
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

May 2014

Core Finding for Relational Structures
Visit Pataranutaporn
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Pataranutaporn, V. (2014). Core Finding for Relational Structures. Retrieved from https://digitalcommons.wpi.edu/mqp-all/1959

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/212986963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1959&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1959&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1959&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1959&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/1959?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1959&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Core Finding for
Relational Structures

A Major Qualifying Project Report
submitted to the faculty of

Worcester Polytechnic Institute

in partial fulfillment of the requirements
for the degree of Bachelor of Science

in

Computer Science

by

Visit Pataranutaporn

May 1, 2014

APPROVED:

Professor Daniel Dougherty, project advisor

Abstract

The computation of “cores” of relational structures has a variety of applica-
tions. In this project, we revise a core computation algorithm by Pichler and
Savenkov, designed for the data exchange context, to work in a more general
setting. Contributions to research from this project include the observation
that the previous algorithm by Pichler and Savenkov may not work when dis-
junctions are present in theories, a revised algorithm for the new setting, and
an implementation of the algorithm in Haskell. We use “signature testing”
as a heuristic to improve the running time of the algorithm.

Contents

1 Introduction 3
1.1 Problem Domain . 3
1.2 Specific Problem . 3
1.3 State of the Art . 3
1.4 Problems to be Solved . 4
1.5 Contributions . 4
1.6 Motivation/Applications . 5
1.7 Structure of the Paper . 5

2 Background 6
2.1 Model-Finding Problem . 6

2.1.1 First-Order Language 6
2.1.2 Models, Facts, and Elements 6
2.1.3 Geometric Sequents and Theories 7
2.1.4 Homomorphism, Cores, and Sets of Supports 12
2.1.5 Element Rigidity . 13
2.1.6 Blocks, Non-Rigid Blocks, and Block Size 14

2.2 The Chase Algorithm . 14
2.2.1 Chase . 14
2.2.2 Siblings, Parents, Origins, and Ancestors 16
2.2.3 Provenance Information 17

1

3 Previous Algorithms 19
3.1 Outline . 19
3.2 The Correctness of the Algorithm 22
3.3 Problem with Disjunctions . 23

4 The Revised Algorithm 27
4.1 Outline for the Revised Algorithm 27
4.2 Element Signature . 29
4.3 Revised Algorithm (FindCoreD) 30

4.3.1 Preprocessing . 32
4.3.2 Main Core-Finding Function 32

4.4 Correctness of the Revised Algorithm 35

5 Evaluation 38
5.1 Implementation . 38
5.2 Experiments . 38
5.3 Results . 40

6 Future Work 43

Bibliography 45

2

Chapter 1

Introduction

1.1 Problem Domain

This project involves core computation of abstract structures, or “models.”
Examples of abstract structures include graphs and databases. There are
studies about cores of graphs [9] and cores in the data exchange problem [8];
the latter will be touched upon soon below.

1.2 Specific Problem

The focus of this project is on core computation for relational models, specif-
ically those generated by the chase algorithm [1, 10]. These chase models are
special cases of relational models because they have special properties, such
as being homomorphically minimal compared to relational models in general,
as will be explained in Section 2.1.

1.3 State of the Art

Core-finding algorithms originated in graph theory [9], but the algorithm
used in this paper was invented in the area of data exchange [5, 6, 7, 8, 11],

3

a problem in database theory. Early algorithms were invented by Fagin et
al. [5] for special cases of database constraints. An algorithm FindCore by
Gottlob and Nash [8] works for a setting where a set of constraints consists
of a weakly acyclic set of tuple-generating dependencies (tgds) and a set of
equality-generating dependencies (egds). In their algorithm [8], they used
special tgds to simulate egds, thus treating egds indirectly. The algorithm
runs in O(nc), where n is the size of the initial source instance (model) and c
is a constant that depends only on the set of constraints. Afterwards, Pichler
and Savenkov [11] presented FindCoreE, an improved version of FindCore
[8], by treating egds directly, where running time improved by an order of
magnitude in practice. Note that both FindCore and FindCoreE run in
polynomial time in the instance size (the number of facts).

In this paper, we treat a more general class of constraints (see Section
2.1). However, our algorithm for this setting may not run in worst case
polynomial time.

1.4 Problems to be Solved

The goals of this project are to revise the previous core-finding algorithms
from the data exchange context to work in a generalized setting, which al-
lows disjunctions in geometric theories (to be defined in Section 2.1); and to
implement this algorithm.

1.5 Contributions

This project resulted in some contributions to research in model-finding.
First are observations, such that the previous algorithm FindCoreE by
Pichler and Savenkov [11], though correct in the data exchange setting,
may fail when disjunctions are present in theories. Second, the algorithm
FindCoreE is extended to FindCoreD, which allows disjunctions in a the-

4

ory (hence “D” for disjunction), thus working in a more general setting.
Finally, the revised algorithm is implemented in Haskell. The implementa-
tion contains “signature testing” as a heuristic to prune search space and
thus improve the running time of the algorithm.

1.6 Motivation/Applications

At WPI, there is a research project named Hominy, which is a first-order
model-finding algorithm based on the Chase [1, 10]. Since the chase algorithm
is also used to solve the data exchange problem [4], the nature of models by
Hominy is similar to that of solutions in data exchange. Thus, previous core-
finding algorithms can be adapted and incorporated into Hominy, allowing
Hominy to produce core models.

1.7 Structure of the Paper

In Chapter 2, mathematical and research background about core compu-
tation is covered, followed by previous algorithms in Chapter 3. Then in
Chapter 4, a revised algorithm and implementation details are discussed.
The implementation will be evaluated in Chapter 5, which includes experi-
ments and results. Finally, the paper concludes in Chapter 6.

5

Chapter 2

Background

2.1 Model-Finding Problem

2.1.1 First-Order Language

Fix a first-order language L. The language of logic formulae used in this
paper consists only of relation (predicate) symbols, but no function symbol
or constants. Each relation symbol R has an arity n ≥ 0.

2.1.2 Models, Facts, and Elements

Definition 2.1. Given L, a model M for L consists of
1. a domain set |M | or dom(M),
2. for each relation symbol R ∈ L of arity n, a relation

R(M) ⊆ |M |n.

When a tuple ~a = (a1, a2, . . . , an) ∈ R(M), we call “R(~a)” a fact and
each ai ∈ ~a an element. In our models, every element will participate in at
least one relation, so we may identify a model with its set of facts.

As such, only relational models are considered here. Furthermore, the

6

notion of facts is extended to contain an id [11], which is slightly differently
defined below. IDs are used to distinguish facts with the same relation name
and tuple and relate facts with the same id to one another, both of which
cases may arise in the algorithm FindCoreE [11].

Definition 2.2. Let M be a model. Fact ids (fids) are unique identifiers
for facts in M , i.e., there is a surjective function f that maps a fid to a fact
in M . For any facts A,B ∈ M , A and B are the same fact if and only if
fidA = fidB.

2.1.3 Geometric Sequents and Theories

Definition 2.3. Fix a language L. A geometric sequent is a first-order
formula

σ : ∀~x.Φ(~x)→ Ψ(~x), (2.1)

where the premise Φ(~x) and the conclusion Ψ(~x) are formulae built from
conjunctions (∧), disjunctions (∨), equalities (=) between variables, atomic
formulae, truth (>), falsehood (⊥), and existential quantifiers (∃), and all
variables are bounded.

A set of geometric sequents Σ = {σ1, σ2, . . . , σs} is called a geometric
theory, and if M satisfies each sequent of Σ, we write “M |= Σ” and we say
“M is a model of Σ.”

Conversion to Restricted Geometric Sequents

This small section covers useful steps to transform general geometric sequents
and formulae into a special form described after this section:

• Converting Φσ and Ψσ into disjunctive normal form (DNF): A
formula in DNF is of the form

∨
i

∧
j

ai,j

 ,
7

where ai,j is either an atom or an equality; i.e., disjuncts of conjuncts.
Any formula a of the form

(∨
i

pi

)
∧

∨
j

qj

 ,
where pi and qj are formulae, is equivalent to

∨
i,j

(pi ∧ qj)

by the distributive property of formulae. Thus, disjunctions can always
be pulled out from conjuncts, even though the number of atoms may
increase drastically. Finally, one can repeat the procedure above to pull
out disjunctions to a higher level until both Φσ and Ψσ are in DNF.

• Eliminating ∨ from Φσ: Let σ be of the form (∨i φi) → Ψσ where
each φi is a (possibly existentially quantified) conjunction of atoms
and equalities. Then σ can be replaced by a set of sequents Σσ =
{σ′i : φi → Ψσ} . More precisely, reassign Σ := (Σ− {σ}) ∪ Σσ.

• Eliminating > and ⊥: Let a be any atomic formula. Then any
occurrence of > or ⊥ that is not alone in either the premise Φσ or the
conclusion Ψσ can be eliminated using the following identities.

a ∧ > = > ∧ a = a

a ∨ > = > ∨ a = >

a ∧ ⊥ = ⊥ ∧ a = ⊥

a ∨ ⊥ = ⊥ ∨ a = a

Moreover, if Φσ only contains ⊥ or Ψσ only contains >, then for any
modelM,M |= σ, and thus σ can be removed from Σ without affecting

8

the set of models of Σ. If ⊥ is in Ψσ, then there will not be any model
M such that M |= Φσ.

• Moving existential quantifiers to the conjunctional level of Φσ

or ψσ: Let a be a conjunction of atomic formulae, i.e., of the form

a :
∧
i

(∃~yiPi (~x, ~yi)) ,

where ~x is a list of free variables and each Pi (~x, ~yi) is an atomic formula.
Then a is equivalent to the formula

∃~y
[∧
i

Pi (~x, ~yi)
]
,

where ~y consists of all variables in each ~yi and these variables are re-
named in such a way that if y′ = y1 ∈ ~yj and y′ = y2 ∈ ~yk, j 6= k, then
y1 and y2 are distinct in ~y. (Equalities may be present in Φσ or ψσ as
additional conjuncts that are “anded” with a, but they should be sep-
arated since they will be dealt with later in some step.) Furthermore,
if Ψσ is of the form

Ψσ : ∃~z
[∨
i

ψi (~x, ~z)
]
,

then its ∃~z can be moved into the disjunction, i.e.,

∨
i

[∃~zψi (~x, ~z)] .

• Eliminating ∃ from Φσ: Let σ be of the form

∀~x [∃~yφ (~x, ~y)→ Ψ (~x)] ,

where φ (~x, ~y) is a conjunction of atoms and equalities without any

9

existential quantification. Then σ is equivalent to a sequent

∀~x∀~y [φ (~x, ~y)→ Ψ (~x)] ,

which can be derived as follows:

∀~x [∃~yφ (~x, ~y)→ Ψ (~x)]

∀~x [(¬∃~yφ (~x, ~y)) ∨Ψ (~x)]

∀~x [(∀~y [¬φ (~x, ~y)]) ∨Ψ (~x)]

∀~x∀~y [¬φ (~x, ~y) ∨Ψ (~x)]

∀~x∀~y [φ (~x, ~y)→ Ψ (~x)] .

• Eliminating ∃ from equalities (in ψσ): Let e be an equality. If e is
of the form

e : ∃y.x = y,

where x is a free variable, then by substituting y with x and by removing
∃y, e will become a tautology x = x for any free variable x. The form
∃y.y = x is similar.

• Eliminating equalities from Φσ: Let σ be of the form

σ : ∀~x
[∧
i

(ui = vi) ∧ φ (~x)→ Ψ (~x)
]
,

where ui and vi are variables in ~x and φ (~x) is a conjunction of atoms.
Then, by replacing ui with vi within ~x, for every i, those equalities will
be equivalent to > and thus can be removed from the premise.

10

Restricted Geometric Sequents

Without loss of generality, any general geometric sequent in (2.1) above can
be transformed into a more restricted form using the steps we described.
This form is useful and convenient to use in this paper. In this restricted
form, premises Φ and conclusions Ψ in Σ are of the form

Φ(~x) =
∧
i

Pi(~x)

Ψ(~x) =
∨
i

ψi(~x).

Moreover, each conjunct Pi(~x) is an atomic formula, and each disjunct ψ is
of the form

ψ(~x) = ψeq(~x) ∧ ∃~y [ψpred(~x, ~y)] ,

where
ψeq(~x) =

∧
j

xaj
= xbj

,

ψpred(~x, ~y) =
∧
j

Qj(~x, ~y),

xa = xb (xa, xb ∈ ~x) is called an equality, ~y is possibly empty, Qj(~x, ~y) is an
existentially quantified atomic formula of relation symbol Qj ∈ L, and each
variable y ∈ ~y, y /∈ ~x, is bound to the existential quantifier. Also note that
in the data-exchange setting [4], the conclusion consists of only one disjunct,
and as special (but wide) cases, a sequent with an equality and a sequent
only with existentially quantified atomic formulae are called an egd and a
tgd, respectively [2]. Finally, for convenience, the universal quantifier ∀~x of
σ in (2.1) is usually implied and will be omitted.

One special class of geometric theories is called the data exchange problem.
Details about the problem can be found in the paper by Fagin et al. [4]. This
problem is not the focus of this paper but is mentioned here since the core-
finding algorithm in this paper is adapted from those [8, 11] used in the

11

context of data exchange.

2.1.4 Homomorphism, Cores, and Sets of Supports

Definition 2.4. Let M be a model for a theory Σ. A homomorphism
h : M → M ′ is a mapping dom(M) → dom(M ′) such that for every fact
P (~a) ∈M,P (h(~a)) ∈M ′, and for every constant c ∈ dom(M), h(c) = c. An
endomorphism is a homomorphism h : M → M . A retraction is an endo-
morphism r : M →M such that r ◦ r = r. A retract of M is the image r(M)
of a retraction r of M . Finally, MC is a core if every endomorphism on it is
an isomorphism. There may exist multiple cores of M , but they are unique
up to isomorphism.

The following theorem is useful in proving the correctness of our algorithm
(Section 4.4).

Theorem 2.5. Let Σ be a geometric theory. If A |= Σ and B is a retract of
A, then B |= Σ, i.e., Σ is closed under retractions.

Proof. (cf. [8]) Let σ be a geometric sequent of the form

σ : Φ(~x)→
∨
i

ψi(~x),

where
ψi(~x) = ψi,eq(~x) ∧ ∃~y [ψi,pred(~x, ~y)] .

Let A |= σ and let r : A → B be a retraction such that r(A) = B. If
B |= Φ

(
~b
)
for some ~b ∈ dom(B), then also A |= Φ

(
~b
)
since r is a retraction.

Since A |= σ, there exists k such that A |= ψk
(
~b
)
, i.e., A |= ψk,eq

(
~b
)
and

there exists ~a ∈ dom(A) such that A |= ψk,pred
(
~b,~a

)
. This implies that

B |= ψk,eq
(
r
(
~b
))
∧ ψk,pred

(
r
(
~b
)
, r (~a)

)
. Finally, since r is a retraction and

~b ∈ dom(B), we have r
(
~b
)

= ~b and B |= ψk,eq
(
~b
)
∧ψk,pred

(
~b,~c

)
for ~c = r(~a),

i.e., B |= σ as required.

12

The following lemma is an observation about the existence of non-injective
endomorphisms and will be used in the revised algorithm (Section 4.3).

Lemma 2.6. Let M be a model for a geometric theory Σ. Then there ex-
ists a non-injective endomorphism h on M if and only if there exists an
endomorphism h′ on M and elements u, v ∈ dom(M), u 6= v, such that
h′(u) = h′(v) = v.

Proof. Let h be an endomorphism where h(x) = h(y) for some x, y ∈ dom(M).
There are two cases to consider. The case for the backward implication is
trivial: If such h′, u, and v exist, then we can assign h := h′, x := u, and
y := v, and therefore, we have the endomorphism h as required. In the
other case, assume that there exist an endomorphism h on M and distinct
elements x, y such that h(x) = h(y). By Theorem 5 in Gottlob and Nash [8]
(Theorem 3.4 on page 23), h can be transformed into a retraction r such that
r(x) = r(y). Let a = r(x). Since x 6= y, we have a 6= x or a 6= y. Without
loss of generality, let us assume that a 6= x (if a = x, just swap x and y to
get a 6= x). Then assign u := x, v := a, and h′ := r. Since r(x) = r(a) = a,
we have h′(u) = h′(v) = v with u 6= v as required.

Definition 2.7. A set of support of a theory Σ is a set S = {M | M |= Σ}
such that for any model A |= Σ, there exists a model M ∈ S. A minimal
set of support Smin of Σ is a set of support of Σ such that there is no proper
subset that is a set of support of Σ.

Note that in the non-disjunction case, Smin contains at most one model
called a universal solution [4]. However, since that is not the case for this
paper, the terminology does not apply here.

2.1.5 Element Rigidity

Definition 2.8. ([5]): Let M be a model. An element e ∈ dom(M) is rigid
if for any endomorphism h : M →M,h(e) = e.

13

Note that in this paper, “element signatures” (defined in Section 4.2) can
give a sufficient condition the rigidity of elements.

2.1.6 Blocks, Non-Rigid Blocks, and Block Size

Definition 2.9. Let M be a model and let the Gaifman graph G(M) of M
be defined as such a graph (V,E) where vertices in V are elements and an
edge (a, b) is in E if there exists a fact P (~c) ∈M such that a, b ∈ ~c. A block
of M is a connected component of G(M), thus a set of “tangle” elements. A
non-rigid block of M is a connected component of the G ′(M) whose vertices
are restricted to non-rigid elements of M (cf. [11]). Finally, the block size of
M is the maximal number of elements in any block of M .

2.2 The Chase Algorithm

2.2.1 Chase

The Chase is an iterative algorithm invented by Aho et al. [1] and Maier et
al. [10]. Not only can the chase solve the data exchange problem [4, 5], but
it can also find models for geometric theories. In the latter case, it works as
follows.

Given a current model M and a theory Σ, if M |= Σ, then the chase
terminates, and M is a model of Σ. Otherwise, let σ : Φ(~x) → Ψ(~x) be a
sequent such that M 2 σ, i.e., there exists a variable assignment ~a of ~x such
that M |= Φσ(~a) but M 2 Ψσ(~a). Then, the chase (said to fire the sequent
σ) selects one disjunct (branch) ψσ(~a) and creates a new model M ′ from M

as follows from (1) to (2):

1. Let ψσ,pred(~x, ~y) = ∧
j Qj(~x, ~y). Since ∃~b.∧j Qj(~a,~b) is false, therefore:

(a) New elements~b all not already in dom(M) will be added to dom(M ′),
i.e., dom(M ′) := dom(M) ∪

{
b | b ∈ ~b

}
.

14

(b) All facts in
{
Qj(~a,~b)

}
will also be added to M ′, i.e., M ′ := M ∪{

Qj(~a,~b)
}
.

2. Then after (1), for each element pair (a, b) in ψσ,eq(~a), a, b ∈ ~a and
a 6= b, all occurrences of a will be replaced with b (or vice versa) in M ′,
pair after pair in any order.

Finally, models generated by the chase will be referred to as chase models,
which are the focus of this paper.

There are three possible outcomes for a run of the Chase on geometric
theories:

1. the algorithm terminates with a model, which satisfies Σ,

2. it terminates with failure, i.e., no model, and

3. it never terminates (an infinite loop).

Theorem 2.10. Let Σ be a geometric theory. Then Σ is satisfiable if and
only if there is a fair run of the Chase which does not fail. A (possibly
infinite) set of models obtained by some execution of the Chase is a set of
support of Σ.

In the literature, there is a useful sufficient condition for the termination of
the Chase, weak acyclity [3, 4], which is defined as the following (borrowing
some terms from the paper by Pichler and Savenkov [11]).

Definition 2.11. ([3, 4]) Fix a language L. Let Σ be a geometric theory.
Let a field Ri be defined for each position (index) i of the relation symbol
R ∈ L. Let GD = (V D, ED) be the dependency graph of Σ where vertices of
V D are all the fields Ri in Σ and the set ED consists of two types of edges,
normal edges ED

n and “existential” edges ED
e , i.e., ED = ED

n ∪ ED
e . ED

n

contains an edge (Ri, Sj) if there exists a sequent σ such that the variable
x ∈ ~x in the field Ri in Φσ(~x) is also in the field Sj in Ψσ(~x). ED

e contains

15

an edge (Ri, Sj) if there exists a sequent σ such that the variable x ∈ ~x in
the field Ri in Φσ(~x) is also in some field in Ψσ(~x) and the variable y in the
field Sj is bound in Ψσ(~x). If for every cycle 〈v1, v2, . . . , vk, vk+1 = v1〉 ∈ GD,
(vi, vi+1) /∈ ED

e , then Σ is weakly acyclic.

As such, this paper only focuses on geometric theories that are weakly
acyclic.

The two following definitions mostly follow Pichler and Savenkov [11].

2.2.2 Siblings, Parents, Origins, and Ancestors

Definition 2.12. Let Σ be a theory and M be the current model, while
running the Chase, such that M 2 Σ. Let σ : Φ(~x) → Ψ(~x) be a se-
quent in Σ and let ~a be a tuple of elements of M such that M |= Φ(~a) but
M 2 Ψ(~a). Finally, let ψσ,pred(~a,~b) = ∧

j Qj(~a,~b) be in a branch chosen by
the chase in firing σ. Then, facts in

{
Qj(~a,~b)

}
are siblings, newly created

facts to be added to M ; all elements in ~b are also new. For each element
e ∈ ~b, we define its origin fact origin(e) to be Qk(~a,~b) for some k such that
e participates in Qk(~a,~b); for each element e ∈ ~a, origin(e) can be traced
back to some previous sequent firing of σ′ with ~a′,~b′ where e ∈ ~b′ partici-
pates in ψσ′,pred(~a′,~b′). The parents set of a fact P

(
~d
)
is defined as the set

parents
(
P
(
~d
))

=
{
origin(e) | e ∈ ~d ∧ origin(e) 6= P

(
~d
)}

. Finally, let the
parent relation be defined on facts(M)×facts(M) where a pair (p, q) in the
relation if and only if q ∈ parents(p). Then, the ancestor relation on facts
is the transitive closure of the parent relation.

The following definition describes an important construct used in FindCoreE

[11], which will be described in Chapter 3. Note that this definition is slightly
different from theirs, in that our “starting subset” T is always empty while
it is not the case for FindCoreE, and that we write Mxy for Txy.

Definition 2.13. Given a geometric theory Σ, a model M , and elements
x, y ∈ M , then Mxy is defined as the smallest set containing facts origin(x)

16

and origin(y) such that if any factA is inMxy, then siblings(A)∪parents(A) ⊆
Mxy (closure under parents and siblings).

2.2.3 Provenance Information

Definition 2.14. Let Σ be a geometric theory, let M be a model (possibly
partial, or M 2 Σ), and let A ∈ M be a fact from firing the sequent σk :
Φ(~x)→ Ψ(~x) with variable substitutions ~x = ~a, where this is the sth sequent
firing of Σ. Provenance information provA of a fact A is a triplet (sA, kA, bA)
where

1. sA = s is a sibling id, or sid, which is the ordinal number of the sequent
firing,

2. kA = k is a sequent number, which is a unique identifier for sequents,
and

3. bA is a variable binding or substitution, which is a set of pairs (xi, ai), xi ∈
~x, ai ∈ ~a, for each i.

Moreover, for each B ∈ M , B ∈ siblings(A) if and only if sA = sB; and
for any C,D ∈M , if kC = kD and bC = bD, then sC = sD.

In our context, sibling ids are used to determine siblings in M , and vari-
able bindings are used to determine which elements caused certain sequent
firings, while sequent numbers may not be used explicitly. Now, with prove-
nance information above, we will redefine siblings, origin facts, and parents
from Definition 2.12 (page 16) and fact ids from Definition 2.2 (page 7).

Definition 2.15. Let M be a model for a geometric theory Σ.
1. Siblings information is a function siblings : {sids} → P({fids}),

where siblings(sid) consists of each fact A ∈ M (denoted by sid sA rather
than A) such that sA = sid.

2. Element origins are defined as a function origin : dom(M) → {fids}
such that for each e ∈ dom(M), origin(e) ∈ U is the least fid of any fact in
which e appears.

17

3. Parents information is the same as in Definition 2.12 on page 16 and
depends on siblings and origin.

4. Fact ids (fids) are defined such that, in addition to Definition 2.2,
for any two facts A,B ∈ M , fidA < fidB iff sA < sB, that is, fact ids are
grouped by sibling ids. Moreover, fids are assigned consecutively, breaking
ties arbitrarily for sibling facts.

With the several definitions above, we are ready to describe the previous
core-finding algorithm FindCoreE [11].

18

Chapter 3

Previous Algorithms

3.1 Outline

As described in the introduction, there are core-finding algorithms by Fagin
et al. [5], Gottlob [6], Gottlob and Nash [7, 8], and Pichler and Savenkov
[11]. The core-finding algorithm FindCoreE by Pichler and Savenkov [11]
is given on the following page. Note that the algorithm here is modified from
the original data exchange context so that we already have an initial model
(the universal solution) M from the start and that we assume solutions to
these theories always exist. Variable names are also changed to better fit the
context of this project.1

The idea of the algorithm is to iteratively compute a succession of nested
proper retracts. The procedure starts with an initial model U := M . Then it
gradually and repeatedly shrinks the model U until it cannot be any smaller,
at which point it has reached the core. In each step of attempting to shrink
the current model U , it selects each pair of distinct elements (x, y). Then it
computes a sub-model Mxy of M , which contains origin facts origin(x) and
origin(y) and is closed under parents and siblings. More specifically, Mxy :=
Fx ∪ Fy where Fz for z = x and z = y can be computed iteratively using the

1For instance, M, Mxy, elm are used in place of T Σ, Txy, var.

19

Procedure FindCoreE ([11]):

Input: Theory Σ
Input: Initial model M |= Σ
Output: Core of M

(1) Set U := M
(2) for each x, y ∈ dom(U), x 6= y do:
(3) Mxy := Fx ∪ Fy by calling ComputeFz with each of x and y
(4) Find h : Mxy → U s.t. h(x) = h(y)
(5) if such h exists:
(6) Extend h to an endomorphism h′ on U by calling Extend
(7) Transform h′ into a retraction r
(8) Set U := r(U)
(9) return U

Procedure ComputeFz ([11])

Input: Element z ∈ dom(TΣ)
Output: Set Fz

(1) Set Fz := ∅
(2) Set queue Q := {origin(z)}
(3) while Q is not empty do:
(4) Set fact A := removeFrom(Q)
(5) Set Fz := Fz ∪ {A}
(6) Set Q := Q ∪ (siblings(A) \ Fz)
(7) Set Q := Q ∪ (parents(A) \ Fz)
(8) return Fz

20

Procedure Extend ([11]):

Input: Model M
Input: Submodel W ⊆M closed under parents and siblings
Input: Homomorphism h : W → B with B |= Σ
Output: Homomorphism h′ : M → B such that

∀x ∈ dom(W), h′(x) = h(x)

(1) Set h′ := h
(2) while exists a fact A ∈M \W ,

s.t. parents(A) 6= ∅ and parents(A) ⊆ W do:
(3) Set P := parents(A)
(4) Set S := {A} ∪ siblings(A)
(5) Find homomorphism g : S ∪ P → B,

s.t. ∀x ∈ dom(g) ∩ dom(h′) : g(x) = h′(x)
(6) Set h′ := h′ ∪ g
(7) Set W := W ∪ S
(8) return h′

algorithm ComputeFz (which is essentially the same as the procedure by
Pichler and Savenkov [11] though more concrete). By adding into Fz siblings
and parents of any fact that is to be included in Fz, it is obvious that Fz
is closed under parents and siblings. Next it tries to find a homomorphism
h : Mxy → U which maps x and y to the same element. A naïve approach is
used to search for such a homomorphism. If h does not exist, then x and y
are not mapped to the same element in the core. Otherwise, h can always be
extended to an endomorphism h′ : U → U , which is then transformed into a
proper retraction r on U . The algorithm finishes the step by applying r on
U , resulting in a smaller model r(U) where x and y have been mapped to
the same element. The step is executed for each remaining (x, y) until none
is left, meaning the core is found and no progress can be made further.

The subroutine Extend extends the initial homomorphism h by itera-
tively adding facts from M into W while mapping new elements for g such
that the new mapping h′ ∪ g is consistent with the previous mapping h′.

21

The subroutine relies on the fact that W is closed under parents and siblings
because once elements in parents of the sibling set have been mapped, that
is, h′ is defined on those elements, g can then be defined in a straightfor-
ward way for new elements in the sibling set for which h′ is undefined. More
specifically, chasing Σ to obtain M gives us information about which facts
and elements directly caused the creation of certain facts and elements.2 In
other words, extending h′ requires no backtracking because of the determin-
istic nature of Σ (no disjunction). However, we will explore in the Section
3.3 why disjunctions may cause this procedure to fail.

The next part will cover relevant theorems for the correctness and running
time of FindCoreE The theorems have been put into the new context as
the algorithm early in this section.

3.2 The Correctness of the Algorithm

Lemma 3.1. ([11]) Let Σ be a weakly acyclic geometric theory and let a
model M |= Σ. For each x, y ∈ dom (M), the submodel Mxy (Definition
2.13) satisfies:

1. origin(x), origin(y) ∈Mxy,
2. every fact in W was created by firing a non-full sequent,
3. |dom(Mxy)| ≤ b.
4. Mxy can be computed in time O(bc) for some constants b and c which

depend only on Σ.

Theorem 3.2. ([11]) Let Σ be a weakly acyclic geometric theory, let U be a
retract of M , let x, y ∈ dom(M), and let Mxy ⊆M be computed in Definition
2.13 above. Then there is a constant c, depending only on Σ, such that
we can check in time O(|dom(M)|c) whether there exists a homomorphism

2That information is called source positions [11], but it is not used in this project
because it is unavailable to us and is replaced by provenance information, defined in
Subsection 2.2.3.

22

h : Mxy → U , h(x) = h(y).

Theorem 3.3. ([11]) Let M be a model satisfying a weakly acyclic geometric
theory Σ without disjunctions. Let model B |= Σ and let W ⊆ M be a
submodel such that W is closed under parents and siblings over facts and
that each fact in W was created by firing a non-full sequent. Then any
homomorphism h : W → B can be extended in time O(|dom(M)|b) into a
homomorphism h′ : M → B such that ∀x ∈ dom(h) : h(x) = h′(x), where b
depends only on Σ.

Theorem 3.4. ([8]) Let M be a model and let h be an endomorphism on
M such that h(x) = h(y) for some x, y ∈ dom(M). Then there exists a
retraction r on M such that r(x) = r(y), and r can be computed in time
O(|dom(M)|2).

Theorem 3.5. ([11]) Let Σ be a weakly acyclic geometric theory without
disjunctions and let M |= Σ. Then FindCoreE correctly computes the core
of M in time O(|dom(M)|b) for some b that depends only on Σ.

3.3 Problem with Disjunctions

Disjunctions in geometric theories complicate the problem of core finding:
The algorithm FindCoreE [11], especially the lifting function Extend on
page 21, does not always work with such theories due to non-determinism
from disjunctions. More specifically, the following two examples demonstrate
that Theorem 3.3 does not hold when Σ contains disjunctions, meaning that
Theorem 3.5 also no longer holds and that the algorithm FindCoreE re-
quires a fix in order to correctly computes cores when disjunctions are present
in theories. The first example is the case where FindCoreE fails to extend
an initial homomorphism h, given that h exists for some elements x, y, be-
cause there is no extension to an endomorphism h′ in the first place. On the
other hand, the second example will show that although such extension to the

23

endomorphism h′ exists, FindCoreE can fail due to making unlucky choices
during the incremental extension. Now, consider the following example.

Example 3.6. Let a theory Σ be as follows:

σ1 : > → ∃x.P (x)
σ2 : > → ∃y.Q(y)
σ3 : P (x)→ ∃y.R(x, y)
σ4 : Q(x)→ ∃y.R(x, y)
σ5 : R(x1, y) ∧R(x2, z)→ x1 = x2

σ6 : R(x, y)→ ∃z.S(y, z)
σ7 : S(y, z)→ A(z) ∨B(z).

Then one possible initial model M satisfying Σ is

{P (a), Q(a), R(a, b), R(a, c), S(b, d), S(c, e), A(d), B(e)},

where a, b, c, d, and e are the elements in the model M . Note that Σ is
weakly acyclic.

Specific details about the theory are as the following: The first four se-
quents force the existence of two facts of the relation R. Then sequent σ5

equates the first arguments of these facts, essentially making facts of rela-
tions P and Q unimportant since then. The purpose of P and Q is to allow
multiple similar facts (redundancy). σ6 then creates two more facts, one for
each fact in R, and finally, σ7 gives choices for the Chase to make. Let us
assume M was created from choosing different branches of σ7.

To show how this can be problematic to Theorem 3.3, all four conditions
of the theorem (except for the disjunctions) must be satisfied while the con-
clusion must not. Let (x, y) = (b, c), B = M |= Σ, W = Mxy = Mbc =
{P (a), Q(a), R(a, b), R(a, c)} ⊆ M , and h : W → B where h(a) = a and
h(b) = h(c) = c. Also, P (a) originated from σ1 and has no sibling or parent.
Q(a) is similar except that it came from σ2. R(a, b) came from σ3 and has
a parent P (a), and R(a, c) came from σ4 and has a parent Q(a). Thus W

24

is closed under parents and siblings over facts. All σ1, σ2, σ3, and σ4 are
non-full sequents. Therefore, all the conditions in Theorem 3.3 are satisfied.
However, no extension of h to h′ : M → B exists because h′(d) can never be
equal to h′(e), but the fact that h(b) = h′(b) = c forces h′(d) = h′(e) = e,
leading to a contradiction.

In another case, we may find that a particular endomorphism h : W → B

can be extended to h′ : M → B, but that during the extension, the algorithm
happens to pick an unlucky choice that leads to a dead end in a later step of
lifting. Consider the following example.

Example 3.7. Let theory Σ be as follows:

σ1 : > ⇒ ∃x.P (x)
σ2 : > ⇒ ∃y.Q(y)
σ3 : > ⇒ ∃z.R(z)
σ4 : P (x)⇒ ∃y.S(x, y)
σ5 : Q(x)⇒ ∃y.S(x, y)
σ6 : R(x)⇒ ∃y.S(x, y)
σ7 : Q(x1) ∧ S(x1, y) ∧R(x2) ∧ S(x2, z)⇒ x1 = x2

σ8 : P (x) ∧Q(y)⇒ P (y)
σ9 : S(x, y)⇒ ∃z.T (y, z)
σ10 : T (y, z)⇒ A(z) ∨B(z).

And let the initial model M be

{P (a1), P (b1), Q(b1), R(b1), S(a1, a2), S(b1, b2), S(b1, c2),

T (a2, a3), T (b2, b3), T (c2, c3), A(a3), B(b3), A(c3)}.

Notice that M consists of three “trails” of facts, with the a-trail separated
from the rest. The heads of b- and c-trails are joined by the equality in σ7

and consist of P (b1) and Q(b1) not in the a-trail; and the tail of the b-trail,
ending with the fact B(b3) of relation B, is distinct from other tails, ending

25

with facts of relation A. Thus, the only possible collapse of trails within M
is from the a-trail to the c-trail, i.e., a retraction r: r(a1) = b1, r(a2) = c2,
r(a3) = c3, and for each x ∈ dom(M) \ {a1, a2, a3}, r(x) = x.

Again, first let us satisfy the premise of Theorem 3.3. Let (x, y) = (a1, b1),
B = M |= Σ, W = Mxy = Mab = {P (a1), Q(b1)} ⊆ M , and h : W → B

where h(a1) = h(b1) = b1. Since P (a1) and Q(b1) originated from σ1 and
σ2 (respectively) and have no sibling or parent, W is closed under parents
and siblings. All σ1, σ2, σ3, and σ4 are non-full sequents. Therefore, all the
conditions in Theorem 3.3 are satisfied.

However, the original algorithm does not handle this case well. There are
two choices for a2 to map, b2 and c2. As note earlier, the second can lead to
the retraction r, but without any predictive method, let us assume that the
algorithm blindly chooses the first choice in the lifting: h′(a2) = b2. Then we
are forced to map a3 → b3, but since A(b3) /∈ M , we reach a dead end as in
Example 3.6 that is impossible in the data exchange setting.

From Examples 3.6 and 3.7, we state the following proposition.

Proposition 3.8. FindCoreE [11], especially Extend, may fail when the-
ories contain disjunctions. In other words, Theorems 3.3 and 3.5 no longer
hold for those theories.

26

Chapter 4

The Revised Algorithm

4.1 Outline for the Revised Algorithm

As we switch contexts from data exchange to the more general setting, some
properties of the core-finding problem change while others remain the same.
More specifically, the following theorems stated in Section 3.2 still apply here:

• Lemma 3.1 about Mxy (Mxy will still be used in the algorithm),

• Theorem 3.2 about finding an initial homomorphism h : Mxy → U

(U ⊆M), and

• Theorem 3.4 about the existence of proper retractions given proper
endomorphisms.

However, as we showed in Section 3.3 above, Theorem 3.3 for lifting generally
does not hold for theories with disjunctions, our more general setting. As
such, Theorem 3.5 no longer applies, since it depends on that theorem. More-
over, the closure under retraction of geometric theories needs to be extended
to theories containing disjunctions (see Theorem 2.5 on page 12).

This chapter is structured in the following way: First we describe element
signatures and the signature testing. Next we describe how we revised the

27

previous algorithm [11] and which features are changed or added. Finally,
we prove for the correctness of the algorithm.

In addition, we can summarize ideas about the revision of the algorithm
as follow:

1. We fix the previous algorithm by switching to a slower method when
the original fails to extend in some loop of FindCoreE. This method
guarantees correctness but can be exponentially slower than before,
since it is much more naïve than the original. Thus, the revised algo-
rithm may not run in polynomial time in the number of elements in
the worst case.

2. We use a heuristic called “signature testing” to prune homomorphism
searching space. It is both to improve the running time of the algo-
rithm in general and to remedy the exponential time of the fix in Idea
#1. To implement this heuristic, each element will have a signature, or
a fingerprint, which contains partial important information about that
element. That information, which is analogous to but more meaningful
than hash values, will allow us to quickly determine whether two ele-
ments can be mapped to one another in any homomorphism, though
possibly with false positives. The element signature will be defined in
the next section.

3. One significant difference of between FindCoreE and our algorithm is
the input information available to the algorithms. FindCoreE can use
the chase step sequence [11], which contains complete event informa-
tion of each sequent that was fired, by which facts and which elements,
from start to end. On the other hand, we are not given that infor-
mation directly.1 Instead, we have “provenance information,” (already
defined in Subsection 2.2.3 on page 17) which is roughly a subset of
the sequence. More precisely, it is missing complete theory information

1from Hominy, a model finder from which we obtain models

28

and original elements before firing equalities. Therefore, there will be
differences in using information and in the implementation, although
the concept remains intact.

4.2 Element Signature

Definition 4.1. Fix a language L. Let M be a model. For each element
e ∈ dom(M), the signature Sig(e) consists of, for each relation symbol
P ∈ L, a set SigP (e) of sets of indices where each set s = {i1, i2, . . . , ik} ∈
SigP (e) if there exists a fact P (a1, a2, . . . , an), n ≥ k, such that for each
i ∈ {1, 2, . . . , n}, ai = e ⇐⇒ i ∈ s. Note that an indices set s may come
from more than one fact, but which fact specifically is irrelevant.

With signatures defined, we can state the following definitions, which rely
on signatures.

Definition 4.2. Fix a language L. Let M be a model. The (initial)
signature-compatible pairs set (scp) scp1 is a set consisting of all element
pairs (x, y) where x, y ∈ dom(M) and, for each relation symbol P ∈ L and
each indices set sx ∈ SigP (x), there exists sy ∈ SigP (y) such that sx ⊆ sy.
In this case, we call (x, y) a compatible pair.

In fact, the scp is the only thing we use in signature testing, since the
set apparently tells us which elements to which certain elements can map.
However, note that this set is not fixed throughout the algorithm. Some pairs
(a, b) may be removed as we discover later that they are false positives, i.e.,
no valid endomorphism h on M with h(a) = h(b) = b (more about this later
in Section 4.3). In any case, we can use the scp to determine which elements
are rigid in the current model.

Definition 4.3. Given scp for a modelM , each element e ∈ dom(M) is rigid
w.r.t. scp if (e, e) ∈ scp and (e, x) ∈ scp implies x = e. In other words, (e, e)
is the only pair in scp with the left element being e.

29

Procedure FindCoreD:

Input: Theory Σ
Input: Initial model M |= Σ
Output: Core of M

(1) Set U := M
(2) Set scp := {(x, y) | x, y ∈ dom(M) ∧ Sig(x) ⊆? Sig(y)}
(3) for each (x, y) ∈ scp, x 6= y do:
(4) Mxy := Fx ∪ Fy by calling ComputeFz with each of x and y
(5) Find h : Mxy → U s.t. h(x) = h(y) = y
(6) if such h exists:
(7) Extend h to an endomorphism h′ on U by calling ExtendD
(8) if ExtendD returned FAILURE:
(9) Find h′ : M → U s.t. h′(x) = h′(y) = y
(10) if h′ is well defined for (x, y):
(11) Transform h′ into a retraction r
(12) Set U := r(U)
(13) Set scp := {(x, y) | (x, y) ∈ scp ∧ x, y ∈ dom(U)}
(14) return U

One advantage of a shrinking scp is that we have smaller search space.
A notion of rigidity with scps will also help improve the running time of the
algorithm.

4.3 Revised Algorithm (FindCoreD)

This section will describe ideas behind the algorithm (FindCoreD) in de-
tails, including preprocessing.

30

Procedure ExtendD:

Input: Model M
Input: Submodel W ⊆M closed under parents and siblings
Input: Homomorphism h : W → B with B |= Σ
Output: Homomorphism h′ : M → B such that

∀x ∈ dom(W), h′(x) = h(x),
or returns FAILURE

(1) Set h′ := h
(2) while exists a fact A ∈M \W ,

s.t. parents(A) 6= ∅ and parents(A) ⊆ W do:
(3) Set P := parents(A)
(4) Set S := {A} ∪ siblings(A)
(5) Find homomorphism g : S ∪ P → B,

s.t. ∀x ∈ dom(g) ∩ dom(h′) : g(x) = h′(x)
(6) if such g does not exist:
(7) return FAILURE
(8) Set h′ := h′ ∪ g
(9) Set W := W ∪ S
(10) return h′

31

4.3.1 Preprocessing

Provenance to model

Each fact described in provenance is included in U1 = M (the initial retract)
along with fact ids (fids) and sibling ids (sids). Facts are assigned fids in
increasing order of sids, breaking ties arbitrarily for siblings with the same
sid. Note that many facts may share the same fact values, but they are
distinguished by fids.

Model information

Crucial information about models used in core computation includes siblings,
element origins, and signature-compatible pairs (scps). Fix a language L.
Siblings information is a function siblings1 : {sids} → P({fids}), where
siblings1(sid) consists of all facts (denoted by fids) in U1 whose sids equal
sid. Element origins are defined as a function origin1 : dom(U1) → {fids}
such that for each e ∈ dom(U1), origin1(e) ∈ U1 is the least fid of any fact
in which e appears. Finally, the scps scp1 is a set consisting of all element
pairs (x, y) where x, y ∈ dom(U1) and, for each relation symbol P ∈ L and
sx ∈ SigP (x), there exists sy ∈ SigP (y) such that sx ⊆ sy (the meaning of
⊆? in line (2) of FindCoreD). That is, (x, y) is a compatible pair.

4.3.2 Main Core-Finding Function

Given an initial model U0, along with its information about siblings, origins,
and scps, we compute its core by repeatedly executing a loop to gradually
shrink the model. In the ith loop (i ≥ 1), we pick some (x, y) ∈ scpi, x 6= y;
if there is no such (x, y), we stop and have found the core Mc = Ui. Each
loop consists of a sequence of the following steps:

32

Computing Mxy

For each element z ∈ dom(Ui), let Fz denote the smallest set that contains
origini(z) and is closed under parents and siblings. We construct Fz incre-
mentally using the procedure ComputeFz on page 20 as follows: first let
Fz := {origini(z)}, then for any fact in Fz, add to the set its siblings and
parents. Repeat the process until the set reaches a fixed point. Finally, let
Mxy := Fx ∪ Fy.

Initial homomorphism

The idea is to find a non-injective homomorphism h : Mxy → Ui where
h(x) = h(y) = y. We consider each non-rigid block B in Mxy and define h
independently. If x ∈ dom(B) or y ∈ dom(B), then we can use exhaustive
search with signature testing and partial-answer checking (checking if the
partial h is a homomorphism from some subset of Mxy to Ui as we build h)
to compute h restricted to B in O(|dom(B)|c) for some c that depends only
on Σ (by Theorem 3.2). Otherwise, if x, y /∈ dom(B), we can use the previous
retract ri−1 : M → Ui (r0 is the identity) to define h on block B, that is,
we set h(z) = ri−1(z) for each z ∈ dom(B), since h is not required to be
non-injective except for h(x) = h(y) = y. Additionally, we define h(z) = z

for each rigid element (as if constant) z ∈ dom(Mxy). If such h : Mxy → Ui

does not exist, then no h′ : M → Ui where h′(x) = h′(y) exists either, and
therefore (x, y) can be removed from scpi (i.e., we set scpi+1 := scpi\{(x, y)})
because no mapping exists such that h′(x) = y. But if such h exists, then
there may be an extension h′ : M → Ui of h where h′(x) = h′(y) and for each
z ∈ dom(Txy), h(z) = h′(z). Theorem 3.3 guarantees the existence of such h′

for weakly acylic geometric theories without disjunctions, while Proposition
3.8 shows that it is always not the case for theories with disjunctions.

Note that in FindCoreE [11], h(x) = h(y) is not forced to be equal to
y, but it is the case here because signatures are used to eliminate mapping
possibilities and Lemma 4.4 will prove the validity of the method.

33

Extend

This is the procedure ExtendD on page 31. LetW be the current submodel,
where Mxy ⊆ W , there exists a homomorphism h : W → Ui, and W is closed
under parents and siblings. Initially let W := Mxy and h denote the initial
homomorphism found in the previous step. Unlike Extend [11], which uses
“source positions” to map each new fact outside of W , we select a set of
siblings S to be mapped group by group, assuming the parents of facts in
S are already in W . In fact, if we select S in increasing order of sids, then
that assumption can be made. If S has an sid less than all facts in W , then
facts in S do not have a parent and thus can be added to W safely (and
update h as appropriate). The procedure to update h to h : (W ∪ S)→ Ui,
considering S to be a single block (even if it consists of multiple non-rigid
blocks or it is part of larger blocks), is the same naïve approach used in the
previous step. This procedure is repeated until W = Ui. Since the number
|dom(S)| is bounded by some constant c, each small extension step runs in
polynomial time, O(|dom(Ui)|c).

Fix for Extend

However, just as Extend, ExtendD does not well handle models for theories
with disjunctions (Proposition 3.8), but now it reports failure to the caller
FindCoreD when it cannot find such an extension to an endomorphism
h′. That does not mean that such h′ does not exist at all, but rather it is
“too hard” to compute. If failure is reported, then FindCoreD will attempt
to construct h′ : M → Ui from scratch, using signature testing to prune
search. The algorithm can proceed if it successfully find h′; otherwise, as in
the part about initial homomorphisms, there is no such h′ in the first place.
Clearly, this method can avoid failure unlike the original FindCore, but the
drawback is that the algorithm no longer runs in polynomial time in terms
of |dom(M)|.

34

Transformation to retraction

In this step, we transform the non-injective endomorphism h′ : M → Ui,
where h′(x) = h′(y) = y, into a non-injective retraction r : M → Ui, such
that r(x) = r(y) = y. The procedure can be summarized as follows: find
cycles and paths, compute their lengths, and use exponentiation by squaring
to repeatedly compose h′ into r. By Theorem 3.4, such r always exists given
the h′.

Applying retraction to model

If there exists a non-injective retraction ri : M → Ui, then we construct the
new model Ui+1 and its information as follows:

• Model: Ui+1 := {fact A ∈ Ui | ri(A) = A} (facts in the image of the
retraction ri; therefore, ri : M → Ui+1).

• Siblings information: Siblings remain the same since we always try
to find a retraction r from the initial model M .

• Element origins: Similarly to siblings information, element origins
remain the same.

• Signature-compatible pairs: scpi+1 contains all pairs (x, y) ∈ scpi+1

such that x, y ∈ dom(Ui+1).

Otherwise, let scpi+1 := scpi \ {(x, y)} (since we now know that there does
not exists a mapping that maps x to y in M) and leave everything else the
same, that is, Ui+1 := Ui for the new model and ri := ri−1.

4.4 Correctness of the Revised Algorithm

The following lemma shows that signature testing does not exclude potential
possibilities of mappings that are required to reach the core.

35

Lemma 4.4. (Signature-testing correctness) Let Σ be a geometric theory and
let M |= Σ. For each (x, y) where x, y ∈ dom(M) and x 6= y, if there exists
an endomorphism h on M such that h(x) = h(y) = y, then (x, y) ∈ SigM .

Proof. Let us assume (x, y) /∈ SigM for chosen elements x, y ∈ dom(M).
This means that, according to the signature, there is some fact P (~a) ∈ M
for some relation symbol P and tuple ~a ∈ dom(M), but there does not exist
a fact P

(
~b
)
∈ M for any tuple ~b, such that for each i, (ai = x) implies

(bi = y). Suppose that there exists an endomorphism h : M → M such
that h(x) = h(y) = y. Then P (h(~a)) ∈ M , but since there is no such ~b as
described above, P (h(~a)) /∈ M , a contradiction. Therefore, there does not
exist any endomorphism h on M such that h(x) = h(y) = y.

Lemma 4.5. Let M be a model for a geometric theory and let U be a retract
of M . For any x, y ∈ dom(M), if h′ : M → U exists such that h(x) =
h(y) = y, then executions during lines (5)-(10) of FindCoreD will correctly
compute h′, and if h′ does not exist, the algorithm will report that correctly.

Proof. This proof relies partially on Theorem 3.3 at least for the non-disjunction
case. Although Proposition 3.8 states that the theorem does not hold in
general, if Extend can extend h : Mxy → U to h′, then h′ is computed
as required. Also, since line (9) checks for every possible endomorphism
(regardless of whether we use signature testing, because it only eliminate
non-homomorphic mappings), the algorithm will always find one such h′ if it
exists. In general, there are three cases for h and h′:

1. h does not exist: This means that h′ cannot exist and that FindCoreD

does not continue to line (7). Therefore, it correctly reports that h′ does not
exist.

2. h exists, but h′ does not: This guarantees that line (7) will return with
an error, but line (9) cannot find h′ either, because it does not exists. Thus,
the algorithm still correctly reports that h′ does not exist.

3. Both h and h′ exist: If line (7) successfully finds one such h′ from
lifting h, then we have found one. Otherwise, if ExtendD returns failure,

36

then line (9) will search exhaustively for one. As stated above, the algorithm
will always find one such h′ if it exists. Therefore, the algorithm correctly
computes h′, which exists.

Overall, lines (5)-(10) of FindCoreD correctly compute an endomor-
phism h′ if h′ exists, and report correctly that h′ does not exist, otherwise.

Theorem 4.6. Let Σ be a weakly acyclic geometric theory and let M |= Σ.
Then FindCoreD correctly computes the core of M .

Proof. The proof of this theorem is based on Theorem 3.5 ([11]) but with
several modifications. The constraint (x, y) ∈ scp in line (3) is sufficient
by Lemma 4.4. The restriction on h in line (5) is justified by Lemma 2.6.
The correctness of execution during lines (5)-(10) is justified by Lemma 4.5,
and for the correctness of execution during lines (12)-(13), Theorem 2.5. As
stated about provenance information in Section 4.1, original elements in a
model before they were equated are lost. Thus the worst thing that can
happen because of the lost information is that blocks are merged and result
in unbounded block size, but that should not affect the correctness of the
algorithm.

Note that this new algorithm does not run in polynomial time in terms of
|dom(M)| in the worst case mostly because of the execution of line (9). Also,
the unbounded block size mentioned in the proof may cause the exponential
homomorphism-searching time, although does not matter since line (9) runs
in exponential time in the worst case anyway.

37

Chapter 5

Evaluation

5.1 Implementation

As mentioned in the introduction, the FindCoreD algorithm was imple-
mented in Haskell. The program requires an input from Hominy, a geometric
model-finding tool. Thus we linked our algorithm with Hominy for conve-
nience, for input models can be passed directly and easily from Hominy to
the core-finding program.

5.2 Experiments

We ran two experiments on randomly generated geometric theories:

1. executing the revised algorithm with signature testing (Algorithm A),
which is the default option, and

2. comparing the algorithm that uses signature testing (Algorithm A) and
the one without the heuristic (Algorithm B).

In both experiments, we used a testing tool in Haskell called QuickCheck to
randomly generate theories based on provided random parameters, such as

38

the number of sequents in a theory, and, for each sequent, how likely certain
term types will appear when growing formulae top-down. For simplicity, the
language L for theories is fixed, having no more than eight relation symbols,
each with arity at most three. Note that these theories excluded equalities.

Moreover, to allow for models with a large number of elements and facts,
we randomly created several facts and elements in a model (as if there were a
special sequent to create these facts when fired) before letting Hominy build
models from it to satisfy the random theory. Otherwise, there would not
be enough facts or elements in the model (an input to our algorithm) that
satisfies the theory, or, in another case, if we tried to create a theory that
is too complicated, then Hominy might take more than several minutes, or
forever, to produce even a single model, perhaps because the random theories
were not weakly acyclic.

One remark about having Hominy start chasing from a random, non-
empty model is that those initial facts and elements do not naturally come
from multiple sequent firings but just one, an imaginary one, and that they
are “flat,” i.e., as if created all at the same time by a non-chase-based model
finder). As a result, such a model will be harder to compute for its core, but
fortunately, that means we can stress-test our implementation.

Each experiment consists of several test runs. In each run, we obtained
only first five (or fewer) models from Hominy and then ran FindCoreD

on each model, with the time limit of ten minutes per run, not per model.
For Experiment 1, As soon as Algorithm A finished computing the core of a
model in any run, the model was included in the results. For the comparison
Experiment 2, both algorithms had to finish within the time limit in total
for a model to be used. Additionally, since Algorithm B was expected to
be significantly slower than Algorithm A, test models in Experiment 2 were
easier and faster to than run than those in Experiment 1. Figures below will
clearly reflect this difference. Note that data for Algorithm A in Experiment
2 are also included in Experiment 1.

39

Figure 5.1: Input model size (#facts) vs. running time of Algorithm A

As for other environments and factors, these experiments were run on a
64-bit Windows machine with a quad-core CPU (2.50Ghz) and 8GB RAM.
During the runs, the computer was left unused just to run the experiments.

5.3 Results

Experiment 1

Figure 5.1 shows the running time of Algorithm A (with signature testing) in
terms of the number of facts in a model. Each dot represents one test model,
and there are 476 models in total. The y-axis is in log scale because of high
variation of values. Note that some models are excluded because the algo-
rithm did not finish in time, and a few models have more than 200 facts and

40

Figure 5.2: # Input elements vs. running time of Algorithm A

thus are not shown. In the figure, notice that for most models, the algorithm
took less than one second, possibly because of the data from Experiment 2.
Notice also that the running time generally increases (exponentially) as the
model size increases (linearly).

Figure 5.2 also shows the running time of Algorithm A but in terms of
the number of elements in a model. Only a few models are excluded from
the plot because they have more than 80 elements. Notice that there is a
clearer trend line than in Figure 5.1, so the running time is approximately
exponential in the number of elements. One reason is that the input models
for Hominy were randomly generated and not initially empty. Notice also
that there are two separate groups in this figure, a dense group below the
0.1 second and a sparse group covering the rest of the plot. It turns out that
the first group are models from Experiment 2 while the second group is from

41

Figure 5.3: Comparison of running time of Algorithms A and B (model size)

harder models only used for this experiment.

Experiment 2

Figure 5.3 compares the running time of Algorithm A with that of Algorithm
B. The x-axis is the number of facts in a model, and the y-axis is time in
seconds, still in log scale. There are 239 models in this experiment, and
similarly to Experiment 1, a few outliers are excluded to show the current
plots. What is clear from this comparison is that signature testing used in
Algorithm A greatly reduces running time, with a factor of number as high
as 100. (Moving up one horizontal line means ten times slower.) In fact,
for many models, Algorithm A did not need to do anything because element
signatures reported that no two elements were compatible, and thus those
models were already cores.

42

Chapter 6

Future Work

There are several questions and suggestions for improvement left to be done:
about algorithms, heuristics, and optimizations.

We have two questions specifically about the core-finding algorithm. The
first one involves Mxy (i.e., Txy [8, 11]) and finding an initial homomorphism
h which guarantees the existence of an extension from it. What we have
now is to replace Mxy with the entire model M , and thus there is no need
to extend h because h is already an endomorphism, but the drawback is an
exponential search time. We wonder if there is some slightly larger submodel
M ′

xy, for any x, y ∈ dom(M), such thatMxy ⊆M ′
xy and every homomorphism

h : M ′
xy → M can be extended to h′ : M → M . If M ′

xy is not significantly
larger than Mxy (same for their block size), then we will have a polynomial-
time algorithm for finding cores for geometric theories with disjunctions.

The second question is whether it is possible to avoid extending homo-
morphisms to the initial model M in every loop. More precisely, can we
only extend h : W → U , such that W ⊆ U , to h′ : U → U where U ⊂ M

and then consider U to be the new initial model of the next loop? Intu-
itively, M contains all information necessary to construct Mxy, for elements
x, y ∈ dom(M), but in general Mxy * U . Also this approach, if it can be
used, may significantly improve the running time.

43

Since this project used only one heuristic, we wonder what other heuris-
tics can be useful. Perhaps, comparisons and combinations among different
heuristics can be a focus of study. We have an idea about a heuristic to
try, which involves looking up facts in a model. When checking whether a
mapping between models is a homomorphism, we have to determine whether
each fact whose elements are mapped is in the destination model. Espe-
cially, when mappings are partial, looking up a partially mapped fact is like
a database query. Therefore, we wonder if using indexing techniques from
database, as a heuristic, will reduce time for looking up facts and finding
homomorphisms.

44

Bibliography

[1] Aho, A. V., Beeri, C., and Ullman, J. D. The theory of joins
in relational databases. ACM Trans. Database Syst. 4, 3 (Sept. 1979),
297–314.

[2] Beeri, C., and Vardi, M. Y. A proof procedure for data dependen-
cies. J. ACM 31, 4 (Sept. 1984), 718–741.

[3] Deutsch, A., and Tannen, V. Reformulation of xml queries and con-
straints. In Proceedings of the 9th International Conference on Database
Theory (London, UK, UK, 2002), ICDT ’03, Springer-Verlag, pp. 225–
241.

[4] Fagin, R., Kolaitis, P. G., Miller, R. J., and Popa, L. Data
exchange: Semantics and query answering. In Proceedings of the 9th
International Conference on Database Theory (London, UK, UK, 2002),
ICDT ’03, Springer-Verlag, pp. 207–224.

[5] Fagin, R., Kolaitis, P. G., and Popa, L. Data exchange: Getting
to the core. ACM Trans. Database Syst. 30, 1 (Mar. 2005), 174–210.

[6] Gottlob, G. Computing cores for data exchange: New algorithms and
practical solutions. In Proceedings of the Twenty-fourth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (New
York, NY, USA, 2005), PODS ’05, ACM, pp. 148–159.

45

[7] Gottlob, G., and Nash, A. Data exchange: Computing cores in
polynomial time. In Proceedings of the Twenty-fifth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (New
York, NY, USA, 2006), PODS ’06, ACM, pp. 40–49.

[8] Gottlob, G., and Nash, A. Efficient core computation in data
exchange. J. ACM 55, 2 (May 2008), 9:1–9:49.

[9] Hell, P., and Nesetril, J. The core of a graph. Discrete Mathe-
matics 109, 1-3 (1992), 117 – 126.

[10] Maier, D., Mendelzon, A. O., and Sagiv, Y. Testing implications
of data dependencies. ACM Trans. Database Syst. 4, 4 (Dec. 1979), 455–
469.

[11] Pichler, R., and Savenkov, V. Towards practical feasibility of core
computation in data exchange. Theoretical Computer Science 411, 7-9
(2010), 935 – 957.

46

	Worcester Polytechnic Institute
	Digital WPI
	May 2014

	Core Finding for Relational Structures
	Visit Pataranutaporn
	Repository Citation

	tmp.1535548689.pdf.5WzfZ

