  

o Seamless buffer  

3.2.1 HDMI I/O FMC Pass-Through Demo 

 Before we started to design, we firstly implemented an HDMI pass-through on Xilinx 

Zynq-7000 [16]. In this test, a new PlanAhead project was created, implementing a very simple 

HDMI pass-through design for the FMC-IMAGEON hardware. The block diagram is shown in 

Figure 18.  

 

Figure 18: HDMI Pass-Through Block Diagram [16] 

 Driving this test case, we implemented AXI I2C controller which is not shown in the 

figure. It allowed the processor to configure the FMC-IMAGEON hardware peripherals 

including HDMI input device, HDMI output device and the video clock synthesizer. Moreover, 

two cores, FMC-IMAGEON HDMI Input and FMC-IMAGEON HDMI Output, were used to 

interface to the devices on the FMC-IMAGEON module. We input the desktop of the laptop and 
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got the synchronized output video from another monitor. The connection structure was shown 

above in Figure 17. 

3.2.2 Proposed Overall Hardware Architecture Design 

 Based on the test we mentioned before, the proposed hardware architecture is described 

in Fig.19. In the following chapters we will focus on discussing how we implemented the HOG 

algorithm in hardware. 

 

Figure 19: Proposed overall hardware Architecture 

 

3.3 FPGA Design Components 

Our design computes the HOG descriptor for all window positions (800 by 640 pixel-

wise) of the entire frame. In the following, we present each individual system component. We 

report difficulties we faced and show our way of tackling these issues with respect to the 

limitations of the rapid prototyping platform.  

3.3.1 Scaling 

With the current experimental arrangement of our infrastructure-based system, the 

distance of the camera to the surveillance zone is large compared to the dimensions of the 

surveillance zone itself. As a consequence of this arrangement, variations in pedestrian size are 
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negligible and the descriptor is computed for one single scale level. The scale factor was set to a 

manually chosen value that shrinks the actual pedestrian size to the dimension of the image 

patches used for training [9]. For applications that require multiple scale levels, the FPGA design 

can be modified accordingly. The maximum number of scale levels is limited by the available 

hardware resources. Data is received from the camera as a stream of pixels. A grayscale 

conversion makes the image easier to work with by consolidating the color signals. The 

grayscale intensity values travel into line buffer which outputs pixels neighboring lines by 

introducing some timed delays in the signal. Most image processing algorithms require several 

pixel data from neighboring regions to perform operations on. The neighboring pixel values then 

travel into sobel edge detectors, which perform some mathematical operations to compute an 

edge value in the x or y direction. These edge values are then combined using a simple vector 

magnitude calculation, and compared to a threshold value to see if the pixel corresponding to the 

values is an edge pixel. In our project, we always have our input images with scale of 800 × 640 

pixels. 

3.3.2 Gradient Computation 

The first step for generating the HOG descriptor is to compute the 1-D point derivatives 

Gx and Gy in x- and y-direction by convolving the gradient masks Mx and My with the raw image 

I: 
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Figure 20: Proposed hardware architecture of gradient computation 

 

On the basis of the derivatives Gx and Gy we then compute the gradient magnitude, and 

orientation angle, for each pixel. The gradient magnitude expresses the gradient strength at a 

pixel as the equation in the block shown in the Figure 20. 

We retain the operation of the square root since the performance study by Dalal and 

Triggs reports best results with this Euclidean metric. However, calculating the arctan() on an 

FPGA is expensive. As reported by Cao and Deng [5], there are hardware friendly approximation 

algorithms available, but they are generally iterative and slow down the system’s speed. On the 

contrary, using lookup tables (LUTs) requires large amounts of memory which would increase 

system cost. They propose to combine the gradient orientation computation with the angular 

binning step. Thus we are able to directly discretize the pixel’s gradient angle into bins without 

computing the angular value explicitly.  
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Following this approach, we introduced one improvement. We introduced a scheme for 

quantizing the pixel’s gradient angle that avoids the use of signs and reduces the required bit 

width for relational operators. 

3.3.3 Gradient Orientation Binning 

 

Figure 21: Angular quantization into 9 evenly spaced orientation bins over 0 – 180 degree (signed gradient) 

 

The step following the gradient computation is to discretize each pixel’s gradient 

orientation angle into 9 evenly spaced angular bins over 0°-180° (signed gradient). Based on the 

previously computed horizontal and vertical gradients Gx and Gy, we first determine the angle’s 

corresponding quadrant according to the following rule set:  

  (   )         (   )     (   )        

By this equation,    and      corresponding to two classes incremented at histogram 

generation step are obtained as shown in Fig. 21. 

 

Figure 22: Proposed architecture of Gx(x, y)*tan20° 
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Tangent Approximate Value 

tan0° 0 

tan20° 2
-2

 + 2
-3

 

tan40° 2
-1

 + 2
-2

+ 2
-4

 

tan60° 1+ 2
-1

 + 2
-2

 

tan80° 5+ 2
-1

 + 2
-3

 + 2
-5

 

Table 1: Part of approximate binary value to simplify calculation 

 

3.3.4 Histogram Generation 

At this stage, we already know the angular bin (1-9) for each pixel. Then 9 binary single-

channel images are generated for each bin i, where the value 1 denotes that the pixel's gradient 

orientation lies within the corresponding angular range, 0 denoting the opposite. In a second step, 

we multiply each of these 9 binary bin images Oi with the gradient magnitude, |  (   )|, 

providing 9 non-binary magnitude-weighted bin images Mi.  

 

Figure 23: Proposed processing element in the sliding window detector 
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For each sliding window position, the histogram entry of a specific bin i in a particular 

cell can be easily computed by accumulating the pixel intensity values (representing the 

magnitude) over the cell region within Mi. In order to calculate these histogram entries for all 

potential sliding window positions over the entire image efficiently, recent work suggest the 

IMAPs technique [7].We found that this approach is not feasible with our development platform 

due to constraints of register resource. Instead we convolute the sum filter kernel Ks with the nine 

magnitude-weighted bin images Mi. 

 

Figure 24: Proposed hardware architecture of the entire HOG algorithm [12] 

 

3.3.5 Normalization 

The detection window is shifted over the entire image in a sliding-window fashion. The 

histogram entries for a specific detection window can be easily read out from the FPGA output. 

Finally the HOG descriptor block normalization step is designed. At first the 4 cell (2 × 2) 

histogram vectors of the current block are concatenated to a vector Vk with 4 × 9 = 36 

components. The normalization is then performed by dividing Vk by the L2 norm:  

   
  

√|  |   
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Where Vk is a vector corresponding to a combined histogram for the block, and v is a 

normalized vector, which is a final HOG feature. We use a linear SVM (LSVM) for 

classification, operating on the normalized HOG feature vectors that are stored line by line in a 

matrix. The system can thus parallelize the classification of all windows. 

    3.4 Evaluation 

SVM training is performed using the INRIA dataset [9] that remains one of the widely 

used benchmark sets. For the purpose of evaluation. However, a per-window evaluation is 

performed. Though in practice, per-window performance measures can fail to predict actual per-

image performance [8].  

3.5 Summary 

The proposed HOG descriptor computation fits into a Xilinx Zynq-7000 device. 

Unfortunately we have to admit that this project is still working in progress. We are unable to 

show the result of hardware implementation because the block design of memory controller is 

still not finished so that we could not finish the steps of histogram gathering and normalization at 

this time. We will keep working on this block design and try to have the whole hardware 

architecture completely built and successfully worked next. 

Moreover, there is still room to further speed up the framework. Outsourcing further parts 

of our recognition framework to the FPGA requires additional resources that are provided by 

available extension boards with additional FPGA and RAM. We are working on integrating the 

HOG descriptor normalization and linear SVM prediction [10] into the FPGA. 
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Chapter 4: Conclusions and Future Work 

 In conclusion, this project evaluates the overall accuracy of the HOG algorithm for pedestrian 

detection. Our team successfully simulated the algorithm in software and discovered the need for 

hardware acceleration. Although hardware acceleration has not been fully realized on an FPGA yet, 

it is evident what type of impact this project could have. We expect to see this algorithm incorporated 

into an all-encompassing automobile computer vision platform in the near future.  
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Appendix A: peopledetect.cpp 

#include <opencv2/core/utility.hpp> 
#include <opencv2/imgproc.hpp> 
#include <opencv2/objdetect.hpp> 
#include <opencv2/highgui.hpp> 
#include <opencv2/softcascade.hpp> 
 
#include <iostream> 
#include <vector> 
#include <string> 
#include <fstream> 
 
void filter_rects(const std::vector<cv::Rect>& candidates, std::vector<cv::Rect>& 
objects); 
 
int main(int argc, char** argv) 
{ 
    const std::string keys = 
    "{help h usage ?    |     | print this message and exit }" 
    "{cascade c         |     | path to cascade xml, if empty HOG detector will be 
executed }" 
    "{frame f           |     | wildchart pattern to frame source}" 
    "{min_scale         |0.4  | minimum scale to detect }" 
    "{max_scale         |5.0  | maxamum scale to detect }" 
    "{total_scales      |55   | prefered number of scales between min and max }" 
    "{write_file wf     |0    | write to .txt. Disabled by default.}" 
    "{write_image wi    |0    | write to image. Disabled by default.}" 
    "{show_image si     |1    | show image. Enabled by default.}" 
    "{threshold thr     |-1   | detection threshold. Detections with score less then 
threshold will be ignored.}" 
    ; 
 
    cv::CommandLineParser parser(argc, argv, keys); 
    parser.about("Soft cascade training application."); 
 
    if (parser.has("help")) 
    { 
        parser.printMessage(); 
        return 0; 
    } 
 
    if (!parser.check()) 
    { 
        parser.printErrors(); 
        return 1; 
    } 
 
    int wf = parser.get<int>("write_file"); 
    if (wf) std::cout << "resulte will be stored to .txt file with the same name as 
image." << std::endl; 
 
    int wi = parser.get<int>("write_image"); 
    if (wi) std::cout << "resulte will be stored to image with the same name as input 
plus dt." << std::endl; 
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    int si = parser.get<int>("show_image"); 
 
    float minScale =  parser.get<float>("min_scale"); 
    float maxScale =  parser.get<float>("max_scale"); 
    int scales     =  parser.get<int>("total_scales"); 
    int thr        =  parser.get<int>("threshold"); 
 
    cv::HOGDescriptor hog; 
    cv::softcascade::Detector cascade; 
 
    bool useHOG = false; 
    std::string cascadePath = parser.get<std::string>("cascade"); 
    if (cascadePath.empty()) 
    { 
        useHOG = true; 
        hog.setSVMDetector(cv::HOGDescriptor::getDefaultPeopleDetector()); 
        std::cout << "going to use HOG detector." << std::endl; 
    } 
    else 
    { 
        cv::FileStorage fs(cascadePath, cv::FileStorage::READ); 
        if( !fs.isOpened()) 
        { 
            std::cout << "Soft Cascade file " << cascadePath << " can't be opened." 
<< std::endl << std::flush; 
            return 1; 
        } 
 
        cascade = cv::softcascade::Detector(minScale, maxScale, scales, 
cv::softcascade::Detector::DOLLAR); 
 
        if (!cascade.load(fs.getFirstTopLevelNode())) 
        { 
            std::cout << "Soft Cascade can't be parsed." << std::endl << std::flush; 
            return 1; 
        } 
    } 
 
    std::string src = parser.get<std::string>("frame"); 
    std::vector<cv::String> frames; 
    cv::glob(parser.get<std::string>("frame"), frames); 
    std::cout << "collected " << src << " " << frames.size() << " frames." << 
std::endl; 
 
    for (int i = 0; i < (int)frames.size(); ++i) 
    { 
        std::string frame_sourse = frames[i]; 
        cv::Mat frame = cv::imread(frame_sourse); 
 
        if(frame.empty()) 
        { 
            std::cout << "Frame source " << frame_sourse << " can't be opened." << 
std::endl << std::flush; 
            continue; 
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        } 
 
        std::ofstream myfile; 
        if (wf) 
            myfile.open((frame_sourse.replace(frame_sourse.end() - 3, 
frame_sourse.end(), "txt")).c_str(), std::ios::out); 
 
        //// 
        if (useHOG) 
        { 
            std::vector<cv::Rect> found, found_filtered; 
            // run the detector with default parameters. to get a higher hit-rate 
            // (and more false alarms, respectively), decrease the hitThreshold and 
            // groupThreshold (set groupThreshold to 0 to turn off the grouping 
completely). 
            hog.detectMultiScale(frame, found, 0, cv::Size(8,8), cv::Size(32,32), 
1.05, 2); 
 
            filter_rects(found, found_filtered); 
            std::cout << "collected: " << (int)found_filtered.size() << " 
detections." << std::endl; 
 
            for (size_t ff = 0; ff < found_filtered.size(); ++ff) 
            { 
                cv::Rect r = found_filtered[ff]; 
                cv::rectangle(frame, r.tl(), r.br(), cv::Scalar(0,255,0), 3); 
 
                if (wf) myfile << r.x << "," << r.y << "," << r.width << "," << 
r.height << "," << 0.f << "\n"; 
            } 
        } 
        else 
        { 
            std::vector<cv::softcascade::Detection> objects; 
            cascade.detect(frame,  cv::noArray(), objects); 
            std::cout << "collected: " << (int)objects.size() << " detections." << 
std::endl; 
 
            for (int obj = 0; obj  < (int)objects.size(); ++obj) 
            { 
                cv::softcascade::Detection d = objects[obj]; 
 
                if(d.confidence > thr) 
                { 
                    float b = d.confidence * 1.5f; 
 
                    std::stringstream conf(std::stringstream::in | 
std::stringstream::out); 
                    conf << d.confidence; 
 
                    cv::rectangle(frame, cv::Rect((int)d.x, (int)d.y, (int)d.w, 
(int)d.h), cv::Scalar(b, 0, 255 - b, 255), 2); 
                    cv::putText(frame, conf.str() , cv::Point((int)d.x + 10, (int)d.y 
- 5),1, 1.1, cv::Scalar(25, 133, 255, 0), 1, cv::LINE_AA); 
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                    if (wf) 
                        myfile << d.x << "," <<  d.y << "," << d.w << "," <<  d.h << 
"," << d.confidence << "\n"; 
                } 
            } 
        } 
 
        if (wi) cv::imwrite(frame_sourse + ".dt.png", frame); 
        if (wf) myfile.close(); 
 
        if (si) 
        { 
            cv::imshow("pedestrian detector", frame); 
            cv::waitKey(10); 
        } 
    } 
 
    if (si) cv::waitKey(0); 
    return 0; 
} 
 
void filter_rects(const std::vector<cv::Rect>& candidates, std::vector<cv::Rect>& 
objects) 
{ 
    size_t i, j; 
    for (i = 0; i < candidates.size(); ++i) 
    { 
        cv::Rect r = candidates[i]; 
 
        for (j = 0; j < candidates.size(); ++j) 
            if (j != i && (r & candidates[j]) == r) 
                break; 
 
        if (j == candidates.size()) 
            objects.push_back(r); 
    } 
} 
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Appendix B: videostream.cpp 

#include <iostream> 

#include <opencv2/opencv.hpp> 

using namespace std; 

using namespace cv; 

int main (int argc, const char * argv[]) 

{ 

    VideoCapture cap(CV_CAP_ANY); 

    if (!cap.isOpened()) 

        return -1; 

  

    Mat img; 

    namedWindow("video capture", CV_WINDOW_AUTOSIZE); 

    while (true) 

    { 

        cap >> img; 

        imshow("video capture", img); 

        if (waitKey(10) >= 0) 

            break; 

    } 

    return 0; 

} 
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Appendix C: videopeopledetect.cpp 

#include <iostream> 
#include <opencv2/opencv.hpp> 
using namespace std; 
using namespace cv; 
 
int main (int argc, const char * argv[]) 
{ 
    VideoCapture cap(CV_CAP_ANY); 
    cap.set(CV_CAP_PROP_FRAME_WIDTH, 1.3*320); 
    cap.set(CV_CAP_PROP_FRAME_HEIGHT, 1.3*240); 
    if (!cap.isOpened()) 
        return -1; 
 
    Mat img; 
    HOGDescriptor hog; 
    hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector()); 
 
    namedWindow("video capture", CV_WINDOW_AUTOSIZE); 
    while (true) 
    { 
        cap >> img; 
        if (!img.data) 
            continue; 
 
        vector<Rect> found, found_filtered; 
        hog.detectMultiScale(img, found, 0, Size(8,8), Size(32,32), 1.05, 2); 
 
        size_t i, j; 
        for (i=0; i<found.size(); i++) 
        { 
            Rect r = found[i]; 
            for (j=0; j<found.size(); j++) 
                if (j!=i && (r & found[j])==r) 
                    break; 
            if (j==found.size()) 
                found_filtered.push_back(r); 
        } 
        for (i=0; i<found_filtered.size(); i++) 
        { 
     Rect r = found_filtered[i]; 
            r.x += cvRound(r.width*0.1); 
     r.width = cvRound(r.width*0.8); 
     r.y += cvRound(r.height*0.06); 
     r.height = cvRound(r.height*0.9); 
     rectangle(img, r.tl(), r.br(), cv::Scalar(0,255,0), 2); 
 } 
        imshow("video capture", img); 
        if (waitKey(20) >= 0) 
            break; 
    } 
    return 0; 
} 
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Appendix D: 1framepeopledetect.cpp 

#include "opencv2/imgproc/imgproc.hpp" 
#include "opencv2/objdetect/objdetect.hpp" 
#include "opencv2/highgui/highgui.hpp" 
 
#include <stdio.h> 
#include <string.h> 
#include <ctype.h> 
 
using namespace cv; 
using namespace std; 
 
int main(int argc, char** argv) 
{ 
    Mat img; 
    FILE* f = 0; 
    char _filename[1024]; 
 
    if( argc == 1 ) 
    { 
        printf("Usage: peopledetect (<image_filename> | <image_list>.txt)\n"); 
        return 0; 
    } 
    img = imread(argv[1]); 
 
    if( img.data ) 
    { 
        strcpy(_filename, argv[1]); 
    } 
    else 
    { 
        f = fopen(argv[1], "rt"); 
        if(!f) 
        { 
            fprintf( stderr, "ERROR: the specified file could not be loaded\n"); 
            return -1; 
        } 
    } 
 
    HOGDescriptor hog; 
    hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector()); 
    namedWindow("people detector", 1); 
 
    for(;;) 
    { 
        char* filename = _filename; 
        if(f) 
        { 
            if(!fgets(filename, (int)sizeof(_filename)-2, f)) 
                break; 
            //while(*filename && isspace(*filename)) 
            //  ++filename; 
            if(filename[0] == '#') 
                continue; 
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            int l = (int)strlen(filename); 
            while(l > 0 && isspace(filename[l-1])) 
                --l; 
            filename[l] = '\0'; 
            img = imread(filename); 
        } 
        printf("%s:\n", filename); 
        if(!img.data) 
            continue; 
 
        fflush(stdout); 
        vector<Rect> found, found_filtered; 
        double t = (double)getTickCount(); 
        // run the detector with default parameters. to get a higher hit-rate 
        // (and more false alarms, respectively), decrease the hitThreshold and 
        // groupThreshold (set groupThreshold to 0 to turn off the grouping 
completely). 
        hog.detectMultiScale(img, found, 0, Size(8,8), Size(32,32), 1.05, 2); 
        t = (double)getTickCount() - t; 
        printf("tdetection time = %gms\n", t*1000./cv::getTickFrequency()); 
        size_t i, j; 
        for( i = 0; i < found.size(); i++ ) 
        { 
            Rect r = found[i]; 
            for( j = 0; j < found.size(); j++ ) 
                if( j != i && (r & found[j]) == r) 
                    break; 
            if( j == found.size() ) 
                found_filtered.push_back(r); 
        } 
        for( i = 0; i < found_filtered.size(); i++ ) 
        { 
            Rect r = found_filtered[i]; 
            // the HOG detector returns slightly larger rectangles than the real 
objects. 
            // so we slightly shrink the rectangles to get a nicer output. 
            r.x += cvRound(r.width*0.1); 
            r.width = cvRound(r.width*0.8); 
            r.y += cvRound(r.height*0.07); 
            r.height = cvRound(r.height*0.8); 
            rectangle(img, r.tl(), r.br(), cv::Scalar(0,255,0), 3); 
        } 
        imshow("people detector", img); 
        int c = waitKey(0) & 255; 
        if( c == 'q' || c == 'Q' || !f) 
            break; 
    } 
    if(f) 
        fclose(f); 
    return 0; 
} 
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Appendix E: HOG Top Module 

`timescale 1ns / 1ps 

module hog( 

   input clk, 

   input rst, 

   input [1:0] x, 

   input [1:0] y, 

   output [3:0] n, 

   inout [13:0] ram_data, 

   output ram_clk, 

   output adv, 

   output ce, 

   output oe, 

   output we, 

   output lb, 

   output ub, 

   output cre, 

   output [32:0] norm_all); 

 

   wire [9:0] m_xy; 

   wire [7:0] direc; 

   wire s; 

 

  gradient 

hog1(.clk(clk),.rst(rst),.x(x),.y(y),.m_xy(m_xy),.direc(direc),.n(n),.

s(s)); 

  top_histogram 

hog2(.clk(clk),.rst(rst),.m_xy(m_xy),.direc(direc),.ram_data(ram_data)

, 

           

.ram_clk(ram_clk),.adv(adv),.ce(ce),.oe(oe),.we(we),.lb(lb),.ub(ub), 

         

.cre(cre),.norm_all(norm_all)); 

   

endmodule 
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Appendix F: Gradient Calculating Top Module 

`timescale 1ns / 1ps 

module gradient( 

   input clk, 

   input rst, 

   input [1:0] x, 

   input [1:0] y,  

   output [9:0] m_xy, 

   output [7:0] direc, 

   output [3:0] n, 

   output s); 

    

   wire [8:0] f_x,f_y; 

 

 calculate grad1(.x(x),.y(y),.f_x(f_x),.f_y(f_y)); 

 magnitude grad2(.f_x(f_x),.f_y(f_y),.m_xy(m_xy)); 

 direction 

grad3(.f_x(f_x),.f_y(f_y),.clk(clk),.rst(rst),.direc(direc),.n(n),.s(s

)); 

  

 

endmodule 
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Appendix G: Gradient First Derivative Calculating Module 

`timescale 1ns / 1ps 

module calculate( 

  input [1:0] x, 

  input [1:0] y, 

  output [8:0] f_x, 

  output [8:0] f_y); 

   

  wire [8:0] f1,f2,f3,f4; 

  wire [1:0] x1,x2,y1,y2; 

   

  assign x1= x+1'b1;        // x1=x+1 

  assign x2= x-1'b1;      // x2=x-1 

  assign y1= y+1'b1;      // y1=y+1  

  assign y2= y-1'b1;      // x2=y-1 

   

  lumin c1(.x(x1),.y(y),.f_xy(f1));      // f1= f(x+1,y) 

  lumin c2(.x(x2),.y(y),.f_xy(f2));    // f2= f(x-1,y) 

  lumin c3(.x(x),.y(y1),.f_xy(f3));  // f3= f(x,y+1) 

  lumin c4(.x(x),.y(y2),.f_xy(f4));      // f4= f(x,y-1) 

   

  assign f_x = f1-f2;               //fx = f(x+1,y) - f(x-

1,y) 

  assign f_y = f3-f4;               //fy = f(x,y+1) - f(x,y-

1) 

 

 

endmodule 
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Appendix H: Luminous Input Module 

`timescale 1ns / 1ps 

module lumin( 

    input [1:0] x, 

    input [1:0] y, 

    output [8:0] f_xy); 

     

    assign f_xy = (x==2'b10)&&(y == 2'b10) ? 9'd56 : 

9'd0; 

       

      

 

endmodule 
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Appendix I: Gradient Direction Calculating Module 

`timescale 1ns / 1ps 

module direction( 

  input [8:0] f_x, 

  input [8:0] f_y, 

  input clk, 

  input rst, 

  output reg [7:0] direc, 

  output reg [3:0] n, 

  output s); 

 

  reg [3:0] i=1; 

  reg [5:0] tani; 

  wire [14:0] mult; 

    

  assign mult = f_x*tani; 

   

  always@(posedge clk) 

  begin 

   if(rst) 

   begin 

    i <= 4'b0000; 

    s <= 1'b0; 

   end 

   else if(i == 4'b1001) 

      i <= 4'b0000; 

      else if(f_y <= mult[14:6]) 

     begin 

      i <=i+1'b1; 

      s <= 1'b0; 

     end 

      else  

      begin 

       n <=i; 

       s <= 1'b1; 

       i <= 4'b0000; 

      end 

  end 

    

    

  always@(i) 

  begin 

   case(i) 

    4'd1 : tani = {3'b110,3'b011};  

 //tan112.5=-2.42   bin=5 

    4'd2 : tani = {3'b101,3'b000};   //tan135=-

1    bin=6 

    4'd3 : tani = {3'b100,3'b011};  

 //tan157.5=-0.42  bin=7 

    4'd4 : tani = {3'b000,3'b000};   //tan180=0 

   bin=8 
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    4'd5 : tani = {3'b000,3'b011};  

 //tan22.5=0.42     bin=1 

    4'd6 : tani = {3'b001,3'b000};   //tan45=1 

   bin=2 

    4'd7 : tani = {3'b010,3'b011};  

 //tan67.5=2.42     bin=3 

    4'd8 : tani = {3'b011,3'b111};   //tan90= 

infinity  bin=4 

    default : tani = 6'b1; 

   endcase 

  end 

   

  always@(n) 

  begin 

   case(n)     //match with the average direction angel 

    4'd1 : direc = 8'd101; 

    4'd2 : direc = 8'd124;    

    4'd3 : direc = 8'd146;    

    4'd4 : direc = 8'd169;    

    4'd5 : direc = 8'd11;   

    4'd6 : direc = 8'd68;     

    4'd7 : direc = 8'd56;    

    4'd8 : direc = 8'd79;  

   default : direc = 8'b1;     

   endcase 

  end 

 

endmodule 
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Appendix J: Gradient Magnitude Calculating Module (LUT) 

`timescale 1ns / 1ps 

module magnitude( 

   input [8:0] f_x, 

   input [8:0] f_y, 

   output reg [9:0] m_xy); 

    

   reg [7:0] f_x1; 

   reg [7:0] f_y1; 

    

   wire [16:0] xy={f_x1,f_y1}; 

    

   always@(f_x,f_y,xy) 

   begin 

    f_x1 = f_x[7:0];        

    f_y1 = ~(f_y-1'b1); 

     

    case(xy) 

     1 : m_xy= 9'd0 ; 

     2 : m_xy= 9'd1 ; 

     3  : m_xy= 9'd2 ; 

     4 : m_xy= 9'd3 ; 

     5 : m_xy= 9'd4 ; 

     6 : m_xy= 9'd5 ; 

     7 : m_xy= 9'd6 ; 

     8 : m_xy= 9'd7 ; 

     9 : m_xy= 9'd8 ; 

     10 : m_xy= 9'd9 ; 

      

     … 
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Appendix K: Histogram Top Module 

`timescale 1ns / 1ps 

module top_histogram( 

   input clk, 

   input rst, 

   input s, 

   input [9:0] m_xy, 

   input [7:0] direc, 

   inout [13:0] ram_data, 

   output ram_clk, 

   output adv, 

   output ce, 

   output oe, 

   output we, 

   output lb, 

   output ub, 

   output cre, 

   output [32:0] norm_all, 

   output [25:0] ram_address); 

    

   reg [3:0]  n; 

   wire [13:0] hist; 

   wire [13:0] norm; 

    

   histogram     

top1(.clk(clk),.rst(rst),.m_xy(m_xy),.direc(direc),.n(n),.hist(hist)); 

   store         

top2(.clk(clk),.rst(rst),.hist(hist),.n(n),.norm(norm),.ram_data(ram_d

ata), 

       

 .ram_clk(ram_clk),.adv(adv),.ce(ce),.oe(oe),.we(we),.lb(lb),.ub(u

b),.cre(cre), 

       

 .ram_address(ram_address),.s(s)); 

   normalization 

top3(.clk(clk),.rst(rst),.norm(norm),.norm_all(norm_all));  

 

endmodule 
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Appendix L: Histogram Block Module 

`timescale 1ns / 1ps 

module histogram( 

   input clk, 

   input rst, 

   input [9:0] m_xy, 

   input [7:0] direc, 

   input [3:0] n, 

   output [13:0] hist); 

    

   parameter [3:0] a ={1'b0,3'b011};   // put the value 

as the constant 0.4 (0.375) 

    

   reg [13:0] vote0; 

   reg [13:0] vote1; 

   wire [14:0] vote; 

    

   always@(posedge clk) 

   begin 

    if(rst) 

     begin 

     vote0 <= 14'b0; 

     vote1 <= 14'b0; 

     end 

    else 

     begin 

     vote0 <= (4'b1-a)*m_xy;  //integer 11 bits 

fraction 3 bits 

     vote1 <= a*m_xy; 

     end 

   end 

   

   assign vote = vote0 + vote1;  

   assign hist = vote[14:1];     //get the average of 

vote value  3bits of fraction 

endmodule 
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Appendix M: Normalization Block Module 

`timescale 1ns / 1ps 

module normalization( 

   input clk, 

   input rst, 

   input [13:0] norm,   //14bits 3bits of fraction 

   output [32:0] norm_all); 

    

   reg [3:0] count=0; 

   reg [] 

 

   always@(posedge clk) 

   begin 

    count <=count+1'b1; 

    if(count == 3'b1001) 

    begin 

     count <= 4'b0; 

    end 

    case(count) 

     4'b0000:  ; 

     4'b0001: ; 

     4'b0010: ; 

     4'b0011: ; 

     4'b0100: ; 

     4'b0101: ; 

     4'b0110: ; 

     4'b0111:  ; 

      

      

      

    endcase 

   

   end 

    

    

    

 

endmodule 
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Appendix N: SRAM Controller Module 

`timescale 1ns / 1ps 

module sram_control( 

   input [13:0] datawrite, 

   output [13:0] dataread, 

   inout [13:0] ram_data, 

   input fpga_clk, 

   input [25:0] fpga_address, 

   output [25:0] ram_address, 

   input start, 

   input fpga_ctl, 

   output ram_clk, 

   output adv, 

   output ce, 

   output oe, 

   output we, 

   output lb, 

   output ub, 

   output cre); 

    

   reg [13:0] data; 

   reg [25:0] address; 

   reg [3:0]  count=0; 

   reg ctl; 

   reg busy =1'b0; 

////////////////////////////////////////////////////////////// 

// control the sram to make it have two model: read and write 

/////////////////////////////////////////////////////////////// 

   assign ram_clk = 1'b0; 

   assign lb = 1'b0; 

   assign ub = 1'b0; 

   assign ce = 1'b0; 

   assign oe = 1'b0; 

   assign we = ctl; 

   assign cre = 1'b0; 

   assign adv = 1'b0; 

   assign dataread = data; 

   assign ram_address = address; 

   assign ram_data = ctl ? 14'bz : data; 

//////////////////////////////////////////////////////////////////////

////////// 

//when ctl = 1 , sram in the read model ,when ctl =0 sram in the write 

model 

//////////////////////////////////////////////////////////////////////

///////////     

   always@(posedge fpga_clk) 

    begin 

     if(busy == 1'b0) 

      begin 

       ctl <= fpga_ctl; 

       count <= 0; 
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      if(start == 1) 

        begin 

         busy <= 1'b1; 

         data <= ctl ? 

ram_data : datawrite; 

         address <= 

fpga_address; 

        end 

      end 

     else  

      if(count == 9) 

        busy <= 1'b0; 

      else 

       count <= count +1'b1;        

      

      end 

 endmodule 
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Appendix O: Histogram Storing Module 

`timescale 1ns / 1ps 

module store( 

   input clk, 

   input rst, 

   input [13:0] hist, 

   input [3:0] n, 

   input s, 

   output [13:0] norm, 

   inout [13:0] ram_data, 

   output ram_clk, 

   output adv, 

   output ce, 

   output oe, 

   output we, 

   output lb, 

   output ub, 

   output cre, 

   output [25:0] ram_address); 

    

   reg fpga_ctl=1'b1; 

   reg start;  

   reg [25:0] fpga_address; 

 

 

 sram_control  

store1(.fpga_clk(clk),.datawrite(hist),.dataread(norm),.ram_data(ram_d

ata),.fpga_address(fpga_address), 

       

 .ram_address(ram_address),.start(start),.fpga_ctl(fpga_ctl),.ram_

clk(ram_clk),.adv(adv),.ce(ce),.oe(oe),.we(we), 

        .lb(lb),.ub(ub),.cre(cre)); 

          

   always@(posedge clk) 

    begin 

     if(rst) 

      begin 

      fpga_ctl <= 1'b0; 

      start <= 1'b0; 

      end 

     else 

      begin 

       if(s == 1'b1) 

        begin 

        start <= 1'b1; 

        fpga_ctl <= 1'b0; 

        fpga_address <= 

fpga_address +1'b1; 

        end 

       else  

        begin 
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        start <= 1'b0; 

        end 

      end 

    end 

     

    

endmodule 
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