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Abstract 

 

 In an effort to supply tooling designers with more accurate data the effects of 

tooling design on final product variation were investigated.  Redundant Deformations 

were citied as the main source of variation in tooling design.  Experiments were carried 

out to investigate and add to the body of knowledge of this claim.
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2 Introduction 

 This MQP was a research project, and as such the bulk of this report focuses on 

the background research required before experiments could finally be carried out. Much 

research was carried out in metal forming, roll forming, metallography, and 

microstructure analysis. The research is useful in understanding the scope of the problem, 

as well as identifying areas ready for further investigation. 

 Roll forming is not yet well understood and is often referred to as a “black art” by 

the few texts that deal with the subject. The motivation to start the project draws from a 

desire to take the art out of roll forming and bring it into the realm of predictability and 

repeatability. Unfortunately, the reason roll forming is still regarded as a black art is 

because there are so many variables involved in the process. It will take a lot of time and 

effort to understand how all of these variables interact and affect each other.  

 It was very difficult to simultaneously research roll forming and metallography 

techniques while also trying to learn the art of sample preparation and imaging. We 

consider the mistakes we made and corrected as valuable information for future groups 

who may pursue their goals using the same tools. As such, there is much discussion in the 

report about preparation procedures and metallographic procedures. The appendices 

contain detailed procedures that will allow future groups to quickly start in the right 

direction.  

 Our experimental results only comprise a small portion of this report: a reflection 

of the time spent researching compared to time spent experimenting. Some results were 

obtained, but more experiments need to be performed to validate our conclusions.  
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This report was written with a future group in mind, trying to present enough information 

to get someone quickly up to speed on the factors involved.  
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3 Purpose 

 One of the goals of CIS is to produce higher quality products with less 

dimensional variation. One way to accomplish this goal is to improve the roll forming 

process capability. Currently, roll forming tooling is designed with the help of finite 

element analysis software, but stress levels predicted by the software are not always 

accurate. The aim of this project was to identify real stresses in a work piece. With a 

better understanding of the real behavior of the work piece, the engineers will design 

tooling which would produce more consistent parts.  

 An overview of the goals and the variables associated with this project is 

presented in Figure 1. The project team was initially divided into two teams which would 

investigate factors affecting roll forming system stability and product stability. Much 

research was conducted under these two categories and the topics are noted on the lower 

levels of the tree. Eventually, a goal for the project was established. The relationship of 

this project goal to the overall goal of CIS is indicated with a red line.  
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Figure 1: Project overview chart 
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4 Roll Forming Background 

4.1 Metal Forming 

 Metal forming is a category of manufacturing processes that rely on plastic 

deformation of metal to produce a part. Metal forming processes are “chipless”, that is, 

they do not remove volume as in machining or milling. As chipless processes, metal 

forming operations produce less waste. 

 Basic metal forming operations are classified into several groups [1]: 

• Rolling 

• Extrusion 

• Drawing 

• Sheet Forming 

• Forging 

• Shearing/Piercing 

 Most of these categories describe bulk deformation processes, that is, a process 

whereby the small surface area to thickness ratio of a part is changed by deformation so 

that the ratio increases. For example, the deformation of a solid ingot into a thin sheet is a 

bulk deformation process. 

 Sheet forming, Drawing and Shearing/Piercing are processes whereby a relatively 

large surface area to thickness ratio remains unchanged throughout the forming process, 

generally called sheet forming. For example, the deformation of a flat strip iron into 

angle-iron is a sheet forming process. 

 Processes categorized under bulk deformation or sheet forming: 
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Bulk Deformation Processes Sheet Forming Processes 

• Rolling 

• Extrusion 

• Forging 

• Bending 

• Pressing 

• Stamping 

• Drawing/Deep Drawing 

• Spinning 

• Shearing 

4.1.1 Sheet Forming 

 Sheet forming is a process where metal sheet is formed without changing its 

surface area to thickness ratio. A type of sheet forming, sheet roll forming or roll forming 

as it will be referred to from this point onward, involves the use of profiled rolls to bend 

and form sheet metal. The roll forming process is capable of producing continuous 

lengths of cross section. Roll forming is usually a cold-forming process, that is, the 

process temperature to melting point ratio is less than 0.3: 

ProcessTemperature
MeltingPoint

�0.3   

Cold forming processes require more force than hot forming processes where the 

previous ratio is greater than 0.6.  Cold forming processes produce more dimensionally 

accurate parts with better surface finish, and better mechanical properties. The good 

surface finish on cold rolled cross sections results in better corrosion resistance. The 

stock metal can be painted or galvanized before being rolled because cold forming 

produces a good surface finish and the forces required to bend a thin sheet are small. 
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 Bending requires consideration of the minimum bend radius of the particular 

metal being worked. The minimum bend radius prevents fracture, or cracking, in the bend 

which would otherwise lead to a defective bend. A quality bend is free of unsatisfactory 

surface conditions such as: fracture, indenting, necking, wrinkling, galling, or folding. In 

general, soft metals require a smaller bend radius than hard metals: generally a minimum 

bend radius of 1/32-inch to 1*T is a good starting point for soft metals; some soft metals 

can be bent on themselves or effectively a zero bend radius without any ill effects. A 

good starting point for hard metals is 2*T to 3*T where T <1/16” (T = thickness of metal 

being bent) [2].  

 Factors affecting the formability of a material include ductility, a biaxial stress 

condition, the condition of the edges bounding the bend, and to some extent the 

orientation of the sheet being bent. An increase in ductility will cause a decrease in the 

minimum bend radius. Ductility can be increase by locally heating the bend, or by 

applying uniform (i.e. hydrostatic) pressure to the metal around the bend [3]. A biaxial 

stress condition develops fully as the length of the bend increase past about 10 times the 

thickness of the metal. Biaxial stress happens when there is tensile stress on the outer 

surface of the bend, as well as tensile stress axial with the bend, that is, along the length 

of the bend. On the inner surface of the bend, the biaxial condition is compression around 

the bend, and tension along the bend. Biaxial stress increases the minimum bend radius. 

In the uniaxial condition, where the length of the bend is relatively short, the material will 

neck down in the axial direction around the bend. As the bend radius to material 

thickness ratio (R / T) decreases, narrow sheets (L < 10*T) crack at the edges, and wider 

sheets (L ~ 10*T) crack in the middle – the location of highest biaxial stresses. 
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 Edge conditions also affect formability. Rough edges bounding the bend will 

increase the minimum bend radius because cracks and surface irregularities act as stress 

risers, propagating edge cracks into the bend. Cold working the edge by shearing will 

also increase the bend radius because cold working reduces the ductility of the edge, 

resulting in cracks in the bend along the edge. 

 Sheet orientation affects formability by increasing the chances of cracking in the 

bend in certain directions for cold rolled sheet. Cold rolling orients the grains of a metal, 

as well as inclusions in the material matrix, known as mechanical fibering. Ductility of 

the metal is decreased in the transverse direction, and hence the minimum bend radius is 

increased in the transverse direction (with the grain).  

4.1.2 Springback in Sheet Forming 

 Springback is the elastic recovery of the metal after being plastically deformed. A 

springback factor K was created to characterize springback. Springback can be 

compensated for by: over bending, coining, stretch bending, or localized heating. 

 Over bending is the most common practice, it compensates for springback by 

bending the material more than necessary so that it springs back to the desired 

dimensions.  Coining subjects the bend to intense localized compressive stresses so that 

tensile stresses around the outside of the bend are relieved.  Stretch bending, where the 

sheet is stretched and then pulled over a form to create the bend, reduces the non-

uniformity of stresses in the bend.  Localized heating increases the ductility of the metal 

in the bend, and allow the structure to relax and reset. 
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4.2 Roll Forming Design 

 Roll forming like many manufacturing processes may at first appear simple, but 

designing a process that is repeatable requires adequate knowledge of the mechanisms 

behind the process. The following is a brief overview of one particular method for 

developing a roll forming process. Several mechanisms that are important to the process 

are discussed. 

 The first step in roll forming design is the development of a cross-sectional 

drawing of the part to be manufactured. The cross-sectional drawing shows a cross-

section of the part at an angle perpendicular to the parts directions of travel through the 

rollers. This drawing includes many important dimensions most importantly those of the 

bends, the material thickness, and the straight dimensions. Other important information to 

note are the existence and location of any pre-notching, pre-cut lengths, multiple gauges, 

and combination sets. These will play an important role in determining the amount of 

bending per pass. This cross-section is the main dimensioning the only dimension not 

drawn is the length of each piece.  This cross-section helps determine the progression of 

bending passes. 

 Once the cross-sectional drawing has been completed the original strip width 

should be calculated. The most important part of this process is choosing the correct K-

factor so the proper bend allowance can be calculated [4]. The K-factor is the percentage 

of the material thickness, starting from the inside edge of a bend, that the neutral axis lies 

on. When metal sheet is bent the material on the inside of the bend is compressed while 

the material on the outside of the bend is stretched from the tension applied to it. The 
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neutral axis is the axis where the material remains its original length. Figure 2 gives a 

good representation of this phenomenon. 

 

 

 

Figure 2: Forces and neutral axis in a bend [5]

 

 

Since the length of the neutral axis does not change, knowing its length will allow the 

original width of the material to be calculated. The material on the inside of the bend is 

shorter than it was before the material was bent, using the inside radius measurement 

alone will therefore result in a part that is too long. Using the K-factor the proper Arc 

Length can be determined, which is given by the following equation: 

 

o180
**)**( πnglefinishingaTKusinsideradiArcLength =  
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In this equation T represents the thickness of the material and the finishing angle is the 

final angle of the bend. The K-factor is mainly dependent on the geometry of the bend, 

the yield strength of the material, and the material type.  

 Once the strip width and thickness have been selected a bend progression flower 

should be generated. This is the point when each step in the bending process is originally 

calculated. When trying to determine the bend sequence the positioning of the rollers 

should be taken into account. For instance, on a typical C channel bend, pictured in 

Figure 3, the outside or second bend is bent first, but is often not closed. This allows an 

extra pass with the inside roller on bend one [4]. 

 

Figure 3: Bend planning [4]

 

If there is pre-punching on bend two then it is best to close bend two before starting bend 

one, this will reduce distortion [4]. In conjunction with the bend flower a chart based on 

the flower can be generate to show the degree of each bend per pass in table form. This 

will show exact degree of bending per pass more clearly than writing directly on the 

flower drawing. The amount of over forming should also be taken into account when 

determining the bend progression. 

 The amount of bending done at each pass is a very important factor in the 

formation of the flower pattern. The amount of bending done at each pass weighs heavily 
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on the stresses caused by bending the material. The distance between each roll forming 

station, the roll diameters, and any side rollers or guides will also affect the amount of 

stress added into the material. The determination of how much bending should be done is 

the main focus of this project and the main factors will be discussed in later sections. 

Once the flower pattern is complete the next stage of design is to check for any 

clearance issues between the rollers and the incoming metal. Also the pitch diameters 

should be decided, these are often increased progressively throughout the process to 

prevent from binding of the metal. The pitch diameter refers to the largest roll diameter 

that contacts the part, it is the part of the roller which has the greatest tangential velocity 

and thus is the part that moves that pulls the part forward. Increasing the pitch diameter 

assures that the part is being pulled from station to station. 

Once tooling layout has been determined it can be decided if any special tooling 

accessories should be incorporated into the process. Tooling accessories like guides, side 

rolls, and straightening devices can be added to the process during this portion of design. 

Straightening devices are normally used towards the end of the process either on the last 

pass or between the last two passes in the case of precut strips. Straightening devices help 

smooth out any unwanted twists in the part [4]. Side rolls are those placed on the vertical 

axis perpendicular to the main rollers these often to aid the metal entering the first 

forming sets of rollers and to reduce side to side movement of the sheet material during 

rolling. 

 This design process has been written as a step by step process, but the process is 

an iterative one; each step does not end when the other begins, if a problem is found 

within the design it must be fixed and the process reworked. There are now many 
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software programs to aid in the design of a roll forming process. These programs may 

help provide the designer with visualizations of the process as well as provide some 

quantitative data. However, these programs work on the same principles discussed in this 

section and are not a replacement for understanding the process, but an aid in process 

development. 

 

4.3 System Stability 

 System stability refers to the consistency of the roll forming machine. Variation in 

the dimensions of the machine could contribute to variation in the final part. 

 The system is broken down into several components, listed below. 

 

• Material (usually strip stock) 

• Strip Stock Straightener (to remove coil-set, not always used) 

• Entry Guide (to align strip with the roll form tooling) 

• Roll Formers (the structure supporting the roll form tooling) 

• Roll Forming Tooling (the surface over which the strip is bent) 

• Lubrication System (lubricates the interface between strip and tooling) 

• Drive train (provides power to the rollers)  

• Part Straightener (straightens the part after the final forming stage)  

• Cutoff Die (cuts the part to length) 
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 The components that most likely contribute the most to system variation are 

highlighted in Figure 4. Detailed information on the highlighted subjects can be found in 

Alvarez [6] and Nickel [7]. 

 Dimensional variation in the final part usually stems from variations in material 

thickness and the material gap between male and female rollers. Controlling or 

accounting for the dimensional variation on the stock material should reduce dimensional 

variation on the final part. The alignment of the roll formers to their mates and to other 

stages will affect the material gap and the tracking of the part down the line, respectively. 

The deflection of the roll former structure under load will also affect the material gap: the 

roll formers and roll forming tooling will deflect most toward the centerline of the work 

piece, as predicted by bending theory. The tooling design needs to account for expected 

variation in the material gap as well as variation in the material thickness in order to meet 

tolerances for the finished part. A general list of some important points is compiled in the 

appendix, section 9.1. It should be useful for students looking for a quick overview that 

can guide future research. 
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Figure 4: Component breakdown of the roll forming system. Components that most likely contribute 

the most to system variation are highlighted. 

 

  

4.4 Tool Design 

 Once a design has been developed and put into place it is almost inevitable that 

there will be problems in the finished product, especially if the designer does not have 

access to adequate design tools. In roll forming this is often the case. In almost every 

book on roll forming or expert that is consulted it is almost inevitable roll forming will be 

referred to as a “black art.” From the tooling design side this is only the case because the 

process can often be complex to model theoretically and there is little data on the actual 

stress distribution in the process. In his doctoral paper written in 2005, Michael Lindgren 

states that CAE programs often take too long to design and compute to be of any use in 
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the industrial side of roll forming [6]. At this stage they are most useful in furthering 

basic theoretical assumptions of roll forming programs like PROFIL. Perhaps once more 

modeling has been done on the theoretical side programs like PROFIL will be more 

accurate in their modeling of stresses, so that designers may have to rely less on 

“experience” of this “black art”. The second way to improve the designer’s knowledge is 

to measure the actual stresses that are occurring in the part. The second is of most interest 

to this project. 

The cause of the unwanted stresses must be clear in the designers mind before a 

thorough design can commence. There are three types of stresses that will cause defects 

because of inadequate design considerations these are stresses at the rollers on the part or 

transverse bending, problems from tracking, and stresses cause by the geometry of the 

process. The forces at the rollers could be a buckling issue or a stress that is too large and 

exceeds the yield strength. Problems from tracking issues indicates that the part has 

“slipped” sideways during forming and bending is occurring in a position it should not 

be, thus putting stresses in places they should not be. The geometry of the process causes 

the material being bent at the rollers to affect the material between roll stages. These may 

form if stresses at the rollers are not causing problems or if either of the first two cases is 

occurring.  

For the stresses at the roller caused by the transverse bending to be unwanted 

more deformation than was designed for must be caused. One type is a buckling issue, for 

this to happen a column of material must be force along its longitudinal axis. This issue 

should be considered when designing the flower pattern and can be corrected by 

adjusting the progression. A tooling design text by Alvarez shows a good example of this 
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condition [6]. The second type results from over cold working of the material. If the 

radius is too tight for a given material cracking or buckling occurs. This indicates that the 

designer did not account for the proper amount of cold work the material can withstand. 

Both of these conditions should be visible through a visible inspection of the part and if 

edge cracking cannot be determined macroscopically it can be detected microscopically. 

If stops are used on the rollers than the material can only slip side to side when it 

has a width less than the designed for width. While design of the rollers can help stop 

tracking from occurring tracking problems are often a variation in material problem and 

thus a concern of system stability.  

The third type of unwanted deformations can cause noticeable defects in the part. 

Unlike deformations at the roller however these types of deformations will have causes 

that may not be as obvious. This does not mean that their causes are not understood, for 

instance excessive longitudinal deformation may cause bow in the part. If a roll 

progression has twelve stations, it may be difficult to pin point which station(s) caused 

this to happen. Furthermore it may not be obvious why dimensions are varying within a 

part. If a combination of defects is occurring and it is not obvious on a macroscopic level 

that the part is bowing or twisting it is hard to determine where these deformation are 

occurring within the finished part. These deformations require considerable investigation. 

4.4.1 Redundant Deformations 

To understand the where stresses arise from during forming some terms need to 

be defined. The direction that the material flows in is the longitudinal direction, while the 

direction perpendicular to this is the transverse direction. The position of the material in 

question can be at the roller or in between roll stations, up stream would refer to material 
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that has not yet entered a certain roller and down stream would be material that has 

traveled past a roller. All forming at the roller is in the transverse direction, thus Halmos 

refers to this as transverse bending [9]. There is also a second type of deformations that 

could arise; these are due to stresses caused by the geometry of the process. In a typical 

bending operation two dies bend the entire work piece at once, that is there is no material 

adjacent the bend line. Bending takes place throughout the whole part at once. In roll 

forming one cross-section is bent at once while the rest of the work piece is attached up 

and down stream from the roller. The metal directly adjacent to the forming metal is now 

being stressed by the metal in the roller and the metal outside of it and so on. As 

Lindgren observed: longitudinal stress is maximum immediately before the roller and 

decreases greatly the farther upstream the material is [8] (Lindgren built a U-channel 

model that was able to correlate a longitudinal strain relationship with known physical 

data from several other authors.) This would indicate that the metal that is not in the 

roller namely the material upstream is being stress because of the geometry of the 

operation. 

These unwanted stresses can cause unwanted deformations, which will from here 

on be called redundant deformations. As redundant indicates these are unnecessary 

stresses for the forming of the part, while a deformation indicates that these are 

permanent. While these stresses are caused by the nature of the process and cannot be 

eliminated, the stresses can be reduced to a level that will not cause permanent 

deformation. In a quantitative sense this means that stresses must not reach a level that is 

greater than the yield stress of the material. Once the yield stress is exceeded the metal 

will be permanently deformed. 
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Redundant deformations are classified by the direction of their influence and then 

their specific influence on the metal. Halmos defines five types of redundant 

deformations: longitudinal bending and bending back, longitudinal elongation or 

shrinkage, transverse elongation or shrinkage, shear in the metal’s plane, and shear in the 

metal’s thickness [9]. Several of these are detailed in Figure 5 below. From this base any 

distribution of stress can broken down into these five components. 

 

Figure 5: Redundant deformation definitions [9]
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Selecting the Right Materials 

 To understand, the criteria for selecting materials for a process it is first necessary 

to understand what material properties the process depends on to function. As with any 

forming of metal, roll forming depends on the plastic deformation of a metal to allow the 

metal to retain its bent shape. Temperature has a huge effect on how much a metal will 

bend and how much force it will require to bend a particular amount. To look at any of 

the strength or deformation properties however temperature must be held constant. Since 

most rolling processes are conducted at a set temperature, often room temperature in cold 

rolling procedures, this is a warranted assumption. Once this is done a graph of the 

stressed properties of a particular metal or alloy can be studied.  

The graph most useful is the common stress versus strain graph. From this graph 

the permanent and elastic deformation can be determined given an amount of stress. A 

line is drawn parallel to the elastic part of the stress versus strain graph from the point 

where the highest stress reached during the operation to the elongation axis. From zero 

elongation to where the sketched line intersects the elongation axis represents the amount 

of permanent elongation, this can be seen in Figure 6. Now another line is drawn parallel 

to the stress axis from the point of maximum stress to the elongation axis. From zero 

elongation to the point that the new line intersects the elongation axis represents the total 

elongation, the difference between the total elongation and the permanent is the elastic or 

the part that will return to its original length.  
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Figure 6: Graphical representation of permanent elongation [9]

 

This simple graphical representation helps to illustrate the relationship between the 

amount of stress and elongation. The elastic elongation will be proportional to the spring 

back of the material and the permanent is the amount of elongation that will not change 

when the metal is unloaded.  

The stress versus strain graph may also be used to describe the range of 

formability that is desired in a process. For a forming process the stress must be greater 

than the yield strength, but less than the tensile strength, this range is highlighted in 

Figure 7. Any less than the yield strength and the material will not deform plastically and 

any greater and the metal will lose its formability. 
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Figure 7: Range useful for formability [9]

With these considerations in mind one can now start to look at different materials 

in terms of the process. Materials with higher yield and tensile strengths generally have 

shorter ranges of plastic deformation. So a material like high carbon steel, which is 

significantly stronger than a typical mild steel will require more force to strain it a 

particular amount and will be able to be strained less before it reaches its tensile stress 

and becomes useless, this is shown graphically in Figure 7.  

 To select a material the properties discussed above must be understood, so that the 

selector my properly determine how they will affect the process. Aluminum for instance 

is often assumed to have fairly standard properties. It is often over looked as to what type 

of alloying has been done, if the sheet has been strain hardened or annealed, etc. All of 

the processes can greatly affect the properties of the material. Some types of Stainless 

Steel for instance are better suited for roll forming processes than others. The differences 

between roll forming a SS compared to a mild include more; springback, power required 

to form, and or better lubrication. Aluminum also requires good lubrication as well as 

well finished rollers to prevent in transference of roller imperfections on to the sheet 

being rolled. 
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5 Metallography Background 

 The basic assumption of metallography is the microscopic scale of a material 

determines how the metal will react macroscopically. A metallographer's hope is to 

understand how the microstructure affects the properties of a metal. The study of a 

material should include an understanding of factors effecting a certain operation, 

allowing the metallographer to design processes for materials. When a material is 

plastically strained, the microstructure must change in some way to allow the material to 

hold a deformed shape. Most materials used in manufacturing are not composed of a 

single crystal or a single repeated structure, but are polycrystalline. As Brick states in his 

1984 metallography book: “It will readily be appreciated that deformation of a 

polycrystalline metal is an exceedingly complex process, one that has thus far withstood 

accurate scientific analysis,” [10]. While there has been some progress with more 

advanced techniques like SEM and TEM microscopy, the workings of a polycrystalline 

metal are still complex. 

 To understand what is happening when a polycrystalline metal is deformed it is 

useful to first understand the scope of a single crystal, and the mechanisms at work within 

one, because the reactions of a polycrystalline material will be the average of each single 

crystal’s reaction.  

 A single crystal is defined by the alignment of all its atoms in a specific repeated 

pattern. This pattern does not change within a single crystal by definition, but there are 

some inconsistencies in the pattern where the material may be shifted, called dislocations. 

A dislocation can be either the presence of an extra atom, or the absence of an atom, 

called a vacancy. Dislocations are the mechanism by which grains deform. A pictorial 
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representation of one way a dislocation may propagate is given in Figure 8. It is 

understood that these dislocations may continue perpendicular into the paper for some 

amount of rows, thus a point dislocation could be seen as a straight line if the observer 

were to look at the “top” of this representation. As long as these dislocations remain 

relatively spread out the material is still considered as one crystal. If, however, many 

dislocations occur along an entire plane, a grain boundary is formed. A grain is a single 

crystal with one consistent lattice structure. Imagine that a grain is viewed from one side, 

where the planes of atoms appear as lines, and the lines lie parallel to one another, 

separated by an amount equal to the spacing between atoms on a line. Where two grains 

meet, a grain boundary is formed, as shown in Figure 9. 

 

Figure 8: Dislocation propagation in a crystal lattice [11]
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Figure 9: Grain boundary formation 

 A low angle grain boundary, less than 15 degrees in difference, can be viewed as a 

plane or set of planes of dislocations creating a separate grain. Figure 9 is a representation 

of a low angle grain boundary; the section where the two grains come together is an area 

of dislocations. Higher degree grain boundaries, 30-40 degrees, may be viewed as narrow 

regions of several atoms in thickness where grain arrangements change from one 

orientation to a different one [11]. Thinking of grain boundaries as an area where the 

arrangement of atoms changes from one orientation to another is simplest. Grain 

boundaries are heavily disordered regions; they are regions of high energy. Grain 

boundaries would like to be at lower energy levels, if possible.  

 As a material is worked, the amount of dislocations increases. In an unstressed 

crystal the amount of dislocations is often on the order of magnitude of 106, while a 

heavily worked material may exhibit 1012 dislocations [10]. Dislocations are the main 

hardening mechanism in the material because they interfere with the movement of other 

dislocations, restricting the range of elongation in the material. This is why materials 

become harder the more they are worked. In the same light it is often easier to move 

material inside a grain than it is to move a grain boundary.  
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 Earlier in this section, it was stated that most materials used in manufacturing are 

polycrystalline materials. Understanding the behavior of these materials involves 

understanding how a single grain will react with its neighbors. The width of a dislocation 

is on the order of magnitude of 10-12 meters, the same magnitude as an atom. Even with 

the most powerful TEM microscopes, often only groupings of dislocations can be directly 

observed. Grains are typically on the order of magnitude of 10-6 meters, although they 

can be much larger. Comparing the size of a dislocation to the size of a grain is equivalent 

to comparing the size of an ant to the size of the Earth; a difference of six orders of 

magnitude. While dislocations are important to grain motion, they are often inferred and 

not observed. Grains are usually large enough to be observed directly with an optical 

microscope. 

 

5.1 Tensile changes 

 

 Understanding the deformation of a single crystal in response to a tensile stress is 

useful in understanding the grain deformation of a polycrystalline material in response to 

tensile stress. The deformation of a polycrystalline material is the average of the behavior 

of all the differently oriented grains of a material [11]. It is well known from statics that 

the maximum shear stress in a material under tensile load occurs on a plane who’s normal 

is angled 45o from the tensile axis, as shown in Figure 10 when φ = 45o. In a single 

crystal however, slip occurs along the slip plane of a material. There are three basic laws 

governing this slip. First, the direction of slip is always along the closest packed plane of 

atoms. Second, the slip usually occurs along the closest packed plane. Third, for a given 
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set of slip systems, the direction and plane of slip, the slip occurs on the system where 

with resolved shear stress is the greatest. Figure 10 shows the slip plane where the 

resolved shear stress happened to be the greatest in this crystal. 

 

Figure 10: Slip plane with the maximum resolved shear stress [11]. 

 

 BCC metals like room temperature steel are slightly more complex to than this 

simplistic model. Although there is a single close packed direction of <111> there are 

three other high density packed planes {112}, {110}, {123}. Iron often slips along all 

three planes at once along the same direction [11]. This creates a wavy line where a 

straight line normally occurs. Regardless of this interesting behavior iron will still slide 

along the same slip direction, causing the wafering shown in Figure 11b, as long as the 

ends are unrestrained.  
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Figure 11: The wafering of a single grain [11]

 

Figure 11c shows a crystal's ends that are restrained during a tensile test. Since the ends 

cannot move laterally, the lattice must bend and rotate to accommodate stresses. In a 

polycrystalline material, grains are in constant contact with other grains and are 

restrained to a degree. When stresses reach the boundaries of grains that have the 

orientation best aligned for slip, stresses will propagate to neighboring grains [10]. Stress 

propagation in a polycrystalline material causes a push-and-pull motion between grains. 

The actions of a single grain are anisotropic and the choice of slip plane depends heavily 

of stress orientation. If grains are orientated randomly in a polycrystalline material, as 

they will often are, the material will behave isotropically [10]. 

 

 

5.2 The Properties of steel 

 

 Industry defines steel as an iron alloy having between 0.008 and 2.0 percent 

carbon by weight. At room temperature iron can only distribute 0.008wt% percent carbon 
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within its matrix. This phase is often referred to as the alpha or ferrite phase at room 

temperature. Steel containing more than 0.008wt% carbon at room temperature will form 

a second phase referred to as pearlite or cementite. Near the eutectoid point on the iron-

carbon phase diagram nearly 100wt% of the structure will be cementite at room 

temperature. The eutectoid point occurs at 0.6wt% carbon, therefore at room temperature 

between the 0.008 and 0.6wt% carbon the structure is a mix between ferrite and 

cementite. 

 Most manufacturing steels will be within 0.008 to 0.6wt% carbon and therefore 

will have a mixture of ferrite and cementite. The proportion of each phase in steel is 

based on the proportions of iron and carbon, as well as any processing. Processing 

includes initial casting of the material and hot working processes. For example, if the 

material was heated and then quenched, less carbon would precipitate out of the austenite 

phase, and the microstructure would look different than an unquenched material with the 

same composition. 

 For fully annealed steel heated to the annealing point and then cooled slowly 

enough for equilibrium conditions to set in, the phase diagram can be used to calculate 

the proportion of ferrite and cementite in the grain structure. Annealed steel is 

approximately 55wt% cementite and 45wt% ferrite. The ferrite phase is ductile and forms 

grains – portions of ferrite with a single crystal orientation. Ferrite grains will react 

similarly to the theoretical grains discussed earlier. The cementite phase is considered an 

aggregate instead of a grain, consisting of layers of carbon stacked on layers of iron. Such 

a stacked structure is called a laminar structure. The cementite phase is very hard and 

brittle, often breaking into smaller pieces under heavy cold working. Any analysis of the 
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two-phase ferrite-cementite structure subject to cold working must take the behavior of 

the two phases into account 

 

5.3 Theory of 2-D Optical Microscopy 

 

 The process of examining grain microstructures under an optical microscope has 

some basic limitations. Examination of the three dimensional structure in two dimensions 

requires extrapolation of the two dimensional data back into three dimensions. For 

instance, cross-sectional area of individual grains will change depending on the location 

of the section along a grain axis. Conclusions drawn about the three dimensional structure 

should not be based solely on the behavior of a few grain sections. In order to draw sound 

conclusions about even the two dimensional structure of a material many large samples 

need to be taken, as grain orientation within the microstructure is random. For example, 

in order to measure average grain size, several large samples should be taken and 

averaged.  

 

5.3.1 The theory of sample preparation 

Samples are cut into sections by a wire cutting machine; this is called sectioning. 

Often samples are very small or oddly shaped; mounting is needed otherwise it will add 

to the difficulty to following steps. Compression mounting with the material Bakelite is a 

popular and simple method. Prior to mounting, it is often necessary to clean samples. To 

minimize the potential for cracking samples with sharp corners should be beveled. To 
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mount the samples, the specimen must be cut to a size that will fit inside the mold with 

adequate clearance. The surface to be polished is placed face down on the center of the 

ram surface. Clearance between sample and mold wall should be at least 1/8 inch. After 

the sample is oriented on the ram, the ram is lowered to the bottom of the mold. Then 

appropriate amount of Bakelite powder, at least ½ and inch higher than the sample, is 

poured into the mold. Heat and pressure are applied according to the requirements of the 

type of Bakelite used. Temperature control is more critical than pressure control, the 

temperature should be above 150 degrees Celsius, the will often be a pressure sensor on 

the machine that will indicate if more pressure is needed. Once the mold is properly 

cooked, cooling the specimen under pressure for about twice the cooking time is 

necessary so that the Bakelite will properly set. The operator should be careful when 

removing the specimen as the Bakelite often sticks to the side of the forming cylinder and 

has a tendency to suddenly pop up after several cranks. For this reason the cover on the 

machine is often kept on during freeing. 

Sectioning of the sample should be done carefully if the cutting machine 

overheats the sample this might change the grain structure at the cutting edge and will be 

too time consuming to remove this damage with grinding [12]. To get the sample 

relatively free of distortions caused by cutting, grinding and polishing are used. The word 

relatively is used because grinding and polishing can only get the distortions to a depth 

that will not cause skewing of the view; this depth is between 10-100μm for hand 

grinding [12] and 1-6μm with polishing. The level of polishing depends on the level of 

magnification, but the most important goal is to make sure scratches and distortions will 

not be confused as features of the grain structure. 
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Typically finer and finer grades of emery paper or another type of abrasive are 

used to remove the distortions of the previous step. A commonly used progression is 120-

, 240-, 400-, 600-grit abrasive paper. In between steps the sample should be rotated by 

45-90 degrees to reduce additive scoring caused by adding to scratches in the same 

direction. Time spent at each step is usually recommended to be at least twice the amount 

of time it takes to remove distortions caused by the previous step, which for most metals 

is typically 1-2 minutes. In between grinding steps it is good practice to wash the 

specimen under running water to assure that and particles on the metal will not cause 

scoring at the next stage. 

Wet grinding can produce better quality grinding as well as increase paper life. 

Smearing can be caused by the grinding media not contacting the part fully due to 

clogging of the media during dry grinding; wet grinding will remedy this problem. 

Clogging will also slow down the rate of metal removal. During preparation when a 

clogged paper was replaced metal removal rate increased substantially. Wet grinding will 

also help cool the sample, which reduces the chance of overheating the material and 

causing unwanted grain alterations. 

Polishing the material will remove the abrasions that grinding cannot. Its purpose 

is to produce a flat, reasonably scratch-free surface with high reflectivity. Polishing often 

uses a floating abrasive in a solution; diamond particles are a common abrasive for 

polishing. The floating abrasive is added to a spinning cloth wheel. When polishing it is a 

good practice to move the sample from the center to the edge in a linear motion to 

prevent comet-tailing in the material. The aim of both operations is to produce a sample 
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that is not significantly distorted, meaning that distortions caused by preparation will not 

be confused for grain features. 

After polishing, the last step is to etch the sample, but testing the surface under 

the microscope first will allow the operator to make sure that there are no scratches on the 

surface of the material that might impair viewing. If there are not any obvious scratches, 

the sample can be etched otherwise the operator should go back to previous steps. A 

common etchant is 3~5% nitric acid in alcohol solution. The etching time depends on the 

material, but is generally less than 60 seconds for steel [12]. Of course the mass fraction 

of nitric acid can contribute to the etching time and final result effectively. Under-etching 

fails to reveal all the details while over-etching obscures details. Etching is a controlled 

corrosion process. Material at the grain boundaries will corrode much more quickly than 

the material in the grains. This causes a pit at the grain boundaries. Normally grain 

boundaries are only several atoms thick, this process will make the grain boundaries 

appear much thicker. The thickness of the grain boundaries and thus the apparent size of 

the grains can be heavily controlled by the strength of etchant and etching time. For this 

reason it is often a good idea to use an etchant solution that requires more than 20 

seconds to get the “proper” etch. This will allow the etch time to be more easily 

standardized. If the etch time is shorter than this a small change in etch time like a second 

will have too great an effect on the apparent grain structure.  
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6 Investigation and Analysis 

6.1 The Company Predicament 

 Designing this project was often a mix of understanding, which techniques might 

allow the group to best analyze the process and what methods were available to the 

group. After careful study of the variables in tooling design and system stability it was 

made clear that the method for understanding stresses within the material must be optical 

light microscopy. The equipment had been purchased ahead of time because of the 

serious time constraints of the project and was the group’s only option. Initially using 

strain gages to understand stresses in the roll forming material was of interest, this 

interest had to be dropped because of constraints on equipment and time. 

 

6.2 Duplex Grain Structure Analysis 

 

Initially, the profile sections appeared to have a duplex grain structure possibly 

composed of pearlite aggregate and ferrite grains. A duplex grain structure, as described 

by Voort, has a bimodal frequency distribution of grain sizes [12]. According to initial 

hypotheses, pearlite aggregate would fracture into smaller pieces under plastic 

deformation of the work piece. If some of the grains were fracturing, then a basic 

assumption - that shrinkage of a grain section indicated elongation - would be baseless.  

To determine whether a duplex grain structure existed and was detectable, a 

variation of the Heyn method analysis was run. The method, proposed by Underwood, 

entails drawing randomly placed lines over a metallograph and measuring the linear 
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intercept length of each grain on the line. A frequency distribution is generated by 

tallying the number of grains that fall within specific intercept length intervals. No 

bimodality was revealed after analyzing several samples. Therefore, even though pearlite 

grains may be present, the linear intercept method as implemented in this project could 

not differentiate between pearlite and ferrite grains. Furthermore, the procedure was 

immensely time-consuming and would not permit a thorough analysis of many samples. 

The suspicion that fracturing pearlite aggregate would render the standard Heyn 

method ineffective was based on only a basic understanding of the etching process and 

metal composition. It is possible that pearlite aggregate is present, but is indistinguishable 

from regular grain boundaries after etching. Etching reveals grain boundaries because the 

etching agent reacts more readily with the higher-energy grain boundaries than with 

ordered, crystalline grains. Pearlite aggregate may also react more readily than crystalline 

grains, appearing very similar to grain boundaries under a light microscope.  

 

6.3 Heyn’s Method Analysis 

6.3.1 Heyn’s Method Background 

An appropriate method to analyze the attributes in question should be determined. 

Many methods for grain analysis have been developed by metallographers since the 

inception of metallography. If the grain size and shape are of interest to the analysis a 

useful measurement would be the average cross-sectional dimensions of the grains. If a 

line is drawn across a grain the distance that intercepts the grain is referred to as the 

intercept length. In a grain structure which may consists of hundreds of grains per field it 
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is not an effective use of time to analyze the dimension of each grain. Instead many 

randomly parallel lines are laid on a grain picture to analyze the structure in one 

direction. If the number of grains along a line are counted and the line length is known 

than the length of the line can be divided by the number of intercepts. This quantity will 

be the average length of the grain at this particular magnification. This is called mean 

linear intercept method (Heyn’s method) and the most popular method for analyzing 

unimodal structures.  

The mean linear intercept length is the average length of a line segment that crosses a 

sufficiently large number of grains. It is determined by laying a number of randomly 

placed test lines on the image and counting the number of times that grain boundaries are 

intercepted. Mean linear intercept length is defined mathematically in Figure 12. 

 

Figure 12: Equation for linear intercept length [13]. 

Where NL is the number of intercepts per total length of the test lines LT, P is the total 

number of grain boundary intersections and M is the magnification.  

 When choosing a line length a length should be chosen that allows for 50-150 

grains to be counted on each line. This will insure the method is accurate, choosing a line 

length that contains less than 50 is not accurate enough while more than 150 may be to 

cumbersome to count. It is a good idea to pick the magnification so that a line can be 

drawn across the majority of the field, so choosing the correct magnification should be 

done simultaneously with choosing the line length. It is also good practice to use at least 

five parallel test lines per field so that an average grain length in each direction of interest 

can be calculated. Remember that one line will produce one average length thus the 
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average of five lines can be taken for the average length in a field of view. The previous 

step will add statistical confidence to the analysis procedure. If the shape and area of a 

grain are of interest, then multiple directions must be measured. A common set of 

directions are 0, 45, 90, and 135 degrees. This allows for an accurate shape of a grain to 

be calculated. With this set of angles a skeleton of a grain can be drawn by placing the 

average grain lengths about a center point like the diameters of the grain in each 

direction. 

 When choosing the proper amount of fields more than one field of the same 

structure should be chosen at random to insure that the data obtained in one field is 

accurate. Generally three to five fields are selected for each type of structure to be 

analyzed. To insure random selection of fields various techniques are often used. If 

possible the operator should not observed the field of view until a selection is set, this 

works well if there is a relatively large field to select from. In cases where there are very 

few homogeneous zones the best representative of the zone of interest should be chosen. 

In a section of material that has a large variability in stress concentration like a bend of a 

thin metal work piece stress level may change from one grain to the next along the radius 

of the bend. This means that any field selected in the corner will have a large variation in 

deformation; this should be accounted for in the analysis. 

 When counting the amount of intercepts, either counting the number of boundary 

intersections or the number of grain intersections can be used. When counting the amount 

of grains in a material each grain on the line should be counted as one. If the end of a line 

is within a grain, meaning it does not fall on a grain boundary then this should be counted 

as one half. 
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6.3.2 Analysis Procedure 

The full step-by-step procedure used in this project is presented in the appendix, 

section 9.4.2. The counting method is identical to that suggested above. Grain images 

were imported into AutoCAD, and then five lines of equal length were superimposed 

over the image. The image was copied four times, providing one field of view for each 

analysis angle (0, 45, 90, and 135 degrees from horizontal). Intersection counts were 

recorded for each line in the program Heyn’s Method 2.02 by Mike Meier, which then 

calculated the mean linear grain size, standard deviation, and other statistical data. 

Output from that program was manually imported into Excel for grain area calculation 

and for ready comparison with other samples. 

6.4 Calculation of Grain Area 

Average grain area combines the data from grain analysis in four directions into 

one easily grasped number. This section explains the procedure and equations for 

calculating average grain area from linear intercept data. Only simple geometry is used. 

Linear intercept data presents average grain lengths in four directions: 0, 45, 90, 

and 135 degrees. This data is used to draw the skeleton of an average grain, as shown in 

Figure 13. The values L0 – L135 are half of their respective linear intercept length. 
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Figure 13: Geometry of an average grain. Length dimensions are entered from linear intercept data. 

Calculating the total grain area is a matter of doubling the sum of the areas of 

triangles A, B, C, and D. Triangle areas are calculated using Heron’s formula, as shown 

in Figure 14. 

 

Figure 14: Heron's formula. Variables correspond to triangle A in Figure 13.  

 Excel was used in this project to quickly and easily calculate grain area for every 

analysis point.  

 

6.5 Experiments 

Only two real experiments were performed during the course of this project. The 

vast majority of working time was spent learning and refining the process required for 
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producing acceptable sample images. Chronologically, the first experiment was an 

analyst variation experiment and the second was the tensile test experiment. 

6.5.1 Analyst Variation Experiment 

Introduction 

The analyst variation experiment was designed after the results for the roll 

forming sample analysis were put together. The results indicated large grain size changes 

that made little sense, and strongly hinted at variation in analysis results between 

analysts. Initially, the purpose of the experiment was to generate some statistical data for 

variation between analysts in the hope that it could be used to filter the results of the roll 

forming sample analysis. As was with the case for many other aspects of the project, the 

experiment was started with only that hope and the statistical validity was investigated 

concurrently. It turned out there was no way to salvage the roll forming sample results by 

using statistical information from the analyst variation experiment. The experiment still 

has some validity, however, because it proves there is significant variation between 

analysts, and may indicate that the preparation procedure still needs a great deal of 

refining. Our feeling is that inconsistent results between analysts stems from unclear 

metallographs; the grain definition in most images requires the analyst to make judgment 

calls about whether the Heyn method line crosses an actual grain, and if larger grains 

exist as one or as a clump of smaller grains. 

 

Purpose 

 Determine the variation in grain analysis results between analysts.  
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Equipment & Materials 

• AutoCAD software by Autodesk 

• Heyn’s Method 2.02 software by Mike Meier 

• Excel software by Microsoft 

• One metallograph 

 

Setup & Procedure 

 The metallograph was set up for analysis in AutoCAD according to the procedure 

in section 6.3.2 Analysis Procedure. Once the lines were drawn for each orientation, all 

group members performed counts on the same image and recorded the data using Heyn’s 

Method 2.02 software. The data was further analyzed in Excel using the built-in ANOVA 

data analysis tool. A single factor test was run according to the analyst; each analyst was 

a treatment. Additionally, grain size was calculated from the results of each analyst for 

easy comparison with the results of other experiments. 

 

Results 

 The P-value for all ANOVA results was very small, on the order of 10-7, which 

means there is a very high probability treatments are responsible for variation of the 

means, according to Weisstein [14]. The average grain sizes for each analyst are shown in 

Figure 15. The size range was 32 μm2, or 46% of the maximum average grain size. For 

comparison, the variation between average grain sizes in the tensile test results was 

13μm2, or 12% of the maximum. There is too much variation between different analysts 

right now to compare the average grain sizes between roll forming stages. 
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Figure 15: Average grain size vs. analyst. There is very large variation in average grain size between 

analysts. 

 

6.5.2 Tensile Test Experiment 

Introduction 

The tensile test experiment represents the final achievement of this project. Its 

purpose was to link a known tensile stress to grain deformation in the microstructure. 

Once a relationship between a known stress and grain deformation was established, the 

results of the roll forming line sample analysis could be interpreted, and conclusions 

could be drawn about the existence of tensile stress components in the work piece. Any 

tensile stresses large enough to cause plastic deformation in the work piece are redundant 

stresses because they do not contribute to forming the work piece profile. This is only one 

small part of understanding the stress distribution in the whole work piece. 

 

Purpose 

 Link grain distortion with work piece stress. 
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Equipment & Materials 

• Prepared tensile test specimens (fully annealed 1045 steel) 

• Tensile test machine 

• Metallograph sample preparation equipment 

• Imaging equipment (metallography equipment, camera, etc.) 

• AutoCAD software by Autodesk 

• Heyn’s Method 2.02 software by Mike Meier 

• Excel software by Microsoft 

 

Setup & Procedure 

 In preparation for running tensile tests, many specimens were stamped from fully 

annealed 1045 strip stock – the same as used on the roll forming line. Five specimens 

were tested to failure to establish the ultimate tensile strength and yield strength of the 

material. The range between YS and UTS was divided into quarters to determine the 

stress levels for subsequent tests. See Figure 16 for clarification. 

 

Figure 16: Determining testing stresses in the plastic deformation range.  

 

 Three specimens were then stressed to 25%, 50%, and 75% of the plastic range. 

Sections were taken from the same location in each sample for metallographic analysis. 

Sectioned samples were prepared and analyzed according to the procedure summarized in 
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6.3.2 Analysis Procedure. One person analyzed all tensile specimens to eliminate 

variation between analysts. 

 

Results 

 The data suggests that tensile stress and grain deformation are related, specifically 

that average grain area decreases with increasing tensile stress. An error analysis was 

attempted, but ultimately abandoned for lack of time. Detectable grain shrinkage did not 

appear until around 75% of the plastic range, as seen in Figure 17. Each pair of points 

represents the average grain area of samples taken from different specimens stressed to 

the same level. The ultimate tensile strength appears around 474 MPa, 75% range around 

451 MPa, 50% range around 425 MPa, and 25% range around 408 MPa. As can be seen 

from Figure 17, there is no detectable grain area shrinkage below 50% of the plastic 

range. This brings the suitability of examining the grain structure for work piece stresses 

into question. 

 Just to check that the grain shrinkage apparent in the grain area graph was not the 

result of error propagation through the calculations, an average linear grain size graph 

was also prepared. This graph, shown in Figure 18, supports the analysis results shown in 

the average grain area graph. The average linear intercept length still decreases around 

75% of the plastic range.  

 45



Average Tensile Specimen Grain Size

0.000

20.000

40.000

60.000

80.000
G

ra
in

 A
re

a 
(μ

m
^2

)

Unstressed 25% plastic range 50% plastic range
75% plastic range UTS

 

Figure 17: Average tensile specimen grain size. The average grain size changes suddenly around 75% 

of the plastic range. 
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Figure 18: Average tensile specimen linear intercept length. The average intercept length still 

changes around 75% of the plastic range, though it is not as dramatic.
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7 Conclusions 

7.1 Experimental Results 

 The two experiments in question are the roll forming line and tensile test. Each 

was a preliminary experiment and both require a larger body of evidence to be validated. 

This is mostly due to time constraints and as such the experiments lack reproduction. 

This does not mean that these preliminary experiments cannot be evaluated. The limited 

quantity of experiments should be kept in mind when evaluating the validity of this 

approach. 

 The purpose of the roll forming test is to correlate stress distribution and severity 

to micro structural changes. There were two objectives: first, measure and quantify the 

severity of forming in the bends at each pass. Second, locate stresses in areas they should 

not belong, thus locating redundant deformations. The second aspect depends on the 

tensile test, which should prove or disprove the feasibility of locating redundant 

deformation. Preliminary results from the roll forming line test show that grain distortion 

can be measured and visualized. 

 It was hoped that calculating grain distortion would lead to a grain distortion 

gradient that could be superimposed over the part cross section. The gradient could be 

useful for understanding the stress distribution in the cross section. The distortion could 

be quantified by calculating a ratio between the longest and shortest dimensions of an 

average grain. In this case, it will be important to keep the sample orientation consistent 

so that distortion ratios can be accurately located on the profile. Also, in future 

experiments mis-orientation could lead to a misinterpretation of any visual data. If one 
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sample is rotated 5 degrees with respect to another and the sample should have the same 

grain shape it will appear that the samples are 5 degrees different. This variable was not 

watched closely, although a conscious effort was made to orient the samples similarly.  

 The main problem with the results was the variation between analysts. Since the 

variation appears to be 3 times as large as the as the variation between forming stagers, a 

quantitative analysis of this data is impossible. The variation between analysts should be 

much smaller than the difference between roll forming stages.  

 The tensile test did not suffer the fate of roll forming test, instead one analyst was 

used to rule out any variation between analysts. This does not rule out any changes 

conscious or unconscious in the tester's counting. It is believed that the variation is 

largely due to the subjectivity of what constitutes a grain. This will be discussed later in 

the section. 

 The tensile test experiments show that distortion is only detectable deep into the 

plastic range and grain area shrinkage is not linear. No noticeable change in grain area 

occurs until approximately 75 percent of the tensile range. For any method of measuring 

plastic stress to be useful, it must be able to detect shrinkage immediately upon entering 

the plastic range.  

 It is believed that that any variability in the counting of grains is due to the poor 

quality of the pictures used. The quality of the pictures needs to be increased enough so 

that when a variation between analysts experiment is carried out the variation is 

significantly smaller than bend to bend changes. A low variation would indicate a small 

amount of subjectivity and thus improve any variation in a single tester's own counting. 
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7.2 Recommendations 

7.2.1 For Future Experiments 

 As alluded to in the previous section the main concern for variability in grain size 

was the clarity of the grain pictures.  The group does not believe that the metallographic 

approach should simply be abandoned based on a poor initial showing.  The sample 

preparation procedure, namely the etching situation needs to be revised.  It is believed 

that the grinding and polishing methods produce a relatively distortion free surface.  The 

variation seems to be introduced during the etching phase.  First as stated in the 

metallurgical background 1045 steel contains a duplex grain structure, the etching 

method should be able to produce a sample, which can be evaluated clearly.  A murky not 

thick grain boundary should not be able to be confused with an agglomeration of pearlite.  

With the current pictures it is often impossible to discern the difference.  Also etch time 

need to be carefully controlled, grain boundaries will appear thicker after longer etching 

time and thus skew features. 

 This project never solved the problem of where to look for redundant 

deformations.  This could be accomplished using an optical comparator, which CIS 

currently owns.  The actual dimensions of a finished profile could be measured and 

compared to the theoretical dimensions.  If certain dimensions are consistently different 

this might indicate a place to look for redundant deformations.  If dimensions are 

consistently different than the theoretical it is likely that the cause is something 
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consistent.  For instance excessive unplanned for tensile stress causes a section to 

elongate thus the measurement is consistently longer than the theoretical value. 

 If future analysis shows that the metallographic approach does not provide 

adequate results, then other methods will be needed.  The feasibility of the methods has 

not been investigated some initial thinking was done.  Placing strain gages directly onto 

the part would allow for direct measurement of the strain, which could then be correlated 

to stress by using a similar tensile test experiment. The strain gages are used to record 

strain during the test.  Strain gages can be highly accurate.  This method would be much 

more direct and looks to provide results more quickly. 

 

7.2.2 For Future Teams  

 This section is here to help future groups of students and advisors work more 

effectively.  It is not a meant to judge any of the help we were given and are thankful for.  

There are always improvements, which could be made and this section will shed light 

upon some important ones.  The project was often riddled with delays and unforeseen 

hang-ups.  Many of these could have been reduced or eliminated if the following were 

implemented. 

 The project feasibility should be determined as soon as possible.  Advisors and 

students should have a solid idea of what the seven weeks in China are going to entail.  

This should only be done after all parties are familiar with the process of roll forming.  

During the planning stages students often do not know or have any way of telling how 

long testing should take for instance.  Having an advisor that has experience with the 

particular subject matter would help with more accurate estimates.  Communication is 
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essential - whether it is between the students and advisors, the students and themselves, 

or the advisors and themselves.  Start communication as early as possible and as often as 

possible. 

 

7.3 Personal Interpretations 

 

7.3.1 Doucet 

 This project to a severe turn soon after our first visit to the company, it appeared 

that most of the background completed before then would not deal with the project.  In 

the end it was very useful to have a good basic knowledge of roll forming and quality 

control.  More focus on topics used in the actual project work, namely metallography, 

would have allowed for more productive experimentation.  At the same time it was useful 

to wait until the project group obtained good background knowledge before being lead in 

any particular direction. 

 Finding the effects of stress in the microstructure of a material is a logical 

application of metallography.  As hinted to in the metallography background section of 

this report the interactions within a polycrystalline material are very complicated.  To 

further complicate things, stress first effects the material on a much smaller level than 

was studied in this project.  Using the ant and Earth analogy, changes on the scale of ant 

must move enough to be measured on something at the Earth's scale.  It is still unclear to 

the group how much stress is required before noticeable changes in grain structure 

become detectable.  A possible value was found at 75 percent the elastic range, but this 
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experiment should be repeated with higher quality sample pictures.  The important value 

here is the threshold of stress measurement, if is not close to the yield strength this 

method is useless. 

  

7.3.2 Jorgenson 

I feel the concept of microstructure analysis to detect stresses within a roll 

forming work piece has not yet been proved invalid. We did not get consistent analysis 

results between analysts, but this may be due to imperfect sample preparation. Though 

we performed no experiments to prove it, I feel the source of variation between analysts 

stems from poorly resolved metallographs. Logically, a very well defined microstructure 

should not require any subjective judgment calls by an analyst, because grain boundaries 

would be clear and indisputable.  

The validity of microstructure analysis as a tool for detecting work piece stresses 

should not be denied until consistent analysis results have been realized. It may turn out 

that microstructure analysis does not have the precision required for stress analysis. For 

example: if future tensile test experiments support the data obtained in our first tensile 

test experiment, I would conclude that microstructure analysis is useless for detecting 

redundant stresses in a roll forming work piece. The stress magnitude where grain size 

change becomes detectable is just too far into the plastic deformation range. Stress should 

be detectable as soon as it surpasses the yield point of the material, especially when 

looking for redundant deformations – permanent deformations that do not contribute to 

forming the part profile.  
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The results of our tensile test analysis are suspicious. They reveal only one change 

in the average grain area at around 75% of the plastic range. Intuitively, I would 

anticipate a more continuous shrinkage of average grain area, though intuition has little 

meaning when dealing with scales well outside the human realm. The nature of the Heyn 

method may be somehow responsible for the single-step pattern observed in the analysis 

results. It takes the first average of grain sizes when the line is drawn. Subsequent lines, 

or samples, are then again averaged to generate a mean of means and associated 

statistical information. This would seem to be a robust and error-tolerant method suitable 

for microstructure analysis. However, the grain sizes in our samples may be too variable 

to get useful results from this method. A duplex grain structure analysis was initially 

considered because our research indicated that annealed 1045 carbon steel should have 

two distinct phases that behave differently when cold-worked: pearlite aggregate and 

ferrite grains. In order for our analysis method to ever be of any use, the continuous 

shrinkage in cross sectional area of ferrite grains should be proved.  

 We had the opportunity to talk with a doctoral candidate at Tsinghua University 

in Beijing who was also doing microstructure analysis work. His first reaction to using 

the Heyn method to analyze the grain structure was that it took too much time. The only 

reason to use the Heyn method to determine average grain size is to detect grain 

distortion as well. The Heyn method was chosen because we originally wanted to 

generate a “grain distortion gradient” that could be superimposed over the part profile. 

We suspected a distortion gradient would be useful for further understanding the stresses 

and behavior of the bent part. If the distortion of grains is of little interest, than there are 

other, faster methods in use – particularly methods that can be automated. 
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 I am proud of our group and the project. We were put in a difficult situation where 

no group members had previous knowledge or experience with the subject matter. In the 

span of a few days we managed to break the problem down and, through research, teach 

ourselves enough about the subjects to form decent hypotheses. By saturating ourselves 

in the problem and the research, we were able to design and run an experiment, and 

identify areas for more investigation in the future. Specifically for Jake and me this 

project was a test of our WPI education, which has trained us to learn quickly and 

effectively find the information we need. Finding focus for the project was also difficult, 

as the problem was large, ugly and unwieldy. I think our success in digesting the volumes 

of information on so many subjects in a timely manner, and then applying the new 

knowledge in a useful way is something to be proud of.   
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9 Appendices 

9.1 System Stability Breakdown 

With points that will effect machine consistency and performance. This is a general 

list that was put together from a few roll forming texts. 

 

• Roll Formers (structure on which tooling or “form rollers” are mounted) 

Consistent, repeatable setup is important. Factors affecting consistent setup: 

 Roll former alignment 

• Top and bottom roller shoulders coplanar  

• Bottom roller shoulders coplanar 

• Top and bottom rollers parallel 

• Check over the setup procedures used by CIS. Maybe they 

can be streamlined or fool-proofed in some way to make 

the setup more consistent? 

 Drive train condition 

• Gearbox in good condition 

o Proper lubrication 

• Roll former drive gears in good condition 

o Proper lubrication 

• See what kind of maintenance practices CIS uses. Worn 

equipment could cause some problems, though probably 

not very important for reducing normal process variation.  
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 Structure condition 

• Roll former bearings in good condition 

o Proper lubrication 

o No play or excessively worn bearings 

• Bearing block sliders in good condition 

o No play. Play will affect roller shoulder alignment 

• Adjustment screws in good condition 

o No stripping, no play. Will affect precision of top 

roller adjustment. 

• Vertical alignment system in good condition 

o No play or backlash. Will affect precision of top 

roller adjustment 

o Use strong springs to eliminate backlash 

• Again checking the wear condition of the machine. 

Bearings and bearing blocks might cause some unnecessary 

variation if they are not in good condition or if loose and 

unaccounted for during the setup process.  

• Lubrication System 

 Recirculated lube maintained 

• Clean storage tanks. Effective filters and cleaning processes 

 Lubrication appropriate for process 

• Evaporative, synthetic chemical solution, semi-synthetic 

micro-emulsion, soluble macro emulsions, petroleum based 

 59



 Adequate lubrication of form rollers and stock 

 Lubrication may not contribute as much to process variation as 

material variation, but it is important for tool life and product 

surface quality. Running without lubrication or coolant could cause 

some problems. 

• Form Rollers (roll form tooling) 

 Form rollers machined and designed correctly 

• Consistent relationship between material gap and shoulder 

gap (to make setting up the roll forming line easier and 

more accurate) 

• Profile interference check 

• Material gap is consistent throughout the profile 

 Material gap setup 

• Gap is consistent throughout setup without load 

• Form rollers gapped correctly under load  

o Test with the first run of material 

 We suspect reducing material gap variation, and matching it more 

accurately to the variation in strip stock is the best place to reduce 

normal process variation. Also, checking that the tooling is made 

correctly in the first place is obviously important.  

• Strip Stock Straightener (to remove coil-set in strip stock) 

• Entry Guide 

• Part Straightener 
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• Cutoff Die 

• Drive train 

• Stock Material 

Sources: Alvarez [6] and Nickel [7]

9.2 Quality Control Background 

9.2.1 Process Capability (Cpk) 

 The precursor to process capability or Cpk was the process capability index or Cp. 

The process capability index Cp is defined as the ratio of the specification width to the 

manufacturing capability: 

Cp = (Spec. Width) / (Mfg Capability) (Drake) 

Cp is also thought of as a concurrent engineering index, because design engineers are 

responsible for setting the specification width, and manufacturing engineers are 

responsible for setting the manufacturing capability. Process capability had been 

historically defined as +- 3 Sigma, until the early ‘80s when it was redefined as Cp = 

1.33, or +- 4 Sigma, as shown in Figure 19. The limits USL and LSL refer to the Upper 

and Lower Specification Limits, respectively.  
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Figure 19: Normal distribution showing manufacturing capability and specification width [15]. 

The process capability index Cp did not take into account statistical shifts during long 

term manufacturing runs, so a new index called Cpk was created. Process capability, or 

Cpk, is defined as: 

Cpk = Cp*(1 – k), where k = (shifted mean) / (distance to nearest spec limit) 

The definition of Cpk is illustrated in Figure 20. 
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Figure 20: Normal distribution with shift incurred over long-term manufacturing run, and a 

definition of Cpk [15]. 

In the case illustrated in Figure 20, the design engineers set the specification limits at +- 6 

sigma, yielding a Cpk of 1.5, or a Cp of 2. The process capability Cpk is a more realistic 

measure of capability because it takes into account statistical manufacturing variation. 

9.2.2 Statistical Process Control (SPC) 

 To assure a quality product it is necessary to understand why parts are not being 

produced within the desired specifications. One such method for monitoring and 

determining problems in a process is Statistical Process Control. This system uses a 

normal Gaussian distribution to determine the range of acceptable product distribution. 

Any normal process will have a distribution shaped like the Gaussian bell curve in Figure 

22 where the majority of the products produced will concentrate towards the middle of 

the curve. Figure 22 shows a normal Gaussian distribution, in a process; the y-axis 

represents the frequency of the measurement in question, and the x-axis represents the 
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measurement in question. If one were to impose a range of excepted measurement values 

the wider the range the larger number of parts would be contained within the range. There 

is a standard method for determining this range, there is a set length called a standard 

deviation that act as the units for the range. A standard deviation is the average amount of 

deviation from the average. The equation for determining the standard deviation of a 

distribution is shown in Figure 21. 
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Figure 21: Equation for determining the standard deviation of a distribution. 

 

In the equation x is the value of a given sample, the x represents the average out of a 

given sample group and n represents the number of samples taken. Since a normal 

Gaussian distribution gives a standard curve there is thus a specific value for a standard 

deviation. To give an idea of what a standard deviation translates to on a curve consider 

Figure 6. Each color represents one standard deviation. 

 

 

Figure 22: Standard deviation description [16]
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 Most often the industry standard is to take three standard deviations plus or minus 

the mean value or in other words the outside of each blue section as the upper and lower 

limits. These limits represent 99 percent of the measurements. The goal of any process is 

to get these statistical limits within the desired part limits. If this is true that means for 

ever 100 parts produced by a production line 1 of the parts will not be within production 

specifications. If a process on average stays within its statistical limits it is said to be "in 

control".  

 It was stated that a process must stay within the limits, yet the sentence before it 

was stated that 1 out of every 100 parts will not be within the limits. To adjust for these 

discrepancies a sample group is selected, usually between 2-10 parts, and then averaged 

and this represents one point in a graph. The upper and lower control limits are based on 

the addition and subtraction of three sigma from the mean. The mean in the case where 

sample groups are taken is the average of the groups, which is often represent as x double 

bar. 

 When a problem occurs in the process some type of drift will occur and the 

distribution will no longer be normal or may have shifted all together. When the process 

shifts the x  terms will start to move towards the limits in some fashion. Based on prior 

knowledge many of the causes for such shifts can be quickly determined. If a tool is 

wearing the process will shift steadily with time, this can be seen in Figure 23a. Once the 

tool is replaced the process returns to normal. If the process is hovering around one of the 

control limits and not the mean it is possible that there is a tool setting that is not correct, 

this is often called a shift in the mean and can be seen in Figure 23b [3]. A quick shift in 
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the mean can also indicate that a property in the incoming material has changed, which is 

shown in Figure 23c. This ability is the largest benefit of implementing a system like this, 

it quickly allows a skilled operator to determine problem and thus quickly get the process 

back within the desired range. 

 

 

Figure 23: Examples of “out of control” processes [3]. 

 

 The object of this system is to get the distribution of parts being manufactured 

within the required specifications. The distribution represents the statistical distribution 

of parts being manufactured the limits mark the edge of its range. The limits do not 

correspond to the actual measurement specifications, which are set by the designer of the 

part. 
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9.3  Sample Preparation Procedure 

9.3.1 Step-by-step Sample Preparation Procedure 

1. Section sample from roll forming line or other source. 

a. Cut to length with wire cutting machine (Wire EDM??) 

i. 1-2cm length 

2. Mount section in Bakelite, if to small to be safely ground alone. 

a. Remove top metal cylinder in Weiyi XQ-2B molding machine. 

b. Place sample in molding machine. 

c. Turn on machine by turning timer to the “ON” position, for warming up. 

d. Cover sample with Bakelite powder without knocking samples over. 

e. Place top metal cylinder back in machine. 

f. Turn crank to pressurize the Bakelite until the yellow light comes on.  

g. Cook 8 minutes at a temperature between 135C and 150C. Make sure the 

yellow light remains on, indicating proper pressure. 

h. Turn machine off and allow to sit for 15 minutes to cool 

i. Remove sample. 

3. Grind samples 

a. Wet grind. Each stage up to 1000# should take no more than a minute or two. 

The 240# stage should take less than 30 seconds. 

i. Drip or thinly stream water constantly onto the center of the grinding 

wheel. There is too much water when the sample begins to hydroplane 

and not enough when the Bakelite clogs the grinding wheel. Use 

moderate even pressure to achieve a flat grind. 
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ii. The goal of wet grinding is to remove loose abrasive and abraded 

material from the wheel so the sample isn’t damaged. Wet grinding 

cools the sample, which is important when imaging grain structures. 

iii. When grinding, the sample should be held in on orientation. Some 

oscillation perpendicular to the grinding direction is acceptable, but 

not necessary. 

iv. When moving onto the next grit stage, wash the samples before using 

a finer grit to prevent contamination. 

v. When moving onto the next grit stage, the sample should be turned 

450-900 and ground until scratches left by the previous stage are no 

longer visible. Turn the sample another 450-900 and grind until those 

scratches are no longer visible. The sample is now ready to move to 

the next stage.  

b. Grind with 240# until the sample surface is completely exposed and the edges 

are crisp. 

c. Grind with 400#, following the procedure in 3.iii - 3.v. 

d. Grind with 600#, following the same procedure. 

e. Grind with 1000#, following the same procedure. 

f. If storing the samples overnight, drop alcohol on the surface to remove 

absorbed water and prevent the surface from oxidizing over night. 

4. Polish samples 

a. Polish with metallographic specimen polisher. 

i. Spray “diamond spray” polishing compound onto red polishing cloth. 
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ii. Pour enough water onto the cloth to keep it damp. A thin, evaporating 

film of water on the sample surface indicates good wetting. Water 

keeps the specimen cool and retains the diamond polish in the cloth as 

an abrasive slurry. 

iii. Polish until all scratches from the 1000# grind have disappeared. Use 

light to moderate pressure to expedite the task. 

iv. Polishing takes a while. Expect 15-30 minutes per sample. More time 

indicates a less-than-ideal polishing technique. Adequate wetting of 

the polishing cloth is very important. 

b. Wash samples under running water.  

c. Drop alcohol on the sample surface to drive water to the edges and soak it up 

with tissue paper.  

d. Gently wipe the alcohol-coated sample surface dry with a fresh piece of tissue 

paper. The use of alcohol prevents damage to the sample surface. 

5. Etch samples 

a. Etch samples with 3-5% nitric acid/alcohol solution for approximately 5 

seconds. 

b. Wash with water. Dry using the procedure in c - d. 

c. If grain boundaries are not clear, sample needs to be etched for longer. 

d. If grain boundaries are severely eaten and the grains are hard to distinguish 

due to thick, dark boundaries, the sample has been etched too long.  

i. Re-grind at 1000# until the surface is crisp and no pits are evident. 

ii. Re-polish. 
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6. Samples are ready for metallography.  

 

 

9.4  Data Collection & Analysis Procedure 

9.4.1 Data Collection Procedure 

Carefully imaging all 12 steps will take a long time. Accept that fact. 

1. Imaging Procedure 

a. Orient the profile with bend legs facing the microscope operator. See 

Figure 24.  

 

Figure 24: Orientation of the profile on the microscope stage. 

b. Use the 20/0.35 lens (green ring) 

c. Image two points on every bend 

i. Inside edge 

ii. Outside edge 

iii. Edges take up about 20% of the field of view. See Figure 25. 
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Figure 25: Illustration showing what 20% of a field of view looks like. 

d. Mark next to the image field with an arrow so the orientation of the part is 

obvious when looking through the microscope. The arrow points toward 

the inside edge, and flops toward the bend to be imaged. See Figure 26. 

 

Figure 26: Technique for tracking the bend orientation while under the microscope. Arrows point 

toward the inside edge of a bend, and flop toward the next bend to be imaged. 

 

2. Check that each image is in focus and clear after taking each picture. 

a. If not, re-take the picture. Collecting good and useful data is critical. 

3. Document variables for every picture. Encode in file name. 

a. Who prepared the sample 

i. Rich Jorgenson, Jake Doucet, Bai Hua, Chen Chen: RJ, JD, BH, 

CC 
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b. Which batch sample 

i. Batch: 1, 2, 3… 

c. Which profile is imaged See Figure 27. 

i. Stage: 0, 2-12 

d. Which side of the profile? See Figure 27. 

i. Side: A, B 

e. Which bend is imaged 

i. Bend: 1-5. See Figure 27. 

ii. Part midpoint: 0 

iii. Inside edge or outside edge: I, O. See Figure 28. 

f. Syntax: <Batch>-<Stage> <Side><Bend><Location> <Preparer>.jpg 

i. Example: 1-02 A4O RJ.jpg  

 

 72



 

Figure 27: Locations for bend imaging. 

 

 

Figure 28: Field of view locations for bend imaging. Neutral field image removed from procedure. 
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9.4.2 Analysis Procedure 

1. Import metallograph into AutoCAD 

 

 

Figure 29: Importing metallograph into AutoCAD 2006 

 

 

2. Set image scale factor to 200 

a. Units are irrelevant 

b. Scale factor corresponds to microscope magnification 
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Figure 30: Setting image scale factor to correspond with microscope magnification 

 

 

3. Copy the image 4 times in the AutoCAD sheet 

a. One image for each of four linear orientations 0o, 45 o, 90 o, 135 o 

b. Reduces confusion, and tracks which lines are used, maybe for future 

reference.  
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Figure 31: Copying the image four times, one image for each linear direction 

 

 

4. Begin analyzing the first image by bisecting the picture with a line (for example, a 0o 

line) 
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Figure 32: Bisecting the first image in preparation for analysis 

 

 

5. Generate a random number (such as in Excel) 

6. Place a line parallel to the bisecting line; offset a distance corresponding to the 

random number. 

a. The line will be 100 mm long 
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Figure 33: Adding a 100mm parallel line 

 

 

 

7. Count the number of grains that intersect the line 

a. Add 0.5 to the count each time an endpoint lies on a grain 

8. Enter the count into the Heyn method program by Meier 

a. Each line is a sample 
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Figure 34: Recording grain count with Meier's Heyn method program 

 

 

 

9. Take a total of 5 samples per direction, that is, draw five parallel lines and count the 

intersecting grains on each 
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Figure 35: Recording grain counts from all five parallel lines 

 

 

 

10. Save the results as a text file using the ‘Save’ button 

11. Transfer the mean grain size, standard deviation, relative error, and relative 

confidence interval from the text file into the formatted Excel file 
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Figure 36: Transfer data into Excel for processing and analysis 

 

 

 

12. Repeat steps 4 - 9 for each of the four directions 

a. 0o, 45 o, 90 o, 135 o 

13. Average grain area is automatically calculated, along with relative error, and 

minimum and maximum average grain areas. 

a. Calculated by summing triangles created by measurements in each of the four 

directions. 
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9.4.2.1 Comments on Analysis Procedure 

Strengths 

1. The Heyn method is robust. It seems to be pretty tolerant of grain structure variation 

 

Weaknesses 

1. Degree of variability within and between images 

a. Due to out-of-focus regions, inconsistent etching, and sometimes surface 

imperfections 

2. Grain counting is somewhat subjective due to small grains, areas that may come very 

close to the line, blurry areas, and surface defects 

a. Results can vary widely between analysts. A single analyst can get good 

results if his personal method is kept consistent.  

 

Strengthening the Analysis 

1. To get an idea of variation between analysts, and to put a number to the degree of 

subjectivity, we ran a test. 

a. Each member counted the same set of lines on the same field of view.  

b. Grain counts were tallied and graphed. The lines are the same, so any 

variation in the counts is due to the judgment of each analyst. 

c. There appears to be significant variation between analysts. 

2. To get an idea of variation between etch times, we will run another test. 

a. Pictures at different etch times for the same specimen. 
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Notes 

1. Average grain area is calculated by using triangle geometry.  

a. Mean grain size is used to calculate the area 

b. The grain size measurement has some error associated with it 

c. Error will propagate through the calculations 

i. According to Wolfram, relative error is additive when terms are 

multiplied. 

ii. Is this accurate? What kind of error analysis techniques should we be 

using? 
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