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Abstract

Our project is focused on research and development of the application of Hydro Mus-
cles to biologically inspired humanoid robots. Our team designed, researched, and
developed a bio-inspired, bipedal walking robot to simulate the human gait cycle.
The walking motion is actuated by Hydro Muscles, which are soft artificial muscles
that are driven pneumatically or hydraulically to contract and expand longitudinally.
These artificial muscles were were modeled to match mass scaled actuation of human
muscles on a lower limb skeletal model to create a biologically authentic gait. Further
extensions of this project would explore this robot’s potential for clinical, prosthetic,
military defense, and other applications.
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Executive Summary

There exist many humanoid robots made for human interaction. However, typical
rigid mechanisms present safety risks and are not as comfortable for humans to inter-
act with. This has led to developments in soft robotics, with fluidic actuators becoming
a popular mechanism for robot motion. There is a common principle that states that
form follows function. If this is true, then in order to produce human motion, a hu-
man form should be used. Emulating the human musculoskeletal system will provide
insight into the capabilities of bipedal and humanoid robots. The overarching goal of
this project was to build a lifelike robot that can simulate the motions of the human
gait cycle. We used a biomimetic approach to incorporate human anatomy into the
mechanical design.

Figure 1: Muscle placements.

Hydro Muscles are a novel, soft robotic actuator
developed by Professor Marko Popovic in Popovic
Labs in 2014. They are used for fluidic linear actu-
ation, in which hydraulic or pneumatic power may be
used. Overall, the Hydro Muscle has many favorable
characteristics. It is lightweight, small, efficient, soft,
fast, similar to biological muscle, and cost-effective.

The gait cycle for bipedal human walking is a
repetitive pattern that incorporates steps and strides,
where a stride consists of two steps. A step is seen to
start from the initial contact of one foot and then end-
ing at the initial contact of the other, while a stride
starts with the initial contact of one foot and ends
with the initial contact of that same foot (Physiope-
dia, 2017). The gait cycle can be broken up into
Heel Strike, Stance, Heel-Off, Pre-Swing (Toe-Off),
Mid Swing, and Terminal Swing.

The amount of muscles in the lower limbs of hu-
mans is too extensive to be completely modeled using the HydroMuscles. For this
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reason, the muscles must be simplified while still retaining anatomical integrity. The
muscles that are most active during walking were selected, each analyzed for origin,
insertion, length, force generation, and musculoskeletal function to be simplified into
the segmental model provided by the HydroMuscles. There are six muscles total to
be modeled, including the iliopsoas, tensor fasciae latae, quadriceps femoris, gluteus
maximus, hamstrings (biceps femoris and semitendinosus), and gastrocnemius. There
are also passive spring structures to model the extensor hallucis longus, as well as the
iliofemoral and ischiofemoral ligaments.

A solenoid valve is an interface between pneumatic systems and electronic con-
trollers. It is seen as a switch to send air to any pneumatic device, which can allow
pneumatic control of temperature, flow, position, and pressure. We used these valves
to apply a state machine system in which the valves would contract or expand a
specific muscle depending on what phase of the gait cycle the robot found itself in.
Connected to an Arduino, this allowed us to control the individual Hydro Muscles
attached to the skeleton. In order to control the speed in which the muscles would
contract, we used flow control valves. A flow control valve regulates the pressure or
flow of air coming out of the hose side of the valve. This device allows us to better
control the motion of the skeleton, allowing us to create a smoother gait cycle.

Sensors were used for transitions between gait cycle phases. IMUs were mounted
to the lower leg to measure overall leg orientation, and conductive rubber stretch
sensors were bridged across joints to measure joint angle. Thresholds were set for
each state so that the program would know when to transition to the subsequent state.

While trying to anatomically resemble the muscles used in human walking, we
were able to create a sufficient demonstration of Hydro Muscles actuating a bipedal
robot to create a biomimetic walking gait cycle. We showed that there are strides to be
made in the direction of biomimicry in robotics.

Figure 2: Gait cycle stages.

iv



Contents

Abstract i

Acknowledgements ii

Executive Summary iii

List of Figures vii

List of Tables viii

1 Introduction 1

2 Background 2
2.1 Hydro Muscles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Other Artificial Muscles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Existing Bipedal Walking Robots . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Gait Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5.2 Stance Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5.3 Swing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5.4 Gait Analysis and Abnormal Gait . . . . . . . . . . . . . . . . . . 9

3 Project Objectives 10

4 Methodology 12
4.1 Materials and Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.1 Hydro Muscles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.2 Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.3 Umbilical System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

v



4.2 Muscles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.1 Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.2 Dimensions and Force Calculations . . . . . . . . . . . . . . . . . 17

4.3 Sensors and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.1 Inertial Measurement Units and Conductive Rubber . . . . . . . 18
4.3.2 5-to-2-Way Solenoid Valves . . . . . . . . . . . . . . . . . . . . . . 19
4.3.3 Flow Control Valves . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.4 Arduino Mega . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 State Machine for Gait Actuation . . . . . . . . . . . . . . . . . . . . . . . 20

5 Experiments 21
5.1 Single Leg Suspended Actuation . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Double Leg Suspended Actuation . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Movement on Treadmill . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 Movement Utilizing Sensor Information . . . . . . . . . . . . . . . . . . . 23

6 Results 25

7 Conclusion 26

References 28

A Muscle Length Linear Regression 30

B Arduino Code 32

vi



List of Figures

1 Muscle placements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
2 Gait cycle stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

2.1 Expansion and contraction of Hydro Muscle (Sridar et. al., 2016) . . . . 2
2.2 Commonly used artificial muscles. . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Existing bipedal walking robots. . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Origin and insertion points for relevant muscles. . . . . . . . . . . . . . . 5
2.5 Complete gait cycle (Streifeneder, 2017). . . . . . . . . . . . . . . . . . . . 7

4.1 Materials to construct Hydro Muscles. . . . . . . . . . . . . . . . . . . . . 12
4.2 Bungee cord ligaments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Eye hook and threaded insert. . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Skeleton components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 Air compressor tank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6 Manifold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.7 Muscle placements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.8 Solenoid valve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.9 Flow control valve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.10 Arduino MEGA Specifications. . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1 Setup of robot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.1 Gait cycle stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A.1 Linear regression line for initial length versus change in length. . . . . . 30

vii



List of Tables

4.1 Muscle functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Joint ranges of motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Initial length and force of each muscle. . . . . . . . . . . . . . . . . . . . 18

A.1 Muscle lengths found from linear regression. . . . . . . . . . . . . . . . . 31

viii



Chapter 1

Introduction

There exist many humanoid robots made for human interaction. However, typical
rigid mechanisms present safety risks and are not as comfortable for humans to inter-
act with. This has led to developments in soft robotics, with fluidic actuators becoming
a popular mechanism for robot motion. This not only alleviates safety concerns, but
also integrates robotic technology more acceptably into human tasks.

In addition, many robots are not able to achieve the same functions and tasks as
humans with the same efficiency and precision. There is a common principle that
states that form follows function. If this is true, then in order to produce human
motion, a human form should be used. Emulating the human musculoskeletal system
will provide insight into the capabilities of bipedal and humanoid robots.

The overarching goal of this project was to build a lifelike robot that can simulate
the motions of the human gait cycle. We used a biomimetic approach to incorporate
human anatomy into the mechanical design. There are about sixty muscles in the
lower limbs. Some major muscle groups include the gluteal muscles, the iliopsoas,
the quadriceps, the hamstrings, and the muscles that act on the ankle and foot. While
many of these muscles are important for producing a walking motion, we will focus
on only the most important ones that will be influencing our robot design.

In Chapter 2 we will introduce the background research we conducted to inform us
about this project, including previous work in bipedal robots, existing artificial mus-
cles, and an introduction to anatomy and the gait cycle. Chapter 3 will list the project
objectives that we set out to achieve, and Chapter 4 will describe the methodology we
applied to our design. Chapter 5 will detail the experiments we conducted and the
results we obtained. Lastly, Chapter 6 will analyze the results in the context of our
objectives, as well as address improvements and future implications of this work.
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Chapter 2

Background

2.1 Hydro Muscles

Hydro Muscles are a novel, soft robotic actuator developed by Professor Marko Popovic
in Popovic Labs in 2014. They are used for fluidic linear actuation, in which hydraulic
or pneumatic power may be used.

The structure of a Hydro Muscle consists of a smooth elastic tube encased in a
sleeve of soft, inelastic material. The tube is typically made of latex, while the sleeve
is typically polyester. The tube is fixed with two caps, one of which has a valve that
connects the actuator to the pressure source. When pressurized, the tubing stretches
longitudinally, while the inelastic sleeve prevents radial expansion. When the mus-
cle is depressurized, the tubing constricts to an unstretched length (Figure 2.1). The
prevention of radial expansion increases the efficiency of actuation.

Figure 2.1: Expansion and contraction of Hy-
dro Muscle (Sridar et. al., 2016)

The Hydro Muscle is more typically
used for exerting pulling forces, since it
can tend to bow when exerting a pushing
force. This can be solved by embedding
the tube with a small rigid telescoping or
with pressurized granular media to in-
crease the critical bending force.

Overall, the Hydro Muscle has
many favorable characteristics. It is
lightweight, small, efficient, soft, fast,
similar to biological muscle, and cost-
effective. It can be constructed with off-the-shelf materials in less than 10 minutes, and
the materials for each muscle cost less than $10. The muscles can also be pressurized
with ordinary tap water at standard household pressures of 0.59 MPa, or pressurized
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pneumatically with compressed air at around 100 psi. Many muscles can be actuated
from one source using flow and/or pressure control (Sridar et. al., 2016).

2.2 Other Artificial Muscles

(a)

(b)

(c)

(d)

Figure 2.2: Com-
monly used artifi-
cial muscles.

There are many other various artificial muscles, including the
Pneumatic Rubber Artificial Muscle (PRAM), PneuFlex, Fiber Re-
inforced Actuator (FRA), and the McKibben artificial muscle. The
PRAM is made of a rubber tube with a fiber bellow surrounding
it. The bellows are reinforced with fiber tape to limit the tube’s ex-
pansion in the axial direction. This muscle is designed to bend and
curve in the direction of the reinforced side (Figure 2.2a). It has
mostly been used for applications in artificial hands and grasping
tools (Noritsugu et. al., 2004).

The PneuFlex functions in a similar way, with a silicone tube
consisting of a passive layer and an active layer. The passive layer
is reinforced with woven fabric, while the active layer is reinforced
with helically wound thread. When pressurized, the active layer
expands more than the passive layer, causing the muscle to bend
(Figure 2.2b). This muscle is also used in prosthetic hand applica-
tions (Deimel et. al., 2013).

The FRA is a rubber tube with a semi-circle cross-section. Wo-
ven fiberglass is glued to the flat face so that the muscle curves
during pressurization. The range of motion and angle of bend-
ing of the muscle can be altered with Sure-Grip heat-shrink tubing
(Figure 2.2c). This sleeve is made of polyolefin/polyester and can
be used to shape the muscle into a variety of motions (Galloway et.
al., 2013).

The McKibben artificial muscle is widely used in prosthetic
hand applications. It is made of a rubber inner tube and a helically-
woven shell. When pressurized, the McKibben muscle bulges and
stiffens radially while contracting axially. When depressurized, it
softens radially while elongating axially (Figure 2.2d). Due to the
radial expansion and contraction, there is a loss of energy from the
actuation to the load (Tondu et. al., 2000). It therefore has a lower
efficiency than the Hydro Muscle, which only expands in the axial
direction.

3



2.3 Existing Bipedal Walking Robots

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.3: Existing bipedal
walking robots.

Legged machines have existed since the late 19th cen-
tury; however, the first full-scale, anthropomorphic,
bipedal walking robot was created by Dr. Ichiro Kato
in 1973, called WABOT 1 (Figure 2.3a) (Popovic, 2014).
It was powered hydraulically and walked in a shuf-
fling motion with disproportionately large feet (Biped
humanoid robot group). This robot was statically sta-
ble.

The first bipedal robots with dynamic balance
were developed by Hirofumi Miura and Isao Shi-
moyama in 1984 (Figure 2.3b). The BIPER robots
had controlled balance based on principles of inverted
pendulum motion (Popovic, 2014).

Honda’s ASIMO robot was capable of walking for-
ward, walking backward, balancing on one foot, walk-
ing up and down stairs, running, and more (Figure
2.3c). However, ASIMO did not have a very biological
gait due to its strategy of keeping its center of pres-
sure in the center of the support base. This required
the robot to walk with bent knees, rather than execute
a lifelike gait (Popovic, 2014).

Another advanced humanoid robot is PETMAN,
which can achieve faster speeds than ASIMO and has
a more biological gait (Figure 2.3d). It is lifesize and
has controlled balance even when shoved (PETMAN).

At the University of Tokyo, a prototype for a
pneumatically-powered musculoskeletal robot was
developed (Figure 2.3e). This robot used McKibben
muscles for actuation. Two models were made: the
original used a biological ankle joint, while the sub-
sequent iteration simplified the lower leg to an elastic
blade (Niiyama et. al., 2018).

Another project at the University of Tokyo is the
robot Kenshiro (Figure 2.3f). Kenshiro is a cable-
driven humanoid mimetic robot with 100 actuators.
The robot is meant to mimic realistic human joint and

muscle arrangements and motions (Nakanishi et. al., 2012).
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2.4 Anatomy

There are about sixty muscles in the lower limbs. Some major muscle groups include
the gluteal muscles, the iliopsoas, the quadriceps, the hamstrings, and the muscles that
act on the ankle and foot. While many of these muscles are important for producing a
walking motion, we will focus on only the most important ones that will be influencing
our robot design.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.4: Origin and insertion points for relevant muscles.

The quadriceps
femoris flexes the
thigh at the hip,
as well as extends
the knee. The
most relevant mus-
cle in this group is
the rectus femoris,
which has a prox-
imal attachment at
the anterior infe-
rior iliac spine, an
insertion point at
the patella, and a
distal attachment to
the tibial tuberosity
(Figure 2.4a).

The hamstrings
act antagonistically
to the quadriceps.
Two of the impor-
tant muscles in this

group are the biceps femoris and the semitendinosus muscle, which both originate
at the ischial tuberosity of the ox coxa. The biceps femoris inserts at the head of the
fibula, while the semitendinosus inserts at the proximal tibia (Figure 2.4b).

The gastrocnemius muscle plantar flexes the foot and flexes the knee. It has proxi-
mal attachments at the medial and lateral condyles of the femur and distally attaches
to the posterior calcaneus (Figure 2.4c).

Psoas major is the main muscle of the iliopsoas. It flexes and laterally rotates the
thigh at the hip. The psoas major originates from the bases of the transverse processes
of L1-L5 in the spine, and it inserts at the lesser trochanter of the femur (Figure 2.4d).

The tensor fasciae latae muscle flexes and abducts the thigh at the hip. It has a
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proximal attachment at the anterior iliac crest and a distal attachment at the lateral
condyle of the tibia (Figure 2.4e).

The gluteus maximus is the major muscle from the gluteal group. It extends,
laterally rotates, and abducts the thigh at the hip. It originates along the surface of the
ilium below the posterior gluteal line and inserts at the gluteal tuberosity of the femur
and iliotibial tract (Figure 2.4f).

All figures and muscle information was informed by getbodysmart.com (Muscular
System).

2.5 Gait Cycle

2.5.1 Overview

The gait cycle for bipedal human walking is a repetitive pattern that incorporates steps
and strides, where a stride consists of two steps. A step is seen to start from the initial
contact of one foot and then ending at the initial contact of the other, while a stride
starts with the initial contact of one foot and ends with the initial contact of that same
foot (Physiopedia, 2017). The gait cycle is made up of two steps or one stride (Bogey,
2016).

During walking, while the body is engaged in forward momentum, one limb pro-
vides support while the other limb moves forward in preparation to become the sup-
port limb (Bogey, 2016). The classification of the gait cycle is broken down into the
stance phase, which takes up 60% of the gait cycle, and the swing phase, which takes
up the remaining 40% (Ekka, 2016). The stance phase can be further broken down into
initial double limb stance (10%), single limb stance (20%), and terminal double limb
stance (10%). During double stance periods, the two limbs normally do not share the
load equally (Bogey, 2016).

With different walking conditions, slight variations can occur in the overall per-
centages of stance and swing in the gait cycle. As walking velocity increases, the
duration of the stance phase components decrease. The elimination of double stance
periods is the mark of the transition from walking to running (Bogey, 2016).

Walking can be broken down to occur in a sequence of six steps: activation of the
gait command within the central nervous system, transmission of the gait command
to the peripheral nervous system, contraction of muscles, force generation, motion of
joints, and ground reaction force generation (Physiopedia, 2017). The more indebted
classification of gait can be broken up into eight phases (Physiopedia, 2017).

1. Initial Contact (Heel Strike)

2. Loading Response (Flat Foot)

6



3. Midstance

4. Terminal Stance (Heel Off)

5. Pre-Swing (Toe Off)

6. Initial Swing

7. Mid Swing

8. Terminal Swing

Figure 2.5: Complete gait cycle (Streifeneder, 2017).

2.5.2 Stance Phase

The stance phase consists of a sequence of five phases: Initial Contact, Loading Re-
sponse, Midstance, Terminal Stance, and Pre-Swing.

Initial Contact is the first phase of double support, which begins with the heel’s
initial contact with the floor. The hip is at roughly 30 degrees of flexion, the knee is
beginning to flex, and the ankle is neutrally positioned. At this point, the body weight
is shifted towards the stance limb (Physiopedia, 2017). In this phase, muscles that see
activity are the quadriceps femoris, tibialis anterior, gluteus medius, gluteus maximus,
and ischiocrurale muskulatur (Streifeneder, 2017).

Loading Response occurs directly after initial contact, which is when the foot is in
full contact with the floor. The knee is at a flexion of 15 degrees, and the ankles move
into a plantar flexion of roughly 5-10 degrees. At this point the hip moves into exten-
sion, allowing the weight of the body to shift onto the stance limb (Physiopedia, 2017).
Muscles that see activity are quadriceps femoris, tibialis anterior, gluteus medius, glu-
teus maximus, adductor magnus, tensor fasciae latae, tibialis posterior, and peroneus
longus (Streifeneder, 2017).
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In Midstance, the body passes over the stance limb, meaning the leg is approach-
ing the vertical position. Here the knee starts to extend, the hip continues to extend,
the ankle will move into slight dorsiflexion, and the trunk is seen in a neutral posi-
tion of rotation (Physiopedia, 2017). In this phase, muscles that see activity are the
gastrocnemius and soleus (Streifeneder, 2017).

Terminal Stance occurs when the heel is about to lift off the floor. The ankle is in
dorsiflexion at the start and moves into plantar flexion. The hip is in hyperextension,
and the knee is extending while preparing to flex (Physiopedia, 2017). Muscles that see
activity are the gastrocnemius, soleus, flexor digitorum longus, flexor hallucis longus,
tibialis posterior, peroneus longus, and peroneus brevis (Streifeneder, 2017).

Pre-Swing describes the process of the toes leaving the floor. In this time frame,
the opposite foot is in its Loading Response phase. This marks the end of stance phase
and the beginning of the swing phase. The toes will enter hyperextension while the
ankles begin to plantar flex. Meanwhile, the knee keeps towards flexion. At the end
of this phase, the hip starts flexing (Physiopedia, 2017). Muscles that see activity are
the gastrocnemius, soleus, rectus femoris, and adductor longus (Streifeneder, 2017).

2.5.3 Swing Phase

The swing phase consists of three stages: Initial Swing, Mid Swing, and Late Swing.
Initial Swing is when the reference leg starts swinging forward (Ekka, 2016). The

hip begins by extending to roughly 10 degrees, then flexes from the contraction of
the iliopsoas muscle. The knee then flexes within a range of 40-60 degrees while
the ankle moves from 20 degrees of plantar flexion towards dorsiflexion to end at a
neutral position (Physiopedia, 2017). In this phase, muscles that see activity are the
extensor hallucis longus, flexor hallucis longus, sartorius, iliacus and tibialis anterior
(Streifeneder, 2017).

Mid Swing occurs when the reference leg passes below the body (Ekka, 2016).
From the contraction of the adductors, the hip flexes to 30 degrees, while the ankle
becomes dorsiflexed due to the tibialis anterior muscle contraction. The knee will
initially flex 60 degrees but then will extend roughly 30 degrees from the contraction of
the sartorius muscle (Physiopedia, 2017). Muscles that see activity in this phase are the
semimembranosus, semitendinosus, biceps femoris, and tibialis anterior (Streifeneder,
2017).

Late Swing concludes the gait cycle, which is when the leg starts to slow down
in preparation for Initial Contact (Ekka, 2016). This starts with hip flexion ranging
from 25-30 degrees. The knee is extended and the ankle is in a neutral position (Phys-
iopedia, 2017). In this phase, muscles that see activity are the quadriceps femoris,
semimembranosus, semitendinosus, biceps femoris, and tibialis anterior (Streifeneder,
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2017).

2.5.4 Gait Analysis and Abnormal Gait

For a successful gait cycle, the reference limb must meet three tasks: weight accep-
tance, single limb support, and limb advancement. Successful weight acceptance en-
tails that the leg did not collapse from first contact, while single limb support ensures
that the leg has the ability to hold up the body while in forward motion. Limb ad-
vancement is successful when the limb is able to swing forward and initiate the gait
cycle again (Hernandez, 2002).

Gait analysis can help determine factors like walking speed, step length, cadence,
symmetry, stability, and angle of joints (Hernandez, 2002).

An altered gait pattern due to weakness, deformities, or impairments is known as
a pathological gait. Pathological gait patterns that are musculoskeletal in nature are
normally caused by joint alignment, tissue imbalance, or bony abnormalities (Physio-
pedia, 2017). Some common neurological causes of pathological gait are Hemiplegic
Gait, Diplegic Gait, Parkinsonian Gait, Ataxic Gait, Myopathic Gait, and Neuropathic
Gait.
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Chapter 3

Project Objectives

The scope of our project is to design, research, and develop a bio-inspired, bipedal
walking robot. We will be using HydroMuscles for actuation to produce a human-like
gait.

This project is focused on research and development of the application of Hydro-
Muscles to bipedal robots. Further extensions of this project can explore this robot’s
potential for clinical, prosthetic, military defense, and other applications.

Our objectives for this project are as follows:

1. To design a functional bio-inspired bipedal robot actuated by HydroMuscles.

2. To demonstrate the application of HydroMuscles in bipedal walking robots.

3. To design a biomimetic robot to simulate motion inspired by the phases of the
human gait cycle (stance, loading, swing, heel strike).

4. To actuate a minimum of 12 HydroMuscles for motion.

5. To implement an umbilical system to store all power components in order to
minimize the weight of the robot.

6. To implement a control system for balance to the extent that a supportive spring
does not exert a force greater than 20% of the weight of the structure for one
complete gait cycle.

7. To have the robot walk at a speed of at least 0.25 m/s (average human = 1.1 m/s),
with a stride length (two complete steps) of at least 0.4 meters (average human
= 0.8-1 m).

8. To have the robot initiate a stride from either foot.
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9. To construct a robotic platform for future research on biomimicry and gait kine-
matics, as well as HydroMuscle actuation and controls.
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Chapter 4

Methodology

4.1 Materials and Design

4.1.1 Hydro Muscles

Figure 4.1: Materials to construct Hydro Mus-
cles.

The Hydro Muscles were made out of the
typical materials of surgical latex tubing
and polyester sheathing. We used tubing
with 1/2" OD and 1/4" ID, with sheath-
ing taken from Uber Hose that fits snugly
with the tubing. We actuated the mus-
cles pneumatically, using barbed plugs
for the connection to the pneumatic tub-
ing. Gorilla glue was used to prevent any
leakage through the plugs, and clear nail
polish was used to prevent the sheathing
from unraveling at the ends. The sheath-
ing was clamped to the ends of the mus-
cles. Thick fishing line was tied at the
end of the plug to allow for easy attach-
ment to the skeleton. Figure 4.1 shows an exploded view of the materials, as well as a
picture of a completed muscle.

The procedure to construct the Hydro Muscles is detailed below:

1. Cut the latex tubing to the required length, ensuring a clean, flat cut. Angled
cuts may lead to leakages.

2. Cut the hose sheathing 1/4" longer than the latex tubing for clearance.
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3. Insert the latex tubing into the sheathing

4. Slide worm clamps on either end of the tubing

5. Insert the barbed hose fitting and barbed plug on each end of the tubing, but
not completely. Coat the edge of the fitting or plug with super glue before
completely inserting.

6. Ensure that the clamps are around the tubing where the fitting or plug is in-
serted. Tighten the clamps as tightly as possible to prevent leakages.

7. Seal the ends of the sheathing with clear nail polish or super glue to prevent
fraying.

8. Use a needle tool to create two small holes on the end of the flat surface of the
barbed plug. Thread fishing wire through to create a loop for attachment to
tendons.

4.1.2 Skeleton

Figure 4.2: Bungee
cord ligaments.

The skeleton that we selected was the Frank model from 3B
Scientific, which has constraints at the joints to allow for life-
like degrees of freedom and motion (Figure 4.3). We chose
this skeleton since the lifelike motion would allow for a more
accurate gait cycle when we actuated the limbs.

To attach the muscles to the skeleton, we used threaded
inserts and eye hooks. The threaded inserts we used were em-
bedded into 5/32” holes at each of the attachment points for
the muscles (discussed in section 4.2.1). We then used Spi-
derwire to tie the ends of the muscles to their respective eye
hooks. The threaded inserts allowed us to easily attach and
detach individual muscles during testing.

Figure 4.3: Eye hook and
threaded insert.

While the skeleton’s motion was very lifelike, it
was very bow-legged at rest (Figure 4.4c). This would
impair the robot’s ability to simulate an accurate gait,
so we used bungee cords to rotate the hips out. We
attached eye hooks to points on the skeleton so that
the bungee cord would function similarly to the il-
iofemoral and ischiofemoral ligaments (Figure 4.4a-b).
This was successful in rotating the hips so that the legs
were parallel to each other (Figure 4.4d).

13



Figure 4.4: Skeleton components.
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4.1.3 Umbilical System

Figure 4.5: Air compressor tank.

Our umbilical system consisted of the
pneumatic system and the structural sys-
tem. We used a compressed air tank ca-
pable of up to 150 psi, for which we con-
structed a sound-reducing box for use in
the lab (Figure 4.5). We operated the air
tank at 100 psi for our purposes, since
this pressure will give strong forces but
will not cause the muscles to burst.

Figure 4.6: Manifold.

We used 1/4” diameter pneumatic tubing and push con-
nects for easy connections. The push connects were either sin-
gle or branched for doubled-up muscles. To streamline the
connections from the air tank to the twelve muscles we are ac-
tuating, we used a manifold with one inlet and several outlets
(Figure 4.6). This allowed for a more neatly assembled umbili-
cal system, as well as reduced the risk of pressure loss through
long lengths of tubing.

The equipment was placed on a stand made from 80/20
T-slotted aluminum framing. A platform on the top held all
of the pneumatic and electrical equipment needed to actuate
the muscles. A load cell was also bolted to the framing to hold
up the skeleton on a treadmill. We used a treadmill since the

pneumatic system is not easily movable, and it provides a consistent speed for gait.
The treadmill we chose is foldable for easy transportation, and operates at 500W. The
belt is 14” wide and 39.4” long. It has a speed range of 1 km/h (0.28 m/s) to 10 km/h
(2.78 m/s). This meets our minimum objective of a walking speed of 0.25 m/s.

4.2 Muscles

4.2.1 Placement

The amount of muscles in the lower limbs of humans is too extensive to be completely
modeled using the HydroMuscles. For this reason, the muscles must be simplified
while still retaining anatomical integrity. The muscles that are most active during
walking were selected, each analyzed for origin, insertion, length, force generation,
and musculoskeletal function to be simplified into the segmental model provided by
the HydroMuscles. There are six muscles total to be modeled, including the iliopsoas,
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Figure 4.7: Muscle placements.
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tensor fasciae latae, quadriceps femoris, gluteus maximus, hamstrings (biceps femoris
and semitendinosus), and gastrocnemius. There are also passive spring structures
to model the extensor hallucis longus, as well as the iliofemoral and ischiofemoral
ligaments. A general model of these muscles on the skeleton is shown in Figure 4.7.

Table 4.1 details the function of each of these muscles on joint motion when they
are expanded versus contracted.

Table 4.1: Muscle functions.

Muscle Position Joint Action (Elongated) Action (Contracted)

Iliopsoas Anterior Hip Extend Flex
Tensor Fasciae Latae Anterior Hip Extend Flex
Quadriceps Femoris Anterior Hip (Knee) Extend (Flex) Flex (Extend)

Gluteus Maximus Posterior Hip Flex Extend
Hamstrings Posterior Knee Extend Flex

Gastrocnemius Posterior Knee Extend Flex

4.2.2 Dimensions and Force Calculations

In order to determine the dimensions of each muscle, we had to determine the desired
contraction lengths. We found the range of joint angles for the hip, knee, and ankle
during walking; these values can be found in Table 4.2.

Table 4.2: Joint ranges of motion.

Joint Flexion (Degrees) Extension (Degrees)

Hip 25 -18
Knee -60 0
Ankle -16 10

For each muscle, the relevant joints were moved to the flexion and extension angles
to determine the desired change in length. We used a linear regression to determine
the relationship between the latex tube’s original length and its change in length (Ap-
pendix A). The force applied by each muscle was also found. The force calculation
accounted for the change in cross-sectional area of the inside of the tube, as well as for
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the change in wall thickness as the tubing stretches. The force is represented by the
following equations:

F(p, ε) = p[AM − c(ε)ARW ]− Ec(ε)ARWε (4.1)

c(ε) = [1 − (1 + ε)−0.5]2 (4.2)

In equation 4.1, AM is the muscle area defined by the outer diameter, ARW is the
cross-sectional area of the contracted latex tubing, E is the Young’s modulus of the
tube (1.34 MPa), p is the pressure (100 psi), and ε is the strain. Equation 4.2 shows the
factor of strain that affects the force of the muscle (Sridar et. al., 2016). The following
table shows the contracted length and contraction force of each muscle.

Table 4.3: Initial length and force of each muscle.

Muscle Contracted Length (in) Force (lb)

Iliopsoas 2.00 17.27
Tensor Fasciae Latae 2.30 16.74
Quadriceps Femoris 5.90 16.22

Gluteus Maximus 2.23 17.37
Hamstrings 5.90 16.22

Gastrocnemius 4.07 16.83

4.3 Sensors and Control

4.3.1 Inertial Measurement Units and Conductive Rubber

In order to be able to control the robot, the team needed some way to know how it
was oriented throughout the stages of the gait cycle. One way we did this was by
using IMUs. The IMUs we used had built-in gyroscopes and accelerometers, allowing
us to use public code written by Jeff Rowberg (Appendix B). Some modifications were
made in order to allow multiple IMUs to be used on one microcontroller. The IMUs
communicated using I2C. In Rowberg’s code, there are multiple different outputs that
are possible with our IMUs, and we chose to calculate the pitch and roll. We attached
the IMUs just below the knee due to the larger change of angle relative to the ground.
Once we had the IMUs attached, we had to figure out what threshold values we
needed. These values would let the microcontroller know when it should change
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certain valves to continue the stages of the gait cycle. These values were determined
by testing the robot in the air, and were then adjusted with fine tuning when the robot
was in contact with the treadmill.

Conductive rubber stretch sensors were used in a simpler fashion. They were
placed on joints that only have two degrees of freedom: behind the knee and from the
ankle to the calf. In our model, the ankle only moved up or down, making measuring
the angle much simpler. The sensors are given a voltage, and when they are stretched,
the measured voltage increases. This is how we determined what position the legs
were in, and therefore what phase of the gait cycle the robot was in.

4.3.2 5-to-2-Way Solenoid Valves

Figure 4.8: Solenoid valve.

A solenoid valve is an interface between pneu-
matic systems and electronic controllers. It is seen
as a switch to send air to any pneumatic device,
which can allow pneumatic control of tempera-
ture, flow, position, and pressure. The type we
utilized for this project was a 5/2 valve (Figure
4.8). This means that it has five ports: one supply
port for the air inlet to supply pressure, two ex-
haust ports for air to be regulated during its flow
out, two ports that power the system, and two
flow positions (US Solid, 2018).

We used these valves to apply a state machine
system in which the valves would contract or ex-
pand specific muscles depending on what phase

of the gait cycle the robot found itself in. Connected to an Arduino, this allowed us to
control the individual Hydro Muscles attached to the skeleton. The reason we chose
to use the 5 way 2 position valves was for the possibility of using one valve to actuate
antagonistic muscles. We did not implement these antagonistic pairs in our design,
but it will be possible for future iterations.

4.3.3 Flow Control Valves

Figure 4.9: Flow
control valve.

In order to control the speed in which the muscles would contract
we used flow control valves. A flow control valve regulates the
pressure or flow of air coming out of the hose side of the valve
(Figure 4.9). This device allows us to better control the motion
of the skeleton, allowing us to create a smoother gait cycle. Each
muscle was tested individually to see what the correct position of
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the flow control valve should be for each muscle. These values
were used as a baseline since the muscle was acting alone. Once
other muscles were working together, the team realized that the
motion was too fast and the flow rate needed to be slowed down
to accommodate for extra force created from the other muscles.

4.3.4 Arduino Mega

Figure 4.10: Arduino MEGA Specifications.

The board we decided to use
was the Arduino MEGA 2560.
The reason we chose this board
was because of the 54 digital
I/O pins. Each valve needs its
own digital pin for the MOS-
FET drivers, and each motor
also needed its own digital port
as well. Using this board allows
future projects the ability to ex-
pand without having to find a
new board and rewire the cur-
rent setup. Figure 4.10 lists
the spec sheets for the Arduino
MEGA.

4.4 State Machine for
Gait Actuation

With the human gait cycle be-
ing a series of stages, our team
decided to use a state machine.
The state machine consisted of each stage of the gait cycle, as well as a resting state
where all of the muscles were expanded. This made testing much easier because it
allowed us to see certain stages repeatedly, without interference from other stages.
Once we had a stage moving like we wanted it to, we moved onto the next stage. The
next step was to get fluid motion throughout the gait cycle. We did this by slowing all
of the flow control valves, as well as using the sensors to determine when the position
was at the correct point, meaning it was time to switch to the next state. Using a state
machine made debugging much simpler because of the ability to isolate certain stages.
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Chapter 5

Experiments

Figure 5.1: Setup of robot.

The following section describes iterations of testing
performed in order to develop the movement of the
actuated legs, developing the device from a single
moving leg into a fully walking system.

The setup procedure in order to use the robot is
as follows:

1. Turn on the compressor and set it to 90-100
psi, ensuring that it is connected to the pneu-
matic system located at the top of the stand.

2. Power the arduino by USB with a computer.

3. Supply 12V of power to the solenoid valves.

4. Release the cut offs from the valves to the
muscles, allowing them to go to the standby
state in which all muscles are expanded.

5. Attach muscles to corresponding threaded in-
serts (Note: ensure that cutoffs to the mus-
cles are closed before altering the program or
shutting down power, as the valves will turn
off and all muscles will contract simultane-
ously).
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5.1 Single Leg Suspended Actuation

The robot was suspended in air from the load cell,
attached to the stand for motion and actuation testing. The purpose of the test was
to determine if the single leg could achieve the required motion of the gait cycle for a
single step. The robot hips were held vertically to minimize swaying. Since only one
leg was actuated, only six of the twelve solenoid valves were in use for this experiment.
The uploaded state machine allowed the leg to be taken through each phase of the gait
cycle. Each time a button was pushed, the leg would move to the next position in the
gait cycle for a single step.

After the setup procedure was completed, the experiment progressed as follows:
Starting from heel strike, the operator clicked the button connected to the bread-

board. This allowed the operator to cycle through the gait cycle phase by phase. At
each phase, the operator examined the position of the single leg and compared it to
the model of a single leg gait for that specific phase to determine if the leg was in the
proper position. If the leg was found to not be in the proper position, then muscles
would be expanded, contracted, or changed so that the leg would more represent a
human gait.

Utilizing this simple configuration, the muscle position, leg extension, and actu-
ation speed were adjusted and observations were recorded and analyzed. Muscle
actuation for a single leg was successful. The operator was able to actuate all muscles
in the single leg, and air was able to enter and leave the system easily. The leg was
able to perform the basic movements of a single leg for a human basic gait. However,
the leg did not seem to be have enough toe clearance during swing.

5.2 Double Leg Suspended Actuation

The robot, similarly to Experiment 1, was suspended in mid air from the load cell for
actuating tests utilizing the pneumatic system. The purpose of this experiment was to
determine if the robot could achieve the required motion of the gait cycle for a single
stride, encompassing one step from each leg. Since both legs were being actuated, the
robot was left to swing in mid air off the load cell. Further, since both legs were in
use for this experiment, all twelve solenoid valves were operated. The uploaded state
machine allowed the legs to be taken through each phase of the gait cycle. Again, each
time the button was pushed, the legs would move to the next position in the gait cycle
for a single stride.

After the setup procedure was completed, the experiment progressed as follows:
Starting from heel strike, the operator clicked the button connected to the bread-

board. This allowed the operator to cycle through the gait cycle phase by phase. At
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each phase, the operator examined the position of both legs and compared it to the
model in the gait cycle for that specific phase. Muscles were adjusted if the position
did not resemble the model closely enough. Utilizing this simple configuration, the
muscle position, leg extension, and actuation speed were adjusted and observations
were recorded and analyzed.

Muscle actuation of both of the legs were successful. The system allowed all the
muscles to be actuated and a basic gait cycle was performed in mid air. However, the
swaying of the robot in mid air made it difficult to determine if there was enough toe
clearance through the whole gait cycle.

5.3 Movement on Treadmill

The robot was positioned so that the feet made contact with the treadmill, while still
having the spine tethered to the load cell. The purpose of this experiment was to
have the legs walk on the treadmill to perform the basic motion of the gait cycle. The
hips were lightly tethered to the side of the stand in order to prevent rotation of the
skeleton. The new uploaded state machine code allowed the legs to perform multiple
gait cycles in a row in order to allow the skeleton to walk in time with the treadmill.
State transitions were simply manually timed after several initial tests.

After the setup procedure was completed, the experiment progressed as follows:
Starting from heel strike, the operator clicked the button, which initiated the gait

cycle starting with heel strike. It was then up to the operator to adjust the speed of the
legs to walk in time with the treadmill, prevent the feet from dragging, and determine
if any muscles needed to be altered in order for the robot to best mimic the human
gait cycle in time with the treadmill.

Where initially the legs were found to drag during the swing phase, alteration
of the tensor fasciae allowed for the required clearance to move more fluidly on the
treadmill. The robot was able to walk in time with the treadmill at 1 km/h, while
supporting itself in forward motion with assistance from the load cell.

5.4 Movement Utilizing Sensor Information

Similarly to the last experiment, the robot was positioned so that the feet made contact
with the treadmill, while still having the spine tethered to the load cell. However, for
this experiment, IMUs and Conductive Rubber Stretch Sensors were attached to the
skeleton. The purpose of this experiment was for the legs to walk utilizing position
feedback from the IMUs and stretch sensors in order to transition between states in the
hopes that this would create a smoother gait cycle. Two sets of stretch sensors were

23



attached to both legs: one bridging the femur and the tibia to measure the knee angle,
and one bridging the tibia and the heel to measure the ankle angle. The IMUs were
attached to the front of the tibia about an inch under the knee to give general position
feedback. Thresholds were set for each state so that the program would know when
to transition to the subsequent state. These thresholds were obtained from running
the treadmill and then setting the state machine to certain states. With the legs having
some force acting against them, which was different from it suspending, we were able
to correctly determine what the sensor values were. These values needed to change
slightly throughout testing, but this was finalized after many consecutive runs of the
same state.
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Chapter 6

Results

The robot was able to walk through the stages of the human gait cycle with rela-
tively smooth motion using sensor feedback. The six muscles that were selected were
effective in moving the legs to the desired positions for each phase (Figure 6.1).

Figure 6.1: Gait cycle stages.

No balance control was implemented. The skeleton was able to support its own
weight when the legs were straight, but it could not balance on its own during the
entire gait cycle. The hips were lightly tethered to prevent rotation during walking.

The IMU and stretch sensor thresholds can be viewed in the code (Appendix B).
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Chapter 7

Conclusion

While trying to anatomically resemble the muscles used in human walking, we were
able to create a sufficient demonstration of Hydro Muscles actuating a bipedal robot
to create a biomimetic walking gait cycle. We showed that there are strides to be made
in the direction of biomimicry in robotics.

Some immediate next steps in continuing to improve this project would be to make
small adjustments to the muscle lengths and tendon lengths to truly refine the motion
to the best of the ability of the current build. Seeing as we achieved the motion so late
in the timeline of our project, it is relatively rudimentary when looking to the future.
This means that there is room for improvement to be made in the motion of the robot
even in the current state of the build.

Another consideration that would have a positive impact on the motion would be
to make the tendon material more biomimetic. We are currently using braided fishing
line, which worked for our purposes as it could handle high bursts of tension. How-
ever, using an elastic material would make the motion more smooth, and attaching
the material used for tendons over an area instead of a point would better define the
degrees of freedom of the joints and make the motion more lifelike.

The next great consideration would be balance. We designed the build of the
skeleton to easily allow for implementation of a balance system since we had originally
planned to address it in more depth. As we got closer to completing our project, our
group, along with our advisors, concluded that implementing a balance system with
feedback and control would be a lofty feat. It was therefore decided that this would
be outside the scope of our project. Motion was more heavily emphasized within
the scope of our project, as our group focused more on the mechanical build and
anatomical mimicry.

Another consideration to make regarding balance would be to somehow imple-
ment something that resembles the upper body in either mass or balance manage-
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ment. Two-thirds of the body mass is typically located at about two-thirds of the body
height. This means that the body acts similarly to an “inverted pendulum,” which is
unstable when the body is perturbed (Winter et. al., 1990). Without this extra body
mass above the hips, our model currently needs attachment points at the hips in order
to maintain orientation.

Once the use of Hydro Muscles is perfected, there are many applications such as
assistive devices or replacements for human muscles. Since Hydro Muscles are soft,
it is safer and more comfortable to wear than hard, rigid structures. Hydro Muscles
can provide humans with the ability to move and feel with the same functionality as
human muscles.
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Appendix A

Muscle Length Linear Regression

The relationship between initial contracted length and change in length to the total
expanded length is linear. Figure A.1 shows this regression line for several tested
muscle lengths.

Figure A.1: Linear regression line for initial length versus change in length.

The table below shows the dimensions found from the linear regression for each
muscle.
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Table A.1: Muscle lengths found from linear regression.

Muscle Change in Length (in) Initial Length (in) With 20% Safety Factor (in)

Iliopsoas 0.83 1.66 2.00
Tensor Fasciae Latae 1.05 1.91 2.30
Quadriceps Femoris 3.75 4.92 5.90

Gluteus Maximus 1.00 1.86 2.23
Hamstrings 3.75 4.92 5.90

Gastrocnemius 2.38 3.39 4.07
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Appendix B

Arduino Code

//# include <Fin i teS ta teMachine . h>
# include <Servo . h>
# include <I2Cdev . h>

# include " helper_3dmath . h"
//# include "MPU6050 . h"
# inc lude " MPU6050_6Axis_MotionApps20 . h"
//# include " MPU6050_9Axis_MotionApps41 . h"

// I2C device c l a s s ( I2Cdev ) demonstration Arduino sketch f o r MPU6050 c l a s s using DMP ( MotionApps v2 . 0 )
// 6/21/2012 by J e f f Rowberg <jeff@rowberg . net >
// 2016−05−14 github . com/eadf
// Updates should ( hopeful ly ) always be a v a i l a b l e a t h t tps :// github . com/jrowberg/ i 2 c d e v l i b
//
// Changelog :
// 2016−05−14 − F i r s t r e v i s i o n
//Below i s copyright from jrowberg IMU code from GitHub
/∗ ============================================

I2Cdev device l i b r a r y code i s placed under the MIT l i c e n s e
Copyright ( c ) 2012 , 2016 J e f f Rowberg
Permission i s hereby granted , f r e e of charge , to any person obta in ing a copy
of t h i s software and a s s o c i a t e d documentation f i l e s ( the " Software " ) , to deal
in the Software without r e s t r i c t i o n , inc luding without l i m i t a t i o n the r i g h t s
to use , copy , modify , merge , publish , d i s t r i b u t e , subl i cense , and/or s e l l
copies of the Software , and to permit persons to whom the Software i s
furnished to do so , s u b j e c t to the fol lowing condi t ions :
The above copyright n o t i c e and t h i s permission n o t i c e s h a l l be included in
a l l copies or s u b s t a n t i a l por t ions of the Software .
THE SOFTWARE IS PROVIDED "AS IS " , WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY , WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
===============================================

∗/

// I2Cdev and MPU6050 must be i n s t a l l e d as l i b r a r i e s , or e l s e the . cpp /.h f i l e s
// f o r both c l a s s e s must be in the include path of your p r o j e c t
# inc lude " I2Cdev . h"
# inc lude " MPU6050_Wrapper . h"
# inc lude " TogglePin . h"
# inc lude " DeathTimer . h"

// Arduino Wire l i b r a r y i s required i f I2Cdev I2CDEV_ARDUINO_WIRE implementation
// i s used in I2Cdev . h
# i f I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
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# include " Wire . h"
# endi f
# def ine OUTPUT_READABLE_PITCHROLL
# i f d e f OUTPUT_TEAPOT
// Teapot demo can only output from one MPU6050
const bool useSecondMpu = f a l s e ;
MPU6050_Array mpus ( 1 ) ;
# e l s e
const bool useSecondMpu = true ;
MPU6050_Array mpus( useSecondMpu ? 2 : 1 ) ;
# endi f
# def ine AD0_PIN_0 38 // Connect t h i s pin to the AD0 pin on MPU #0 WHICH IS RIGHT LEG
# def ine AD0_PIN_1 39 // Connect t h i s pin to the AD0 pin on MPU #1 WHICH IS LEFT LEG
# def ine OUTPUT_SERIAL S e r i a l

# def ine LED_PIN 13 // ( Arduino i s 13 , Teensy i s 11 , Teensy++ i s 6 )
u i n t 8 _ t f i f o B u f f e r [ 6 4 ] ; // FIFO storage b u f f e r

// o r i e n t a t i o n /motion vars
Quaternion q ; // [w, x , y , z ] quaternion co n ta in er
Vector Int16 aa ; // [ x , y , z ] a c c e l sensor measurements
Vector Int16 aaReal ; // [ x , y , z ] gravi ty−f r e e a c c e l sensor measurements
Vector Int16 aaWorld ; // [ x , y , z ] world−frame a c c e l sensor measurements
Vec torF loa t g r a v i t y ; // [ x , y , z ] g r a v i t y vec tor
f l o a t e u l er [ 3 ] ; // [ psi , theta , phi ] Euler angle co nt a i ne r
f l o a t ypr [ 3 ] ; // [yaw , pitch , r o l l ] yaw/p i t c h/ r o l l co nt a i ne r and g r a v i t y vec tor

// packet s t r u c t u r e f o r InvenSense teapot demo
u i n t 8 _ t teapotPacket [ 1 4 ] = { ’ $ ’ , 0x02 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0x00 , 0x00 , ’\ r ’ , ’\n ’ } ;

TogglePin a c t i v i t y L e d ( LED_PIN , 1 0 0 ) ;
DeathTimer deathTimer (5000L ) ;

Servo myservo ;

# def ine rubberCordLK A9 //90 f o r mid swing and 115 f o r terminal
# def ine rubberCordRK A8 //128 f o r mid swing and 178 f o r terminal OR 104 and 120 when l e f t f o r a while
# def ine rubberCordRH A10
# def ine rubberCordLH A11

i n t ledPin = 2 5 ; // choose the pin f o r the LED
i n t inPin = 2 ; // choose the input pin ( f o r a pushbutton )
i n t val = 0 ; // v a r i a b l e f o r reading the pin s t a t u s
i n t ledFade = 2 6 ;
// i n t boardLED = 1 3 ;
i n t button = 2 9 ;
i n t currentTime = 0 ;
i n t but tonCl icks = 0 ;
i n t tes tVa lvePin = 6 ;
//muscle pins
i n t l I l i o p s o a s = 2 4 ;
i n t lGlute = 2 5 ;
i n t lHamstring = 2 8 ;
i n t lGastro = 2 6 ;
i n t lTensor = 2 3 ;
i n t lQuad = 2 7 ;
i n t r I l i o p s o a s = 6 ;
i n t rGlute = 9 ;
i n t rHamstring = 1 1 ;
i n t rGastro = 1 0 ;
i n t rTensor = 7 ;
i n t rQuad = 5 ; //pin 8 i s BAD

i n t r ightS tre tchSensorKnee = 0 ;
i n t l e f t S t r e t c h S e n s o r K n e e = 0 ;
i n t r i g h t S t r e t c h S e n s o r H e e l = 0 ;
i n t l e f t S t r e t c h S e n s o r H e e l = 0 ;
i n t rightIMUPitchKnee = 0 ;
i n t leftIMUPitchKnee = 0 ;
long rightIMU = 0 ;
long leftIMU = 0 ;

# def ine All_Expanded 0
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# def ine Mid_Swing_Right 1
# def ine Terminal_Swing_Right 2
# def ine Heel_Str ike_Right 3
# def ine Stance_Right_One 4
# def ine Stance_Right_Two 5
# def ine Stance_Right_Three 6
# def ine Heel_Off_Right 7
# def ine Toe_Off_Right 8

u i n t 8 _ t f sm_sta te = All_Expanded ;

void setup ( ) {
S e r i a l . begin ( 1 1 5 2 0 0 ) ;
pinMode ( ledPin , OUTPUT) ; // de c lare LED as output
pinMode ( inPin , INPUT ) ; // de c lare pushbutton as input
pinMode ( button , INPUT ) ;
pinMode ( l I l i o p s o a s , OUTPUT) ;
pinMode ( lGlute , OUTPUT) ;
pinMode ( lHamstring , OUTPUT) ;
pinMode ( lGastro , OUTPUT) ;
pinMode ( lTensor , OUTPUT) ;
pinMode ( lQuad , OUTPUT) ;
pinMode ( tes tValvePin , OUTPUT) ;
pinMode ( r I l i o p s o a s , OUTPUT) ;
pinMode ( rGlute , OUTPUT) ;
pinMode ( rHamstring , OUTPUT) ;
pinMode ( rGastro , OUTPUT) ;
pinMode ( rTensor , OUTPUT) ;
pinMode ( rQuad , OUTPUT) ;
pinMode ( rubberCordRK , INPUT ) ;
pinMode ( rubberCordLK , INPUT ) ;
pinMode ( rubberCordLH , INPUT ) ;
pinMode ( rubberCordRH , INPUT ) ;
myservo . a t t a c h ( 8 ) ;

// j o i n I2C bus ( I2Cdev l i b r a r y doesn ’ t do t h i s automat i ca l ly )
# i f I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE

Wire . begin ( ) ;
Wire . se tClock ( 4 0 0 0 0 0 ) ; // 400kHz I2C clock . Comment t h i s l i n e i f having compilat ion d i f f i c u l t i e s

# e l i f I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
Fastwire : : setup ( 4 0 0 , t rue ) ;

# endi f

// i n i t i a l i z e s e r i a l communication
// (115200 chosen because i t i s required f o r Teapot Demo output , but i t ’ s
// r e a l l y up to you depending on your p r o j e c t )
S e r i a l . begin ( 1 1 5 2 0 0 ) ;

while ( ! S e r i a l ) ; // wait f o r Leonardo enumeration , o thers continue immediately

// NOTE: 8MHz or slower host processors , l i k e the Teensy @ 3 . 3 v or Ardunio
// Pro Mini running at 3 . 3 v , cannot handle t h i s baud r a t e r e l i a b l y due to
// the baud timing being too misaligned with processor t i c k s . You must use
// 38400 or slower in these cases , or use some kind of e x t e r n a l separa te
// c r y s t a l s o l u t i o n f o r the UART timer .

// i n i t i a l i z e device
S e r i a l . p r i n t l n ( F ( " I n i t i a l i z i n g I2C devices . . . " ) ) ;
mpus . add ( AD0_PIN_0 ) ;
i f ( useSecondMpu ) mpus . add ( AD0_PIN_1 ) ;

mpus . i n i t i a l i z e ( ) ;

// conf igure LED f o r output
pinMode (LED_PIN , OUTPUT) ;

// v e r i f y connect ion
S e r i a l . p r i n t l n ( F ( " Test ing device connect ions . . . " ) ) ;
i f (mpus . tes tConnect ion ( ) ) {

S e r i a l . p r i n t l n ( F ( " MPU6050 connect ion s u c c e s s f u l " ) ) ;
} e l s e {

mpus . h a l t ( F ( " MPU6050 connect ion f a i l e d , h a l t i n g " ) ) ;
}
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// wait f o r ready
S e r i a l . p r i n t l n ( F ( "\ nSend any c h a r a c t e r to begin DMP programming and demo : " ) ) ;
while ( S e r i a l . a v a i l a b l e ( ) && S e r i a l . read ( ) )

; // empty b u f f e r
while ( ! S e r i a l . a v a i l a b l e ( ) )

a c t i v i t y L e d . update ( ) ; // f l a s h led while wait ing f o r data
while ( S e r i a l . a v a i l a b l e ( ) && S e r i a l . read ( ) )

; // empty b u f f e r again
a c t i v i t y L e d . se tPer iod ( 5 0 0 ) ; // slow down led to 2Hz

// load and conf igure the DMP
S e r i a l . p r i n t l n ( F ( " I n i t i a l i z i n g DMP . . . " ) ) ;
mpus . d m p I n i t i a l i z e ( ) ;

// supply your own gyro o f f s e t s here , sca led f o r min s e n s i t i v i t y
MPU6050_Wrapper∗ currentMPU = mpus . s e l e c t ( 0 ) ;
currentMPU−>_mpu . setXGyroOffset ( 2 2 0 ) ;
currentMPU−>_mpu . setYGyroOffset ( 7 6 ) ;
currentMPU−>_mpu . setZGyroOffset ( −85) ;
currentMPU−>_mpu . se tZAcce lOf f se t ( 1 7 8 8 ) ; // 1688 f a c t o r y d e f a u l t f o r my t e s t chip
i f ( useSecondMpu ) {

currentMPU = mpus . s e l e c t ( 1 ) ;
currentMPU−>_mpu . setXGyroOffset ( 2 2 0 ) ;
currentMPU−>_mpu . setYGyroOffset ( 7 6 ) ;
currentMPU−>_mpu . setZGyroOffset ( −85) ;
currentMPU−>_mpu . se tZAcce lOf f se t ( 1 7 8 8 ) ; // 1688 f a c t o r y d e f a u l t f o r my t e s t chip

}
mpus . programDmp ( 0 ) ;
i f ( useSecondMpu )

mpus . programDmp ( 1 ) ;
}

void loop ( ) {

//readIMU ( ) ;
//buttonTest ( ) ;
//noControl ( ) ;
//delay ( 5 0 ) ;
// c o n t r o l ( ) ;
// s t r e t c h S e n s o r ( ) ;
//delay ( 5 0 ) ;
//myservo . wri te ( 8 0 ) ;
//servoTest ( 1 8 0 ) ;
//noControlActuation ( ) ;
// d i g i t a l W r i t e ( rHamstring , HIGH ) ;
//delay ( 5 0 ) ;
//noControlActuation ( ) ;
but tonCl icks = dig i ta lRead ( button ) ;
while ( but tonCl icks == 1) {

delay ( 1 0 0 0 ) ;
switch ( f sm_sta te ) {

case All_Expanded :
but tonCl icks = dig i ta lRead ( button ) ;
while ( but tonCl icks == 0) {

but tonCl icks = dig i ta lRead ( button ) ;
d i g i t a l W r i t e ( lGlute , HIGH ) ;
d i g i t a l W r i t e ( lQuad , HIGH ) ;
d i g i t a l W r i t e ( l I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( lHamstring , HIGH ) ;
d i g i t a l W r i t e ( lTensor , HIGH ) ;
d i g i t a l W r i t e ( lGastro , HIGH ) ;
d i g i t a l W r i t e ( rGlute , HIGH ) ;
d i g i t a l W r i t e ( rQuad , HIGH ) ;
d i g i t a l W r i t e ( r I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( rHamstring , HIGH ) ;
d i g i t a l W r i t e ( rTensor , HIGH ) ;
d i g i t a l W r i t e ( rGastro , HIGH ) ;
S e r i a l . p r i n t l n ( " Waiting to S t a r t " ) ;

}
f sm_sta te = Heel_Str ike_Right ;
break ;

case Mid_Swing_Right :
//but tonCl icks = dig i ta lRead ( button ) ;
r ightS t re tchSensorKnee = analogRead ( rubberCordRK ) ;
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while ( r ightS tre tchSensorKnee > 113) {
r ightS t re tchSensorKnee = analogRead ( rubberCordRK ) ;
d i g i t a l W r i t e ( l I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( lTensor , HIGH ) ;
d i g i t a l W r i t e ( lQuad , LOW) ;
d i g i t a l W r i t e ( lGlute , LOW) ;
d i g i t a l W r i t e ( lHamstring , HIGH ) ;
d i g i t a l W r i t e ( lGastro , HIGH ) ;
d i g i t a l W r i t e ( r I l i o p s o a s , LOW) ;
d i g i t a l W r i t e ( rTensor , LOW) ;
d i g i t a l W r i t e ( rQuad , HIGH ) ;
d i g i t a l W r i t e ( rGlute , HIGH ) ;
d i g i t a l W r i t e ( rHamstring , LOW) ;
d i g i t a l W r i t e ( rGastro , LOW) ;
S e r i a l . p r i n t l n ( "MID−SWING " ) ;

}
f sm_sta te = Terminal_Swing_Right ;
break ;

case Terminal_Swing_Right :
r ightS t re tchSensorKnee = analogRead ( rubberCordRK ) ;
while ( r ightS tre tchSensorKnee < 127) {

r ightS t re tchSensorKnee = analogRead ( rubberCordRK ) ;
d i g i t a l W r i t e ( l I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( lTensor , HIGH ) ;
d i g i t a l W r i t e ( lQuad , LOW) ;
d i g i t a l W r i t e ( lGlute , LOW) ;
d i g i t a l W r i t e ( lHamstring , HIGH ) ;
d i g i t a l W r i t e ( lGastro , HIGH ) ;
d i g i t a l W r i t e ( r I l i o p s o a s , LOW) ;
d i g i t a l W r i t e ( rTensor , LOW) ;
d i g i t a l W r i t e ( rQuad , LOW) ;
d i g i t a l W r i t e ( rGlute , HIGH ) ;
d i g i t a l W r i t e ( rHamstring , HIGH ) ;
d i g i t a l W r i t e ( rGastro , HIGH ) ;
S e r i a l . p r i n t l n ( "TERMINAL " ) ;

}
f sm_sta te = All_Expanded ;
break ;

case Heel_Str ike_Right :
readIMU ( ) ;
while ( rightIMU < −84) {

readIMU ( ) ;
d i g i t a l W r i t e ( l I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( lTensor , HIGH ) ;
d i g i t a l W r i t e ( lQuad , HIGH ) ;
d i g i t a l W r i t e ( lGlute , LOW) ;
d i g i t a l W r i t e ( lHamstring , HIGH ) ;
d i g i t a l W r i t e ( lGastro , LOW) ;
d i g i t a l W r i t e ( r I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( rTensor , LOW) ;
d i g i t a l W r i t e ( rQuad , LOW) ;
d i g i t a l W r i t e ( rGlute , HIGH ) ;
d i g i t a l W r i t e ( rHamstring , HIGH ) ;
d i g i t a l W r i t e ( rGastro , HIGH ) ;
S e r i a l . p r i n t l n ( "HEEL STRIKE " ) ;

}
f sm_sta te = Stance_Right_One ;
break ;

case Stance_Right_One : //toe o f f l e f t
while ( leftIMU > −78) {

readIMU ( ) ;
d i g i t a l W r i t e ( l I l i o p s o a s , LOW) ;
d i g i t a l W r i t e ( lTensor , HIGH ) ;
d i g i t a l W r i t e ( lQuad , HIGH ) ;
d i g i t a l W r i t e ( lGlute , LOW) ;
d i g i t a l W r i t e ( lHamstring , LOW) ;
d i g i t a l W r i t e ( lGastro , LOW) ;
d i g i t a l W r i t e ( r I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( rTensor , HIGH ) ;
d i g i t a l W r i t e ( rQuad , LOW) ;
d i g i t a l W r i t e ( rGlute , LOW) ;
d i g i t a l W r i t e ( rHamstring , HIGH ) ;
d i g i t a l W r i t e ( rGastro , HIGH ) ;
S e r i a l . p r i n t l n ( "STANCE−1" ) ;
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S e r i a l . p r i n t l n ( " Right IMU: " ) ;
S e r i a l . p r i n t ( rightIMU ) ;

}
f sm_sta te = Stance_Right_Two ;
break ;

case Stance_Right_Two : //mid swing l e f t
while ( leftIMU < −52) {

readIMU ( ) ;
d i g i t a l W r i t e ( l I l i o p s o a s , LOW) ;
d i g i t a l W r i t e ( lTensor , LOW) ;
d i g i t a l W r i t e ( lQuad , HIGH ) ;
d i g i t a l W r i t e ( lGlute , HIGH ) ;
d i g i t a l W r i t e ( lHamstring , LOW) ;
d i g i t a l W r i t e ( lGastro , LOW) ;
d i g i t a l W r i t e ( r I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( rTensor , HIGH ) ;
d i g i t a l W r i t e ( rQuad , LOW) ;
d i g i t a l W r i t e ( rGlute , LOW) ;
d i g i t a l W r i t e ( rHamstring , HIGH ) ;
d i g i t a l W r i t e ( rGastro , HIGH ) ;
S e r i a l . p r i n t l n ( "STANCE−2" ) ;
S e r i a l . p r i n t l n ( " RIGHT IMU: " ) ;
S e r i a l . p r i n t ( rightIMU ) ;

}
f sm_sta te = Stance_Right_Three ;
break ;

case Stance_Right_Three : //terminal swing l e f t
while ( leftIMU < −71 ) {

readIMU ( ) ;
d i g i t a l W r i t e ( l I l i o p s o a s , LOW) ;
d i g i t a l W r i t e ( lTensor , LOW) ;
d i g i t a l W r i t e ( lQuad , LOW) ;
d i g i t a l W r i t e ( lGlute , HIGH ) ;
d i g i t a l W r i t e ( lHamstring , HIGH ) ;
d i g i t a l W r i t e ( lGastro , HIGH ) ;
d i g i t a l W r i t e ( r I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( rTensor , HIGH ) ;
d i g i t a l W r i t e ( rQuad , LOW) ;
d i g i t a l W r i t e ( rGlute , LOW) ;
d i g i t a l W r i t e ( rHamstring , HIGH ) ;
d i g i t a l W r i t e ( rGastro , HIGH ) ;
S e r i a l . p r i n t l n ( "STANCE−3" ) ;

}
f sm_sta te = Heel_Off_Right ;
break ;

case Heel_Off_Right :
r i g h t S t r e t c h S e n s o r H e e l = analogRead ( rubberCordRH ) ;
while ( r i g h t S t r e t c h S e n s o r H e e l > 183) {

r i g h t S t r e t c h S e n s o r H e e l = analogRead ( rubberCordRH ) ;
d i g i t a l W r i t e ( l I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( lTensor , LOW) ;
d i g i t a l W r i t e ( lQuad , LOW) ;
d i g i t a l W r i t e ( lGlute , HIGH ) ;
d i g i t a l W r i t e ( lHamstring , HIGH ) ;
d i g i t a l W r i t e ( lGastro , HIGH ) ;
d i g i t a l W r i t e ( r I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( rTensor , HIGH ) ;
d i g i t a l W r i t e ( rQuad , HIGH ) ;
d i g i t a l W r i t e ( rGlute , LOW) ;
d i g i t a l W r i t e ( rHamstring , HIGH ) ;
d i g i t a l W r i t e ( rGastro , LOW) ;
S e r i a l . p r i n t l n ( "HEEL OFF " ) ;

}
f sm_sta te = Toe_Off_Right ;
break ;

case Toe_Off_Right :
while ( r i g h t S t r e t c h S e n s o r H e e l > 174) {

r i g h t S t r e t c h S e n s o r H e e l = analogRead ( rubberCordRH ) ;
d i g i t a l W r i t e ( l I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( lTensor , HIGH ) ;
d i g i t a l W r i t e ( lQuad , LOW) ;
d i g i t a l W r i t e ( lGlute , LOW) ;
d i g i t a l W r i t e ( lHamstring , HIGH ) ;
d i g i t a l W r i t e ( lGastro , HIGH ) ;
d i g i t a l W r i t e ( r I l i o p s o a s , LOW) ;
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d i g i t a l W r i t e ( rTensor , HIGH ) ;
d i g i t a l W r i t e ( rQuad , HIGH ) ;
d i g i t a l W r i t e ( rGlute , LOW) ;
d i g i t a l W r i t e ( rHamstring , LOW) ;
d i g i t a l W r i t e ( rGastro , LOW) ;
S e r i a l . p r i n t l n ( "TOE OFF " ) ;

}
f sm_sta te = Mid_Swing_Right ;
break ;

}
}

}
void noControl ( ) {

val = dig i ta lRead ( button ) ; // read input value
i f ( val == LOW) { // check i f the input i s HIGH ( button r e l e a s e d )

// d i g i t a l W r i t e ( tes tValvePin , LOW) ; // turn LED OFF
d i g i t a l W r i t e ( lGlute , HIGH ) ;
d i g i t a l W r i t e ( lQuad , HIGH ) ;
d i g i t a l W r i t e ( l I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( lHamstring , HIGH ) ;
d i g i t a l W r i t e ( lTensor , HIGH ) ;
d i g i t a l W r i t e ( lGastro , HIGH ) ;
d i g i t a l W r i t e ( rGlute , HIGH ) ;
d i g i t a l W r i t e ( rQuad , HIGH ) ;
d i g i t a l W r i t e ( r I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( rHamstring , HIGH ) ;
d i g i t a l W r i t e ( rTensor , HIGH ) ;
d i g i t a l W r i t e ( rGastro , HIGH ) ;

} e l s e {
// d i g i t a l W r i t e ( tes tValvePin , HIGH) ;// turn LED ON
d i g i t a l W r i t e ( lGlute , HIGH ) ;
d i g i t a l W r i t e ( lQuad , HIGH ) ;
d i g i t a l W r i t e ( l I l i o p s o a s , LOW) ;
d i g i t a l W r i t e ( lHamstring , LOW) ;
d i g i t a l W r i t e ( lTensor , HIGH ) ;
d i g i t a l W r i t e ( lGastro , HIGH ) ;
d i g i t a l W r i t e ( rGlute , LOW) ;
d i g i t a l W r i t e ( rQuad , LOW) ;
d i g i t a l W r i t e ( r I l i o p s o a s , LOW) ;
d i g i t a l W r i t e ( rHamstring , HIGH ) ;
d i g i t a l W r i t e ( rTensor , HIGH ) ;
d i g i t a l W r i t e ( rGastro , HIGH ) ;

}
}

//above should f i l l muscle a l l the way when button i s pressed/r e l e a s e d
//below should t e c h n i c a l l y f i l l h a l f way

void c o n t r o l ( ) {
// read input value
val = dig i ta lRead ( inPin ) ;
i f ( val == HIGH) { // check i f the input i s HIGH ( button r e l e a s e d )

d i g i t a l W r i t e ( ledFade , LOW) ; // turn LED OFF
} e l s e {

// d i g i t a l W r i t e ( ledPin , HIGH ) ; // turn LED ON
analogWrite ( ledFade , 1 2 4 ) ;

}
}

void fade ( ) {
f o r ( i n t fadeValue = 0 ; fadeValue <= 2 5 5 ; fadeValue += 5) {

// s e t s the value ( range from 0 to 2 5 5 ) :
analogWrite ( ledFade , fadeValue ) ;
// wait f o r 30 m i l l i s e c o n d s to see the dimming e f f e c t
delay ( 3 0 ) ;

}

// fade out from max to min in increments of 5 points :
f o r ( i n t fadeValue = 255 ; fadeValue >= 0 ; fadeValue −= 5) {

// s e t s the value ( range from 0 to 2 5 5 ) :
analogWrite ( ledFade , fadeValue ) ;
// wait f o r 30 m i l l i s e c o n d s to see the dimming e f f e c t
delay ( 3 0 ) ;

}
}
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void servoTest ( i n t rpm) {
currentTime = m i l l i s ( ) ;
while ( 1 ) {

while ( ( m i l l i s ( ) − currentTime ) <= 5050) { //527 = one turn
myservo . wri te (rpm ) ;

}
myservo . wri te ( 9 4 ) ; //94 i s stop on black motors
S e r i a l . p r i n t l n ( currentTime ) ;
break ;

}
delay ( 5 0 0 0 ) ;

}
/∗

void buttonTest ( ) {
val = dig i ta lRead ( button ) ; // read input value
i f ( val == HIGH) { // check i f the input i s HIGH ( button r e l e a s e d )

d i g i t a l W r i t e ( boardLED , LOW) ; // turn LED OFF
} e l s e {

d i g i t a l W r i t e ( boardLED , HIGH ) ; // turn LED ON
}
}

∗/
void s t r e t c h S e n s o r ( ) {

i n t s t re t chValL ;
i n t s t re tchValR ;
s t re t chValL = analogRead ( rubberCordLH ) ;
//stre tchValR = analogRead ( rubberCordRK ) ;
S e r i a l . p r i n t ( " Analog reading L e f t " ) ;
S e r i a l . p r i n t l n ( s t re t chValL ) ; // P r i n t value
delay ( 5 0 0 ) ;
// S e r i a l . p r i n t ( " Analog reading Right " ) ;
// S e r i a l . p r i n t l n ( s t re tchValR ) ;
//delay ( 5 0 0 ) ;

}

void noControlActuation ( ) {
while ( 1 ) {

r i g h t S t r e t c h S e n s o r H e e l = analogRead ( rubberCordRK ) ;
but tonCl icks = 0 ;
delay ( 5 0 0 ) ;
while ( but tonCl icks == 0) {

r i g h t S t r e t c h S e n s o r H e e l = analogRead ( rubberCordRH ) ;
but tonCl icks = dig i ta lRead ( button ) ;
d i g i t a l W r i t e ( lTensor , HIGH ) ;
d i g i t a l W r i t e ( lQuad , HIGH ) ;
d i g i t a l W r i t e ( l I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( lGlute , HIGH ) ;
d i g i t a l W r i t e ( lHamstring , HIGH ) ;
d i g i t a l W r i t e ( lGastro , HIGH ) ;
d i g i t a l W r i t e ( rGlute , HIGH ) ;
d i g i t a l W r i t e ( rQuad , HIGH ) ;
d i g i t a l W r i t e ( r I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( rHamstring , HIGH ) ;
d i g i t a l W r i t e ( rTensor , HIGH ) ;
d i g i t a l W r i t e ( rGastro , HIGH ) ;
S e r i a l . p r i n t l n ( "EXPANDED" ) ;

}
delay ( 5 0 0 ) ;
but tonCl icks = 0 ;
while ( but tonCl icks == 0) {

//r ightSt re tchSensorKnee = analogRead ( rubberCordRK ) ;
l e f t S t r e t c h S e n s o r H e e l = analogRead ( rubberCordLH ) ;
but tonCl icks = dig i ta lRead ( button ) ; // t h i s i s f o r l e f t not r ight , switch
d i g i t a l W r i t e ( l I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( lTensor , HIGH ) ;
d i g i t a l W r i t e ( lQuad , HIGH ) ;
d i g i t a l W r i t e ( lGlute , LOW) ;
d i g i t a l W r i t e ( lHamstring , HIGH ) ;
d i g i t a l W r i t e ( lGastro , LOW) ;
d i g i t a l W r i t e ( r I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( rTensor , LOW) ;
d i g i t a l W r i t e ( rQuad , LOW) ;
d i g i t a l W r i t e ( rGlute , HIGH ) ;
d i g i t a l W r i t e ( rHamstring , HIGH ) ;
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d i g i t a l W r i t e ( rGastro , HIGH ) ;
S e r i a l . p r i n t l n ( "HEEL STRIKE " ) ;
// S e r i a l . p r i n t l n ( l e f t S t r e t c h S e n s o r H e e l ) ; //162
readIMU ( ) ; // r i g h t −82 l e f t −76

}
delay ( 5 0 0 ) ;
but tonCl icks = 0 ;
while ( but tonCl icks == 0) {

l e f t S t r e t c h S e n s o r H e e l = analogRead ( rubberCordLH ) ;
but tonCl icks = dig i ta lRead ( button ) ;
d i g i t a l W r i t e ( l I l i o p s o a s , LOW) ;
d i g i t a l W r i t e ( lTensor , HIGH ) ;
d i g i t a l W r i t e ( lQuad , HIGH ) ;
d i g i t a l W r i t e ( lGlute , LOW) ;
d i g i t a l W r i t e ( lHamstring , LOW) ;
d i g i t a l W r i t e ( lGastro , LOW) ;
d i g i t a l W r i t e ( r I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( rTensor , HIGH ) ;
d i g i t a l W r i t e ( rQuad , LOW) ;
d i g i t a l W r i t e ( rGlute , LOW) ;
d i g i t a l W r i t e ( rHamstring , HIGH ) ;
d i g i t a l W r i t e ( rGastro , HIGH ) ;
S e r i a l . p r i n t l n ( "SANCE−1" ) ; // l e f t toe o f f
// S e r i a l . p r i n t l n ( l e f t S t r e t c h S e n s o r H e e l ) ; //156
readIMU ( ) ; // r i g h t −84 l e f t −81
//delay ( 3 0 ) ;

}
delay ( 5 0 0 ) ;
but tonCl icks = 0 ;
while ( but tonCl icks == 0) {

l e f t S t r e t c h S e n s o r K n e e = analogRead ( rubberCordLK ) ;
but tonCl icks = dig i ta lRead ( button ) ;
d i g i t a l W r i t e ( l I l i o p s o a s , LOW) ;
d i g i t a l W r i t e ( lTensor , LOW) ;
d i g i t a l W r i t e ( lQuad , HIGH ) ;
d i g i t a l W r i t e ( lGlute , HIGH ) ;
d i g i t a l W r i t e ( lHamstring , LOW) ;
d i g i t a l W r i t e ( lGastro , LOW) ;
d i g i t a l W r i t e ( r I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( rTensor , HIGH ) ;
d i g i t a l W r i t e ( rQuad , LOW) ;
d i g i t a l W r i t e ( rGlute , LOW) ;
d i g i t a l W r i t e ( rHamstring , HIGH ) ;
d i g i t a l W r i t e ( rGastro , HIGH ) ;
S e r i a l . p r i n t l n ( "STANCE−2" ) ;
S e r i a l . p r i n t l n ( " l e f t knee " ) ;
// S e r i a l . p r i n t l n ( l e f t S t r e t c h S e n s o r K n e e ) ; // l e f t mid−swing 122
readIMU ( ) ; // r i g h t −86 l e f t −79
//delay ( 3 0 ) ;

}
delay ( 5 0 0 ) ;
but tonCl icks = 0 ;
while ( but tonCl icks == 0) {

l e f t S t r e t c h S e n s o r K n e e = analogRead ( rubberCordLK ) ;
but tonCl icks = dig i ta lRead ( button ) ;
d i g i t a l W r i t e ( l I l i o p s o a s , LOW) ;
d i g i t a l W r i t e ( lTensor , LOW) ;
d i g i t a l W r i t e ( lQuad , LOW) ;
d i g i t a l W r i t e ( lGlute , HIGH ) ;
d i g i t a l W r i t e ( lHamstring , HIGH ) ;
d i g i t a l W r i t e ( lGastro , HIGH ) ;
d i g i t a l W r i t e ( r I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( rTensor , HIGH ) ;
d i g i t a l W r i t e ( rQuad , LOW) ;
d i g i t a l W r i t e ( rGlute , LOW) ;
d i g i t a l W r i t e ( rHamstring , HIGH ) ;
d i g i t a l W r i t e ( rGastro , HIGH ) ;
S e r i a l . p r i n t l n ( "STANCE−3" ) ; // l e f t terminal swing
// S e r i a l . p r i n t l n ( l e f t S t r e t c h S e n s o r K n e e ) ; //125 lknee
readIMU ( ) ; // r i g h t −84 l e f t −71
//delay ( 3 0 ) ;

}
delay ( 5 0 0 ) ;
but tonCl icks = 0 ;
while ( but tonCl icks == 0) {
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r i g h t S t r e t c h S e n s o r H e e l = analogRead ( rubberCordRH ) ;
but tonCl icks = dig i ta lRead ( button ) ;
d i g i t a l W r i t e ( l I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( lTensor , LOW ) ;
d i g i t a l W r i t e ( lQuad , LOW) ;
d i g i t a l W r i t e ( lGlute , HIGH ) ;
d i g i t a l W r i t e ( lHamstring , HIGH ) ;
d i g i t a l W r i t e ( lGastro , HIGH ) ;
d i g i t a l W r i t e ( r I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( rTensor , HIGH ) ;
d i g i t a l W r i t e ( rQuad , HIGH ) ;
d i g i t a l W r i t e ( rGlute , LOW) ;
d i g i t a l W r i t e ( rHamstring , HIGH ) ;
d i g i t a l W r i t e ( rGastro , LOW) ;
S e r i a l . p r i n t l n ( "HEEL OFF " ) ;
S e r i a l . p r i n t l n ( " r i g h t heel " ) ;
// S e r i a l . p r i n t l n ( r i g h t S t r e t c h S e n s o r H e e l ) ; //183
readIMU ( ) ; // r i g h t −83 l e f t −71
//delay ( 3 0 ) ;

}
delay ( 5 0 0 ) ;
but tonCl icks = 0 ;
while ( but tonCl icks == 0) {

but tonCl icks = dig i ta lRead ( button ) ;
r i g h t S t r e t c h S e n s o r H e e l = analogRead ( rubberCordRH ) ;
d i g i t a l W r i t e ( l I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( lTensor , HIGH ) ;
d i g i t a l W r i t e ( lQuad , LOW) ;
d i g i t a l W r i t e ( lGlute , LOW) ;
d i g i t a l W r i t e ( lHamstring , HIGH ) ;
d i g i t a l W r i t e ( lGastro , HIGH ) ;
d i g i t a l W r i t e ( r I l i o p s o a s , LOW) ;
d i g i t a l W r i t e ( rTensor , HIGH ) ;
d i g i t a l W r i t e ( rQuad , HIGH ) ;
d i g i t a l W r i t e ( rGlute , LOW) ;
d i g i t a l W r i t e ( rHamstring , LOW) ;
d i g i t a l W r i t e ( rGastro , LOW) ;
S e r i a l . p r i n t l n ( "TOE OFF " ) ;
S e r i a l . p r i n t l n ( " r i g h t heel " ) ;
S e r i a l . p r i n t l n ( r i g h t S t r e t c h S e n s o r H e e l ) ; //174
readIMU ( ) ; // r i g h t −71 l e f t −68
//delay ( 3 0 ) ;

}
/∗

delay ( 5 0 0 ) ;
but tonCl icks = 0 ;
while ( but tonCl icks == 0) {
but tonCl icks = dig i ta lRead ( button ) ;
d i g i t a l W r i t e ( l I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( lTensor , HIGH ) ;
d i g i t a l W r i t e ( lQuad , LOW) ;
d i g i t a l W r i t e ( lGlute , LOW) ;
d i g i t a l W r i t e ( lHamstring , HIGH ) ;
d i g i t a l W r i t e ( lGastro , HIGH ) ;
d i g i t a l W r i t e ( r I l i o p s o a s , LOW) ;
d i g i t a l W r i t e ( rTensor , LOW) ;
d i g i t a l W r i t e ( rQuad , HIGH ) ;
d i g i t a l W r i t e ( rGlute , HIGH ) ;
d i g i t a l W r i t e ( rHamstring , LOW) ;
d i g i t a l W r i t e ( rGastro , LOW) ;
S e r i a l . p r i n t l n ( "MID−SWING−FINAL " ) ;
//readIMU ( ) ; // r i g h t −52 l e f t −63
delay ( 3 0 ) ;
}

∗/

delay ( 5 0 0 ) ;
but tonCl icks = 0 ;
while ( but tonCl icks == 0) {

r ightS t re tchSensorKnee = analogRead ( rubberCordRK ) ;
// l e f t
but tonCl icks = dig i ta lRead ( button ) ;
d i g i t a l W r i t e ( l I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( lTensor , HIGH ) ;
d i g i t a l W r i t e ( lQuad , LOW) ;
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d i g i t a l W r i t e ( lGlute , LOW) ;
d i g i t a l W r i t e ( lHamstring , HIGH ) ;
d i g i t a l W r i t e ( lGastro , HIGH ) ;
d i g i t a l W r i t e ( r I l i o p s o a s , LOW) ;
d i g i t a l W r i t e ( rTensor , LOW) ;
d i g i t a l W r i t e ( rQuad , HIGH ) ;
d i g i t a l W r i t e ( rGlute , HIGH ) ;
d i g i t a l W r i t e ( rHamstring , LOW) ;
d i g i t a l W r i t e ( rGastro , LOW) ;
S e r i a l . p r i n t l n ( "MID−SWING " ) ;
S e r i a l . p r i n t l n ( " r i g h t knee " ) ;
// S e r i a l . p r i n t l n ( r ightS t re tchSensorKnee ) ; //128
readIMU ( ) ; // r i g h t leg −51 l e f t leg −62 . . . −66 second
//delay ( 3 0 ) ;

}
delay ( 5 0 0 ) ;
but tonCl icks = 0 ;
while ( but tonCl icks == 0) {

r ightS t re tchSensorKnee = analogRead ( rubberCordRK ) ;
but tonCl icks = dig i ta lRead ( button ) ;
d i g i t a l W r i t e ( l I l i o p s o a s , HIGH ) ;
d i g i t a l W r i t e ( lTensor , HIGH ) ;
d i g i t a l W r i t e ( lQuad , LOW) ;
d i g i t a l W r i t e ( lGlute , LOW) ;
d i g i t a l W r i t e ( lHamstring , HIGH ) ;
d i g i t a l W r i t e ( lGastro , HIGH ) ;
d i g i t a l W r i t e ( r I l i o p s o a s , LOW) ;
d i g i t a l W r i t e ( rTensor , LOW) ;
d i g i t a l W r i t e ( rQuad , LOW) ;
d i g i t a l W r i t e ( rGlute , HIGH ) ;
d i g i t a l W r i t e ( rHamstring , HIGH ) ;
d i g i t a l W r i t e ( rGastro , HIGH ) ;
S e r i a l . p r i n t l n ( "TERMINAL " ) ;
S e r i a l . p r i n t l n ( " r i g h t knee " ) ;
// S e r i a l . p r i n t l n ( r ightS t re tchSensorKnee ) ; //130
readIMU ( ) ; // r i g h t −84 l e f t −66
//delay ( 3 0 ) ;

}
}

}

void handleMPUevent ( u i n t 8 _ t mpu) {

MPU6050_Wrapper∗ currentMPU = mpus . s e l e c t (mpu ) ;
// r e s e t i n t e r r u p t f l a g and get INT_STATUS byte
currentMPU−>g e t I n t S t a t u s ( ) ;

// check f o r overflow ( t h i s should never happen unless our code i s too i n e f f i c i e n t )
i f ( ( currentMPU−>_mpuIntStatus & _BV(MPU6050_INTERRUPT_FIFO_OFLOW_BIT ) )

|| currentMPU−>_f i foCount >= 1024) {
// r e s e t so we can continue c l e a n l y
currentMPU−>resetFIFO ( ) ;
S e r i a l . p r i n t l n ( F ( " FIFO overflow ! " ) ) ;
re turn ;

}
// otherwise , check f o r DMP data ready i n t e r r u p t ( t h i s should happen f r e q u e n t l y )
i f ( currentMPU−>_mpuIntStatus & _BV(MPU6050_INTERRUPT_DMP_INT_BIT ) ) {

// read and dump a packet i f the queue conta ins more than one
while ( currentMPU−>_f i foCount >= 2 ∗ currentMPU−>_packetS ize ) {

// read and dump one sample
S e r i a l . p r i n t ( "DUMP" ) ; // t h i s t r a c e w i l l be removed soon
currentMPU−>getFIFOBytes ( f i f o B u f f e r ) ;

}

// read a packet from FIFO
currentMPU−>getFIFOBytes ( f i f o B u f f e r ) ;

# i f d e f OUTPUT_READABLE_QUATERNION
// display quaternion values in easy matrix form : w x y z
currentMPU−>_mpu . dmpGetQuaternion(&q , f i f o B u f f e r ) ;
OUTPUT_SERIAL . p r i n t ( " quat : " ) ; OUTPUT_SERIAL . p r i n t (mpu ) ; OUTPUT_SERIAL . p r i n t ( "\ t " ) ;
OUTPUT_SERIAL . p r i n t ( q .w) ;
OUTPUT_SERIAL . p r i n t ( "\ t " ) ;
OUTPUT_SERIAL . p r i n t ( q . x ) ;
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OUTPUT_SERIAL . p r i n t ( "\ t " ) ;
OUTPUT_SERIAL . p r i n t ( q . y ) ;
OUTPUT_SERIAL . p r i n t ( "\ t " ) ;
OUTPUT_SERIAL . p r i n t l n ( q . z ) ;

# endi f

# i f d e f OUTPUT_READABLE_EULER
// display Euler angles in degrees
currentMPU−>_mpu . dmpGetQuaternion(&q , f i f o B u f f e r ) ;
currentMPU−>_mpu . dmpGetEuler ( euler , &q ) ;
OUTPUT_SERIAL . p r i n t ( " e u l er : " ) ; OUTPUT_SERIAL . p r i n t (mpu ) ; OUTPUT_SERIAL . p r i n t ( "\ t " ) ;
OUTPUT_SERIAL . p r i n t ( e u l er [ 0 ] ∗ 180 / M_PI ) ;
OUTPUT_SERIAL . p r i n t ( "\ t " ) ;
OUTPUT_SERIAL . p r i n t ( e u l er [ 1 ] ∗ 180 / M_PI ) ;
OUTPUT_SERIAL . p r i n t ( "\ t " ) ;
OUTPUT_SERIAL . p r i n t l n ( e u l er [ 2 ] ∗ 180 / M_PI ) ;

# endi f

# i f defined (OUTPUT_READABLE_YAWPITCHROLL) or defined (OUTPUT_READABLE_PITCHROLL)
// display Euler angles in degrees
currentMPU−>_mpu . dmpGetQuaternion(&q , f i f o B u f f e r ) ;
currentMPU−>_mpu . dmpGetGravity(& gravi ty , &q ) ;
currentMPU−>_mpu . dmpGetYawPitchRoll ( ypr , &q , &g r a v i t y ) ;

# i f defined (OUTPUT_READABLE_YAWPITCHROLL)
OUTPUT_SERIAL . p r i n t ( " y " ) ;
delay ( 5 0 ) ;

# endi f
OUTPUT_SERIAL . p r i n t ( " pr : " ) ; OUTPUT_SERIAL . p r i n t (mpu ) ; OUTPUT_SERIAL . p r i n t ( "\ t " ) ; //does t h i s

# i f defined (OUTPUT_READABLE_YAWPITCHROLL)
OUTPUT_SERIAL . p r i n t ( ypr [ 0 ] ∗ 180 / M_PI ) ;
OUTPUT_SERIAL . p r i n t ( "\ t " ) ;

# endi f
OUTPUT_SERIAL . p r i n t ( ypr [ 1 ] ∗ 180 / M_PI ) ;
rightIMU = ypr [ 1 ] ∗180 / M_PI ;
OUTPUT_SERIAL . p r i n t ( "\ t " ) ;
OUTPUT_SERIAL . p r i n t l n ( ypr [ 2 ] ∗ 180 / M_PI ) ;
leftIMU = ypr [ 2 ] ∗ 180 / M_PI ;

# endi f

# i f d e f OUTPUT_READABLE_REALACCEL
// display r e a l a c c e l e r a t i o n , adjusted to remove g r a v i t y
currentMPU−>_mpu . dmpGetQuaternion(&q , f i f o B u f f e r ) ;
currentMPU−>_mpu . dmpGetAccel(&aa , f i f o B u f f e r ) ;
currentMPU−>_mpu . dmpGetGravity(& gravi ty , &q ) ;
currentMPU−>_mpu . dmpGetLinearAccel(&aaReal , &aa , &g r a v i t y ) ;
OUTPUT_SERIAL . p r i n t ( " a r e a l : " ) ; OUTPUT_SERIAL . p r i n t (mpu ) ; OUTPUT_SERIAL . p r i n t ( "\ t " ) ;
OUTPUT_SERIAL . p r i n t ( aaReal . x ) ;
OUTPUT_SERIAL . p r i n t ( "\ t " ) ;
OUTPUT_SERIAL . p r i n t ( aaReal . y ) ;
OUTPUT_SERIAL . p r i n t ( "\ t " ) ;
OUTPUT_SERIAL . p r i n t l n ( aaReal . z ) ;

# endi f

# i f d e f OUTPUT_READABLE_WORLDACCEL
// display i n i t i a l world−frame a c c e l e r a t i o n , adjusted to remove g r a v i t y
// and r o t a t e d based on known o r i e n t a t i o n from quaternion
currentMPU−>_mpu . dmpGetQuaternion(&q , f i f o B u f f e r ) ;
currentMPU−>_mpu . dmpGetAccel(&aa , f i f o B u f f e r ) ;
currentMPU−>_mpu . dmpGetGravity(& gravi ty , &q ) ;
currentMPU−>_mpu . dmpGetLinearAccel(&aaReal , &aa , &g r a v i t y ) ;
currentMPU−>_mpu . dmpGetLinearAccelInWorld(&aaWorld , &aaReal , &q ) ;
OUTPUT_SERIAL . p r i n t ( " aworld : " ) ; OUTPUT_SERIAL . p r i n t (mpu ) ; OUTPUT_SERIAL . p r i n t ( "\ t " ) ;
OUTPUT_SERIAL . p r i n t ( aaWorld . x ) ;
OUTPUT_SERIAL . p r i n t ( "\ t " ) ;
OUTPUT_SERIAL . p r i n t ( aaWorld . y ) ;
OUTPUT_SERIAL . p r i n t ( "\ t " ) ;
OUTPUT_SERIAL . p r i n t l n ( aaWorld . z ) ;

# endi f

# i f d e f OUTPUT_TEAPOT
// display quaternion values in InvenSense Teapot demo format :
// Note t h a t t h i s does not d i f f e r e n t i a l t e between your mpus
teapotPacket [ 2 ] = f i f o B u f f e r [ 0 ] ;
teapotPacket [ 3 ] = f i f o B u f f e r [ 1 ] ;
teapotPacket [ 4 ] = f i f o B u f f e r [ 4 ] ;
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teapotPacket [ 5 ] = f i f o B u f f e r [ 5 ] ;
teapotPacket [ 6 ] = f i f o B u f f e r [ 8 ] ;
teapotPacket [ 7 ] = f i f o B u f f e r [ 9 ] ;
teapotPacket [ 8 ] = f i f o B u f f e r [ 1 2 ] ;
teapotPacket [ 9 ] = f i f o B u f f e r [ 1 3 ] ;
OUTPUT_SERIAL . wri te ( teapotPacket , 1 4 ) ;
teapotPacket [11]++;// packetCount , loops a t 0xFF on purpose

# endi f

}
}

void readIMU ( ) {
s t a t i c u i n t 8 _ t mpu = 0 ;
s t a t i c MPU6050_Wrapper∗ currentMPU = NULL;
i f ( useSecondMpu ) {

f o r ( i n t i = 0 ; i < 2 ; i ++) {
mpu = (mpu + 1) % 2 ; // f a i l e d attempt a t round robin
currentMPU = mpus . s e l e c t (mpu ) ;
i f ( currentMPU−>isDue ( ) ) {

handleMPUevent (mpu ) ;
}

}
} e l s e {

mpu = 0 ;
currentMPU = mpus . s e l e c t (mpu ) ;
i f ( currentMPU−>isDue ( ) ) {

handleMPUevent (mpu ) ;
}

}

// other program behavior s t u f f here
// .
// .
// .
// i f you are r e a l l y paranoid you can f r e q u e n t l y t e s t in between other
// s t u f f to see i f mpuInterrupt i s true , and i f so , " break ; " from the
// while ( ) loop to immediately process the MPU data
// .
// .
// .
// S e r i a l . p r i n t l n ( " Reached Here " ) ;
a c t i v i t y L e d . update ( ) ;
deathTimer . update ( ) ;

}
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