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Abstract  
 The goal of this Interactive Qualifying Project is to determine the amount of electrical 

energy that can be shifted to reduce the peak consumer demand. Peak demand occurs when 

consumers require a maximum amount of electrical energy. In turn, this exponentially increases 

production costs, transmission line losses and greenhouse gas pollution. This report studies how 

consumers can shift their energy, what economic incentives are possible and what potential 

savings may result. Collaboration with National Grid’s Smart Energy Solutions Pilot Program 

allowed data analysis to be conducted to determine that 3.1% of electrical energy could be 

shifting which yields a costs savings of 1.7%.  
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Executive Summary 

The goal of this Interactive Qualifying Project is to study how consumers will respond to 

economic incentives meant to reduce maximum electrical energy demand. This project proposes 

the shifting of the consumer energy demand load from times when the load is at its maximum, to 

a time where the load is minimal. The maximum demand, also known as the peak demand, is 

costly and is more harmful to the environment. To meet the peak demand, electrical energy 

producers must utilize all of their resources. This includes older, less efficient power generators 

and increased losses in the transmission and distribution systems. These conditions lead up to 

higher costs of electric energy, increases the greenhouse gas emissions and stresses the electrical 

grid and its infrastructure.  

 

Fig. 0.1 Price of Electrical Energy ($/MWh) vs. System Load (MW) in New England [1] 
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Figure 0.1 shows the price of electrical energy for electrical producers as the system load 

increases. The price is fairly linear until around 17,500 MW. At this point, it increases quickly. 

 

Fig. 0.2 Price and Demand of Electricity Over the Average 24 Hour Day [14] 

Figure 0.2 shows both the average system load (in blue) and the average wholesale price 

of electricity (in red). Figure 0.2 presents the wholesale price $/MWh versus the New England 

demand of electrical energy. If the peak can be reduced, there can be cost savings seen to both 

the consumer and the producers. 

To conduct this project, a collaboration was established with National Grid’s Smart 

Energy Solutions Pilot Program team. Using data and surveys the team provided, analysis was 

conducted to determine how consumers responded to the economic incentives, what percentage 

of the consumer load can be shifted and how much money could be saved. 
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From consumer surveys, it was seen that consumers responded positively to the program 

and were willing to adjust electrical usage according to the demand conditions. An important 

aspect of National Grid’s program was the installation of technology in consumer homes. 

Analysis showed that consumers with more in-home technology, such as smart plug devices, saw 

much greater cost and energy savings. Overall, analysis showed that the average consumer in 

National Grid’s Program was able to shift 3.1% of the daily load from the time of day with the 

highest consumer demand to the time of day when the demand is lower. If New England 

consumers are able to shift 3.1% of the total load, $88.78 million could be saved annually. Figure 

0.3 below, shows the potential shifted costs of electricity. If more electrical energy is shifted, 

then the cost decreases. Figure 0.3 shows different cost scenarios based on different scale values 

of LMP price.  

 

Fig. 0.3 Potential Shifted Costs of Electricity based on Project Analysis [1] 
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In the end, it was learned that load shifting can be an effective program to reduce the 

peak demand. From the National Grid Survey Data, consumers were able to manually shift their 

load from times of high demand to times of low demand. The consumers that integrated 

technology into their home for remote or automatic control of their appliances and devices. 

There is a lot of potential for load shifting. As technology increases its presence in households, 

the amount of energy shifted can be increased and greater cost reductions and environmental 

benefits will be seen. If more energy is shifted from times of high demand to times of low 

demand, there will be less stress on the electrical grid, “cleaner” and more efficient power 

generators will be used and pollution will be reduced.  
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Terms and Abbreviations 
 

Conservation Day: These are the days that National Grid called for pilot participants to reduce 
their load by eliminating or shifting their consumption. Critical day happen during these days. 
 
Critical day: Roughly 30 days a year where there is a high probability forecast that yearly peak 
demand could happen 
 

Critical Peak Pricing (CPP): A pricing scheme where the rate increases only during the critical 
day. There is a flat rate during non-critical periods. 
 

Daily Peak Demand: The time period where the consumer demand is at its maximum in a day. 
This maximum is usually seen in the evening hours, about 5 pm to 8 pm for residential 
consumers.  
 
Demand Response: Programs created with the goal of reducing energy consumption during 
times of high consumer demand. Literally, consumers respond to changing conditions of the 
energy demand according to the guidelines set by the program.  
 
GCA: abbreviation for Green Communities Act 
 
ISO-NE:  Independent System Operator of New England, ISO-NE controls the pricing and 
distribution of energy in New England 
 
Locational Marginal Price (LMP): the wholesale electricity price based on the region or 
location  
 
NE: abbreviation for New England 
 
NG: abbreviation for National Grid 
 
Peak Time Rebate (PTR): A pricing scheme where customers are provided a rebate or credit to 
their account for reducing their usage during critical day.  
 

Pilot Participant: These are the people that took part in National Grid’s Worcester Pilot 
Program. National Grid selected about 15,000 customers that live in Worcester to take part in 
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this program.  
 
Shiftability: the percentage of the daily load that can be shifted to another time of day 
 
Time-of-Use Pricing (TOU): An electrical pricing scheme that varies in regards to the real-time 
demand. When the demand increases, the price will increase as well for the consumer. 
 
Yearly Peak Demand: This is the maximum peak load during the year. These are the days with 
the highest peak demand of the entire year.  
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Chapter 1: Introduction 

In today’s world, the demand for energy is constantly growing. This increased demand 

increases greenhouse gas emissions and puts stress on the electrical grid, which in turn decreases 

reliability and increases power losses. To keep up with the increased demand, electrical 

producers have two options. Electrical providers can either use older, less efficient power plants 

or build more power plants. Both options are costly, but necessary to keep up with the consumer 

demand.  

 Demand response is another approach to reduce the high-energy demand. Like most 

markets, energy is priced based on supply and demand. So, when the demand increases, the cost 

increases, but when the demand is low, the cost is also low. Using the principle of supply and 

demand, an economic incentive exists for both producers and consumers to “buy” (consume) 

energy when the costs are low. 

 The goal of this project was to study the potential savings that may come from a demand 

response program that focused on the shifting of energy intensive household appliances like 

clothes washers, dryers, and dishwashers. To determine the potential savings associated with this 

type of program, a collaboration with National Grid’s Pilot Program team was established. With 

their help, the percentage of the residential load that could be shifted was estimated, the potential 

monetary savings could be obtained, and how consumers reacted to this type of program was 

seen.  
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Chapter 2: Peak Demand and Demand Response 

What is Peak Demand? 
One of the most common products in today’s world is electric energy. Electric energy is 

generated, transmitted, distributed, and sold to consumers and is converted to some type of 

useful energy form. Energy consumption is a dynamic arrangement that follows the law of 

supply and demand. Because the energy needs of consumers vary over the course of the day, 

there exists a time in the day where the amount of power delivered to consumers is at its 

maximum, referred to as the daily peak, and a time where the amount of power delivered to 

consumers is minimal. Over the course of the year, there is a day when the total amount of power 

delivered to consumers, exceeds that of all others during that year. This maximum demand is 

referred to as the yearly peak. Figure 2.1 shows the general shape of energy consumption over 

the course of the day in New England. Figure 2.1 represents the average daily system load of all 

days of the year. 

 

Figure 2.1 Plot of the average system Load vs. Time of Day in New England [14] 
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Figure 2.1 shows the average of all 365 day system loads in megawatts in New England 

against the time of day per hour. In the evening, between 4 to 9 pm, the consumer demand 

reaches the peak. In the early morning, from midnight to about 6 am, the demand is at its lowest.  

 

Figure 2.2 Mean Locational Marginal Price of Power ($/MWh) vs. time of day in New England 
[14] 

Figure 2.2 shows the average locational marginal price (LMP) of all 365 days of the year 

2015 in dollars for each megawatt hour against the time of day. Figure 2.3, is a combination of 

figures 2.1 and 2.2 to show that the locational marginal price and the mean system load roughly 

have the same shape. 
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Fig. 2.3 Comparison of System Load and Locational Marginal Price against time of day [14] 

  

The locational marginal price, which is like the wholesale cost at peak time, around 6 pm, 

is almost double the cost at 4 am. When looking at these two figures together, it becomes clear 

that there is a direct relationship between price and consumer demand. When the load is at its 

maximum, the average locational marginal price is almost double the locational marginal price 

when the load is at its lowest.  
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Figure  SEQ Figure \* ARABIC 3 Average Residential Energy Consumption 

 

Fig. 2.4 Average Residential Energy Consumption in Massachusetts in 2015 [18] 

 

Figure 2.4 shows the average residential energy consumption per household throughout 

the year in 2015. This result is based on data provided by National Grid. The heavy line shows 

the general demand trend throughout the year. In the summer and winter months, the energy 

consumption is higher than in the fall and spring. The light blue lines denote real time demand. 

The “tallest” blue lines indicate the greatest peaks of the year; these usually occur in the summer 

months. 
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Figure  SEQ Figure \* ARABIC 3 Average Residential Energy Consumption 

Figure  SEQ Figure \* ARABIC 4 Actual Locational Marginal Price ($/MWh) vs. System Load (MW) in 2015 

Figure 8 Locational Marginal Price for the System Load in New England 

Effects on Generation and Costs 

 

Fig. 2.5 Locational Marginal Price in Massachusetts of the year 2015 [14] 

Figure 2.5 shows the LMP price throughout the year in 2015. This graph was computed 

using data provided by ISO [14]. The dark line shows the general LMP price trend throughout 

the year. The winter months bring the highest LMP of the year, but the summer months also 

contribute with high LMP. In the summer and winter months, the LMP price is higher than in the 

fall and spring. The light blue spikes reveal real time LMP price. 
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Figure 2.6 shows the Locational Marginal Price ($/MWh) in New England for electricity 

vs the system load (MW). Every dot in Figure 2.6 represents one hour over the years 2003-2016. 

(Figure 2.6 contains 122,640 points.) As the system load increases, the cost increases as well. 

The increase is gradual until about 18,000 MW in which the price almost triples. 

 The day with the yearly peak is the most expensive to utilities in terms of generation 

costs. To handle the increased system load, utilities must utilize all available resources. These 

resources include out-dated, inefficient and costly power plants. These obsolete power plants 

consume more fossil fuels, require greater maintenance and operation costs and pose a greater 

hazard to the environment.  

           Figure 2.6 Locational Marginal Price for System Load in New England [14] 
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 Although there is always one day with the maximum peak demand over the entire year, 

there are also days with similarly high peak demands. These days generate a similar cost and 

environmental hazard to the single day of the year with the maximum peak demand. National 

Grid ran a pilot program in Worcester, MA to try to reduce demand on the days with demand at 

or near the yearly peak; National Grid called the days with the highest peaks “critical days” [20].  

 

Fig. 2.7 Actual Locational Marginal Price ($/MWh) vs. System Load (MW) with National Grid 
Conservation hours [14 and 23] 

In figure 2.7, the points in red are the hours named by the National Grid Pilot Program 

Team as a critical day. These dots are concentrated on the far-right hand side of the figure where 

costs and system load are very high. Data to graph the individual points was taken from ISO-NE, 

and the data to distinguish the conservation day hours vs. non-conservation day (blue points vs. 

red points) hours was taken from National Grid data. All of these days fell in the summer 
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months.  

 Overall, peak demand increases generation and transmission costs for utilities, which in 

turn increases costs for consumers. Peak demand also poses an environmental hazard with the 

increased need to burn fossil fuels. For example, in New England, ISO-NE reports the following 

distribution of the New England fuel mix based on the demand conditions: 

Table 2.1: Distribution of the Fuel Mix to produce Electrical Energy in New England [15] 

Demand 
Scenarios 

Coal Hydro Natural 
Gas 

Nuclear Oil  Renewables 

Low Demand 
(12,900 MW) 

6% 7% 38% 36% 0% 9% 

Medium 
Demand 

(16,400 MW) 

5% 8% 47% 28% 1% 7% 

High Demand 
(25,500 MW) 

4% 10% 55% 19% 6% 4% 

 

Looking at this distribution of the fuel mix, it is evident that as demand increases, fuels 

such as natural gas and oil contribute a greater percentage of energy than more environmentally 

friendly fuels such as nuclear and renewables. When the demand is low, the most efficient and 

“cleanest” fuels are used first. When the demand increases, additional fuels are needed. These 

fuels produce more pollution and are more harmful to the environment. 

 Currently, a majority of consumers buy electricity at a fixed rate. The fixed rate must 

balance between the low costs of minimal demand and the incredibly high costs of maximum 

demand. So, during times of peak demand, power will cost the same to a customer even though 
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the utility’s cost has increased. When the demand is low, the customer’s price remains the same 

even though the utilities’ cost has decreased [8]. A fixed rate is seen as the simplest pricing plan 

because it does not vary in real time. Changing the pricing scheme away from a fixed rate to a 

dynamic rate structure could result in economic benefits to consumers, producers, and 

distributors. 

Effects on Consumer Pricing 

Another factor that is important to note is the different pricing schemes and their 

influence on demand response. The majority of consumers pay on a flat rate pricing scheme, 

which offers no economic incentive for demand response. Another common type of pricing is the 

“Time-of-Use” pricing scheme. A time-of-use pricing scheme depends on predicted demand data 

to determine the current price of power. Based on the predicted demand, the day is divided into 

different periods with a different fixed rate in each period. Under this type of pricing scheme, the 

rates are predetermined but also reflect the general changes in the system load. For example, 

during times of high demand, the rate would be higher than during a time of low demand. These 

rates are predetermined based on the average load at a specified time.  

A more accurate representation of the actual demand cost would be a “real time pricing” 

scheme. A real-time pricing scheme bases the retail rate on the actual wholesale price of power 

at that time. The rate is not established ahead of time, but rather at the time of consumption. Real 

time pricing is more dynamic than time-of-use pricing. Real time pricing fluctuates in response 

to current demand conditions, whereas time-of-use is determined by the predicted demand 
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conditions. Under the real-time pricing, customers will have the greatest savings but only if their 

usage is adjusted according to changing prices [10]. 

Both the time-of-use and the real time pricing schemes encourage consumers to reduce 

their consumption during peak times and be more aware of their energy habits. Hopefully, under 

these pricing schemes, consumers will develop more environmentally friendly habits and can 

reduce the overall peak demand. 

 



12 

 

 

Figure 2.8a Diagram Overview of Peak Demand and Demand Response: Problem 
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Fig. 2.8b Diagram Overview of Demand Response and Peak Demand: Potential Solutions 
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Chapter 3: Background Information 

Preliminary research included a review of many other projects to search for data about 

load shifting and demand response. All the projects, except one, only focused on methods of load 

shifting rather than predicting the amount of load that would be shifted. From this research, 

many types of load shifts, commonly called demand response programs, were studied.  

One of the first projects was a proposed demand response program in the Boston area. 

This IQP team sent out a survey to record interest in a program where the utility would take 

control of people’s air conditioning systems, swimming pool pumps, water heaters, and 

refrigerators. The utility would subsequently shut them off for short periods of time during a 

critical day. Those that responded to the survey did not look favorably upon that idea. Most 

likely, these respondents did not want the utility to have control to shut off certain appliances 

automatically. From this report, a voluntary demand response program seems to have a greater 

reception by consumers, seems be easier to implement, and might lead to greater results [1]. 

An IQP conducted in 2013 was “Peak Electrical Demand and the Feasibility of Solar PV 

in the Greater Boston Area.” This IQP first went into detail about demand response and load 

factor, which is average load divided by peak load. The IQP then argued that increasing PV solar 

systems would reduce yearly peak demand because the days with peak load (hot summer days) 

coincide with the days where solar produces the greatest amount of energy. Increasing residential 

solar PV systems could potentially reduce the total load on the electric grid. This IQP concluded 

that “peak electrical demand is projected to increase soon, despite the innovation of more energy 
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efficient appliances.” To us it is unclear if solar PV always produces large amounts of electricity 

on critical days or if there is just a correlation, but not a perfect overlap” [2]. 

Another IQP considered was “Peak Shaving Using Energy Storage at the Residential 

Level.” This IQP studied the possibility of using batteries to store energy when the cost of 

energy was low and discharging the battery when the cost of energy is high. This concept is 

another example of demand response. This type of demand response uses a battery to store 

energy when the demand is low. When the demand increases, the stored energy is used instead of 

the energy from the utility. This IQP’s data was used to develop a battery return on investment 

analysis as well [3]. 

The IQP, “Increasing Energy Awareness on Nantucket”, focused on Nantucket, which is 

a small-scale example. Nantucket is a perfect experimental ground for a demand response 

program. Nantucket is an island, therefore all the electricity that goes to Nantucket is carried by 

one of two undersea cables. The IQP reports that the peak demand has been on the rise recently 

and if this trend continues a third cable would need to be installed. Nantucket already pays 

higher electrical prices than anywhere else in Massachusetts and electricity prices would increase 

if a third cable was installed, to cover the costs of the additional cable. In Nantucket, demand 

response would have greater benefits compared to the average location within the US [4]. 

 The Nantucket IQP also discussed an experimental demand response program offered by 

National Grid in Rhode Island. With this program, the utility would have the ability to take 

control of a household thermostat and devices connected to a remote load control device. The 

program participation was not as high as predicted; the director of services at RISE Engineering 
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explained, “It’s kind of tough to convince the customer that you are going to control their 

thermostat. We had a few customers that were worried about both security and comfort in their 

homes” [4, pg. 9]. Although the number of participants was low, the peak load was still 

estimated to be reduced by 176kW, which allowed the building of the third line to Nantucket to 

be postponed from 2014 to 2015 [4]. It is clear from the Rhode Island data in this IQP that 

Nantucket would be a prime target for any demand response program. 

An interesting piece of background work was a paper written by Kathleen Spees at 

Carnegie Mellon University (CMU). This was the only report with numerical data on the 

effectiveness of a demand response program. Being from CMU, she used data from the PJM 

(Pennsylvania, New Jersey, Maryland) territory and concluded that “15% of the generation 

capacity...ran less than 1.1% of the time.” In her conclusion, she argues that “the traditional 

assumption that end users cannot vary their consumption as prices change has led to large, 

unnecessary investments in peaking plants.” She continues to say, “50% of all possible customer 

expense savings from load shifting could be achieved by shifting only 1.7% of all MWh to 

another time of day.” [27, pg. 19,20]. 
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Chapter 4: National Grid’s Pilot Program 

National Grid Goals 

The Green Communities Act was passed in Massachusetts to encourage the use of clean, 

renewable energy, to reduce energy costs and to help local economies [9]. The Green 

Communities Act required utilities such as National Grid and NSTAR (now Eversource) to 

develop programs to meet the following mandates:  

● “Deployment of advanced meters that measure and communicate electricity 
consumption on a real-time basis; 

● Automated energy management systems in customers’ home and facilities; 
● Time of use or hourly pricing for a minimum of 0.25 percent of the company’s 

customers ; 
● Remote monitoring and control equipment on the Company’s electric distribution 

system; and, 
● Advanced technology to operate an integrated grid network communication 

system in a limited geographical area.” [20, pg. 22] 
 To meet the mandates of the Green Communities Act, National Grid created a program 

that included 15,000 customers, about 1.15% of all of their total customers. National Grid 

wanted to see at least 5% reduction in both peak and average load through increased education 

and communication between consumers and utilities and the installation of in-home technology. 

The National Grid pilot program focused on reducing the highest peak demands of the year; 

National Grid called these maximum peak demands “critical days”. On these “critical days”, 

National Grid notified participants to reduce their usage during a specified period. This would 

bring the greatest savings to the utilities because “critical days” are the days in which the grid 
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usage is at its maximum. National Grid expressed that greater benefits to the overall system, 

electrical grid, consumers and providers, will come from a decrease in the number of hours with 

the highest system loads of the year. Reducing the highest demands that occurred during the year 

was the main goal of the Pilot program. To meet their reduction goals and meet the mandates of 

the Green Communities Act, National Grid developed their pilot around the following ideas: 

1. Increase customer awareness and understanding 

2. Expand their presence in the Worcester community 

3. Make technology more available to their customers [20, pg. 8] 

National Grid provided smart meters and offered technology packages to all participants, free of 

charge. National Grid created the pilot program to be “risk-free” for customers and hoped to gain 

information from customers about their understanding and experience of the program. 

National Grid Plan 

 National Grid’s program was a comprehensive study of a single demand response 

program and its effects. An important piece of this program was the community involvement and 

outreach programs. National Grid wanted to learn about their participants’ current knowledge of 

demand response and their understanding about their electrical usage. Within Worcester National 

Grid established the Sustainability Hub. This was a centrally located point where customers 

could access information about the program, learn about different technologies that are available, 

and find other ways to reduce their energy bills. In addition to the Sustainability Hub, National 

Grid attended community events and hosted or sponsored other events in Worcester [20, pg. 10].  
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 To have a thorough evaluation of the customer experience, National Grid had to include 

people of different backgrounds. National Grid broke down their participants into different 

demographic groups based on electrical usage and income. There were additional subgroupings 

for senior citizens, large houses, small houses, and high income. This table shows the distribution 

of the residential participant’s demographic grouping.  

 

Fig. 4.1 National Grid Demographic and Technology Level Distribution [20, pg. 44] 

 Through survey data National Grid could gain a better understanding of how their 

participants viewed the program and what their general thoughts and concerns were. Along with 

the demographic background information, National Grid could see trends in their results. One 

major finding was that the lower income groups saw a smaller demand load reduction in 

comparison to the other income groups. It was interesting to note that the low-income 

participants predicted their percent load reduction would be far more than it actually was [20, pg. 

53].  



20 

 

Another major aspect of the program was the customer experience. The program was 

“risk-free”, in the sense that customers would never pay more than on the traditional flat rate 

pricing. Additionally, there was an opt-out option available at any point in the program. For the 

pilot participants, a time-of-use pricing scheme was implemented; this was the source of the 

economic incentive for participants that chose to have a smart meter installed. Time-of-use 

pricing was the most common rate used in the pilot, about 93.5% of all participants (residential 

and commercial) choose this price plan. Of the residential participants, 95.4% used the time-of-

use pricing. The time-of-use plan, known as critical peak pricing in the program, is a dynamic 

pricing scheme that changes with the current demand at the time-of-use. The rates are 

predetermined so that when the demand is greater, the price increases. Figure 4.2 compares rates 

during different times of day. There is a large price increase, denoted by the red lines, during the 

evening/afternoon hours when the peak event has been called. 

 

 

Fig. 4.2 Critical Peak Pricing Plan Design [20, pg. 35] 



21 

 
14 Technology Level Distribution of Pilot Program Participants 

This diagram shows the change in pricing during a conservation day peak event against 

time. The flat red line that runs horizontal is the current flat rate pricing scheme that most 

consumers currently pay. The blue, green, and red bars represent the different costs under the 

CPP pricing plan. The blue represents the daytime rate, the green represents the night and 

weekend rate and the red represents the peak event rate. This pricing scheme provides economic 

incentive for consumers to use energy at off peak times to save money. From this diagram, it is 

seen that only during a peak event does the price surpass the traditional flat rate plan. At all other 

times, non-peak event hours and weekends, the rate is much lower than the traditional flat rate 

for normal consumers [20, pg. 35]. 

The other pricing scheme implemented in the pilot was a peak time rebate pricing plan. 

National Grid expected a much bigger switch to this pricing scheme from the default time-of-use 

plan (Critical Peak Pricing). The peak time rebate plan had only had around 6.5% participation 

for all participants and around 4.6% participation with the residential consumers. The peak time 

rebate plan would give participants a rebate on their electrical bill when usage was reduced 

during a peak event. Figure 4.3 provides the breakdown of participants and their chosen pricing 

scheme. It also includes the technology package that the participants chose.   

[20, pg. 39] 
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 Regardless of technology package, active participants with the CPP plan had a greater 

reduction in their bill than active participants with the PTR plan. Passive participants on the PTR 

plan saw greater savings than passive participants on the CPP plan. This may be due to the fact 

that participants changed from CPP (the default) to a PTR rate. Although considered passive 

participants, because there was no access to the assigned web portal, this group of participants 

may have “a higher level of engagement since they had to opt-in to the PTR rate” [20, pg. 12].  

 For all participants in the pilot, National Grid offered four technology levels. Unless 

rejected, all participants had a smart meter installed and all participants were automatically 

enrolled in the first level. This provided access to a personal web portal. The web portal provided 

customers information about their usage habits and billing. In addition, logging onto the web 

portal at least once changed the status of a participant from passive to active.  

Figure 4.3: Technology Level Distribution of Pilot Program Participants [20, pg. 39] 
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Fig. 4.4 Level 1: Online Display of a participant's costs and usage [20, pg. 37] 

 

The second technology level included the first level, the web portal, and an in-home 

display device. This was a digital picture frame that would relay information about their usage 

habits, current pricing, upcoming conservation days, tips on how to save on energy and personal 

photographs [20, pg. 37].  
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Fig. 4.5 Level 2: Online Display plus a digital picture display [20, pg. 37] 

The third level includes level one and a programmable-controllable thermostat with an 

application to check and control the thermostat remotely.  

 

Fig. 4.6 Level 3: Online Display plus a smart thermostat [20, pg. 38] 
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Level four is all of the previous levels and a smart plug. This allows the user to remotely 

control the outlet from a mobile app. Levels 3 and 4 introduce more sophisticated “smart home” 

technologies than just the picture frame. These technologies are more involved than the other 

two, but with the goal of increasing reduction and savings [20, pg. 34] 

 

Fig. 4.7 Level 4: Level 2 Technology, Smart Thermostat, and Load Control Device [20, pg. 38]  

National Grid Results 

 Overall, the National Grid pilot program seemed successful in reaching the mandates of 

the Green Communities Act. Active participants saw an average peak event savings of 16.8% 

and all participants saw an average peak event savings of 3.9%. Although the savings of all 

customers were fairly low, those who actively participated in the program saw savings greater 

than the 5% mandated by the Green Communities Act. Active participants, roughly 20% of the 

total participants (2,524 participants), perceived the program as exceeding their expected savings 

[20, pg. 80]. 
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Fig. 4.8 Table of Savings for Residential Customers in 2015 [20, pg. 46] 

 Another trend was the higher technology levels, the greater the cost savings and energy 

reductions. Those at levels 3 and 4 seemed to have similar average reductions, but were still 

almost double the average reduction of level 2. Level one active participants saw 10% average 

reduction. The reduction seen by level one passive participants was almost negligible. Another 

trend to note is that CPP participants saw a slightly greater savings than those on the PTR plan. 

Figure 4.9 compares the average peak reductions for the different technology levels and pricing 

plan. 
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Fig. 4.9 Average Load Reductions by Technology Level and Pricing Plan [20, pg. 12 

The following two figures 4.10 and 4.11, are more specific to show the percent reduction 

seen on the critical days. Each figure reports the percent load reduction, temperature, and 

humidity for each date that a conservation day was called. Figure 4.10 shows the data for the 

PTR customers and the Figure 4.11 shows the CPP customers. Once again, figures 4.10 and 4.11 

show that more technology leads to greater percent reduction. Figures 4.10 and 4.11 are also 

interesting because of the environmental factors (temperature and humidity) included. 
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Fig. 4.10 Load Reduction seen on Conservation Days for PTR participants [20, pg. 50] 

 

 

Fig. 4.11 Load Reduction seen on Conservation Days for CPP participants [20, pg. 49-50] 
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From survey data, National Grid’s consumers provided valuable insight to the program, 

showed a higher retention rate than other pilot programs, and were happy with the program. First 

off, very few customers declined the installation of smart meters. From the start, consumers were 

willing to take some small steps towards participating. From an initial survey, more than 75% of 

respondents said it was very important to participate to save money on their bills, and help the 

environment. 58% of the respondents felt it was very important to participate for the electricity 

control technology and for household conservation.  

 

 

Fig. 4.12 Survey Response about Motivations for participation in this program [20, pg. 68] 
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As the pilot continued, customer awareness was increased and people seemed to develop 

a better understanding of the program and its goals. About 27% claimed that their monthly 

electrical bill was somewhat less [20, pg. 76]. 

 

Fig. 4.13 Survey Response about Participant's Satisfaction with the Program [20, pg. 73] 
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Chapter 5: Proposed Demand Response Program Plan 
After reviewing various demand response programs, it seems that a demand response 

program can be an effective method to reduce the peak demand. For the demand response 

program proposed in this report, the shifting or elimination of residential loads, such as clothes 

washers, dryers, dishwashers, air conditioners, etc. is the major source of the demand reduction. 

To incentivize this type of reduction, new pricing schemes will need to be implemented and 

consumers will need a way to view their usage, their costs, and the current demand conditions. 

For this proposed demand response program requires increased communication and effort on 

behalf of electrical providers and consumers. 

Pricing 

There are many options when it comes to pricing schemes. Most consumers pay a 

predetermined flat rate.  This predetermined rate is simplistic for both the consumer and 

producers because it is set ahead of time based on previous and predicted conditions. For 

producers, it is determined in a manner that will cover their expenses and accounts for any 

potential peak demands. For consumers, rates are set in advance and will apply for a specified 

time [8]. 

 For consumers to see savings through a demand response program, the current flat rate 

pricing plan must be replaced. Under the flat rate plan, consumers have no economic incentive to 

shift their usage since the price remains the same regardless of changes in the energy demand. 

The only incentive for consumers under this pricing scheme is the potential reduction in 
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greenhouse gas emissions. For this demand response program, two pricing options are 

recommended: a day and night rate option or a real-time pricing option. 

 The day and night time option would most likely be the easier of the two for consumers. 

With this pricing plan, there would be two time dependent flat rates. During the day, the cost of 

energy would be more expensive than at night. The night rate would go in effect at specified 

time, most likely after 10 pm and be in effect until 5 or 6 am. The night rate would be 

significantly lower than the day rate to encourage consumers to shift their usage to this time, 

when the demand is minimal. If consumers can shift their usage to the time when the night rate 

goes into effect, cost savings can be seen.  

 The second pricing option would be “riskier” for consumers but could also bring about 

the greatest savings for them. A real-time pricing scheme would offer consumers prices that are 

reflective of the wholesale costs that providers pay. So, when demand is minimal, costs are 

minimal, but when the demand is at its peak, the costs will almost double. Real time prices are 

constantly changing throughout the day. A real-time pricing scheme would require participants 

to be constantly aware of the current price and be able to constantly adjust their usage in 

response to changing energy cost conditions. Because the peak demand most often occurs in the 

afternoon or evening hours, planning is required but can be manageable and positive habits will 

be formed [10].  
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Methods of Response 

For this demand response program, shifting or complete elimination of certain loads will 

lead to the greatest savings. Another option would be an energy storage device. Through cost 

analysis of the energy storage option (see Battery Analysis below), this option has been 

determined to be uneconomical. There exists little to no return on investment due to the high 

prices, installation costs and limited lifespan of the batteries available in today’s markets.   

 From National Grid surveys [20] and the survey conducted by Demand Response 

Programs in the Greater Boston Area IQP [1], it appears that consumers did not want to hand 

over control of their appliances to their providers. Consumers preferred to maintain control and 

respond to changes in demand on their own terms. For this proposed program, a utility-controlled 

plan was not considered but rather options of either a mixed control or personal control plan 

were considered. A mixed control plan would allow utilities to take control of appliances, but if 

desired, consumers could override the utility. Appliances that would be controlled by both the 

utility and consumer would be connected by a smart plug. The smart plug would also allow for 

consumers to remotely operate these devices. This allows consumers to see the maximum 

savings, assuming a limited override of the utility control.  

The second option would give all control to the consumers. Consumers would be solely 

responsible to shift their energy as demand changes. If the consumer can adjust their usage 

accordingly, their savings will be the same, or maybe even more savings than a utility controlled 

program. On the other hand, consumers that do not respond to the changing demand conditions 

may increase their electrical bill.  
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Battery Analysis 
In this section the potential usage of an energy storage unit is analyzed for cost 

effectiveness and efficiency. An alternative demand response method to load shifting is to use a 

battery to store energy during non-peak hours and then discharge the battery during peak hours. 

Using batteries allows someone who cannot change their electrical consumption hours to still 

participate in a demand response event.  

  Very few home scale batteries exist on the market. One of the new and only batteries is 

the Tesla Wall battery which costs $5,500 and has a capacity of 14kWh. Unlike shifting energy 

usage, batteries have an upfront cost. Unless the battery can makeup this cost over time it is not 

economical [29].  

 

Fig. 5.1 Technical Specifications of the Tesla Wall Battery [29] 
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To find out if a Tesla Wall battery is economical, a few assumptions are made. Not all 

assumptions will hold true but all assumptions will help the battery argument. If the battery does 

not pass the cost analysis under these assumptions, it can be deemed uneconomical. The 

assumptions are: 

1) the battery can charge and discharge at the exact point of highest and lowest electrical 

cost during each day. This is not completely practical since it is not known ahead of time 

what the lowest and highest priced times will be beforehand. It is also unpractical for a 

battery to charge and discharge at an exact time. 

 2) the space a battery takes up will not cost the homeowner anything.  

3) Tesla claims 92.5% efficiency, which is assumed to be maintained throughout the 

battery’s lifetime.  

4) Tesla claims the battery can hold 1000-1500 charge cycles. For this analysis, it is 

assumed the battery can hold 14kWh for the maximum 1500 cycles [29].   

5) Installation cost is $0.  

6) The discount rate (discount of paying the same price for something later vs now) of the 

battery is 0%. 

 With these assumptions, the maximum return on investment the battery can deliver in an 

overly optimal situation can be determined.  
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To find the cost saving of charging at low price and discharging at high price the 

following equation was derived: 

Capacity×(high price×efficiency-low price) =saving per charge  (1) 

 

The high and low prices are made up of LMP price and distribution price. For the average 

day, distribution price (cost of maintaining utility lines) does not fluctuate that much, but LMP 

price does, causing a price fluctuation. Data from ISO-NE was used to plot for the average day 

$/MWh of electricity vs hour in the day as seen below: 

 

Fig. 5.2 Average cost per MWh vs. time of day in New England in 2015 [14] 

As seen from figure 5.2, the lowest price for electricity on the average day is $27/MWh 

which happens around 4am. The highest price for electricity on the average day is $60/MWh 

which happens around 6pm. Entering this data into the equation 1 can determine savings per 

charge.  
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14kWh×($60/MWh×0.925-$27/MWh) =$0.40=average saving per charge 

Since the battery costs $5500 and it lasts 1500 cycles, the cost per charge of $3.67 can be 

obtained.  

$0.40<$3.67.  

This battery is not even close to becoming economical even with all the assumptions made to 

help reduce its costs.  

 It is proven that buying a battery specifically to broker electrical prices is not economical. 

But are the economics the same if one used a battery in an electric car? Well, not on an everyday 

basis because the battery only has a limited number of charge cycles in it. Once again, 

discharging it into the grid is not economical compared to the price per charge of the battery.  

Using equation 1 again, the difference in LMP price needed to make it economical to 

discharge a battery into the grid can be determined.  

14kWh×(high price×0.925-low price) =$3.67 

High price-low price=$283.40 

This means the LMP price difference between high price and low price in a day would 

have to be $283.40 to break even. This does not consider the assumptions made to help the 

battery economically. Only for 11 days in 2015 was the high minus low LMP above $283.40 and 

if someone is only able to utilize their battery for 11 days a year it probably does not make 

economic sense to install a special battery charger that can supply electricity back to the grid. 

Another past IQP also considered the option of using batteries as a demand response method and 
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drew a similar conclusion. Beyler wrote, “under current conditions there are no combinations of 

technology and pricing scheme for which this process is economically viable” [3].  

LMP price is based on supply and demand economics between electrical generation 

companies and those who purchase electricity. Since batteries are not economical it can be 

concluded that it is cheaper to build more infrastructure (power plants, transformers, distribution 

lines, etc.) to deal with a peak load demand response situation rather than to implement batteries. 

Battery technologies are still developing and someday may be economical as an alternative to 

load shifting, but today’s batteries are nowhere near close to delivering any economical savings 

for the New England region. 

  

Appliance Technology 

 
Technology is a key component of a demand response program. In this section, various 

appliance features were considered for application in the proposed demand response program. 

Some of the most relevant features for the proposed load shifting program include delay buttons, 

Wi-Fi connectivity, and the ability to remotely control the device. To investigate which 

technologies are available to consumers, four local stores that carry washers, dryers, and 

dishwasher were visited to estimate the availability of these features.  

Today’s appliances are more energy efficient, less costly and provided many more 

options than before. Most modern clothes washers and dryers are Energy Star Certified. Energy 

Star Certification is a government program created to monitor and reduce greenhouse gas 
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emissions and educate consumers about the efficiency of products. Their energy usage has been 

tested and passed certain government standards to qualify for the certification [11]. 

 In addition to Energy Star certification, appliances have other features that make them 

more energy efficient. Some dryers have an “ecodry” setting that will decrease the power 

consumption by lowering the dryer temperature. Another feature to help increase energy 

efficiency is the delay function. This can be found in both washers and dryers. The delay 

function can work well with demand response; it allows users to set the start time of their 

appliance to a time where the power demand is low. A study was conducted of the appliances 

available at four stores close to WPI to note what features, such as Wi-Fi connectivity and delay 

functions, are available in local stores. From this study of appliances, it was found that 60.9 % of 

washers, 8.3 % of dryers and 79.6 % of dishwashers had some time of delay function. Hopefully, 

this technology will continue to grow and will be seen in more appliances [12]. 

Table 5.1: Appliance Feature Distribution from Appliance Survey 

 % with Manual Time Delay % with Smart Self Start % Both 

Washers 60.9 2.1 62.9 

Dryers 8.3 2.4 10.7 

Dishwashers 79.6 0.0 79.6 

  

As the “digital age” continues to grow, appliances will become more influenced by 

computer technology. Essentially, smart appliances will become a staple of every household. 

Already a small percentage of washers and dryers have Wi-Fi connectivity. Most of the Wi-Fi 
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connectivity allows users to start the machine, select the cycle, set cycle options, and check the 

progress of the cycle from a computer or mobile device. Hopefully, this Wi-Fi connectivity will 

extend to provide more information to consumers such as energy consumption and current 

demand conditions. This appliance study showed that 2.0 % of washers, 2.4 % of dryers and 0 % 

of dishwashers had some type of Wi-Fi connectivity or “smart” technology. These percentages 

are low, but are predicted to increase over time. The ability to remotely monitor and control 

devices is an important piece of the effectiveness of the proposed demand response program.  

As Wi-Fi connectivity becomes a more common feature amongst appliances, appliances 

will be able to network together and act as a ‘smart home’. The ‘smart home’ is the network of 

all appliances in the home that can be controlled by a home energy management system (EMS). 

The EMS allows the user to control all of the devices in the ‘smart home’ and see real time 

energy conditions and pricing from a computer or mobile device.   

The EMS allows the user a greater communication between the utility and the home. 

Users can set different settings for their appliances. Users can set the appliances to run when 

desired, leave the appliances to automatically run when energy demand is low or a mix of control 

between the utility and the users. The whole idea of the ‘smart home’ relies on the idea of the 

‘smart grid’.  

The current electrical grid has been in use from the beginning of the 20th century. 

Improvements have been made and systems have been updated as newer technologies have been 

released, but it is not enough to deal with today’s growing energy demands. Right now, the 

current grid is overwhelmed with the demand and a modernized grid will need to be 
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implemented to relieve the stress. The smart grid would be a digitized grid that would feature 

greater controls and automation, faster communication, and more efficient equipment. This 

would increase the reliability of the grid, the availability of energy and its efficiency. Because of 

the greater communication, consumers will be more aware of current energy conditions and will 

be able to adjust their usage accordingly. In return, utilities will be better able to predict usage, 

decrease amount of energy produced and reduce their waste [23]. Hopefully, the ‘smart grid’ will 

be more efficient in regulating power consumption and help reduce the peak load through better 

communication with consumers. The ‘smart grid’ will take a long time to implement, but the 

technology is becoming more readily available and it seems to be the next step in an increasingly 

digital world [30]. Of the appliances surveyed, 1.3% had smart grid connectivity. This is 

incredibly small, but as the smart grid grows, it will become a necessary feature. The smart home 

and the smart grid are the next step in the digital age, creating a network in the home and of the 

electrical grid, and then wiring them together to work in harmony. 

National Grid’s Pilot program saw a trend between technology and savings. Participants 

with more technology installed in-home saw greater power reductions and monetary savings than 

customers with less technology installed. The participants at levels 3 and 4, with smart 

thermostats and load control devices, saw a load reduction roughly two to three times greater 

than customers with only access to the web portal or the digital picture frame display [20, pg. 

80]. 

The availability of technology makes it a lot easier to participate in demand response 

programs. Constant communication between consumers and their providers is vital to a 
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successful demand response program. Consumers must be able to view the current price to be 

able to respond effectively to the current demand conditions. Additionally, delay functions are 

only useful for a demand response program if consumers know when the price will be minimal. 

Another important role of technology in demand response is the ability to remotely run 

appliances or adjust the thermostat from a cell phone or other mobile device. This makes it very 

simple to adjust an individual’s usage as demand changes according to the actual conditions. In-

home “smart” technology makes communication and control of residential electrical devices 

much simpler to remotely control and monitor. 

Communication 

A key aspect to the success of a demand response program is communication. Both the 

utilities and the consumers need to have the most current information regarding demand and 

pricing conditions. At the most basic level, smart meters need to be installed into the consumer’s 

residences. Smart meters will constantly relay the residential consumption back to the utility to 

provide the most recent consumption data and allow for proper cost data to be available.  

In addition to the smart meter installation, consumers would need a platform to view all 

the current demand conditions, costs, and other valuable information. The proposed method of 

communication for this program is a mobile application that would be available on devices such 

as cell phones, tablets, and computers. The images of figure 5.3 were taken from ISO-NE mobile 

application. This application provides real-time information about the current wholesale energy 

prices, the current consumer demand of New England and the current energy fuel mix being used 



43 

 

Figure  Images from ISO-NE mobile application, showing LMP, current and predicted demand conditions and 

Figure 27 Screenshots taken from ISO-NE mobile application 

to produce the system’s energy. For this program’s mobile, application, this information would 

 need to be channeled so that consumers can view the current system conditions. 

 
 

Figure 5.3 Screenshots taken from ISO-NE mobile application [15] 

 
In addition to displaying the current systems conditions, such as demand, costs and 

energy mix, the proposed mobile application would have a feature to notify consumers of 

changes in the demand to adjust usage accordingly.  

 As far as remotely adjusting their load, many devices, such as smart plugs and smart 

appliances are designed with the option to remotely operate them. These devices would need to 

be incorporated into the proposed program to make load shifting easier for consumers.  
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Chapter 6: Analysis 

Calculating Shifted and Eliminated Energy with Pilot Program Data 
 

Initially, the plan was to conduct a survey to gather original data about: 

1. What appliances are currently used by consumers? 

2.  During what time of day? 

3.  How frequently these appliances are used?  

4. Would consumers be willing to shift their use to a different time of day? 

5. With what incentives? 

 From the first round of surveys, the data collected was limited to people in the 18-25 age 

bracket. To reach a wider survey population, National Grid was contacted in the hopes that they 

would be able to help distribute the survey. Unfortunately, due to customer-utility regulations, 

National Grid was unable to send the survey to their customers. Instead the Pilot Program Team 

at National Grid shared the data collected through their demand response pilot program.  

 From the National Grid pilot program, data was provided about customer satisfaction, 

actual usage and actions taken during a conservation event. With National Grid’s data, 

conclusions could be drawn about how participants reacted to the program, what energy 

reductions were actually seen and what the costs savings were. 

  To determine the potential reduction or potential “shiftable energy”, the average energy 

consumption of a Massachusetts’ residence (residences not in the pilot program) were compared 

to the average energy consumption of the pilot program residences. The energy consumption of 
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both groups was graphed them against the time of day [7, 17]. Figure 6.1, shows electrical 

consumption on June 23rd 2015, one of National Grid’s conservation days. The Y-axis is 

average consumption, in kWh, per household and the X-axis is time of day from 1 to 24 hours. 

The blue line is the average National Grid non-pilot residential consumer which was based on 

data collected from statistically valid samples and the red line is the average pilot program 

residential consumer. There are two vertical black lines at 3 and 7 pm; within these black lines 

are the hours that National Grid declared conservation hours.   

 
Fig. 6.1 Actual Residential Usage and Actual Pilot Participant Usage on June 23, 2015 against 

the time of day [18 and 25] 

 It was seen that during hours of conservation, the pilot participants’ energy consumption 

was lower than non-pilot residents. However, during the hours of 7 am to 11 am pilot program 

residences averaged higher. This period is known as pre-cooling. This is the time when pilot 
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customers increase consumption in preparation for the conservation hours. During the hours of 8 

pm to 10 pm pilot program residences also averaged higher. This period is known as snapback. 

This is the time when pilot customers increase consumption after the conservation hours. To 

illustrate this, figure 6.2 was created. The blue area is time when the average non-pilot residence 

averaged higher electrical consumption compared to a pilot program residence and the yellow 

region is when pilot program residential consumption was higher than average residential 

consumption. 

 

Fig. 6.2 Comparison of the Average Pilot Residence and the Average National Grid 
Massachusetts Residence [18 and 25] 

To calculate eliminated load, the average non-pilot program National Grid residence 

consumption was summed and then subtracted from the average pilot residence consumption for 

24 hours. It was seen that on the average conservation day the average pilot program residence 
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eliminated 0.43 kWh compared to the average non-pilot residence. The yellow area denotes the 

potential “shiftable” energy, which includes both pre-cooling and snapback. Pre-cooling and 

snapback are the time periods in which pilot participants would use their appliances before or 

after an event when the prices were lower. From the data analysis calculated, the average 

shiftable energy was calculated to be 0.90 kWh for the average conservation day in 2015.  

National Grid’s Pilot Program participants were divided into four technology groups. 

Level one had the most basic technology package, consisting of a smart meter and an online 

display of their usage, system demand and costs. The level four package was given the most 

devices. Level four consisted of a smart meter, online display of their usage, system demand and 

costs, in home display, a smart thermostat and load control device.  Based on the data received 

from National Grid, the average shifted and eliminated load of each group in kWh and by the 

percentage of the total load was calculated. Table 6.1 shows the eliminated and shifted energy 

for each technology level in kWh and % of load. 

Table 6.1: Shifted and Eliminated Power of Pilot Program Participants in 2015 by Technology 
Level [18] 

Level Eliminated (kWh) Eliminated (% of load) Shifted (kWh) Shifted (% of load) 

1 0.35 1.15% 0.89 3.06% 

2 4.36 14.87% 0.27 0.96% 

3 -1.07 -3.59% 2.82 9.68% 

4 -5.60 -19.14% 5.99 20.44% 
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As seen in the Table 6.1, shifted energy increased with a greater technology level. This 

general trend was an important conclusion that National Grid drew about the influence of 

technology in their pilot program. As more technology is integrated into the household, this type 

of demand response program will become more effective and the savings seen for all participants 

may increase. 

Although there is no evidence directly relating the amount of load reduced and shifted to 

what actually caused this reduction, the percentage that may have come from the avoidance of 

energy-intensive appliances can be estimated. In one survey from 2016, the most commonly 

cited action to reduce electricity use on a Conservation Day was “Avoided use of certain 

appliances or energy intensive devices during critical peak hours” [19]. Figure 6.3 shows that 

about 40% of survey participants reported avoiding use of certain appliances during conservation 

days. 
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Fig. 6.3 Survey Response about what actions Pilot Participants took on a Conservation Day [19] 

To determine what percentage of the reduction came from such appliances, the survey 

results about what actions participants used to reduce their electricity usage were studied. The 

percentage provided in figure 6.3 was used to compare what percentage of the total reduction 

seen by pilot program participants may have come from avoiding the use of certain appliances. 

From figure 6.4, taken from the same survey, it is seen that the most common appliances to be 

shifted were clothes washers, dryers, and dishwashers [19]. 
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Fig. 6.4 Survey Responses about what devices Participants avoided during a Conservation Day 
[19] 

 

Calculating Savings with Shifted Energy 

 From the previous section, the amount of energy the average pilot program residence 

could shift was calculated. This was found to be 3.1% of their load on the average conservation 

day. If this number is used to predict the amount of energy the average household could shift 

every day, the estimated average cost savings to a residential consumer can be calculated.  
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Fig. 6.5 Average Locational Marginal Price vs. time of day in N.E. in 2015 [14] 

 

Optimally shifting 3.1% of the load would only shift power from 6pm to 4am (extreme 

high to extreme low). Comparing this optimal model to the National Grid pilot program data, this 

model does not accurately reflect how customers respond to economic incentives. As seen 

below, National Grid pilot program residences (red line) did not heavily reduce their load at 4 

pm the way this model (purple line) predicted. This is data taken on June 23rd 2015. 
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Fig. 6.6 Comparison of Pilot Participants and Massachusetts Residence and first predicted 
residential model [18 and 25] 

At this point, a new model was required to better represent the consumer response to 

economic incentives. This new model was the weighted average between the original load curve 

and a completely horizontal load curve until 3.1% of the load shifted. As seen in figure 6.7, this 

new model gives a much more accurate prediction of customer response to economic incentives 

compared with the model above.  
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Fig. 6.7 Comparison of Pilot Participant, Massachusetts Residence, and predicted model [18 
and 25] 

Comparing this new model with LMP prices, New England consumers could save $88.78 

million per year by shifting 3.1% of their load. The $88.78 million cost savings is 1.7% of the 

total consumer costs for the year.  
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Fig. 6.8 Percentage of Shifted Energy against Costs Savings [18 and 25] 
From the shiftability and cost savings model, cost savings were predicted when shifting 

different percentages of the load as seen in Figure 6.8. The vertical line at 3.1% is the shifted 

energy, determined from National Grid’s Pilot Program data. As the amount of power shifted 

increases, savings increase until about 7%. At around 7%, the savings become constant. From 

this model the maximum cost savings is a little over 3.5%. 

 One report studied, written by Kathleen Spees, had a similar analysis. She did her 

doctoral research in load shifting and came up with the analysis that “50% of all possible 

customer expense savings from load shifting could be achieved by shifting only 1.7% of all 

MWh to another time of day.” [27] She did not have the same data set that National Grid 

provided, so she used an elasticity model to determine potential shifted electricity. Without pilot 
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program data, she assumed the energy that could be shifted would be completely from peak to 

valley as seen in figure 6.9.  

 

Fig. 6.9 Spees’ Shifting Model [27] 

 

This assumption is under optimal conditions, which seen from the National Grid pilot 

program data, is not the way customers respond to economic incentives. As seen with the first 

attempted model, this is not how customers react to economic incentives. With all this said, 3.1% 

of the load can be considered shiftable. This predicted shift of 3.1% is greater than 1.7%. Under 

Spees’ conclusion, consumers would see a greater than 50% cost savings with a time-of-use 

pricing scheme.   
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Fig. 6.10a Comparison of National Grid Pilot Program to Program: Pricing and Technology 
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Fig. 6.10b Comparison of National Grid Pilot Program and Proposed Plan: Savings and Results 
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Chapter 7: Conclusions 

Savings: Energy and Cost 
 From analysis of the National Grid Pilot Program Data, it was determined that pilot 

participants shifted an average of 3.1% of their load on a conservation day. As calculated with 

National Grid Pilot program data, when 3.1% of the load is shifted daily, customers would see a 

1.7% cost savings with a time of use pricing scheme. These percent savings are low because the 

consumers observed in the Pilot Program could not shift directly from peak to valley as would 

happen in an ideal shifting model.  

  

 

Environmentally Friendly 

 In addition to providing cost savings for consumers and producers, demand response will 

also lead to reduction in greenhouse gas emissions and a reduced need for additional 

infrastructure. Demand response would keep the use of environmentally unfriendly power plants 

at a minimum and would maximize the contribution of renewable energies.  

Another benefit of having a demand response program is that it can be used in reverse to 

give people incentives to use power when supply is greater than demand. This can be called 

supply response. In figure 7.1, all points when the LMP becomes negative are highlighted red.  
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Fig. 7.1 Locational Marginal Price vs. System Load with Negative LMP [14] 

There are 101 hours in 2015 when the LMP price went negative. Supply response would 

encourage consumers to use more electricity during these hours when the cost of energy would 

be significantly reduced. 

 One of the big concerns with renewables, especially solar power, is the energy lost when 

the supply exceeds the demand at any point. In addition, voltage and frequency of the grid would 

increase which could have extremely harmful consequences. Power plant’s turbines will start 

spinning faster and could blow up, electrical equipment could be destroyed, etc. A supply 

response program could be implemented that reduces the risk of voltage and frequency 

fluctuation and allow more renewables to be implemented without increased losses and risks.  
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Reduced Power Losses 

 Another important result of demand response is the reduced losses in transmission lines. 

Since transmission line losses, or power losses depend on the current and resistance in a wire: 

P = (I2R), where R is a constant  

From this equation, it is seen that power is directly proportional to the current squared. 

With a flattening of the demand curve, power losses will decrease. This will lead to economic 

benefit for the utilities. This also would be more environmentally friendly because overall 

production would decrease and less pollution would be emitted through line losses. Figure 7.2 

plots the shifted energy percentage vs power savings. The vertical line at 3.1% is the shifted 

energy, determined from National Grid’s Pilot Program data. 

 

Fig. 7.2 Percentage of Shifted Energy against Power Savings 
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With this analysis, if consumers shift 3.1% of their load, transmission line power losses would 

decrease by 1.5%.  

Recommendations and Thoughts 

Demand response can be a very complex program but is a feasible option to reduce peak 

demand with cooperation of consumers and producers and the proper technologies. Based on the 

rapid integration of technology in everyday life, demand response will only become easier with 

the installation of “smart” technologies. In today’s digital world, people are constantly updated 

and information has never been exchanged at such a fast pace. This would be incredibly 

beneficial to an effective demand response program. The constant flow of information would 

educate and inform electrical consumers about using their energy more efficiently and provide 

information on cutting their costs and electrical consumption.  

 As the world’s energy needs are constantly growing, demand response may be an 

important tool to reduce the need for additional power plants and the reduction of greenhouse gas 

emissions. In addition, with the growing energy demand, costs will inevitably rise. Demand 

response acts to reduce the growing peak demand and the costs for consumers and electrical 

providers. An effective demand response program, paired with modern technology, will lead to 

the greatest cost savings and energy demand reductions.   
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Appendix A: Estimate Savings Based on ISO Data 
 
# coding: utf-8 
 
# # Estimate savings based on ISO data 
 
# In[21]: 
 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
import scipy 
from cycler import cycler 
from scipy.optimize import minimize 
from matplotlib.offsetbox import AnchoredText 
get_ipython().magic('matplotlib inline') 
plt.style.use('ggplot') 
from pandas.tseries.offsets import DateOffset 
fs = (8,4.5) 
 
 
# ## Load ISO SMD hourly 2015 data 
 
# In[22]: 
 
df15 = pd.read_excel('~/iqp-iso-data/smd_hourly_2015.xls', 1) 
 
 
# In[23]: 
 
df15['datetime'] = df15.Date + pd.to_timedelta(df15.Hour - 1, unit='h') 
 
 
# In[24]: 
 
ax = sns.tsplot(time="Date", value="RT_LMP", unit='Hour', data=df15, ci=100) 
 
 
# In[25]: 
 
df15.set_index('datetime', inplace=True) 
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# ## Load National Grid data (not used) 
 
# In[26]: 
 
mecols = pd.read_csv( 
    'load_shape_mass_2015_r1.csv', 
    header=None, 
    names=['rate', 'date'] + list(range(24))) 
 
 
# In[27]: 
 
mecols = mecols.set_index(['date', 'rate']) 
mecols.columns.name = 'hour' 
mecols_s = mecols.stack() 
mecols_s.name = 'predicted' 
mecols = mecols_s.reset_index() 
mecols.date = pd.to_datetime(mecols.date) + pd.to_timedelta( 
    mecols.hour, unit='h') 
mecols.rate.replace('R10', 'R-1', inplace=True) 
mecols = mecols.set_index('date') 
mecols.head() 
 
 
# In[28]: 
 
mecols_r1 = mecols 
 
 
# In[29]: 
 
merged = pd.concat([df15, mecols_r1], axis=1, join='inner') 
 
 
# In[30]: 
 
merged.head() 
 
 
# ## Theo's Shifting Algorithm 
 
# In[31]: 
 
shiftable = 0.030961335235101656 
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def do_opt(group): 
    x0 = np.array(group['SYSLoad']) 
    xflat = np.ones(24) * np.mean(group['SYSLoad']) 
    xfun = lambda phi: x0 + (xflat - x0) * phi 
    price = np.array(group['RT_LMP']) 
    fun = lambda phi: np.sum(np.multiply(xfun(phi), price)) 
    shift_error = lambda newx: sum(np.maximum(newx - x0, 0)) - shiftable * 
np.sum(x0) 
 
    xfun_v = np.vectorize(xfun) 
    cost_v = np.vectorize(fun) 
    shift_error_v = np.vectorize(shift_error) 
 
    phi_star = scipy.optimize.brentq(lambda phi: shift_error(xfun(phi)), 0, 
2) 
    group['optimized'] = xfun(phi_star) 
    #     print(phi_star) 
    return group 
 
 
def verify_shift(group): 
    return np.sum(np.maximum(group['optimized'] - group['SYSLoad'], 
                             0)) - shiftable * np.sum(group['SYSLoad']) 
 
 
# ## Plot 
 
# In[32]: 
 
def do_plot(group): 
    group2 = group.set_index('Hour') 
    plt.figure() 
 
    ax = group2.plot(y=['SYSLoad','optimized'], marker='', kind='line', 
linewidth=4, 
                 legend=False, figsize=(8,4.5)) 
    plt.xticks(range(1,25)) 
    plt.title(f'ISO New England system load on {group.name}') 
    plt.xlabel('Hour of the day') 
    plt.ylabel('Energy consumption (kWh)') 
    ax.legend(numpoints=3, loc='upper left', labels=('Actual system load', 
'Shifted system load')) 
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    plt.savefig(f'iso_opt_plots/{group.name}.png', dpi=300) 
 
 
# ## Apply Theo's shifting algorithm 
 
# In[33]: 
 
by_date = merged.groupby('Date') 
by_date = by_date.apply(do_opt) 
 
 
# In[34]: 
 
by_date.head() 
 
 
# ## Verify amount of energy shifted 
# Should return zero (zero days with excessive error) 
 
# In[35]: 
 
np.sum((by_date.groupby('Date').apply(verify_shift))**2 > 1e-3) 
 
 
# by_date.groupby('Date').apply(do_plot) 
 
# ## Dollar saving in 100% 
 
# In[36]: 
 
cost_savings = by_date.groupby('Date').apply( 
    lambda group: np.sum(group['RT_LMP'] * (group['SYSLoad'] - 
group['optimized'])) \ 
    / np.sum((group['RT_LMP'] * group['SYSLoad'])) 
) 
 
cost_savings.describe().to_csv('cost_savings_iso_desc.csv') 
cost_savings.to_csv('cost_savings_iso.csv') 
cost_savings.describe() 
 
 
# In[37]: 
 
cost_savings.plot() 
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# ## Dollar saving per day 
 
# In[38]: 
 
cost_savings_dollar = by_date.groupby('Date').apply( 
    lambda group: np.sum(group['RT_LMP'] * (group['SYSLoad'] - 
group['optimized'])) 
) 
cost_savings_dollar.describe().to_csv('cost_savings_iso_dollar_desc.csv') 
cost_savings_dollar.to_csv('cost_savings_iso_dollar.csv') 
cost_savings_dollar.describe() 
 
 
# ## $I^2R$ saving in 100% 
 
# In[39]: 
 
i2r_savings = by_date.groupby('Date').apply( 
    lambda group: (sum(group['SYSLoad']**2 - group['optimized']**2)) \ 
    / sum(group['SYSLoad']**2) 
) 
i2r_savings.describe().to_csv('i2r_savings_iso_desc.csv') 
i2r_savings.to_csv('i2r_savings_iso.csv') 
i2r_savings.describe() 
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Appendix B: ISO data Analysis and Plotting 
 
# coding: utf-8 
 
# In[1]: 
 
import sys 
sys.version_info 
 
 
# In[2]: 
 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
from cycler import cycler 
get_ipython().magic('matplotlib inline') 
plt.style.use('ggplot') 
# plt.rcParams['figure.figsize'] = (8.0, 5.0) 
fs = (8,4.5) 
 
 
# In[3]: 
 
def savefig(filename): 
    fig = plt.gcf() 
    fig.set_size_inches(16., 10.) 
    fig.savefig('test2png.png', dpi=80) 
 
 
# # \$/MWh vs MW in New England, ISO-NE 2016 
 
# In[4]: 
 
df16 = pd.read_excel('~/iqp-iso-data/smd_hourly_2016.xls', 1) 
# df = pd.read_excel('~/iqp-iso-data/smd_hourly_2015.xls', 1) 
plt.figure() 
fig, ax = plt.subplots(figsize=fs) 
# fig, ax = plt.subplots() 
ax.set_prop_cycle(cycler('color', sns.diverging_palette(220, 20, n=2)) 
                  + cycler('alpha', [0.5, 0.5])) 
df16.plot(x='System_Load', y='RT_LMP', style=['.', 'rx'], alpha=0.3, ms=6, 
        xlim=(7000, 25000), ylim=(-100, 600), legend=False, figsize=fs, 
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ax=ax) 
 
plt.title('$/MWh vs MW in New England, ISO-NE 2016') 
plt.xlabel('System load (MW)') 
plt.ylabel('Locational marginal price ($/MWh)') 
# remove legend 
 
# plt.plot(x,p(x),"r--") 
plt.savefig('./dollar-mwh-mw016.png', dpi=200) 
plt.show() 
 
 
# # \$/MWh vs MW in New England, ISO-NE 2015 
 
# In[5]: 
 
df = pd.read_excel('~/iqp-iso-data/smd_hourly_2015.xls', 1) 
df = df.assign(Negative=lambda x: x.RT_LMP < 0) 
df.dtypes 
 
 
# In[6]: 
 
plt.figure() 
fig, ax = plt.subplots(figsize=fs) 
colors = ["windows blue", "amber", "greyish", "faded green", "dusty purple"] 
ax.set_color_cycle(sns.diverging_palette(220, 20, n=2)) 
ax.margins(0.05) 
# for name, group in groups: 
ax.plot(df.SYSLoad, df.RT_LMP, marker='.', alpha=0.3, linestyle='', ms=6) 
# ax.legend(numpoints=3, loc='upper left', labels=('Positive LMP', 'Negative 
LMP')) 
# plt.plot([], [], marker='.', linestyle='', alpha=0.3, 
#          ms=6) 
 
plt.xlim(7000, 25000) 
plt.ylim(-100, 600) 
 
plt.title('$/MWh vs MW in New England, ISO-NE 2015') 
plt.xlabel('System load (MW)') 
plt.ylabel('Locational marginal price ($/MWh)') 
 
# plt.plot(x,p(x),"r--") 
plt.savefig('./dollar-mwh-mw2015.png', dpi=200) 
plt.show() 
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# In[7]: 
 
sns.jointplot(kind='reg', x='SYSLoad', y='RT_LMP', data=df, scatter_kws={ 
              "s": 1, 'alpha': 0.3}, order=1, truncate=True) 
 
 
# In[8]: 
 
sns.jointplot(kind='reg', x='SYSLoad', y='RT_LMP', data=df, scatter_kws={ 
              "s": 1, 'alpha': 0.3}, order=2, truncate=True) 
 
 
# In[9]: 
 
# plt.figure() 
# fig, ax = plt.subplots(figsize=fs) 
# # ax.set_color_cycle(sns.diverging_palette(220, 20, n=2)) 
# ax.set_prop_cycle(cycler('color', sns.diverging_palette(220, 20, n=2))) 
# ax.margins(0.05) 
# # for name, group in groups: 
# # ax.plot(df.SYSLoad, df.RT_LMP, marker='.', alpha=0.3, linestyle='', ms=6) 
# # ax.legend(numpoints=3, loc='upper left', labels=('Positive LMP', 
'Negative LMP')) 
# # plt.plot([], [], marker='.', linestyle='', alpha=0.3, 
# #          ms=6) 
 
# plt.xlim(7000, 25000) 
# plt.ylim(-100, 600) 
 
# plt.title('$/MWh vs MW in New England, ISO-NE 2015') 
# plt.xlabel('System load (MW)') 
# plt.ylabel('Locational marginal price ($/MWh)') 
 
sns.jointplot(kind='reg', x='SYSLoad', y='RT_LMP', data=df, scatter_kws={ 
              "s": 1, 'alpha': 0.3}, order=5, truncate=True) 
 
 
# In[10]: 
 
sns.jointplot(kind='reg', x='SYSLoad', y='RT_LMP', data=df, scatter_kws={ 
              "s": 1, 'alpha': 0.3}, order=10, truncate=True) 
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# In[11]: 
 
sns.jointplot(kind='reg', x='System_Load', y='RT_LMP', data=df16, 
scatter_kws={ 
              "s": 2, 'alpha': 0.3}, order=6, truncate=True, ci=90) 
 
 
# In[ ]: 
 
df['month'] = df.Date.dt.month 
 
 
# In[ ]: 
 
sns.lmplot(x='SYSLoad', y='RT_LMP', data=df, col='month', col_wrap=2, 
scatter_kws={ 
              "s": 3, 'alpha': 0.3}, order=1) 
 
 
# In[ ]: 
 
plt.figure() 
fig, ax = plt.subplots(figsize=np.multiply(fs,2)) 
# ax.set_color_cycle(sns.diverging_palette(220, 20, n=2)) 
ax.set_prop_cycle(cycler('color', sns.diverging_palette(220, 20, n=20))) 
# ax.margins(0.05) 
# # for name, group in groups: 
# # ax.plot(df.SYSLoad, df.RT_LMP, marker='.', alpha=0.3, linestyle='', ms=6) 
# # ax.legend(numpoints=3, loc='upper left', labels=('Positive LMP', 
'Negative LMP')) 
# # plt.plot([], [], marker='.', linestyle='', alpha=0.3, 
# #          ms=6) 
 
# plt.xlim(7000, 25000) 
# plt.ylim(-100, 600) 
 
 
 
sns.regplot(x='System_Load', y='RT_LMP', data=df16, scatter_kws={ 
              "s": 6, 'alpha': 0.3}, order=7, truncate=True, ci=90) 
sns.regplot(x='SYSLoad', y='RT_LMP', data=df, scatter_kws={ 
              "s": 6, 'alpha': 0.3}, fit_reg=False, order=6, truncate=True, 
ci=90) 
 
plt.title('$/MWh vs MW in New England, ISO-NE 2015 and 2016') 
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plt.xlabel('System load (MW)') 
plt.ylabel('Locational marginal price ($/MWh)') 
 
 
# dfs = [] 
# for year in range(2003,2017): 
#     dfs.append(pd.read_excel(f'iso-zonal/{year}_smd_hourly.xls', 
sheetname=1)) 
#  
# dfs[-1].rename(columns={'Hr_End': 'Hour', 'DA_Demand': 'DA_DEMD', 
'RT_Demand': 'DEMAND', 
#                         'Dry_Bulb': 'DryBulb', 'Dew_Point': 'DewPnt', 
'System_Load': 'SYSLoad', 'Reg_Capacity_Price': 'RegCP'}, inplace=True) 
#  
# df_all = pd.concat(dfs) 
#  
# df_all.to_pickle('iso-zonal.pkl') 
 
# In[ ]: 
 
df_all = pd.read_pickle('iso-zonal.pkl') 
 
 
# In[ ]: 
 
plt.figure() 
fig, ax = plt.subplots(figsize=fs) 
colors = ["windows blue", "amber", "greyish", "faded green", "dusty purple"] 
ax.set_color_cycle(sns.diverging_palette(220, 20, n=2)) 
ax.margins(0.05) 
# for name, group in groups: 
ax.plot(df_all.SYSLoad, df_all.RT_LMP, marker='.', alpha=0.5, linestyle='', 
ms=1) 
# ax.legend(numpoints=3, loc='upper left', labels=('Positive LMP', 'Negative 
LMP')) 
# plt.plot([], [], marker='.', linestyle='', alpha=0.3, 
#          ms=6) 
 
plt.xlim(7000, 25000) 
plt.ylim(-100, 600) 
 
plt.title('$/MWh vs MW in New England, ISO-NE 2003-2016') 
plt.xlabel('System load (MW)') 
plt.ylabel('Locational marginal price ($/MWh)') 
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# # plt.plot(x,p(x),"r--") 
# plt.savefig('./dollar-mwh-mw2015.png', dpi=200) 
plt.show() 
 
 
# In[ ]: 
 
sns.jointplot(kind='reg', x='SYSLoad', y='RT_LMP', data=df_all, scatter_kws={ 
              "s": 1, 'alpha': 0.3}, order=4, truncate=True) 
 
 
# In[ ]: 
 
plt.figure() 
fig, ax = plt.subplots(figsize=np.multiply(fs,2)) 
# ax.set_color_cycle(sns.diverging_palette(220, 20, n=2)) 
ax.set_prop_cycle(cycler('color', sns.diverging_palette(220, 20, n=20))) 
# ax.margins(0.05) 
# # for name, group in groups: 
# # ax.plot(df.SYSLoad, df.RT_LMP, marker='.', alpha=0.3, linestyle='', ms=6) 
# # ax.legend(numpoints=3, loc='upper left', labels=('Positive LMP', 
'Negative LMP')) 
# # plt.plot([], [], marker='.', linestyle='', alpha=0.3, 
# #          ms=6) 
 
# plt.xlim(7000, 25000) 
# plt.ylim(-100, 600) 
 
 
 
sns.regplot(x='SYSLoad', y='RT_LMP', data=df_all, scatter_kws={ 
              "s": 1, 'alpha': 0.5}, order=5, truncate=True, ci=90) 
 
plt.title('$/MWh vs MW in New England, ISO-NE 2003-2016') 
plt.xlabel('System load (MW)') 
plt.ylabel('Locational marginal price ($/MWh)') 
 
 
# ## Negatives 
 
# In[ ]: 
 
groups = df.groupby('Negative') 
 
plt.figure() 
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fig, ax = plt.subplots(figsize=fs) 
colors = ["windows blue", "amber", "greyish", "faded green", "dusty purple"] 
ax.set_color_cycle(sns.diverging_palette(220, 20, n=2)) 
ax.margins(0.05) 
for name, group in groups: 
    ax.plot(group.SYSLoad, group.RT_LMP, marker='.', alpha=0.5, linestyle='') 
# ax.legend(numpoints=1, loc='upper left') 
ax.legend(numpoints=3, loc='upper left', labels=('Positive LMP', 'Negative 
LMP')) 
plt.plot([], [], marker='.', linestyle='', alpha=0.5, 
         ms=6) 
 
plt.xlim(7000, 25000) 
plt.ylim(-100, 600) 
 
plt.title('$/MWh vs MW in New England, ISO-NE 2015') 
plt.xlabel('System load (MW)') 
plt.ylabel('Locational marginal price ($/MWh)') 
 
# plt.plot(x,p(x),"r--") 
plt.savefig('./dollar-mwh-mw-zeros.png', dpi=200) 
plt.show() 
 
 
# In[ ]: 
 
plt.figure() 
fig, ax = plt.subplots(figsize=fs) 
colors = ["windows blue", "amber", "greyish", "faded green", "dusty purple"] 
ax.set_color_cycle(sns.diverging_palette(20, 220, n=2)) 
ax.margins(0.05) 
# df[df.Negative == 
True].Hour.value_counts().sort_index().plot(kind='bar',ax=ax) 
df[df.Negative == True].Hour.hist(ax=ax, bins=24, range=(1,25)) 
# ax.legend(numpoints=1, loc='upper left') 
# ax.legend(numpoints=3, loc='upper left', labels=('Positive LMP', 'Negative 
LMP')) 
plt.plot([], [], marker='.', linestyle='', alpha=0.5, 
         ms=6) 
#  
plt.xlim(1, 25) 
plt.ylim(0, 16) 
 
plt.title('Time in the day with negative LMP, Histogram, ISO-NE 2015') 
plt.xlabel('Time of the day (ending hour)') 
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plt.ylabel('Number of occurrences') 
plt.xticks(range(1,25)) 
# plt.plot(x,p(x),"r--") 
plt.savefig('./zeros-hist.png', dpi=200) 
plt.show() 
 
 
# ## Peak event hours 
 
# In[14]: 
 
from datetime import date as Date 
 
conservationday_dates = {Date(2015, 6, 23): range(14, 18), 
                         Date(2015, 7, 8): range(13, 18), 
                         Date(2015, 7, 13): range(13, 17), 
                         Date(2015, 7, 20): range(11, 18), 
                         Date(2015, 7, 21): range(12, 20), 
                         Date(2015, 7, 28): range(12, 20), 
                         Date(2015, 7, 29): range(11, 19), 
                         Date(2015, 7, 30): range(10, 18), 
                         Date(2015, 7, 31): range(12, 18), 
                         Date(2015, 8, 3): range(12, 19), 
                         Date(2015, 8, 4): range(12, 15), 
                         Date(2015, 8, 17): range(11, 16), 
                         Date(2015, 8, 18): range(12, 15), 
                         Date(2015, 8, 19): range(12, 15), 
                         Date(2015, 8, 20): range(13, 15), 
                         Date(2015, 8, 31): range(13, 15), 
                         Date(2015, 9, 1): range(13, 16), 
                         Date(2015, 9, 2): range(13, 15), 
                         Date(2015, 9, 8): range(11, 15), 
                         Date(2015, 9, 9): range(11, 15)} 
 
 
# In[15]: 
 
# conserv_col = df.Date.map(lambda x: (x.to_pydatetime().date() in 
conservationday_dates)) 
conserv_col = [] 
for row in df.iterrows(): 
    d = row[1].Date.to_pydatetime().date() 
     
    if d in conservationday_dates.keys() and row[1].Hour - 1 in 
conservationday_dates[d]: 
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        conserv_col.append(True) 
    else: 
        conserv_col.append(False) 
 
# conserv_col 
df = df.assign(Conservation_day=conserv_col) 
 
groups = df.groupby('Conservation_day') 
# df.Conservation_day 
 
 
# In[16]: 
 
# colors = pd.tools.plotting._get_standard_colors(len(groups), 
color_type='random') 
plt.figure() 
fig, ax = plt.subplots(figsize=fs) 
# colors = ["windows blue", "amber", "greyish", "faded green", "dusty 
purple"] 
# ax.set_color_cycle(sns.diverging_palette(220, 20, n=2)) 
ax.set_prop_cycle(cycler('color', sns.diverging_palette(220, 20, n=2)) 
                  + cycler('alpha', [0.3, 0.9])) 
ax.margins(0.05) 
for name, group in groups: 
    ax.plot(group.SYSLoad, group.RT_LMP, marker='.', linestyle='') 
ax.legend(numpoints=3, loc='upper left', labels=('Non peak event hour', 'Peak 
event hour')) 
 
plt.plot([], [], marker='.', linestyle='', ms=6) 
 
plt.xlim(7000, 25000) 
plt.ylim(-100, 600) 
 
plt.title('$/MWh vs MW in New England, ISO-NE 2015') 
plt.xlabel('System load (MW)') 
plt.ylabel('Locational marginal price ($/MWh)') 
 
# plt.plot(x,p(x),"r--") 
plt.savefig('./dollar-mwh-mw-conservation_days.png', dpi=200) 
plt.show() 
 
 
# ## Days with LMP>300 
 
# In[14]: 
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df_above300 = df[(df.RT_LMP > 300) & (df.Conservation_day == False)] 
df_above300.to_csv('lmp_above_300_non_conservation.csv') 
df_above300 
 
 
# ## \$/MWh vs MW By Month 
 
# In[15]: 
 
df_t = df.copy() 
df_t.index = df_t.Date 
 
 
# In[16]: 
 
import collections 
 
groups = df_t.groupby(pd.TimeGrouper(freq='M')) 
 
plt.figure() 
fig, ax = plt.subplots(figsize=fs) 
# colors = ["windows blue", "amber", "greyish", "faded green", "dusty 
purple"] 
# ax.set_color_cycle(sns.diverging_palette(220, 20, n=2)) 
c = collections.deque(sns.color_palette("husl", 12)) 
c.rotate(7) 
# print(c) 
 
ax.set_prop_cycle(cycler('color', c)) 
ax.margins(0.05) 
for name, group in groups: 
    ax.plot(group.SYSLoad, group.RT_LMP, marker='.', alpha=0.5, linestyle='') 
# ax.legend(numpoints=1, loc='upper left') 
ax.legend(numpoints=3, loc='upper left', labels=range(1,13)) 
plt.plot([], [], marker='.', linestyle='', alpha=0.5, 
         ms=6) 
 
plt.xlim(7000, 25000) 
plt.ylim(-100, 600) 
 
plt.title('$/MWh vs MW in New England By Month, ISO-NE 2015') 
plt.xlabel('System load (MW)') 
plt.ylabel('Locational marginal price ($/MWh)') 
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# plt.plot(x,p(x),"r--") 
plt.savefig('./dollar-mwh-mw-by-month.png', dpi=200) 
plt.show() 
 
 
# In[ ]: 
 
 
 
 
# ## Average System Load and LMP vs Hour in New England 
 
# In[17]: 
 
hourgrp = df.groupby(['Hour'],as_index=False).mean() 
 
 
# In[110]: 
 
fig, ax1 = plt.subplots() 
 
# ax2.set_yticks(np.linspace(ax2.get_yticks()[0],ax2.get_yticks()[-
1],len(ax1.get_yticks()))) 
 
hourgrp.plot(ax=ax1, x='Hour', y='RT_LMP', marker='', kind='line', 
linewidth=4, 
             legend=False) 
# plt.xticks(range(1,25)) 
# plt.title('Average $/MWh vs Hour in New England, ISO-NE 2015') 
# plt.xlabel('Hour of the day') 
ax1.set_ylabel('Mean LMP ($/MWh)') 
ax2 = ax1.twinx() 
hourgrp.plot(ax=ax2, x='Hour', y='SYSLoad', color='royalblue', alpha=0.7, 
marker='', kind='line', linewidth=4, 
             legend=False, figsize=(8,4.5), grid=False) 
plt.xticks(range(1,25)) 
plt.title('Average System Load and LMP vs Hour in New England, ISO-NE 2015') 
plt.xlabel('Hour of the day') 
ax2.set_ylabel('Mean system load (MW)') 
 
 
 
h1, l1 = ax1.get_legend_handles_labels() 
h2, l2 = ax2.get_legend_handles_labels() 
l1[0]='Mean LMP' 
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l2[0]='System Load' 
ax1.legend(h1+h2, l1+l2, loc=2) 
 
# plt.ylabel('') 
# remove legend 
ax1.set_ybound(20,60) 
ax2.set_ybound(8000,21000) 
# ax1.set_yticks(np.linspace(ax1.get_ybound()[0], ax1.get_ybound()[1], 5)) 
# ax2.set_yticks(np.linspace(ax2.get_ybound()[0], ax2.get_ybound()[1], 5)) 
 
# plt.plot(x,p(x),"r--") 
plt.savefig('./energy-hour.png', dpi=300) 
plt.show() 
 
 
# ## Number of negative LMP hours in the same day 
 
# In[19]: 
 
groups_d = df_t.groupby('Date') 
 
 
def count_negative(x): 
    result = {'neg_lmp': x[x.RT_LMP < 0].count()['Date']} 
    return pd.Series(result, name='metrics') 
 
result = groups_d.apply(count_negative) 
result.sum() 
 
plt.figure() 
fig, ax = plt.subplots(figsize=fs) 
c = collections.deque(sns.color_palette("deep")) 
# c.rotate(0) 
ax.set_prop_cycle(cycler('color', c)) 
ax.margins(0.05) 
# df[df.Negative == 
True].Hour.value_counts().sort_index().plot(kind='bar',ax=ax) 
result.hist(bins=range(0,8), ax=ax) 
# df[df.Negative == True].Hour.hist(ax=ax, bins=24, range=(1,25)) 
# ax.legend(numpoints=1, loc='upper left') 
# ax.legend(numpoints=3, loc='upper left', labels=('Positive LMP', 'Negative 
LMP')) 
# plt.plot([], [], marker='.', linestyle='', alpha=0.5, 
#          ms=6) 
#  
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plt.xlim(1, 7) 
plt.ylim(0, 25) 
 
plt.title('Number of Negative LMP hours in the Same Day, Histogram, ISO-NE 
2015') 
plt.xlabel('Number of negative LMP hours in the same day') 
plt.ylabel('Number of occurrences') 
# plt.xticks(range(1,25)) 
# plt.plot(x,p(x),"r--") 
plt.savefig('./negatives-hist.png', dpi=200) 
plt.show() 
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Appendix C: National Grid Peak Events 
 
# coding: utf-8 
 
# In[1]: 
 
import pandas as pd 
from pandas.tseries.offsets import DateOffset 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
from cycler import cycler 
get_ipython().magic('matplotlib inline') 
plt.style.use('ggplot') 
# plt.rcParams['figure.figsize'] = (8.0, 5.0) 
fs = (8,4.5) 
 
 
# In[8]: 
 
# natgrid_all = pd.DataFrame() 
for event_id in range(30): 
    try: 
        peak_evt_df = pd.read_csv(f'natgrid/event_id_{event_id}_data.csv') 
        peak_evt_df['INTVL_READING_TS_EASTERN'] = 
pd.to_datetime(peak_evt_df['INTVL_READING_TS_EASTERN'] 
,infer_datetime_format=True) 
        peak_evt_df['TS_BEGIN'] = peak_evt_df['INTVL_READING_TS_EASTERN'] - 
DateOffset(minutes=15) 
#         natgrid_all = pd.merge(natgrid_all, peak_evt_df) 
        peak_evt_df.to_pickle(f'natgrid_event_id_{event_id}_data.pkl') 
    except Exception as e: 
        print(e) 
# natgrid_all.to_pickle(f'natgrid_all.pkl') 
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Appendix D: Plotting National Grid Data 
 
# coding: utf-8 
 
# In[165]: 
 
import pandas as pd 
from pandas.tseries.offsets import DateOffset 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
from cycler import cycler 
get_ipython().magic('matplotlib inline') 
plt.style.use('ggplot') 
# plt.rcParams['figure.figsize'] = (8.0, 5.0) 
fs = (8,4.5) 
 
 
# peak_evt_df = pd.read_csv('event_id_3_data.csv') 
 
# peak_evt_df['INTVL_READING_TS_EASTERN'] = 
pd.to_datetime(peak_evt_df['INTVL_READING_TS_EASTERN'] 
,infer_datetime_format=True) 
 
# peak_evt_df.head() 
 
# peak_evt_df['TS_BEGIN'] = peak_evt_df['INTVL_READING_TS_EASTERN'] - 
DateOffset(minutes=15) 
 
# peak_evt_df.to_pickle('event_id_3_data.pkl') 
 
# In[166]: 
 
peak_evt_df = pd.read_pickle('event_id_3_data.pkl') 
peak_evt_df.drop(['TARIFF_SCHED_TYPE','EVENT_ID'],inplace=True,axis=1) 
 
 
# In[167]: 
 
# seperate groups 
 
times = pd.DatetimeIndex(peak_evt_df['TS_BEGIN']) 
by_level = peak_evt_df.groupby(['CUSTOMER_LEVEL', times.hour], as_index=True) 
aggregated = by_level.mean() 
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aggregated['kwh_per_hour_actual'] = aggregated['INTVL_READING_KWH'] * 4 
aggregated = aggregated.reset_index() 
aggregated 
 
 
# In[168]: 
 
by_level.size()/(4) 
 
 
# In[169]: 
 
# no seperate groups 
 
times = pd.DatetimeIndex(peak_evt_df['TS_BEGIN']) 
by_level = peak_evt_df.groupby([times.hour], as_index=True) 
aggregated = by_level.mean() 
aggregated.index.name = 'hour' 
aggregated['actual'] = aggregated['INTVL_READING_KWH'] * 4 
aggregated = aggregated.reset_index() 
aggregated.drop(['CUSTOMER_LEVEL','INTVL_READING_KWH'],inplace=True,axis=1) 
peakevent = aggregated.set_index('hour') 
peakevent 
 
 
# In[170]: 
 
mecols = pd.read_excel('MECOLS.xls', sheetname='MECO 2015 JAN JUN', 
header=None, names=['rate','date'] + list(range(24))).dropna() 
mecols = mecols.set_index(['date', 'rate']) 
mecols.columns.name = 'hour' 
mecols_s = mecols.stack() 
mecols_s.name = 'predicted' 
mecols = mecols_s.reset_index() 
mecols = mecols.set_index('hour') 
mecols 
 
 
# In[171]: 
 
mecols = mecols[(mecols['rate'] == 'R-1') & (mecols['date'] == '2015-06-23')] 
mecols.drop(['date','rate'],inplace=True,axis=1) 
mecols 
# mecols[mecols['date'] == '2015-06-23'] 
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# In[172]: 
 
merged = pd.concat([mecols, peakevent], axis=1) 
merged 
 
 
# In[173]: 
 
merged.plot() 
 
 
# In[174]: 
 
from datetime import date as Date 
 
conservationday_dates = {Date(2015, 6, 23): range(14, 18), 
                         Date(2015, 7, 8): range(13, 18), 
                         Date(2015, 7, 13): range(13, 17), 
                         Date(2015, 7, 20): range(11, 18), 
                         Date(2015, 7, 21): range(12, 20), 
                         Date(2015, 7, 28): range(12, 20), 
                         Date(2015, 7, 29): range(11, 19), 
                         Date(2015, 7, 30): range(10, 18), 
                         Date(2015, 7, 31): range(12, 18), 
                         Date(2015, 8, 3): range(12, 19), 
                         Date(2015, 8, 4): range(12, 15), 
                         Date(2015, 8, 17): range(11, 16), 
                         Date(2015, 8, 18): range(12, 15), 
                         Date(2015, 8, 19): range(12, 15), 
                         Date(2015, 8, 20): range(13, 15), 
                         Date(2015, 8, 31): range(13, 15), 
                         Date(2015, 9, 1): range(13, 16), 
                         Date(2015, 9, 2): range(13, 15), 
                         Date(2015, 9, 8): range(11, 15), 
                         Date(2015, 9, 9): range(11, 15)} 
 
# increment the hardcoded hours... 
# conservationday_dates = dict((k, (n + 1 for n in v)) for k, v in 
conservationday_dates.items()) 
# conservationday_dates 
 
# for k, v in conservationday_dates.items(): 
#     conservationday_dates[k] = range(min(v) + 1, max(v) + 2) 
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# In[175]: 
 
merged = merged.assign(conservation=[i in conservationday_dates[Date(2015, 6, 
23)] for i in range(24)]) 
merged 
 
 
# In[176]: 
 
eliminated = merged.predicted.sum() - merged.actual.sum() 
eliminated 
 
 
# In[177]: 
 
eliminated / merged.predicted.sum() 
 
 
# In[178]: 
 
merged.actual.sum() 
 
 
# In[179]: 
 
# minus elimiated results in negative shift 
shifted = np.maximum((merged.predicted - merged.actual)*merged.conservation, 
0).sum() 
shifted 
 
 
# In[180]: 
 
diff = merged.predicted - merged.actual 
diff.loc[8] 
 
 
# In[181]: 
 
diff2= merged.predicted - merged.actual 
 
 
# In[182]: 
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diff2.plot() 
 
 
# In[183]: 
 
def precool(conservation_hour, df): 
    start = int(np.rint(np.median(conservation_hour))) 
    if start not in range(24): 
        raise RuntimeError('conservation hour is not valid') 
    diff = df.predicted - df.actual 
    if diff.loc[start] < 0: 
        raise RuntimeError(f'pilot higher than predicted at $start') 
     
    left_upper = 0 
    left_lower = 0 
    right_upper = 0 
    right_lower = 0 
    # find intersection to the left 
    for left_upper in range(start, -1, -1): 
        if diff.loc[left_upper] < 0: 
            for left_lower in range(left_upper, -1, -1): 
                if diff.loc[left_lower] > 0: 
                    left_lower += 1 
                    break 
            else: 
                left_lower = 0 
            break 
    else: 
        raise RuntimeError('left side no cross') 
     
    # find intersection to the right 
    for right_lower in range(start, 24): 
        if diff.loc[right_lower] < 0: 
            for right_upper in range(right_lower, 24): 
                if diff.loc[right_upper] > 0: 
                    right_upper -= 1 
                    break 
            else: 
                right_upper = 23 
            break 
    else: 
        raise RuntimeError('right side no cross')  
         
    shifted = -(diff.loc[left_lower:left_upper].sum() + 
diff.loc[right_lower:right_upper].sum()) 
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    return (shifted, left_lower, left_upper, right_lower, right_upper) 
 
 
# In[184]: 
 
iso_lmp = pd.read_excel('~/iqp-iso-data/smd_hourly_2015.xls', 1) 
iso_lmp 
 
 
# In[161]: 
 
iso_lmp_slice = iso_lmp[iso_lmp.Date == '2015-06-23'] 
iso_lmp_slice = iso_lmp_slice[['Hour', 'RT_LMP']].set_index('Hour') 
iso_lmp_slice.index.name = 'hour' 
iso_lmp_slice.index 
iso_lmp_slice 
merged = pd.concat([merged, iso_lmp_slice], axis=1) 
merged 
 
 
# In[73]: 
 
merged.loc[1].actual 
 
 
# In[74]: 
 
merged.to_pickle('merged-2015-06-23.pkl') 
 
 
# In[194]: 
 
merged['zeroindexhour'] = merged.index 
merged['oneindexhour'] = merged.index + 1 
merged.set_index('oneindexhour', inplace=True) 
 
 
# In[193]: 
 
merged.oneindexhour 
 
 
# In[195]: 
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plt.figure() 
 
ax = merged.plot(y=['actual','predicted'], marker='', kind='line', 
linewidth=4, 
             legend=False, figsize=(8,4.5)) 
plt.xticks(range(1,25)) 
plt.title('Residential per household power usage on 2015-06-23') 
plt.xlabel('Hour of the day') 
plt.ylabel('Energy consumption (kWh)') 
ax.text(1.5,1.25,'Data source:\nNational Grid Load Shape for Massachusetts 
Residents,\nNational Grid pilot program participants energy usage') 
ax.legend(numpoints=3, loc='upper left', labels=('Average Pilot Residence', 
'Average National Grid Massachusetts Residence')) 
ax.axvline(15,color='gray') 
ax.axvline(19,color='gray') 
# plt.plot(x,p(x),"r--") 
plt.savefig('./pilotvsavg2015-06-23.png', dpi=300) 
plt.show() 
 
 
# In[196]: 
 
 
 
 
# In[207]: 
 
merged.set_index(merged.zeroindexhour, inplace=True) 
 
 
# In[208]: 
 
shifted, left_lower, left_upper, right_lower, right_upper = 
precool(conservationday_dates[Date(2015, 6, 23)], merged) 
precool(conservationday_dates[Date(2015, 6, 23)], merged) 
 
 
# In[210]: 
 
def typeofhour(h, left_lower, left_upper, right_lower, right_upper): 
    if h in range(left_lower, left_upper + 1): 
        return 'precool' 
    elif h in range(right_lower, right_upper + 1): 
        return 'snapback' 
    elif h in range(left_upper, right_lower +1): 
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        return 'peak_event' 
    else: 
        return 'normal'  
 
merged['type'] = list(map(lambda h: typeofhour(h, left_lower, left_upper, 
right_lower, right_upper), range(24))) 
 
 
 
# In[ ]: 
 
shifted / merged.predicted.sum() 
 
 
# In[ ]: 
 
merged.actual.sum() 
 
 
# In[246]: 
 
merged.set_index(merged.oneindexhour, inplace=True) 
cp = sns.color_palette('bright') 
plt.figure() 
t=merged.index.values 
ax = merged.plot(y=['actual','predicted'], marker='', kind='line', 
linewidth=4, 
             legend=False, figsize=(8,4.5), alpha=0.7) 
ax.fill_between(x=t, y1=merged.actual, y2=merged.predicted, where=merged.type 
== 'precool', interpolate=True, facecolor=cp[4]) 
ax.fill_between(x=t, y1=merged.actual, y2=merged.predicted, where=merged.type 
== 'snapback', interpolate=True, facecolor=cp[4]) 
ax.fill_between(x=t, y1=merged.actual, y2=merged.predicted, where=merged.type 
== 'peak_event', interpolate=True, facecolor=cp[5]) 
plt.xticks(range(1,25)) 
plt.title('Residential per household power usage on 2015-06-23') 
plt.xlabel('Hour of the day') 
plt.ylabel('Energy consumption (kWh)') 
ax.text(1.5,1.25,'Data source:\nNational Grid Load Shape for Massachusetts 
Residents,\nNational Grid pilot program participants energy usage') 
ax.legend(numpoints=3, loc='upper left', labels=('Average Pilot Residence', 
'Average National Grid Massachusetts Residence')) 
ax.axvline(15,color='gray') 
ax.axvline(19,color='gray') 
# plt.plot(x,p(x),"r--") 
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plt.savefig('./pilotvsavgfill2015-06-23.png', dpi=300) 
plt.show() 
 
 
# In[254]: 
 
merged.set_index(merged.oneindexhour, inplace=True) 
cp = sns.color_palette('bright') 
plt.figure() 
t=merged.index.values 
ax = merged.plot(y=['actual','predicted'], marker='', kind='line', 
linewidth=4, 
             legend=False, figsize=(8,4.5), alpha=0.7) 
ax.fill_between(x=t, y1=merged.actual, y2=merged.predicted, 
where=merged.actual > merged.predicted, interpolate=True, facecolor=cp[2]) 
ax.fill_between(x=t, y1=merged.actual, y2=merged.predicted, 
where=merged.actual < merged.predicted, interpolate=True, facecolor=cp[0]) 
plt.xticks(range(1,25)) 
plt.title('Residential per household power usage on 2015-06-23') 
plt.xlabel('Hour of the day') 
plt.ylabel('Energy consumption (kWh)') 
ax.text(1.5,1.25,'Data source:\nNational Grid Load Shape for Massachusetts 
Residents,\nNational Grid pilot program participants energy usage') 
ax.legend(numpoints=3, loc='upper left', labels=('Average Pilot Residence', 
'Average National Grid Massachusetts Residence')) 
ax.axvline(15,color='gray') 
ax.axvline(19,color='gray') 
# plt.plot(x,p(x),"r--") 
plt.savefig('./pilotvsavgfill2_2015-06-23.png', dpi=300) 
plt.show() 
 
 
# In[229]: 
 
sns.choose_dark_palette(input='husl', as_cmap=False) 
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Appendix E: Shifted and Eliminated Calculations 
 
# coding: utf-8 
 
# # Shifted and Eliminated Calculation 
 
# In[1]: 
 
import pandas as pd 
from pandas.tseries.offsets import DateOffset 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
from cycler import cycler 
get_ipython().magic('matplotlib inline') 
plt.style.use('ggplot') 
# plt.rcParams['figure.figsize'] = (8.0, 5.0) 
fs = (8, 4.5) 
 
 
# ## Peak event (conservation day) hours 
 
# In[2]: 
 
from datetime import date as Date 
 
conservationday_dates = {Date(2015, 6, 23): range(14, 18), 
                         Date(2015, 7, 8): range(13, 18), 
                         Date(2015, 7, 13): range(13, 17), 
                         Date(2015, 7, 20): range(11, 18), 
                         Date(2015, 7, 21): range(12, 20), 
                         Date(2015, 7, 28): range(12, 20), 
                         Date(2015, 7, 29): range(11, 19), 
                         Date(2015, 7, 30): range(10, 18), 
                         Date(2015, 7, 31): range(12, 18), 
                         Date(2015, 8, 3): range(12, 19), 
                         Date(2015, 8, 4): range(12, 15), 
                         Date(2015, 8, 17): range(11, 16), 
                         Date(2015, 8, 18): range(12, 15), 
                         Date(2015, 8, 19): range(12, 15), 
                         Date(2015, 8, 20): range(13, 15), 
                         Date(2015, 8, 31): range(13, 15), 
                         Date(2015, 9, 1): range(13, 16), 
                         Date(2015, 9, 2): range(13, 15), 
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                         Date(2015, 9, 8): range(11, 15), 
                         Date(2015, 9, 9): range(11, 15)} 
 
 
# ## Generator for adjacent hours 
 
# In[100]: 
 
def nth_closest(val, bound): 
    offset = 0 
    sign = -1 
    while offset < np.max(np.abs(np.array(bound) - val)): 
        if sign == -1: 
            sign = 1 
        else: 
            sign = -1 
            offset += 1 
        candidate = val + offset * sign 
        if candidate >= bound[0] and candidate <= bound[1]: 
            yield candidate 
 
 
# ## Calculate precool and snapback 
 
# In[104]: 
 
def precool(conservation_hour, df): 
    start = int(np.rint(np.median(conservation_hour))) 
    if start not in range(24): 
        raise RuntimeError('conservation hour is not valid') 
    diff = df.predicted - df.actual 
    start_options = nth_closest( 
        start, (min(conservation_hour), max(conservation_hour))) 
    for s in start_options: 
        if diff.loc[s] > 0: 
            start = s 
            break 
    else: 
        raise RuntimeError(f'pilot higher than predicted at $start') 
 
    left_upper = 0 
    left_lower = 0 
    right_upper = 0 
    right_lower = 0 
    # find intersection to the left 
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    for left_upper in range(start, -1, -1): 
        if diff.loc[left_upper] < 0: 
            for left_lower in range(left_upper, -1, -1): 
                if diff.loc[left_lower] > 0: 
                    left_lower += 1 
                    break 
            else: 
                left_lower = 0 
            break 
    else: 
        left_lower = 0 
 
    # find intersection to the right 
    for right_lower in range(start, 24): 
        if diff.loc[right_lower] < 0: 
            for right_upper in range(right_lower, 24): 
                if diff.loc[right_upper] > 0: 
                    right_upper -= 1 
                    break 
            else: 
                right_upper = 23 
            break 
    else: 
        right_upper = 23 
 
    shifted = -(diff.loc[left_lower:left_upper].sum() + 
                diff.loc[right_lower:right_upper].sum()) 
 
    return (shifted, left_lower, left_upper, right_lower, right_upper) 
 
 
# In[4]: 
 
def plotgraph(merged, date, ): 
    plt.figure() 
 
    ax = merged.plot(y=['actual', 'predicted'], marker='', kind='line', 
linewidth=4, 
                     legend=False, figsize=(8, 4.5)) 
    plt.xticks(range(1, 25)) 
    plt.title(f'Residential per household power usage on {date}') 
    plt.xlabel('Hour of the day') 
    plt.ylabel('Energy consumption (kWh)') 
    ax.text(1.5, 1.25, 'Data source:\nNational Grid Load Shape for 
Massachusetts Residents,\nNational Grid pilot program participants energy 
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usage') 
    ax.legend(numpoints=3, loc='upper left', labels=( 
        'Average Pilot Residence', 'Average National Grid Massachusetts 
Residence')) 
    ax.axvline(15, color='gray') 
    ax.axvline(19, color='gray') 
    # plt.plot(x,p(x),"r--") 
    plt.savefig('./ng_pilotvsavg{date}.png', dpi=300) 
    plt.show() 
 
 
# ## National Grid Massachusetts load shape data 
 
# In[5]: 
 
mecols = pd.read_pickle('mecols_r1.pkl') 
 
 
# ## Shifted and eliminated, all technology levels 
 
# In[6]: 
 
def magic(peak_event_id): 
    peak_evt_df = 
pd.read_pickle(f'natgrid_event_id_{peak_event_id}_data.pkl') 
    peak_evt_df.drop(['TARIFF_SCHED_TYPE', 'EVENT_ID'], inplace=True, axis=1) 
 
    event_date = peak_evt_df.iloc[0].TS_BEGIN.date() 
 
    times = pd.DatetimeIndex(peak_evt_df['TS_BEGIN']) 
    by_level = peak_evt_df.groupby([times.hour], as_index=True) 
    aggregated = by_level.mean() 
    aggregated.index.name = 'hour' 
    aggregated['actual'] = aggregated['INTVL_READING_KWH'] * 4 
    aggregated = aggregated.reset_index() 
    aggregated.drop(['CUSTOMER_LEVEL', 'INTVL_READING_KWH'], 
                    inplace=True, axis=1) 
    peakevent = aggregated.set_index('hour') 
 
    mecols_thisday = mecols[(mecols['date'] >= event_date) & ( 
        mecols['date'] < event_date + DateOffset(days=1))] 
    mecols_thisday = mecols_thisday.drop(['rate'], axis=1) 
 
    merged = pd.concat([mecols_thisday.set_index('hour'), peakevent], axis=1) 
    merged = merged.assign(conservation=[i in conservationday_dates[ 



94 

 

                           event_date] for i in range(24)]) 
 
    eliminated = merged.predicted.sum() - merged.actual.sum() 
    eliminated_ratio = eliminated / merged.predicted.sum() 
    shifted, left_lower, left_upper, right_lower, right_upper = precool( 
        conservationday_dates[event_date], merged) 
    shift_ratio = shifted / merged.predicted.sum() 
 
    result = {'date': event_date, 
              'eliminated': eliminated, 
              'eliminated_ratio': eliminated_ratio, 
              'shifted': shifted, 
              'shift_ratio': shift_ratio} 
 
    return result 
 
 
# In[113]: 
 
natgrid_aggregated = pd.DataFrame() 
 
for peak_event_id in range(1, 30): 
    try: 
        result = magic(peak_event_id) 
#         print(result) 
        natgrid_aggregated = natgrid_aggregated.append( 
            pd.DataFrame(result, index=[peak_event_id])) 
    except FileNotFoundError: 
        pass 
    except RuntimeError as e: 
        print(peak_event_id) 
        raise(e) 
 
natgrid_aggregated.to_pickle('ng_aggregated.pkl') 
natgrid_aggregated.describe() 
 
 
# ## Shifted and eliminated, grouped by technology levels 
 
# In[71]: 
 
def magic_level(peak_event_id, level): 
    peak_evt_df = 
pd.read_pickle(f'natgrid_event_id_{peak_event_id}_data.pkl') 
    peak_evt_df.drop(['TARIFF_SCHED_TYPE', 'EVENT_ID'], inplace=True, axis=1) 
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    event_date = peak_evt_df.iloc[0].TS_BEGIN.date() 
 
    peak_evt_df = peak_evt_df[peak_evt_df.CUSTOMER_LEVEL == level] 
    times = pd.DatetimeIndex(peak_evt_df['TS_BEGIN']) 
    by_level = peak_evt_df.groupby([times.hour], as_index=True) 
    aggregated = by_level.mean() 
    aggregated.index.name = 'hour' 
    aggregated['actual'] = aggregated['INTVL_READING_KWH'] * 4 
    aggregated = aggregated.reset_index() 
    aggregated.drop(['CUSTOMER_LEVEL', 'INTVL_READING_KWH'], 
                    inplace=True, axis=1) 
    peakevent = aggregated.set_index('hour') 
 
    mecols_thisday = mecols[(mecols['date'] >= event_date) & ( 
        mecols['date'] < event_date + DateOffset(days=1))] 
    mecols_thisday = mecols_thisday.drop(['rate'], axis=1) 
 
    merged = pd.concat([mecols_thisday.set_index('hour'), peakevent], axis=1) 
    merged = merged.assign(conservation=[i in conservationday_dates[ 
                           event_date] for i in range(24)]) 
 
    eliminated = merged.predicted.sum() - merged.actual.sum() 
    eliminated_ratio = eliminated / merged.predicted.sum() 
    shifted, left_lower, left_upper, right_lower, right_upper = precool( 
        conservationday_dates[event_date], merged) 
    shift_ratio = shifted / merged.predicted.sum() 
 
    result = {'date': event_date, 
              'eliminated': eliminated, 
              'eliminated_ratio': eliminated_ratio, 
              'shifted': shifted, 
              'shift_ratio': shift_ratio, 
              'customer_level': level} 
 
    return result 
 
 
# In[114]: 
 
natgrid_aggregated = pd.DataFrame() 
 
for peak_event_id in range(0, 30): 
    for customer_level in range(1, 5): 
        try: 
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            result = magic_level(peak_event_id, customer_level) 
    #         print(result) 
            natgrid_aggregated = natgrid_aggregated.append( 
                pd.DataFrame(result, index=[peak_event_id])) 
        except FileNotFoundError: 
            pass 
        except RuntimeError as e: 
            print(peak_event_id) 
#             raise(e) 
 
# natgrid_aggregated.to_pickle('ng_aggregated_level.pkl') 
# natgrid_aggregated 
 
 
# In[115]: 
 
natgrid_aggregated.groupby('customer_level').describe() 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



97 

 

Bibliography 

[1] Abebe, Eyuel, Chukwunomso Agunwamba, James Chryssanthacopoulos, Michael Irace, and 
Muzhtaba Tawkeer Islam. Demand Response Programs in the Greater Boston Area. Rep. 
Worcester: WPI, 2007. 

 
[2] Anjum, Tanvir. Peak Electrical Demand and the Feasibility of Solar PV in the Greater 

Boston Area. Rep. N.p.: WPI, 2013. Online. 
 
[3] Beyler, Matthew. Peak Shaving Using Energy Storage at the Residential Level. Rep. N.p.: 
WPI, 2014. Online. 
 
[4] Burgwardt, Frederick, Maynard, Kevin, Sickles, Leanne. Increasing Energy Awarness on 
Nantucket. Rep. N.p. WPI, 2015. Online. 
 
[5] Beckel, Christian, Leyna Sadamori, Thorsten Staake, and Silvia Santini. "Revealing 

Household Characteristics from Smart Meter Data." Elsevier Energy (2014).  
 
[6] "Demand Response." Demand Response. Department of Energy, n.d. Web. 8 Jan. 2017. 

<https://energy.gov/oe/services/technology-development/smart-grid/demand-response>. 
 
[7] Event Consumption Data. Northborough, MA: National Grid, n.d. .xlsl. 
 
[8] "Factors Affecting Electricity Prices." Factors Affecting Electricity Prices. Energy 

Information Administration, n.d. Web. 6 Jan. 2017. 
<https://www.eia.gov/Energyexplained/index.cfm?page=electricity_factors_affecting_pri
ces>. 

 
[9] "Green Communities." Executive Office of Energy and Environmental Affairs. 

Commonwealth of Massachusetts, n.d. Web. <http://www.mass.gov/eea/energy-utilities-
clean-tech/green-communities/>. 

 
[10] Hogan, William W. Time- of- Use Rates and Real- Time Prices. N.p., 23 Aug. 2014. Web. 

<https://www.hks.harvard.edu/fs/whogan/Hogan_TOU_RTP_Newark_082314.pdf>. 
 
[11] "How a Product Earns the ENERGY STAR Label." ENERGY STAR, n.d. Web. 17 Oct. 

2016. <https://www.energystar.gov/products/how-product-earns-energy-star-label>. 
 
[12] Institute, The Good Housekeeping. "Dryer Terms." Good Housekeeping. N.p., 07 Sept. 

2011. Web. 18 Oct. 2016. <http://www.goodhousekeeping.com/appliances/dryer-
reviews/a18967/dryer-glossary/>. 



98 

 

 
[13] ISO New England's Internal Market Monitor 2015 Annual Markets Report. Ch. 2 and 3. 

N.p.: ISO-New England Inc., 25 May 2015. PDF. 
 
[14] ISO New England. "Markets and Operations." Markets and Operations. ISO-NE, n.d. Web. 

<https://www.iso-ne.com/markets-operations>. 
 
[15] ISO to Go. Computer software. Vers. V.1.2. ISO-NE, n.d. Web. <https://www.iso-

ne.com/isoexpress/>. 
 
[16] Lindsay Corcoran. "Worcester Smart Grid up and Running as National Grid Launches Pilot 

Program."Masslive.com. N.p., 15 Jan. 2015. 
Web.<http://www.masslive.com/news/worcester/index.ssf/2015/01/worcester_smart_grid
_up_and_r.html> 

 
[17] Masters, Gilbert M. "1.4-1.5.2, 9.1-9.5.1." Renewable and Efficient Electric Power Systems, 

2nd Edition. 2nd ed. N.p.: John Wiley & Sons, 2013. N. pag. Print. 
 
[18] "National Grid." National Grid., 2016. Web. 

<https://www9.nationalgridus.com/energysupply/data.asp.> 
 
[19] National Grid. Smart Energy Solutions 2016 Post Event Mini Analysis. N.p.: Navigant, 23 

Aug. 2016. PDF. 
 
[20] Navigant Consulting, Inc., comp. National Grid Smart Energy Solutions Pilot. Tech. 

National Grid, 22 Feb. 2016. Web. 
 
[21] Sankar, Lalitha, S. Raj Rajagopalan, Sohwil Mohajer, and H. Vincent Poor. Smart Meter 

Privacy: A Theoretical Framework. Rep. no. 2. Vol. 4. N.p.: n.p., 2013. Print. IEEE 
Transactions on Smart Grid. 

 
[22]  Service Rates. National Grid, n.d. Web. 

<https://www9.nationalgridus.com/masselectric/home/rates/3_service.asp>. 
 
[23] SES Conservation Day Summary. N.p.: National Grid, n.d. PDF. 
 
[24] "Smart Grid Consumer Benefits." Smart Grid Consumer Benefits. IEEE Smart Grid, 4 Sept. 

2013. Web. <http://smartgrid.ieee.org/resources/interviews/371-smart-grid-consumer-
benefits?highlight=WyJzbWFydCIsImdyaWQiLCJncmlkJ3MiLCJzbWFydCBncmlkIl0>
. 

 
[25] Smart Energy Solutions Report Appendices E, F, G. N.p.: National Grid, 24 Feb. 2016. 

PDF. 



99 

 

 
[26] "Smart Energy Solutions Pricing Plans." Smart Energy Solutions Pricing Plans. National 

Grid, n.d. Web. <https://www.nationalgridus.com/MA-Business/Smart-Energy-
Solutions/See-Our-Rates>. 

 
[27] Spees, Kathleen. "Impacts of Responsive Load in PJM: Load Shifting and Real Time 

Pricing." Energy Journal 29.2 (2008): n. pag.Carnegie Mellon University. Energy 
Journal. Web. <http://www.cmu.edu/gdi/docs/impacts-of.pdf>. 

 
[28] Spiller, Beia. "All Electricity Is Not Priced Equally: Time-Variant Pricing 101." Energy 

Exchange. Environmental Defense Fund, 27 Jan. 2015.  
 
[29] "Tesla Powerwall." Powerwall | The Tesla Home Battery. Tesla, n.d. Web. 

<https://www.tesla.com/powerwall>. 
 
[30] "What Is the Smart Grid?" What Is the Smart Home? U.S. Department of Energy, n.d. Web. 

<https://www.smartgrid.gov/the_smart_grid/smart_home.html>. 
 

[31] 2015 Average Monthly Bill- Residential. N.p.: Energy Information Administration, 2015. 

PDF. 

 

 

 

 

 

 

 


	Worcester Polytechnic Institute
	Digital WPI
	April 2017

	Equalizing Energy Use in Homes
	Keshuai Xu
	Kiriaki J. Rajotte
	Theodore Chesler Wallach
	Repository Citation


	FINALREPORT

