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Abstract 

The Central Bank of Russia has revoked 20% of all bank licenses since 2012. This project sought to 

determine a computational method for forecasting the probability of license revocation. To do this, 

we compared two classification algorithms, logistic regression and random forest. Using a Random 

Forest classifier produced higher F1 scores than logistic regression. We recommend that Deloitte 

continues the development of a random forest model by investigating clustering and additional 

features to improve the model’s performance. 
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Executive Summary 

In this project our team compared two models that were created to forecast when the Central 

Bank of Russia (CBR) may revoke a bank’s license. The models our team used were multinomial 

logistic regression and random forest. The two models were created and run using the same data in 

order to compare how they operate and determine which has the best performance. 

The data used to develop the models was collected from two databases: Banki.ru and 

CBR.ru. The data included information found from the financial documents that are published 

monthly by banks for the CBR and are available to the public. The data included numerical 

standards, ratios required by the CBR to decide whether a bank is in an unstable state. Examples of 

these standards are Current Liquidity and Capital Adequacy Ratio. We created a parsing program to 

download and update the data collected in order to both save time in this project, but also to provide 

Deloitte with a tool that can be used in the future. 

This data was formatted to form our base dataset. The monthly statistics were sorted into 

observations. Each observation contained all the statistics reported about a single bank from that 

month, providing a “snapshot” of the bank’s financial situation. Each observation was also assigned 

a label that reflected how many months before the bank lost its license the “snapshot” was taken. 

These labels were: 1 month to 24 months, “Greater than 2 Years”, and “Still Active”. The last of 

these was used to label observations of banks that still retained their license at the time of our 

research. 

To compare the models, we used three different metrics: precision, recall, and F1. Precision 

is concerned with the accuracy of the model’s predictions while recall measures the completeness 

of the predictions. F1 is the harmonic mean of precision and recall. 

To optimize the models, the team came up with three alterations that could help identify the 

best model, as well as differences between the models. The first modification was to preprocess the 

dataset before passing it to the model. Since the order of magnitude of our data varies greatly from 

one feature to another, scaling the data can benefit some types of models. Second, we tested the 

model’s performance on monthly predictions versus quarterly predictions. Finally, we experimented 

with removing the top 20 and bottom 20 banks by net assets from our dataset. We hypothesized that 

by removing the banks with extreme values from the dataset,  trends in the banks in the middle 

would become more apparent, improving the performance of both models. 

The results of our experiments indicate that the random forest model is better suited for this 

problem than the regression model. We generated several sets of results to analyze the effects of the 

optimizations we implemented. Preprocessing improved the regression model slightly, but had 

negative results on the random forest model. This was understandable, as the benefit of 

preprocessing is dependent on the way that a particular model processes the data it is given. The 

http://banki.ru/
http://banki.ru/
http://cbr.ru/
http://cbr.ru/
http://cbr.ru/
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method by which regression makes predictions is much more sensitive to the magnitude of features 

than random forest is. Next, predicting on a quarterly basis produced much higher F1 scores than 

monthly. The reason is intuitive: the models had more data points per category to base their 

predictions on. Finally, removing the “extreme” banks had mixed results. It slightly worsened the 

results of regression, while slightly improving the random forest model. However, the 

improvements seen in random forest weren’t large enough to state that the change was responsible 

for the improvement. 

Our team recommends Deloitte to use the random forest model instead of the regression 

model, and continue with its development. They should check for revocations quarterly, as the 

predictions are much more accurate than monthly while giving more precise predictions than a 

yearly analysis. If they need the granularity of a monthly analysis, we suggest they input data which 

is recorded weekly, as monthly data proved to be insufficient to produce accurate results at that 

scale. We recommend they do additional research into methods of clustering banks into groups and 

running the model separately on different clusters. 
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1 Introduction 

Between 2012 and 2015, the licenses of more than 200 out of 900 banks in the Russian 

Federation were revoked by the Central Bank of Russia (CBR). (The Moscow Times, 2015) Mr. 

German Gref, the CEO of one of the largest Russian banks, Sberbank, predicts that another 10% of 

banks in Russia will lose their licenses by the end of 2016. Bank license revocation affects not only 

investors, but also commercial and retail clientele who have life savings deposited in these banks. 

(In Russia, economic recovery remains elusive.2015) 

It is difficult to predict when the CBR will revoke a bank’s license due to the wide array of 

circumstances that can lead to a license revocation. Failure of banks to meet the required standards 

set in the banking legislation is a sure condition for the CBR to revoke a bank’s license. 

Additionally, the CBR can revoke a bank’s license if they have substantial proof that fraud has 

taken place, if the bank has conducted operations not covered by the bank's license, or based on 20 

other cases included in Federal Law 395-8, Article 20. (On Banks and Banking Activities, 1990) 

Predictive models have been developed to forecast the probability of a bank going bankrupt. 

Researchers have used different methods, including regression models and neural networks to 

achieve accuracy level upward of 80%. (Boyacioglu, Kara, & Baykan, 2009) Some papers have 

provided analysis of the factors included in the model. For example, Mayes and Stremmel (2012) 

found that “the non-risk-weighted capital measure explains bank distress and failures best.” 

(Khalafalla Ahmed Mohamed Arabi, 2013) Due to the instability of the economy in past years, an 

accurate model to forecast the closure of banks can provide consumers and investors with a way to 

confirm that their money will be safe with a particular bank. 

The goal of this project was to generate a model capable of accurately forecasting when a 

bank’s license will be revoked by the CBR.  To expand upon previous work, we developed and 

compared two multinomial classification models which would forecast up to two years in the future 

when a bank may lose its license. The models’ performances were verified using several methods of 

performance analysis. Finally, one of the models was selected as a recommendation for continued 

research. 
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2 Background 

2.1 Macroeconomic Conditions 

Banks in Russia are in the midst of several challenges, including economic sanctions that 

prevent foreign investments and the decline of oil prices starting in 2014. After the drop of the price 

of oil in 2008, it became clear that Russia’s economy was based on two staples which are heavily 

connected: oil and hedge fund investments. Every time one of the two undergoes a crisis the second 

follows, due to the high investments of hedge funds in oil (The Economist, Issue 8985, 2016). 

Currently, increasing the oil price is a matter of great importance for the Russians. This concern 

was reflected in the first day of the 2016 G20 Summit in China, when the President of Russia (and 

the Crown Prince of Saudi Arabia) commented on the need to discuss oil prices (Workman, 2016). 

Given the probability of an oil crisis the Kremlin has promoted a diversification of 

investing, focusing on exporting non-petroleum products (such as metal). At the same time the CBR 

has increased Russia’s international reserves from 140Bn USD to 500Bn USD, during the 2009-

2013 period, while allowing the Russian Ruble to float (The Economist, Issue 8985, 2016). Instead 

of spending all the reserves on keeping the value of the Russian Ruble on par with the dollar, they 

concentrated on helping institutions affected by the economic sanctions imposed by the European 

Union and the United States. This shift of focus from defense of the Russian Ruble to support of 

domestic institutions resulted in a 10% decrease in the actual salary of Russians (inflation 

fluctuation). However, it bears mention that the average Russian’s salary remains triple the size it 

was before Mr. Putin became President, which shows a general upward trend since the 1998 crisis. 

From 2014 to 2016 Russia’s currency depreciated from 35 Russian Rubles to 1 USD to 64 

to 1. The Kremlin put its trust in Mr. Elvira Nabiullina as the new head of the Central Bank of 

Russia (CBR) in 2013 (Reuters.com, 2016). Since her instatement at the head of the CBR, the 

organization has rapidly revoked the licenses of more than 200 financial institutions (Weaver, 

2015). The motive behind the revocations has been debated. Ms. Nabiullina “received carte blanche 

from the president to go after those banks that were earlier untouchable,” says Mr. Oleg Vyugin, 

chairman of MDM Bank and a former deputy governor of the Central Bank. Ms. Nabiullina stated 

“This [revoking of licenses] is not a cleansing effort. This is an effort to make the banking sector 

viable and get rid of the weak players”. 

Russian Banks are usually divided in three categories by specialists. The top tier, which can 

be thought of as “too strong to fail,” can be considered almost certain to keep their license. The 

second tier, the top 100 banks, is comprised of those institutions expected to survive the worst of 

crises but with less certainty. The third tier contains the remaining banks, institutions of varying 

stability which are trying to survive and maintain their licenses. However, a good ranking does not 
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guarantee a bank’s survival. Despite its position as one of the “Top 100” banks, Master Bank’s 

license was revoked in 2013. 

The CBR revoked the Master Bank’s license based on money-laundering violations and 

suspicious transactions. The bank had a 2 Bn USD hole in its balance sheet, owed almost 1 Bn 

USD’s to its depositors, and disrupted the operations of numerous other banks (Makhonin, 2013). 

Russia’s banking system has been hit many times by these kinds of illegal activities and the stock 

market is still seen by many as a money laundering paradise. The problematic state of the banks can 

be seen again through some extreme examples of banks’ illegal activities. According to the CBR, 

Admiralteisky Bank’s license was revoked due to “inability to follow anti-laundering rules and 

because it practically stopped serving its clients.”  Moreover, when CBR officials opened the 

bank’s vaults, they found iron bars painted gold, evidence of a bank falsifying its assets (Amos, 

2015). 

Between the years 2008 and 2013 the CBR revoked, on average, 30 licenses per year. This 

number was almost tripled in 2014 when more than 80 licenses were revoked (Weaver, 2015). The 

uptick in revocations shows that Russia has decided it needs to rely on more than its size and its oil 

in order to keep its position as one of the strongest countries. Strengthening the economy is one 

important step. To be certain of this strength Russia needs to make sure that no bank will 

unexpectedly reach a point where its license will need to be revoked, possibly leading to events 

similar to the events of 2008 in the United States. To reach such a state of certainty it needs strong, 

law-abiding banks. 

2.2 Banking Regulation 

Banking regulation refers to the laws that banks must follow to legally operate in the 

Russian Federation. The regulations are set by the Central Bank of Russia (CBR). The regulation 

outlines the criteria and process for evaluating the performance of each bank. A key component of 

these regulations are the banking normatives, a set of numerical standards that regulate the levels to 

which a bank can take risks. These standards are defined in Federal Law No. 87 FZ, Article 62. 

Those below are outlined in Bank of Russia Instruction No. 139-I: 

1) Capital Adequacy (N1) The minimum allowable value for this ratio is 10%. 

a) Capital Adequacy ratio (N1.0) Capital adequacy ratios make sure that banks 

have enough capital to absorb losses without going bankrupt. Each ratio 

governs different components of a bank’s capital. N1.0 regulates the entirety 

of a bank’s capital. The minimum allowable value for this ratio is 8%. 

b) Common Capital Adequacy ratio (N1.1) This is a ratio of a bank’s equity 

capital combined with its disclosed reserves to its risk-weighted assets. The 

minimum allowable value for this ratio is 4.5%. 
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c) Tier 1 Capital Adequacy ratio (N1.2) This expands on the Common Capital 

adequacy ratio, including some forms of preferred and common stock with 

the equity capital. The minimum allowable value for this ratio is 6% 

2) Liquidity 

a) Quick bank liquidity ratio (N2) - Regulates possible liquidation losses in the 

next business day. Calculated minimum ratio of high-liquidity assets to on-

call obligations must be at least 15% 

b) Current bank liquidity ratio (N3) - Regulates the risk of liquidation losses in 

the 30 days after its calculation. It is the ratio of the bank’s liquid assets to its 

liabilities due within the regulation time period. The minimum allowable 

value for this ratio is 50%. 

c) Long-term bank liquidity ratio (N4) - Regulates the risk of banks losing 

liquidity to long-term investments. It is the ratio of a bank’s credit claims 

maturing after the next 365 days from the date of calculation to the sum of 

bank’s equity and liabilities that will mature in the same timeframe. This is 

also adjusted for liabilities of the bank maturing within the next 365 days. 

This ratio can be at most 120%. In other words, the long-term fiscal stability 

of the bank cannot be wholly dependent on money the bank does not yet 

possess. 

3) Maximum Risk per borrower or group of borrowers (N6) - Regulates the credit risk 

of a bank in relation to one borrower or group of borrowers. It is calculated as the 

ratio of the total credit claims the bank has against a borrower to the bank’s equity. 

There are some cases for which N6 is not calculated, such as when the borrower is 

the Russian Federation, federal executive bodies, or the CBR. It is also not 

calculated for borrowers that are also stakeholders of the firm (these are covered by 

N9 and N10). The maximum value for this ratio is 25%. 

4) Maximum value of major credit risk (N7) - Regulates the maximum total value of 

the major credit risks of an institution. It is calculated as the ratio of the major credit 

risks to the bank’s equity. The maximum value for this ratio is 800%. This large 

value allows the major credit risks to exceed the capital of the bank up to 8 times in a 

year. 

5) Maximum value of loans, guarantees, and sureties issued by the bank to shareholders 

(N9.1) - Regulates credit risk on a bank in relation to its shareholders. Calculated as 

the ratio of the total loans, sureties, and guarantees issued by the bank to its 

shareholders to the bank’s equity. The maximum value for this ratio is set at 50%. 

6) Total risk on bank insiders (N10.1) - Regulates the amount of risk the bank can have 

on anyone able to influence the decision to issue a loan to (place risk on) someone. 

This ratio is calculated as the total credit risks and financial derivatives that the bank 
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has with everyone able to influence the decision to go ahead with those kind of 

transactions to the bank’s equity. This ratios maximum value is set at 3%. 

7) Use of equity to purchase shares of other legal entities (N12) - Regulates the amount 

of a bank’s equity that can be used to purchase shares of other legal entities. The 

maximum value of this ratio is set at 25%. 

2.3 Previous Prediction Models 

A paper examining bankruptcy in Taiwan of examined the effectiveness and predictive 

accuracy of multiple discriminant analysis, logit regression, probit regression and Artificial Neural 

Networks (ANN) techniques (Lin, 2009). This study used univariate logistic regression to select 

which financial ratios to use as variables in the development of each of the four models above. The 

selection narrowed 44 ratios considered to 20 ratios used in the study. By narrowing the focus of the 

model, the study was able to eliminate factors that had no effect on the dependent variable. If 

included in the model, these factors would only add noise to the data, detracting from the accuracy 

of the model. 

A model developed in 2006 compared the accuracy of logit regression and trait recognition 

models (models that look for approximate patterns in a dataset and can make predictions on data 

points that are not exact matches to the trend) (Lanine & Vennet, 2006). The paper predicted bank 

failures in the Russian sector quarterly, in periods of 3 months, 6 months, 9 months, and 12 months. 

In this application, the models showed that liquidity of bank assets to be an important determinant 

of bank license revocation predictions. It also cites asset quality and capital adequacy as significant 

determinants. Other factors used in the models developed in the paper are return on assets (ratio of 

net income: total assets), government debts securities (ratio of government debts: total assets), 

overdue loans (ratio of overdue loans + overdue promissory notes: total loans), ratio of loans to 

total assets, and a value for the size of the bank calculated as Log(total assets) (Lanine & Vennet, 

2006). 

Another model, aimed specifically at predicting defaults in the Russian banking sector in the 

timeframe 1997-2003, explored the benefits of clustering banks into groups of comparable banks, 

then developing individual models for each cluster. The study separated banks in four ways: by the 

ratio of their investments in government bonds to their total assets, the size of the bank’s assets 

relative to the total market assets, the ratio of banks credits-to-non-financial firms to total assets, 

and the ratio of the bank’s equity to its total assets. This paper clustered each bank into three 

categories based on “small”, “medium”, and “large” values of each of these four parameters. After 

clustering, the paper found the liquidity, equity and government investments to be significant 

indicators of a bank’s eventual default/avoidance of default (Peresetsky, Karminsky, & Golovan, 

2011). 
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The findings of these papers indicate that the significant factors in predicting defaults 

(license revocations) of banks can be seen in the capital adequacy or equity ratio (defined as N1 by 

the CBR) and liquidity ratios (defined as N2 through N4 by the CBR). Given the significance of 

these factors determined by the CBR and third parties, our model development will begin with the 

inclusion of the normatives N1, N2, and N3. 

3 Methodology 

The goal of this project was to forecast when a bank is likely to have its license revoked by 

the CBR. Previous papers have framed the problem of forecasting bank license revocations as a 

binary situation (revoked/not revoked). Our approach attempts to forecast the time until a bank will 

lose its license. We created a pair of models with this in mind. Provisions are made in the 

development of both models for the case where a bank does not lose its license.  

The first of the models we used was a multinomial logistic regression model. This model is 

a statistical method that takes the logistic regression algorithm used as a baseline in previous works 

and extends it to forecast months rather than whether or not the license was revoked. For simplicity, 

we refer to this model as our “regression” model. This regression model produces a set of equations 

that estimate the number of months until a bank loses its license. For further details on the 

implementation of regression models, see Appendix A. 

The second of the models we used was a random forest model. This is a machine learning 

method that has not to our knowledge been used in this application. Like the regression model, the 

random forest attempts to forecast the date a bank’s license is revoked. Instead of an equation, a 

random forest produces a set of decision trees to forecast the number of months until a bank loses 

its license. For more information on random forest models see Appendix B. 

 The objectives and corresponding methods for the development of these models are 

summarized in Table 3. 
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Table 3: Objectives and Methods 

Objectives Methods 

1.     Collect financial data into base dataset ●   Create a script to draw data from online 

databases 

●   Organize data into a manageable form 

2.     Determine the significant financial factors 

which indicate a propensity for license revocation 

●  Evaluate the relevance of each available factor 

●  Graph factors over revocation status to find 

trends 

3.     Develop the models ●  Discuss with Deloitte liaisons the best practices 

for creating effective models using financial 

data 

●  Use the Python library scikit-learn 

4.     Analyze and compare performance of models ●  Apply Precision, Recall & F1 metrics 

●  Generate optimal models for comparison  with 

each other 

  

3.1 First Objective: Build Basic Dataset 

         We downloaded our data from two online databases: banki.ru and the Central Bank of 

Russia’s (CBR) public records. The first database, banki.ru, contains 89 monthly statistics on each 

financial institution in the Russian Federation dating back to March 2008. It also contains a list of 

license revocation dates for banks that are no longer operational. The CBR database contains bank 

statistics reported monthly in compliance with the standards described in Chapter 2.2 of our report. 

After downloading data from both sources, we used it to generate our dataset for the development 

of the models. 

It should be noted that each observation in the dataset is independent of a specific license 

number. Before being put into the model, the license numbers are removed, so each observation 

becomes a different picture of the same nameless bank. The problem is not to find trends that lead 

banks to fail over time, but to find sets of values that correspond to banks that are (x) months or 

quarters from failure. 

This combination was done in two steps. First, we combined the data from banki.ru with the 

data from CBR to create a set of monthly observations. Each of these observations provides a 
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snapshot of the financial situation of a bank at the beginning of the month. This observation of a 

bank is a collection of the monthly statistics about that bank. Each of these statistics is called a 

feature of the observation. Initially we used only three statistics, N1, N2, and N3, as features of the 

observations. More banking statistics were added as features later. 

 Second, we classified each of the observations from the first step by the number of months 

between the date of that observation and the date the bank eventually lost its license. If this number 

was greater than 24, we assigned the observation a special value of 1000 to signify that it 

represented the bank’s financial situation more than two years before the bank’s license was 

revoked. If an observation is of a bank that has not yet lost its license, it is assigned a value of 9000, 

signifying that there is no revocation date for that bank. The final combination of our observations 

and their classifications formed our dataset. For more details on the downloading and combination 

of our data, see the Python code in Appendix E.  

We split our dataset into two similar parts for model development. Each part had the same 

proportion of observations from each class. Creating the sets in this way is called stratifying the 

two sets. The first set, called the training set, was used to build the models. The second set, called 

the testing set, was used to evaluate the performance of the models. 

 

Finally, we added one more component to our observations before inserting them to the 

models. For various reasons, the value of some statistics may be missing for a bank in a particular 

month. However, the model cannot run on incomplete data. To handle not-reported data, we set the 

value of the missing feature to 0, and add a new feature called X_M?, where X is the name of the 

feature with the missing value. This feature is given the value 0 when the corresponding feature has 

no value, and 1 when the feature has a value. 

3.2 Second Objective: Develop Basic Models 

         In completion of this objective we built simple versions of each model (Logistic Regression 

and Random Forest) which were later improved and compared. We developed the models using the 

scikit-learn library for Python. Scikit-learn is a machine learning library designed to aid developers 

in data analysis. It has functions to create classification models, implement clustering algorithms, 

and a variety of related operations. We used the classification functions to build our model because 

they best fit the way we structured the dataset. 

Both models were built with the same training set. Each model is created by an algorithm 

that looks for trends in the observations that correlate to the classes (number of months until license 

revocation) assigned to the observations. This process of building the model based on the training 

data is called fitting the model. After the first fitting of the models, we repeated the process in our 

first objective to include more statistics as features in the observations.  
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3.3 Third Objective: Determine Significant Features 

 We determined which of the available banking statistics were significant as features of our 

observations for the two methods: one for the regression model and one for the random forest 

model. The random forest determines internally which features of the observations are significant 

(Fawagreh, Gaber, & Elyan, 2014). To determine which features were significant in the regression 

model we used a method of combining the emphasis placed on that feature with its standard 

deviation in the dataset (Peresetsky, Karminsky, & Golovan, 2011). This method is described 

further in Appendix A. 

 We compared the two determinations and selected the features of greatest significance as the 

features to include in the next iteration of the model. Having selected our significant features, we 

repeated the processes of generating our dataset, splitting it into the two stratified sets (training and 

testing), and fitting the model to the training set. 

3.4 Fourth Objective: Evaluating & Optimizing Model Performance 

3.4.1 Evaluating Model Performance 

 After fitting our models and selecting the significant features, we used the testing set from 

our first objective to determine how well the models could forecast the date a bank would lose its 

license. We input the observations from the testing set into the models, which output the estimated 

classification of each observation. We compared these estimated classifications with the actual 

classifications using three different evaluation metrics. 

 The first of these metrics is called precision. This is a measure of how correct each model’s 

estimations were. It answers the question “how many observations did the model classify 

correctly?” The second of these metrics is called recall. This is a measure of how complete each 

model’s estimations were. It answers the question “how many observations of this classification did 

the model identify?” The third metric is a combination of the first two called F1. It provides an 

answer to the general question “how well did the model perform?” Details on the calculation of 

each metric can be found in Appendix C. 

3.4.2 Optimizing Model Performance 

 The goal of optimizing model performance is to achieve the highest scores possible in each 

of our evaluation metrics. To maximize our model’s scores, we made three edits to the original 

models.  

 First, we added a step to the dataset creation called preprocessing. Preprocessing is a 

method of regulating the orders of magnitude in a dataset. For example, the feature Total Assets has 
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Figure 1: Percentage of data in each 

class,  

“1 Quarter Left” to “Still Active” 

 

values that range from thousands in some observations to billions in other observations. 

Preprocessing transforms all the values of this feature into values within a much more manageable 

range. This is intended to minimize the impact of the discrepancy between magnitudes of the 

values. 

 Second, we changed the way we classified our observations. Instead of classifying each 

observation by how many months it was from the date of the bank’s license revocation, we 

classified each observation by how many business quarters it was from the date that bank’s license 

was revoked. By changing the classifications we hoped to increase the resolution of our data, as 

there would be multiple observations of each bank in each classification. 

 Third, we removed the extreme observations from the dataset. We elected to remove all 

observations of the 20 largest and 20 smallest banks as reported by net assets. By excluding the 

extremes we hoped to remove anomalies from the data that would skew the results of the model. 

4 Results & Findings 

 Before analyzing our results, we must discuss the composition of our dataset, as it has a 

significant effect on the results of our models. Despite the increase in bank license revocations, 

there are many more banks that are still active than there are banks that have lost their license. 

Because each of these banks are still 

active, they continue to produce new 

statistics each month, while the banks 

whose license has been revoked no 

longer produce new statistics. 

Therefore, as shown in Figure 1, we 

have much more data about the banks 

that are still active than we have about 

the banks that have lost their license. 

To further compound the bias, all 

observations of the “still active” banks 

(76% of the dataset) are in one class, 

while the data about banks that have 

lost their license (24% of the dataset) 

was further divided into 9 classes. 

More than half of the data that reflects banks whose 

licenses have been revoked (14% of the total dataset) is 

contained in the “Greater than 2 Years Left,” leaving only 

10% of the dataset to be divided among the remaining 

eight classes. 
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With such a significant bias in the dataset, the models are provided with much higher 

amount of information in the “Still Active” class than the “> 2 years” and quarterly classes, which 

allows a better estimate of what constitutes a “Still Active” bank than the estimates of the lower 

classes. 

4.1 Performance of Models 

Since F1 is determined by both the precision and recall score, it is an appropriate metric to 

compare models. However, for additional insight into the performance of the model, we will 

consider the specific precision and recall scores individually. 

4.1.1 Multinomial Logistic Regression 

 

 

Figure 2: Precision scores for each iteration of our regression model. 
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Figure 3: Recall scores for each iteration of our regression model 

 

Figure 4: F1 scores for our regression model. 

From Figures 2, 3, and 4 we can see that our regression model produces results with next to 

zero scores in most classes for all three metrics. The precision scores show the most success, with 

~15% in the one quarter to revocation (for its best version) and between 10% and 30% in the > 2 

years until revocation class for all versions but the basic version. All metrics show very high 

performance in the “Still Active” class. The recall score in this class is 100%, but the precision in 
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this class is only ~75%, which indicates the model defaults to guessing that an observation belongs 

in the “Still Active” class, likely due to the bias in the dataset described above. 

4.1.2 Random Forest Model 

 

 

Figure 5: Precision scores for each iteration of our random forest model 

 

Figure 6: Recall scores for each iteration of our random forest model 
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Figure 7: F1 scores for each iteration of our random forest model.  

As we can see from Figures 5, 6, and 7 the random forest model was not improved by adding 

preprocessing, although it performs much better when run quarterly (as opposed to monthly). 

Generally, the quarterly model with extreme banks excluded (the top and bottom 20 banks by net 

assets) scores highest by F1, however it is too close to be statistically significant. 

Achieving an over 20% average score between Q1-Q8 is a positive result. The model’s 

precision and recall were similar for all iterations except the “Quarterly, Extremes Excluded”. As 

illustrated in Figure 8, the precision score for this iteration was much higher (between 35%-45%) 

than the recall (around 10%).  
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Figure 8: All metrics for best performing random forest model, calculate quarterly with the 

top 20 and bottom 20 (by net assets) banks excluded 

We compared the “Quarterly, Extremes Excluded” model to the results of randomly 

guessing which observation from our testing set belonged to which category. The distribution our 

guesses matched the distribution of the dataset, meaning 76% of our guesses were that an 

observation belonged to the “Still Active” class, 14% in the “> 2 years” class, etc. When applying 

our performance metrics to our random guesses, we found that the random forest model 

outperformed our distributed random guessing, as can be seen in Figure 8. 
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Figure 8: F1 scores for random forest model 

graphed next to F1 scores for random guessing 

with the same distribution as the dataset. 
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4.1.3 Model Comparison 

 

Figure 9: Comparison of best regression and best random forest model 

Figure 9 shows the comparison of the optimal regression and random forest models. As 

discussed previously, regression only performs better than randomly guessing in one class, so 

clearly the random forest model is our best model. Our random forest model scores in the 15-25% 

range for the first 8 classes, scoring over 60% in the 9th and over 90% in the 10th class. 

4.2 Significant Feature Set 

The feature set used to generate our results is shown in Appendix G. Feature significance 

was determined for the random forest model using the Gini Importance (G.I.), which is the mean of 

the Gini Impurity Index1 of each feature determined by all the decision trees in the random forest. 

For simplicity’s sake it can be thought of as a “Percent Weight”, or a percentage of the model’s 

                                                 
1
 See Appendix B for details on Gini Index 
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prediction determined by that feature. The percent weights are shown in Figure 10 for each of the 

top 16 most-significant features. These features comprise 94% of the random forest’s consideration. 

The other 31 features make up only 6% of the consideration of the model. 

Figure 10 shows that the most significant factor is the total of all loans extended to 

institutions and businesses to be repaid in a three year period. Loans are directly involved with risk, 

thus we can speculate that the CBR pays attention to the investing of different banks and tries to 

keep them safe in and stable levels. By revoking licenses of banks that take too much risk, the CBR 

strengthens the economy by lowering the probability of these credit institutions going bankrupt and 

snowballing others with them. 

 

Figure 10 also shows that the features indicating whether or not a value was reported are 

entirely contained in the “other” features, as none of them appear in the “Top 16”. The nature of the 

approach of the random forest model makes this type of feature redundant. However, for 
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consistency in the comparison of the models, they were included for the random forest model 

because they were necessary in the logistic regression. 

We expected N2 and N3 to be two of the most significant features but the random forest 

model calculated their significance as 25th and 21st respectively. Despite their use by the CBR, 

these ratios were shown to be insignificant in the random forest model. They were indicated as the 

two values with the greatest significance in the logistic regression model, but as that model did not 

yield a high performance, we cannot confirm the validity of this significance. The standards 

considered significant (greater than 1% of the consideration) were N9.1, N1.0, N12, N1.1, and 

N1.2. 

5 Recommendations 

5.1 Use Random Forest 

Our results have shown that, for this application, the random forest algorithm scores higher 

on precision, recall, and F1 than the logistic regression algorithm. Specifically, it scores higher in 

all classes of the target variable. Therefore, we recommend that Deloitte continues to pursue the 

random forest approach rather than the multinomial logistic regression. 

5.2 Predict on Broader Timeframes 

We recommend Deloitte build models that predict on a quarterly basis, as both random 

forest and regression performed better under fewer target variable values. One likely cause of this is 

that our data is recorded every month. Predicting into quarters instead of months gives each class of 

target variable more observations, and a higher likelihood the model will find trends.  Another 

option to improve model performance is to predict over even broader timeframes. For example, we 

ran our model on 4 classes, revocation in 1 year, 2 years, more than 2 years, or never, and got F1 

scores of 43%, 41%, 63%, and 91% respectively. Those scores are generally higher than their 

respective counterparts in the quarterly model, although the predictions provided by this model are 

less precise. 

5.3 Identify More Significant Features 

We also recommend that Deloitte use more of the available data. One statistic in particular 

that we recommend Deloitte investigate is the ratio of precious metals over net assets. The precious 

metals data can be found from CBR’s form 110. The past years there has been a global shift from 

USD reserves to Gold reserves, thus the amount of gold reserves in a bank could indicate said 

bank’s importance for the Russian economy. Deloitte should also test additional data related to 
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loans and risk evaluation. Based on results from both models, the features with most significance 

were the ones related to risk or loans. This is probably because the CBR tries to stop any over-risky 

investment, due to the probability bankruptcy. 

5.4 Consider Effect of Preprocessing Data 

Preprocessing the data before running the regression and the random forest models produced 

different results in each model. Preprocessing improved performance in the metrics for our 

regression model, but worsened results for Random Forest. This was expected, as the benefit of 

preprocessing is dependent on the way the models interpret the training data. 

Regression develops an equation that combines the numerical values of each feature in the 

observations. Therefore, it is possible that the importance of some features might be skewed if they 

have a large variance in their values (some values between 0 and 1 and others in millions).  

Random Forests internally divide all values of each feature into ranges during their 

development. Preprocessing reduces the resolution of those ranges, so we see a slight drop in 

performance values. Therefore we recommend Deloitte avoid using preprocessing if they continue 

to develop the random forest model. 

5.5 Improvements Using Geopolitical Features 

 In addition to economic considerations, there are geopolitical and sociological factors that 

can lead to bank license revocation. We recommend, to further improve our model, that Deloitte 

add additional algorithms that analyze the current geopolitical and sociological environment and 

study how it influences banks. An example for such an implication would be to search how often a 

bank in referred to in the news, in a positive or negative way, and how this affects the bank.  

5.6 Removing Extreme Banks 

 We ran both models with and without data from the top 20 and bottom 20 banks by net 

assets. We found that these banks, due to their size, behave differently than most banks. We 

hypothesized that removing them may make trends in most banks more clear, leading to improved 

results. We saw slight improvements in the random forest model using this method, however the 

improvements weren’t significant enough to fully recommend this practice. 

 However, we would recommend that Deloitte investigate the effect of removing banks from 

the dataset which had their licenses revoked due to non-economic reasons (eg. fraud). Banks that 

lost their licenses due to illicit activities likely don’t follow the same patterns as banks which lost 

their license due to economic failure, so removing these banks should make trends in the other 

banks more clear. 
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5.7 Use Clustering 

Finally, we recommend Deloitte cluster the banks in the dataset. By clustering, we mean to 

group the banks based on a specific characteristic and generate a separate model each cluster. For 

example, instead of removing the extreme banks by net assets, Deloitte could cluster the banks into 

the top 10%, middle 80%, and bottom 10% by net assets, then run the model separately on each 

cluster. The idea is that banks within a cluster follow trends that are unique to banks in that cluster, 

but are obfuscated by observations outside the cluster in the general dataset. Therefore, clustering 

makes these individual trends clearer, resulting in improved performance in each cluster as opposed 

to running the model once on all banks. 

6 Conclusion 

Our research shows that a model using random forest scores higher on precision, recall, and 

F1 than one using multinomial logistic regression when used to forecast revocation of Russian bank 

licenses. We found that both models perform better when predicting quarters of the year instead of 

months. Also, our regression model is improved by preprocessing, while the performance of our 

random forest model worsens. The effect of excluding the top 20 and bottom 20 banks by net assets 

is negligible, although it improved the random forest model slightly. 

To continue our work, Deloitte could research and add additional features for the Random 

Forest model. We found that adding features generally improves model performance. Specifically, 

the model would be improved by data that is recorded more frequently (eg. per week) than the data 

currently available, which is only updated every month. This made predicting failure on a monthly 

basis nearly impossible, but was sufficient for a quarterly analysis. Finally, Deloitte could 

investigate clustering the banks based on certain characteristics (eg. net assets, loans to businesses) 

and running the model on individual clusters separately. There may be trends in the data which 

exist only in certain clusters; separating banks in this way would help the model recognize these 

trends and improve model performance. 
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Appendix A: Regression Models 

 Running regression analysis on a set of data yields an equation that estimates the outcome 

of an unknown statistical event. It finds application in a variety of financial analysis techniques and 

models in various forms. The most common of forms of regression are linear, probit, and logit 

regression. Regression can be categorized by the number of independent variables considered. 

These categories are univariate (one independent variable) and multivariate (multiple independent 

variables). The regression models used for forecasting bank failures are generally the latter 

(Fabozzi, Focardi, & Rachev, 2014; Greene, 2003). 

The most basic regression technique, linear regression, describes the trend in a data set with 

the assumption that any trends will be linear in nature. In univariate regression, this will yield a 

“line of best fit” for the data. In multiple regression, the output will be a series of coefficients that 

describe a hyperplane. This hyperplane is analogous to the “line of best fit” seen in univariate 

analyses, as it provides an estimation of the general trend of the dataset. The general form of the 

linear regression model is: 

𝑦 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑘𝑥𝑘 + 𝜖     (1) 

where y is the dependent variable and xi is a component of vector x. The error term is 

included to account for the inherent inaccuracy in the approximation of the model (Greene, 2003). 

The second technique, probit regression, provides a non-linear analysis of a set of data. It 

gives as an output the probability of a binary event, with predictive values between 0 and 1. This 

method takes the general form: 

 𝑃(𝑦|𝑋1, 𝑋2, … , 𝑋𝑛) = 𝑁(𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑘𝑥𝑘)        (2) 

where N means the error term takes the cumulative normal standard distribution function. In 

essence this means the variables are inserted, transformed by the coefficients, and then the 

probability of failure is calculated based on an assumed probability density curve (Fabozzi, Focardi, 

& Rachev, 2014). 

The logit regression model is similar but it assumes that the error term takes a different 

probability density function than probit regression. For the logit model, it is assumed the data takes 

a logistic probability form, so its general form becomes: 

𝑃(𝑦|𝑋1, 𝑋2, … 𝑋𝑛) =  𝐹(𝛽0 + 𝛽1𝑥1 + ⋯ 𝛽𝑘𝑥𝑘)       (3) 

where F represents the error term taking a logistic distribution. With a little algebra, this 

becomes: 

𝑃(𝑦|𝑋1, 𝑋2, … , 𝑋𝑛) =
1

1+𝑒−(𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘)
        (4) 
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(Fabozzi et al., 2014) Logit regression has been found to work best in some cases of 

estimating the probabilities of defaults in banks (Karminsky & Kostrov, 2014). 

Another regression model often used in the literature is binary logistic regression, which 

takes the general form: 

log
𝑥𝑎𝑣𝑔

1−𝑥𝑎𝑣𝑔
=  𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑘𝑥𝑘     (5) 

where xavg is the mean value of x. The left side is the log of the odds function of xavg. The 

log of the odds function is also called the logit function, expressed as logit(xavg). The right side is 

the linear combination of x as a vector of k regressors. When used in binary logistic regression, the 

value of the left side of the equation can be described as the logit(π) (Greene, 2003). 

Binary logistic regression models show how a binary dependent variable (in this case the 

revocation/continuation of a bank license) depends on a set of independent variables x1...xk (in this 

case the collection of normatives and indicators selected). The application of the regression allows 

the calculation of the weight of factors involved in the probability of default (PD) of a bank 

(Karminsky & Kostrov, 2014). In the application of the probability of default, these factors are 

selected ratios that compare capitalization and liquidity of banks. When the regression is run, it 

returns values of the coefficients of the ratios used in the model. The values of these coefficients 

indicate the effect that each ratio will have on whether or not the bank experiences a default. 

Regression models are rarely, if ever, computed by hand. Instead, scripts are written in code.  

The scripts take in large sets of empirical data, and use those data points to estimate values for each 

coefficient in the model (Greene, 2003). 
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Appendix B: Random Forests 

Random forests are built as a collection of decision trees. Decision trees are a method of 

predicting a target variable that takes discrete values. As shown in Figure 2.1, they are comprised of 

a series of decision nodes, where the decision at each node is based on the value of an independent 

variables. At the end of each branch of the tree is a leaf node that names the predicted class for that 

path through the tree. All independent variables are assigned to a node at some level of the tree. In 

some cases, if a variable is determined to be insignificant, it is omitted from the tree. When 

selecting which variable to test in a node, the algorithm evaluates which of the available and 

untested features is most telling about the value of the independent variable (Mitchell, 1997). The 

full ID3 algorithm for developing decision trees is as follows: 

1. Create root node 

2. If all examples are same class, return single node tree, labeled ‘class’ 

3. If attributes[] is empty, return one node tree label = most common target value in targetSet 

4. Otherwise begin 

a. A <- attribute that best describes examples 

b. The decision attribute for root <- A 

c. For each possible value vi of A 

i. Add a branch for vi  

ii. Examplesvi <- subset of Examples that have vi for A 

iii. IF Examples is empty then 

1. Add leaf node under this node with label = most common target value 

in targetSet 

2. ELSE- below this new branch add subtree: ID3(Examplesvi, targetSet, 

Attributes - {A}) 

5. End 

6. Return root 

ID3 a basic recursive algorithm for decision trees defined for a set of discrete-valued 

features and targets. Our application uses an extension of this algorithm to divide real-valued data 

into discrete ranges. Also in the random forest application is a function to randomly select a subset 

of the available attributes at each node to encourage diversity among the many decision trees 

created. The attribute chosen at each node is not included in the available attributes of the next node 

to ensure that all significant features are evaluated at some point in the tree (Mitchell, 1997). 
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Figure 2.1: Decision Tree for how long a child may play outside. Note “Homework Done?” is 

omitted when weekend = yes. Based on Mitchell, 1997 

There are a variety of methods for evaluating which variable is the most informative. The 

algorithm shown above uses the information theory concepts of entropy and information-gain to 

evaluate how “telling” a variable is. Another widely applied method, used by the trees in the 

random forest algorithm, is the Gini index. Introduced in 1912 by Carrado Gini, the Gini index is a 

measure of the impurity in a set of data (Fawagreh, Gaber, & Elyan, 2014). Both methods provide 

an indication of the level of information gained by examining that variable. Further explanation of 

decision trees can be found in (Mitchell, 1997). 

 Random forests are an example of a machine learning technique known as ensemble 

classification. Ensemble classification is a method of combining multiple classifiers to attain a 

better accuracy than any of the individual classifiers in the ensemble. The classifiers used should be 

accurate and diverse. Accurate classifiers have lower error rate than random guessing. Trees are 

considered diverse if the produced errors are different when considering new data points (Fawagreh 

et al., 2014). In the ensemble paradigm, each classifier develops its own conclusion of how to 

classify a given unlabeled example. The models then “vote” for the class label that most fits the 

example. There are many different voting schemes, the simplest of which is majority voting. In 

majority voting, each classifier votes once for the class label it produced. The class with the most 

votes out of all the classifiers is selected as the overall prediction of the ensemble. 
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 There are three widely used methods of constructing the classifiers used in the ensemble, 

identified as boosting, bagging and stacking (Fawagreh et al., 2014). Boosting is a technique where 

each classifier in the ensemble is built from the misclassified data of the previous classifier. 

Bagging (more formally Bootstrap Aggregating) creates each classifier from a randomly selected 

subset (called a bootstrap sample) of the training data. Stacking combines the predictions of each 

classifier as inputs to a final combination algorithm, often a logistic regression model. 

 Random forests use bagging to build the classifiers. In this case, the classifiers are built as 

decision trees, each from its own bootstrap sample. In the construction of the trees, an extra element 

of randomness is added at each node. Rather than selecting the best-classifying decision attribute at 

each node, the decision attribute is selected from a randomly selected sample of the available 

attributes (Liaw & Wiener, 2002). The introduction of added randomness to the creation of each 

tree promotes diversity among them. It has been shown that increased diversity among the trees 

helps to reduce the overall error of the forest and improves performance. 

 In the original paper on random forests, the advantages of random forests are outlined as 

follows: (Breiman, 2001) 

● Comparable performance to boosting 

● Robust to outliers and noise 

● Faster than normal bagging or boosting 

● Makes internal estimates of error, strength, correlation and variable importance 

● Simple and easily parallelized (executed in parallel) 

In the application of predicting bank failure, an algorithm robust to outliers and noise is a 

useful alternative to clustering to handle the variety in sizes of banks. Random forest provides 

additional advantages in its use of decision trees, which are robust to missing or incorrect attributes 

in the dataset. Missing or incorrect data can occur from human error in a bank’s monthly report or 

quarterly statements. This is not to say a random forest can detect fraud, but is theoretically resilient 

to accounting errors. To our knowledge this is the first application of random forests to forecasting 

license revocations. 
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Appendix C: Performance Metrics 
We analyzed our models using three performance metrics called precision, recall, and F1. To 

explain them, consider the following example. Imagine there is a picture which contained dogs, 

cats, and turtles. The objective is to identify all of the dogs in the picture. 

 

 

We can split the animals into four categories: 

 True positives are dogs which were correctly identified as dogs 

 False positives are cats and turtles which were incorrectly identified as dogs 

 False negatives are dogs which were failed to identify as dogs 

 True negatives are cats and turtles which were correctly identified as not dogs 

 

There are two additional distinctions in the diagram above: 

 Selected elements are all animals which were identified as dogs 

 Relevant elements are all the dogs in the picture 

 

With these definitions, we can define our first two metrics, precision and recall. They are both 

ratios of some of the categories defined above. 

 



 
Predicting Bank License Revocation 30

  

 

Precision is the ratio of true positives over selected elements. In terms of our example, out of all of 

the animals which we said were dogs, what percentage are actually dogs? 

 

 
 

Recall is the ratio of true positives over all relevant animals. In terms of our example, out of all of 

the dogs in the picture, what percentage did we correctly identify? 

 

 
These two ratios have identical meanings in the context of our project. Precision is a ratio 

between the number of correct predictions in a specific class and the total number of predictions 

made for that class. For example, if the model guesses that 8 banks will retain their licenses 

indefinitely and only 3 of those banks will actually retain their licenses, then the precision of the 

model is ⅜.  

Recall is the ratio between the number of correct predictions in a specific class and the total 

number of relevant observations for that class. Continuing the previous example, if there were 

another 2 banks that the model did not predict would retain their licenses, but actually did, then the 

model’s recall is ⅗ (3 correct over 3+2=5 total banks in that category). 

F1 is the harmonic mean of the precision (p) and recall (r) values for each class.(scikit-

learn.org, 2014) It is calculated for the i-th class as: 

 𝐹1𝑖 =
𝑝𝑖𝑟𝑖

𝑝𝑖+𝑟𝑖
∗ 2     (5) 
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The advantage of the harmonic mean of the first two metrics is its stability when handling 

outliers. The aim of calculating F1 is to find a measure of the model’s accuracy influenced equally 

by the precision and recall. The harmonic mean of the two ensures that if the model achieves a high 

precision and very low recall, the F1 score will remain low. An F1 value of 1 indicates every 

classification made by the model was correct (a precision value of 1) and the model classified all 

possible observations (a recall value of 1). 
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Appendix D: Model Code 

multinomial_logistic_regression.py 

This file contains the bulk of the model. This is the file that is run to generate the model and output results. 

  1 #!/usr/bin/python 
  2  
  3 ################################### PREAMBLE ################################### 
  4  
  5 import csv, sys, argparse, subprocess 
  6 import numpy as np 
  7 from timeit import default_timer 
  8 from sklearn.preprocessing import scale 
  9 from sklearn import linear_model, ensemble 
 10 from sklearn.model_selection import train_test_split 
 11 from sklearn.metrics import precision_score, recall_score, f1_score 
 12  
 13 # Class I made for storing details (used for exporting results to txt file) 
 14 from ModelResults import ModelResults 
 15 # A file I wrote to export results 
 16 from export_test import * 
 17  
 18 np.set_printoptions(threshold=np.inf)# Turns off truncation (forces numpy to print large 
arrays) 
 19 np.set_printoptions(precision=3) # Sets number of printed digits 
 20  
 21 # These two arrays contain the top and bottom 20 banks in terms of net assets as ranked on 
Banki.ru on 27/09/16 
 22 top_banks = 
[1481,1000,354,2209,1623,3349,1326,3466,1978,3251,1,2562,3292,2272,2748,328,2888,436,963,2289] 
 23 bottom_banks = 
[3430,3420,3309,3353,2688,3318,3514,384,2605,2435,3343,3502,3509,3427,3511,3447,3483,3324,149,3332] 
 24  
 25 ################################## MODEL CODE ################################## 
 26  
 27 start_time = default_timer() # To measure program execution time 
 28  
 29 print("WPI/Deloitte Model for Predicting License Revocation of Russian Banks\n") 
 30  
 31 # Argument Parsing 
 32 parser = argparse.ArgumentParser() 
 33 desc = parser.add_mutually_exclusive_group() 
 34 desc.add_argument("-d", "--description", help="Give text to describe model run type. Will be 
stored in description.txt") 
 35 seed_par = parser.add_mutually_exclusive_group() 
 36 seed_par.add_argument("-s", "--seed", help="Pass seed for train_test_split.") 
 37 c_par = parser.add_mutually_exclusive_group() 
 38 c_par.add_argument("-c", "--pass_c", help="Pass in value for C for model to use. Only used when 
running LogisticRegression") 
 39 c_test = parser.add_mutually_exclusive_group() 
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 40 c_test.add_argument("-ct", "--c_test", help="Used by c_test.py to output several runs to one 
file; give this option the path to the file where all results should be stored. Only used when 
running LogisticRegression") 
 41 args = parser.parse_args() 
 42  
 43 # Write description to txt file if given 
 44 if args.description != None: 
 45     generate_path() # Generate folders for path if they don't exist 
 46  
 47     descFile = path + "description.txt" 
 48     with open(descFile, "w") as fp: 
 49         fp.write(args.description) 
 50         fp.close() 
 51  
 52 call_parse = ["../parser/parser.py", "-s"] 
 53  
 54 normatives = ["N1", "N1_0", "N1_1", "N1_2", "N2", "N3", "N4", "N7", "N9_1", "N10_1", "N12"] 
 55 loans_to_businesses_and_institutions = ["for_a_term_of_up_to_6_months", 
"for_a_term_of_6_months_to_1_year", "for_a_term_of_1_year_to_3_years", "for_a_term_over_3_years"] 
 56 ratios = ["return_on_net_assets", "return_on_equity", "reserve_to_loans", 
"mortgaged_property_to_loans", "foreign_currency_operations_to_net_assets"] 
 57 custom_ratios = ['"(/ interbank_credit_in_cbr_turnover interbank_credit_in_cbr)"', '"(/ 
overdue_debt_1 overdrafts)"', '"(/ attracted_interbank_loans_from_cbr_turnover 
attracted_interbank_loans_from_cbr)"'] 
 58 # NOTE: custom_ratios must be enclosed in double quotes for the parser to read them correctly 
 59  
 60 # Created feature set this way because of the length of the strings 
 61 # To add features, append feature strings to *this* array 
 62 features = normatives + loans_to_businesses_and_institutions + ratios + custom_ratios 
 63 call_parse += features 
 64  
 65 # Run parser to generate custom model_data.csv file 
 66 print("Generating datafile...") 
 67 try: 
 68     subprocess.call(call_parse, cwd="../parser") # cwd = Current Working Directory 
 69 except WindowsError: # subprocess.call doesn't work on Windows 
 70     print("\nWARNING: Auto-generation of model data not supported in Windows. Please run 
'python parser.py' before running model to update model_data.csv file\n\n")     
 71  
 72 print("Importing data...") 
 73 with open('../csv/model_data.csv', 'rb') as csvfile: 
 74     my_reader = csv.reader(csvfile)  
 75     firstRow = True # So that loop runs different code on first row 
 76     i = 0           # Keep track of loop number 
 77  
 78     for row in my_reader:   # Iterate over all rows in csv 
 79         if firstRow == False: 
 80              
 81             target = float(row[2])  # Get target value from file 
 82             lic_num = float(row[0]) # Get license number from file 
 83  
 84             # Ignore negative targets (ie. values from after revocation) 
 85             # Uncomment rest of line to exclude extreme banks 
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 86             if target > 0: # and lic_num not in top_banks and lic_num not in bottom_banks: 
 87                  
 88                 # Generate array of features in this row 
 89                 new_feat = [] 
 90                 for j in range(3, numFeatures+3): # Iterate over features, add to array 
 91                     curr_feat = row[j] 
 92  
 93                     # No data provided for this feature 
 94                     if curr_feat == "": 
 95                         new_feat.append(float(0))   # Meaningless value 
 96                         new_feat.append(float(0))   # 0 = Value missing 
 97  
 98                     else: 
 99                         # Boolean values provided (for reporting in bounds / out of bounds) 
100                         if curr_feat == "True": 
101                             new_feat.append(float(1))   # 1 = In Bounds  
102  
103                         elif curr_feat == "False": 
104                             new_feat.append(float(0))   # 0 = Out of Bounds 
105  
106                         # Numeric value provided (normal -- value of feature) 
107                         else: 
108                             new_feat.append(float(curr_feat)) # Use value of feature 
109  
110                         new_feat.append(float(1)) # 1 = Value present 
111  
112                 X = np.concatenate(( X, np.array([new_feat]) )) # Add new feature set to array 
113  
114                 # Uncomment to run on all 26 classes, and comment out the QUARTERLY block                
115                 # Y = np.append(Y, target) 
116  
117                 # QUARTERLY 
118                 if target <= 3: Y = np.append(Y, 1) 
119                 elif target <= 6: Y = np.append(Y, 2) 
120                 elif target <= 9: Y = np.append(Y, 3) 
121                 elif target <= 12: Y = np.append(Y, 4) 
122                 elif target <= 15: Y = np.append(Y, 5) 
123                 elif target <= 18: Y = np.append(Y, 6) 
124                 elif target <= 21: Y = np.append(Y, 7) 
125                 elif target <= 24: Y = np.append(Y, 8) 
126                 else: Y = np.append(Y, target) 
127                  
128  
129         else: 
130             firstRow = False 
131             numFeatures = len(row)-3 # Everything past first three columns are features 
132  
133             # Create array of feature labels 
134             feature_labels = [] 
135             for j in range(3, numFeatures+3): 
136                 feature_labels.append(row[j])       # Add feature name 
137                 feature_labels.append("%s_M?" % row[j]) # For "missing" column (1 if feature 
present, 0 if not) 
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138  
139             # Create the feature and target datasets respectively 
140             X = np.empty((0,numFeatures*2), float) # Create empty array with shape attributes 
(so it can be used in concatenate) 
141             Y = np.array([]) 
142  
143         # Print dots to indicate progress 
144         if i % 350 == 0: 
145             sys.stdout.write('.') 
146             sys.stdout.flush() 
147         i += 1 
148  
149 feature_labels = np.array(feature_labels) # Convert feature_labels to a numpy ndarray 
150  
151 # Split data into testing & training, with 66% training, 33% testing 
152 # If seed passed, use it 
153 # Otherwise, seed used to keep split consistent 
154 if args.seed != None: 
155     X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.33, 
random_state=int(args.seed), stratify=Y) 
156 else: 
157     X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.33, random_state=42, 
stratify=Y) 
158  
159 # Data preprocessing (uncomment below to add preprocessing) 
160 # scale(X_train, copy=False) 
161 # scale(X_test, copy=False) 
162  
163 print("\nFitting model...") 
164 # Store results in ModelResults object 
165 results = ModelResults(X_train, X_test, Y_train, Y_test, feature_labels) 
166  
167 # If passed, use passed in C value 
168 # c_val is only relevant to LogisticRegression, but for compatibility with 
169 # ModelResults objects, a value is included either way 
170 if args.pass_c != None: c_val = float(args.pass_c) 
171 else: c_val = 0.01 
172  
173 # Create the model & fit to training data 
174 # Uncomment line to run LogisticRegression 
175 # model = linear_model.LogisticRegression(penalty='l1', multi_class='ovr').fit(X_train, 
Y_train) 
176 model = ensemble.RandomForestClassifier().fit(X_train, Y_train) 
177  
178 print("Generating predictions...") 
179 predict_arr = model.predict(X_test)   # Run a prediction for test dataset (ie. compare this 
array to Y_test) 
180 prob_arr = model.predict_proba(X_test) # Runs prediction, outputs probability vectors 
181  
182 print("Evaluating performance...") 
183 precision = precision_score(Y_test, predict_arr, average=None) # Calculate the precision 
184 recall    = recall_score(Y_test, predict_arr, average=None) # Calculate the recall 
185 f1        = f1_score(Y_test, predict_arr, average=None) # Calculate f1 
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186  
187 exec_time = default_timer() - start_time # Calculate execution time 
188  
189 # Add results to "results" object 
190 # Uncomment this line when running LogisticRegression 
191 # results.addResults(c_val, model.coef_, predict_arr, prob_arr, precision, recall, f1, 
exec_time) 
192 results.addResults(c_val, model.feature_importances_, predict_arr, prob_arr, precision, recall, 
f1, exec_time) 
193  
194 # If running with c_test option, export results 
195 # Uncomment for LogisticRegression 
196 #if args.c_test != None: 
197 #   export_c_test(results, args.c_test) 
198 #   exit() # Quit early so full results aren't exported 
199  
200 print("\nTotal Execution Time: %f seconds\n" % exec_time) 
201  
202 # Uncomment for LogisticRegression 
203 #print("\nC: %s\n" % c_val) 
204 print("Precision: %s\n" % precision) 
205 print("Recall: %s\n" % recall) 
206 print("f1: %s\n" % f1) 
207  
208 print("Exporting results...") 
209 export_test(results) 
210 print("Data sets and results exported to %s" % path) 
211  
212 ################################################################################ 

ModelResults.py 

This file contains the definition of the ModelResults class, which is used to store the results of model execution 

and pass them to export_test() for the creation of results files. 

 1 import numpy as np 
 2 from math import log10, floor 
 3  
 4 class ModelResults: 
 5  
 6 ############################### CLASS FUNCTIONS ################################ 
 7  
 8  def __init__(self, X_train, X_test, Y_train, Y_test, feature_labels): 
 9      # Round values in X array before storing         
10      self.round_2d_arr(X_train, 3) 
11      self.round_2d_arr(X_test, 3) 
12       
13      self.X_train = X_train 
14      self.X_test  = X_test 
15      self.Y_train = Y_train 
16      self.Y_test  = Y_test 
17      self.feature_labels = feature_labels 
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18  
19  def addResults(self, C, coef, predict_arr, prob_arr, precision, recall, f1, exec_time): 
20  
21      self.C       = C 
22      self.coef    = coef 
23      self.predict_arr = np.array(predict_arr) 
24      self.prob_arr    = np.array(prob_arr) 
25      self.precision = np.array(precision) 
26      self.recall    = np.array(recall) 
27      self.f1        = np.array(f1) 
28      self.exec_time = exec_time 
29  
30 ############################### HELPER FUNCTIONS ############################### 
31  
32  # Rounds x to n significant figures 
33  def n_sig_figs(self, x, n): 
34      # x = 10 ^ (log10(x)), the floor of which is the number of places the first significant 
digit is away from the decimal point (in one direction) 
35      # And the round() function rounds n places after the decimal place (or before, if n is 
negative) 
36      # So without adding in -(n-1), it rounds to one significant figure     
37      if x == 0: return 0 
38      return round(x, -(int(floor(log10(abs(x))))-(n-1))) 
39  
40  # Rounds all the elements in an 2d numpy array to n significant figures 
41  def round_2d_arr(self, arr, n): 
42      bounds = arr.shape 
43  
44      for i in range(bounds[0]):      # Iterate over vectors in array 
45          for j in range(bounds[1]):  # Iterate over elements in vector 
46              arr[i][j] = self.n_sig_figs(arr[i][j], n) 
47  
48 ################################################################################ 

export_test.py 

This file contains functions for writing results of model execution to files. The model calls the export_test() 

function to do most of the exporting; some other functions are used in other parts of the project. 

  1 ################################### PREAMBLE ################################### 
  2  
  3 import os 
  4 import datetime 
  5 import numpy as np 
  6  
  7 # Class I made for storing details (& exporting to txt file) 
  8 from ModelResults import ModelResults 
  9  
 10 ############################# CREATE PATH VARIABLE ############################# 
 11  
 12 date = str(datetime.date.today()) 
 13 time = str(datetime.datetime.now().time())[:8] 
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 14 time = time.replace(":", "-") # Replace colons - Windows paths cannot have them 
 15  
 16 path = "../out/%s/%s/" % (date, time) 
 17  
 18 ############################### HELPER FUNCTIONS ############################### 
 19  
 20 # Generates the folders necessary for the path variable (where the output goes) 
 21 def generate_path(): 
 22     # Create folders if they don't exist 
 23     if not os.path.exists(path): 
 24         os.makedirs(path) 
 25  
 26 # Saves arr to filename.csv 
 27 def output_arr(arr, filename): 
 28     var_path = path + filename      # Create full path to file 
 29     np.savetxt(var_path, arr, delimiter=',')# Save array as csv 
 30  
 31 # Adds header before exporting to csv 
 32 def output_arr_w_header(arr, filename, header):  
 33     # Create header string   
 34     head_str = str(header[0]) 
 35     for i in range(1, header.size): 
 36         head_str = head_str + "," + str(header[i]) 
 37     head_str = head_str + "\n" 
 38  
 39     # Output file with header 
 40     var_path = path + filename 
 41     with open(var_path, 'w') as outfile: 
 42         outfile.write(head_str) 
 43         np.savetxt(outfile, arr, delimiter=',') 
 44         outfile.close() 
 45  
 46 ################################ FILE WRITERS ################################## 
 47  
 48 # Creates four files, one for each data set (X_train, X_test, Y_train, Y_test) 
 49 # Also export value of C 
 50 def export_data_sets(r): 
 51     output_arr_w_header(r.X_train, "X_train.csv", r.feature_labels) 
 52     output_arr_w_header(r.X_test, "X_test.csv", r.feature_labels) 
 53     output_arr(r.Y_train, "Y_train.csv") 
 54     output_arr(r.Y_test, "Y_test.csv") 
 55  
 56     # Uncomment for LogisticRegression 
 57 #   c_path = path + "c.txt" 
 58 #   with open(c_path, 'w') as outfile: 
 59 #       outfile.write(str(r.C)) 
 60 #       outfile.close() 
 61  
 62 # Creates files for all results 
 63 def export_results(r): 
 64     time_path = path + "execution_time.txt" 
 65     with open(time_path, 'w') as outfile: 
 66         mins = 0 
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 67         while r.exec_time > 60: 
 68             mins += 1 
 69             r.exec_time -= 60 
 70         outfile.write(str(mins) + " minutes and " + str(r.exec_time) + " seconds") 
 71         outfile.close() 
 72  
 73     output_arr_w_header(r.coef, "coef.csv", r.feature_labels) 
 74     output_arr(r.predict_arr, "predict_array.csv") 
 75  
 76     # Create header with target values for some results files    
 77     header = np.arange(1,9) 
 78     header = np.append(header, [1000, 9000]) 
 79  
 80     output_arr_w_header(r.prob_arr, "probability_vectors.csv", header) 
 81     output_arr(r.precision, "precision.csv") 
 82     output_arr(r.recall, "recall.csv") 
 83     output_arr(r.f1, "f1.csv") 
 84  
 85 # Writes run reports to txt files, returns paths to files 
 86 # r = a ModelResults object 
 87 def export_test(r): 
 88     generate_path() 
 89  
 90     export_data_sets(r) 
 91     export_results(r) 
 92  
 93 # Used by c_test.py to compare several C values on the same model 
 94 # Generally don't want to use this manually 
 95 def export_c_test(r, filePath): 
 96     with open(filePath, "a") as myfile: 
 97         # Print header with list of features (will print each iteration, not worth trying to 
fix) 
 98         head_str = "Used features: " + str(r.feature_labels[0]) 
 99         for i in range(1, r.feature_labels.size): 
100             head_str += ", " + str(r.feature_labels[i]) 
101         head_str += "\n\n" 
102         myfile.write(head_str) 
103  
104         print("C: %f" % r.C) 
105         myfile.write("C: %f\n" % r.C) 
106         myfile.write("Precision:\n%s\n\n" % str(r.precision)) 
107         myfile.write("Recall:\n%s\n\n" % str(r.recall)) 
108         myfile.write("F1:\n%s\n\n" % str(r.f1)) 
109         myfile.close() 
110  
111 ################################################################################ 
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rand_test.py 

This file contains a script for generating random model results. It requires a Y_test file (containing sample data). 

The script generates an array of random predictions and exports the precision, recall, and F1 scores. We used 

this for comparing our model’s performance vs. random guessing. 

 1 import numpy as np 
 2 import argparse 
 3 from random import randrange 
 4 from export_test import * # For outputting results to txt 
 5 from sklearn.metrics import precision_score, recall_score, f1_score 
 6  
 7 # Argument Parsing 
 8 parser = argparse.ArgumentParser() 
 9 runType = parser.add_mutually_exclusive_group() 
10 runType.add_argument("-t", "--runType", help="Pass 'month' or 'quarter'") 
11 yArr = parser.add_mutually_exclusive_group() 
12 yArr.add_argument("-y", "--y_test", help="Pass filename file containing Y_test from model run") 
13 args = parser.parse_args() 
14  
15 if args.y_test == None: 
16  print("ERROR: Provide Y_test file with the '-y' option.") 
17  exit() 
18  
19 # Load Y_test (expected values) 
20 Y_test = np.loadtxt(args.y_test) 
21  
22 # Create random array 
23 rand_arr = np.array([]) 
24  
25 # Generate a random array the same size as Y_test 
26 for i in range(0, Y_test.size): 
27  # Generate new random value (in range depending on type) 
28  if args.runType == "month": 
29      val = randrange(1, 27) 
30      if val == 25: val = 1000 
31      elif val == 26: val = 9000 
32  elif args.runType == "quarter": 
33      val = randrange(1, 11) 
34      if val == 9: val = 1000 
35      elif val == 10: val = 9000 
36  else: 
37      print("ERROR: Input '-t' and either 'month' or 'quarter'") 
38      exit() 
39  
40  # Add random value to array 
41  rand_arr = np.append(rand_arr, val) 
42  
43 precision = precision_score(Y_test, rand_arr, average=None)  # Calculate the precision 
44 recall    = recall_score(Y_test, rand_arr, average=None) # Calculate the recall 
45 f1        = f1_score(Y_test, rand_arr, average=None)     # Calculate f1 
46  
47 print("Precision: %s\n" % precision) 
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48 print("Recall: %s\n" % recall) 
49 print("f1: %s\n" % f1) 
50  
51 generate_path() # Generate results filepath 
52 output_arr(precision, "precision.csv") 
53 output_arr(recall, "recall.csv") 
54 output_arr(f1, "f1.csv") 

c_test.py 

This file contains a script for testing the model on different values of C. C is a parameter for the 

LogisticRegression model, so this script is only run on the regression model. 

 1 ################################### PREAMBLE ################################### 
 2  
 3 import subprocess 
 4 import numpy as np 
 5  
 6 from export_test import * 
 7  
 8 # USAGE: This script runs model.py on the same seed with different C values to 
 9 #        compare them. The vals array below contains the C values that the script 
10 #        will iterate over. Change it to include whichever values you want. 
11 #        Make sure model.py is properly uncommented to run LogisticRegression (default is 
RandomForest) 
12  
13 #################################### SCRIPT #################################### 
14  
15 # Array of C values to run model on 
16 vals = np.array([ 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 0.75, 0.9, 0.95, 1.0 ]) 
17  
18 fileName = path + "c_test.txt" # Create header of results file 
19  
20 generate_path() # Create folders if they don't exist 
21  
22 with open(fileName, "w") as myfile: 
23  myfile.write("Results of C-value testing\n") 
24  myfile.close() 
25  
26 # Iterate over test values for C, run model on same seed to get comparative results 
27 for C in vals: 
28  subprocess.call(["./model.py", "-ct", fileName, "-c", str(C), "-s", "42"]) 
29 print("\nResults stored in %s" % fileName) 
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Appendix E: Parser Code 

load_banki.py 

Downloads and merges indicator and license revocation data from banki.ru. Months are calculated 

by finding the difference between the observation date from indicator dataset with revocation date 

from revocation dataset. Accepts update or redownload requests. 

  1 import pandas as pd 
  2 import numpy as np 
  3 import datetime as dt 
  4 from sys import stdout 
  5 import os 
  6 import pdb 
  7 import signal 
  8  
  9 ERASE_LINE = '\x1b[2K' 
 10 RETURN = '\r' + ERASE_LINE 
 11  
 12 # Global 90 second timeout for read_csv from banki. See handler below. 
 13 TIMEOUT = 90 
 14  
 15 execfile("dictionaries.py") 
 16  
 17 def timeout_handler(signum, frame): 
 18     raise Exception('\n' + str(TIMEOUT) + ' second timeout reached. Continuing...') 
 19  
 20 # Updates or redownloads banki indicator and revocation datasets. 
 21 # Calculates months. Merges with CBR. 
 22 # returns complete DataFrame. 
 23 def load_banki(update = False, redownload = False): 
 24  
 25     if update: 
 26         print 'Updating...' 
 27         banki    = update_banki() 
 28         revoked  = load_banki_revoked(update=True) 
 29         complete = complete_banki(banki, revoked) 
 30     elif redownload: 
 31         print 'Redownloading...' 
 32         banki    = redownload_banki() 
 33         revoked  = load_banki_revoked(redownload=True) 
 34         complete = complete_banki(banki, revoked) 
 35     else: 
 36         complete = pd.read_csv('../csv/banki_complete.csv', index_col=False) 
 37         complete['period'] = pd.to_datetime(complete['period']) 
 38      
 39     
 40     
 41     
 42      
 43      
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 44      
 45     return complete 
 46  
 47 # Download a set of indicator observations for a given month for all banks. 
 48 # Clean, and add metadata to remember indicator and observation dates. 
 49 # param ind Indicator to download, the banki-defined ID. 
 50 # param year Year to download. 
 51 # param month Month to download. 
 52 # returns DataFrame 
 53 def download_ind_from_date(ind, year, month): 
 54  
 55     now = dt.datetime.now() 
 56  
 57     # Skip downloads for future dates. 
 58     if year == now.year and month > now.month: 
 59         return None 
 60      
 61     # We're iterating downwards in time, where month and year 
 62     # are ending dates, not starting. If the ending date is January, then 
 63     # starting date is December last year. 
 64     if month == 1: 
 65         start_month = 12 
 66         start_year = year - 1 
 67     else: 
 68         start_month = month - 1 
 69         start_year = year 
 70  
 71     # Convert to strings: 
 72     month       = str(month) 
 73     year        = str(year) 
 74     start_month = str(start_month) 
 75     start_year  = str(start_year) 
 76  
 77     # Create date strings for banki request. 
 78     time_end = year + "-" + month + "-01" 
 79     time_start = start_year + "-" + start_month + "-01" 
 80  
 81     url = "http://www.banki.ru/banks/ratings/export.php?LANG=en&" + \ 
 82         "PROPERTY_ID=" + str(ind) + \ 
 83         "&search[type]=name&sort_param=rating&sort_order=ASC&REGION_ID=0&" + \ 
 84         "date1=" + time_end + \ 
 85         "&date2=" + time_start + \ 
 86         "&IS_SHOW_GROUP=0&IS_SHOW_LIABILITIES=0" 
 87  
 88     stdout.write(RETURN) 
 89     stdout.write( '\rDownloading ' + get_ind(ind) + ', ' + time_end[0:-3]) 
 90     stdout.flush() 
 91      
 92     # Download banki table. 
 93     signal.signal(signal.SIGALRM, timeout_handler) 
 94     signal.alarm(TIMEOUT) 
 95     try: 
 96         df = pd.read_csv(url, delimiter=";", skiprows=3, error_bad_lines=False, 
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warn_bad_lines=True) 
 97     except Exception, e: 
 98         df = pd.DataFrame() 
 99         print e 
100  
101     signal.alarm(0) # Cancel signal alarm 
102  
103     # Cleanup data if it exists. 
104     if not df.empty: 
105          
106         nine_cols = ['rating','rating_change','bank_name','lic_num', 
107             'region','ind_val','ind_start','change','perc_change'] 
108          
109         eight_cols = ['rating_change','bank_name','lic_num','region', 
110             'ind_val','ind_start','perc_change','empty'] 
111          
112         # Rename and drop columns for 9 or 8 tables. 
113         if len(df.columns) == 9: 
114             df.columns = nine_cols 
115             df.drop(['rating', 'change'], axis=1, inplace=True) 
116         else: 
117             df.columns = eight_cols 
118             df.drop('empty', axis=1, inplace=True) 
119      
120         # Drop shared columns 
121         df.drop(['bank_name', 'region','rating_change', 'ind_start','perc_change'], 
122             axis = 1, inplace = True) 
123          
124         # Convert indicator value to a number by first removing the 
125         # white spaces and replacing the comma decimal with the point decimal. 
126         df['ind_val'] = df['ind_val'].str.replace(' ', '').str.replace(',', '.') 
127         df['ind_val'] = pd.to_numeric(df['ind_val']) 
128          
129         # Remember important details about this dataset, such as 
130         # the indicator and date. 
131         df['ind']    = pd.Series(get_ind(ind), index=df.index) 
132         df['period'] = pd.Series(time_end, index=df.index) 
133         df['period'] = pd.to_datetime(df['period']) 
134     else: 
135         df = None 
136      
137     return df 
138      
139 # Make banki wide or banki tall using pd.pivot_table 
140 # param df Generally, new DataFrame on export, banki.csv on import. 
141 # param wide_or_tall 
142     # -> 'wide' to spread indicators over columns 
143     # -> 'tall' to gather indicators into rows 
144 def pivot_banki(df, wide_or_tall=None): 
145  
146     if wide_or_tall == 'wide': 
147         df = pd.pivot_table(df, index=['lic_num', 'period'], 
148             columns='ind', values='ind_val') 
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149         df.reset_index(inplace=True) 
150      
151     if wide_or_tall == 'tall': 
152         df = pd.melt(df,id_vars=['lic_num','period'], 
153             value_vars = list(df.columns[2:]), 
154             var_name = 'ind', value_name = 'ind_val') 
155         df['period'] = pd.to_datetime(df['period']) 
156          
157     return df 
158      
159 # Redownload banki from scratch, using the indicators 
160 # defined in dictionaries.py. Writes to banki.csv. 
161 # returns DataFrame 
162 def redownload_banki(): 
163  
164     now = dt.datetime.now() 
165     ind_codes = ind_dict_banki_ru()['ind_num'] # Defined in dictionaries.py 
166     final = pd.DataFrame() 
167      
168     for ind in ind_codes: 
169         for year in range(now.year, 2007, -1): 
170             for month in range(12, 0, -1): 
171                 tmp = download_ind_from_date(ind, year, month) 
172                 # If tmp is None, then skip. 
173                 if type(tmp) == pd.DataFrame: 
174                     final = final.append(tmp) 
175  
176     final = export_banki(final) 
177      
178     return final 
179      
180 # Update banki using local banki.csv. Writes to banki.csv. 
181 # returns DataFrame 
182 def update_banki(): 
183  
184     ind_codes = ind_dict_banki_ru()['ind_num'] #  Defined in dictionaries.py 
185     banki = pd.read_csv('../csv/banki.csv', index_col=False) 
186      
187     # Revert wide banki to tall, so we can append and compare it 
188     # with the temporary tables we download from banki.ru 
189     banki = pivot_banki(banki, wide_or_tall='tall') 
190      
191     # Here, the year/month for loops are refactored to the function, 
192     # help_iterdate_update() so we can break from downlading 
193     # an indicator once we see duplicates. 
194     for ind in ind_codes: 
195         final = help_iterdate_update(ind, banki) 
196      
197     final = export_banki(final) 
198      
199     return final 
200  
201 # Helps update_banki. Starts at the current date, moving backwards. 
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202 # Only downloads up to one set of duplicates, then moves on 
203 # to the next indicator. 
204 # param ind Indicator to download 
205 # param banki Local banki.csv. 
206 # returns DataFrame 
207 def help_iterdate_update(ind, banki): 
208  
209     now = dt.datetime.now() 
210      
211     for year in range(now.year, 2007, -1): 
212         for month in range(12, 0, -1): 
213             tmp = download_ind_from_date(ind, year, month) 
214             if type(tmp) == pd.DataFrame: 
215                 banki = banki.append(tmp) 
216                 dups = banki.duplicated(['lic_num','period','ind'], keep=False) 
217                 if any(dups): 
218                     banki.drop_duplicates(['lic_num','period','ind'],inplace=True) 
219                     return banki 
220  
221 # Takes final banki download, pivots, sorts, writes to file. 
222 # param final Final banki download. 
223 # returns DataFrame 
224 def export_banki(final): 
225      
226     final = pivot_banki(final, wide_or_tall='wide') 
227     final.sort_values(['lic_num', 'period'], 
228         ascending=[True, False], inplace=True)  
229      
230     print 'Writing banki.csv...' 
231     final.to_csv('../csv/banki.csv', index=False) 
232      
233     return final 
234  
235 # banki.ru records the dates of license revocations in webpage-separated 
236 # html tables. One webpage has 50 records. When the page index becomes 
237 # greater than the actual number of pages, instead of showing an empty 
238 # table, it returns to Page 1, but the index keeps incrementing. 
239 # Highly inconvenient. 
240 # 
241 # Instead, in order to detect when we've reached the end of banki's 
242 # dataset, we'll keep downloading until we find the first duplicate. 
243 # If a csv already exists, then we'll check it first, then check 
244 # banki's most recent records. 
245  
246 # param update If banki_revoked.csv exists then it will 
247 #              fetch updates from banki.ru 
248 # param redownload Download banki.ru's full dataset again. 
249 # returns Pandas Dataframe of banki.ru's license revocations. Writes to csv. 
250 def load_banki_revoked(update=False, redownload=False): 
251  
252     print "Loading banki.ru's license revocations dataset." 
253      
254     br_file = "../csv/banki_revoked.csv" 
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255  
256     # If the user wants to redownload then redownload. 
257     
258     if redownload: 
259         banki_revoked = pd.DataFrame() 
260     # If the user doesn't want to update it, 
261     #   then read the csv and return it as a pandas DataFrame. 
262     # If they want to update it, then set banki_revoked to local dataset, 
263     #   and read banki.ru, stopping as soon as there are duplicates. 
264     elif update: 
265         print "Updating..." 
266         banki_revoked = pd.read_csv(br_file, index_col=False) 
267         banki_revoked['revoc_date'] = pd.to_datetime(banki_revoked['revoc_date'])  
268     else: 
269         return pd.read_csv(br_file) 
270  
271     i = 1 
272     while True: 
273         sys.stdout.flush() 
274         sys.stdout.write("\rReading Pages... " + str(i)) 
275         url = 'http://www.banki.ru/banks/memory/?PAGEN_1=' + str(i) 
276          
277         # The content we want is in [2] of the returned web thingy. 
278         signal.signal(signal.SIGALRM, timeout_handler) 
279         signal.alarm(TIMEOUT) 
280         try: 
281             tmp = pd.read_html(url)[2] 
282         except Exception, e: 
283             print e 
284             tmp = pd.DataFrame() 
285         signal.alarm(0) # Cancel signal alarm 
286          
287         # Rename columns 
288         tmp.columns = ['idx', 'bank', 'lic_num', 'cause', 'revoc_date', 'region'] 
289         tmp.drop(['idx', 'bank', 'region', 'cause'], axis=1, inplace=True) 
290         tmp['revoc_date'] = pd.to_datetime(tmp['revoc_date']) 
291          
292         # Remove rows whose license numbers have "-" + character. 
293         if tmp['lic_num'].dtype == 'object': 
294             tmp = tmp[~tmp.lic_num.str.contains("-")] 
295         tmp['lic_num'] = tmp['lic_num'].astype(int) 
296         banki_revoked = banki_revoked.append(tmp) 
297          
298         # As soon as we find a duplicate, break. 
299         d = banki_revoked.duplicated(['lic_num', 'revoc_date']) 
300         if any(d): break 
301         i += 1 
302  
303     print 'Cleaning...' 
304     # Actually remove duplicates. 
305     banki_revoked.drop_duplicates(['lic_num', 'revoc_date'], 
306                                   keep = False, inplace = True) 
307  
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308     banki_revoked.reset_index(inplace=True, drop=True) 
309     banki_revoked.sort_values(['revoc_date', 'lic_num'], 
310                               ascending=[False,True], inplace=True) 
311  
312     print "Writing to file..." 
313     banki_revoked.to_csv("../csv/banki_revoked.csv", index=False) 
314  
315     print "Returning dataset." 
316     return banki_revoked 
317      
318 # Takes banki dataset and banki's revoked dataset and merges them. 
319 # param banki Indicator dataset 
320 # param revoked License revocation dataset 
321 # Writes to banki_complete.csv 
322 # returns DataFrame 
323 def complete_banki(banki, revoked): 
324  
325     print 'Completing banki...' 
326  
327     merged = banki.merge(revoked, how='left', on='lic_num') 
328  
329     merged['period'] = pd.to_datetime(merged['period']) 
330     merged['revoc_date'] = pd.to_datetime(merged['revoc_date']) 
331  
332     print '    Calculating months...' 
333     for row in merged.itertuples(): 
334         if pd.notnull(row[-1]): 
335             merged = merged.set_value(row[0], 'months', 
336                 12 * (row[-1].year - row[2].year) + 
337                 (row[-1].month - row[2].month)) 
338         else: 
339             merged = merged.set_value(row[0], 'months', 9000) 
340  
341     for row in merged.itertuples(): 
342         if row[-1] > 24 and row[-1] < 9000: 
343             merged = merged.set_value(row[0], 'months', 1000) 
344  
345  
346     merged.drop('revoc_date', axis=1, inplace=True) 
347  
348     # Moves 'months' from last column to the third column. 
349     cols = merged.columns.tolist() 
350     cols = cols[0:2] + cols[-1:] + cols[2:-1] 
351  
352     complete = merged[cols] 
353  
354     print '    Merging with local CBR file...' 
355  
356     cbr = pd.read_csv('../csv/cbr_standards_complete.csv', index_col=False) 
357     cbr['period'] = pd.to_datetime(cbr['period']) 
358     cbr.drop(['N1','N2','N3'], axis = 1, inplace=True) 
359  
360     complete = complete.merge(cbr, how='outer', on=['lic_num', 'period', 'months']) 
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361     complete.to_csv('../csv/banki_complete.csv', index=False) 
362  
363     print '    Returning...' 
364  
365     return complete 

parser.py 

Combines all the functionalities of the previous script into a command-line program. The user can 

update or redownload the indicator and revocation datasets from banki.ru. The user can also specify 

the inclusion of special indicator calculations, such as testing if an indicator is within its CBR-

required/analyst-recommended range, or performing custom calculations between indicators, such 

as dividing net assets by number of loans. The result of running parser.py is model_data.csv, which 

is fed into the script which runs the model. 

  1 #!/usr/bin/python 
  2  
  3 import pandas as pd 
  4 import numpy as np 
  5 import datetime as dt 
  6 import argparse 
  7 import string 
  8  
  9 pd.options.mode.chained_assignment = None 
 10 pd.set_option('mode.use_inf_as_null', True) 
 11  
 12 ############################### 
 13 ## Set Command Line Options 
 14 ############################### 
 15  
 16 # Initialize Argument Parser object. 
 17 parser = argparse.ArgumentParser() 
 18  
 19 # Banki indicator dataset argument group. 
 20 # One can only update or redownload, but not both. 
 21 group_banki = parser.add_mutually_exclusive_group() 
 22  
 23 group_banki.add_argument( 
 24     '-u', 
 25     '--update', 
 26     action='store_true', 
 27     help='Update banki.ru indicator and revocation datasets.' 
 28     ) 
 29 group_banki.add_argument( 
 30     '-r', 
 31     '--redownload', 
 32     action='store_true', 
 33     help='Redownload banki.ru indicator and revocation dataset.' 
 34     ) 
 35      
 36 # Print indicators one can use for the model and exit. 
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 37 parser.add_argument( 
 38     '-i', 
 39     '--indicators', 
 40     action='store_true', 
 41     help='Prints list of available indicators from banki.ru and CBR and exits.' 
 42     ) 
 43  
 44 # User can pass column names to the script 
 45 parser.add_argument( 
 46     '-s', 
 47     '--select', 
 48     metavar='COLUMNS', 
 49     nargs='*', 
 50     help='Select columns from indicator dataset to use in model. \ 
 51     To receive binary indicators (ie. is indicator in acceptable range) \ 
 52     add a bang after the indicator (ie. "N1!"). To calculate values between \ 
 53     indicators, use Lisp notation: "(/ (+ net_assets net_profit) loans)" Make sure 
to use double-quotes!' 
 54     ) 
 55  
 56 args = parser.parse_args() 
 57  
 58 ################################## 
 59 ## Load Local Scripts, File Paths, 
 60 ## and Variables 
 61 ################################## 
 62  
 63 execfile("dictionaries.py") 
 64 execfile("load_banki.py") 
 65  
 66 # Local datasets: 
 67 banki          = "../csv/banki.csv"           # Banki indicators, no months. 
 68 banki_revoked  = "../csv/banki_revoked.csv"   # Banki revocation dates. 
 69 banki_complete = "../csv/banki_complete.csv"  # Banki inds. and months. 
 70  
 71 # Banki indicator names and cbr hacked in there. 
 72 banki_ind_names = ind_dict_banki_ru()['ind_name'] + cbr_standards()  
 73  
 74 if args.indicators: 
 75     print 'Selectable indicators to run for the model:' 
 76     for i in banki_ind_names: 
 77         print i 
 78     raise SystemExit(0) 
 79  
 80  
 81 
 82  
 83 ################################## 
 84 ## Function Definitions 
 85 ################################## 
 86  
 87 # Take the column select argumens (from -s, --select), and put them 
 88 # into bins for further processing. 
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 89 # param select The argument list from args.select 
 90 def parse_select(select): 
 91      
 92     singular_cols = []   # Keep these basic columns. 
 93     range_cols    = []   # Columns are true/false if the Indicator is in range. 
 94     equation_cols = []   # These are equations between columns. 
 95      
 96     # Iterate through each selected item from the command-line. 
 97     for i in select: 
 98         # If i is immediately found in the list of indicators, 
 99         # then is a singular, basic column. 
100         if i in banki_ind_names: 
101             singular_cols.append(i) 
102         # Now, look for ! operator 
103         else: 
104             bangs = i.find('!') 
105             paren = i.find('(') 
106             if bangs != -1: 
107                 ind_name = string.split(i, '!')[0] 
108                 range_cols.append(ind_name) 
109             elif paren != -1: 
110                 equation_cols.append(i) 
111             else: 
112                 print i, 'is ivalid. Run `python parser.py -i` for full list of 
indicators.' 
113                 raise SystemExit(0) 
114  
115     return [singular_cols, range_cols, equation_cols] 
116  
117 # Parses equation string into recursive list for eval_eq. 
118 # Example: 
119 #   in: '(/ (+ net_assets net_profit) loans)' 
120 #  out: ['(+ net_assets net_profit)', '(/ (+ net_assets net_profit) loans)'] 
121 def eq_helper(eq): 
122      
123     parens = [] # Keeps list of index location of open parentheses. 
124     parts  = [] # Collects parts of equation string. 
125      
126     # Iterate through equation string, remembering positions of open parens, 
127     # and collecting substrings between open and closed parens. 
128     for c in range(0, len(eq)): 
129         # Remember position of open positions. 
130         if eq[c] == '(' : parens.append(c) 
131         # Create substring from open to closing paren. 
132         if eq[c] == ')' : parts.append(eq[parens.pop() : c+1]) 
133  
134     return parts 
135  
136 # Takes output from eq_helper to calculate operations on columns. 
137 # param eq_list The list returned from eq_helper. 
138 def eval_eq(eq_list): 
139  
140     # banki_complete.csv has all the indicators, so we can use it 
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141     # to calculate new values for our current dataframe. 
142     banki = pd.read_csv('../csv/banki_complete.csv', index_col=False) 
143      
144     # Create temporary columns for extended operations. 
145     tmp_col = 0 
146  
147     # By the final calculation, eq_list will become the value 
148     # of the Series we want. 
149     while type(eq_list) != pd.Series: 
150      
151         this = eq_list[0]          # Set working equation part to first element. 
152         operator = this[1]            # Set operator. 
153         operands = this[3:-1].split() # Set operands. 
154          
155         # Check names for validity. 
156         bad_names = [] 
157         for op in operands: 
158             if not op in list(banki.columns): 
159                 bad_names.append(op) 
160         if len(bad_names) > 0: 
161             print 'There were invalid indicator names found in equation',this 
162             print 'Invalid:', bad_names 
163             print 'Run `python parser.py -i` for full list of indicators.' 
164             raise SystemExit(0) 
165          
166         # The result begins with the value of the first operand. 
167         tmp_result = banki[operands[0]] 
168  
169         # For each operand. 
170         for op in range(1, len(operands)): 
171             # Set the column with which to operate. 
172             op_value = banki[operands[op]] 
173      
174             # Math. 
175             if operator == '/': tmp_result = tmp_result / op_value 
176             if operator == '*': tmp_result = tmp_result * op_value 
177             if operator == '+': tmp_result = tmp_result + op_value 
178             if operator == '-': tmp_result = tmp_result - op_value 
179             if operator == '^': tmp_result = tmp_result ** op_value 
180          
181         # If len > 1, there are more parts to calculate. 
182         if len(eq_list) > 1: 
183             # Bump up the temporary column. 
184             tmp_col += 1 
185             # Set the temporary column to our temporary result. 
186             banki[str(tmp_col)] = tmp_result 
187             # Replace the part of the equation we just calculted with the 
188             # name of temporary column. It will be called in next calculations. 
189             eq_list[-1] = eq_list[-1].replace(this, str(tmp_col))       
190             # Remove first element, now that we've finished.  
191             eq_list = eq_list[1:] 
192             # If there are no more elements, then tmp_result is final result. 
193         else: 



 
Predicting Bank License Revocation 53

  

 

194             eq_list = tmp_result 
195  
196     return eq_list 
197  
198  
199 # Puts all the equation helper functions together to add string equations passed 
200 # from the command line to the model_data DataFrame. 
201 # param df The DataFrame to which to add the results of the equations. 
202 # param eq_list The string equations passed from the command line. 
203 def add_eqs(df, eq_list): 
204  
205     # For each equation passed from the command line... 
206     for eq in eq_list: 
207         # Get the recursive form of the equation. 
208         recursive_eq_str = eq_helper(eq) 
209         # Evaluate the column. 
210         col = eval_eq(recursive_eq_str) 
211         # Create a syntatically appropriate column name. 
212         eq_str_col_name = eq.replace(' ','_') 
213         # Add it to the DataFrame 
214         df.insert(len(df.columns), eq_str_col_name, col) 
215  
216     #df.replace(np.inf, np.nan) 
217  
218     return df 
219 
220  
221 # Parse args.select 
222 if args.select == None: args.select = [] 
223 parsed_args = parse_select(args.select) 
224  
225 singular_cols  = parsed_args[0] 
226 range_cols     = parsed_args[1] 
227 equation_cols  = parsed_args[2] 
228  
229 print 'Loading banki.ru...' 
230 banki_complete = load_banki(update = args.update, redownload=args.redownload) 
231  
232 ### Add singular columns first. ### 
233 model_data = banki_complete[['lic_num','period','months'] + singular_cols] 
234  
235 ### Add ! columns. ### 
236 if len(range_cols) > 0: print 'Calculating ranges...' 
237 for col in range_cols: 
238      
239     r = get_ratio(col) # Ratios defined in dictionaries.py 
240  
241     model_data[col + '!'] = banki_complete[col].apply( 
242         lambda x: r[0] <= x <= r[1] if pd.notnull(x) else None 
243         ) 
244  
245 ### Add equation columns. ### 
246 if len(equation_cols) > 0: print 'Evaluating expressions...' 
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247 model_data = add_eqs(model_data, equation_cols) 
248  
249 ### Finish ### 
250  
251 print 'Writing to csv...' 
252 model_data.to_csv('../csv/model_data.csv', index=False) 
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Appendix F: Glossary 

The following definitions were taken from “The Capstone Encyclopaedia of Business” (Capstone, 

2003; Kerr, Ngondi, & Butterfield, 2016) and from “a dictionary of computer science” (Kerr et al., 

2016)     

Application Programming 

Interface (API) 

A set of functions and procedures that allow the creation of 

applications which access the features or data of an 

operating system, application, or other service 

Asset A resource with economic value. 

Bank Licensed Credit Financial Institution. 

Bank Failure A bank has lost its license to operate. 

Bank License License a credit financial institution needs in order to 

operate. 

Capital Wealth in the form of money or other assets owned by a 

person or organization or available or contributed for a 

particular purpose such as starting a company or investing. 

Capital Adequacy Minimum of reserves that a bank needs to have available. 

Cash Money in coins or notes, as distinct from checks, money 

orders, or credit. 

CBR Central Bank of Russia. The CBR has established 

numerical standards which every bank must follow or else 

their license will be revoked. 

Common Capital Ratio Common capital ratio is a measurement of a bank's core 

equity capital compared with its total risk-weighted assets 

that signifies a bank's financial strength. 

Common Stocks Ordinary shares 

Credit Claims Pecuniary claims arising out of an agreement whereby a 

credit institution grants credit in the form of a loan. 

Credit Risk It is the risk of default on a debt that may arise from a 

borrower failing to make required payments 
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Current Assets Assets that can be quickly liquidated (eg. Gold, oil, stocks) 

Current Liability Company's obligations that are due within the next 12 

months 

Depreciation Decrease of a tangible asset's price over time due to wear 

Equity The value of the shares issued by a company. 

F1 F1 a performance metric given by the following formula: 

2(Precision*Recall)(Precision+Recall) 

Forensic Accounting The specialty practice area of accounting that describes 

engagements that result from actual or anticipated disputes 

or litigation. 

Guarantees A formal pledge to pay another person's debt or to perform 

another person's obligation in the case of default. 

Insiders A person within a group or organization, especially 

someone privy to information unavailable to others. 

Intangible Assets An asset without a physical form (eg. stock, I.P. rights) 

Liability A company's legal debt or obligation. 

Liquidate To convert an asset into cash. 

Liquidity Ability of a financial institution to meet its short-term 

commitments. 

Logit Regression Model Method of mathematically determining the probability of a 

binary dependent variable from a collection of one or more 

continuous independent variables with logistic distribution. 

Machine Learning A field study that allows computers to learn without being 

explicitly programmed. 

On Call Obligations Amount of money that needs to be daily available for 

customer transactions 

Parser A program that analyses a string or text into logical 

syntactic components. 
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Precision The number of relevant items over the total of selected 

items 

Preferred Stocks A share which entitles the holder to a fixed dividend, 

whose payment takes priority over that of ordinary share 

dividends. 

Probit Regression Model Method of mathematically determining the probability of a 

binary dependent variable from a collection of one or more 

continuous independent variables with normal distribution 

Python Dynamic programming language. 

Random Forest Ensemble learning method for classification, regression, 

etc. 

Recall The number of the selected relevant items over the total of 

relevant items 

Regression Model Statistical model that estimates the relationship among 

variables 

Risk Weighted Assets RWA is a bank's assets or off-balance-sheet exposures, 

weighted according to risk 

Script a program or sequence of instructions that is interpreted or 

carried out by another program rather than by the computer 

processor 

Solvency Ability of a financial institution to meet its long-term 

commitments (In financial analysis: Solvency vs. liquidity 

ratios.) 

Sureties A person who takes responsibility for another's 

performance of an undertaking, for example their 

appearing in court or the payment of a debt. 

Tangible Assets An asset with a physical form (eg. land, machinery) 

Tier 1 Capital It includes the value of its common stock, retained 

earnings, accumulated other comprehensive income 

(AOCI), noncumulative perpetual preferred stock and any 

adjustments to those accounts. 
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Appendix G: Significant Features 

This table lists the relative significance of each feature for the Random Forest model. 

Features are listed in descending order of their importance in the Random Forest model. As 

discussed in section 3.1 of this report, features ending in “M?” indicate a “Missing” feature; it is a 

Boolean value, which is False if the observation has a value for that feature, and True if there is no 

value provided. This allows the model to distinguish if a bank failed to report a statistic in one of 

the observations. 

 

Feature G.I. 

Loans to institutions and businesses: For a term of 6 months to 1 year 1.10E-01 

Loans to institutions and businesses: For a term of 1 year to 3 years 1.09E-01 

Loans to institutions and businesses: For a term of up to 6 months 9.66E-02 

Return on Net Assets (RoA) 8.88E-02 

N7 8.83E-02 

Loans to institutions and businesses: For a term over 3 years 8.68E-02 

N4 8.15E-02 

N10.1 6.69E-02 

Return on Equity (RoE) 6.46E-02 

Overdue Debt/ Overdrafts  5.38E-02 

N9.1 3.03E-02 

N1.0 1.70E-02 

N12 1.63E-02 

N1.1 1.50E-02 

N1.2 1.44E-02 

(Overdue Debt/ Overdrafts ) M? 6.43E-03 

Return on Equity M? (RoE M?) 4.49E-03 

N1 2.40E-03 
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Reserve to Loans 4.20E-03 

N1.0 M? 6.75E-03 

N3 3.16E-03 

Foreign currency operations to net Assets 3.51E-03 

Mortgaged property to loans 2.64E-03 

Reserve to loans M? 6.14E-03 

N2 2.84E-03 

Return on net assets M? 2.34E-03 

N1.1 M? 1.00E-04 

Foreign currency operations to net Assets M? 1.92E-03 

Mortgaged property to loans M? 1.71E-03 

N12 M? 8.63E-04 

N4 M? 1.14E-03 

N7 M? 7.45E-04 

Attracted interbank loans from CBR Turnover/ Attracted interbank loans from 

CBR 

1.08E-03 

N2 M? 2.05E-03 

Loans to institutions and businesses: For a term of up to 6 months M? 6.17E-04 

N9.1 M? 3.60E-04 

Interbank credit in CBR turnover/ Interbank credit in CBR 1.48E-03 

N3 M? 3.82E-05 

Loans to institutions and businesses: For a term over 3 years M? 1.29E-03 

Loans to institutions and businesses: For a term of 6 months to 1 year M? 6.27E-04 

(Attracted interbank loans from CBR Turnover/ Attracted interbank loans from 

CBR) M? 

2.73E-04 

N10.1 M? 4.01E-04 
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N1 M? 8.43E-05 

N1.2 M? 6.66E-05 

Interbank credit in CBR turnover/ Interbank credit in CBR M? 1.66E-04 

Loans to institutions and businesses: For a term of 1 year to 3 years M? 2.82E-06 
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