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Abstract

Thin liquid films are ubiquitous in both nature and industrial applications, such as tear films
and coating process. Understanding the mechanism of the thin liquid films becomes important so
that we can predict on their dynamics and stabilities. In this project, we will focus on the stability
and dynamics of a fluid film of two miscible liquids falling along an inclined plane with one fluid
component is evaporating at the free surface. We utilize Navier-Stokes equation for incompressible
Newtonian fluids, heat equation for energy balance and vapor-liquid jump conditions for mass
balance at the free boundary. We then non-dimensionalize the system and apply perturbation theory
to simplify the system to obtain two evolution equations for film and concentration respectively.
With an initially flat film, a variation in the concentration field results in a wave pattern in the film
profile. As the film travels, the film profile overlaps with the concentration profile, and three types
of sharp transitions will occur in the film profile: a. the film peak speeds up and moves forward,
b. the film peak moves backward and then moves forward again, c. film will be slowed down and
two local peaks will form in the film.
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Chapter 1

Background

Thin liquid films appear widely in nature and in industrial processes, and they have a wide
variety of roles. Gravity currents such as a sea-breeze front, which when fluid of one density flows
horizontally into fluid of a different density[1]. Tear films, which protects the eye with bactericidal
enzymes and provides an optically smooth surface for light refraction are thin liquid films [2].
More commonly, motor oil, which protects moving parts in engines from friction wear to increase
endurance also appear as thin liquid films [3]. More examples includes thin film coating, magnetic
films in memory device and among many other applications for heat and mass transfer [4].

The interface between the liquid and the surrounding gas is a deformable boundary, these films
display wave motions. In 2D thin films, the unstable structure includes increased wave amplitude
as it travels. One example of the instability is that as the film travels, different forces acting
on and within the fluid will cause the film to rupture, in which the substrate will be exposed to
the ambient gas [5]. For certain situation rupture needs to be avoided such as during painting.
Some interesting phenomena occurs when temperature variation is introduced in the film because
temperature changes surface tension which will change the dynamics of the free surface. With
localized heating, a falling film may form a horizontal band at the upper edge of the heater due to
the surface tension gradient [6]. Also heating can induce mass flows on the free surface in means
of evaporation(condensation). A result from [12] shows that, the film will eventually rupture, but
with thermocapillary effect, the time for the rupture to form will be lengthened during evaporation.
Also there are studies investigating 3D falling films and related experiments were conducted. As
the film flows down in 3D plane, the film front develops a series of fingers across the slope and
distances between neighboring fingers are relatively the same [5]. As the dynamics of the thin film
varies with conditions, in order to better predict the stability and dynamics of thin liquid films, we
need to first understand the physics associated with thin films.

The scale of thin films varies from few centimeters in cooling processes of electronic compo-
nents to tenth of meters in industrial evaporators [7]. Started with the general liquid films, the early
study of thin film dynamics is by D.J Benney [8], who studied possible wave motions on a steady
2D laminar flow of single liquid down an inclined plane. He developed a film evolution equation
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and many later works has been done based on Benney’s work and were often referred to evolution
equation derived by Benney. G. J Roskes extended the two-dimensional result from Benney into
three-dimensions and investigated the interactions between two- and three-dimensional nonlinear
waves formed on liquid film [9]. Following the result by Roskes, Lin and Krishna [10] studied the
nonlinear stability of the problem with an initially finite 3D disturbances and they discovered that
the film becomes unstable with respect to small disturbances at some critical Reynolds number.
Liu et al [11] performed an experimental study based on the previous theoretical results, on the
instabilities of both 2D and 3D flows down an inclined plane in order to understand the transition
to complex disordered patterns and had identified certain three-dimensional instabilities with dif-
ferent Reynolds number and frequency. Since the evolution equation by Benney assumed no mass
flux on the free surface, Burelbach et al [12] investigated the effect of mass flux on the stability of
a thin liquid layer which is either evaporating or condensing. They had investigated a variety of
effects in the study including mass loss(gain), vapor recoil, thermocapillarity, surface tension and
viscous forces. Evaporative instabilities were also studied by Hosoi and Bush [13] in which they
experimentally investigated the instability of thin film of alcohol-water solution. Then Oron et al
systematically investigated the thin liquid film with various settings, for example, bounded films
with constant physical properties, free films etc [5]. The study of thin films has still been active
and related to many other fields of study. Some of the recent work includes, Cowley-Rosensweig
instabilities in a deformable ferrofluid layer in which they included the effect of a weak magnetic
field on the thin fluid layer[14], instability of thin film driven by gravity on the outer surface of
a cylinder and sphere in which the flow characteristics when pouring down from the top of the
cylinder was investigated [15] and many others.

There were studies about evaporating liquid film and also mixture of liquid films, but not much
work has been done towards the combination of the two. The problem we will discuss in this report
is on the stabilities of a 2-D liquid mixture of two miscible fluids driven by gravity falling down an
uniformly heated inclined substrate and bounded above by a passive gas. One liquid component
will be evaporating on the free surface.

In the problem, there are two types of diffusion: mass transfer and thermal diffusion. As the
differences are small, it’s reasonable to assume the linear relation between the mass and heat flux
and gradients of temperature and concentration. In a liquid mixture, both types depend on temper-
ature gradient and concentration gradient. The equations are as follows (Note iii is mass flux and qqq
is heat flux) [16]:

iii =−ρD(∇C+
kθ

θ
∇θ) (1.1)

qqq = (kT
∂ µ

∂C p,θ
−θ

∂ µ

∂θ p,c
+µ)iii−κ∇θ (1.2)

where µ is an appropriately defined chemical potential for the mixture, D is the diffusion coeffi-
cient, C is the concentration, p is the pressure, θ is the temperature, kp and kT are pressure and
thermal diffusion ratio which provides kθ D be the thermal diffusion coefficient and κ is defined
as:

κ = γ−β
2
θ/α (1.3)
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where α , β , and γ are coefficients of the potential and temperature gradient:

iii =−α∇µ−β∇T, qqq =−βT ∇µ− γ∇T +µiii (1.4)

Buoyancy-driven convection, also known as natural convection, is generated by density differ-
ence within the fluids. There are two primary means of buoyancy-driven convections: one is by
temperature gradient and another by concentration gradient. [17]

In the case of temperature-gradient-driven convections, only when the temperature of lower
portion of the fluid is higher than that of the upper, does it occur. Fluids near the interface with the
plane has higher temperature than ones above and this causes a density gradient and drives the flu-
ids near the interface to move up and thus induces convection within the fluid film. This convection
causes heat transfer. Additionally, when the temperature within the liquid is non-uniform, accord-
ing to kinetic energy theory, the particles who have high temperature move faster than those of low
temperature, thus the region of the liquid with higher temperature tend to diffuse into cold region.
This phenomenon is known as Soret effect and it can be expressed as in (1.1) that a temperature
gradient can induce a diffusive mass flow.

On the free boundary of the film, surface tension is an important force to consider. Surface
tension of single liquid depends only on temperature whereas that of mixture of miscible liquids
depends on both temperature and concentration. In other words, concentration and temperature
gradient in a liquid mixture of miscible fluids will result in surface tension gradient. Since the
portion of the liquid with higher surface tension will pull more strongly on the neighboring liquid,
it leads fluid motion from region of low surface tension to a region of high surface tension. This
effect is known as the Marangoni effect, sometimes also named as thermocapillary convection.

As the differences in temperature and concentration in the problem is small, we propose a linear
relation between the surface tension and temperature and concentration [18]

σ(θ ∗,C) = σ0− γθ (θ
∗−θR)− γc(C−CR), (1.5)

where γθ and γc are determined experimentally. With the data in [18], we could calculate the values
for both γ at a given temperature and concentration.

In this report, we begin with the study of an isothermal 2-D falling film by Benney [8] in which
effects from gravity, interfacial shear stress and capillary are considered. Then in Chapter 3 we
will construct a mathematical model for a miscible binary liquid mixture falling along a heated
plate and the liquid is evaporating from the free surface. We will apply perturbation theory to get
the long wave solution for the model. In order to study the dynamics of the film, we will look at the
leading order problem in Chapter 4 and apply linear stability theory to investigate the stability of
the film. Then we will study the nonlinear evolution of the film by simulating the film numerically.
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Chapter 2

Isothermal Falling Film

In order to understand the modelling progress of a binary thin film, we first discuss the problem
of a single liquid falling film without any thermal effect. The film is bounded by a solid surface
below and an interface of the liquid and passive gas above. We consider the two-dimensional flow
to examine the dynamics of the film thickness where capillary forces and surface shear forces are
relevant.

Figure 2.1: A simple falling film

In this chapter we follow the approaches in [8]. The stress tensor of the fluid, normal and
tangent vectors on the free surface, and surface tension which is dependent on temperature are
defined:

¯̄TTT =−pIII +µ(∇~u~u~u+∇~u~u~uT ), (2.1a)

~nnn =
(−hx,1)

(1+h2
x)

1/2 , (2.1b)

~ttt =
(1,hx)

(1+h2
x)

1/2 , (2.1c)

4



The Navier-Stokes and continuity equations for an incompressible fluid are

u∗x∗+w∗z∗ = 0, (2.2a)

ρ(u∗t∗+u∗u∗x∗+w∗u∗z∗) =−p∗x∗+µ∇
2u∗+ρg∗ sin(β ), (2.2b)

ρ(w∗t∗+u∗w∗x∗+w∗w∗z∗) =−p∗z∗+µ∇
2w∗−ρg∗ cos(β ) (2.2c)

where ū∗ = (u∗,w∗) is the velocity vector, p∗ is the pressure, g∗ is the gravity, µ is the viscosity,
and ρ is the density.

We assume the no slip boundary conditions at z∗ = 0 :

u∗ = 0 w∗ = 0. (2.3)

At the free surface z∗ = h∗(x∗, t∗), we require the kinematic boundary condition, zero shear
stresses, and the normal stress is balanced by capillarity.

w∗ = h∗t∗+u∗h∗x∗, (2.4a)

~ttt · ¯̄TTT ·~nnn = 0 (2.4b)

~nnn · ¯̄TTT ·~nnn = κσ ·~nnn (2.4c)

where
κ =−∇ ·~nnn =

h∗x∗x∗
(1+h∗2x∗ )

3/2 , (2.5)

We apply the scaling

z =
z∗

h0
x =

x∗

λ
u =

u∗

u0
, (2.6a)

w =
w∗

εu0
t =

u0t∗

λ
p =

h0 p∗

µu0
(2.6b)

where λ is a characteristic wavelength of the interfatial deformation and the following scaling are
used, h0 is the mean thickness of the film, u0 is the characteristic velocity

u0 =
h2

0ρg∗

µ
, (2.7)

ε = h0
λ

is the aspect ratio, which we assume is an asymptotically small perturbation parameter.

From this scaling, we obtain a Reynolds number:

Re =
h3

0ρ2g∗

µ2 = O(1). (2.8)

5



We then apply the scaling to the governing equations and the boundary conditions, the scaled
governing system is obtained as

ux +wz = 0. (2.9a)

εRe(ut +uux +wuz) =−ε px +uzz+ ε
2uxx + sinβ , (2.9b)

ε
3Re(wt +uwx +wwz) =−pz + ε

2wzz + ε
4wxx− cosβ , (2.9c)

At z = 0, we require the no-slip boundary condition

u = 0 w = 0. (2.10)

At z = h, we have the kinematic boundary condition and the balance of shear and normal com-
ponents of the stress

w = ht +uhx, (2.11a)

(uz + ε
2wx)[1− ε

2h2
x ]−4ε

2hxux = εS−1[1+ ε
2h2

x ]
1/2, (2.11b)

−p+
2ε2

1+ ε2h2
x
{ux[ε

2h2
x−1]−hx[uz + ε

2wx]}=
S−1ε3hxx

[1+ ε2h2
x ]

3/2 (2.11c)

where Re is the Reynolds number and S is the capillary number

h =
h∗

h0
S =

u0µ

σ
. (2.12a)

We rewrite (2.11a) using (2.9a) to find that

ht +∂x

∫ h

0
u dz = 0. (2.13)

Now we seek the solution of the governing equations as a perturbation series in power of ε

u = u0 + εu1 + ε
2u2 + ..., (2.14a)

w = w0 + εw1 + ε
2w2 + ..., (2.14b)

p = p0 + ε p1 + ε
2 p2 + ..., (2.14c)

S̄ = Sε
−2. (2.14d)

The leading order in ε for the governing equations and boundary conditions are O(1)

u0x +w0z = 0, (2.15a)

u0zz + sinβ = 0, (2.15b)

p0z + cosβ = 0. (2.15c)
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At z = 0:
u0 = 0. (2.16)

At z = h:
u0z = 0, (2.17a)

−p0 = S̄−1hxx. (2.17b)

Solving the above systems in O(1), we obtain solutions for p0, u0 and w0 as following:

p0 = cosβ (h− z)− S̄−1hxx, (2.18a)

u0 = sinβ (hz− 1
2

z2), (2.18b)

w0 =−sinβhx
1
2

z2. (2.18c)

the governing system in O(ε) is:

Re(u0t +u0u0x +w0u0z) =−p0x +u1zz, (2.19a)

p1z = 0, (2.19b)

u1x +w1z = 0. (2.19c)

At z = 0:
u1 = 0. (2.20)

At z = h:
u1z = 0, (2.21a)

p1 = p̄1(x, t). (2.21b)

From the results of O(1) terms, we have expression for each term in u1zz:

p0x = cosβhx− S̄−1hxxx, (2.22a)
u0x = sinβhxz, (2.22b)
u0t = sinβhtz, (2.22c)
u0z = sinβ (h− z). (2.22d)

Substitute the expressions in (2.19a)

u1zz =
1
2

Resin2
βhhxz2 +Resinβhtz+ cosβhx− S̄−1hxxx. (2.23)
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With the boundary conditions (2.20) and (2.21a) in O(ε), we obtain solution for u1

u1 =
(
cosβhx− S̄−1hxxx

)(1
2

z2−hz
)
+

1
6

Resin2
βhhx

(
1
4

z4−h3z
)

+
1
2

Resinβht

(
1
3

z3−h2z
)
.

(2.24)

Then solving (2.13) with u = u0 + εu1 where algebraic expressions for u0 and u1 are known

∂th+∂x

∫ h

0
(u0 + εu1)dz = 0,

we have: ∫ h

0
(u0 + εu1)dz =

1
3

sinβh3− 1
3

ε
(
cosβhx− S̄−1hxxx

)
h3− 5

24
εResinβhth4

− 3
40

εResin2
βhxh6

Finally we have the evolution equation for the film height:

ht +Gsinβh2hx−
1
3

ε[cosβhxh3]x +
1
3

ε[S̄−1hxxxh3]x−
3

40
ε[Resin2

βhxh6]x

− 5
24

ε[Re(sinβht)h4]x = 0.
(2.26)

In order to eliminate the ht term in order ε , we take the leading order in the evolution equation
for h

ht + sinβh2hx = 0 (2.27)

and substitute the ht term in O(ε), we get the final form of the evolution equation for the film
thickness

ht + sinβh2hx−
1
3

ε[cosβhxh3]x +
1
3

ε[S̄−1hxxxh3]x +
2

15
ε[Resin2

βhxh6]x = 0. (2.28)

The dynamics of this simple film problem is important in continuing to more complicated prob-
lems. The dominating terms in this problem are only gravity, interfacial shear stress and capillary
effect. While as we will be discussing in next chapter, the problem involves energy balance and
concentration gradient. Understanding this problem will provide preliminary information on the
behavior of the thin film.
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Chapter 3

Binary Evaporating Films

In this chapter, we discuss the mathematical model and long wave theory for a binary thin
fluid film down an inclined plane. The film is bounded by a heated solid surface with constant
temperature from below and passive gas above. One fluid component is evaporating.

We propose a system of governing equations modelling the thin film. Follow the terminology
from Chapter 2, first we require the conservation of mass of the system where no sink or source
exists. [19]

∂ρ

∂ t∗
+∇ · (ρu∗u∗u∗) = 0, (3.1)

where uuu∗ is the liquid velocity and ρ is the density of the mixture.

Since the liquid is driven by gravity and falling down, we also require conservation of momen-
tum and we use the Navier-Stokes equation [6, 20]

ρ

(
∂uuu∗

∂ t∗
+uuu∗ ·∇uuu∗

)
=−∇p∗+µ∇

2uuu∗−ρggg∗ (3.2)

where p∗ is the pressure, µ is the dynamic viscosity and ggg∗ is gravity.

The liquid mixture is heated by a solid surface from below, we anticipate energy transfer within
the liquid, we then have the energy equation to model the temperature profile[6]

(
∂θ ∗

∂ t∗
+uuu∗ ·∇θ

∗) = κ∇θ
∗, (3.3)

where θ ∗ is the temperature, and κ is the thermal diffusivity.

Since the liquid is a mixture, we consider the concentration of the alcohol as the interest of the
problem. C in this case is the mass fraction of alcohol and is balance by the mass flux within the
liquid. [19]

ρ
DC∗

Dt∗
=−∇ ·JJJ∗, (3.4)

9



where JJJ∗ is the mass flux and it is expressed as [16]

JJJ∗ =−ρD(∇C∗+
kθ

θ ∗
∇θ
∗), (3.5)

where kθ is the thermal diffusion ratio.

Considering only 2-D problem, then we can express the above governing equations in scalar
form below

u∗x∗+w∗z∗ = 0, (3.6a)

(u∗t∗+u∗u∗x∗+w∗u∗z∗) =−
1
ρ

p∗x∗+ν(u∗x∗x∗+u∗z∗z∗)+g∗ sinβ , (3.6b)

(w∗t∗+u∗w∗x∗+w∗w∗z∗) =−
1
ρ

p∗z∗+ν(w∗x∗x∗+w∗z∗z∗)−g∗ cosβ , (3.6c)

θ
∗
t∗+u∗θ ∗x∗+w∗θ ∗z∗ = κ(θ ∗x∗x∗+θ

∗
z∗z∗), (3.6d)

JJJ∗ =−ρD(Cx∗iii+Cz∗kkk+
kθ

θ ∗
θ
∗
x∗iii+

kθ

θ ∗
θ
∗
z∗kkk), (3.6e)

ρ(C∗t∗+u∗C∗x∗+w∗Cz∗) =−ρD[C∗x∗x∗+C∗z∗z∗+∇ · ( kθ

θ ∗
∇θ
∗)]. (3.6f)

Requiring no-slip and no flux at the solid surface, the boundary conditions at z∗ = 0 is

u∗ = 0, w∗ = 0, JJJ∗ ·kkk = 0. (3.7)

At z∗ = h(x∗, t∗), the boundary conditions include: jump mass balance, jump energy balance,
normal and shear stress balance and mass flux: [12]

J∗ = ρ
v(ūuuv− ūuuI) · n̂nn = ρ(ūuu− ūuuI) · n̂nn, (3.8a)

J∗
(

L+
1
2
[(ūuuv− ūuuI) · n̂nn]2− 1

2
[(ūuu− ūuuI) · n̂nn]2

)
+ k∇θ · n̂nn− kv

∇θ
v · n̂nn

+2µ(τ̄ττ · ·n̂nn) · (ūuu− ūuuI)−2µ
v(τ̄ττv · ·n̂nn) · (ūuuv− ūuuI) = 0,

(3.8b)

J∗(ūuu− ūuuI) · n̂nn− ( ¯̄T − ¯̄T v) · n̂nn · n̂nn = ∇σ(θ ∗,C∗) · n̂nn, (3.8c)

J∗(ūuu− ūuuI) · t̂tt− ( ¯̄T − ¯̄T v) · n̂nn · t̂tt =−∇σ(θ ∗,C∗) · t̂tt, (3.8d)

JJJ∗ · n̂nn =
αρvL

T 3/2
s

(
Mw

2πRg

) 1
2

(T I−Ts)+K∗c C∗, (3.8e)

where the superscript v and I represent vapor and interface respectively and the ones without rep-
resents the liquid, k is the thermal conductivity, ¯̄T is the stress tensor

¯̄T =−pIII +µ(∇~u~u~u+∇~u~u~uT ), (3.9)
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n̂nn and t̂tt are normal and tangential vector to the free surface:

n̂nn =
(−εhx,1)

(1+ ε2h2
x)

1/2 , t̂tt =
(1,εhx)

(1+ ε2h2
x)

1/2 . (3.10)

In (3.8e) [21], α is the accommodation coefficient, Rg is the universal gas constant, Mw is
the molecular weight and L is the latent heat. σ0 is the surface tension and it is a function of
temperature and concentration [18]

σ(θ ∗,C) = σ0− γθ (θ
∗−θR)− γc(C∗−CR), (3.11)

where σ0 is the surface tension at reference temperature and concentration, γθ and γC are deter-
mined through experimental data.

To simplify the problem, we assume that the density, viscosity and thermal conductivity in the
liquid are much greater than in the vapor except for (3.8a), then we take the limit in which all
terms with a superscript v vanishes. In the jump energy balance, we also assume ∇T v ·nnn, τττ ·nnn ·nnn
and τττv ·nnn ·nnn are bounded and express velocities in terms of the mass flux and density from (3.8a),
it becomes

J∗
(

L+
1
2
[
J∗

ρv ]
2
)
= k∇θ · n̂nn, (3.12)

and similarly the normal stress boundary condition is

−J∗2

ρv −
¯̄T ·nnn ·nnn = ∇σ(θ ∗,C∗) · n̂nn, (3.13)

and in the shear stress balance, assuming no-slip condition we get

¯̄T · n̂nn · t̂tt = ∇σ(θ ∗,C∗) · t̂tt, (3.14)

We then non-dimensionalize the governing equations and boundary condition with the follow-
ing scaling for long wave problem. Length is scaled on film mean thickness and the characteristic
length, pressure is scaled on hydraulic pressure, velocity is scaled on gravity and kinematic viscos-
ity and film height is scaled on the film mean thickness

z∗ = d0z x∗ =
d0

ε
x p∗ = ρg∗d0 p, (3.15a)

u∗ =
g∗d2

0
ν

u w∗ = ε
g∗d2

0
ν

w t∗ =
ν

εg∗d0
t, (3.15b)

h∗ = d0h θ =
θ ∗−θR

θH−θR
J∗ =

k∆θ

d0L
J. (3.15c)

where θH is the constant temperature at z = 0, θR is the reference temperature.
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We assume the existence of ambient alcohol concentration near the interface, so depending on
the situation, the deviation concentration may be negative in cases where the ambient alcohol exists
in large amount and condensation occurs.

C =
C∗−Catm

Cam
(3.16)

where Catm is the ambient concentration.

Then we define ε on the based on the characteristic length scale. ε = d0
L where L is determined

by L2 =
d2

0
ν2ρ

which results a characteristic length of 3.4 cm and given d0 of 0.01 cm, ε is of order

10−2.

After applying the scaling to the governing system, we achieve at the following

ux +wz = 0, (3.17a)

εRe(ut +uux +wuz) =−ε px + ε
2uxx +uzz + sinβ , (3.17b)

ε
2Re(wt +uwx +wwz) =−pz + ε

3wxx + εwzz− cosβ , (3.17c)

εRePr(θt +uθx +wθz) = ε
2
θxx +θzz, (3.17d)

JJJ =−ReSc(εCxiii+Czkkk+ ε
kθ

θ
θxiii+

kθ

θ
θzkkk), (3.17e)

εReSc(Ct +uCx +wCz) = ε
2Cxx +Czz + ε

2[
kθ

θ
θx]x +[

kθ

θ
θz]z. (3.17f)

where

Re =
g∗d3

0
ν2 , Sc =

ν

D
Pe = ReSc (3.18)

The scaled boundary conditions at the heated solid surface z = 0, no slip, no mass flux across
and constant temperature

u = 0 (3.19a)

w = 0 (3.19b)

θ = 1 (3.19c)

Cz +
kθ

θ
θz = 0 (3.19d)

At free surface z= h(x, t), we assume constant ambient temperature and pressure, and including
mass flux due to evaporation [13] [19]

EJ =
εw− εht− εuhx

(1+ ε2h2
x)

1/2 (3.20a)
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J+E2B−2ReL −1J3 =
ε2θxhx−θz

(1+ ε2h2
x)

1/2 (3.20b)

−E2B−1Re−1J2+ p− 2[εux(ε
2h2

x−1)− εhx(ε
2wx +uz)]

1+ ε2h2
x

=−S(1−Mθ θ)
ε2hxx

(1+ ε2h2
x)

3/2 (3.20c)

(uz + ε
2wx)(1− ε

2h2
x)−4ε

2uxhx =−ε{Mθ (θx +θzhx)+Mc(Cx +Czhx)}(1+ ε
2h2

x)
1/2 (3.20d)

J = Kθ θ +KcC (3.20e)

where Mθ and Mc are thermal and solutal Marangoni number, L is the measure of latent heat and
all parameters are defined as:

B =
ρv

ρ
E =

k∆θν

ρg∗d3
0L

, (3.21a)

L =
L

g∗d0
Mθ =

γθ ∆θd0

2ρν2 , (3.21b)

Mc =
γc∆θd0

2ρν2 S = ε
2 σ0d0

ν2ρ
= O(1), (3.21c)

Kθ =

(
d0αρvL2

k∆θT 3/2
s

)(
Mw

2πRg

)1/2

. (3.21d)

In order to understand the scaled parameters, we calculate the magnitude of each scaled param-
eter, the typical values of the independent and constant parameters are: [12]

Table 3.1: Constant Parameters
Parameter Value Unit

Pressure p 1.01 ×106 g/cm.s2

Initial film thickness d0 0.002 cm
Temperature difference ∆T 10 K
Gravity g 980 cm/s2

Aspect ratio ε 10−2
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Table 3.2: Liquid parameter
Parameter Water Ethanol Unit

Reference Temperature Ts 373 352 K
Liquid Density ρ 0.96 0.79 g/cm3

vapor Density ρv 6 ×10−4 1.6 ×10−3 g/cm 3

Kinematic Viscosity ν 3 ×10−3 5 ×10−3 cm2/s
vapor Kinematic Viscosity νv 0.21 0.62 cm2/s
Thermal Conductivity k 6.8 ×104 1.7 ×104 erg/cm·K·s
vapor Thermal Conductivity kv 2.4 ×103 1.3 ×103 erg/cm·K·s
Thermal Diffusivity κ 1.7 ×10−3 8.8×10−4 cm2/s
vapor Thermal Diffusivity κv 0.2 0.07 cm2/s
Latent Heat L 2.3 ×103 8.8 ×102 J/g
Molecular Weight Mw 18 46 g/mole

γθ 0.18 0.9 dynes/cm·K

Table 3.3: Dimensionless parameters
Parameter Water Ethanol
Re 2.94 0.314
Pe 7.1 ×102 1.27 ×102

B 6.25 ×10−4 2.03 ×10−3

E 3.49 ×10−3 1.56×10−2

L 7.82 ×102 4.49 ×101

M 3.13 ×102 4.56 ×104

In order to seek the solution of the governing system, we expand dependent variables in powers
of ε:

u = u0 + εu1 + ε
2u2 + ..., (3.22a)

w = w0 + εw1 + ε
2w2 + ..., (3.22b)

p = p0 + ε p1 + ε
2 p2 + ..., (3.22c)

θ = θ0 + εθ1 + ε
2
θ2 + ..., (3.22d)

J = J0 + εJ1 + ε
2J2 + ..., (3.22e)

C =C0 + εC1 + ε
2C2 + .... (3.22f)

Asymptotic expansion of the temperature fraction term becomes

θz

θ
=

θ0z + εθ1z + ε2θ2z

θ0 + εθ1 + ε2θ2
=

θ0z

θ0
+ ε

(
θ1z

θ0
− θ0z

θ0

[
θ1

θ0

])
(3.23)
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We start by assuming that Reynolds number is negligible and we require Sc 6= 0 so we introduce
Peclet number:

Pe = Re Sc =
d0U
D

(3.24)

and we let Pe be finite. J0, Kθ and Kc are of order ε . We first solve for the evolution equation of
the film. The system of order O(1) is

0 = u0zz + sinβ , (3.25a)

0 =−p0z− cosβ , (3.25b)

0 = θ0zz, (3.25c)

0 = [C0z +
kθ

θ0
θ0z]z. (3.25d)

The boundary conditions of O(1) at z = 0 are:

u0 = 0, (3.26a)

w0 = 0, (3.26b)

θ0 = 1, (3.26c)

C0z +
kθ

θ0
θ0z = 0. (3.26d)

At z = h(x, t)
EJ0 = w0−ht−u0hx, (3.27a)

0 = θ0z, (3.27b)

p0 =−Shxx, (3.27c)

u0z = 0, (3.27d)

J0 = Kθ θ0 +KcC0. (3.27e)

Then we achieve at the solutions for independent variables:

u0 = sinβ (hz− 1
2

z2), (3.28a)

w0 =−
1
2

sinβhxz2, (3.28b)

p0 = cosβ (h− z)−Shxx, (3.28c)

θ0 = 1, (3.28d)

C0 = c̄0, (3.28e)

J0 = Kθ +Kcc̄0. (3.28f)
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At O(ε), the governing system and boundary conditions are as follows

0 =−p0x +u1zz, (3.29a)

0 = θ1zz, (3.29b)

Pe(C0t +u0C0x) = {C1z + kθ θ1z}z. (3.29c)

At z = 0;
θ1 = 0, (3.30a)

C1z + kθ θ1z = 0. (3.30b)

At z = h(x, t)
J1 =−θ1z, (3.31a)

u1z =−Mcc̄0x, (3.31b)
J1

Pe
=−(C1z + kθ θ1z), (3.31c)

J1 = Kθ θ1 +KcC1. (3.31d)

Solving for u1 and θ1 term, we get:
θ1 =−J1z, (3.32)

u1 = p0x(
1
2

z2−hz)−Mcc̄0xz (3.33)

where
p0x = cosβhx−Shxxx. (3.34)

Recall the evolution equation of the film thickness in simple film. Follow the same derivation
but with an additional flux term, we integrate the continuity equation over z = 0 to z = h(x, t) and
achieve the evolution equation for the film thickness.

ht +EJ+∂x

∫ h

0
udz = 0, (3.35)

ht +EJ0 +∂x

∫ h

0
(u0 + εu1)dz = 0, (3.36)∫ h

0
u1dz =

∫ h

0

(
p0x(

1
2

z2−hz)−Mcc̄0xz
)

dz =−1
3

p0xh3− 1
2

Mcc̄0xh2

=
1
3

Shxxxh3− 1
3

cosβhxh3− 1
2

Mcc̄0xh2.

(3.37)
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Then we have the evolution equation up to O(ε2)

ht + sinβhxh2 +E (Kθ +Kcc̄0)+ ε∂x

(
1
3

Shxxxh3− 1
3

cosβhxh3− 1
2

Mcc̄0xh2
)
= O(ε2). (3.38)

Then we need to solve for the evolution equation of concentration field. By integrating (3.29c)
once over z = 0 to z = h(x, t) and applying boundary conditions (3.30b) and (3.31c), we get:∫ h

0
(c̄0t +u0c̄0x)dz =

1
Pe

[C1z + kθ θ1z]
∣∣∣h
0
, (3.39)

c̄0t +
1
3

sinβh2c̄0x =−
1

Pe2

(
Kθ +Kcc̄0

h

)
. (3.40)

Equation (3.38) and (3.40) are the coupled evolution equations we will be studying in the next
chapter.
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Chapter 4

Results

4.1 Spatially Independent Solution

We seek the analytical space independent solutions to (3.38) and (3.40) and assume Kθ = 0.
The system of equations becomes

ht +EKcc̄0 = 0, (4.1a)

c̄0t +
Kc

Pe2

(
c̄0

h

)
= 0. (4.1b)

This system is easier to solve than the original system because there are fewer variables and
terms of order ε was omitted, and leaving this simplified system.

As t→ ∞, c̄0 approaches 0, while h approaches a final height h f . In order to find the algebraic
expression for h f , we first differentiate eq.(4.1a) with respect to time once and substitute expression
for c̄0 and c̄0t

htt =−
Kc

Pe2

(
ht

h

)
. (4.2)

Then integrate both sides over t = 0 to t = τ , to get:

ht
∣∣
t=τ
−ht

∣∣
t=0 =

Kc

Pe2 [ln(h)|t=τ − ln(h)
∣∣
t=0]. (4.3)

Given the initial conditions h(0) and c̄0(0) for the film and concentration, we have the expres-
sion for the film thickness at steady state as

ht =
Kc

Pe2 ln(h)− Kc

Pe2 ln(h(0))−EKcc̄0(0) (4.4)
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4.2 Linear Stability Theory

Now we consider the linear stability of the exact solution to (3.38) and (3.40). Assume a
perturbation on the base state of the solution(

h
c0

)
=

(
h f
0

)
+δ

(
Ĥ
Ĉ

)
eiαx+σt (4.5)

where δ is an infinitesimally small amplitude, α is the wavenumber, and σ is the growth rate of
the disturbance.

Then applying the form (4.5) to the system of (3.38) and (3.40) and only keep the terms which
are independent of δ , we have the following system(

σ + isinβαh2
f + ε(1

3Sα4h3
f +

1
3 cosβα2h3

f ) EKc + ε(1
2Mcα2h2

f )

0 σ + i1
3 sinβαh2

f +
Kc

Pe2h f

)(
Ĥ
Ĉ

)
=

(
0
0

)
. (4.6)

We find the solution to the growth rate σ by letting the determinant of the above 2-by-2 matrix
to be zero

σh =−isinβαh2
f − ε(

1
3

Sα
4h3

f +
1
3

cosβα
2h3

f ), (4.7)

σc =−i
1
3

sinβαh2
f −

Kc

Pe2h f
. (4.8)

Then the phase speeds are
Im
(

σh

α

)
=−sinβh2

f , (4.9)

Im
(

σc

α

)
=−1

3
sinβh2

f . (4.10)

And the growth rates are

Re(σh) =−ε(
1
3

Sα
4h3

f +
1
3

cosβα
2h3

f ), (4.11)

Re(σc) =−
Kc

Pe2h f
. (4.12)

There is no instability in the film as S, β , and h f are all positive, the growth rates of the film and
concentration are always negative. Infinitesimal small perturbations in the film and concentration
field eventually decay as the thin film continues flowing down. The base state solution is stable.
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We include the inertia term in the film evolution equation. Similarly, we apply the form (4.5) to
the system and achieve at the expression of the matrix(

σ + isinβαh2
f + ε(1

3Sα4h3
f +

1
3 cosβα2h3

f −
2

15Resin2
βα2h6

f ) EKc + ε(1
2Mcα2h2

f )

0 σ + i1
3 sinβαh2

f +
Kc

Pe2h f

)
.

(4.13)

The growth rate of the film is:

Re(σh) =−ε(
1
3

Sα
4h3

f +
1
3

cosβα
2h3

f −
2
15

Resin2
βα

2h6
f ). (4.14)

The inertia term is destabilizing the film and this is consistent with previous works. For sim-
plicity, we assume the final film height is h f = 1, for β = π/4, Re = 5 and S = 1, we have the
growth rate as a function of wavenumber:
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Figure 4.1: Grwoth rate vs wavenumber, parameter values are: β = π/4, Re = 5 and S = 1

We introduce a cutoff wavenumber αc which is wavenumber that separates the stable and un-
stable modes of the film and αM which is the wavenumber at which the growth rate of the film is
the largest:

αc =

√
1
S

(
2
5

Resin2(β )− cos(β )
)

(4.15)

αM =

√
1
S

(
1
5

Resin2(β )− 1
2

cos(β )
)

(4.16)
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We are interested in the situations where the film has a positive growth rate (unstable) and how
the film evolves as it grows in time. Obviously, the film is most unstable when β = π/2. Then we
have this most dangerous wavenumber which we will use for later simulations:

αM =

√
Re
5S

(4.17)
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Figure 4.2: Relations between maximum growth rate and Re and S when β = π/2

Then we investigate how the parameters affect the maximum growth rate. From Figure 4.2, we
can see that as the Reynolds number increases, the growth rate increases while as the Capillary
number increases, the growth rate decreases. The linear stability analysis suggests that the film is
stable as long as inclination angle is small or the wavenumber is sufficiently large.
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4.3 Matlab Script Validation

There are numerous ways to solve the system, the methods we use are forward Euler and Crank-
Nicolson. We compare the results solved by both methods in order to validate the script through
checking the degree of accuracy of each solution. Crank-Nicolson method has error of order ∆t2

whereas Forward Euler method has error of order ∆t. In order to validate Matlab script, we first
solve the system found in space independent solution with both methods and then solve eq.(4.18)
which is a first order differential equation of h only with a given value of h(0) and c̄0(0). Then we
compare the solutions by these two methods with the ”exact” results from the single equation.

ht =−
Kc

Pe2 ln(h(0))−EKcc̄0(0)−
Kc

Pe2 ln(h) (4.18)

No analytical solution can be found for eq.(4.18), we will solve it numerically with Matlab ode
solver. Since we will use this result as the ”exact” solution for comparison, in order to obtain the
solution which is very close to the exact solution, we ensure that the tolerance for the solution is
very small. The error shown below is calculated as E = ‖h f − ha‖ where h f is the final solution
and ha is the ”exact” solution.
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Figure 4.3: Log-log plot of the solution error at different time step. Slope for forward Euler is 1
and that for Crank-Nicolson is 2. Simulation Runtime is 30 seconds
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Then we investigate only the film equation with initially concentration being zero. Many previ-
ous works have studied this and we will briefly show the result to further validate our code.

0 2 4 6 8 10
0.985

0.99

0.995

1

1.005

1.01

1.015

X

F
ilm

 P
ro

fil
e

t=165t=160

Figure 4.4: Film shape at t = 160s to t = 165s. ∆t = 0.1s. Parameter values: β = π/2, Re = 1,
S = 0.5, k = 0.63, ε = 0.01.

As the film of single component evolves over time, Figure 4.4 showed the travelling wave from
t = 160s to 165s. The pattern changes slowly with time.
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Figure 4.5: Film shape from t = 567s to t = 572s. ∆t = 0.1s. Parameter values: β = π/2, Re = 1,
S = 0.5, k = 0.63, ε = 0.01.
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4.4 Film Shape Transition

We start with a stable film with no perturbation. Initial conditions are h(x,0) = 1 and C(x,0) =
0.1+0.01cos(kx). For a initially flat film, the variation in the concentration field will result in the
wave pattern. Figure. 4.6 is the evolution of film and concentration over space and time.

Figure 4.6: Film and concentration evolve over time. β = π/4, Pe = 1, M = Re = 0, E = 1,
Kc = 0.01 and S = 1.

The film is flat at the beginning, as the concentration field travels, a wave pattern starts to form
in the film. From figure. 4.7, at around t = 14, t = 27, and t = 40, when the peak of concentration
field coincides with the peak of the film, the peak of the film will shift by half of the wave period.

The formation of the wave pattern in the film is primarily due to the condensation and evapo-
ration disequilibrium. Since concentration has a cosine profile about zero, the film will have an
evaporation (condensation) profile of a sine curve and this will lead to the wave pattern in the
film. As we can see at t = 0, the peak of the film starts from half period and this is where the
concentration is the lowest at the beginning. Because the film and concentration travel at different
speeds, the peaks of the film and concentration will eventually meet each other and then the evap-
oration or condensation effects will again pull the peak of the film towards the position where the
concentration is lowest.

The amplitude of the film also varies with time. It increases when the film and concentration
profile curve differ by half period. The minimum amplitude appears every 13.4 in this case (the
film will have local minimum amplitude at each 13.4 interval). Figure 4.8 shows the profiles of
film and concentration at t = 12.4 and t = 13.4. In about 1 second, the difference in the positions
of film and concentration profile changed from 0 to π/4.

In order to further investigate this phenomena, we will first test how each parameter influences
the dynamic. We will use the following initial condition for the following results:

h(x,0) = 1 C(x,0) = 0.01cos(kx) (4.19)
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Figure 4.7: Top plot shows the magnitude of the film amplitude vs. time and bottom shows the
positions of the peaks in film and concentration profiles vs. time. Parameter values are: β = π/4,
Pe = 1, M = Re = 0, E = 1, Kc = 0.01 and S = 1
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Figure 4.8: Left is when t = 12.4 and right t = 13.4. Parameter values are: S = 0.1, Pe = 1,
β = π/4, M = Re = 0, E = 1, Kc = 0.01.

Concentration field with mean of 0 is used, so that the overall film height will not change due to
either evaporation or condensation. As we defined the concentration to be a relative concentration,
so it can be either positive (evaporating) or negative (condensing). We will increase and decrease
each parameter by tenth and investigate how the dynamics change.

As captioned in figure.4.7, the following plots represent the same information. Top plots are
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the magnitude of the film amplitude, middle plots are the positions of the peaks in film and con-
centration profiles and bottom plots are the amplitude in concentration field (See Appendix. C for
all plots).
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Figure 4.9: Left plots are when S = 0.1 and right S = 10. Other Parameter values are: β = π/4,
Pe = 1, M = Re = 0, E = 1, Kc = 0.01.

There are two main types of variations that will occur when varying the values of each parame-
ter. We will consider the result of β = π/4,S = 1,Pe = 1,E = 1, and Kc = 0.01 as our standard in
the following comparison. Increase S, Pe, E and decreasing Kc will result in the film perturbation
shifts backward instead of shifting forward when the peaks of concentration and film coincide.
Decreasing Pe, Decreasing E and increasing Kc will reduce the peak shift phenomena. Increasing
β not only changes the speed of the film and concentration, and also decreases the amplitude of the
wave resulted from the concentration. Decreasing S will only slight speed up the film stabilization
and slow down the speed of the peak shift. In the following, we will discuss three cases in details.
In order to achieve so, the film profile will be plot at consecutive time during the shift along with
the effects from each term in the film evolution equation.
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4.4.1 Shift forward
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Figure 4.10: Film and concentration profile at consecutive times during the sharp transition. Pa-
rameter values are: S = 0.1, Pe = 1, β = π/4, M = Re = 0, E = 1, Kc = 0.01.

Ideally, the film should travel three time as fast as the concentration field. As the concentration
travels one period in space, the film will have travelled about 3 periods. Below is the single
component stable film travelling without any concentration effects.

ht + sin(β )h2hx + · · ·= 0 ct +
1
3

sin(β )h2cx + · · ·= 0 (4.20)

However, with perturbation of the concentration, the actual travelling speed of the film is only
twice as much as the concentration (when the speed is nearly constant). The film speed for the
simple falling film is about 0.707 s−1, whereas in the case of peak shifting forward, the film speed
is only 0.47 s−1. So the concentration effect (evaporation and condensation) generally will slow
down the travelling speed of the film. Figure. 4.11 shows the effects from each term in the film
evolution equation. The evaporation term are of order 10−4 while all the rest terms are much
smaller. So in this case, it is purely the evaporation effect that is causing the quick peak shift of the
film.
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Figure 4.11: The magnitude of each effect at different time. Parameter values are: S = 0.1, Pe = 1,
β = π/4, M = Re = 0, E = 1, Kc = 0.01.
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4.4.2 Shift Backward
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Figure 4.12: Parameter values are: S = 1, Pe = 10, β = π/4, M = Re = 0, E = 1, Kc = 0.01.

This is a case where the dynamics of the film is different from what we discovered in previous
section. The film travels backward when the peaks of concentration and film meet. Selecting the
first peak transition as our interest of study. Limit the time to t = [12.5;14] with time increment of
0.3. Figure. 4.14 shows the magnitude of the effects from each term.
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Figure 4.13: Parameter values are: S = 1, Pe = 10, β = π/4, M = Re = 0, E = 1, Kc = 0.01.
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Figure 4.14: The magnitude of each effect at different time. Parameter values are: S = 1, Pe = 1,
β = π/4, M = Re = 0, E = 10, Kc = 0.01.
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4.4.3 Peak Jump

This phenomena is different from the previous two cases because there is no shift pattern and
the film profile is not a cosine curve anymore. Two local peaks will form in the film. And the
change of the global peak position depends on the variation of each local peak. So we will see
a instantaneous peak position change. To gain better resolution for the analysis, we increase the
number of spatial step from 100 to 200 and decrease time step from 0.1s to 0.01s. We will set
C(x,0) = 0.05cos(kx) and other parameters as S = 1, Pe = 1, β = π/4, M = Re = 0, E = 10,
Kc = 0.01.
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Figure 4.15: Parameter values are: S = 1, Pe = 1, β = π/4, M = Re = 0, E = 10, Kc = 0.01.
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Figure 4.16: Parameter values are: S = 1, Pe = 1, β = π/4, M = Re = 0, E = 10, Kc = 0.01.
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Chapter 5

Conclusion

In this project, we have studied the evaporation(condensing) effects on a two-dimensional
falling film of a two component fluid with one being volatile. We started with the Benney’s prob-
lem and expanded upon the work by Joo etal. The film is modelled based on long wave theory and
perturbation theory is applied. Nondimensionalization was utilized in order to reduce the number
of parameters and have better understanding of the dominating effects. After obtaining the evolu-
tion equations for both the film and concentration, we applied linear stability theory and developed
several numerical methods to solve for the film and concentration profiles by assuming the peri-
odic boundary condition. We then focused on the different dynamics we have discovered during
numerical simulation and studied the effects of evaporation and condensation on the film profile.

With an initially flat film and a variation in the concentration, although eventually the film is
stable, we still have discovered some interesting phenomena that for different sets of parameter
values, the film will perform quite different dynamics. Due to the different speeds of the film
and concentration field, the profiles of film and concentration will have interactions as they travel.
Based on the difference between the minimal amplitude when the film and concentration profiles
overlap and the concentration profile, the wave in the film will either shift forward, backward or
have a jump.

The amplitude in the film is completely due to the evaporation or condensation (variation in the
concentration field). Increasing the initial amplitude on the film or increasing Marangoni number
will increase the amplitude, but it will not change the dynamics of film (See Appendix D). As a
result, we will not focus on how high the film goes with different concentration and Marangoni
number. We will discuss in details on explaining the previous findings.

First we need to understand why the film amplitude varies when it travels. As we have dis-
cussed, the amplitude in the film is caused by the concentration disequilibrium that the evaporation
or condensation rate are different at different locations of the film. As the film travels, a wave
pattern on the film will appear and ideally it will be the inverse of the wave pattern in the con-
centration field. But because of the different travelling speeds of film and concentration, the film
profile on the film will gradually approaches and overlaps with that in the concentration. Take
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the case where the peak shift forward as an example, the concentration starts with a cosine curve
whereas the resultant film profile will be a sine curve, so their peaks are distant by half period
(π/2). As the film and concentration travel, the amplitude in the film increases (we will call this
increasing phase) until the distance between the two peaks is π/4, and this is when the amplitude
starts to decrease (we will call this decreasing phase). When the two peaks meet, peak on the film
will shift forward by half a period and repeats the pattern over and over.

As we vary different parameters, we are changing either the film or the concentration or both of
them. Although the concentration depends on the film height, the variation on the film is so small
that it will not have any significant effect. So if one parameter appears only in the film equation, it
will affect much more on the film than on concentration.

From the previous plots, it is obvious that during the transition, the concentration effect domi-
nates the dynamics. However, as we vary different parameters, the film has shown quite different
dynamics. For example, S = 1, the film will shift forward as the peak of the film and concentration
fields meet, however as we increase S, the film will shift backwards. The capillary effect doesn not
have any influence on the film during the transition, but it does before the transition. The capillary
effect will tend to keep the wave motion, thus reduce the amount of amplitude loss during the
decreasing phase as the film profile approaches the concentration profile.

As for the shift forward case, both the film and concentration during the shift are relative small,
and we will call this as the cooperative case. When we increase the film amplitude before the
shift or we increase the concentration during shift, the film will shift backwards and we will have
a competing case. Either the film is large enough to overcome the concentration effect, resulting
the film to shift backward, or the concentration is too large that the film speed is not fast enough
to past through the ”concentration effect”. Then as for the cases where the peak of the film jumps
(occurrence of two local peaks), the film amplitude is high enough to not be completely influenced
by concentration, meanwhile the concentration is high enough to form another peak in the film. So
the phenomena we discovered are the interaction between the film amplitude before the transition
and the concentration effect.

To continue with further investigation, a clear relation on how the interaction is between the
minimal film height and concentration effect could be established and further studied. In this
report, we studies mainly the dynamics with small concentration, the same analysis could be done
with higher concentration. An initial perturbation could be given to the film along with high
concentration, we would expect that the dyanmics would be very interesting. Local temperature
could also be introduced to the analysis.
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Appendix A

Numerical Methods

For a non-linear PDE, sometimes it’s very difficult or even impossible to obtain analytical solu-
tions. In order to study the behavior of the PDE, discretization allows us to numerically solve the
PDE. In this section, the subscript represents space and superscript represents time.

A.1 Central Difference

For spatial derivatives, second order central differencing method is used. This is a basic ap-
proach to obtain the derivative terms. Central differencing results in an error of second order in x
which is enough for our problem, as long as the ∆x is small. For first order derivative:

∂h
∂x

∣∣∣∣
xi

=
hi+1−hi−1

2∆x
+O(∆x2) (A.1)

Second order derivative:

∂ 2h
∂x2

∣∣∣∣
xi

=
hi+1−2hi +hi−1

∆x2 +O(∆x2) (A.2)

Third order derivative:

∂ 3h
∂x3

∣∣∣∣
xi

=
hi+2−2hi+1 +2hi−1−hi−2

2∆x3 +O(∆x2) (A.3)

Fourth order derivative:

∂ 4h
∂x4

∣∣∣∣
xi

=
hi+2−4hi+1 +6hi−4hi−1 +hi−2

∆x4 +O(∆x2) (A.4)
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In the simulation, derivative matrice were constructed for computational purposes.

hi
x = D1hi (A.5)

where hi is the vector of the height at time i, hi
x is the vector of the first derivative at time i and D

is a tridiagonal square matrix with as follows:

D1 =
1

2∆x



0 1 0 0 · · · 0 −1
−1 0 1 0 · · · 0 0
0 −1 0 1 · · · 0 0
0 0 −1 0 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · 0 1
1 0 0 0 · · · −1 0


(A.6)

Note there are entries in the upper right and low left of the matrix. Periodic boundary condition
is used in the simulation, so this will give a smooth derivative at the boundaries. D2, D3 and D4
matrices share the same pattern:

D2 =
1

∆x2



−2 1 0 0 · · · 0 1
1 −2 1 0 · · · 0 0
0 1 −2 1 · · · 0 0
0 0 1 −2 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · −2 1
1 0 0 0 · · · 1 −2


(A.7)
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A.2 Forward Euler Method

We will use this generalized evolution equation for illustration in each methods below:

ht +A(h)hx + ε [B(h)hx +S(h)hxxx +C(h)cx]x = 0, (A.8)

and
ht = F(x, t,h,hx,hxx,hxxx,hxxxx) (A.9)

Starting with Taylor expansion of h:

ht+∆t = ht +∆t
∂ht

∂ t
+∆t2 ∂ 2ht

∂ t2 +O(∆t3) (A.10)

Omitting the term with order ∆t2 and higher, we achieve at the forward Euler method which
will solves the equation explicitly.

ht+∆t = ht +∆t F t (A.11)

Local trncation error resulted from euler method is of order ∆t2, whereas the global truncation
error is of order ∆t. In order to achieve adequate accuracy, small time step is required when using
euler method.
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A.3 Backward Euler Method

Backward Euler method is similar to the normal (forward) Euler method, but backward Euler is
an implicit method. Instead of solving the derivative in time with the current state, backward Euler
uses the future state:

ht+∆t = ht +∆t F t+∆t (A.12)

In order to solve the implicit equation, we use NewtonRaphson method.

ht+∆t = ht−∆t
F t+∆t

F ′t+∆t (A.13)

For easy computation, we will construct Jacobian matrix to solve the equation.

ht+∆t = ht +(I +∆tJ)F t+∆t (A.14)

where J is the jacobian matrix of F in terms of hx. Jacobian matrix for A(h) = sin(β )hxh2 is:

JA =


h2

1 0 0 · · · 0
h2

2 0 · · · 0
0 0 h2

3 · · · 0
...

...
... . . . ...

0 0 0 · · · h2
n

D1 +


h1h1x 0 0 · · · 0

h2h2x 0 · · · 0
0 0 h3h3x · · · 0
...

...
... . . . ...

0 0 0 · · · hnhnx

 (A.15)

38



A.4 Crank-Nicolson Method

Crank Nicolson method averages the results from the current and future time and result in a
better estimation of the future state O(∆t2).

hn+1−hn

∆t
=

1
2
(

f n+1 + f n) (A.16)

We linearize the system with the following estimation. As the time step is small, H and C
should be very small.

hn+1 = hn +H (A.17)

c̄n+1
0 = c̄n

0 +C (A.18)

So we linearize the system with the above estimation:

ht + sinβhxh2 +EKcc̄0 + ε∂x

(
1
3

Shxxxh3− 1
3

cosβhxh3− 1
2

Mcc̄0xh2

+
2

15
Resin2(β )hxh6

)
= 0,

c̄0t +
1
3

sinβh2c̄0x +
Kc

EPe2

(
c̄0

h

)
= 0.
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Each term is linearized as the following:

sin(β )hxh2 = sin(β )
(

hn
x(h

n)2 +
1
2

Hhnhn
x +

1
2

Hx(hn)2
)

(A.19a)

EKcc̄0 = EKc(cn +C) (A.19b)
1
3

Shxxxxh3 =
1
3

S
(

hn
xxxx(h

n)3 +
1
2

Hxxxx(hn)3 +
3
2

H(hn)2hn
xxxx

)
(A.19c)

Shxxxhxh2 = S
(

hxxxhn
x(h

n)2 +
1
2

Hxxxhn
x(h

n)2 +
1
2

Hxhxxx(hn)2 +Hhxxxhn
xhn
)

(A.19d)

cos(β )h2
xh2 = cos(β )

(
(hn

x)
2(hn)2 +Hxhn

x(h
n)2 +H(hn

x)
2hn) (A.19e)

1
3

cos(β )hxxh3 =
1
3

cos(β )
(

hn
xx(h

n)3 +
1
2

Hxxh3 +
3
2

Hhn
xx(h

n)2
)

(A.19f)

1
2

Mcc̄0xxh2 =
1
2

Mc

(
c̄n

0xx(h
n)2 +

1
2

Cxx(hn)2 +Cc̄n
0xxhn

)
(A.19g)

Mcc̄0xxhxh = Mc

(
c̄n

0xxhn
xhn +

1
2

Cxxhn
xhn +

1
2

Hxc̄n
0xxhn +

1
2

Hc̄n
0xxhn

x

)
(A.19h)

4
5

Resin2(β )h2
xh5 =

4
5

Resin2(β )

(
(hn

x)
2(hn)5 +Hxhn

x(h
n)5 +

5
2

H(hn
x)

2(hn)4
)

(A.19i)

2
15

Resin2(β )hxh6 =
2
15

Resin2(β )

(
hn

x(h
n)6 +

1
2

Hx(hn)6 +3Hhn
x(h

n)5
)

(A.19j)

1
3

sinβh2c̄0x =
1
3

sin(β )
(
(hn)2c̄n

0x +
1
2

C(hn)2 +Hhnc̄0x

)
(A.19k)

Kc

EPe2
c̄0

h
=

Kc

EPe2

(
c̄n

0
hn +

C
hn −

Hc̄n
0

(hn)2

)
(A.19l)

Then combine the film and concentration vector as:

~v =
[

H
C

]
(A.20)

And substitute all the linearized terms into the original system, we obtain a linear system of~v.
Then we can solve it with matrix operation and get the result of the difference between the state at
future time and current state. [

L11 L12
L21 L22

][
H
C

]
=

[
R1
R2

]
(A.21)

where L11 and L12 are the matrices corresponds to the film equation whereas the L21 and L22 to the
concentration equation. R1 and R2 are the vectors of the current state.
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Appendix B

Matlab code

B.1 Second Order Crank-Nicolson Solver

function [film conc A B Ch Ev debug] = accucranknicolson()

% this file solves the time dependent solution to the film equation
% h t +E*K c*C + A(h)*h x+ epsilon*(B(h)*h x)+C(h)*h xxx + D(h) *c x) x=0
% h(t,x,derivative)
% 2pi periodic
global E K c M c epsilon beta Re S k Nx xend dx dt tend tsize x H C Pe

debug=0;A=zeros(size(H));B=A;Ch=A;Ev=A;

%%% Derivative Matrices %%%
%%%% first derivative
Dc1 = diag(ones(Nx−1,1),1)+diag(−ones(Nx−1,1),−1);%%%central
Dc1(1,end) = −1; Dc1(end,1) = 1;
Dc1 = 1/2/dx*Dc1;

%%%% second derivative
Dc2 = diag(ones(Nx−1,1),1) + diag(−2*ones(Nx,1))+diag(ones(Nx−1,1),−1);
Dc2(1,end) = 1; Dc2(end,1) = 1;
Dc2 = 1/dxˆ2*Dc2;

%%%% third derivatve
Dc3 = diag(ones(Nx−2,1),2) − diag(2*ones(Nx−1,1),1)...

+diag(2*ones(Nx−1,1),−1)−diag(ones(Nx−2,1),−2);
Dc3(1,end−1:end)=[−1 2]; Dc3(2,end) = −1;
Dc3(end−1:end,1)=[1 −2]; Dc3(end,2) = 1;
Dc3 = 1/2/dxˆ3*Dc3;

%%%% fourth derivative
Dc4 = diag(ones(Nx−2,1),2)+diag(−4*ones(Nx−1,1),1)...
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+diag(6*ones(Nx,1)) +diag(−4*ones(Nx−1,1),−1)...
+diag(ones(Nx−2,1),−2);

Dc4(1,end−1:end) = [1 −4]; Dc4(2,end)=1;
Dc4(end−1:end,1) = [1 −4]; Dc4(end,2)=1;
Dc4 = 1/dxˆ4*Dc4;

%% solve with crank nicolson
for i = 1:tsize

hh = H(:,i);
cc = C(:,i);
HC = [hh;cc];

M11 = 1/dt*diag(ones(Nx,1),0)...
+1/2*sin(beta)*(diag(hh.ˆ2)*Dc1+diag(hh)*diag(Dc1*hh))...%advection
+epsilon*1/6*S*(diag(hh.ˆ3)*Dc4+3*diag(hh.ˆ2)*diag(Dc4*hh))...%cap1
+epsilon*1/2*S*(diag(hh.ˆ2)*diag(Dc1*hh)*Dc3... %cap2

+diag(hh.ˆ2)*diag(Dc3*hh)*Dc1...
+2*diag(hh)*diag(Dc1*hh)*diag(Dc3*hh))...

−epsilon*1/6*cos(beta)*(diag(hh.ˆ3)*Dc2 ...
+ 3*diag(Dc2*hh)*diag(hh.ˆ2))...hydro1

−epsilon*1/2*cos(beta)*(2*diag(hh)*diag((Dc1*hh).ˆ2)...
+2*diag(Dc1*hh)*diag(hh.ˆ2)*Dc1)...hydro2

−epsilon*1/4*M c*diag(hh)*diag(Dc2*cc)... %marangoni1
−epsilon*1/2*M c*(diag(Dc1*hh)*diag(Dc1*cc)+...

diag(hh)*diag(Dc1*cc)*Dc1) ... %marangoni2
+1/15*Re*sin(beta)ˆ2*(diag(hh.ˆ6)*Dc2+6*diag(hh.ˆ5)*diag(Dc2*hh))...%inertia1
+2/5*Re*sin(beta)ˆ2*(2*diag(Dc1*hh)*diag(hh.ˆ5)*Dc1... %inertia2

+5*diag((Dc1*hh).ˆ2)*diag(hh.ˆ4));
M12 = 1/2*E*K c*diag(ones(Nx,1),0)...

−1/2*M c*diag(hh.ˆ2)*Dc2 ...marangoni1
−M c*diag(Dc1*hh)*diag(hh)*Dc1; ...marangoni2;

%%% c equation

M21 = diag(−1/2*K c/Peˆ2*cc./hh.ˆ2)+sin(beta)*diag(hh.*(Dc1*cc));
M22 = 1/dt*diag(ones(Nx,1),0) + diag(1/2*K c/Peˆ2*1./hh) ...

+ 1/6*sin(beta)*diag(hh.ˆ2)*Dc1;
LM = [M11 M12;

M21 M22];

RMh = E*K c*cc ... %evaporation
+ sin(beta)*(Dc1*hh).*hh.ˆ2 ... %advection
+1/3*epsilon*S*hh.ˆ3.*(Dc4*hh)...%cap1
+epsilon*S*hh.ˆ2.*(Dc3*hh).*(Dc1*hh)... %cap2
−1/3*epsilon*cos(beta)*hh.ˆ3.*(Dc2*hh)... %hydro1
−epsilon*cos(beta)*hh.ˆ2.*(Dc1*hh).ˆ2 ... %hydro2
−1/2*epsilon*M c*(Dc2*cc).*hh.ˆ2 ... %marangoni1
−epsilon*M c*(Dc1*cc).*hh.*(Dc1*hh) ... %marangoni2
+2/15*epsilon*Re*sin(beta)ˆ2*(Dc2*hh).*hh.ˆ6 ... %inertia1
+4/5*epsilon*Re*sin(beta)ˆ2*(Dc1*hh).ˆ2.*hh.ˆ5;% ... %inertia2

RMc =K c/Peˆ2*cc./hh+1/3*sin(beta)*hh.ˆ2.*(Dc1*cc);
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RM = [RMh ; RMc];

dHC = −LM\RM;

HCt2 = HC+dHC;
hht2 = HCt2(1:Nx);
cct2 = HCt2(Nx+1:2*Nx);

%% individual effects
LMa = 1/dt*diag(ones(Nx,1),0)+1/2*sin(beta)*(diag(hh.ˆ2)...

*Dc1+diag(hh)*diag(Dc1*hh));
RMa = sin(beta)*(Dc1*hh).*hh.ˆ2;
aa = −LMa\RMa;

if cos(beta)<1e−10
bb=0*hh;

else
LMb = 1/dt*diag(ones(Nx,1),0)−epsilon*1/6*cos(beta)*(diag(hh.ˆ3)*Dc2 ...

+ 3*diag(Dc2*hh)*diag(hh.ˆ2))...
−epsilon*1/2*cos(beta)*(2*diag(hh)*diag((Dc1*hh).ˆ2)...
+2*diag(Dc1*hh)*diag(hh.ˆ2)*Dc1);

RMb = −1/3*epsilon*cos(beta)*hh.ˆ3.*(Dc2*hh)... %
−epsilon*cos(beta)*hh.ˆ2.*(Dc1*hh).ˆ2;

bb = −LMb\RMb;
end
if S==0

cch = 0*hh;
else

LMch = 1/dt*diag(ones(Nx,1),0)+epsilon*1/6*S*(diag(hh.ˆ3)*Dc4...
+3*diag(hh.ˆ2)*diag(Dc4*hh))...%cap1
+epsilon*1/2*S*(diag(hh.ˆ2)*diag(Dc1*hh)*Dc3... %cap2
+diag(hh.ˆ2)*diag(Dc3*hh)*Dc1...
+2*diag(hh)*diag(Dc1*hh)*diag(Dc3*hh));

RMch = 1/3*epsilon*S*hh.ˆ3.*(Dc4*hh)...%cap1
+epsilon*S*hh.ˆ2.*(Dc3*hh).*(Dc1*hh);

cch = −LMch\RMch;
end

eev = −E*K c * cc;

H(:,i+1) = hht2;
C(:,i+1) = cct2;
A(:,i) = aa;
B(:,i) = bb;
Ch(:,i) = cch;
Ev(:,i) = eev;

end
film=H;
conc=C;

end
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B.2 Forward Euler Solver

function [film conc]= forward()

% this is a function that solves the simple film equation for beta = 0
% h t + A(h)*h x +eps*(B(h)*h x + C(h)*h {xxx}) x = 0
% where A(h) = sin(beta)*hˆ2, B(h) = −hˆ3/3, C(h) = S*hˆ3/3
% on 0 < x < 2\pi, periodic boundary conditions in x
% using forward Euler

global E K c M c epsilon beta Re S k Nx xend dx dt tend tsize x H C Pe

% set up spatial differentiation matrices
%%%% first derivative
Dc1 = diag(ones(Nx−1,1),1)+diag(−ones(Nx−1,1),−1);%%%central
Dc1(1,end) = −1; Dc1(end,1) = 1;
Dc1 = 1/2/dx*Dc1;

%%%% second derivative
Dc2 = diag(ones(Nx−1,1),1) + diag(−2*ones(Nx,1))+diag(ones(Nx−1,1),−1);
Dc2(1,end) = 1; Dc2(end,1) = 1;
Dc2 = 1/dxˆ2*Dc2;

%%%% third derivatve
Dc3 = diag(ones(Nx−2,1),2) − diag(2*ones(Nx−1,1),1)...

+diag(2*ones(Nx−1,1),−1)−diag(ones(Nx−2,1),−2);
Dc3(1,end−1:end)=[−1 2]; Dc3(2,end) = −1;
Dc3(end−1:end,1)=[1 −2]; Dc3(end,2) = 1;
Dc3 = 1/2/dxˆ3*Dc3;

%%%% fourth derivative
Dc4 = diag(ones(Nx−2,1),2)+diag(−4*ones(Nx−1,1),1)...

+diag(6*ones(Nx,1)) +diag(−4*ones(Nx−1,1),−1)...
+diag(ones(Nx−2,1),−2);

Dc4(1,end−1:end) = [1 −4]; Dc4(2,end)=1;
Dc4(end−1:end,1) = [1 −4]; Dc4(end,2)=1;
Dc4 = 1/dxˆ4*Dc4;

% start time iteration

for i = 1:tsize %t = dt:dt:tend %
%
% go through iterates
%
h0 = H(:,i);c0=C(:,i);
h0x = Dc1*h0; h0xx = Dc2*h0; h0xxx=Dc3*h0; h0xxxx = Dc4*h0;

c0x=Dc1*c0;c0xx=Dc2*c0;

44



rhs = sin(beta)*h0.ˆ2.*h0x +E*K c*c0+ epsilon*(...
+1/3*S.*(h0.ˆ3.*h0xxxx+3*h0.ˆ2.*h0x.*h0xxx)...
+2/15*Re*sin(beta)ˆ2*(h0.ˆ6.*h0xx+h0.ˆ5.*h0x.ˆ2)...
−1/3*cos(beta)*(h0.ˆ3.*h0xx+3*h0.ˆ2.*h0x.ˆ2)...
−1/2*M c.*(c0x.*2.*h0.*h0x+c0xx.*h0.ˆ2));

H(:,i+1) = H(:,i) − dt*rhs;

rhsc = 1/3*sin(beta)*h0.ˆ2.*c0x+K c/E/Peˆ2*c0./h0;

C(:,i+1) = C(:,i) − dt*rhsc;

end

film=H;
conc=C;

B.3 Data Analysis and Plots Generation

B.3.1 Run and Catch Result

[r11 r12 A B Ch Ev debug]= main(4);

B.3.2 Time and space plots

subplot(1,2,1)
mesh(t,x,r11);
set(ylabel('x'),'fontsize',20);
set(xlabel('time'),'fontsize',20);
set(zlabel('Height'),'fontsize',20);
set(title('Height in Space and Time','fontsize',20));
subplot(1,2,2)
mesh(t,x,r12);
set(ylabel('x'),'fontsize',20);
set(xlabel('time'),'fontsize',20);
set(zlabel('Concentration'),'fontsize',20);
set(title('Concentration in Space and Time','fontsize',20));

subplot(2,2,3)
plot(t,max(r11)−min(r11))

subplot(2,2,4)
plot(t,max(r12))
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B.3.3 Plot of The Peak Shift

set(figure(1),'position',[176 51 603 760])
a = size(r11);

aa1= 1;
aa= a(2);

pp =zeros(2,aa−aa1); %peak positions
for i =1:(aa−aa1−1)

ph = find(r11(:,i+aa1)==max(r11(:,i+aa1)),1,'first');
pc = find(r12(:,i+aa1)==max(r12(:,i+aa1)),1,'first');
dd = (ph −pc)*dx;

if (dd<0 && dd>−xend)
dd = dd+xend;

end

pp(:,i) = dx*[ph pc]';
end
ttt = aa1*dt:dt:dt*aa−dt;

subplot(3,1,1)
plot(ttt,max(r11(:,aa1:aa−1))−min(r11(:,aa1:aa−1)),'LineWidth',2,'Color','black')
xlim([aa1*dt aa*dt])
set(xlabel('Time'),'fontsize',20);
set(ylabel('\Deltax'),'fontsize',20);

subplot(3,1,2)
plot(ttt,pp(1,:),'LineWidth',2,'Color','blue');hold on
plot(ttt,pp(2,:),'LineWidth',2,'Color','red');

leg=legend('Film','Concentration');
set(leg,'fontsize',20,'position',[0.6089 0.5672 0.3781 0.0974])
set(xlabel('Time'),'fontsize',20);

set(ylabel('x position','fontsize',20));
xlim([aa1*dt aa*dt])
subplot(3,1,3)
plot([0 ttt],(max(r12)−min(r12))/2,'LineWidth',2)
set(xlabel('Time'),'fontsize',20);
set(ylabel('Amplitude'),'fontsize',20);
xlim([0 aa*dt])

allAxes = findall(0,'type','axes');
set(allAxes,'fontsize',20);
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B.3.4 Profile plot of the peak shift

figure(2)
set(figure(2), 'position', [411 292 1200 520])

ti = [26 0.3 27.5];
taa = ti(1)/dt:ti(2)/dt:ti(3)/dt;
ta=taa*dt;

ab=subplot(1,2,1);set(ab,'position',[0.1300 0.1476 0.3347 0.7774])
plot(x,r11(:,taa)−1,'LineWidth',2);
set(xlabel('x'),'fontsize',22);
set(ylabel('Film Profile'),'fontsize',22);

axis([0 (xend−dx) 1.1*min(min(r11(:,taa)−1)) 1.01*max(max(r11(:,taa)−1)) ])

subplot(1,2,2)
plot(x,r12(:,taa),'LineWidth',2)
set(xlabel('x'),'fontsize',22);
set(ylabel('Concentration Profile'),'fontsize',22);

xlim([0 xend−dx])
ll = legend(strcat('t=',num2str(ta(1))),...

strcat('t=',num2str(ta(2))),...
strcat('t=',num2str(ta(3))),...
strcat('t=',num2str(ta(4))),...
strcat('t=',num2str(ta(5))),...
strcat('t=',num2str(ta(6))));%,...

set(ll,'fontsize',22,'position',[0.8521 0.4674 0.1287 0.5063])

allAxes = findall(0,'type','axes');
set(allAxes,'fontsize',22);

B.3.5 Different Effects Plot

figure(5)

set(figure(5), 'position', [130 156 913 618])
subplot(2,2,1)
plot(x,A(:,taa),'LineWidth',2)
set(xlabel('x'),'fontsize',18);
set(ylabel('Wave propagation'),'fontsize',18);
xlim([0 xend−dx])

subplot(2,2,2)
plot(x,B(:,taa),'LineWidth',2)
set(xlabel('x'),'fontsize',18);
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set(ylabel('Hydrostatic'),'fontsize',18);
xlim([0 xend−dx])

subplot(2,2,3)
plot(x,Ch(:,taa),'LineWidth',2)
set(xlabel('x'),'fontsize',18);
set(ylabel('Capillary'),'fontsize',18);
xlim([0 xend−dx])

subplot(2,2,4)
plot(x,Ev(:,taa),'LineWidth',2)
set(xlabel('x'),'fontsize',18);
set(ylabel('Evaporation'),'fontsize',18);
xlim([0 xend−dx])

allAxes = findall(0,'type','axes');
set(allAxes,'fontsize',20);
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Appendix C

Plots with Different Parameter values
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Figure C.1: Left plots are when Pe = 0.1 and right Pe = 10. Other Parameter values are: S = 1,
β = π/4, M = Re = 0, E = 1, Kc = 0.01.
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Figure C.2: Left plots are when E = 0.1 and right E = 10. Other Parameter values are: β = π/4,
Pe = 1, S = 1, M = Re = 0, Kc = 0.01.
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Figure C.3: Left plots are when Kc = 0.001 and right Kc = 0.1. Other Parameter values are:
β = π/2, Pe = 1, M = Re = 0, E = 1, S = 1.
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Appendix D

Plots compare

We will compare four sets of parameters values respectively:

• C = 0.05cos(kx) and M = 0

• C = 0.05cos(kx) and M = 1

• C = 0.1cos(kx) and M = 0

• C = 0.1cos(kx) and M = 1

The plots will be appearing in the order of the above list. Upper left being the first set, upper
right the second, lower left the third and lower right the fourth set.
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Figure D.1: Other parameter values are: S = 1, Pe = 1, β = π/4, E = 1, Kc = 0.01, Re = 0, and
ε = 0.01
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Figure D.2: Other parameter values are: S = 0.1, Pe = 1, β = π/4, E = 1, Kc = 0.01, Re = 0, and
ε = 0.01
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Figure D.3: Other parameter values are: S = 10, Pe = 1, β = π/4, E = 1, Kc = 0.01, Re = 0, and
ε = 0.01
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Figure D.4: Other parameter values are: S = 1, Pe = 0.1, β = π/4, E = 1, Kc = 0.01, Re = 0, and
ε = 0.01
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Figure D.5: Other parameter values are: S = 1, Pe = 10, β = π/4, E = 1, Kc = 0.01, Re = 0, and
ε = 0.01
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Figure D.6: Other parameter values are: S = 1, Pe = 1, β = π/2, E = 1, Kc = 0.01, Re = 0, and
ε = 0.01
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Figure D.7: Other parameter values are: S = 1, Pe = 1, β = π/4, E = 0.1, Kc = 0.01, Re = 0, and
ε = 0.01

59



10 20 30 40 50
0

0.02

0.04

0.06

Time

∆x

10 20 30 40 50
0

5

10

Time

x 
po

si
tio

n

 

 Film
Concentration

10 20 30 40 50
0

0.02

0.04

0.06

Time

∆x

10 20 30 40 50
0

5

10

Time

x 
po

si
tio

n
 

 Film
Concentration

10 20 30 40 50
0

0.05

0.1

Time

∆x

10 20 30 40 50
0

5

10

Time

x 
po

si
tio

n

 

 Film
Concentration

10 20 30 40 50
0

0.05

0.1

Time

∆x

10 20 30 40 50
0

5

10

Time

x 
po

si
tio

n

 

 Film
Concentration

Figure D.8: Other parameter values are: S = 1, Pe = 1, β = π/4, E = 10, Kc = 0.01, Re = 0, and
ε = 0.01
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Figure D.9: Other parameter values are: S = 1, Pe = 1, β = π/4, E = 1, Kc = 0.1, Re = 0, and
ε = 0.01
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Figure D.10: Other parameter values are: S = 1, Pe = 1, β = π/4, E = 1, Kc = 0.001, Re = 0, and
ε = 0.01
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