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EXECUTIVE SUMMARY 

This report was requested by Representative Anne Gobi to discuss the benefits and risks 

associated with Pilgrim Nuclear Power Station and develop recommendations based on the data 

collected. Concern about the safety of the plant increased after the accident that happened at the 

Fukushima Daiichi Nuclear Power Plant on March 11, 2011. Extensive research was done to 

formulate recommendations on the safety of the plant and its evacuation plans.  

Since there are a number of complexities surrounding the nuclear plant, the goal of this 

project was to discuss the benefits and risks associated with Pilgrim Nuclear Power Station and 

develop recommendations based on the data collected. To accomplish our goal, we established 

three primary objectives.  

1. Assess the risks for an accident that currently exist at Pilgrim Nuclear Power 

Station. 

2. Evaluate the current emergency response and evacuation plans at Pilgrim. 

3. Analyze the societal, environmental, and economic impacts the plant has under 

both normal operating conditions and in the event of a disaster. 

The data to accomplish these objectives was collected by means of archival research 

supplemented with key interviews. 

Applying the Fukushima Disaster to Pilgrim 

As a result of the insufficient flood protection and design, water from the tsunami 

disabled eleven of the twelve generators and the cooling water pumps at Fukushima (Mohrbach, 

2011). The loss of these generators caused an entire station blackout. The loss of offsite power 

combined with the loss of diesel power at a nuclear power plant increases the risk of malfunction 

by approximately seventy percent (USNRC, 2005). Pilgrim has two diesel generators for the one 
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active reactor on site, and they are both located in separate, elevated locations (Eldred, 2012). To 

further reduce the risk of a complete station blackout, Pilgrim has a third station blackout 

generator. This station blackout generator is also located in a watertight, elevated location. In the 

event that Pilgrim Nuclear Power Station lost power and both diesel generators were destroyed, 

the third station blackout generator would maintain safe function of the plant (T.Setzer, personal 

communication, October 3, 2012).  

As a direct result of the destruction of both the generators and the cooling water pumps, 

the supply of cooling water available to cool the core of Reactor One at Fukushima was 

drastically limited. The ultimate heat sink at Pilgrim is called salt service water [SSW] and has 

five vertical pumps that draw water from the Cape Cod Bay (USNRC, 2007). The SSW consists 

of two open loops, and each loop requires two pumps. In the event of a loss of coolant accident 

[LOCA], only one loop of SSW is required to properly cool the core of the reactor. Pilgrim has a 

backup cooling water loop and a common spare in the event of a core shutdown (USNRC, 2007). 

Based on the structural differences between the generators and the cooling pumps at Pilgrim 

Nuclear Power Station and Fukushima Daiichi Nuclear Power Plant, the exact same cooling 

failure could not occur at Pilgrim Nuclear Power Station. 

After the nuclear disaster at Fukushima, the USNRC immediately performed inspections 

at all United States nuclear power plants (T.Setzer, personal communication, October 3, 2012). 

The inspection assessed Pilgrim’s ability to mitigate the consequences of large fires and 

explosions, station blackout conditions [SBO], internal and external flooding, and the 

thoroughness of the emergency response procedures (USNRC, 2011d).   
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Spent Fuel at Pilgrim Nuclear Power Station 

The spent fuel pool at Pilgrim has the capacity to hold 1000 fuel assemblies, and the 

reactor core at Pilgrim Nuclear Power Station has roughly 580 fuel assemblies (T.Setzer, 

personal communication, October 3, 2012). Approximately every 18-24 months, roughly 194 

fuel assemblies in the reactor core at Pilgrim must be removed and placed in a spent fuel 

pool(T.Setzer, personal communication, October 3, 2012). This process is called a fuel outage 

(See Glossary). Fuel outages are completely necessary for the reactor to function properly, but 

this process fills the spent fuel pool in a matter of years. 

While spent fuel pools are only a temporary means of storage for the fuel assemblies, dry 

cask storage provides a more permanent solution. Pilgrim recently licensed the company Holtec 

to begin building dry cask storage structures (T.Setzer, personal communication, October 3, 

2012). In fact, Pilgrim Nuclear Power Station must have the dry cask storage up and running 

within the next few years because they are running out of space in their spent fuel pool (T.Setzer, 

personal communication, October 3, 2012). While dry cask storage is a safer means of storage in 

terms of Pilgrim Nuclear Power Station’s current spent fuel situation, it is not a feasible solution 

for all nuclear power plants. Under these circumstances, the nuclear power industry should shift 

their focus to developing a plan to remedy the dangerous spent fuel situation. 

Possible spread of radiation around Pilgrim 

Wind plays a crucial role in the spread of radiation.  After the disaster at Fukushima, 

wind carried dangerous levels of radiation nearly 30 miles inland, covering an area of more than 

700 square miles.  If a similar disaster were to occur at Pilgrim, the radiation could contaminate 

the entire county of Plymouth and portions of Barnstable County as well.  Wind patterns show 
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that the majority of Cape Cod is susceptible to receive significant levels of radiation in the event 

of a disaster. 

Evacuation response at Fukushima 

Reports show that the evacuation after the Fukushima was poorly executed due to major 

communication failures between TEPCO, the owner of Fukushima, and the Japanese 

government.  The evacuation radius was eventually expanded to twice the planned distance 

which caused a significant amount of confusion and chaos among Japanese residents.  The 

Nuclear Accident Independent Investigation Committee (NAIIC) reports that 146,520 people 

were evacuated in total and many were relocated more than once due to the three evacuation 

zone expansion orders.  This shows that all parties involved with emergency preparedness at 

Fukushima was completely unprepared to handle a disaster of this magnitude. We can learn a 

significant amount from this that we can apply to emergency response procedures at nuclear 

power plants in the United States in order to make the evacuation plans more appropriate for a 

potential disaster. 

Emergency plan and Evacuation for Pilgrim 

The evacuation plan at Pilgrim is designed and executed by the Nuclear Preparedness 

Department (NPD) of the Massachusetts Emergency Management Agency (MEMA).  The 

Emergency Planning Zone (EPZ) surrounding Pilgrim includes the towns of Plymouth, 

Kingston, Duxbury, and portions of Carver and Marshfield (Entergy, 2011).  The plan covers 

reception centers, Radiological Emergency Worker Monitoring & Decontamination Stations 

(RWEMDS), and transportation for schools, licensed day care facilities, children's camps, 

nursing homes, hospitals, group homes, and correctional facilities.  The Radiological Emergency 

Response Plan also includes services such as environmental monitoring, public alerting, special 
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needs assistance, crisis counseling, meal accommodations for evacuees, business restoration 

assistance, and many others.  The training department offers training to the approximately 4700 

emergency responders for Pilgrim and conducts federally evaluated emergency exercises every 

two years (Commonwealth of Massachusetts, 2012).   

The current evacuation plan for Pilgrim involves a 10 mile radius as required by the 

NRC.  This zone is home to more than 75,000 people, as well as 21 public schools and one 

hospital.  In order to notify the public of a nuclear threat, Entergy owns and operates 112 

emergency sirens within the 10 mile radius of the plant.  These sirens will alert residents that 

there is a potential threat, and residents are instructed to tune to one of the Emergency Alert 

System (EAS) Radio Stations.  The evacuation plan is only effective in the 10 mile radius so it is 

susceptible to many of the same failures that were experienced at Fukushima. 

Cape Cod presents a unique scenario for disaster planning.  Large portions of Cape Cod 

are at high risk for dangerous levels of radiation if a disaster were to occur at Pilgrim.  Since the 

Cape does not fall within the 10 mile radius of the plant, there is no predetermined evacuation 

plan in place for a nuclear disaster.  There is an emergency plan designed in response to 

hurricanes or other severe weather, however this plan does not take into account the issues 

involved with a nuclear scenario and most likely will not be implemented in the event of a 

nuclear disaster.  If a disaster were to occur that would require the evacuation of portions or the 

entire cape, there are several issues that will need to be addressed.  One primary concern is that 

there are only two bridges (excluding the railroad bridge) that cross the Cape Cod Canal, both of 

which are within 20 miles of the plant.  Although this concern has been acknowledged by the 

NRC, an alternative plan has not been determined (Cassidy, 2012). 
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Environment after a Disaster 

 Chernobyl accident may have benefitted certain species of animals because of the 

creation of a mostly human-free exclusion zone. Species of eagles have been able to move into 

the zone to reproduce without any human disturbances, which has been beneficial for the eagles 

and other species. However, while there may have been some beneficial effect to the accident on 

the environment, the radiation did have a negative impact on the flora and fauna around 

Chernobyl. The worst effects on the environment occurred in a twenty mile radius around the 

plant. Radiation decreased the reproductive success of much of the flora and fauna, which 

decreased both the amount and variety of plants and animals in the areas around the plant 

(Geras'kin,S.A.; Fesenko,S.V.; Alexakhin,R.M., 2008). Even if not killed directly from the 

accident, if populations of fish are rendered sterile it could sharply decrease the population 

numbers for future generations. In a controlled study done on Tilapia it was found that at an 

exposure level of .0004 - .0005 grays of strontium-90 per day had a noticeable change on 

reproduction. These levels were maintained for 90 days providing a total dose of .036-.045 Gy, 

which is about four times above the normal background levels. The males had smaller gonads, 

reproduction started earlier, and there were 20 percent fewer normal offspring per female 

(Sazykina,T. G.; Kryshev,A. I.,2003). 

The impact of the intake of the cooling system on the environment is also a concern. 

Over a period of twenty-six years the Pilgrim power plant was responsible for the impingement 

of at least 562,025 fish and shellfish and the entrainment of 24,314,325,386,670 (24 trillion) fish 

and shellfish eggs and larvae (Environmental Protection Agency [EPA], 2002). It is difficult to 

determine the impact this has had on Cape Cod Bay without further research being performed. 
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Human Health 

 The effects of radioactive iodine on the thyroid are some of the most documented 

topics when it comes to how radiation affects the human body. Because thyroid cancer develops 

in children who have been exposed to radioactive isotopes of iodine it became a noticeable trend 

after the Chernobyl accident. There was an international average rate of thyroid cancer in 

children of 1 for every million child per year before the accident while after the accident one 

measurement showed 44 cases of thyroid cancer in children for every million children per year in 

Belarus. 

Recommendations 

After extensive research, we came to the following conclusions and recommendations:  

 Moving the spent fuel from the Pilgrim Nuclear Power Station to a permanent 

will need to be done in the future, and to do so, a permanent nuclear repository 

must be developed. 

 A secondary evacuation plan with a 20 mile radius should be developed so that it 

can be executed in the event that a disaster at Pilgrim exceeds the scope of a 10 

mile evacuation 

 A disaster plan should be developed for Cape Cod that provides the same services 

offered to those within the current 10 mile evacuation zone, as well as evacuation 

routes for those living on the Cape within 20 miles of the plant. 

 If an accident were to occur, the thyroid health of children should be the prime 

health concern. 

 More research must be done to determine the effect Pilgrim’s intake system has 

on Cape Cod Bay.  
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INTRODUCTION 

In spite of its many benefits, the use of nuclear power has been debated since its 

establishment because of the associated risks. However, the complexities of nuclear power make 

it difficult to decisively evaluate the risks and benefits. For anyone living near Pilgrim Nuclear 

Power Station in Plymouth, MA, it is difficult to ignore the incidents that have happened at 

places like Chernobyl, Three Mile Island, and Fukushima. It is possible that a disaster could 

occur at any nuclear facility. For this reason, the prevention of disasters through study of 

previous disasters is the best approach to prevent future incidents from occurring in plants that 

are currently operating.  

The goal of this project is to discuss the benefits and risks associated with Pilgrim 

Nuclear Power Station and develop recommendations based on the data collected. This goal was 

accomplished by analyzing the risks due to a catastrophic accident; analyzing the societal, 

environmental, and economic impacts associated with Pilgrim Nuclear Power Station under 

normal and emergency operating procedures; and evaluating the current emergency response and 

evacuation plans.  

Pilgrim Nuclear Power Station, located in Plymouth, Massachusetts, is similar in design 

to the Fukushima Daiichi Plant. The similarities between these two nuclear power plants 

warranted a second look at the current condition of the plant, as well as an analysis of the plant’s 

safety protocols. Pilgrim’s operating license was renewed on June 8, 2012. The United States 

Nuclear Regulatory Commission [USNRC] can grant license renewals for between twenty and 

forty years depending on the mechanical degradation of the power plant (USNRC, 2011b).  The 

renewal of Pilgrim’s license means the plant will be able to operate for another twenty years, so 
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there is concern that over the course of twenty years safety components could deteriorate causing 

Pilgrim Nuclear Power Station to have an increased risk of a disaster.  

Our sponsor for this project is State Representative Anne Gobi, and she has requested a 

thorough evaluation of Pilgrim Nuclear Power Station. Representative Gobi is the representative 

for Worcester’s fifth district which includes the towns of Barre, Brookfield, East Brookfield, 

Hardwick, Hubbardston, New Braintree, North Brookfield, Oakham, Spencer, Ware, and West 

Brookfield. As sponsor of this project and as a state representative, her job is to voice the 

concerns of the people she represents. Representative Gobi wants to ensure that the plant is not a 

potential threat to the citizens of Massachusetts. She is also the Chair of the Environment, 

Natural Resources, and Agricultural Joint Committee, which heightens her interest in the safety 

of the nuclear plant.  

Studies published by organizations such as The Institute of Electrical and Electronics 

Engineers [IEEE], United Nations Scientific Commission on the Effects of Atomic Radiation 

[UNSCEAR], USNRC, and the International Commission on Radiological Protection [ICRP] 

examine the effects of radiation on humans and the environment. Case studies from Chernobyl 

(1986) and Fukushima (2011) provide information on how emergency protocols and evacuation 

plans can succeed and fail. 

The outcome of the project has the potential to create further conversation within the state 

government and help Representative Gobi lead her committee to address the difficult questions 

that will be asked by her constituents and government officials. The recommendations are based 

on the team’s research and are not attributable to Representative Gobi.  
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METHODOLOGY 

The goal of this project was to discuss the benefits and risks associated with Pilgrim 

Nuclear Power Station and develop recommendations for our sponsor Representative Anne Gobi. 

To accomplish this goal, we established three primary objectives.  

1. Assess the risks for an accident that currently exist at Pilgrim Nuclear Power Station. 

2. Evaluate the current emergency response and evacuation plans at Pilgrim. 

3. Analyze the societal, environmental, and economic impacts the plant has under both 

normal operating conditions and in the event of a disaster. 

Upon completion of these three objectives, we made recommendations regarding how to 

reduce the risk of a disaster at Pilgrim and how to minimize the negative effects of a disaster if 

one were to occur.   

Objective 1: Assess the risks for an accident that exist at Pilgrim Nuclear Power Station  

In order to determine whether Pilgrim is at risk for a nuclear disaster, it was important to 

understand what factors would contribute to the development of a disaster scenario. We 

examined technical documents to understand the extent of redundancy and backup devices 

involved in the engineering of this power plant.  We also accounted for the environment and 

weather conditions to determine whether or not these would have any effect on the operation of 

the plant. Researching the recent disaster at Fukushima played a critical role in this aspect of the 

project. Since the design of Pilgrim is similar to that of Fukushima, we can determine what 

design flaws contributed to the Fukushima disaster and determine whether they pose a threat to 

Pilgrim. In addition, we researched other unique conditions at Pilgrim that pose a potential threat 

to safe operation. 
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Objective 2: Evaluate the current emergency response and evacuation plans at Pilgrim 

In order to evaluate the effectiveness of the existing evacuation plans at Pilgrim, we have 

conducted archival research on the emergency response and evacuation plans at Pilgrim. We 

examined case studies regarding the successes and failures of emergency procedures that were 

executed in response to disasters such as Fukushima and Chernobyl. Using that data, we were 

able to determine whether any of the flaws experienced in those plans are present in Pilgrim’s 

emergency plan. Another valuable resource was reports from practice drills and exercises at 

Pilgrim. Those reports illuminated potential weak spots, allowing us to make recommendations 

to improve the safety and effectiveness of emergency and evacuation procedures. 

Objective 3: Analyze the societal, environmental, and economic impact the plant has under 

both normal operating conditions and in the event of a disaster 

It is unrealistic to deny that a disaster at any nuclear power plant is possible. However 

large or small the risk may be, there is always a possibility of a catastrophic failure at a nuclear 

power plant and it is important to understand the implications of this risk. Radiation is known to 

have detrimental effects on health and the environment so we researched how the fallout from a 

disaster at Pilgrim could potentially affect the surrounding communities and ecosystems. 

In order to understand societal effects of radiation, we compiled relevant information by 

performing archival research on this topic. Searching online databases for journal articles and 

published works was the best method to accomplish this. The information needed in order to 

assess the possible health effects on the population living near the power plant was mainly case 

studies of the impact that accidents such as Chernobyl had on the victims. Controlled testing of 

the effects of radiation on humans is unethical, and therefore there is no documentation of this; 
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however we found controlled studies on animals done by researchers as well as research done on 

humans exposed to radiation for the treatment of cancer. 

Radiation effects on plants and wildlife have been studied in relation to the environment 

surrounding Pilgrim. Massachusetts’ environment and agriculture differs from that of 

Fukushima, so special considerations were taken. We have placed an emphasis on the potential 

impact an accident could have on the agricultural industry of Massachusetts.  Again, studies on 

Chernobyl have been reliable sources to review. Another important environment to examine is 

marine life and the fishing industry due to Pilgrim’s close proximity to the Cape Cod Bay. 

Reports on controlled radiation studies performed on plant life were used from different 

databases. 

A disaster of any magnitude will evidently have dramatic economic costs; however this 

cost is determined by many factors such as the severity of the disaster and the location of the 

plant in regards to population density and infrastructure. In order to make an assessment, we 

researched how all of these factors contribute to the cost of a disaster, as well as researched what 

other factors may have an effect. This was done by collecting documents that detailed the 

evacuation, reparation, and cleanup costs of previous disasters and applying this data to 

Plymouth and the Eastern and Central Massachusetts areas. 
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DATA AND DISCUSSION 

 Understanding the history of both the Plymouth and Fukushima power plants is vital in 

being able to analyze and understand the risks that Pilgrim Nuclear Power Station may face in 

case of a catastrophic failure. Pilgrim Nuclear Power Station is owned and operated by Entergy 

Energy Corporation. Entergy is primarily involved with power distribution and currently owns 

and operates twelve reactors in the United States (Entergy, 2012).  

Pilgrim Nuclear Power Station is located in Plymouth, Massachusetts and has been 

operating since 1972. Entergy acquired the plant in July of 1999. The previous owner was the 

Boston Edison Company. The single GE Mark I-BWR type three reactor at Pilgrim has a 685-

megawatt (MW) output (Nuclear Information and Resource Service, 2011). Nuclear power 

plants are examined after forty years of operation to ensure the integrity of the nuclear plant has 

not become weakened by age. Since the plant has been operating for forty years, its license was 

up for renewal in June of 2012. The license renewal was granted, and Pilgrim Nuclear Power 

Station was permitted to operate for another twenty years (USNRC, 2011b). Pilgrim Nuclear 

Power Station’s power output is enough to power 550,000 homes in Massachusetts; there are 

currently approximately 2.8 million homes in Massachusetts (U.S. Census Bureau, 2012). 

Information about Pilgrim can be publicly accessed through the United States Nuclear 

Regulatory Commission [USNRC]. The USNRC is responsible for rectifying the mechanical 

degradation of safety related components and relicensing all power plants in the United States.  

Our sponsor, State Representative Anne Gobi, asked our team to determine whether 

Pilgrim would exhibit the same response if submitted to the same circumstances that caused the 

Fukushima disaster. In order to analyze Pilgrim Nuclear Power Station’s risk in terms of its 
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infrastructures, the function of the boiling water reactor [BWR] employed by both Fukushima 

and Pilgrim will be explained followed by a theoretical application of the sequence of events that 

caused the disaster at Fukushima. Apart from analyzing the disaster at Fukushima, our team also 

analyzed risk factors posed by the large amount of spent fuel stored at Pilgrim Nuclear Power 

Station. 

The Boiling Water Reactor System 

General Electric created the boiling water reactor in the mid 1950s, and thirty-five GE 

boiling water reactors operate in the United States (Andrews, 2011).  The other sixty-nine 

reactors in the United States use a pressurized water reactor [PWR] (Andrews, 2011).  

 The design of a boiling water reactor is surprisingly simple and can be explained in five steps 

(USNRC, 2012). First, fission reactions take place in the core of the reactor. Nuclear fission is a 

Figure 1. A schematic of commercial boiling water reactors used in the United States (Andrews, 

2011). 
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radioactive decay (See Glossary) of the nucleus (See Glossary) of a heavy isotope (See 

Glossary). The nucleus releases enormous amounts of energy as it decays into smaller more 

stable compounds. Consequently, the energy is released in the form of electromagnetic radiation 

(See Glossary) and kinetic energy (See Glossary) in the form of heat. In the second step, the heat 

produced by the fission reactions in the core is absorbed by high purity water. As a result of 

absorbing heat, the high purity water is converted into a mixture of both steam and water. Next, 

the water is removed from the mixture in a two-step separation (USNRC, 2012). All the water 

must be removed from the steam before it can enter the steam line. In the fourth step, the steam 

line powers a turbine connected to a generator. The turbine activates the generator, and the 

generator produces electricity. Lastly, any unused steam is compressed back into water via a 

condenser. Accordingly, the water from the condenser is pumped back to the reactor where it 

will begin the process again (USNRC, 2012).  

The fission reaction previously described may be stopped for the purpose of maintenance. 

During safe shutdown, the steam line bypasses the turbine. Instead, the steam goes directly to the 

condenser where it will be converted into water for core cooling (Andrews, 2011). When the 

pressure in the reactor reaches approximately 50 pounds per square inch (psi), shutdown-cooling 

mode removes residual heat by means of water and a recirculation loop (Andrews, 2011).  

Despite the term “safe” shutdown, stopping the fission reaction can cause a number of 

accidents. On Tuesday May 22, 2012 at Pilgrim Nuclear Power Station, a routine shutdown of 

the fission reaction presented a problem (Young, 2012). The whole plant was shut down after a 

condenser lost vacuum pressure. This particular condenser at Pilgrim Nuclear Power Station was 

designed to operate in a vacuum to increase efficiency and provide essential cooling to the core 

during shutdown. The condenser’s main function was to cool water removed from the bay and 
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also to convert steam into cooling water.  One the one hand, this shutdown at Pilgrim has been 

viewed as an ominous, foreshadowing event to a future containment failure that could occur if 

Pilgrim were submitted to unplanned reactor shutdown. On the other hand, the shutdown has also 

been viewed in a more positive light. The regulation and testing of the core shutdown process 

illuminates issues that can be corrected. Moreover, Pilgrim representatives assure that every 

shutdown is followed by a rigorous evaluation (Young, 2012).  Nevertheless, the question still 

remains whether Pilgrim Nuclear Power Station would exhibit condenser failure during an 

emergency situation. In spite of the dangers, the fission reaction must be stopped for 

maintenance and calibration. 

Throughout the years, changes have been made to the different systems of the boiling 

water reactor for the purpose of increasing the safety of core shutdown. For example in 1955, 

isolation condensers [IC units] were employed as a backup cooling system in the boiling water 

reactor (Andrews, 2011). Since their establishment, isolation condensers have played a key role 

in core cooling after the reactor is shutdown. IC units are especially useful because they require 

no auxiliary power. As a matter of fact, an operating isolation condenser in Reactor One at 

Fukushima could have prevented the core from melting down. The following year in 1956, the 

emergency core cooling system [ECCS] and the reactor core cooling system [RCIC] were 

employed. Both systems are vital for core cooling (Andrews, 2011). The importance of these 

structural evolutions mentioned above will be elaborated upon in this objective. 

Applying the Disaster Scenario at Fukushima Daiichi to Pilgrim Nuclear Power 

Station 

At exactly 2:46 pm on March 11, 2011, a 9.0 magnitude earthquake struck Japans east 

coast (Strickland, 2011). The earthquake occurred almost 100 miles northeast of the Fukushima 
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Daiichi nuclear power plant (Mohrbach, 2011).  At the time of the earthquake, only Reactors 

One, Two, and Three were active.  

As a measure of protection against earthquakes, nuclear power plants subjected to 

seismic activity have different design specifications. The vigorous forces of earthquake motions 

cause safety-related structures to display integral damage in the form of stresses and distortions. 

Moreover, nuclear power plants endangered by earthquake hazard must provide opposition to 

two earthquakes: a system shutdown earthquake [SSE], and operating basis earthquake [OBE] 

(Newmark, Hall, USNRC, 1980). Operating basis earthquakes have a high probability of 

occurring. Fortunately, operating basis earthquakes are lower magnitude and less severe. During 

OBE earthquakes nuclear power plants are able to operate safely. Conversely, a shutdown 

earthquake is a very severe, high magnitude earthquake. Despite being more dangerous, system 

shutdown earthquakes have a very low probability of occurring. During SSE earthquakes, the 

nuclear power plant is automatically shutdown to maintain a safe environment. 

 The 9.0 magnitude earthquake that occurred on March 11, 2011 was classified as an 

SSE. Fukushima responded automatically by scramming (See Glossary) the reactors. The 

reactors are scrammed by means of control rods that can generate enormous amounts of heat and 

must be cooled constantly (Strickland, 2011). The earthquake caused a severe power outage. To 

mitigate the loss of power, Fukushima responded immediately with twelve diesel backup 

generators that continued to cool the control and fuel rods. The automatic response to the 

earthquake seemed flawless, but the tsunami that followed changed everything.   

At 2:52, shortly after the fission reactions in the three active reactors were stopped, a 

supervisor noticed that the core of Reactor One was cooling too quickly due to the deployment of 

a backup cooling system (Strickland, 2011). The backup cooling system in Reactor One at 
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Fukushima was an isolation condenser. The particular IC unit located in Reactor One at 

Fukushima had to be manually turned on and off. Subsequently, the need for electric power to 

manipulate the IC unit proved to be a fatal design flaw (Strickland, 2011).  When the operators 

turned off the back up cooling system and could not turn it back on due to the power loss, the 

core of the reactor did not receive proper cooling. As a result, improper cooling caused the 

reactor to eventually melt down (Mohrbach, 2011). 

 The exact type of core meltdown due to partial backup cooling system failure that 

occurred at Fukushima could not occur at Pilgrim Nuclear Power Station because they use 

different back up cooling systems. Even though isolation condensers are practical because they 

do not require off-site power, Pilgrim does not employ this system for back up cooling (USNRC, 

2007). Under these circumstances, the cooling system in place would be the reactor core cooling 

system (USNRC, 2007). Isolation condensers and RCIC systems are similar in the way that they 

require no auxiliary power to cool the core of the reactor vessel. However, the reactor core 

cooling system at Pilgrim can be manually turned on by the operator or will turn on 

automatically without off-site or diesel power (Lee, et al, 1994). Therefore, the same issue that 

occurred with the IC unit at Fukushima could not occur at Pilgrim Nuclear Power Station. Above 

all, the lack of an isolation condenser is a decisive difference between the structures that 

contributed to the meltdown at Fukushima; and the structures employed at Pilgrim. 

 About an hour after the earthquake, a tsunami with astonishing 46ft waves moved past 

the protective sea walls (Mohrbach, 2011). The damage caused by tsunamis can compromise the 

structural components of nuclear power plants.  In order to understand effects of a tsunami on a 

nuclear power plant, it is important to understand the mechanisms of tsunamis, and how they are 

created. A tsunami is defined as a water wave formed due to tectonic activity (Jain, Argwhal, 
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Hirani, 2005). The location and specifications of the earthquake directly relate to the 

characteristics of the tsunami that could potentially be generated (USNRC, 2009). First and 

foremost, the location of the earthquake determines whether a tsunami is generated. 

Consequently, only earthquakes with magnitudes greater than 6.5 can generate observable 

tsunamis (USNRC, 2009). Direct flooding, as a result of the tsunami, can cause severe damages 

to a nuclear power plant. Therefore, external and internal flooding design specifications are 

applied to nuclear plants near rivers and coastal areas.  

To protect against tsunamis, Fukushima Daiichi had a total of 32.8ft of protection against 

flood waters (Mohrbach, 2011). However, Fukushima’s 14.1ft elevation was no match for the 

46ft tsunami waves that easily overpowered the 18.7ft levees (Mohrbach, 2011). As a result of 

the insufficient flood protection and design, water from the tsunami disabled eleven of the twelve 

generators and the cooling water pumps at Fukushima (Mohrbach, 2011). Six of the generators 

Figure 2. As a result of the insufficient flood design, this valuable equipment in reactor 

building three was rendered useless (Strickland, 2011). 
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were flooded directly, while the other five were disabled due to flooding in their power 

distribution panels. 

 The loss of these generators caused an entire station blackout. The loss of offsite power 

combined with the loss of diesel power at a nuclear power plant increases the risk of malfunction 

by approximately seventy percent (USNRC, 2005). Complete loss of power is a grave situation 

because the instruments and gauges that provide crucial information about the status of the 

reactor core cannot be used. Although complete station blackouts rarely occur, the operators at 

Fukushima knew the severity of their situation. The location of the twelve diesel generators at 

Fukushima proved to be a critical design flaw. Even more, the only generator that provided 

power continuously throughout the disaster was located on level one near reactor six. After the 

tsunami, the power supplied by the only functional generator at Fukushima prevented reactors 

five and six from going critical (Strickland, 2011).  For this reason, the different locations of the 

backup generators between Pilgrim and Fukushima are a crucial difference between the two 

nuclear power plants. 

 At Fukushima, eleven of the twelve diesel generators were located on the basement level 

of the different reactor buildings. Pilgrim has two diesel generators for the one active reactor on 

site, and they are both located in separate, elevated locations (Eldred, 2012). Pilgrim goes even 

further to protect the fuel source of the generators by housing the fuel piping in underground 

water tight vaults (Eldred, 2012). To further reduce the risk of a complete station blackout, 

Pilgrim has a third station blackout generator. This station blackout generator is also located in a 

watertight, elevated location. In the event that Pilgrim Nuclear Power Station lost power and 

both diesel generators were destroyed, the third station blackout generator would maintain safe 

function of the plant (T.Setzer, personal communication, October 3, 2012). 
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After completing a comprehensive study of the disaster by means of interviews with 

members of the Toykyo Electric Power Company [TEPCO], Japan’s Nuclear and Industrial 

safety Agency, USNRC, International Atomic Energy Agency, local governments, and by 

reading hundreds of reports, Eliza Strickland speculates, “Some of these [system failures] are 

astonishingly simple: If the emergency generators had been installed on upper floors rather than 

in basements, for example, the disaster would have stopped before it began”(Strickland, 2011). 

An evaluation of the disaster at Fukushima compared with the structural differences of power 

plants in Germany completed by Ludger Mohrbach supports Strickland’s claim naming the 

location of the generators as one of the most critical weak points at Fukushima Daiichi 

(Mohrbach, 2011). Tom Setzer, a Senior Reactor Inspector for the USNRC, agreed with 

Strickland’s claim. When questioned about the disaster, Setzer reiterated that functional diesel 

generators could have entirely prevented the disaster (T.Setzer, personal communication, 

October 3, 2012). The differences between Pilgrim and Fukushima’s generators are a major 

structural differences that drastically reduce Pilgrim’s risk for the same exact disaster. 

Regarding safety component failure at Fukushima, the loss of the cooling water pumps as 

a result of the flooding was another crucial system malfunction that took place. The cooling 

water pumps provided a crucial system called an ultimate heat sink (See Glossary) (A. 

Gunderson, personal communication, 2012). An ultimate heat sink is essentially an endless 

supply of water for core cooling during shutdown. As a direct result of the destruction of both the 

generators and the cooling water pumps, the supply of cooling water available to cool the core of 

Reactor One at Fukushima was drastically limited. The ultimate heat sink at Pilgrim is called salt 

service water [SSW] and has five vertical pumps that draw water from the Cape Cod Bay 

(USNRC, 2007). The SSW consists of two open loops, and each loop requires two pumps. In the 
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event of a loss of coolant accident [LOCA], only one loop of SSW is required to properly cool 

the core of the reactor. Pilgrim has a backup cooling water loop and a common spare in the event 

of a core shutdown (USNRC, 2007). Based on the structural differences between the generators 

and the cooling pumps at Pilgrim Nuclear Power Station and Fukushima Daiichi Nuclear Power 

Plant, the exact same cooling failure could not occur at Pilgrim Nuclear Power Station.  

Approximately two hours after the earthquake, Reactor One at Fukushima began 

experiencing cooling issues. The cooling issues started with the backup cooling system, but new 

malfunctions were discovered in another part of Reactor One. After the tsunami disabled the 

diesel generators at Fukushima, the blackout DC batteries were powering the turbo pumps. 

However, DC batteries die after roughly eight hours (T. Setzer, personal communication, 

Figure 3. Temporary batteries were used to read crucial instruments throughout the station 

blackout (Strickland, 2011). 



27 
 

October 3, 2012). After they die, the DC batteries cannot properly cool the core of a nuclear 

reactor. As a consequence of improper cooling, temperatures in Reactor One at Fukushima 

exceeded 900°C (Mohrbach, 2011).  The extreme temperature caused the zirconium alloy 

cladding (See Glossary) in the fuel rods to react. This reaction was an exothermic (See 

Glossary), oxidation reaction (See Glossary). Exothermic reactions are chemical reactions that 

release energy in the form of heat or light. Alternatively, oxidation reactions increase the 

oxidation state of the compound and release hydrogen. The combination of these two reactions 

caused a layer of hydrogen gas to begin forming in the building of Reactor One at Fukushima 

(Strickland, 2011). 

At approximately eleven the night of March 11, 2011, the radiation levels inside the 

building of Reactor One became too high for workers to enter (Strickland, 2011).  The radiation 

level had increased because the core had started melting as a result of improper cooling and the 

dangerous reactions mentioned in the previous paragraph (Strickland, 2011). For this reason, the 

workers at Fukushima tried to release the pressure on Reactor One. Unfortunately, the 

replacement of back up cooling by means of water injection had been started too late because of 

the station blackout (Mohrbach, 2011). By the time the workers had connected car batteries to 

the primary containment pressure gauge in Reactor One, they learned the vessel was already 

operating at maximum capacity and could explode (Strickland, 2011).  Because of the lack of 

proper cooling, the pelleted fuel that built up in the fuel cans prevented the flow of more fuel 

(Mohrbach, 2011). Subsequently, the buildup in the fuel cans compressed and melted. The 

containment of Reactor One at Fukushima suffered three partial failures: the fuel itself, the fuel 

rod claddings, and the third containment barrier (Mohrbach, 2011).  
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At 3:45am on March 12
th

, the crew working on Reactor One needed to get a measure of 

the radiation levels (Strickland, 2011). As a preparatory measure, the crew took iodine tablets 

and dressed in head to toe suits before they entered reactor building one. In addition, the crew 

was also equipped with dosimeters. Dosimeters are hand held devices that measure radiation 

levels, but the crew was not able to use the devices. When the crew opened the airlock to Reactor 

One, they saw what they thought could be an enormous amount radioactive steam (Strickland, 

2011). Almost as soon as the airlock had been opened, it was slammed shut by the crew, and 

they left without a radiation level reading. Despite not getting a reading of the radiation levels at 

that time, they were aware that the situation was critical.  If the crew had been able to look inside 

the pressure vessel of Reactor One just a few hours later, they would have seen a melted mixture 

of zirconium and uranium (Strickland, 2011).  This volatile mixture was what was left of the core 

of Reactor One. As a result of the improper cooling, there was immense pressure on Reactor 

One; and the crew knew they had to relieve the pressure as soon as possible. Around midnight 

the night before, the government had received word from TEPCO that in order to save Reactor 

One they would have release radioactive material (Strickland, 2011).  

 At 9:03am on March 12
th

, the crew at Fukushima received word that residents within 10 

km had been evacuated, and they could begin to relieve the pressure in reactor one (Strickland, 

2011).  Relieving the pressure in Reactor One seemed as simple as releasing the valves, but the 

dangerous radiation levels presented a new issue.  Workers in a nuclear power plant under 

normal conditions are permitted to receive 50 millisievets of radiation per year (Strickland, 

2011). If the situation is critical, a worker is permitted to receive 100 millisievets of radiation per 

year.  Workers entered the building to release the valve, but they were unable to complete this 

task because of the high radiation levels.  With this in mind, the decision was made to force the 



29 
 

valve open with a portable air compressor. Meanwhile, the hydrogen build up had started during 

core heat up and formed a dangerous layer under the building of Reactor One. Accordingly, 

hydrogen recombiners take combustible hydrogen gas and convert if back into steam.  By 

3:30pm the pressure had appeared to be relieved, but the release in pressure was hydrogen 

flowing through the venting stacks and building up the outer ceiling in reactor building one 

(Strickland, 2011).  Six short minutes later, a spark ignited the hydrogen and the top of reactor 

building one was blown off in an explosion. Unfortunately, Reactor One was not the only reactor 

at Fukushima to explode and release radioactive material. In total, Reactors One, Two, Three, 

and Four experienced massive hydrogen explosions releasing enormous amounts of radioactive 

material (USNRC, 2011d). The majority of the radioactive material released in the disaster at 

Fukushima consisted of Iodine, Cesium, Strontium, and Plutonium (Winter, 2011).  TEPCO 

grossly underestimated the amount of radioactive material release after the disaster (Demetriou, 

2011). In spite of all this, the radiation did not harm the surrounding areas to the extent that it 

could have because approximately eighty percent of the total radioactive emissions were blown 

over the Pacific Ocean (A. Gunderson, personal communication, 2012). 

After the nuclear disaster at Fukushima, the USNRC immediately performed inspections 

at all United States nuclear power plants (T.Setzer, personal communication, October 3, 2012). 

The inspection at Pilgrim Nuclear Power Station was performed approximately a month after the 

accident, and the objective of the inspection was to determine if Pilgrim could alleviate the 

events that occurred at Fukushima (USNRC, 2011d). The inspection assessed Pilgrim’s ability to 

mitigate the consequences of large fires and explosions, station blackout conditions [SBO], 

internal and external flooding, and the thoroughness of the emergency response procedures 

(USNRC, 2011d).   
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When evaluating the fire protection capabilities at Pilgrim Nuclear Power Station, 

emphasis was placed by the USNRC on the spent fuel structure (USNRC, 2011d). The spent fuel 

structure is fully elaborated upon on page 23. With respect to fire protection and explosions, 

Entergy performed equipment inventory of necessary operational tools. After the inventory, 

Entergy performed a test of a portable diesel powered pump (USNRC, 2011d). The inspector 

from the USNRC independently assessed interior fire water supply piping and hose stations, 

portable pump, associated suction discharge hoses, adapters, portable DC power supplies, 

portable radios, and equipment lockers involved in fire protection (USNRC, 2011d). Neither 

Entergy nor the inspector from the USNRC found any major deficiencies with Pilgrim’s 

capabilities to relieve large fires or explosions. 

A safety evaluation performed by the USNRC in 2007 mentioned the nuclear plant 

previously employed an electrolytic hydrogen water chemistry system to remove dangerous 

gases that could cause an explosion (USNRC, 2007). However, Entergy requested that the 

system be excluded from the license renewal as of July 31, 2006 (USNRC, 2007). The 

electrolytic hydrogen water chemistry system was used to prevent the build of dangerous 

hydrogen and oxygen mixtures. When the USNRC questioned Entergy about the removal of the 

electrolytic hydrogen water chemistry system, Entergy responded that the heating, venting and 

air conditioning [HVAC] system in the turbine building mitigate dangerous hydrogen mixtures. 

In addition to the HVAC system in the turbine building, Entergy explained that any hydrogen 

leak that could cause a fire or detonate would not affect the system piping or safety components 

because they are at an adequate distance. For this reason, the USNRC accepted the response 

from Entergy and excluded this system from the license renewal on August 30, 2006 (USNRC, 

2007).  
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Pilgrim’s ability to mitigate station blackout conditions was evaluated after the fire 

protection assessment reported no major deficiencies. Entergy evaluated the SBO diesel 

generator [DG] and SBO control stations (USNRC, 2011d).  The USNRC inspector accompanied 

by an electrical design engineer and a responsible system engineer (see glossary) conducted an 

independent inspection of the SBO diesel generator and SBO control stations (USNRC, 2011d). 

The USNRC inspector found two minor problems during the investigation. The inspector 

concluded SBO diesel generator cooling radiator could be damaged by flying debris from high 

winds (USNRC, 2011d). In response to this, Entergy issued a corrective action to fix the 

problem. Regarding the second minor issue, the inspector found that the switchgear battery was 

not restrained in a battery rack (USNRC,2011d). Entergy responded again with corrective action. 

The specific corrective actions regarding the minor deficiencies mentioned cannot be publically 

accessed, but the corrective action identification orders are listed at the end report. 

After the station blackout conditions were evaluated, the next inspection was to test 

Pilgrim Nuclear Power Stations ability to mitigate internal and external flooding. The United 

States Nuclear Regulatory Commission offered a document containing the guidelines for adverse 

weather protection in nuclear power plants. The guidelines for a nuclear power plant to cope with 

external flooding include: an evaluation of the licensees design for flood levels with special 

arrangements for areas containing safety related equipment, a structural design according to the 

propensity for flood to occur at the licensee location supplemented by weather related 

information in that selected area, and a walk down (See Glossary) conducted by both the licensee 

and a USNRC inspector (USNRC, 2010). Entergy completed a walk down of the specific areas 

designed to mitigate internal and external flooding and reported no major deficiencies (USNRC, 

2011d). After, An inspector from the USNRC accompanied by a structural engineer surveyed 
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Pilgrims ECCS pumps, RCIC cooling room, turbine building room, control rod drive room, 

intake structures, surface water pump rooms, and the emergency diesel generator rooms with 

respect to the systems and structures ability to alleviate internal and external flooding (USNRC, 

2011d). Neither the USNRC inspector nor the structural engineer found any issues with Pilgrim 

Nuclear Power Station’s flood design (USNRC, 2011d). 

The last parameter in the inspection was assessing the adequacy of the comprehensive 

emergency management system. Entergy tested this procedure by asking engineers and operators 

to perform specific procedures (USNRC, 2011d). Additionally, the inspector from the USNRC 

reviewed Pilgrim Nuclear Power Station’s transition into Emergency Operating Procedures 

[EOP] (USNRC, 2011d). The inspector from the USNRC concluded that the review was 

sufficient, and no corrective action was needed with regards to emergency procedure. 

 In spite of the USNRC’s thorough inspection of Pilgrim after Fukushima, the validity of 

the USNRC’s documents is now being called into question; notably by Richard H. Perkins, a risk 

and reliability engineer for the agency, who spoke to Huffington Post about a suspected cover up 

by USNRC of nuclear vulnerabilities (Zeller, 2012).. Recently, a nuclear risk engineer working 

for the USNRC spoke out about a redacted inspection in which data was purposely omitted 

because of its significance (Zeller, 2012). After the meltdown at Fukushima, the USNRC 

conducted inspections to determine whether power stations operating in the United States could 

mitigate the destructive combination of events that caused a disaster at Fukushima. Specifically, 

the vulnerabilities consist of flood risks in power stations located downstream from dams (Zeller, 

2012). Moreover, the complete failure of the dam due to any number of reasons could simulate 

the flooding experienced at Fukushima (Zeller, 2012).  The flooding at Fukushima caused the 

backup diesel generators to fail leading to an entire station blackout. Furthermore, nuclear power 
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station blackouts can initiate or augment any current system failures and severely compromise 

the workers ability to safely maintain the function of the power plant. Perkins elaborated upon 

the USNRC removing the information about the threat posed by dams; even more how the 

USNRC struggled to give a reason about why the information was removed (Zeller, 2012). The 

Huffington report concluded that the risk posed by dams is higher than acceptable. The USNRC 

assured there is an ongoing investigation being conducted. Nonetheless, the USNRC covering up 

information of any sort raises red flags because of important position they hold with respect to 

nuclear power. Above all, the USNRC is essentially responsible for regulation of all matters 

concerning nuclear power in the United States and can be directly liable for any harm done to the 

environment and human beings.  

 Spent Fuel at Pilgrim Nuclear Power Station 

The spent fuel pool at Pilgrim has a large concrete base; the concrete base, which is is 

plated with stainless steel. Inside the concrete base, storage racks form a square grid. These 

storage racks are made of a material called Boraflex (USNRC, 2007). Boron is the active 

component of the Boraflex. When fuel assemblies are placed in the square grid formed by the 

storage racks, they are still radioactive. For this reason, the Boron is needed to remove the 

radioactive neutrons (See Glossary) from the fuel assemblies. Apart from being radioactive, the 

fuel assemblies placed in the spent fuel pool are also very hot because of their decay heat (See 

Glossary)(T.Setzer, personal communication, October 3, 2012).  To cool the fuel assemblies 

added to the spent fuel pool, very pure water is cycled through the spent fuel pool at Pilgrim by 

the SSW (USNRC, 2007).   

The spent fuel pool at Pilgrim has the capacity to hold 1000 fuel assemblies, and the 

reactor core at Pilgrim Nuclear Power Station has roughly 580 fuel assemblies(T.Setzer, personal 
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communication, October 3, 2012). Approximately every 18-24 months, roughly 194 fuel 

assemblies in the reactor core at Pilgrim must be removed and placed in a spent fuel 

pool(T.Setzer, personal communication, October 3, 2012). This process is called a fuel outage 

(See Glossary). Fuel outages are completely necessary for the reactor to function properly, but 

this process fills the spent fuel pool in a matter of years. The storage racks in the spent fuel pool 

at Pilgrim Nuclear Power Station have been reracked to provide more space, but according to 

(T.Setzer, personal communication, October 3, 2012) there will be no more space after the next 

fuel outage.  

While spent fuel pools are only a temporary means of storage for the fuel assemblies, dry 

cask storage provides a more permanent solution. The casks are between eighteen to twenty feet  

 

Figure 4. An example of the dry cask 

storage structurs currently being built at 

Pilgrim Nuclear Power Station (Entergy, 

2012). 
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tall and are eleven feet in diameter(Entergy, 2012). Additionally, the casks can hold up to three 

hundred thousand pounds and require no electricity (Entergy, 2012). Approximately thirteen 

nuclear power plants across the United States use dry cask storage as a form of permanent spent 

fuel storage, and there has never been a crack or leak of radioactive material recorded with this 

type of storage (Entergy, 2012). Pilgrim recently licensed the company Holtec to begin building 

dry cask storage structures (T.Setzer, personal communication, October 3, 2012). In fact, Pilgrim 

Nuclear Power Station must have the dry cask storage up and running within the next few years 

because they are running out of space in their spent fuel pool (T.Setzer, personal communication, 

October 3, 2012). 

 While dry cask storage is a safer means of storage in terms of Pilgrim Nuclear Power 

Station’s current spent fuel situation, it is not a feasible solution for all nuclear power plants. In 

the opinion of Thomas Setzer, during the 1970s and 1980s, nuclear operators were under the 

impression that by the millennium there would be a permanent nuclear repository (See Glossary) 
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(T.Setzer, personal communication, October 3, 2012).

 

Figure 5. Percentage of spent fuel pools at capacity over time. 

The figure illustrates the dire need for a permanent spent fuel site. In spite of the spent fuel pools 

across the United States quickly reaching their capacity, the focus of nuclear power industry is 

still on building new nuclear plants. Under these circumstances, the nuclear power industry 

should shift their focus to developing a plan to remedy the dangerous spent fuel situation. 

The Impact of Catastrophic Failure 

The disaster at Fukushima resonated throughout the world. For example, the United 

Kingdom’s government was perplexed when six nuclear power companies announced they 

would no longer be funding nuclear plants. In addition to that, Germany recently passed the 

Nuclear Energy Act. This act declares that Germany will phase out of nuclear energy by 2022 

(BBC Monitoring Europe, 2012). After Germany’s announcement, one of Scotland’s nuclear 



37 
 

operators announced a similar decision to abandon their nuclear power projects (BBC 

Monitoring Europe, 2012). The stepping away from nuclear power plants as an energy source 

has stimulated a number of opinions in both opposition and favor of nuclear power. 

As a result of passing the Nuclear Energy act, Germany faces the daunting task of 

dismantling their reactors. Dismantling nuclear reactors is very expensive. The German 

government has set aside 1.9 billion euros for the dismantling of the reactors Brunsbuettel, and 

this base cost to decommission the nuclear reactors has posed major issues. Aside from the 

reactors Brunsbuettel, nine other nuclear reactors in Germany also need to be shut down because 

of the nuclear energy act. The estimate for the decommissioning of these nuclear plants is in the 

tens of billions of dollars. Despite the issues surrounding Germany's nuclear power plants, the 

Nuclear Energy Act presents the nuclear operators with two options for the decommission. 

Option one is a "safe enclosure". A safe enclosure of a nuclear power plant is the least expensive 

option. Unfortunately, mothballing (See Glossary) a site renders it uninhabitable for decades. 

The second option involves immediate dismantling of the reactor. However, this option is 

estimated to cost billions and take at least a decade.  Another issue surrounding the second 

option is the lack of experience in dismantling nuclear reactors. Germany has an estimated 

sixteen nuclear power stations set for decommissioning; however the reactors at each station are 

extremely different (The Scotsman, 2012). Because the reactors are so different from each other, 

there is no accepted procedure on how to decommission them.  

In spite of Germany’s plans to abandon nuclear power, Japan recently decided not to 

move away from nuclear power. After the accident at Fukushima, Japanese officials originally 

set a goal declaring they would phase out of nuclear power by 2040 (Hiroko, 2012).  However, 

intense opposition stopped the goal from being formally adopted. Businesses and communities 
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throughout Japan protested the move away from nuclear power because they did not want to lose 

the subsides, tax revenues, and jobs provided indirectly by nuclear power (Hiroko, 2012). A 

Plymouth local has the same view. Allan Burgess stated that if Pilgrim Nuclear Power Station 

were shut down the taxes would increase so much that he and his family would have to move (A. 

Burgess, personal communication, 2012).  

The communities and businesses of Japan do not only fear the economic repercussions of 

a nuclear phase out. They also do not want their offline nuclear power plants to become spent 

fuel storage sites (Hiroko, 2012). To prevent their offline nuclear power plants from becoming 

spent fuel repositories, Japanese officials announced the decision not to move away from nuclear 

power. In spite of this decision, the accident at Fukushima showed that the close relationship 

between the supposed regulators of the nuclear industry and those who operate the nuclear plants 

needed to be terminated. So when the Japanese government made the announcement not to phase 

nuclear power, they also announced the creation and installment of a new nuclear regulation 

agency (Hiroko, 2012). By means of strict federal regulation, the Japanese government hopes to 

once again make nuclear power a success in their country.  

Spread of radiation around Fukushima 

In order to determine the magnitude of the effects a nuclear disaster at Pilgrim would 

have on the surrounding area, it is important to measure the radiation levels at certain distances 

from the Fukushima disaster site and compare this data to corresponding distances from Pilgrim. 

Information on the basic definition of radiation can be found in the appendix at the end of this 

report.  This will give us an approximation of how far dangerous amounts of fallout could spread 

and what areas of Massachusetts and Rhode Island could be affected.  The figures below show 

radiation concentration data around the Fukushima Nuclear Generating Station following the 
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disaster on March 11, 2011.  The first figure shows readings at monitoring posts around 

Fukushima taken on April 16, while the second figure depicts a graphic representation of 

readings taken on April 29.  We can use these data points to estimate the radiation levels at 

similar locations with respect to the Pilgrim Nuclear Generating Station. 

 

Figure 6. Readings at monitoring post out of Fukushima Dai-ichi NPP.  This figure shows 

radiation levels measured at monitoring posts near the Fukushima Daiichi disaster site on April 

16, 2011 (Zeiss, 2011). 
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Figure 7. Arial Measuring Results. This figure shows a graphical representation of the measured 

radiation near the Fukushima Daiichi disaster site (Sandeen, 2011). 

 

Radiation levels 10 kilometers northwest of Fukushima Daiichi were measured at more 

than 40 uSv/hour (microSieverts per hour), or 0.350 Sv /year, which is nearly 120 times normal 

background radiation level of 3 mSv/year (Wang, 2011).  Radiation levels 20 kilometers 

northwest of Fukushima were measured at about half that, however this is still 60 times normal 

background radiation levels.  At 80 kilometers from Fukushima Daiichi, radiation levels were 

measured at less than 0.01 Sv/year.  Though this is only three times normal radiation levels, this 

statistic shows that the disaster at Fukushima had a noticeable radiological impact on the 
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environment 80 kilometers away from the site.  The Nuclear Accident Independent Investigation 

Committee (NAIIC) reports that more than 1800 square kilometers are contaminated with a 

cumulative dose of 5 mSv/year or more (National Diet of Japan, 2012). 

Risks of radiation exposure 

Radiation stays within the body, so it accumulates over time (Caldicott, 2011).  Being 

exposed to radiation for prolonged periods of time causes irreversible damage to the body.  

According to the figure below, living within this radius greatly increases risk of death over time 

and may quickly cause radiation sickness and poisoning.  This figure demonstrates that cancer is 

possible at 50 mSv, which would accumulate after only four to five months of exposure 20 miles 

from the plant and just two months of exposure 10 miles from the plant. 

Radiation levels directly inside the basement of reactor 1 at Fukushima were measured at 

10,300 mSv/hr which is enough to kill a human being within hours (MarketWatch, 2012).  One 

quarter of a mile from Fukushima, radiation levels were measured at 1 mSv/hr, which could 

cause cancer in a human being within several days.  (New York Times, 2011).   
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Figure 8. Effects of radiation. This figure demonstrates the dosages of radiation administered by 

certain scenarios as well as dosages required to cause different levels of radiation poisoning. 

(Wang, 2011). 

  

Possible spread of radiation around Pilgrim 

 Wind speed and direction are important determinants in how radiation is spread over a 

region.  Fortunately for Japanese residents, at the time of the Fukushima disaster winds headed 

east carried the majority of the radiation towards the Pacific Ocean and away from civilization, 

though unfavorable winds began to carry radiation inland several days after the disaster 

(Kitamoto, 2011).  Since we cannot predict exactly how the wind might behave at specific dates 

in the future, we must examine some of the worst case scenarios in order to determine whether 
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the current disaster plan is appropriate for such situations. One particular case would be if the 

wind were to be directed south during the time of a disaster at Pilgrim.  This would spread 

significant amounts of radiation across southern Plymouth and Barnstable counties, potentially 

cutting off all road access to Cape Cod, leaving hundreds of thousands of residents stranded.  

This unique case will be discussed in a later chapter.  Another important case to examine would 

be if radiation spread toward either one of the nearby city centers of Boston or Providence.  Both 

of these large cities are located close enough to Plymouth that the proper wind conditions could 

contaminate either of these cities with unsafe levels of radiation and pose health risks to 

hundreds of thousands of people.  We will also be examining this scenario in a later chapter. 

Disaster response and evacuation 

 By observing the successes and failures of how the Fukushima disaster was handled, we 

can better understand what procedures and regulations must be in place to effectively minimize 

the repercussions of a disaster at Pilgrim.  There are many ways in which the Fukushima disaster 

could have been better handled.  Many mistakes were made that could have been easily 

prevented.  We can learn from these mistakes so that disaster planning and response at Pilgrim 

can be more comprehensive and successful. 

Government Response 

The first evacuation orders for citizens within a two kilometer radius of Fukushima 

Daiichi were not given until 8:50 PM, followed by a three kilometer evacuation order at 9:23 

PM. The Prime Minister ordered a 10 kilometer evacuation at 5:44 AM on March 12 which was 

extended to 20 kilometers at 6:25 PM (Japan Nuclear Technology Institute, 2011).  Fukushima’s 

governor Yuhei Sato, at a hearing by the Nuclear Accident Independent Investigation 

Commission (NAIIC), stated that Japan’s central government did not declare an emergency until 
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two and a half hours after they received the initial report from TEPCO (Yomiuri, 2012).  

Furthermore, the Fukushima prefecture government did not receive notice of the disaster from 

the central government for another hour after that (Yomiuri, 2012).  The earthquake and tsunami 

caused massive blackouts across the eastern coast of Japan, which in turn disabled many of the 

emergency response systems and organizations (National Diet of Japan, 2012).  One of the 

primary systems that were disabled was the off-site Emergency Response Center (ERC) which 

was supposed to be used to communicate with the Nuclear and Industrial Safety Agency (NISA).  

The main organizations of the government’s emergency response plan that were in charge of 

coordinating all emergency response measures were the Prime Minister’s Nuclear Emergency 

Response Headquarters, the Secretariat of the Nuclear Emergency Response Headquarters of 

NISA, and the Regional Nuclear Emergency Response team.  The NAIIC concludes based on 

their interviews and findings that overall, none of these organizations functioned as planned.  All 

of the emergency response organizations that were not dedicated nuclear disaster response 

organizations, such as the Crisis Management Center, were already too busy with the earthquake 

and tsunami to divert any attention towards the nuclear disaster. The failure of communication 

between the central and local governments forced the Fukushima prefecture government to make 

their own decision to evacuate without approval from the central government.  When the central 

government announced their own orders for evacuation, these two different orders given by 

different governments caused mass confusion among Japanese citizens and many people were 

still unaware of what they were supposed to do (National Diet of Japan, 2012). 

TEPCO’s Response 

Tokyo Electric Power Company (TEPCO), the owner of the Fukushima plant, also had a 

difficult time making decisions and relaying information because the chain of command was 
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severely disrupted due to the fact that most of the officials charged with making decisions, such 

as TEPCO’s chairman and president, and Fukushima Daiichi’s general manager, were 

unreachable.  In addition, TEPCO’s manual describing emergency response procedures was 

outdated and completely ineffective.  This resulted in many conflicting orders, which in turn only 

heightened the confusion of the emergency responders.  Many of the issues faced by the 

Fukuhsima Nuclear Power Plant were caused by a failure to account for a disaster of this 

magnitude.  Almost all of the regulations in place were based on precedent, and did not protect 

the facility against a natural disaster larger than any that had occurred previously in history.  

Although there were many safety regulations in place that would have been effective in the event 

of a small disaster, most were rendered useless due to the blackout caused by the earthquake and 

tsunami (National Diet of Japan, 2012).  This complete failure of the emergency response system 

can be linked to widespread communication and management failures by TEPCO and the local 

and central governments of Japan.  Had any of the organizations and governing bodies been 

prepared to handle a disaster of this magnitude with detailed, functional, and up to date 

instructions and emergency response plans, the severity of the radiation leak could have been 

minimized, if not avoided completely. 

Evacuation Response at Fukushima 

The evacuation of Fukushima was chaotic to say the least.  At 8:50 PM March 11, the 

Fukushima prefecture government ordered a two kilometer evacuation based on their prior 

training experience.  At 9:23 PM March 11, the central government ordered a three kilometer 

evacuation.  The 10 kilometer evacuation was not announced until 5:44 AM the next morning 

and the 20 kilometer evacuation was announced at 6:25 PM.  The severe infrastructure damage 

from the earthquake and tsunami slowed the relay of these announcements to local municipalities 
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and citizens.  Many residents were not even aware of the evacuation orders until several days 

after the disaster.  The NAIIC determined that 146,520 residents were relocated in total.  Due to 

the numerous revisions in evacuation orders, thousands of these evacuees were relocated more 

than once, causing much confusion and stress.  Many of the hospitals and nursing homes had 

difficulty relocating due to a lack of transportation.  Sixty deaths among hospital patients in 

March were directly linked to the evacuation difficulties  (National Diet of Japan, 2012).  The 20 

to 30 kilometer zone was declared a voluntary evacuation zone, so it was entirely up to the 

residents to decide whether to relocate or shelter in place.  Unfortunately, most of these people 

had very little information on the nature and severity of the disaster so they had to make this 

decision with little to no facts.  It can be concluded that TEPCO and the Japanese government 

were all extremely unprepared for a disaster at the Fukushima Daiichi power plant.  They failed 

to account for a large disaster, failed to keep safety procedures and manuals up to date, failed to 

react to the disaster timely and efficiently, failed to announce evacuation orders when the 

disaster was known, and failed to protect the health and safety of Japanese citizens near the 

power plant. 

Emergency Plan for Pilgrim 

The evacuation plan at Pilgrim is designed and executed by the Nuclear Preparedness 

Department (NPD) of the Massachusetts Emergency Management Agency (MEMA).  They are 

responsible for designing evacuation procedures, training emergency responders, and 

maintaining equipment for the ten mile Emergency Planning Zones (EPZ) in Massachusetts.  

This includes not only Pilgrim, but parts of Vermont Yankee and Seabrook in New Hampshire as 

well since their 10 mile emergency planning zones overlap into Massachusetts (Commonwealth 

of Massachusetts, 2012).  The EPZ surrounding Pilgrim includes the towns of Plymouth, 
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Kingston, Duxbury, and portions of Carver and Marshfield (Entergy, 2011).  The plan covers 

reception centers, Radiological Emergency Worker Monitoring & Decontamination Stations 

(RWEMDS), and transportation for schools, licensed day care facilities, children's camps, 

nursing homes, hospitals, group homes, and correctional facilities.  The Radiological Emergency 

Response Plan also includes services such as environmental monitoring, public alerting, special 

needs assistance, crisis counseling, meal accommodations for evacuees, business restoration 

assistance, and many others.  The training department offers training to the approximately 4700 

emergency responders for Pilgrim and conducts federally evaluated emergency exercises every 

two years (Commonwealth of Massachusetts, 2012).   

Evacuation Plan for Pilgrim 

Entergy, the owner and operator of the Pilgrim Nuclear Generating Station, has outlined 

the basics of the procedures for emergency preparedness and evacuation on their website.  The 

emergency plan in place around Pilgrim details an evacuation radius of 10 miles as required by 

the NRC (Entergy, 2011).  According to the 2010 US Census, there are more than 75,000 people 

living within this potentially hazardous zone (U.S. Census Bureau, 2012).  The Natural 

Resources Defense Council (NRDC) reports that there are also 21 public schools and 1 hospital 

located within this zone (Natural Resources Defense Council, 2012).  In order to notify the 

public of a nuclear threat, Entergy owns and operates 112 emergency sirens within a 10 mile 

radius of the plant.  These sirens will alert residents that there is a potential threat, and residents 

are instructed to tune to one of the Emergency Alert System (EAS) Radio Stations.  The 

Emergency Planning Zone (EPZ) is divided into twelve subareas as shown in the figure below, 

each containing a designated evacuation route to one of the three Reception Centers outside of 

the EPZ (Entergy, 2011). There is also coordination with the Massachusetts Department of 
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Public Health's Radiation Control Program to protect the food supply within the 50 mile radius, 

also known as the Ingestion Pathway Zone (IPZ) (Commonwealth of Massachusetts, 2012). 

 

Figure 9. Emergency planning zone. This figure depicts the 12 different subareas, evacuation 

routes, and reception centers designated in the evacuation plan for the Pilgrim Nuclear Power 

Plant (Entergy, 2011). 

Complications with Pilgrim’s Evacuation Plan  

This evacuation plan relocates everyone within a 10 mile radius to reception zones just 

outside of this 10 mile radius.  While biennial exercises show that this plan may be adequate for 

evacuating this ten mile radius, a major disaster causing unforeseen circumstances like what 

occurred at Fukushima would affect a much larger area and this plan would quickly fail.  Most of 

the reception zones are still within 20 miles of Pilgrim, which allows the possibility that these 

reception zones are still within an area at risk for dangerous levels of radiation.  Fukushima had a 

similar plan in place with reception zones and emergency radiation treatment facilities 
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immediately outside of the planned evacuation radius, though unfortunately due to the unplanned 

expansion of the evacuation zone, most of these facilities were never used (National Diet of 

Japan, 2012).  It can easily be predicted that Pilgrim would encounter a similar situation if the 

evacuation radius were to be expanded beyond the planned 10 miles during a disaster situation.  

Radiation levels measured in Japan led the US State Department to recommend a 50 mile 

evacuation radius in Japan.  The figure below shows the 10, 20 and 50 mile radii around Pilgrim.  

It is evident how large of an area would be affected if a disaster similar to Fukushima were to 

occur at Pilgrim. 
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Figure 10. Eastern Massachusetts. This figure shows the 10, 20, and 50 mile radii centered on the 

Pilgrim Nuclear Power Plant, as well as the population within these radii from the 2010 Census 

(Capedownwinders, 2012). 

The red circle represents the area of Massachusetts that is planned to evacuate in the 

event of a nuclear disaster at Pilgrim.  The yellow circle represents the approximate area required 

to evacuate around Fukushima due to the disaster, while the white circle represents the area 

around Fukushima that the US recommended to be evacuated.  It is evident from this map that 

the evacuation plan for Pilgrim needs to be reevaluated to accommodate for a larger disaster.  

Evacuating a larger region would require many additional resources such as an increase in the 

number of Reception Centers outside of the evacuation radius, coordination and increase of 



51 
 

public transportation, multiple/alternative evacuation routes and improved communication 

between public safety officials.  An attempt at evacuating this large region without a proper 

evacuation procedure in place would be extremely difficult to say the least. 

Cape Cod 

Cape Cod presents Massachusetts with a unique challenge in disaster planning.  The 

entire Cape Cod region falls within 50 miles of the Pilgrim Nuclear Generating Station. Cape 

Cod has a year round population of approximately 220,000 and during the summer months 

tourism causes this population to nearly triple to over 650,000 residents and tourists on any given 

day (U.S. Census Bureau, 2012).  Since the Cape does not fall within the 10 mile radius of the 

plant, there is no predetermined evacuation plan in place.  If a disaster were to occur that would 

require the evacuation of the cape, there are several issues that will need to be addressed.  One 

primary concern is that there are only two bridges that cross the Cape Cod Canal – The 

Sagamore Bridge on Route 6 and the Bourne Bridge on Route.  Each bridge is designed for four 

lanes of traffic – two inbound lanes and two outbound lanes (United States Army Corps of 

Engineers, n.d.).  Given a worst case scenario of a disaster happening during the peak tourism 

months, these 8 total lanes of traffic can be converted to all outbound traffic and would be the 

only land evacuation route for more than 600,000 people.  However, this brings up the concern 

that the Bourne Bridge is 16 miles from Pilgrim and the Sagamore Bridge is only 13 miles from 

Pilgrim.  Bottlenecking traffic so close to the source of the radiation would be a severe hazard to 

all evacuees.  Although this concern has been acknowledged by the NRC, an alternative plan has 

not been determined (Cassidy, 2012).  If the wind during the time of a disaster were to be 

directed toward the south at all, this could cause extremely unsafe radiation levels along both of 

these evacuation routes potentially requiring them to be shut down completely.  This scenario 
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provokes the need for alternative nuclear disaster preparations to protect the hundreds of 

thousands of people threatened by this risk. 

Boston/Providence 

The city of Boston is just 35 miles from the Pilgrim Nuclear Power Station, and 

Providence, Rhode Island is 36 miles from Pilgrim.  These heavily populated cities have close 

enough proximity to Pilgrim that they are both potentially at risk for significant radiation 

contamination.  While this risk is extremely small, it is still a possibility and needs to be taken 

into consideration for Pilgrim’s disaster plan.  Based on the highest radiation readings 35 to 36 

miles from Fukushima, a disaster at Pilgrim would not warrant an evacuation of either of these 

cities, however residents should be aware that a disaster would put them at risk for higher than 

normal radiation levels and should also be aware of what the health implications involved are. 

Radiation from Power Plants 

Nuclear power plants expel a variety of radioactive particles including gamma ray, alpha 

particle, and beta particle emitting radioactive isotopes. The radioactive particles that are emitted 

Figure 11. Path of fallout. This figure demonstrates some 

of the paths radioactive fallout takes to enter the 

environment and human food sources (UNSCEAR, 2011). 
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from nuclear power plants differ significantly from the type that is generated from atomic 

bombs. Victims of atomic bombs are usually exposed to a single, large dose of gamma rays and 

neutrons.  Alternatively, most of the total exposure to radiation from reactor accidents comes 

from the fallout (Wiliams, E. D., 2006). The significant particles in the fallout from Chernobyl 

were the radioactive isotopes, iodine-131 and cesium-137. The significance of these particles 

comes from their interaction with the human body (United Nations Scientific Committee on the 

Effects of Atomic Radiation [UNSCEAR], 2011). Figure 11 from the UNSCEAR report 

demonstrates the path of fallout after an accident at a nuclear power plant. There are several 

different possibilities, but much of the fallout can end up into human food sources especially 

grass-grazing livestock. The fallout can spread over vast areas because it can travel large 

distances in the atmosphere before coming down as contaminated rain. 

 

Radiation and Living Systems 

When explaining how radiation affects living systems it is simplest to describe what 

happens when a cell, the simplest unit of life, is hit with a radiation. Alpha particles can be 

thought of as molecular bullets. They are large and will go through a cell destroying molecules in 

their path. This includes DNA, which is the genetic material of the cell. If DNA is significantly 

damaged it results in cell death, and if DNA is only slightly damaged it can lead to a mutation 

that generates a cancer cell. Gamma rays and beta particles can be thought of in a similar way 

though they work through chemical means. The end effect is cell damage and potentially cancer. 

Not all cells that are hit with radiation will become cancerous, but there is a chance. For this 

reason, it is better for living systems to not be exposed to radiation. (Jefferson Lab, 2012). 
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Environment 

Historically environmental harm has been an accepted consequence of the development 

of energy, but how much harm is unjustifiable? This section considers the harm done to the 

Massachusetts’ ecosystem from nuclear energy and the potential harm that could be done in the 

event of a Fukushima level disaster with a special focus on how the fish and shellfish population 

are affected by the plant. 

It is difficult to determine the exact scope of the effects the accident at Chernobyl had on 

the environment because of the variety of species that exist and the sampling that would be 

required. “Whether the observed levels of genetic anomalies in plants and animals inhabiting 

areas affected by Chernobyl accident have any detrimental biological significance to populations 

is still not known” (Geras'kin,S.A.; Fesenko,S.V.; Alexakhin,R.M., 2008). Surprisingly the 

Chernobyl accident may have benefitted certain species of animals because of the creation of a 

mostly human-free exclusion zone. Species of eagles have been able to move into the zone to 

reproduce without any human disturbances, which has been beneficial for the eagles and other 

species. However, while there may have been some beneficial effect to the accident on the 

environment, the radiation did have a negative impact on the flora and fauna around Chernobyl. 

The worst effects on the environment occurred in a twenty mile radius around the plant. 

Radiation decreased the reproductive success of much of the flora and fauna, which decreased 

both the amount and variety of plants and animals in the areas around the plant. The figure below 

diagrams a variety of the effects the radiation had with comparison to the levels that had been 

determined to be safe. One alarming point of the figure is that plants were being negatively 

impacted by radiation exposure at levels that were much lower than the threshold levels set by 
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the IAEA. This demonstrates how little was and is currently know about accurately predicting 

the effects of radiation. (Geras'kin,S.A.; Fesenko,S.V.; Alexakhin,R.M., 2008). 

 

Regulation and the Environment 

 The United States Department of Energy [DOE] does not define threshold levels 

for the environment in the same way as the threshold levels for human exposure are defined. For 

example the DOE limits the dose that can be absorbed by aquatic animals to “1 rad per day from 

Figure 12. Effects of radiation in the Chernobyl 30km exclusion zone. The figure shows the levels suggested being 
safe for plants and animals and the effects the different levels had (Geras'kin,S.A.; Fesenko,S.V.; Alexakhin,R.M., 
2008). 
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exposure to the radioactive material in liquid wastes discharged to natural waterways”. This is 

equivalent to ten times the yearly dose set by the DOE for humans (United States Department of 

Energy, 2011). This does not necessarily mean fish are being exposed to an unsafe amount of 

radiation, but demonstrates that the thresholds vary between the environment and humans. The 

DOE requires that any review of facilities dealing with radioactive waste must conform to the 

DOE’s “ALARA” principles. ALARA is an acronym for as low as reasonably achievable, and 

it’s the principle that facilities must have the best methods and equipment to limit the amount of 

radiation that is emitted into the environment. Between the United States Nuclear Regulatory 

Commission and the Department of Energy there is regulation on the management of radioactive 

waste, but it is often the enforcement of the regulations that is put under scrutiny.    

Overview of Massachusetts’ Fishing Industry 

Massachusetts has always had a thriving fishing industry. According to the National 

Oceanic and Atmospheric Administration [NOAA] the fishing industry of Massachusetts made 

$6,711,215,000 in sales in 2009 and creates nearly 78,000 jobs in the state (National Oceanic and 

Atmospheric Administration, 2009). Any disruption of this industry would have a negative effect 

on the state’s economy, and if the fish and shellfish coming from the ocean waters near the 

Massachusetts’ coast were deemed unsafe for human consumption then the loss of jobs and 

income for the state could be immense.  

Effects of the power plant on fish reproduction 

 Radiation can have negative effects on the reproduction of any living organism 

including fish. The possibility exists that radiation exposure could render populations of fish 

sterile. It is less likely in large bodies of water because of the quick dilution of radioactive 

particles, but fallout from an accident at Pilgrim could reach Massachusetts’ lakes, rivers, and 
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reservoirs. For this reason it is important to determine if an accident at Pilgrim would have an 

effect on the reproduction of fish. Even if not killed directly from the accident, if populations of 

fish are rendered sterile it could sharply decrease the population numbers for future generations. 

In a controlled study done on Tilapia it was found that at an exposure level of .0004 - .0005 

grays of strontium-90 per day had a noticeable change on reproduction. These levels were 

maintained for 90 days providing a total dose of .036-.045 Gy, which is about four times above 

the normal background levels. The males had smaller gonads, reproduction started earlier, and 

there were 20 percent fewer normal offspring per female. The study did not consider the 

generational effects the radiation might have had. When exposed to .03 - .04 grays of radiation 

per day for 90 days all of the male Tilapia became sterile. A study of the goldfish living in Lake 

Berdenish, which was contaminated from the Kyshtym radiation accident, showed that up to 

one-fourth of the goldfish were sterile (Sazykina,T. G.; Kryshev,A. I.,2003). Based on the 

information available pertaining to the effects of radiation on the reproduction of fish, an 

accident at the Pilgrim Nuclear Power Station would have an impact on the reproduction of the 

fish exposed to the fallout. We would expect that an accident would result in the mild reduction 

of fish populations. 

Effects of the power plant on the health of fish 

 Pilgrim is required to submit the numbers of impinged (See Glossary) and 

entrained (See Glossary) fish and shellfish to the EPA. Impingement is the killing of adult fish 

and shellfish while entrainment is the killing of fish and shellfish eggs and larvae. This data is 

collected at specific times, averaged, and calculated as a value per year. It cannot be certain how 

accurate the information is, but it can be assumed that Entergy would not inflate the numbers as 

the EPA sets a maximum number for the number of fish that can be impinged. Over a period of 
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twenty-six years the Pilgrim power plant was responsible for the impingement of at least 562,025 

fish and shellfish and the entrainment of 24,314,325,386,670 (24 trillion) fish and shellfish eggs 

and larvae (Environmental Protection Agency [EPA], 2002). It is difficult to calculate the exact 

effects this has had on the populations of fish in Cape Cod Bay because fishing and pollution 

also affects the populations of fish because of other influencing factors such as pollution and 

overfishing. 

Human Health and Radiation Exposure 

Some exposure to radiation is a normal and unavoidable occurrence since there are 

natural sources of radiation in the environment.  There are certain threshold levels of radiation 

that have been set by different scientific organizations as well as the government to define what 

is considered an elevated or dangerous level of radiation exposure. These thresholds are typically 

measured in a level of radiation exposure at a single time or in the level of exposure over a year. 

The United States Department of Energy (DOE) has set a standard of 1mSv per year total 

exposure for citizens. The level used to be higher at 5 mSv per year, but the DOE changed the 

level to 1mSv per year to reflect the International Commission on Radiological Protection’s 

(ICRP) standards (Stewart, F.A. et al, 2012); (United States Department of Energy, 2011). 

If an event were to occur at any nuclear facility, human exposure to radiation would be a 

concern that must be considered in any emergency preparedness plans. In order to prevent 

further contamination and illness, those exposed to radiation must take the proper steps to 

decontaminate. According to a study, exposure to radiation has been shown to be linked to 

thyroid cancer and leukemia (Davis, 2012). Different levels of radiation exposure will have 

different effects on the human body. Christodouleas, et al., (2011) outlined the different dosage 

levels received from medical procedures, and the dosages received from victims of Chernobyl. 
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Information on dosages and treatment is necessary for emergency planning. Exposure to iodine-

131 (I-131), an isotope of iodine, is responsible for the increased risk of thyroid cancer in victims 

who have been exposed to it. The treatment for exposure to I-131 is potassium iodide, but it must 

be administered before or within a few hours of exposure in order to have the best effect. In the 

event of a large scale emergency at a nuclear power plant the individuals at risk for exposure 

would need to have the potassium iodide available in order for it to be effective (Christodouleas 

et al., 2011).  Hatch et al. (2005) makes an additional point that the Chernobyl incident has 

shown that thyroid cancer is linked to radiation exposure, especially in children. The thyroids of 

children were more sensitive to radiation than the thyroids of adults, and even small doses 

increased the risk of developing thyroid cancer later in life (Hatch, 2005). Radiation exposure 

can come from the initial accident or background radiation that has been left in the environment 

after the accident. Any future genetic effects of the radiation contamination must also be 

considered. 

Thyroid Cancer 

The incidence of thyroid cancer after the Chernobyl accident increased particularly 

among children. The thyroid gland in children is more susceptible to radiation exposure because 

children require a higher amount of iodine than adults. The effects of radioactive iodine on the 

thyroid are some of the most documented topics when it comes to how radiation affects the 

human body. Because thyroid cancer develops in children who have been exposed to radioactive 

isotopes of iodine it became a noticeable trend after the Chernobyl accident. There was an 

international average rate of thyroid cancer in children of 1 for every million child per year 

before the accident while after the accident one measurement showed 44 cases of thyroid cancer 

in children for every million children per year in Belarus. (Wiliams, E. D., 2006). There were no 
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cases of thyroid cancer in a study of about 9500 children, who were born in the two years 

following the Chernobyl accident. There was 1 case of thyroid cancer recorded among about 

2400 children that would have been in utero during the Chernobyl accident, and there were 31 

cases of thyroid cancer recorded in about 9700 children who were of the age three or younger 

during the accident (Shibata, Yoshisada et al., 2001).  This strongly indicates that the Chernobyl 

accident was the cause of the increased cases of thyroid cancer in children. Iodine-131 has a 

short half-life, so children born in the years after the accident would not have been exposed to 

high levels of the radioactive isotope, and thus would not display an increased risk for thyroid 

cancer. Figure 13 from UNSCEAR’s 2008 report on Chernobyl displays the annual incidence 

rates of thyroid cancer per million for females and males in Belarus. In years following the 

accident the incidences has increased well past the previous rates. The large difference between 

the rates for females and males in the figure implies that females are more susceptible to 

Figure 13. Thyroid cancer incidence in children in Belarus. The pink bars signify females and 

blue bars signify males in the graph. The annual rate of incidence is seen as increasing after the 

Chernobyl accident (UNSCEAR, 2011). 
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developing thyroid cancer. After the Fukushima accident, citizens were being exposed to levels 

of iodine-131 which were higher than 80 percent of the average annual intake, but more time is 

required for conclusive studies to be done on how this will have affected the exposed victims 

(Murakami; Oki, 2012). We believe, based on the research, that if an accident were to occur at 

Pilgrim, children would be the most susceptible demographic to negative health effects from the 

fallout.   

Leukemia 

 Leukemia was the first cancer linked to radiation exposure after the atomic bombs were 

dropped on Hiroshima and Nagasaki, however, leukemia is a rare disorder, and has not been 

shown to be statistically important in any European countries after the Chernobyl accident. 

While not statistically significant, there was a slight increase in the number of leukemia cases in 

Ukraine after Chernobyl (Cardis; Hatch, 2011). The workers who were exposed to fallout after 

the accident have had a slight increase in the rates of leukemia, although studies have not been 

conclusive as to whether there were increased rates of leukemia after the Chernobyl accident 

(UNSCEAR, 2011). Since leukemia is a rare disease, even in the event of a disaster like 

Chernobyl occurring at Pilgrim, it would be unlikely that Plymouth’s population would 

experience a significant increase in leukemia cases. 

Mental Health Related Effects of Nuclear Disasters 

Disasters do not only have the potential to cause physical harm, but also mental harm. 

Disorders like post-traumatic stress disorder (PSTD) and depression can be caused by any 

traumatic event especially ones involving the loss of life. Individuals who lived through a 

disaster can develop negative feelings and outlooks toward anything they relate to the disaster. 

We assume that enough individuals in an area have a distrust of nuclear energy then it becomes a 
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less viable source of energy for the area. The mental health of the citizens of Plymouth and the 

mental health of the surrounding area’s older population could be of the most concern. Having 

lived through the Cold War would most likely have predisposed them to negative feelings and 

fear toward anything related to radiation. Additional fear and the development of PSTD would 

be possible in the event of a disaster. This can be seen in Japan, where the grandchildren of 

survivors of the Hiroshima and Nagasaki nuclear bombing tend to have more negative outlooks 

about nuclear power (Palgi et al., 2012). It will be important to watch the victims of the 

Fukushima accident for depression, schizophrenia, and PTSD especially those who were 

displaced from their homes because of the evacuations (Sugihara; Suda, 2011). According to the 

United States Census Bureau, there are approximately 20,000 individuals living within ten miles 

of the power plant. Of the 20,000, about 16 percent are age 65 or older and about 22 percent is 

18 or younger. Those who are children at the time of the accident might keep a distrust and fear 

of nuclear power into their adult life. This could influence future generations similarly to what 

was found in the Journal of Psychiatric Health’s article, Mental Health and Disaster Related 

Attitudes among Japanese after the 2011 Fukushima Nuclear Disaster (Palgi et al., 2012).  

Financial Effects of an Accident 

The accident at Chernobyl and Fukushima resulted in an evacuation of the land 

immediately surrounding the plants at which the nuclear accidents occurred. Chernobyl’s 

accident created a zone that is still not safe for human use. The land will remain contaminated 

with radioactive elements such as plutonium and americium for hundreds of thousands of years 

because of the high half-lives those radioactive particles that were emitted by the plant. In both 

cases families lost their homes and industrial and agricultural land was lost. An accident at the 

Pilgrim Nuclear Generating Station will have an impact on the land, environment, and thus the 
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economy of Massachusetts. It may be a temporary impact, or like Chernobyl, it could be a long-

term impact. The following section will analyze the possible consequences of an accident similar 

to the Fukushima accident.  

As has been observed at Chernobyl, a nuclear disaster can be economically crippling 

(IAEA, 2006).  The ongoing cleanup and reparation costs accumulate over decades and can be in 

the hundreds of billions of dollars.  The Chernobyl accident has cost Belarus and other 

surrounding governments an estimated $235 billion over the last hree decades, and one source 

estimates that Fukushima could cost nearly $250 billion in the first decade alone (IAEA, 2006; 

NewsOnJapan, 2012).  Furthermore, high radiation levels would remain for decades and inhibit 

settlement of the surrounding area. If cities such as Boston or Providence were quarantined, 

nearly five million people within Eastern Massachusetts and Rhode Island would be displaced 

and the societal and economic costs could be in the hundreds of billions of dollars over the 

following decades (U.S. Census Bureau, 2012). 

Nuclear Power Versus Coal Power 

Currently the world uses coal as an electricity generating fuel more than any other fuel 

source. Nuclear comes behind renewables and natural gas, but still accounts for a significant 

source of the world’s electricity production See the figure below for a graph of the net electricity 

generation by fuel showing estimated growth through 2035. Nuclear power plants tend to garner 

most of the attention when it comes to safety and environmental concerns, while coal plants are 

not as regulated when it comes to emissions. This is reflected in the cost per kilowatt output of 

each type of plant. Coal plants without carbon capturing are about $3000 less per kilowatt to run 

than a nuclear power plant. Coal plants with carbon capturing equipment cost about the same as 

a nuclear power plant per kilowatt (VujiA,Jasmina; AntiA,Dragoljub P.; VukmiroviA,Zorka, 
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2012). Coal plants without carbon capturing equipment are less expensive to run, but release a 

large amount of carbon dioxide into the environment. Carbon dioxide is very harmful to Earth’s 

ecosystem and contributes to global warming. Electricity generating plants using coal also emit 

radioactive particles such as uranium (Gordanic et al., 1997). According to the United States 

Department of Labor, there were a total of 364 deaths related to coal mining in 2012 by the 14th 

of September (United States Department of Labor, 2012). When considering the negatives of 

nuclear power, it is necessary to compare nuclear power to its alternatives, and between coal and 

nuclear energy there is not strong evidence that either is better than the other. The figure below 

estimates the growth for electricity generated by coal and nuclear power through 2035. Coal 

power is expected to become a more significant source of electricity than nuclear power. 

Because coal power is less feared than nuclear power, the effects that it might have on the 

environment and human health may have been overlooked, and it is difficult to recommend coal 

as a good alternative to nuclear power. Renewable energy is the best option for the future 

because it provides a long term solution to energy needs as long as it can keep up with human 

energy consumption. 

Figure 14. World net electricity generation. The figure shows 

nuclear energy has being the fourth largest source, while coal 

is the most significant source of energy (VujiA,Jasmina; 

AntiA,Dragoljub P.; VukmiroviA,Zorka, 2012). 
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CONCLUSION AND RECCOMENDATIONS 

 When Pilgrim Nuclear Power Station’s license was renewed on June 6, 2012, it 

stimulated discussion in the surrounding communities regarding the future of the nuclear power 

industry. In the opinion of a USNRC official (T. Setzer, personal communication, October 3, 

2012), those who support nuclear power also support strict regulation by separating those who 

work for the nuclear power corporations and those who regulate it. Since the regulating body for 

nuclear power in the United States granted Pilgrim Nuclear Power Station the capacity to operate 

for the next twenty years, it is evident that the disaster at Fukushima did completely change the 

presence of nuclear power in the United States.   

In spite of the similarities between Fukushima Daiichi Nuclear Power Plant and Pilgrim 

Nuclear Power Station, the analysis and application of the Fukushima disaster scenario proved 

Pilgrim is not at risk for the same disaster. The strict regulation of Pilgrim Nuclear Power 

Station’s current operating procedures combined with the USNRC’s thorough inspections after 

Fukushima shows the worst-case scenario preparation at Pilgrim that could have prevented the 

disaster at Fukushima. 

Upon examining Pilgrim Nuclear Power Station’s unique risk factors, the most prominent 

risk was the spent fuel pools at Pilgrim. Entergy and the USRNC temporarily mitigated the risks 

posed by spent pools at Pilgrim Nuclear Power Station by building more permanent dry cask 

storage Although dry cask storage is regarded as a safe way to store spent fuel, it is still not a 

permanent solution. The most permanent means of spent fuel storage is a nuclear repository, but 

there are none for nuclear power in the United States.  
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Storing spent fuel is now the most prominent issue in the nuclear power industry. As of 

June 2012, no new nuclear power plants can be licensed or existing ones relicensed until a 

permanent nuclear repository is established (Dolley, 2012). There were plans to build a 

repository in the Yucca Mountains of Nevada, but the plans were abandoned by the Obama 

administration (Reardon, 2012). Instead, the Obama administration formed the Blue Ribbon 

Commission [BRC] and charged them to find an alternative repository to the Yucca Mountains. 

Alison Macfarlane, part the BRC and now one of the USNRC’s chairwomen, explained it is 

Congress and the DOE’s responsibility to manage nuclear waste and provide a permanent 

storage facility (Dolley, 2012). 

 It has been the Department of Energy’s responsibility to provide a permanent solution 

for nuclear spent fuel since the establishment of the nuclear power industry, and they have not. 

Since the DOE has not provided a solution, a bipartisan bill is up for consideration next year that 

could remove this responsibility from the DOE (Sands, 2012). Jeff Bingaman, a democratic 

Senator from New Mexico, drafted the Nuclear-Waste Bill mentioned in the previously (Sands, 

2012). The bill calls for the establishment of a federal agency specifically in charge of spent fuel 

and nuclear waste management. Additionally, the Blue Ribbon Commission also recommended a 

separate federal agency in charge of nuclear waste management (Sands, 2012). 

Our team agrees with Senator Bingaman and recommends a single federal agency in 

charge of spent fuel and nuclear waste management be established.  Upon evaluating the risk 

factors regarding Pilgrim Nuclear Power Station, it is obvious the problems of spent fuel storage 

and nuclear waste management are central problems the entire nuclear industry is facing. If a 

body in charge of spent fuel and nuclear waste management is created, these problems that have 

threatened the future of nuclear power can be managed solely by one accountable agency.  
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It would be futile for our team to merely recommend the need for a permanent nuclear 

repository because a permanent nuclear repository has been needed since the establishment of 

the nuclear industry. Building a nuclear repository is not a simple task, but the first solution is 

charging a competent legislative body with the responsibility. Because the DOE, the governing 

body responsible for providing a nuclear repository has not completed this task, our group 

recommends the establishment of a federal agency that will.  

Pilgrim collects information on the number and species of fish and shellfish killed by the 

plant’s intake system, however there are currently no studies available on the exact effects of the 

plant on the Cape Cod’s bay. There should be a study performed by a third party on the plant’s 

intake system and whether it is doing significant harm to the fish populations in the waters 

around the plant. If it is found that the intake systems of the plant are contributing to a population 

loss then the intake must be altered to be safer to the ecosystem.  The third party should not be 

affiliated with the energy sector or Entergy. For additional safety, more measures of radioactivity 

should be taken in Plymouth and the surrounding towns. There was not as much information 

available on monthly or yearly measures of radioactivity for Plymouth as there was for a city like 

Boston for example. 

 The current evacuation plan in place does not account for a disaster of the largest possible 

magnitude.  This puts the lives of hundreds of thousands of people at risk for serious medical 

conditions including cancer and death. We have made the following recommendations based on 

our findings so that the NRC, Entergy, and the Massachusetts government may use them to make 

policy changes to maximize the safety and welfare of the population surrounding the Pilgrim 

Nuclear Power Station. 
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 A complete disaster plan should be able to effectively respond to any situation that arises 

in order to minimize damages and loss of life. A secondary disaster plan should be formulated so 

that it may be executed if a disaster were to occur that is outside of the scope of the current 

disaster plan.  Based on the evacuation that took place at Fukushima, this plan should include a 

larger evacuation radius encompassing a majority of Plymouth County, which would require 

more Reception Centers at safe distances from the power plant.  This would involve creating 

several more Emergency Planning Zones that include high risk towns such as Pembroke, 

Marshfield, Bridgewater, Halifax, Hanson, Middleboro, Lakeville, Plympton, Rochester, 

Wareham, Bourne, Falmouth, and Sandwich, among others.  Formulating such an evacuation 

plan would evidently be costly; however this cost is dwarfed in comparison to the cost of 

medical treatment and lives lost in the event of a disaster in which these communities are not 

evacuated. 

With the Chernobyl disaster costing more than $200 billion and Fukushima estimated to 

cost even more, it is evident that money invested in the protection and safety of Massachusetts 

residents is money well invested. The average of the estimates of the value of a life by the EPA, 

FDA, and the Transportation Department is approximately $7 million (Associated Press, 2012. 

This figure would value the lives of the 400,000 people within 20 miles of Pilgrim at $2.8 

trillion– far above the cost of preventing many of these illnesses and deaths. It is impossible to 

predict how much a disaster would cost, however we can estimate that the cost could be similar, 

if not more than, the Chernobyl and Fukushima disasters. 

There is a high likelihood that Cape Cod would experience severe immediate and long 

term effects of a large disaster at Pilgrim so it is evident that the large population of the Cape 

needs to have a disaster plan.  Though the Cape may not be ordered to evacuate, we can predict 
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that many people will feel unsafe and evacuate voluntarily.  This can cause a significant amount 

of chaos and will most likely interfere with the existing evacuation plan.  It would be extremely 

beneficial to develop an evacuation plan for resident of the Cape closest to the plant so as to 

expedite the evacuation and ensure order and safety among evacuees.  For those living farther 

west, a large disaster at Pilgrim may result in a shelter in place order.  Services should be 

provided to those ordered to shelter in place, such as radiological monitoring and potassium 

iodide provision. 

If an accident were to occur, the health of the children in the area should be the top 

priority. Considering fallout will spread over large areas, the impact of an accident would have 

implications for large areas. There are preventative measures that can be taken to help prevent 

children from developing thyroid cancer in the years following the accident. Potassium iodide 

can be taken to prevent an uptake of radioactive iodine immediately after the accident. This is 

not a long term solution, but a measure that should be given to those living within the immediate 

radius of the plant. We predict that considering the wide spread of fallout is likely, and the 

source of exposure to radioactive iodine for most children is drinking milk from cows that have 

consumed contaminated feed, special measures will have to be taken for all of Massachusetts, 

and likely additional areas out of state. The Massachusetts Department of Health already has a 

publication, which details the measures that should be taken by dairy farmers in Massachusetts. 

The publication should be distributed and followed in the event of a disaster as the response of 

the food industry will be vital to the lessening the severity of the health impacts caused by the 

accident. 

It should also be noted that the website run by Entergy to provide emergency planning 

information to the public, www.pilgrimpower.com, has not been updated since 2011 and several 

http://www.pilgrimpower.com/
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of the important external links no longer work.  This reflects poorly on Entergy’s ability to keep 

updated emergency procedures available to the public. 
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GLOSSARY 

Cladding – a covering, protective measure for a system or structure 

Decay Heat – heat released as a result of radioactive decay 

Electric field – region around electric material 

Electromagnetic radiation – any kind of radiation in which the electric fields (See Glossary) and 

magnetic fields (See Glossary) deviate at the same time, ex-rays, gamma rays, radio waves, and 

visible light. 

Entrain – the killing of adult fish or shellfish during cooling water intakes 

Exothermic reaction – any reaction that releases energy in the form of light or heat 

Fuel Outage – every 18-24 months the fission reaction at a nuclear power plant is shut down and 

one third of the fuel assemblies are replaced 

Heavy Isotope – large molecules that contain more neutrons in the nucleus 

Impinge – the killing of fish larvae during cooling water intakes 

Kinetic Energy – energy characterized by a body in motion 

Magnetic Field– region around magnetic material 

Mothball – a state of being unfit for further use and being in a state of protective  

incasement 

Neutron – a subatomic particle located in the nucleus of an atom. Neutrons have no charge and 

contain the same mass as protons 

Nuclear Repository – a multi-barrier permanent spent fuel storage site 

Oxidation Reaction – a reaction that increases the oxidation state of an element and can release 

hydrogen 

Responsible System Engineering – a sub-field of systems engineering 

Scramming – a planned shutdown of the fission reaction taking place inside a nuclear reactor 
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Ultimate Heat Sink – a virtually endless supply of water used for reactor core cooling 

Walk Down – a physical inspection any designated nuclear power plant structures 
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APPENDIX 

Definition of Radiation 

The definition of radiation is “energy radiated by waves or particles” (Merriam-Webster, 

2012). In the case of nuclear radiation the energy is coming from isotopes that give off alpha or 

beta particles or gamma rays. Gamma rays are electromagnetic rays while alpha and beta 

particles are energized particles. An alpha particle is composed of a helium nucleus, and a beta 

particle is an energized electron (Nave, 1999). The differences are not limited to gamma rays, 

alpha particles, and beta particles. There is a vast variety of radioactive isotopes and elements, 

which can decay into a completely different radioactive particle. It is not a simple science 

procedure to determine the exact effects a plant has on the environment or human life. It is most 

important to examine trends and the levels of radioactivity in the environment in determining if 

the power plant is operating safely. 
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