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Abstract 

Mycobacterium tuberculosis, the bacterium that causes tuberculosis, can enter non-growing 

states in which it is phenotypically tolerant of antibiotics. These states are characterized by reduced 

metabolic activity, and occur in response to stressors encountered in the body, such as hypoxia 

and starvation. Both M. tuberculosis and its non-pathogenic relative M. smegmatis have been shown 

to stabilize their mRNA transcripts under growth-inhibiting conditions. One explanation for this 

phenomenon could be a decrease in the intracellular levels of mRNA degradation proteins. In the 

present research, several proteins fitting that description were epitope-tagged and their abundance 

measured under stress. Our results suggest that RNase E may be specifically downregulated in 

hypoxia.  

 

Introduction 

 

Though great strides have been made in recent decades, tuberculosis continues to pose a 

threat worldwide. The World Health Organization estimates that in 2014, 9.6 million people were 

infected and 1.5 million died of the disease (WHO, 2015). One of the major obstacles to treating 

tuberculosis is the bacteria’s tendency toward a state of near-dormancy described as quiescence, 

which has been observed for some time in the laboratory (Wayne, 1976) and is distinguished from 

true dormancy by the continued presence of (a reduced amount of) ATP (Gengenbacher et al., 

2010), low-level respiratory functions, and maintenance of membrane potential (Rao et al., 2008). 

A quiescent state can lead to a transient, non-heritable form of antibiotic resistance termed 

antibiotic tolerance (Levin & Rozen, 2006). There are several proposed mechanisms for this 

phenomenon, but a particularly compelling explanation is based on the decrease in bacterial 

metabolic activity. As early as 1944, researchers had begun to explore this explanation, with a 

finding that penicillin only killed Staphylococcus aureus in its actively growing state (Lee, Foley, & 

Epstein, 1944). More recently, this effect has been observed in mycobacteria, with a finding that 

Mycobacterium tuberculosis shows reduced killing from certain antibiotics after six weeks of starvation 

(Betts et al., 2002). Some researchers have also begun to explore the possibility that active 

remodeling of metabolic pathways also contributes to this antibiotic tolerance (Nguyen et al., 

2011). 

Due in part to the bacterium’s ability to enter this quiescent state, treatment for tuberculosis 

is only successful when patients adhere to a lengthy course of antibiotics (Thomas et al., 2005). 

Noncompliance occurs at high rates, particularly among vulnerable populations and in patients 

who lack easy access to a clinic (Brudney & Dobkin, 1991; Shargi & Lindtjørn, 2007). Additionally, 

temporary physiological antibiotic tolerance in protected sub-populations of bacteria can lead to 

greater rates of genetic antibiotic resistance (Levin & Rozen, 2006). The granulomas that occur in 

tuberculosis are thought to induce this state, and typical research parameters to mimic those 

conditions include hypoxia (Wayne & Hayes, 2003) and nutrient starvation (Betts et al., 2002). 

These problems point to a need for the development of faster-working tuberculosis 

treatments, particularly treatments capable of interfering with the quiescent state. In order to 
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achieve this, it is necessary to conduct significant further research into the mechanisms that allow 

bacteria to enter this non-growing state. 

Research in a variety of bacterial species has suggested that mRNA transcript half-lives are 

increased when growth is arrested; this is referred to as mRNA stabilization. In Bacillus subtilis, 

transcripts expressed in the stationary phase had half-lives as much as 15 times longer than 

transcripts expressed during the exponential phase (Resnekov et al., 1990). In E. coli, the mRNA 

encoding a ribosome modulation factor was found to be stabilized during stationary phase (Aiso 

et al., 2005), and other research determined that anaerobic conditions caused slowing of mRNA 

turnover (Georgellis et al., 1993). Increased mRNA half-life during nutrient starvation has been 

observed in Lactococcus lactis (Redon et al. 2005, Dressaire et al. 2013), Rhizobium leguminosarum 

(Thorne & Williams 1997), and Vibrio sp. S14 (Nyström et al. 1990). In M. tuberculosis, hypoxic 

conditions induce mRNA stabilization (Rustad et al., 2012). Preliminary results from the Shell lab 

show similar results in M. smegmatis, a fast-growing non-pathogenic relative of M. tuberculosis, under 

conditions of hypoxia and carbon starvation. mRNA stabilization may be important for 

conserving energy in the presence of limited resources. 

Beginning with E. coli, researchers have identified bacterial protein complexes, referred to 

as degradosomes, that are major participants in the process of mRNA degradation. Two major 

components of the degradosome in E. coli are RNase E, an essential endonuclease, and 

polynucleotide phosphorylase (PNPase) (Miczak et al., 1996). The propensity of bacterial 

degradation proteins to function in complexes seems to be conserved across many bacterial 

classes, with a similar complex having been identified in S. aureus (Roux et al., 2011) and a more 

transiently-associated complex characterized in B. subtilis (Cascante-Estepa et al., 2016; Lehnik-

Habrink et al., 2010). Homologs of some of the E. coli degradosome component proteins exist in 

mycobacteria, including RNase E and PNPase (Kovacs et al., 2005, Unciuleac & Shuman, 2013). 

RNase J has also been identified as a protein involved in RNA degradation in Mycobacteria 

(Taverniti et al. 2011). However, it is unknown if these proteins function in complexes. 

In the published literature that details transcriptome-wide analyses of M. tuberculosis under 

stress, there has been no identification of any alteration in the abundance of mRNA transcripts 

encoding RNases. However, under conditions of both hypoxia and nutrient starvation, several 

genes predicted to encode RNA helicases have been shown to down-regulated (Betts et al., 2002; 

Sherman et al, 2001). Helicases are known to be involved in RNA degradation and are constituents 

of the E. coli degradosome (reviewed in Houseley & Tollervey, 2009).  

Recent research from Schubert et al. (2015) has yielded data regarding protein abundance 

in M. tuberculosis throughout hypoxic growth. The proteome-wide analysis does not show any 

significant difference in RNase protein levels in hypoxic growth as compared to log phase; 

however, the RNA helicase RhlE had decreased abundance in hypoxia, consistent with previously 

published transcriptional data (Betts et al., 2002).  

The present research investigates whether levels of RNA degradation proteins are altered 

under hypoxic conditions in mycobacteria, in order to determine whether the levels of these 

proteins could be a factor in mRNA stabilization. Using M. smegmatis, several proteins associated 
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with RNA degradation (including RNase E, RNase J, and a putative RNA helicase) were epitope-

tagged for quantification via western blot under conditions associated with quiescence.  
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Materials & Methods 

 

Incubation 

All liquid cultures were incubated at 37° C in a Lab-Line® incubator-shaker set to 175 rpm. 

M. smegmatis was grown in 7H9 supplemented with glycerol, 0.05% Tween 80, Bovine Serum 

Albumin Fraction V, NaCl, and catalase. E. coli was grown in LB broth. All plates were incubated 

in a dedicated warm room kept at 37° C. M. smegmatis was grown on 7H10 plates and E. coli was 

grown on LB agar plates. 

 

Oligos 

Primers and oligos were synthesized by IDT and resuspended at 100 μM in Qiagen elution 

buffer. Further dilutions were made with ultra-pure water. 

 

PCR 

PCR was done in 25 μl reactions with 2.5μl 10x NEB Taq buffer, 0.125 μl NEB Taq 

polymerase, 0.5 μl of each primer (10 μM), 0.5 μl of dNTPs and 1 μl of template DNA. Primers 

are listed in table 2. 

 

E. coli Transformation 

Transformation of E. coli was done with 12 μl of NEB 5-alpha competent cells and 1 μl of 

plasmid. Cells were incubated for 30 minutes on ice, heat-shocked for 30 seconds in a 42° C water 

bath, and then incubated for 5 more minutes on ice. 200 μl of SOC media was added, and then 

tubes were placed in the 37° C warm room and rotated for 1.5 hours. 150 μl and 20 μl of the 

transformation was plated on two plates.  

 

M. smegmatis Electrocompetent Cells 

Unless otherwise specified, M. smegmatis electrocompetent cells were made by washing 

overnight cultures of mc2155 with 10% glycerol. Cultures were grown from glycerol stocks 

overnight in 7H9. The cultures were pelleted at 3900 rpm, the supernatant was discarded, and the 

pellet was resuspended in a volume of 10% glycerol equivalent to the volume of the initial culture. 

This is done twice. The process is then repeated, but the cells are resuspended in 10% of initial 

volume, and then finally 1% of initial volume. 

 

M. smegmatis Transformation 

Basic (non-recombineering) transformation of M. smegmatis was done using 30-50 μl of 

competent cells and around 200 ng of plasmid, which were transferred to an electroporation 
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cuvette and electroporated at 2.5 kV with a Bio-Rad MicroPulser™. The mixture was then 

transferred into new 1.5 ml Eppendorf tubes and rotated for 2-4 hours at 37° C, then plated on 

7H10 plates with appropriate antibiotic concentration (see table 1).  

 

 E. coli M. smegmatis 

Kanamycin 50 μg/ml 20 μg/ml 

Chloramphenicol 34 μg/ml not used 

Hygromycin 150 μg/ml 150 μg/ml 

 

Recombineering 

The recombineering system used was the ORBIT system, developed by Kenan Murphy at 

the University of Massachusetts Medical School, and plasmids were obtained from his lab. 

Plasmids used were pKM444 and pKM461 (plasmids for facilitating recombineering expressing 

RecT and Bxb1 integrase; kanamycin resistant) and pKM446 (plasmid containing epitope tag; 

hygromycin and chloramphenicol resistant). pKM461 differs from pKM444 by presence of sacR 

and sacB, counterselectable markers for sucrose. 

Production of more plasmid was accomplished through transformation of 1 μl plasmid into 

12 μl NEB 5-alpha competent cells, following above protocol. Plasmid extraction was done using 

either the Qiagen or Zymo Research miniprep kit, following the respective manufacturers’ 

instructions.  

Epitope tagging the proteins was accomplished through recombineering based on protocols 

in Murphy et al. 2015 and advisory from the Murphy lab. 5 ml cultures of strains of mc2155 

transformed with pKM461 were grown up overnight, then scaled up to a culture with 5 ml per 

transformation + an additional 5 ml. At an OD of 0.5, cultures were induced with 500 ng/ml ATc 

and placed back in the shaker for an additional 3 hours. The cells were then made 

electrocompetent as described above, without the final step of resuspending in 1% of the original 

volume, so the cells remained at 10% of their original volume. Additionally, tubes remained on 

ice during the competent cell procedure and spins were done at 4° C. 400 μl of the competent 

cells were used for each transformation, which was done with 400 ng of pKM446 and 1 μg of 

recombineering oligo (see below for description; sequences in table 2). An additional control 

transformation contained plasmid but no oligo. The transformations were done at 2.5 kV, 1000 

Ω, and 25 μF. The results were transferred to a tube containing 2 ml 7H9 and rotated overnight 

(12-16 hours) and then plated on 7H10 plates with hygromycin.  

Table 1: Concentrations of antibiotic used in liquid culture 

and plates. 
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Figure 1: Schematic of the ORBIT recombineering system. First, the recombineering plasmid 

(encoding RecT and Bxb1 integrase, which facilitate incorporation of DNA into the genome, and 

the counterselectable marker SacRB) is transformed into the lab strain of M. smegmatis. Then a 

second transformation includes the oligo containing the attP site and homology to the target site in 

the chromosome and the plasmid containing the FLAG tag. RecT facilitates the integration of the 

oligo into the bacterial genome (detailed diagram of this process in Figure 2). The Bxb1 integrase 

then facilitates the site-specific recombination at the attP site, and the full plasmid is incorporated 

into the genome. The attL and attR sites on either side of the plasmid DNA are each formed from 

half the attP and half the attB site. Sites of PCR primers for junction verification are shown in red. 
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Recombineering oligos were designed to insert a viral att site at the desired location in the 

genome. Oligos included the final 70 bases of the gene of interest (before the stop codon), the att 

site (sequence: GGTTTGTCTGGTCAACCACCGCGGTCTCAGTGGTGTACGGTACAAACC), 

and the 70 bases following, including the stop codon. Directionality of the oligo was chosen based 

on the location of the gene of interest in either the right or left replicore, so that the oligo could 

be treated as an Okazaki fragment and incorporated into the genome on the lagging strand. 

 

Checking PCR 

Verification of transformations was done via PCR. PCR cycling protocol was as below. 

Annealing temperature was calculated via the NEB Tm calculator. 

  

Figure 2: Depiction of the incorporation of oligo in the ORBIT system. The oligo is treated as an Okazaki 

fragment and incorporated as part of the lagging strand during normal genome replication. The excess 

DNA corresponding to the attP site exists as a loop of unpaired DNA until the second round of 

replication, at which point one of the daughter cells will contain a double-stranded attP site. 
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95° C  30 s 
95° C  30 s 
[annealing temp] 30 s 
72° C  [1 minute for each kb] 
68° C  2-5 min 
10° C  hold 
 

Curing to Remove Recombineering Plasmid 
In order to minimize unintended effects of the recombineering plasmid, isolates that were 

verified to have been successfully tagged were grown up in 5 ml cultures and plated on 7H10 
plates with 15% sucrose. Colonies that grew were then re-streaked on a kanamycin and 
hygromycin plate. Those that grew on hygromycin but not kanamycin were determined to be 
lacking the recombineering plasmid, and were grown in culture and stored as glycerol stock for 
future use.  

 
M. smegmatis Growth in Hypoxia 

Growth in hypoxia was conducted based on the Wayne model (Wayne & Hayes, 1996). 10 
ml liquid cultures were grown under standard conditions to an OD indicating exponential phase, 
and then diluted to an OD of 0.01. 36.5 ml of diluted culture was added to a bottle and sealed 
with a rubber cap, metal cover, and a clamp. The bottles were then secured and incubated at 37° 
C, shaking at 125 rpm, for 42 hours. 
 
Total Protein Extraction 

Each 36.5 ml culture was grown under desired conditions (standard, hypoxia, etc.) to the 
desired OD. Cultures were pelleted in 50 ml conical tubes using the Eppendorf Centrifuge 5810R 
at 4° C for 5 minutes at 3900 rpm. After removal of supernatant, pellets were washed 2x with 7H9 
with Tween 80 and glycerol, but no ADC components. The final pellets were then suspended in 
1 ml PBS + 2% SDS with Amresco protease inhibitor cocktail added to 1x immediately before 
use. Resuspended pellets were transferred to a lysing matrix B tube and placed into an MP 
FastPrep-24™ 5G and bead-beated 4x at 6.5 m/sec, 30 seconds per cycle, with 1-minute 
incubations on ice in between cycles. Tubes were then spun at 13,000 rpm in an Eppendorf™ 
5424 Microcentrifuge. Supernatant was removed, placed in a new screw cap tube, and stored at -
20° C. 

 
Western Blotting 

Western blotting was conducted using Mini-PROTEAN TGX Precast Gels with 50 µl 

wells. Lysates were heated at 95°C for 10 minutes again upon removal from storage. Gels were 

run according to manufacturer instructions, loading 10 µl of Bio-Rad Precision Plus Dual Color 

Ladder and 20-35 µl of lysate combined with 4x sample buffer (20 mM Tris-Cl at pH 6.8, 400 mM 

DTT, 8% SDS, 0.4% bromophenol blue, 40% glycerol). Gels were run at 140 V using the Bio-

Rad Mini-PROTEAN Tetra System. Blotting was conducted using PVDF membrane, and the 

machine was run at 100 V for one hour. Blots were then stained using Ponceau S before blocking 

and imaged on a Bio-Rad Gel Doc XR. They were then blocked using TBS + 3% nonfat milk for 
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30-60 minutes, then incubated with primary antibody (Monoclonal ANTI-FLAG M2 antibody, 

Sigma, F1804-200UG, 1 mg/ml stock, 15 µl in 15 ml blocking solution) overnight at 4°C. They 

were then incubated with secondary antibody (Sigma anti-mouse whole molecule IgG produced 

in rabbit, 1 µl in 30 ml blocking solution) for 30 minutes at room temperature, washed in TBS + 

Tween 20, and then imaged on a Bio-Rad ChemiDoc XRS using the Pierce ECL Plus Western 

Blotting Substrate kit.  

 

Oligo name Function Sequence 

SSS585 Forward primer for 

checking junction between 

genome and rraA gene (used 

as a control to verify 

amplification of genomic 

DNA) 

CAGCCAGAATGGCAGAGCAG 

 

SSS586 Reverse primer for checking 

junction between genome 

and rraA gene 

AAGACCATCCGTGCCGGCAA 

 

SSS1061 Forward primer to verify 

presence of 1.5kb segment 

#1 of pKM444 or pKM461 

CATCCTGACGGATGGCCTTT 

 

SSS1036 Reverse primer to verify 

presence of 1.5kb segment 

#2 of pKM444 or pKM461 

CGGATGACTACCAGGGCT 

 

SSS1037 Forward primer to verify 

presence of 1.5kb segment 

#2 of pKM444 or pKM461 

CTTCGAGATGAGAGCCCTG 

SSS1038 Reverse primer to verify 

presence of 1.5kb segment 

#2 of pKM444 or pKM461 

CGCTAGTTAACCTACGACATC 

 

SSS980 Oligo to incorporate attP 

into rne (msmeg_4626). 

GTGACCAGCGGGTAGAGGGTCAAACTGGCC 

CCCCCCTGGATCTCGCCTGAGACACCGTGAT 

GCTCGTCTAGGTTTGTACCGTACACCACTGA 

GACCGCGGTGGTTGACCAGACAAACCGTCGT 

GGCTGGGCGGCCCCGCCGGACGTGCCGCGG 

CCCGGCGGCGCACCCGTGCGCGCGGCGCCG 

TCACC 

Table 2: Oligos
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SSS981 Oligo to incorporate attP 

into a putative RNA helicase 

gene (msmeg_1540). 

CGCACGTGGTGGTGCGCACCGGGGTGGACG 

CGGCCGCAGGCCGCGCCGCTCCAACGAGTC 

GTCCGCGCGCGGTTTGTCTGGTCAACCACCG 

CGGTCTCAGTGGTGTACGGTACAAACCTAGA 

GACGCGCGAAATGTGCGGTCCCACCCGACCT 

CTCCATACCGGGTGGGACCGCACAGGCATTT 

GTGG 

SSS982 Oligo to incorporate attP 

into the RNase J gene 

(msmeg_2685). 

AGGTGCTCAAGCTCGCGGGCCTGTTCACCGG 

CGGGATCCTGCTGCTGGCGGGTTGAGCTCAG 

ATCGCTCAGGTTTGTACCGTACACCACTGAGA 

CCGCGGTGGTTGACCAGACAAACCGATCTCTA 

TGACGGTCGGGACGATCATCGGCTGCCTGCG 

GTAGGTCTCGCCCACCCACTTGCCGACCGTG 

SSS1008 Forward primer for L 

junction to check 

incorporation of Orbit 

plasmid following 

msmeg_2684. To be used 

with SSS1009. 

CAGAAGGTTGAGCGCGAA 

 

SSS1009 Reverse primer for L 

junction to check 

incorporation of Orbit 

plasmid. 

CCTGGTATCTTTATAGTCCTGTCG 

 

SSS1010 Forward primer for R 

junction to check 

incorporation of Orbit 

plasmid. 

TGCACGGGACCAACATCTTCGTGG 

 

SSS1011 Reverse primer for R 

junction to check 

incorporation of Orbit 

plasmid following 

msmeg_2684. To be used 

with SSS1010. 

TGTCGCGTTGGAGGTGCTCAA 

 

 

SSS623 

 

Forward primer near end of 

msmeg_4626 to check 

incorporation of Orbit 

plasmid. To be used with 

SSS1009. 

ATCGACGAGCAGCTCGCGAA 
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SSS1090 

 

Reverse primer for R 

junction to check 

incorporation of Orbit 

plasmid following 

msmeg_4626. To be used 

with SSS1010. 

CTTGCCGCCGGTCTTGACGA 

 

SSS1097 

 

Forward primer for L 

junction to check 

incorporation of Orbit 

plasmid following 

msmeg_1540. To be used 

with SSS1009. 

TTCGGTGAGCCCATTCGC 

 

SSS1098 

 

Reverse primer for R 

junction to check 

incorporation of Orbit 

plasmid following 

msmeg_1540. To be used 

with SSS1010. 

AACGCGGTGCGTGACGGGT 

 

SSS1099 

 

Reverse primer to pair with 

SSS1097: post-msmeg_1540 

genomic DNA. To provide 

positive confirmation of a 

missing insert if necessary. 

TGTTCAGCCTCGGCAACG 
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Results  

Strain construction 

Three strains of M. smegmatis were constructed via a novel recombineering-based approach 

developed by Kenan Murphy (UMass Medical School) and diagramed in Figures 1 and 2. Proteins 

were tagged at the C-terminal end with FLAG and DAS+4 (McGinness et al., 2006). The proteins 

tagged were RNase J (msmeg_2685), RNase E (msmeg_4626), and a putative helicase 

(msmeg_1540); these proteins were chosen as candidates because they are known or suspected to 

be involved in RNA degradation, and none of them appears to be part of an operon. The absence 

of an operon is significant because an entire plasmid is inserted into the genome following the 

gene, with potential to disrupt downstream genes if they are co-transcribed with genes upstream 

of the insertion or regulated by elements upstream of the insertion.  

Each strain was evaluated for successful incorporation of the plasmid by PCR. The primers 

constructed for PCR were designed to amplify the portion of DNA surrounding the junctions 

both upstream and downstream of the site of recombination. PCR products were then purified 

and sequenced. For the RNase J strain, both junctions were confirmed, while for the RNase E 

and helicase strains, only the downstream junction was confirmed. PCR was attempted for the 

upstream junctions for these strains several times, using several sets of primers annealing to 

different positions, but none of these yielded bands. 

Though the presence of the tag was verified, the RNase J strain did not yield a specific band 

on a western blot, under any conditions. The helicase strain produced a faint specific band (Figure 

4). The RNase E strain showed a strong specific band (Figure 3), suggesting that this strain could 

be used to assess condition-dependent changes in RNase E protein levels. 

 

 

RNase E protein abundance appears to be decreased in hypoxic cultures 

To determine if RNA degradation enzymes are downregulated in quiescent M. smegmatis, we 

compared RNase E abundance in log phase and hypoxic cultures. Two isolates of the RNase E 

strain were tested, with two biological replicates for each isolate in each condition. Each isolate 

originated from a distinct colony on a transformation plate, and both had been “cured” by 

counterselection on sucrose to ensure absence of the recombineering plasmid. Cultures were 

grown under aerobic and hypoxic conditions, and the cells were lysed during mid-log phase for 

the aerobic cultures, and 42 hours after sealing the bottles for the hypoxic cultures. Unpublished 

data from experiments performed by other lab members indicate that growth ceases 

approximately 24 hours after sealing the bottles. Lysate was used for total protein quantification 

and western blotting. When loading the gel for blotting, the bacterial lysates were normalized 

based on protein concentration, in order to ensure that the same quantity of total protein was 

being loaded in each well. 
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 When normalized to the optical densities of the cultures from which they were derived, the 

total protein concentrations were modestly decreased in hypoxia compared to log phase (Figure 

4). This suggests that protein content per cell may be slightly lower in hypoxia. However, the 

decrease only reached statistical significance for one of the three strains. 

On the western blot (Figure 5), the bands from the hypoxic cultures were substantially lighter 

than those from the log phase cultures. This reduction of band intensity in hypoxia persists 

regardless of discrepancies in apparent protein load (Figure 5B). As the blot was normalized to 

total protein level and hypoxic cultures were found to have decreased protein concentrations, the 

tagged protein appears to comprise a decreased proportion of the total protein present in the 

cultures, and fewer copies of the protein per cell are present. 

A second band also appeared below the first, with a faint presence in the lysates derived 

from log phase cultures and a much stronger presence in those from hypoxic cultures.  

A similar experiment was done with the helicase-tagged strains, but the experimental blot 

comparing hypoxic and aerobic conditions was inconclusive, with only a faint band appearing for 

the aerobically grown strain in the image resulting from an hour-long exposure (data not shown). 

Because the signal from the aerobic condition was so weak, we could not conclude with 

confidence that the signal from the hypoxic samples was in fact decreased. 

Figure 3: Western blotting reveals a specific band for the RNase E-FLAG strain.  All three tagged strains 

were grown in aerobic conditions. (A) Anti-FLAG western blot. Image including ladder has been overlaid. 

Positive controls were acquired from Christina Baer at UMass Medical School. (B) Ponceau S staining to 

verify equal total protein loading. Expected size for positive controls (Venus fluorescent protein, three 

different expression levels) was 27 kDa. Expected sizes for experimental proteins were 60 kDa for RNase 

J, 112 kDa for RNase E, and 49 kDa for helicase. 
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Figure 4: Comparison between normalized protein concentrations in log phase 

and hypoxic cultures, including wild type strains and the two RNase E tagged 

isolates, SS-M_0249 and SS-M_0250. Two-sample T test assuming equal 

variance. Error bars represent standard deviation. 
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Figure 5: RNase E protein abundance appears to be reduced in hypoxia. (A) Western blot with RNase E tagged 

strains in hypoxia. 8-minute exposure is shown. A negative control (unmodified mc2155) and two isolates of each 

strain were analyzed, with two replicates of each strain in each experimental condition. (B) Ponceau S staining confirms 

that the differences in panel A cannot be explained by unequal protein loading. Expected size for RNase E is 112 

kDa. 
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Discussion 

 

The RNase E tagged strain appears to show some downregulation of RNase E protein under 

hypoxic conditions, which would provide evidence supporting the hypothesis that regulation of 

RNA degradation proteins affects mRNA half-lives in quiescent mycobacteria. The appearance 

of a second, smaller band that is stronger in hypoxia even suggests a possible mechanism of 

protein regulation: cleavage of proteins could result in a smaller protein that has altered properties 

but still shows up on a western blot.  

Though the potential implications of the results are noteworthy, the failure to confirm the 

upstream junction of the tag is a serious concern. Since the adjustment of primers and PCR 

conditions yielded no results, poor PCR quality is unlikely. The size of the protein that appears on 

the western blot is also a concern, though aberrant migration of RNase E (specifically, running as 

a larger protein) has been previously reported in M. tuberculosis (Zeller et al., 2007) and E. coli 

(Casaregola et al., 1994). According to Caseregola et al., the discrepancy in the E. coli protein may 

be due to the high quantity of highly charged residues in the C-terminal region of the protein. The 

M. smegmatis RNase E appears to have this same pattern of many highly charged residues in this 

area. However, some follow-up work in process (currently being conducted by other members of 

the Shell lab) suggests that attempts to incorporate a plasmid following the RNase E-encoding 

gene results in a large (3kb or greater) duplication of DNA between the gene of interest and the 

incorporated plasmid. Based on this information, it is currently impossible to come to a conclusion 

regarding what is being visualized on the gel. 

The intent of the Shell lab is to continue moving forward with this research. Based on the 

assumption that tagging RNase E at the C terminal end (the present technique) yields problematic 

results, further research may begin with tagging at the N terminal end.  
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