Worcester Polytechnic Institute

Digital WPI

Interactive Qualifying Projects (All Years)

April 2008
E-Merging Realities

Keith Chester
Worcester Polytechnic Institute

Robert Martin
Worcester Polytechnic Institute

William David Price
Worcester Polytechnic Institute

Interactive Qualifying Projects

Follow this and additional works at: https://digitalcommons.wpi.edu/igp-all

Repository Citation

Chester, K., Martin, R., & Price, W. D. (2008). E-Merging Realities. Retrieved from https://digitalcommons.wpi.edu/iqp-all /362

This Unrestricted is brought to you for free and open access by the Interactive Qualifying Projects at Digital WPL. It has been accepted for inclusion in
Interactive Qualifying Projects (All Years) by an authorized administrator of Digital WPL. For more information, please contact digitalwpi@wpi.edu.

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/iqp-all?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/iqp?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/iqp-all?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/iqp-all/362?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F362&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

E-MERGING REALITIES
An Interactive Qualifying Project Report
submitted to the Faculty
Of the
WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the
Degree of Bachelor of Science

By

Keith Chester

and

Robert Martin

and

William D. Price

Date: April 23, 2008

Professor Joseph Farbrook

Table of Contents

22 L X O3 4
EXECUTIVE SUMMARYcoimmmmmmmmmsssssssssss s s s s sssssssssasasssssass 5
1. INTRODUCTION....icismrtrmsmsmsssasssssssssssssssassssasasasssssasassssasanssssass 8
2. METHODOLOGY .ot ssssasss s s s sssassssasassssasasssssass 9
00 100) PP 9
2.2 GOALS..ourteuuermsesssissssssssessssesssss s s b s8R R R R S R R R S AR R R R 9
2.3 PROJECT PLAN coutitieesessesesssesssssssss s sassssssssssesssssssssssssessssessessassssasssssessessssssssssessssessassssansssnessessssensesassssssses 10
3. SOFTWARE DEVELOPMENT ...cccoismnmmmsmsmmssssmsmssases 11
3.1 MICROCONTROLLER DEVELOPMENT ...cvvtseurereusssessssessssessessssssssssssssssssssasssssssssssssssssasssssssssssssassssssssssens 11
3.1.2 Arduino Hardware and SOftwWare PrOPEITIEScroneerinssssssessssesnsesssesissssissssssssesans 12
3.1.2 WOIKiNG WIth ATAUINO c....eeeeeeeereseersetrseserssersserissesissesissssssssessssesassssassssasssssssessssssassssassssssssssssssans
3.1.3 TRE ATAUINO PrOGTAM eorreerereeerireerisesrissessssesssesissesissesisssssssssssssesassssassssassssssssessssssassssasssssssssssssans
3.2 CLIENT MACHINE DEVELOPMENT .cvttiesseussessssessssessasssssssssssssssssssssens
3.3 SECOND LIFE DEVELOPMENT ...cuvtvtitresssesssessssessssssssssssssssssssssssasssssssssssssssssssssssssssssssssssssssasssssssssssssssssssasens
3.3.1 Preliminary DeVEIODMENTE ...rcrssississsssisssssesssssssssssssisssssssssssssssassssssssssssssssamsssssssssssssssanssassssns
3.3.2 The Virtual Wheelchair: Design
3.3.3 The Virtual Wheelchair: IMpPlemMentAtioN.......rororosscismssimssonssssesssssssssosssssssssssssssssassssns 18
4. CONSTRUCTION ..coitiinsesmsssasssssssasssssssssasssssssasasssssassssssassssssasasssnsass 21
4.1 WHEELCHAIR..cttttuttreustreaseseasssessssessesessssessssessssessssessssessssessssessssessssessssessssesssssssssessssessssessssessssessssesssssssssessssnanes 21
4.2 WHEELCHAIR MOUNT ..ootvturtreusereusereasssessssenses 22
4.2.1 WheelchQir MOUNE ODJECLIVES.......cereerreeriseeresiserossesissssissssisssessssesassesssssssssssssssessssesassssesssssssesasess 22
4.2.2 WheelCh@ir MOUNE PTOLOLYPCvwvirsssimssssessisssssisssisssssssssssssssasssssssssmssssssssssssssssmsssssssssssssssssssansss 22
4.2.3 Wheelchair Mount FiINAI DESIGN.........corneenreonserinserissseesssesssesssessssssssssssssesssesasssssssssassesasess 23
4.3 SENSOR SELECTION AND METHODOLOGY .cuvtreurureurereaseressesessssessssessssessssessssessssesssssssssessssesssssssssessssesssseases 23
4.3.1 Optical Shaft ENcoder BACKGTOUNGceverrereseerseersssrisssessssesssesissesissssasssessssessssesassssassses 24
4.3.2 INtrruPt PTrOGTAMMUING ..o coiirvsrrsesserssirsssisscossenssisssssisssassesssesssssassssssesssssssssssssassssssesssssssssassssssessssss 24
4.3.3 QUAATALUTE ENCOUCT S cueueeseeeetserrsrsseissrisesssssssssssssssssssssssssssassssssissssssissssssssssssasssassasssassanssassasssnsasssas 24
4.4 CLIENT MACHINE HARDWAREcotcttreurtrestressssessssessesessssessssessssessssessssessssessssessssessssessssessssesssssssssessssessssennes 25
5. DEVELOPER REACTIONS ...coitiimmsmimsmsmssssssssssisssnasasssananes 26
5.1 KEITH CHESTER wcuuiituiisiss bbb s ss bbb bbb assssssssssssssssas 26
5.1 ROBERT MARTIN woucciituiisunsssssssssssssssssssssssssssssssssssss s bbb s ss s sas bbb asssssssssssssssnas 27
5.3 WILLIAM PRICE cccoouiitiisssssssisssssssssssssssssssssssssssssssss s sssss s ss s s sssss bbb sbassssssssssssssssans 27
6. FUTURE OPPORTUNITIES. ..o sssases 29
6.1 FUTURE OPPORTUNITIES FOR WHEELCHAIR HARDWAREcovtvunsirensrrenssnensssens e ssesssensssensssessssesssnenss 29
6.2 FUTURE OF SECOND LIFE AND SOCIAL ISSUES ...cuvuettrenstrensrrensssesssesssesssessssessssessssesssssssssesssssssssessssessssens 30
7. APPENDICES ... s s ssss s snasas 31
7.1 CODE SNIPPETS cucucteeusuresssesssessssesssesssssassesssssasssnens 31
7.1.1 MICTOCONETOIICT COUE ...oureeeeeeeereereeriesresserssesisserissssisssssssssssssesassesassssassssassssssssssassssasssssessasssssans 31
7.1.2 SecondLifeLink Client MACRING COUEeuerneerreerrsersseerseersserissssissssisssessssesissssasssssessssssssans 32
7.1.3 SECONC LifE COU..couirurirurreenrerseeriseeriseseassesssesssesissssisssessssessssesassssasssssssssssssssassssssssssssssssssesssesansssens 35

8.2 PHOTOGRAPHS ..eeueurereeesessessessessessessssssessessessssssssssessessesssssesssssssessessssssassssssssssssessssssassasssssessssssssssssnssssssnsens 39

7.2.1 SOfEWATE SCTOONS ccccvurtrireeririreesserisserissesisesssssssssssesassesassssasssesssessssssassssasssssssssssssssanssssssssasssssssesssesansssens
7.2.2 WREeICRAIT HAYAWATC ccourcrvircrinssirsssirrsssismnssisismssesisssssssssessasssessnssessssssssessssssasssssassssssssessssssssanns
7.3.3 SECONC LifE SCIrEONSNOLScuoeeeeeereerreirireerisssesssesissesissssasssssssssssssesassssassssassssssssessssesssssssssssssssssssssans

Abstract

E-Merging Realities is a project undertaken to utilize technology to display
art and raise social awareness. An artistic design was built within the game Second
Life that shows images designed to increase the users awareness of issues such as
third world hunger. A special wheelchair controller was designed and a prototype
built that is used to navigate through the piece. Ultimately we ended with a

complete piece that uses interactive technology to address real human issues.

Executive Summary

The life style of the average modern American has become fast-paced and
filled with the use of technology. In many peoples lives art can take a backseat to
technology or even be forgotten about. The combination of art and technology is by
no means a new concept, yet it is still in its infancy. Many experimental pieces
appear on the Internet and some schools, such as Worcester Polytechnic Institute
have even added Interactive Media major fields to help cultivate this new form of

expression.

E-Merging Realities is an attempt to create a piece of art that utilizes
technology to raise awareness on social issues. The initial concept of this project
was to create some sort of link between a virtual world, in this case the game Second
Life, and the real world. The goal was to have a stimulus in the real world create a
reaction in the virtual world. This basic concept of cause and effect is basic enough,
and used on a daily basis through the use of keyboards, mice, and other input
devices. The goal of this project was not only to create this interaction, but also to do

so in a way that holds meaning to the user, and draws an emotional response.

Many ideas were tossed around in the initial planning stages of the project
that involved users in Second Life affecting something in the real world. When we
were unable to nail down a concept using Second Life user input that we were

comfortable with, we set to using the link to create it's own meaning.

Our advisor, Professor Farbrook, had experience with virtual art and
suggested the creation of a piece within Second Life where would have some piece

of real life hardware interact with the piece, or even be a part of it.

What we came up with was a wheelchair in the real world that would
realistically control a virtual wheelchair within Second Life. The user, to navigate
through the art piece designed within Second Life, would use this wheelchair. The
wheelchair would represent a disadvantage that certain people in this world are
born into, and limits their movement. Limiting the user in this way we felt could be
interpreted by the user in many different ways, and made it more than a simple

wheelchair simulator.

Setting forth from there we designed a method to read the speed and
direction of each wheel, and send this data to a computer. On the computer we
wrote code that would read the data from a serial port and send the pertinent
information into Second Life. Code was then written within the game using the in-

game scripting language to create realistic wheelchair movements.

A wheelchair was obtained, and a prototype of a mount was then built to
hold this wheelchair. The mount kept the wheels from touching the ground, so they
could move freely. Smaller contact wheels were installed onto the mount and
attached to encoders which h read the speed and direction. This device was
connected to a computer and our code was implemented to create a realistic moving

wheelchair within the game.

The meaning behind the piece within Second Life is deep, and the wheelchair
serves to add to the illusion and immersion of the piece. After demoing the unit
ourselves, and with others we feel that we have developed an interesting new way
to create art, and to convey a message. We also have come to the conclusion that our
device could be further perfected in the future to increase functionality and to be

used for other applications in addition to our original idea.

1. Introduction

As the years go on, technology is being used for more and more things. This
technology has been put to use frequently to create alternate worlds for users to
become immersed in. This has allowed adopters of technologies to go on adventures
never imagined before, from being a professional athlete to battling monsters in a
fantasy landscape. These virtual worlds have evolved greatly over the years and
have begun to move beyond mere games to create forums used for the free

exchange of ideas from users all over the world.

One such virtual world that allows users to interact with each other freely is
the world of Second Life, an open source game developed and maintained by Linden
Labs. This world allows its users, or residents, to create objects, and scripts that
allow their creations to interact with other residents. Things such as clothes, cars,

and houses were designed, created, and sold in this persistent world.

Potential was seen, and artists began to use this world’s objects as medium to
create their works. Some pieces brought awareness to social issues, others
recreated masterpieces in three dimensions. Others still were original structures

that the residents of the world came to behold.

It is through mediums like Second Life that virtual art has evolved and taken
shape as a respected and growing field of artwork. This art can be used in many

ways, and the team of E-Merging Realities has chosen Second Life as their medium.

This team has decided to develop new interactive technology to create a link
between the real world and Second Life in a way that will be meaningful to the user.
The technology will help put the user into a situation were they are able to navigate
an area filled with images and objects designed to raise awareness about select

global issues.

2. Methodology

2.1 Scope

The scope of this project is limited to the creation of a prototype link
between Second Life and the real world. The final product produced by this project
is meant to lay the groundwork for future advancements in our technology. The
project team will be devoted to brainstorming the best way possible to develop this

link and to implement a working demonstration of this link.

2.2 Goals

The goal of E-Merging Realities is to develop a prototype device that will
interface with an artistic design created within the online game Second Life.

Detailed objectives that will lead the accomplishment of the original goal follow:

* C(Create a prototype wheelchair mount that houses encoders
* C(Create software solutions to communicate effectively with Second Life
* C(Create a wheelchair object within Second Life that moves realistically

* C(Create objects and scripts in Second Life to be used in the art piece

10

The project team will consist of three student members and one faculty
advisor member. The student members will be Keith Chester, Robert Martin, and

William Price. The faculty advisor member will be Professor Joseph Farbrook.

Team meetings with the advisor will be held weekly during A, B and C term
of the 2008-2009 school year. If necessary, an extension into D term 2008 will

include advisor meetings at the advisors discretion.

Student member meetings will be called as needed, and will be the proper
place for student collaboration on the project work. Secondary forms of
communication will include: email, telephone calls, and informal sessions. Regular

reports will be given on the status of each team member’s area of development.

The work plan consists of dividing the development areas by the level of

expertise from each member of the project team.

* Keith Chester

o Encoder Selection/Installation

o Microcontroller Software Development
* Robert Martin

o Second Life Object Scripting
* William Price

o Client Machine Software Development

11

o Client Machine Hardware
o Wheelchair Mount Hardware
* Professor Joseph Farbrook

o Second Life Art Design

The student project team members will work the final paper on
collaboratively. The entire team will do the final assembly of the hardware and
software and each individual member as well as the team as a whole will perform all

testing.

When the assembly is complete, the student team will demo the final product
to the faculty advisor and submit their hardware for approval. The final date of

acceptance is set on the WPI CDR deadline of April 24, 2008.

3. Software Development

3.1 Microcontroller Development

The need for sensors on the wheelchair stand quickly made it obvious that an
embedded system on the wheelchair stand would be a necessity. The embedded
system would react to the encoders and talk to the computer system running

Second Life in some way.

Researching a number of projects by artists and other electronics hobbyists it
became apparent that the communication would be best dealt with by the serial

communication port so that two-way communications would be possible if needed.

12

When choosing the micro controller to use a popular choice was championed
by a number of artists and enthusiasts across the Internet — Arduino. Arduino,
named after an ancient Italian King, it is an open source micro controller
development board designed for individuals without the expertise and training of an
electrical engineer or computer programmer. It is popular with artists as it allows

one to easily have a computer interact with the physical world via electronics

3.1.2 Arduino Hardware and Software Properties

The Arduino development board is based around an Atmel Amega AVR 16 bit
micro controller and has a number of features. It has sixteen digital inputs and
outputs, six analog interrupts, multiple power sources (3.3 and 5 Volts), and two
interrupt capable pins and two pulse width modulation capable pins. The interrupt
capable pins are key as they are the basis of the optical shaft encoders used within
the project. The “serial port” that Arduino both is programmed and communicates
over is also a very common USB to USB B wire, allowing us to easily port this from

system to system.

Arduino was also an attractive option not just because of its capabilities but
several other factors as well. The entire development package is under fifty dollars a
unit, whereas the programming unit for an Atmel AVR micro controller averages at
about sixty dollars alone, let alone the cost of the chips and power supplies. It is also
open source hardware, allowing complete and extensive documentation to the

hardware and the ability to modify and develop the hardware into whatever end

13

one may seek. The software IDE Arduino is also open source and compatible on

every major operating system available.

Finally, Arduino is not programmed in Assembly or embedded C much like
other micro controllers. It is instead written in Processing, a simplified
programming language developed by the MIT Media Lab. Processing was originally
designed for visual designers and those involved with the electronic arts that may
not necessarily have a background in programming. The language allows one to
easily access and deal with embedded hardware, especially sensor inputs and

electronic outputs.

3.1.2 Working with Arduino

Once the board was chosen, familiarizing ourselves with the board was
relatively easy. The amount of documentation for Arduino is significant due to its
popularity in electronic hobbyists circle throughout the Internet, and the Arduino’s

website also contains useful tutorials on several aspects of the board.

After familiarizing ourselves through these tutorials working with the
Arduino board was easy. Several sketches were made with a number of electronic
components to ensure that we would have the prerequisite knowledge needed to

program the encoders we would be using for the project.

3.1.3 The Arduino Program
The program written for the Arduino, contained within section 8.1.1, was
designed as an interrupt based program. Interrupt programming is described more

in depth in section 5.3.2. First, a number of variables and constants are declared.

14

The constants, the same as variables that are never changed, are mostly values so
we can easily refer to the pin values that we are wiring to. The only other constant is

the “ignore value” to deal with a difference in sensitivity, to be discussed later.

The setup() function is run immediately after these variables are initialized.
This function is only ran once the board is powered for the first time and tells
Arduino to prepare certain pins to perform as either digital inputs or outputs,
attaches interrupts to certain pins, and opens the serial communication port open

for communication at the designated speed, in this case a baud rate of 9600 bps.

Nothing loops in this function. If the encoders do not trip an interrupt,
nothing at all happens. Instead of merely checking the encoders continuously the
interrupt enabled hardware and software allows the encoders to instead notify the
micro controller that they are updating. This runs a function that we attached to the
interrupt pins within the setup() function. Since interrupts can be backed up within
a system, we had to design this function to be quick, efficient, and as short as

possible.

Each function that runs when triggered on an interrupt immediately
increments a pin independent counter. [t compares this counter to our “ignore
constant” for that encoder. If it does not equal, it will simply end the function and
wait for the next interrupt. If it does equal, we enter a new block of code. First we
reset the counter for that interrupt and then read the “B” pin of the encoder
(explained in section 5.3). Depending on the output of the “B” pin, the function will

either send one of two letters, representative of the key that we are listening for in

15

Second Life. After this is performed, the function exits and again waits for the next
interrupt. This function is short and quick because it was designed to be so to avoid

issues with interrupts overloading the micro controller.

3.2 Client Machine Development

On the machine that would be running Second Life, some piece of software
would be required that would take the data sent over the serial port and translate it
somehow into something that could be read by Second Life. The original plan was to
use a server to communicate with Second Life. This method was tested, however it
had a delays based upon the connection to the server. These delays we felt were

unacceptable for the uses we required this connection for.

It was decided that an application would need to read the serial port and
somehow find a way to send data to Second Life without going through the Internet.
Research was performed into the Second Life client, but no solution was discovered.
It was decided that the best way to send input from our serial port into Second Life
would be to emulate key-presses that would be read by the game client as if a user

was pressing buttons on the keyboard.

The first programming language we attempted to use was Visual Basic. After
some experimentation and research, we found the syntax was a little confusing and
we chose to look into other options. The next language that was attempted was C#,

another language that utilizes the Microsoft .NET framework. A class was found that

16

emulates the pressing of a keyboard key within the Windows libraries, and was

incorporated into a serial reader program.

The final result was a Windows application that allowed the user to select
which serial port they wish to read data from. The option to alter baud rate was also
added into the program, though in the final product we did not allow the user to
alter the baud rate. This software fires a data received event each time data appears
on the selected COM port. The program then reads the string, which is one of four
characters. Based upon what the string is, the program will then emulate the key-
press of the corresponding key, which is then registered by Second Life as a normal

input. Code snippets can be found in the appendix.

3.3 Second Life Development

The Second Life platform is interesting and provides a unique challenge from
a developmental standpoint because it is a platform based on its user-generated
content. However, in order to keep the system unified and maintainable it defines a
set of methodologies that all such content is required to abide by. Since our project
exists (partially) within the confines of this system, it must also adhere to its rules of

development, notably, the Linden Scripting Language, or LSL.

3.3.1 Preliminary Development

It was important to grasp everything that LSL allowed us to do within the
Second Life world in order to get an idea of what we could do and what we wanted
to do with it. To attain a better understanding of this concept it is worth mentioning

how scripts work. All development within Second Life is done by creating various

17

objects. These objects hold a number of user-made scripts, which begin executing as
soon as the object is generated (also referred to as “rezzed”) in the virtual world.
These scripts run continuously and can accept input such as player chat, physical
interactions such as clicking and dragging, proximity to a specific item, etc., and then
act upon these inputs by effecting items or players in the game world. LSL is a
language comprised of a large set of pre-made functions to detect and perform
specific actions such as those defined above within the context of the game and it is

from this set of functions that all user-generated scripts are written.

The first stage of the Second Life software development was simply the
ascertainment of all necessary information through testing a variety of LSL’s
features and limitations. Some example scripts written during this phase include:
Objects that can communicate with one another, a simple point and click ball game,
and a controlled recursive object generation script. The final and most elaborate of
these was a physics-based “hoverbot” object that follows any player who clicks on it,
hovers (literally bobs up and down) over his/her right shoulder, and always faces

the same direction as that person.

3.3.2 The Virtual Wheelchair: Design

At this point in time the project had been clearly defined and it was time to
begin development of the actual wheelchair object in Second Life. This object had a
specific purpose to act as a virtual counterpart to a real wheelchair and correspond
to its input to make it move throughout the art installation that would later be

devised.

18

In order for this object to be successful and create a meaningful link to the

real wheelchair, several design considerations had to be met:

* Control: The wheelchair must be capable of handling inputs from the real
chair and act upon those inputs correctly.
* Perspective: Everything must take place in a first-person perspective to give

the user the feeling that they are in the virtual world.

* Level of Realism: In order to solidify the link between the real and the virtual,
a certain level of realism in the motion and action of the chair had to be
maintained.

* Robustness: Since the only interface between users and the virtual world is
the physical wheelchair (limited control and mobility), the virtual chair has
to be capable of handling potentially hazardous situations that users may not

able to recover from on their own.

3.3.3 The Virtual Wheelchair: Implementation

To begin, a basic wheelchair-shaped object served as the base for the player
and as the source point for the wheelchair script. Each user in Second Life takes the
form of a digital avatar (formally called a “resident”), which serves as their in-game
identity. This avatar can sit on the wheelchair, which starts up the script.

The first element to be hard-coded was the control configuration. LSL can
take in user inputs from the keyboard, but as a limitation can only take in certain
keys. We decided on using four key inputs for controls: W, A, S, and D which control

clockwise and counter-clockwise wheel movements for both the left and right

19

wheels. The decision for this control schema was based upon the hardware
implementation; specifically, the optical encoders. Each encoder sends out pulse
signals for a specific segment of a rotation, which is converted by the
microcontroller into a character representing the key press to be simulated (See
Sections 3.1, 3.2, 4.3.2). This led to the next design decision: using the in-game
physics engine as the basis for wheelchair movement.

LSL has several functions that allow for object movement; however, a
drawback to these methods is that movement is delayed and choppy. In order to
achieve a smooth movement the virtual wheelchair uses the in-game physics engine.
This also works in tandem with the control implementation as each key press
generated from the hardware system is translated into a physical impulse that acts
upon the chair.

Another point worth mentioning is the fact that Second Life objects, while
having the possibility to contain multiple components, are treated as a single entity
and as such any physical force or impulse applied to the object is applied to the
object’s center of mass. In order to remain true to the realism aspect of our design
objectives the wheelchair had to translate single wheel movements into both linear
and rotational impulses that give the effect of two-wheeled movement.

Upon initial tests of this control system a new issue was raised. Since the
physical wheelchair sits on a stand its wheels do not turn and handle in a similar
fashion to a wheelchair on the ground, raw input data coming into Second Life had
to be modified in order to attain the level of realism we desired. As it was, moving in

a straight-line in the game was difficult due to the fact that each wheel on the

20

physical char moves a lot more freely when not in contact with the ground. To fix
this, the input data was modified by applying extra impulses depending on how the
chair was being manipulated in order to allow for a more user-friendly and
believable control output.

Finally, the notion of robustness had to be dealt with. There are two
situations in which the user could abuse the control system and create an
unrecoverable situation. First, if the user tried to spin the wheel too fast (a feat that
was far too easy to do since the physical wheelchair was not situated on the ground)
it could fly forward at high speeds and send the virtual chair flying upon a collision.
The second was that if the user turned too fast rotational impulses would spin the
chair like a top uncontrollably. Both situations could result in the chair not only
being in an unrealistic situation but also lead to it tipping over and rendering the
user immobile. In response to this, two solutions were implemented.

The first problem was fixed almost by itself. The physical wheelchair supplies
inputs as a variety of key presses, but the PC operating system that runs the Second
Life platform automatically limits the number of key inputs that come in to a certain
rate, resulting in a maximum speed based upon this value. However, relying solely
on an OS configuration setting is not variable in design, and so additional

parameters to control this speed were added into the script as well.

Solving the second problem was a larger concern. A tipped wheelchair would
be impossible to recover from, and since the project was meant to be a stand-alone
art installation if something went wrong there would be no one to fix it. The solution

came in the form of an interesting self-righting mechanism that checks the local Z

21

vector of the chair and determines if it is tilted past a specific margin (Approx. 30
degrees). In such an event the chair will immediately use vector cross multiplication
and use the result of the calculation to apply a rotational impulse that will tilt the
chair back into an upright position. This works in all cases, even if the chair is
upside-down. In action this mechanism produces a bobble effect that is somewhat
undesired, although due to the velocity limit solutions and the design of the art

installation this situation should be rare at best and is acceptable

4, Construction

4.1 Wheelchair

The project mandated the procurement of a wheelchair. We managed to find
a comfortable and high quality wheel chair on EBay. It is an adult fitted chair to
allow for most people to be able to sit in it comfortably and still be able to turn the
wheels. Its weight is low allowing one to easily mount it into our designed stand,

and its ability to fold up allows us to easily transport it.

The purpose of the wheel chair, artistically, was to put the observer in an
uncomfortably helpless position. While the user is used to merely walking to where
they want, the wheelchair lowers them into a disabled position that puts them into
the frame of mind of limitation. The turning of the wheelchair’s wheels would
control the wheels of a Second Life wheel chair in which the user’s avatar would be

sitting in, giving them a sense of living vicariously through the avatar.

22

4.2 Wheelchair Mount

For our wheelchair to interact properly with the world of Second Life, we
would need to develop a way to prevent the chair from moving while the wheels
were in motion. The plan for this was to build a mount that would hold the chair
above the ground, and also provide an option for mounting the microcontroller

hardware.

4.2.1 Wheelchair Mount Objectives

The original plan was to develop a stand for the wheelchair that would serve

multiple purposes. The stand objectives were to:

* Lift the chair high enough to prevent wheels from making contact with the
ground.

* Provide a foundation to mount the sensor hardware

* Be stable, sturdy, and able to safely support anyone who uses the device

* Look professional and acceptable for display

4.2.2 Wheelchair Mount Prototype

In order to test the encoders and our initial design concepts, the
development team developed a prototype stand. The stand built of wood and
provided great insight into the design of the final wheelchair mount that was to be
built. The initial design was functional, however was not deemed suitable for display
in a museum. The advisor requested that a new version would be designed using the

lessons learned in the prototype development.

23

4.2.3 Wheelchair Mount Final Design

After the prototype stand was tested, construction began on the final version.
Materials were acquired from the Higgins Machine Shop and with the help of
Machine Shop staff member Tom Coletta the construction began. An special type of
aluminum was selected for the construction thanks to special hardware designed for
it. The hardware allowed the final product to be adjusted to fit our wheelchair
perfectly, and allow the possibility of adapting the stand for use with future

wheelchairs in the case of damage or to expand.

The design consists of an aluminum base with four leg stands that the
wheelchair frame rests on. Sensor hardware is installed in the front two legs of the

stand, and the axle runs through spacers that are secured inside the aluminum.

The final version of the wheelchair was tested with people from weights
varying from 1451lb to 2501b and was found to be stable and safe in each case. The

final design was deemed acceptable for display.

4.3 Sensor Selection and Methodology

The encoder selection was mandated by the requirements for the project
itself. We desired the ability to read the rotation of a wheel chair accurately and
translate its direction into an input for our computer. The only viable option is a

quadrature optical shaft encoder.

24

4.3.1 Optical Shaft Encoder Background

Optical shaft encoders consist of discs with alternating black/white lines
extending out from the center of the disc. This is placed on the shaft we wish to
measure. The electronics of the sensor has a light sensor that can detect the changes
between these lines. As the shaft we are measuring turns, so does the encoder disc.
The rotation is recorded by the changing of the lines in front of the light sensor. The
detected change causes the electronics to send an impulse to the micro controller.

Once the micro controller receives this impulse, it causes a software interrupt.

4.3.2 Interrupt Programming

There are two types of programming in embedded systems. The first is
polling. This has the micro controller check one sensor after another for a change in
their state, one at a time. The obvious problem with this method is that, while the
micro controller is fast, it can miss important updates of sensor information. The
second, which optical shaft encoders are dependent upon, is event driven
programming. Event driven program waits for events, in this case interrupts, to

activate the necessary steps and update information based on sensor readings.

An interrupt will stop whatever the micro controller is doing and activate a
function of our choice. When this function terminates, the regular program will

resume. Hence, “interrupt”.

4.3.3 Quadrature Encoders
Our optical shaft encoder had to be quadrature. This means that there are

either two tracks of alternating lines translated 90DEGREESSYMBOL or two light

25

sensors translated on a single track. This offset allows the encoder to read two
different values. One light sensor is treated as an interrupt trigger. When this light
sensor sees a darkened line, it checks the other light sensor to see if it sees a dark or
a light line. Because it is in a 90 degree translated position, it will see one or the

other based upon what direction the shaft is turning.

4.4 Client Machine Hardware

It was determined that if the E-Merging Realities hardware was to be
displayed in a museum or similar institution that a computer would need to go along
with the rest of the hardware. This would allow the entirety of the project to move
from location to location without concerns about compatibility on different

machines.

Parts were picked and then assembled by the project team to give a working

custom PC to suit this purpose. The specs of the machine built follow:

* 3.00 GHz Intel Pentium 4 Processor

* 1GB Crucial Ballistix DDR2 RAM

* (Gigabyte GA-P31-S3G Motherboard

* 80GB Western Digital SATA Hard Drive
* GeForce 8500GT 512MB Graphics Card
* 16x DVD-ROM Drive

* Cooler Master ATX Case

* 430W Power Supply

26

The following software was installed on the machine:

* Microsoft Windows XP Professional Edition
* Mozilla Firefox

* Microcontroller Driver Software

* USB-Serial Port Driver

* Second Life

* SecondLifeLink (Custom E-Merging Realities Software)

5. Developer Reactions
5.1 Keith Chester

[have always been first and foremost a technical person. While other
children in kindergarten busied themselves with the fear or joy of coloring within
the lines of a picture I instead busied myself with my LEGOs, making vivid creations
that became more complex and far more technically sound as I got older. Art has
never been my forte, but something about this project has spoken to me. Perhaps it's
that [am beginning to grow older and become more aware of the world around me

in this age of CNN, or the persistence of tragedy in our news.

This project has allowed me to express myself in ways that a technical
project never would be able to. The chill [had down my spine rolling through our
Second Life art piece was just as rewarding as the joy of seeing my creation work -

but also simultaneously several times more harrowing and bone chilling. It says a lot

27

when your own work inspires within you the same feelings you sought for it to

bring out in other peoples.

By the end of this project I have quite a bit more appreciation for modern art
that is now involving the recent events of the day and trying to bring out either a
little more awareness of what we are ever so fortunate to be capable of ignoring or

protest the unspeakable horrors that we unfortunately still have in this world.

5.1 Robert Martin

This project provides a unique insight to the compilation of man and machine
that is slowly becoming more prevalent in today’s society. When I first heard the
project proposal I was intrigued. As a (previously) frequent user of online virtual
worlds and games it was interesting to take a step in a different direction and add a
sense of reality to the virtual setting that [was so used to being almost purely
fantastical. The thought of pushing the boundary always kept my mind a bit more

open as | worked on the project.

Overall, I had a lot of fun messing around with Second Life’s scripting
language and creating really intricate scripts like the virtual wheelchair. Although
fun the tasks were also challenging and ultimately very rewarding once all the

project components were put together.

5.3 William Price

E-Merging Realities has taught me a lot over the course of the project work. I

learned about a whole new world within the game community, the art community.

28

Through my collaboration with Professor Farbrook I gained a great deal of
experience working with someone who is more artistically inclined than necessarily
technology inclined. His experience was rewarding for me because the final product
is something we can both be proud of. The technology is impressive and functional.

It is used perfectly within the piece that Professor Farbrook designed.

Seeing our wheelchair implementation in action was a very rewarding
experience. Many hours were spent by the entire team writing and testing code,
building the mount in the machine shop, and running around in Second Life trying
to figure out how to bring it all together. Moving the wheelchair through Professor
Farbrook’s piece was especially gratifying because I felt that intended effect. I felt

restricted in my movements as I looked at many chilling and moving graphics.

Seeing the hard work of the student team, and the artistic vision of Professor
Farbook come together was a great experience, and I would call E-Merging Realities
aresounding success. | hope that we have laid the groundwork for future projects to
step into this new world, and [hope our technology is used to its fullest extent and is

able to touch people from all over the world.

29

6. Future Opportunities
6.1 Future Opportunities for Wheelchair Hardware

The wheelchair hardware we developed can be used for far more than a
mere art piece. The hardware has several applications within the real world that can

prove quite useful.

Because of the hardware’s ease to interface with any computer system or
operating system and its emulation of an everyday keyboard, it can very easily be
adapted into nearly any program. This ease to integrate the hardware into other

programs can prove quite useful and keep its spectrum of use widespread.

One particular application that often came up was the use of the wheelchair
simulator as just that - a wheelchair simulator. It is often difficult to determine how
a virtual model of a building or the design of an office or room will work for
handicapped people. By allowing designers, whom they themselves are unaware of
the struggles and difficulty of maneuvering for wheelchair bound people, to move
through their virtual designs in the early stages of planning as if they were in a

wheelchair we are making more handicapped friendly designs possible.

Another application is to outright raise awareness for the handicapped. By
adding more hardware to our wheelchair simulator one can easily simulate how
hard it is to do certain tasks when you have to also operate a manual wheelchair. It

is difficult to imagine such hardships until you go through it yourself.

30

A third application is for outright game design. The wheelchair is a well-
designed game controller that can allow a more immersive game experience if that

game is based around wheelchairs.

6.2 Future of Second Life and Social Issues

Second Life's open nature, allowing the user to create, design, program, and
distribute their works in any way they see fit, causes the game to be nothing less
than a cauldron of creativity. The idea of a single creative piece instantly being
distributed around the world for all to see with few restrictions will continue to
attract new artists for years to come. There will be many art pieces in the future.
The true power of Second Life, however, lies in its political capabilities.

Throughout the news Second Life is repeatedly coming up. United States
Presidential candidates are setting up Second Life Campaign headquarters. Virtual
protests over the world's many injustices happen regularly, allowing people to
amass and express their opinion en masse with relative location no longer being an
issue. Everyday that these events go on in Second Life it brings to light that the
problems of Africa, or Germany, or China, or Iraq, or any location throughout the
world is no longer a local problem but a global one where players from throughout
the world can join together to help.

Second Life will not be going away anytime soon - rather, it is far more likely

that you will begin to see more headlines generated by this world community giant.

31

7. Appendices

7.1 Code Snippets

Attached are snippets of code used in the different forms of software in our
implementation. The programming languages follow:

* Microcontroller Code: Embedded C
* C(Client Machine Code: C# .NET
* Second Life Scripts: LSL (Linden Scripting Language)

7.1.1 Microcontroller Code

/*IQP Arduino Code
* Written by Keith Chester, Rob Martin, and William Price

*/

int leftEncoderInterrupt = 2;
int rightEncoderInterrupt = 3;
int leftEncoderB = 6;
int rightEncoderB = 7;
volatile int temp = 0;
int countl = 0;
int countr = 0;
int maxcount = 10;
void leftEncoder(){
countl++;
temp = digitalRead(leftEncoderB);
if (countl > maxcount) {
countl = 0;
if(temp == HIGH) Serial.print("a");
else Serial.print("w");
}

}
void rightEncoder(){

countr++;
temp = digitalRead(rightEncoderB);
if (countr > 4) {
countr = 0;
if(temp == HIGH) Serial.print("s");
else Serial.print("d");
}

}
void setup(){

Serial.begin(9600);
attachlnterrupt(0, leftEncoder, RISING);

attachInterrupt(1, rightEncoder, RISING);
pinMode(leftEncoderB, INPUT);
pinMode(rightEncoderB, INPUT);
pinMode(leftEncoderInterrupt, INPUT);
pinMode(rightEncoderInterrupt, INPUT);

}
void loop(){

}

7.1.2 SecondLlifeLink Client Machine Code

using System,;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;
using System.[O.Ports;

using System.Diagnostics;

using System.Threading;

namespace SecondLifeSerialLink

{

public partial class Form1 : Form
{
//This is the declaration for the Serial Port. Standards are no Parity
and One Stop Bit
private SerialPort port = new SerialPort("COM1", 9600, Parity.None,
8, StopBits.One);

//This is a process that will be used to open notepad, only exists for
testing purposes.
private Process p = new Process();

//Also for testing purposes, this function is used in the SetText
Function
delegate void SetTextCallback(string text);

public Form1()
{

//Calls on designer code to create Form

32

33

InitializeComponent();

}

// When Set port is clicked, updates the serial port with the desired
information.
private void btnSetPort_Click(object sender, EventArgs e)
{
//Set Port Name and Baud Rate
port.PortName = PortNameBox.Text;
port.BaudRate = 9600;

//Update Information box on Form
IbIPortName.Text = port.PortName;
IblBaudRate.Text = port.BaudRate.ToString();

}

//For threading purposes, single threaded application
[STAThread]

//When Start button is clicked, open the port and wait for data. Disable
Start and Set port buttons.
private void btnStart_Click(object sender, EventArgs e)
{
//Open the Serial port
port.Open();

//1f the port is opened, disable Set and Start buttons, enable Stop.
Update status.
if (port.IsOpen)
{
btnStart.Enabled = false;
btnSetPort.Enabled = false;
btnStop.Enabled = true;
IblStatus.Text = "Link is Enabled";

}

//Call Event Handler function when data is receieved on port.
port.DataReceived += new
System.l0.Ports.SerialDataReceivedEventHandler(port_DataReceived);

}

34

//When Stop button is clicked, close port and re-enable buttons
previously closed.
private void btnStop_Click(object sender, EventArgs e)
{
//Close Port!
port.Close();

//1f the port is closed, disable Stop button, enable Set and Start. Update Status
if (port.IsOpen == false)
{

btnStart.Enabled = true;

btnStop.Enabled = false;

btnSetPort.Enabled = true;

IblStatus.Text = "Link is Disabled";

}
}

private void port_DataReceived(object sender,
System.10.Ports.SerialDataReceivedEventArgs e)
{
//copy the data waiting on the port to a string
string read = port.ReadExisting().ToString();

//For testing purposes, sets (invisible) Data label to the value of the
string
SetText(read);

//IF statements to check the data received, emulates keypress for
appropriate key.

if (read.Contains("w")) SendKeys.SendWait("w");

if (read.Contains("a")) SendKeys.SendWait("a");

if (read.Contains("s")) SendKeys.SendWait("s");

if (read.Contains("d")) SendKeys.SendWait("d");

}

private void SetText(string text)

{
// InvokeRequired required compares the thread ID of the
// calling thread to the thread ID of the creating thread.
// lf these threads are different, it returns true.

if (this.IblData.InvokeRequired)

{
SetTextCallback d = new SetTextCallback(SetText);
this.IblData.Invoke(d, new object[] { text });

}

else

{
this.IblData.Text = text;
}
}

}
}

7.1.3 Second Life Code

//Script by Rob Martin, Keith Chester, and William Price
key user;

integer Ltic;

integer Rtic;

float WHEEL = .08;

default //empty chair - initial state

{

on_rez(integer n) //always reset on rez

{
lIResetScript();

}

state_entry()
{
//Chair is immovable in the empty state
11SetSitText("Sit Here");
l1ISetText("* Wheelchair *\nMOBILE - physics\nW, 4, S, D\nmouselook\nno
timer\nTilt prevention\nsmooth controls", <1,1,1>, 1);
11SetStatus(STATUS_PHYSICS, FALSE);
11ISay(0, "Empty");
}

changed(integer c) //checks if someone is sitting in the chair

{
if ((c==CHANGED_LINK)&&(l1GetLinkNumber()==1))

{
//get key of the person sitting
user = lIGetLinkKey(11GetNumberOfPrims());
state permissions;

}
}
}

state permissions //get permissions for controls

{

35

on_rez(integer n) //always reset on rez, regardless of state

{
lIResetScript();

}

state_entry()

{
integer perms = PERMISSION_TAKE_CONTROLS;
if ((11GetPermissions()&perms)==perms) state on;

else lIRequestPermissions(user, perms); //make request
if ((11GetPermissions()&perms)==perms) state on; //success?
else //fail
{
11Say(0, "Permission request failed.");
state default; //return to empty state

}
}

//in case script hangs here, click to return to original empty state
touch_start(integer total_number)
{
state default;
}
}

state on

{

on_rez(integer n) //always reset on rez, regardless of state

{
lIResetScript();

}

state_entry()
{
lISetText("", <0,0,0>, 1);
11ISetStatus(STATUS_PHYSICS, TRUE); //enable physics
11SitTarget(ZERO_VECTOR,ZERO_ROTATION); //clear sit target
11SitTarget(<-.3,0,0>, <0,0,P1,0>); //set sitting position on chair
//Displays the name of the current sitting avatar.
11ISay (0, llGetLinkName(llGetNumberOfPrims()) + " is now sitting.");
//Force mouselook
llIForceMouselook(TRUE);
//Configure user controls to move wheelchair
integer controls = CONTROL_FWD |
CONTROL_BACK |
CONTROL_LEFT |

36

37

CONTROL_RIGHT;
lITakeControls(controls, TRUE, FALSE);
l1SetTimerEvent(.001); //start timer

}

control(key id, integer held, integer change)

{

//Wheelchair controls to be set up as follows:
//Left Wheel Forwards: W key or UP arrow
//Left Wheel Backwards: A key or LEFT arrow
//Right Wheel Forwards: S key or DOWN arrow
//Right Wheel Backwards: D key or RIGHT arrow
if (((~held)&change&CONTROL_FWD) || //forward key release (W)
(held&(~change)&CONTROL_FWD) ||
(held&change&CONTROL_FWD))
{
Ltic = 1; //increment Ltic
ll1Applylmpulse(7*WHEEL*lIGetMass()*<-1,0,0>, TRUE);
llApplyRotationallmpulse(WHEEL*IIGetMass()*<0,0,1>*-1, TRUE);
//IIWhisper(0, "L-F: W");
}
if (((~held)&change&CONTROL_LEFT) || //left key release (A)
(held&(~change)&CONTROL_LEFT) ||
(held&change&CONTROL_LEFT))
{
Ltic =-1; //decrement Ltic
ll1Applylmpulse(7*WHEEL*lIGetMass()*<-1,0,0>*-1, TRUE);
ll1ApplyRotationallmpulse(WHEEL*lIGetMass()*<0,0,1>, TRUE);
//IIWhisper(0, "L-B: A");
}
if (((~held)&change&CONTROL_BACK) || //backward key release (S)
(held&(~change)&CONTROL_BACK) ||
(held&change&CONTROL_BACK))
{
Rtic = 1; //increment Rtic
ll1Applylmpulse(7*WHEEL*lIGetMass()*<-1,0,0>, TRUE);
ll1ApplyRotationallmpulse(WHEEL*lIGetMass()*<0,0,1>, TRUE);
//IIWhisper(0, "R-F: S");
}
if (((~held)&change&CONTROL_RIGHT) || //right key release (D)
(held&(~change)&CONTROL_RIGHT) ||
(held&change&CONTROL_RIGHT))
{

Rtic =-1; //decrement Rtic

38

ll1Applylmpulse(7*WHEEL*lIGetMass()*<-1,0,0>*-1, TRUE);
llApplyRotationallmpulse(WHEEL*IIGetMass()*<0,0,1>*-1, TRUE);
//I1Whisper(0, "R-B: D");

}

}

timer()
{

//The wheelchair is prone to unruly inputs which could potentially

//tip over the chair, rendering it immobile.

//Must check for significant tilt and re-position if necessary.

vector up = <0,0,1>*l1GetRot();

//up is a vector with magnitude 1 and direction pointing above the chair

if (up.z <.7) { //~30 degree tolerance
//re-position
ll1ApplyRotationallmpulse(.5*1GetMass()*(up%=<0,0,1>), FALSE);

}

else

{
//These lines are to assist in the physics of a wheelchair
//Simply acting on the raw input from the physical chair returns
//slightly different results since the chair is not actually moving
//on the ground and is therefore not affected by surface friction.
//This helps even the scale and make the in-game device more
//straightforward and user-friendly.
ll1Applylmpulse(-.07*11GetMass()*11GetVel(), FALSE);
llApplyRotationallmpulse(-.01*llGetMass()*llGetOmega(), FALSE);
if (Ltic == Rtic) {

ll1ApplyRotationallmpulse(-.15*11GetMass()*llGetOmega(), FALSE);
}else {
llIApplylmpulse(-.15*11GetMass()*11GetVel(), FALSE);

}
}
}

changed(integer c)
{
if (c==CHANGED_LINK) //user stands up
{
lIReleaseControls();
state default; //return to empty state

}
}
}

8.2 Photographs

7.2.1 Software Screens

39

a-' Form1

==X

Port Name:

oMl |v

Serial Port

Baud Rate:

Port Name: COM1

Initiate Link

3600

v

Set Port

Baud Rate: 9600

Link is Diabled

Terminate Link

7.2.2 Wheelchair Hardware

40

41

7.3.3 Second Life Screenshots

42

43

44

45

	Worcester Polytechnic Institute
	Digital WPI
	April 2008

	E-Merging Realities
	Keith Chester
	Robert Martin
	William David Price
	Repository Citation

	E-Merging Realities IQP Report

