
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

October 2010

Distributed Virtual Environment for Radar Testing
James B. Montgomery
Worcester Polytechnic Institute

Lucas M. Scotta
Worcester Polytechnic Institute

Matthew Ross Lyon
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Montgomery, J. B., Scotta, L. M., & Lyon, M. R. (2010). Distributed Virtual Environment for Radar Testing. Retrieved from
https://digitalcommons.wpi.edu/mqp-all/3399

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3399&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3399&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3399&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3399&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/3399?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3399&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

1

 Project Number: GTH-L101

Distributed Virtual Environment for Radar Testing

A Major Qualifying Project

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Matthew Lyon

James Montgomery

Lucas Scotta

Date: October 14, 2010

MIT Lincoln Laboratory Supervisor: D. Seth Hunter

Approved:

__
Professor George T. Heineman, Major Advisor

__

Professor Hugh C. Lauer, Co-Advisor

__
Professor Edward A. Clancy, Co-Advisor

This work was sponsored by the Department of the Air Force under Contract No. FA8721-05-C-
0002. Opinions, interpretations, recommendations and conclusions are those of the authors and
are not necessarily endorsed by the United States Government.

2

Abstract

 This paper describes the design and prototype implementation of a distributed radar
simulator for MIT Lincoln Laboratory. This simulator is designed to test radar control software
developed at the Laboratory by mimicking radar hardware and simulating radar returns from
targets in a virtual environment. The team worked closely with Lincoln Laboratory staff to ensure
that the simulator design would be extensible to support different types of radar systems and
scalable to thousands of targets. Finally, a distributed simulator was implemented in order to
validate the project design.

3

Executive Summary

Radar is one of the core technologies developed at MIT Lincoln Laboratory in support of national

security. Central to a radar sensor system is the processing software used to interpret radar returns and

configure the physical hardware. Radar simulation is a common technique used by the Laboratory to

test this software before the actual hardware is deployed. A simulator exists within the Laboratory and

has been used over the past 10 years for testing radar software.

While the existing radar simulator is capable of modeling complex hardware and environmental

effects, it is limited in the number of targets (such as planes or missiles) it can model due to the fact that

it can only run on one machine. Additionally, there is a desire for the current simulator to model

additional scenarios and be extensible to simulate new types of radar hardware. This project addresses

these issues by creating a new simulator, designed to use a distributed architecture and scale to support

an arbitrarily large number of targets. The first section of the project was the design of the simulator,

while the second major section was implementing a prototype simulator to validate this design.

Throughout the project, members of the group worked in close collaboration with staff from

Lincoln Laboratory to leverage expertise in technical areas such as radar and general simulation. The

design was developed through weekly iterations in which the project team met with advisors and

Lincoln staff to review the current design and ensure the proper direction of the project. The group also

made use of existing software created at the Laboratory such as a simulator architecture called Open

Architecture Simulation Interface Specification (OASIS) and a program for inter-process communication

called the ROSA Thin Communications Layer (RTCL). These resources expedited the progress of the

project through the use of proven software used in other projects at the Laboratory.

Over the course of the project, the team developed a high-level design where the radar

hardware was simulated separately from the targets and environment. The design intended for one

4

hardware simulator to be used in conjunction with several target simulators that have a set of targets

distributed across them. Since the majority of the computation in simulating radar comes from

determining the radar returns produced by targets, this would divide the computational load across

multiple processes, allowing it to be distributed to multiple machines.

In order to make the new simulator architecture as flexible as possible, the project team used a

design similar to the OASIS architecture developed at the Laboratory. This architecture suggests a

separation between the domain-specific parts of a simulation (such as all radar-related calculations) and

the communication that occurs between different parts of the simulator. For this reason, the new

simulator was divided into a collection of models, which represent domain-specific objects (such as

radar transmitters or receivers) and engines, which coordinate event-driven communication between

the different models being simulated. Using this design, the team was able to create a generic engine for

event-driven simulation in addition to a set of accurate radar domain models made through iterative

design with the Laboratory staff.

The team also developed a prototype simulator implementation in parallel with this design. The

implementation served to validate the design and prove the capability of the new simulator to be

distributed across several processes. It also ensured the correct operation of the model objects and the

accuracy of all calculations used to determine radar returns. The implementation required the

integration of the model and engine classes, as well as the use of time synchronization between

separate hardware and target simulators.

As a result of the project, the team presented several key deliverables. The first of these was a

rich simulator design, which passed a formal design review held with staff at Lincoln Laboratory. The

second main deliverable was the prototype simulator implementation, which demonstrated the design’s

ability to be distributed across multiple processors. Finally, an extensive testing suite and set of

5

documentation were created to ease the adoption of the new simulator framework by the Laboratory.

Lincoln Laboratory has expressed substantial interest in continuing the development of a new

distributed radar simulator using the design and research conducted through this project.

6

Acknowledgements

The completion of this project would not have been possible without the contributions of

numerous individuals who dedicated their time and talent in order to make this project a success. We

would foremost like to thank MIT Lincoln Laboratory for presenting us with the opportunity to perform

the project at the Laboratory and make use of the tremendous resources available there. We would like

to thank our supervisor at the Laboratory, Seth Hunter, who was responsible for organizing this project

and regularly oversaw the progress made by the team, as well as our group leaders.

We would especially like to thank the members of the Ranges and Test Beds Group who aided

us in the project by providing design feedback and familiarizing us with domain-specific knowledge.

Specifically, Marcia Powell, Gregory Gimler, Matt Leahy, Andrew Clough, and David Carpman were all

valuable resources throughout the course of the project. We would also like to thank all Lincoln

Laboratory staff who attended our design reviews and provided valuable feedback used in driving the

simulator development.

Finally, we would like to thank our advisors George Heineman, Hugh Lauer, and Edward Clancy

who consistently kept us motivated and professional throughout the project. We appreciate the amount

of dedication they put forth in attending weekly meetings, providing design feedback, and helping to

organize the final written report.

7

Table of Contents

Abstract ... 2

Executive Summary ... 3

Acknowledgements ... 6

Table of Contents .. 7

Table of Figures ... 10

1 Introduction .. 11

1.1 MIT Lincoln Laboratory ... 11

1.2 Radar Open Systems Architecture (ROSA) .. 12

1.3 The Simulator .. 13

1.4 Project Description .. 15

2 Background Research .. 17

2.1 Radar ... 17

2.2 ROSA II ... 22

2.3 RTCL ... 24

2.4 The Simulator .. 25

2.5 Simulation ... 27

2.5.1 Analytic Simulations and Virtual Environments .. 27

2.5.2 Sequential Discrete-Event Simulation ... 28

2.5.3 Open Architecture Simulation Interface Specification (OASIS) .. 29

2.6 Distributed Systems .. 31

2.7 Real-time Computing .. 32

3 Methodology ... 34

3.1 Work Environment and Tools ... 34

3.1.1 Language Choice ... 34

3.1.2 Integrated Development Environment (IDE) .. 35

3.1.3 RTCL ... 37

3.1.4 Boost ... 37

3.1.5 Version Control and Collaboration ... 38

3.1.6 Test Cases .. 39

3.1.7 Code Coverage .. 40

8

3.1.8 Documentation ... 41

3.2 Software Engineering Practices .. 43

3.2.1 Iterative Design and Development ... 43

3.2.2 Sponsor Collaboration ... 44

3.3 Procedural Timeline .. 44

3.4 Division of Labor ... 48

4 Design and Implementation .. 50

4.1 Functional Requirements .. 50

4.2 Design Overview ... 50

4.3 Layered Architecture ... 51

4.4 Model Layer .. 52

4.4.1 Modeling the Radar Range Equation .. 53

4.4.2 Models and Events .. 54

4.4.3 The Model Class Hierarchy .. 56

4.5 Simulation Engine Layer .. 57

4.5.1 Configuring and using the simulation engine ... 58

4.5.2 Event scheduling and subscription ... 59

4.5.3 Global event broadcasting and time synchronization .. 60

4.6 Component Layer .. 62

4.7 Middleware Layer ... 64

4.8 Scalability of the Design .. 64

5 Results and Analysis .. 68

5.1 Design Review ... 68

5.2 Implementation Results .. 70

5.3 Testing Results .. 74

5.4 Documentation ... 76

5.5 Summary of Results .. 78

6 Conclusion ... 80

6.1 Outstanding issues .. 80

6.1.1 ROSA Interface .. 80

6.1.2 Multi-threading ... 82

6.1.3 Timing and Synchronization .. 83

9

6.1.4 DDS Configuration ... 84

6.2 Future work ... 84

6.2.1 Load balancing .. 84

6.2.2 Configuration Objects ... 86

6.2.3 Status Messages .. 86

6.2.4 Simulator components as ROSA II components ... 87

6.2.5 Graphical User Interface ... 87

6.3 Concluding Thoughts .. 89

Appendix A. Current ROSA Simulator Feature Tree .. 90

Appendix B. Minimal Implementation Requirements As Specified By Sponsor ... 92

Appendix C. Design Review ... 93

Appendix D. Simulation Engine Class Diagram ... 94

Appendix E. Target Model Class Diagram ... 95

Appendix F. Hardware Model Class Diagram .. 96

Appendix G. Target Simulator Sequence Diagram .. 97

Appendix H. Hardware Simulator Sequence Diagram .. 98

Appendix I. Target Simulator Parallelism Sequence Diagram ... 99

Appendix J. Simulation Engine Global Event Broadcast Sequence Diagram .. 100

Appendix K. System Deployment Diagram ... 101

Appendix L. Glossary ... 102

References .. 103

10

Table of Figures
Figure 1 – An example ROSA radar deployed by Lincoln Laboratory. .. 13
Figure 2 – Various types of radar and their respective functions. .. 17
Figure 3 – The Electromagnetic spectrum .. 18
Figure 4 – High-level overview of a Radar Hardware system ... 19
Figure 5 – Azimuth and Elevation of a radar antenna .. 20
Figure 6 – The radar range equation [O'Donnell, 2002]. .. 21
Figure 7 – Block Diagram of a ROSA II System .. 23
Figure 8 – RTCL Publish/Subscribe .. 25
Figure 9 - Radar simulation ... 26
Figure 10 - Simulation Engine and Application ... 29
Figure 11 – The OASIS Layers [MIT Lincoln Laboratory, 2009]. .. 30
Figure 12 – Amdahl's Law ... 32
Figure 13 – The Eclipse Integrated Development Environment ... 36
Figure 14 – The BullseyeCoverage Browser .. 41
Figure 15 – A sample page of doxygen, which documents information for a specific class 42
Figure 16 – Initial Macro-level System Design .. 51
Figure 17 – The adapted OASIS layers used in the design of the new simulator 52
Figure 18 - Each step in calculating the radar range equation [O’Donnell, 2002] 53
Figure 19 - The radar range equation organized into models and events. ... 54
Figure 20 - The inheritance tree for the model classes .. 56
Figure 21 - The Simulation Engine .. 58
Figure 22 - Event Broadcast Sequence Diagram ... 60
Figure 23 - Component State Machine ... 62
Figure 24 - Component and its Subclasses ... 63
Figure 25 - Scalability of the DVERT simulator .. 65
Figure 26 - Parallel event processing in the simulation engine .. 66
Figure 27- The common acceptance test used in testing the implementation .. 71
Figure 28 - The energy returns from two targets. .. 72
Figure 29 – The energy returns from the acceptance test after several seconds of elapsed time. 73
Figure 30 - Project code coverage numbers provided by Bullseye Coverage ... 74
Figure 31 - A sample doxygen class diagram .. 77
Figure 32- A sample page from the User's guide, walking through the installation of the simulator 78
Figure 33 - Distributing target computation by sector (A), target range (B), or volume (C) 85
Figure 34 – A Basic simulator Control GUI .. 88

11

1 Introduction

Over the past century, radar has evolved from pure theory to an important technology with

many applications including national defense, air traffic control, and weather sensing. At the turn of the

20th century, scientist Nikola Tesla theorized that radio waves could be used to detect objects and their

trajectories by transmitting short pulses and listening for energy reflections [Secor, 1917]. Thirty years

after his prediction, Great Britain was deploying Radio Detection and Ranging (RADAR) systems to detect

incoming aircraft during World War II. Following the war, radar was adapted for civilian usage. Radar

revolutionized air traffic control, allowing civilian airports to coordinate the safe approach and

departure of aircraft. Weather sensing radars, perhaps the most well-known application of radar, were

first developed in the mid-1950s. These radars allow meteorologists to detect impending storms before

they arrive, providing advance notice of inclement weather. While civilian radar development

continued, the onset of the Cold War spurred a renewed interest by the defense community. The

detection of intercontinental ballistic missiles and long-range bombers became a paramount priority as

the nuclear threat grew. Radar remains a critical technology in support of national security, and research

continues today to improve radar detection capabilities and apply radar technology to new areas.

1.1 MIT Lincoln Laboratory

MIT Lincoln Laboratory, the sponsor for this project, has an important place in the history of

radar development [Ward, 2000]. The Laboratory was founded in 1951 with a primary focus on air

defense, with radar being a large part of these defense efforts. Since then, the Laboratory has made

large strides in developing radar technology and has fielded radars in sites all over the world. Now one

of the leading radar authorities in the world, the Laboratory has also branched out to research areas

such as optics, communication, and weather sensing.

12

MIT Lincoln Laboratory is one of nine Federally Funded Research and Development Centers

(FFRDCs). The Laboratory is located at Hanscom Air Force Base in Lexington, MA and managed by the

Massachusetts Institute of Technology. The Laboratory’s mission statement is “Technology in Support of

National Security.” [MIT LL, 2010a] Research at the laboratory focuses on the rapid prototyping of new

technologies and the transfer of knowledge to industry. The Laboratory is made up of seven technical

divisions, each with a specific mission area. Within each division is a series of groups that focus on

specific areas of research. This project takes place within the Ranges and Test Beds Group of the Air and

Missile Defense Technology Division. This group develops modern sensor systems to support ballistic

missile defense and is investigating a new architecture for next-generation radar sensor systems.

1.2 Real-Time Open Systems Architecture (ROSA)

“Radar systems are traditionally developed from the ground up, using proprietary hardware and

software architectures. This traditional development model is expensive and requires long design times.

Further, because each radar system employs unique architectures and technology, it is difficult and

expensive to maintain and upgrade the vast assortment of fielded systems” [Rejto, 2000]. The

Laboratory has led a recent initiative to move the design and development of radar systems away from

proprietary hardware and software and towards an openly defined radar standard.

MIT Lincoln Laboratory envisioned an open architecture for radar systems to reduce the cost

and complexity of new radars. ROSA (Real-Time Open Systems Architecture) project was an initiative to

design radar hardware around a standard framework, focusing on the use of commercially available

hardware to replace proprietary pieces of radar hardware. ROSA was followed by a second initiative to

standardize the software used in radar systems, called ROSA II. ROSA II established a standard software

framework for describing the functional modules present in modern radar systems. The creation of the

ROSA standard was a turning point in radar development for both the Laboratory and the defense

13

industry [Rejto, 2000]. Radars were able to be reliably deployed within weeks, whereas previous

deployments usually took months or even years.

Figure 1 – An example ROSA radar deployed by Lincoln Laboratory.

A number of ROSA radars have already been developed by the Laboratory. ROSA radars are

fielded at both the Reagan Test Site, located on the Kwajalein Atoll in the Marshall Islands, as well as at

the Haystack Observatory, located in Westford, MA.

1.3 The Legacy Simulator

The complex radar systems developed at MIT Lincoln Laboratory need to be tested before they

can be deployed in the field. Assembling and calibrating a complete radar requires a significant

investment of time and resources. Additionally, the Laboratory has helped set up installations across the

globe, including the Pacific Missile Range Facility in Hawaii and the Reagan Test Site at the Kwajalein

Atoll in the Marshall Islands. Because of the vast distances between the Laboratory and the radars it

maintains, it’s simply impractical to perform large scale tests on-site. As such, Lincoln Laboratory

14

engineers developed a software simulation package known as the ROSA simulator to emulate radar

hardware systems as well as a mock environment containing imaginary targets.

The legacy simulator provides a testing environment for radar control and signal processing

software. Radar control software sends control messages which directs the radar hardware. The

simulator accepts the same control messages and emulates the real radar hardware and returns the

same signal data that would be captured by a real receiver. The simulator models targets such as

missiles and planes that the radar signal processing software should be able to detect. Using the

simulator saves the Laboratory and its sponsors time and money by allowing radars to be tested and

problems to be fixed before the hardware is deployed. From both an engineering and a financial

standpoint, simulation is an excellent way to ensure the integrity of a new radar system.

Performance limitations due to the simulator’s design and architecture limit the number of

targets it can model to approximately 80 on a powerful machine. Lincoln developers have expressed a

desire to “model thousands of targets” in a single simulation. A higher-fidelity model of a single plane

might use hundreds of targets moving together to represent the different parts that make up the plane.

Calculating the energy returned from each target when it is hit by a pulse is a computationally expensive

task that the simulator needs to finish before the time the radar processing software expects a return.

The simulator must operate in real-time, meaning it must produce results within a deterministic and

consistent period of time. The simulator was designed to execute on a single machine, and its

architecture is not capable of scaling to support hundreds of thousands of targets.

15

1.4 Project Description

This project addressed the limitations of the legacy simulator and provides MIT Lincoln

Laboratory with a foundation from which they can modernize their radar simulator infrastructure.

Breaking away from the monolithic, single-machine nature of the legacy simulator, a Distributed Virtual

Environment for Radar Testing (DVERT) was developed. The primary goal of the project was the design

of this architecture, in addition to the implementation of a simulator prototype to validate this design.

The deliverables presented with this project are defined below:

• A simulator architecture capable of supporting thousands of targets and varied radar hardware

models

• The results of a formal design review with Laboratory staff to ensure the architecture fully

satisfies the needs of future projects within the Laboratory

• A concrete implementation of the architecture in order to validate its extensibility and

scalability

• Integration of the prototype into an existing radar processing chain in place of the simulator for

performance benchmarking

• A comprehensive test suite that provides at least 80% code coverage

• Extensive documentation detailing the use and further development of the simulation

It should be stressed that the implementation was not intended to immediately replace the

simulator. As this project lasted for less than 2% of the development time of the simulator, it would

have been unrealistic to re-implement all of the advanced features of the legacy simulator. Instead, the

implementation aimed to validate the design and to demonstrate that a distributed radar simulation

would be possible.

16

This paper provides a synopsis of the project as a whole. It starts with a description of the

various background technologies involved in the project. From there it moves on to the various tools

and techniques employed during the project. Following the methodology, a technical overview of the

design and implementation provides a description of the functional components and how they interact

with the DVERT architecture. Finally, the paper ends with a summary of the project’s accomplishments

and a detailed list of future work that could be completed.

17

2 Background Research

This section covers the domain-specific knowledge that was required in order to gain an

appropriate background for undertaking the project. It includes sections on radar hardware and

software, as well as details on simulation and distributed systems, which were central concepts relating

to the project. Other sections include background information on the previous radar simulator used

within the Laboratory, as well as details on the OASIS simulator architecture and the ROSA Thin

Communications Layer, which were both developed at the Laboratory.

2.1 Radar

Radar operates on the principal that when an electromagnetic wave hits an object, some of the

energy in the wave is reflected across the environment to a receiving antenna. This energy can be

detected and measured, allowing a radar system to mathematically infer the position of a target at a

given time. When a radar system transmits a pulse of electromagnetic energy across the environment,

some amount of time passes before the pulse hits a target. Distant targets will have a longer response

time because the wave must travel farther, while closer targets produce energy returns much more

quickly. This difference in travel time allows radar systems to determine the distance to a target.

Type of Radar Radar Explanation

Dish Radar
A radar that uses the same antenna for

transmitting and receiving. Can rotate on a
pedestal to scan the environment.

Multi-static Radar
Uses multiple transmitters and/or receivers at

different locations. Useful for obtaining
information about targets from multiple angles.

Phased Array Radar

Uses a large number of transmitters that
broadcast their waves out-of-phase with each

other. Modifies the phase of the transmitters in
order to steer the direction of the beam.

Figure 2 – Various types of radar and their respective functions.

18

A variety of different types of radar exist for different purposes (see Figure 2). There are

detection radars , while there are also imaging radars that use high-frequency radar energy to map the

surface of an object. Radars also operate across a wide spectrum of frequencies, as different frequencies

lend themselves to different applications. For example, lower frequencies are typically used for long-

range applications as it’s easier to increase the power of the signal, which in turn leads to an increase in

the radar’s range. Higher frequencies are used for imaging, as the increased resolution leads to a more

detailed return from a target. This frequency, or number of cycles per second in the radar energy wave,

characterizes how well it penetrates objects such as clouds, and how it is affected by atmospheric

effects. Figure 3 characterizes electromagnetic waves according to their frequencies. The lowest radar

frequencies fall near the radio category of the spectrum at 106 Hz; however, some radars utilize

frequencies in excess of 1011 Hz.

Figure 3 – The Electromagnetic spectrum, by frequency and wavelength [Thomas Publishing Company, 2010].

Radars can also transmit energy at differing power levels; some high-power signals are able to

project pulses across very long distances (e.g., thousands of miles) or even into space [Sangiolo, 2001].

19

Most radar systems are composed of several key hardware components. Figure 4 outlines a

basic overview of the high-level hardware components used in most radar systems:

Figure 4 – High-level overview of a Radar Hardware system

A radar is composed of a transmitter and a receiver. The transmitter projects waves of

electromagnetic energy across the environment and is composed of the power system, which controls

the frequency and energy of the waves, as well as the pedestal, which determines the direction of

transmission. Most transmitters are capable of adjusting the power and frequency of the energy pulses

they transmit based on the expected type of target. A radar can be composed of one or more

transmitters; multiple transmitters can be used to provide different or higher-resolution information

about the environment.

While some radar transmitters are stationary, others are mounted to some kind of platform that

provides more refined control over antenna movement. Pedestals are equipped with motors that can

rotate an antenna and allow it to see the entire surrounding environment. The rotational position of the

antenna about the vertical axis is referred to as azimuth. Most pedestals are also equipped to rotate the

20

antenna about the horizontal axis, which adjusts the elevation of the antenna. Figure 5 shows the

azimuth and elevation of a simple radar dish.

Figure 5 – Azimuth and Elevation of a radar antenna

The receiver component parallels the transmitter in form but has an inverse function; it is simply

an antenna designed to receive the waves of electromagnetic energy that bounce off objects in the

environment. If the receiver has knowledge of the time that the waves were transmitted, this

knowledge, along with the azimuth and elevation of the receiving antenna, can be used to infer the

position of a target. Some radars use the same antenna for receiving and transmitting; however, others

have separate receivers or multiple receivers, enabling them to listen for pulse returns in different

locations.

Radar systems require complex control and processing software. Software must control the

movement of the radar pedestal. Software also controls the power and frequency of the transmitted

pulses; in some radar systems, these variables can be dynamically adjusted through software to search

for different types of targets or account for changing conditions.

21

The radar hardware is controlled by a real-time software program referred to as the Radar

Control Program (RCP). The RCP directly configures the radar hardware by passing along Universal

Control Messages (UCM), which set various parameters such as transmission power and frequency.

Controlling and dynamically configuring the radar hardware is one of the main roles of a radar software

system and must be done constantly to keep up with changing aspects of the environment.

Besides controlling the hardware, another role of the radar software is to format and process

the data returned by the receiver. These Pulse data describe the amount of energy detected by the

receiver at a given time. The Pulse data are merged with a secondary set of data, called Auxiliary (Aux)

data, that describe the state of the hardware when the original pulse was transmitted. Given both Pulse

and Aux data, a radar system can calculate the position of the target that reflected the pulse energy.

One of the key tools for analyzing radar returns is the radar equation, shown in Figure 6 below:

Figure 6 – The radar equation [O'Donnell, 2002].

In this model, the attributes of the original pulse sent out are considered, as well as all the losses

caused by the environment as it travels towards the target. The equation starts with the initial power of

the transmitted pulse (PT). It then accounts for the transmit gain due to the area of the antenna (A), also

known as the antenna’s aperture, which is inversely proportional to the wavelength (λ). A larger

antenna area results in a greater gain on the signal transmitted. Next, the spread factor of the wave (

22

24
1
Rπ

) decreases the strength of the wave based on the distance (R) between the transmitter and the

target, as it diverges in an arc across the environment. Losses (L) such as hardware inefficiency and

atmospheric energy loss are factored in next, again reducing the strength of the signal energy. The

target’s RCS (radar cross section, σ) is the next factor, as a larger target will cause a greater amount of

energy to reflect off of the target, back across the environment. Finally, the spread factor of the

returned wave across the environment is noted, along with the aperture or area of the receiving

antenna. The pulse duration (τ) is the amount of time for which the radar is transmitting, as more

energy is radiated into the environment when transmitting for a greater amount of time.

Since radar software is aware of the state of the hardware, all of the factors in the range

equation can be either computed directly or measured. While the model is not perfect, it provides a

reliable approach for radar software to perform analysis of radar returns.

2.2 ROSA II

The majority of radars in existence have been developed using proprietary hardware and

software. There has been very little standardization of the hardware and software components that are

used in radar systems, and many of these components have been custom-designed for specific radars.

When a proprietary hardware component breaks in a particular radar system, an expert trained to work

with that specific radar must be brought in to resolve the problem. Proprietary hardware and software

makes radar systems difficult to understand and maintain in the long term. As more and more time

passes, specialists must be continually educated to understand these legacy systems and to maintain the

functionality of their hardware and software.

23

The Radar Open Systems Architecture (ROSA) defines an open standard to modularize the

hardware components of radar systems and encourages the use of commercial, off-the-shelf (COTS)

products.

Figure 7 – Block Diagram of a ROSA II System

A subsequent project, ROSA II, defines a standard software architecture for radar systems. ROSA

II is a framework for developing radar systems and other sensor systems. The ROSA model decomposes

a radar-processing and -control architecture into individual, loosely-coupled components. Each

component performs specific radar functions and can run completely autonomously. When combined,

these building-block components form the entire processing and control architecture for a complete

radar. ROSA II components communicate using well-defined interfaces, allowing developers to make

changes within individual components without affecting the rest of the system. The loose coupling of

ROSA components makes it easy to modify or upgrade a radar system. It is easy to replace one

component with another component if they use the same interface to communicate with the rest of the

24

system. For example, a component that describes the pedestal steering system can be replaced with a

new steering component to change the steering system without needing to alter any of the other

components. ROSA II’s middleware communication layer is the key to the loose coupling between

components that makes ROSA systems flexible and maintainable.

2.3 RTCL

The ROSA Thin Communications Layer (RTCL) is a publish/subscribe message passing layer that

provides a common interface to several different inter-process communication middleware

implementations. RTCL was developed by MIT Lincoln Laboratory for the Radar Open Systems

Architecture (ROSA) to isolate ROSA components from any specific communications middleware. ROSA

systems are composed of multiple processes running on many different machines. These processes must

pass messages both within the same machine and across the network. The best communication

middleware to use depends on the hardware layout; shared memory might offer the best performance

on a single machine, but a network based middleware such as the Data Distribution Service might be

appropriate to pass messages over an Ethernet network. RTCL is configured at run-time using a

configuration file to specify which communications middleware should be used for sending messages.

RTCL provides flexibility to ROSA systems, allowing them to run on a variety of different hardware

layouts without requiring changes to code. RTCL currently supports RTI Data Distribution Service (DDS),

shared memory, Mercury Computer Bridge, and Java-Script Object Notation (JSON).

25

Figure 8 – RTCL Publish/Subscribe

RTCL uses a publish/subscribe messaging paradigm. Publishers write messages to a specific topic

name, and subscribers receive messages associated with a specific topic name. The main advantage is

that publishers and subscribers are decoupled and do not need to know about each other. RTCL

messages are defined as Interface Definition Language (IDL) data structures. RTCL generates C/C++, Java,

and Python data structures from the IDL definitions for use by user programs.

2.4 The Legacy Simulator

The legacy radar simulator was developed at MIT Lincoln Laboratory to provide a testing

environment for ROSA radar control software. The modularization of ROSA makes it possible to replace

radar hardware components and subsystems with a software simulation. As mentioned in Section 1.3,

the simulator mimics radar hardware and simulates radar returns from targets in a virtual environment.

Radar developers at the Laboratory use the simulator to test their software before deploying it with real

hardware, saving time and money.

26

Figure 9 - Radar simulation

The simulator’s design can be broken down into three logical parts: the hardware, the

environment, and the radar control program (RCP). The RCP is the external radar control program that

the simulator is intended to test. The hardware accepts control and configuration messages from the

RCP and sends pulses to the environment. The environment responds with returns, representing energy

that bounces off targets. The hardware listens for returns, similar to a real radar receiver, and sends

them back the RCP for processing. The RCP does not know that the returns are coming from a

simulation; it treats them like real radar returns and attempts to decode them and identify targets.

In order to accurately simulate radar hardware, the simulator meets several important

requirements. The RCP uses timing information about the returns it receives in order to determine the

range to targets. The simulator must reproduce these times accurately in order to successfully mimic

returns from real-life hardware. Radar pulses travel at the speed of light, and the simulator must finish

27

its complex calculations before the pulses would bounce off targets and arrive at a real-life radar

receiver. The simulator supports advanced features such as configurable scenarios, complex waveforms,

and environmental effects. Appendix A contains a detailed list of the simulator’s features.

2.5 Simulation

A computer simulation is “a computation that models the behavior of some real or imagined

system over time” [Fujimoto, 2000]. Some simulations go beyond simply modeling an approximation of

a system and attempt to fully mimic its behavior, timing, and other characteristics. Simulation is a

practical way to study large, complex systems such as weather patterns and air traffic. Simulations can

be used to perform statistical analysis, to test and evaluate hardware, and to train personnel.

Simulations are often more practical than physical tests that may be costly, infeasible, or even

dangerous to carry out.

2.5.1 Analytic Simulations and Virtual Environments

Modern computer simulations fall into two main categories: analytic simulations and virtual

environments. Analytic simulations are typically used for mathematical analyses of complex systems.

They usually execute as fast as possible and have no external input or interaction. Analytic simulations

predictably reproduce before & after relationships. Virtual environments are simulations that create a

realistic or entertaining representation of an environment. They execute in real time and often accept

external or user input. A human might control the behavior of entities within the simulated

environment. Physical components can be integrated with virtual environments for testing purposes; for

example, a missile defense system can be tested using a virtual environment that simulates missile

trajectories. Virtual environments only need to preserve before & after relationships if humans or

physical components that interact with the simulator can perceive them.

28

There are two common methods that computer simulations use to model systems over time.

The first approach is time-based simulation, which advances time by a fixed interval at each step and

then re-computes the state of the system. The second is event-driven simulation, which models systems

as a chronological sequence of events that indicate changes in state of the system. Because it does not

rely on a fixed time interval, event-driven simulation is often more efficient than time-based simulation

and is the primary focus in our simulator research [Fujimoto, 2000].

2.5.2 Sequential Discrete-Event Simulation

Sequential discrete-event simulations have three major components: state variables, an event

queue, and a simulation clock [Fujimoto, 2000]. State variables model the state of the simulation. The

event queue contains events that occur at specific times in the simulation. An event contains a

timestamp, a type, and some parameters. Creating a new event is called scheduling an event. A

simulation clock variable denotes the current simulation time, and it is only possible to schedule an

event that takes place in the future. If the simulation clock is at time T, it means that all events before

time T have been simulated. The event with the smallest timestamp after T is processed next.

Simulations must also keep track of physical time (time in the physical system) and wall clock time (time

during the execution of the simulation program). To avoid advancing faster than wall clock time, the

simulator can wait before advancing to the time stamp of the next simulated event until it matches the

wall clock time.

29

Figure 10 - Simulation Engine and Application

Event-driven simulations can be divided into two layers: the simulation application and the

simulation executive, shown in Figure 10 [Fujimoto, 2000]. The simulation application contains the

simulation’s state variables and the code modeling the system behavior. The simulation executive

maintains the event list and manages advances in simulation time. The application directs the executive

to schedule events, and the executive delegates the events to the application for processing.

2.5.3 Open Architecture Simulation Interface Specification (OASIS)

To standardize and expedite the development of new simulations, MIT Lincoln Laboratory has

developed a generic simulation framework called the Open Architecture Simulation Interface

Specification (OASIS). The OASIS framework is structured in a set of independent layers that encompass

all of the functionality necessary to create a simulation. Each layer isolates a logical portion of the

simulation and encapsulates its own specific design and implementation details. Figure 11 shows the

30

layers of the OASIS framework. The placement of the layers adjacent to each other in the diagram

indicates that they interface directly with each other during a simulation.

Figure 11 – The OASIS Layers.

At the heart of the framework is the simulator controller. The simulation controller is

responsible for setting up and running the simulation and for managing the flow of information to and

from the various components of the simulation. The controller coordinates the master simulation clock

and manages the simulation set-up and configuration by loading scenario scripts. The controller also

manages the logging of simulation events and operator actions and provides an interface to external

analysis tools.

The simulation engine layer interfaces with the simulation controller and maintains a queue of

simulation events with time stamps. The engine creates and maintains model objects from the model

layer. The engine executes events in time-increasing order on the simulation models. The simulation

31

engine coordinates the simulation time with the master clock in the controller layer. A complete

simulation that models multiple domains might have a separate simulation engine for each domain. The

simulation engines can exchange events that are relevant to each other by passing them through the

simulation controller.

The simulation engine interfaces directly with the model layer. The model layer defines the

domain-specific models that will interact with one-another during the execution of the simulation. The

models are representations of objects in the simulation, such as targets, sensors, and the environment.

Models interact with each other through events, and they can schedule new events with the simulation

engine.

The controller interfaces with a middleware layer, which encapsulates communication with

external components and translates between different messaging formats and protocols. The

middleware provides a common interface to inter-process communication both on the local machine

and over the network. The middleware can be used to send simulator events to other processes,

enabling multiprocessor execution of the simulator. The middleware allows for remote management of

the simulation as well as providing remote database access and task synchronization.

The controller layer also interfaces with a custom component layer, also referred to as the user

interface layer. The custom component layer provides an interface for external software components to

interact with the simulation. Custom components can serve as external graphical displays of the

simulation and can provide interactive input and control during the execution of a simulation. Custom

components even include legacy simulators that interact with the OASIS simulation.

2.6 Distributed Systems

A distributed system is any software system in which multiple computers are used in parallel to

perform a subset of the total work that needs to be done to solve a problem. Machines in a distributed

32

system are generally networked together so that they can cooperate on problems and divide up

computations that need to be performed. When each machine finishes its specific part of the

calculations to be performed, its results are sent back and synchronized to produce a final result.

One of the most appealing features of distributed systems is that they can easily be designed for

scalability in processing. Put more simply, a distributed system makes it possible to gain additional

computational power for processing by adding more machines. This is mathematically explained within

Amdahl’s Law [Amdahl, 1967], shown in Figure 12, which quantifies the highest possible speedup factor

of a system with N processors that spends s fraction of time on serial tasks and p fraction of time on

parallel tasks. (S+P=1).

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑠 + 𝑝

𝑠 + 𝑝
𝑁

=
1

𝑠 + 𝑝
𝑁

Figure 12 – Amdahl's Law

An important issue to note is that as the number of nodes increases to infinity, the 𝑝
𝑁

 term

converges to zero. Thus the maximum attainable speedup is limited not by the number of nodes, but by

the amount of processing that must occur in serial. This limitation means that in order to achieve better

performance, reducing the amount of serial processing is more important than simply introducing

additional computer nodes. As a result, one of our primary goals is to design with parallelization in mind

in order to keep the amount of serial processing that must occur to a minimum.

2.7 Real-time Computing

One important requirement for radar simulators used for testing is that they must perform in

real-time so that they can interface with the real-time radar control programs used by the Laboratory. A

real-time radar simulator must run deterministically to ensure it can accurately model an entire radar

and environmental system with the same timing as the physical events that would occur in real life. For

33

example, if a pulse is sent out at a certain time, the simulator must consistently produce the appropriate

return at least within the time it would arrive at a real-life radar receiver. The radar control program

relies on this timing information to identify and track targets.

The most important aspect of a real-time system is being able to support a high level of

determinism in the amount of time it takes to perform a computation. This does not mean that that a

real-time system has greater throughput than a non-real time one, but rather that it completes its tasks

within a consistent, well-defined period. A non-real-time program may execute a task within 5

microseconds on average, but occasionally have spikes of 30 or 40 microseconds to complete the

calculation if the processor is busy. A real-time program may run at 7 microseconds on average, but

does not deviate significantly from this number.

The most important metric for measuring the real-time capability of a system is the worst case

system latency. This is the absolute longest amount of time that a task takes to run when executed a

large number of times. In the example from the previous section, the non-real-time program has a worst

case latency of 40 microseconds, even though it has a better average latency. However, the real-time

program has a worst case latency of only 7 microseconds, which allows engineers to base their designs

around this expected amount of time. Worst case latency must be confirmed over a large number of

trials in order to truly be useful; generally, hundreds of thousands of trials must be performed to

accurately characterize a real-time program.

34

3 Methodology

This section details all of the resources, practices, and tools that were used by the group in order

to complete the project. It includes descriptions of the development tools used for programming, the

software engineering practices used by the group, as well as the software used for testing and

documentation. It also details the timeline for the project, as well as how work was distributed among

the group members.

3.1 Work Environment and Tools

The majority of the work for this project was performed at the Lincoln Laboratory campus using

facilities and project resources provided by the project sponsor. Lincoln Laboratory provided the team

with three laptops and two high-performance servers to use as test-beds for research and project

development. One of the team’s greatest resources was the radar experts at the Lab and within the

group. In order to learn about radar, the project team had access to the extensive Laboratory library and

a ten-hour video lecture series [O’Donnell, 2002] produced at the Laboratory.

3.1.1 Language Choice

When selecting the language to use to implement DVERT, the team considered several factors.

The sponsor requested that the team use a major object-oriented language such as C++ or Java, two

languages that are commonly used for development at the Laboratory. The team had more experience

with Java than C++. A major factor in the language choice was the strict real-time requirement of the

simulator. The team performed a brief benchmark comparing the real-time performance of C++ and a

real-time variant of Java on a Linux system running a real-time kernel.

The team’s benchmark of C++ found determinism down to the microsecond level, which is well

within the requirements of the real-time systems intended to be modeled and simulated. Applications

were consistent in their runtime and usually only deviated by a few microseconds of latency over

35

thousands of trials. Many existing real-time applications are written in C++, demonstrating that C++

programs are capable of real-time performance. Even Cyclictest, one of the most prominent real-time

operating system benchmarks [Gleixner, 2010], is written in C++. This confirms our confidence in the

real-time capabilities of the C++.

Next, the team explored Real-time (RT) Java, a variant of the Java Virtual Machine created by

Sun specifically for real-time applications. This variation is compatible with the Red Hat MRG Real-time

Linux kernel [Red Hat Inc, 2010], and is coded and compiled with almost the exact same syntax as

normal Java. The team was hoping to make use of RT Java due to our prior knowledge of the Java

language, its ease of memory management, and its cross-platform support. Additionally, java has a

number of excellent development tools such as JavaDoc [Oracle Inc, 2004] for documentation, JUnit for

unit tests, and Eclemma [Hoffman, 2010] for code coverage. However, the benchmark of RT Java found

that the worst case latency occasionally peaked to the hundreds of microseconds, making it unable to

meet the real-time requirement of our project. Additionally, RT Java requires a special Java virtual

machine and would have represented an additional dependency for the simulator. Technical papers on

real-time Java confirmed the results of the benchmark [Kalibera, 2009], leading the team to decide to

use C++ as the implementation language.

3.1.2 Integrated Development Environment (IDE)

After selecting a language, the team then selected an accompanying integrated development

environment, or IDE. Ideally, an IDE should be a comprehensive set of tools that facilitate the software

development process. Typical IDEs assist with actions including coding, compiling, building, debugging,

and testing.

36

Figure 13 – The Eclipse Integrated Development Environment

We selected Eclipse for C/C++ as our IDE [The Eclipse Foundation, 2010a]. Eclipse is a popular

IDE for C++ and Java development because it supports many powerful features and is free, open source

software [The Eclipse Foundation, 2010b]. It has an easy-to-use graphical interface that organizes logical

groups of code into Projects and makes coding and switching between different files very simple. It

makes large projects easier to manage with features like code completion, automated refactoring, and

automatic code indexing and searching. Eclipse for C/C++ gives users full control over building their

applications by allowing them to specify and save multiple build and compiler configurations. By

creating a managed makefile project, users do not have to maintain their own Makefiles in order to

build their applications; eclipse generates Makefiles automatically, saving development time. Finally,

Eclipse supports a number of plug-ins developed by the community for integrating even more useful

features such as built-in documentation and version control [The Eclipse Foundation, 2010c]. All of these

37

features, combined with the fact that all project team members were familiar with Eclipse from previous

software engineering projects, made Eclipse ideal for the project.

3.1.3 RTCL

One of the key requirements of the simulator this project seeks to design and implement is that

it must be distributed. The processes in any distributed application must communicate with each other.

Inter-process communication in a real-time setting is a common problem that has already been solved

at Lincoln Laboratory. The project team decided to use the ROSA Thin Communications Layer (RTCL),

described in section 2.3, to manage communication between processes in the simulator. RTCL was

developed at the Laboratory for use in distributed ROSA II systems. It is written in C++ and has an

Aplication Program Interface (API) for C++ and Java applications. One of the project team members

worked on a Laboratory-sponsored project over the summer to create a Python API for RTCL, and, as a

result, had prior experience using RTCL. RTCL meets the real-time requirements of the radar simulator

and is already used in the radar control software developed at the Laboratory. The Laboratory plans to

support communication between radar subsystems and the radar control software directly through the

RTCL middleware layer in the future. RTCL will allow direct middleware communication between the

project team’s radar simulator and the radar control software when this work is complete.

3.1.4 Boost

The project team used of a popular set of C++ libraries collectively referred to as Boost [Dawes,

2007]. Boost is a group of open-source C++ libraries that extend the functionality of C++ and work well

with the C++ Standard Template Library (STL). Boost provides several useful, cross-platform libraries that

were extremely helpful in the development of the simulator. These libraries are Boost Thread, Boost

Any, Boost Date Time, and Boost Smart Ptr.

38

Boost Thread provides a simple interface to threading and synchronization. Boost Thread is

portable, unlike the commonly used platform-specific posix thread library. The Boost Thread API is also

simpler to use than the pthread library. The Boost Any library enabled polymorphic lists and greatly

simplified some of the event broadcasting functionality of the simulator.

The Boost Date Time library provided a portable set of classes and conversions for dealing with

time. It provides developers with functions that can easily calculate the difference between two dates or

convert from one unit of time to another. This functionality is neatly contained within a class called a

boost ptime, or posix time. The team used boost ptime objects to represent time in the simulator.

The Boost Smart Ptr library defines the shared_ptr class, which the project team used

extensively in the simulator. Shared pointers simplify memory management for objects with shared

ownership in an application. Shared pointers maintain a reference count to the objects they point to.

When all references to the data have been deleted or are out of scope, the shared pointer automatically

frees the data to prevent memory leaks. With the huge amount of data and messages being passed back

and forth within the simulator, not having to worry about memory management issues is a tremendous

development advantage.

3.1.5 Version Control and Collaboration

A version control system is essential for managing any extensive software engineering project,

especially one in which there is collaboration between multiple people. Version control is a system of

keeping a central repository of project code and managing the alterations and history of a project as

changes are made. This includes updating files when changes to code have been made, merging files

when conflicts due to overlapping changes arise, and documenting the differences made at each stage,

or revision, of a project. The general goal is to keep one master repository of code, allowing developers

39

to make changes to this repository while simultaneously keeping the rest of the developers updated

with these changes.

The team decided to use the Apache Subversion (SVN) version control system [Apache Software

Foundation, 2010]. Having chosen the Eclipse IDE, Subversion was a logical choice due to the fact that it

can be very smoothly integrated into Eclipse using the Subclipse plug-in [Collabnet, Inc, 2009]. This is a

free, open source Eclipse add-on that allows developers to import a project from an SVN repository and

manages their personal changes while keeping the project up to date with changes from other

developers. It is integrated very cleanly into the Eclipse GUI with a pop-up menu that allows users to

commit their changes, update files edited by other members of the project, and merge files when

changes overlap or conflict. Like Eclipse, the project team was already familiar with Subclipse, as all of

the members had used it on previous projects. Therefore, no time was wasted in learning how to use

the plug-in.

The team hosted the project’s Subversion repository on the Lincoln Laboratory Teamforge

server. This is a server internal to the Laboratory, which houses code repositories and documentation

for various Lincoln Laboratory projects. Committing and downloading any code was as simple as

specifying the location of the repository on the server.

3.1.6 Test Cases

Test cases are an effective way for programmers to ensure that their code operates as it should.

In general, a test case creates a certain scenario within a program and checks to make sure that certain

expected conditions throughout the program are met. There are a variety of utilities used to facilitate

writing and organizing tests. The team was hoping to find a testing solution that could integrate with the

Eclipse IDE. The team performed a brief trade study on two C++ unit testing plug-ins for Eclipse: CUTE

40

[Sommerlad, 2006] and ECUT [Hartsberger, 2008]. Unfortunately, these unit testing frameworks proved

inadequate for the project. They lacked essential functionality and caused instability within Eclipse.

 In the end, the team chose CxxTest, a minimalistic C++ testing framework [Fitch, 2009].CxxTest

allows users to write any number of test cases, which are then attached to a single runner or executable

file that runs each test in sequence. It reports errors if any tests fail, as well as any specific messages or

traces specified within tests. Unlike most other testing utilities, CxxTest has no external dependencies.

The key reason for selecting CxxTest was its ease of integration with our code base; no separate

installation of CxxTest is required to run the tests. All of the necessary CxxTest files are included as part

of the project. Unfortunately, an Eclipse plug-in did not exist for CxxTest.

3.1.7 Code Coverage

As software engineering projects increase in size, it becomes difficult to determine whether unit

tests are testing all of the code that that has been written. A code coverage system helps solve this

problem by identifying which lines of code are actually being called when the program executes. When

combined with test cases, a code coverage system reveals untested lines of code and identifies the

percentage of the software that is being tested. This is a useful metric for determining the integrity of a

piece of software; a high percentage of code coverage ensures that code is well-tested and bug-free.

Several code coverage tools were considered for this project. These included the GNU coverage

tool, gcov [Free Software Foundation, 2010], a third party GUI tool called Test Cocoon [Fricker, 2009],

and an enterprise-level code coverage tool called BullseyeCoverage [Bullseye Testing Technology, 2010].

The team selected BullseyeCoverage because it was easy to install and use and it had GUI tools that

made it simple to locate untested code. Like CxxTest, BullseyeCoverage does not integrate with Eclipse.

41

Figure 14 – The BullseyeCoverage Browser

BullseyeCoverage functions very uniquely compared to most code coverage tools. Once

installed, it can be enabled to directly intercept the g++ compiler when a project is built. It uses this

information to profile a program and create a database of the various libraries included within the

project. It then determines the coverage of the entire project when this program is executed, producing

a *.coverage file. This coverage file is then opened with the CoverageBrowser GUI, a tool that displays

the coverage results on a per-file basis. It profiles the percent coverage of each file, as well as which

lines were executed during runtime. It even provides a coverage metric for conditional logic, indicating

the percentage of possible logic branches exercised by the unit tests, which gives a more complete view

of a program’s test coverage.

3.1.8 Documentation

Besides inline documentation within code files, many developers seek a more comprehensive

solution for documenting the structure of their programs. For this project, the team used a tool called

Doxygen [Van Heesch, 2010], which generates documentation for a project automatically by extracting

the comments contained in the source code. For example, it can take a C++ class and automatically

42

generate an HTML document that displays the class’s inheritance diagram, states its methods and

properties, and displays comments from the source code, as shown in Figure 15.

Figure 15 – A sample page of doxygen, which documents information for a specific class

Doxygen allows developers to write code and documentation simultaneously. Maintaining

separate documentation is a time-consuming process, and generating documentation from source code

ensures that the documentation is never out-of-date. Doxygen makes it easy to maintain documentation

for large code bases.

Doxygen uses what is referred to as a doxyfile, in order to configure itself before generating

documentation. Every separate project requires its own doxyfile, which is used to specify the directory

of the source code, where to put the output documentation, as well as a number of configuration

parameters. To make the use of Doxygen even simpler, the team used a GUI extension called

Doxywizard. By simply specifying the directory of the project, the language being used, and the directory

43

of the output, a user can generate documentation with minimal work and no need to manually edit a

doxyfile.

Doxygen also can interface with the GraphViz [AT&T Research, 2010] visualization tool in order

to generate more sophisticated graphs and diagrams. Moving beyond the basic inheritance diagram for

a single class, GraphViz can create class diagrams for the entire codebase, clearly showing any and all

dependencies that exist between classes. This greatly simplifies the laborious process of manually

creating graphs to explain the overall structure of the simulator.

3.2 Software Engineering Practices

In order to create a simulator that met the requirements of the sponsor, the project group

employed a variety of standard software engineering practices. These included iterative design and

development, as well as close collaboration with Lincoln Laboratory experts throughout the duration of

the project.

3.2.1 Iterative Design and Development

One of the most important practices used by the group was iterative design. The design of the

simulator evolved over the course of the project. The team added new features each week and modified

the design to support them. The team continuously acquired new knowledge about radar systems and

applied it to the design. The team also gathered feedback and new requirements for the design at

weekly meetings with the project advisors and Laboratory staff. The team used this feedback to revise

the design and submit the changes for review at the next meeting. Using this process, the group steadily

moved towards a stable final design and was able to ensure the proper direction of the project each

week.

A similar approach was taken for the development of the implementation, which was performed

in parallel with the design of the project. The models and engine code were regularly iterated on to

44

reflect changes made to the design. Code within the project testing suite was also regularly revised to

represent changes made within the implementation. Coding the implementation in parallel with

developing the design provided valuable validation for each iteration of the design and reinforced the

integrity of the design as a whole.

3.2.2 Sponsor Collaboration

In order to gain proficiency in the domain-specific backgrounds related to the project, the group

consistently leveraged expertise from members of the Laboratory. In addition to weekly meetings,

separate meetings were scheduled to discuss how radar systems function and the mathematical

modeling behind a radar simulation. By pulling from these resources, the project group was able to

apply existing knowledge at the Laboratory in order to create a more robust and professional simulator

design.

3.3 Procedural Timeline

The timeline for completing the project was divided up and organized by week at the start of the

project using a Gantt chart. The initial part of the project consisted of a proposal phase, in which the

project group organized background concepts and specifically defined the scope and intent of the

project. For this phase, the group prepared both a written proposal and an oral presentation in order to

receive approval from the sponsor and advisors to begin the project. The next phase of the project was

the commencement of the MQP, in which the group carried out all the design, implementation, and

documentation necessary for the project. The weekly timeline for the entire project is outlined below:

Week 1:

• Defined requirements for new simulator and characterize features of legacy simulator

• Performed background research on radar, real-time systems, and distributed systems

45

• Performed trade studies to determine project language choice

• Investigated and became familiar with existing simulator

• Met with OASIS simulator experts from the Optical Systems Technology Group

• Began writing project proposal

• Began organizing proposal presentation

Week 2:

• Completed initial macro-level overview of simulator design

• Began micro-level design of radar hardware simulator

• Reviewed initial design with Laboratory staff

• Delivered written proposal and proposal presentation

• Selected development tools and set up workspace to prepare for implementation

• Produced a “blank” simulator with the appropriate interfaces required by our ROSA II

system

Week 3:

• Finished design of hardware models

• Implemented the initial set of simulator hardware models

• Began designing and implementing simulation engine

• Carried out initial design review with advisors and LL staff; made revisions as necessary

• Began creating doxygen documentation

• Wrote first draft of Introduction and Background report sections

• Began writing unit tests

46

• Began measuring and recording models and engine code coverage

Week 4:

• Completed message passing/middleware integration into the engine

• Finished initial engine class-level design

• Finished initial Target model class-level design

• Began implementing models for the Target simulator

• Carried out major mid-project design review with LL staff; revised design as necessary

• Revised Background and Introduction report sections with advisor comments

• Wrote first draft of Methodology report section

Week 5:

• Finished implementing simulation engine

• Began integrating models with engine in the implementation

• Set up a working ROSA II system to interface with the new simulator

• Created the Component base class used by all simulator processes

• Revised Methodology with advisor comments

Week 6:

• Performed a major re-structuring of model classes to make them more organized

• Continued debugging integration of models and engine in the implementation

• Implemented generic models extending transmitter, target, and receiver in order to test

implementation output

• Wrote first draft of Design and Implementation report section

• Outlined Results and Analysis section

47

Week 7:

• Completed all model calculations and message passing through the simulator; verified

that the proper returns were being received.

• Began adding time synchronization between simulation engines

• Added logging within the implementation

• Revised Design and implementation report section with advisor comments

Week 8:

• Imposed “feature freeze:” ceased adding new features to the simulator

• Carried out final design review with Lincoln staff to gain approval from the Laboratory

• Completed timing synchronization within simulator

• Performed acceptance test to verify simulator output

• Wrote “User’s guide” documentation

• Created final presentation

• Reviewed final presentation with advisors

Week 9:

• Rehearsed for presentation dry runs

• Delivered presentation dry runs

• Delivered final presentation

• Finalized minimal working implementation of new simulator, using multiple targets and

multiple Target simulators

• Imposed “Code freeze:” ceased writing new code for the project.

• Finished writing test cases to attain 80% code coverage for models and engine

48

• Wrote “Developer’s Guide” documentation detailing how the simulator could be

extended to accomplish specific use cases.

• Wrote Results and Analysis and Conclusion sections of the report

• Assembled final report and finished making all revisions

• Submitted final report and deliverables

3.4 Division of Labor

The two main components of the project were the simulator and design and implementation,

which were developed in parallel throughout the project duration. The initial macro-level design was a

team effort, with all members contributing equally. Once the overall foundation for the simulator was

decided, the team was able to branch off, with some members focusing on designing the next parts of

the simulator while others worked on implementing the design.

Throughout the project, Lucas Scotta was the lead developer of the implementation. His initial

work was in developing the “blank” simulator that mimicked the interfaces of the existing simulator.

Later, he focused his efforts largely on implementing the generic simulation engine and message-passing

components of the system. Lucas was well-suited for these parts of the project because he had pre-

existing experience with using the ROSA Thin Communications Layer from his summer work at the

Laboratory.

 James Montgomery and Matthew Lyon worked in tandem to develop the hardware and target

models with which the simulation engine would eventually interface. This involved continuous review

with members of the Laboratory staff to ensure that the radar-specific attributes within the models

were accurate and relevant. Upon completing the design of the models, they began implementing the

model classes and preparing them for integration with the engine classes being developed by Lucas.

49

 Upon separate completion of the simulation engine and models, the team regrouped and

began working on integrating the model and the engine code together to produce a complete minimal

implementation. Lucas led the effort to integrate the models and the engine code, while James worked

on debugging errors occurring as a result of this integration. Matt began research into the time

synchronization of the simulator, and he collaborated with Lucas to add these timing changes within the

implementation. Unit tests were written by James and Matt, while Lucas wrote several larger

integration tests to verify the simulator at the system level. DOxygen documentation was performed by

all members of the group whenever new code was added and James wrote the User and Developer

guides to supplement the project documentation.

All team members were expected to attend regular weekly meetings with advisors and

members of the Lincoln Laboratory staff. For every meeting, the team was expected to send out an

agenda one day in advance to the project advisors and planned meeting attendees. One member of the

group was designated to chair the meeting, while another member was expected to assume the role of

meeting secretary and record all relevant notes from the exchange. These roles alternated between the

members every week, so that the roles of chair and secretary were evenly distributed throughout the

duration of project. In order to keep the advisors and project sponsors aware of the group’s progress,

each group member was also responsible for sending out a weekly report detailing their individual

progress for the week.

Report writing was evenly distributed over the course of the entire project. Matt and James did

more report writing earlier in the project as Lucas focused on making progress on the implementation.

Upon completion of the implementation, Lucas contributed a very large amount of content to the report

and the entire team performed revisions and added the necessary sections to complete the report.

50

4 Design and Implementation

This section presents the design of a distributed radar simulator known as the Distributed

Virtual Environment for Radar Testing (DVERT). The section begins with the requirements for the design,

as determined by the project sponsor. The design itself is composed of several layers, inspired by the

OASIS simulation architecture.

4.1 Functional Requirements

DVERT was designed to meet three primary requirements as specified by the sponsor. First,

DVERT had to be able to interface with radar control software developed at Lincoln Laboratory. Second,

DVERT’s design had to scale to thousands of targets. Third, the simulator’s design had to be easy to

extend to support additional types of radar systems and targets. These requirements are outlined in

Minimal Implementation Requirements As Specified By Sponsor (section 1.4 and Appendix B.)

4.2 Design Overview

Figure 16 shows a high-level overview of our architecture. The separation of the radar hardware

and the targets and environment parallels the functionality of radar systems.

51

Figure 16 – Initial Macro-level System Design

The design is split up into a hardware simulator and one or more environment simulators. These

simulators work together to simulate an entire radar system. The hardware simulator broadcasts pulse

events to each environment simulator. Each environment simulator maintains a subset of the targets

and calculates the radar returns for each of them when they are hit by a pulse. These simulators can run

on separate machines, allowing the simulation to be distributed across multiple processors so it can

scale to a large number of targets. The hardware simulator interfaces with the radar control software

that the simulator is intended to test.

4.3 Layered Architecture

Our design uses a layered architecture similar to the one in the OASIS simulator framework,

detailed in Section 2.5.3. We used the OASIS specification as a reference to guide the structure of our

design. We modeled parts of our design on the OASIS framework because it addressed the need for

52

flexibility and future extensibility. OASIS’s layered architecture provided the infrastructure necessary to

support the domain-specific radar models we wanted to build.

The first step to adapting the OASIS architecture for our design was to break down each of the

layers present in the OASIS framework and decide the purpose of each layer within the context of our

simulator. This allowed us to create a revised diagram of the OASIS layers to fit the specific requirements

of our simulator, shown in Figure 17, below.

Figure 17 – The adapted OASIS layers used in the design of the new simulator

The specific details of each layer and their internal functions are described in more detail in the

following sections.

4.4 Model Layer

The model layer defines the domain-specific radar models and events that interact during a

radar simulation. A large part of the project involved designing the domain-specific models that would

53

be included with the minimal simulator package. This included creating model classes for transmitters,

receivers, targets, and all related factors necessary to calculate a radar return from a transmitted pulse.

The group worked closely with the staff at Lincoln Laboratory to ensure that these models appropriately

described the attributes of a basic radar scenario while still being extensible enough to support more

complex scenarios in the future.

4.4.1 Modeling the Radar Equation

All of the models used within the simulation were designed around the mathematics present in

the radar equation (see Figure 6). This equation quantifies the amount of energy returned to a receiver

from a pulse hitting a target in the environment. The equation can be broken up into the steps shown in

the diagram below:

Figure 18 - Each step in calculating the radar range equation [O’Donnell, 2002]

54

The radar transmitter and antenna is responsible for determining the transmit power and gain,

which determines the characteristics of the pulse that is transmitted. As the pulse travels from the

transmitter to the target, it diverges with a spread factor that depends on the range to the target. Once

the target is hit by the pulse, the specific geometry of the target as well as the angles between the

target, transmitter, and receiver are used to determine the specific radar cross section of the target for a

pulse. The energy that hits the target diverges again as it travels back to the receiver, and the amplitude

of the final return is affected by the area of the receiver antenna and the amount of time that the

receiver is listening for.

4.4.2 Models and Events

The physics presented in this equation can be described through the use of models within our

simulator architecture. A model is an object that is capable of responding to and scheduling messages

called events. Events contain data that are passed between models as a means of communicating

throughout the simulation. The diagram below organizes the radar range equation into a series of

models that encapsulate the mathematics of the simulation:

Figure 19 - The radar range equation organized into models and events.

55

The simulated radar range equation begins with the transmitter model, which possesses

attributes such as the current transmit power, as well as the transmission frequency and antenna

aperture. The transmitter model contains the physical state of the hardware as well as the logic to

calculate pulse attributes such as transmit power and gain. The transmitter model communicates with

the rest of the simulator by creating pulse events, which describe the data contained in a single

transmitted pulse as it travels across the environment. Pulse events also contain metadata describing

the location and orientation of the transmitter from which the pulse originated, which is used later

when determining the range to the target.

Pulse events are received and processed by Target models, which represent objects of interest

such as missiles or planes being simulated within the environment. Target models contain information

regarding their position and trajectory, as well as information on their specific geometry and orientation

that affects their radar cross section. Targets use the metadata contained in pulse events in order to

determine the properties of the energy return that will be sent to a radar receiver. Hence, targets create

Return events, which contain the data describing the energy return from the target. Much like pulse

events, these return events also contain metadata describing the position of the target so it can be used

in later calculations.

At the end of the processing chain, the receiver model contains all of the attributes that

describe the physical receiver hardware, such as the antenna aperture and the frequency the receiver is

listening for. The receiver model processes Return events and calculates the returned energy using the

radar range equation. These energy returns are organized by the receiver model into range gates based

on the time they were received; returns that take a longer amount of time to arrive at the receiver are

estimated to be farther away from the transmitter. Hence, a return being received at a certain time

implies that it is located a certain distance away from the radar.

56

4.4.3 The Model Class Hierarchy

In order to contain the previously described models, based on the radar range equation, a

model class hierarchy was created to support all models used with the simulator. All models descend

from a common ModelObject class, which defines the basic functionality that all models must fulfill.

Based on the OASIS specification (see Section 2.5.3), a model is an object that is capable of receiving and

processing events. This abstract base class provides the foundation for the rest of the models that derive

from it, including transmitters, receivers, and targets. The inheritance tree for the model classes is

displayed below:

Figure 20 - The inheritance tree for the model classes. PointSourceTarget and K650 Transmitter are used as examples of
classes which could be extended from other general model types.

Directly descending from the ModelObject class is the PhysicalModel class. This class describes

the motion of models throughout simulation through the use of trajectories that define the position of a

model at a given time. Radar HardwareModels and Targets descend from this, since both targets and

even the physical radar hardware itself may be moving during the simulation (for example, if the

transmitter is on a boat). Transmitters and Receivers both descend from a HardwareModel base class,

57

which contains common information used to describe the orientation of the antennas common to actual

transmitters and receivers.

It is important to note that the Receiver, Transmitter, and Target are abstract classes. These

classes only define the events that they can process, leaving all other attributes to be defined by

subclasses. For example, the Target class only explicitly states that it processes pulse events. The

internal behavior of targets outside of the processing of this event is contained within the subclasses of

Target.

4.5 Simulation Engine Layer

The simulation engine is the key to the extensibility of DVERT’s design. As described in Section

2.5.2, a simulation engine contains the event queue and maintains the current simulation time. The

domain-specific models such as Targets, Transmitters, and Receivers interact with the engine by

processing and scheduling events. The simulation engine is generic; it contains the fundamental

infrastructure required to support an event-based simulation, and has no knowledge of the domain-

specific models that use it. The engine can be reused for many different kinds of event-based

simulations.

 A detailed class diagram of DVERT’s simulation engine is located in Appendix D, and more

detailed information is located in the DVERT Doxygen documentation. The simulation engine contains a

list of all the models in the simulation. The simulation engine allows models to schedule events and

subscribe to specific types of events. Models can schedule events on themselves or on other models by

specifying their unique id. Models can also schedule events globally, and the engine will broadcast them

across the middleware layer to other components and simulation engines. These features of the engine

are each encapsulated in their own class, as shown in Figure 21, below.

58

Figure 21: The Simulation Engine

Models do not interact with the simulation engine directly. The interface to the simulation

engine is encapsulated in the Model Manager class. Each model object is assigned a common Model

Manager, which it uses to interact with the simulation engine. The Model Manager is an example of the

façade design pattern. It exposes a specific set of the simulation engine’s functionality to the models.

 DVERT’s architecture supports multiple simulation engines within a single distributed

simulation. The simulation engines exchange relevant events between each other and synchronize the

current simulation time. The middleware layer is the key to the architecture’s flexibility, allowing

simulation engines to execute on the same machine or on multiple machines across the network

without requiring changes to the code or configuration. The ability to run separate simulation engines

on multiple machines makes it possible to scale a simulation to a large number of models by reducing

the amount of computation that must be performed on a single machine.

4.5.1 Configuring and using the simulation engine

The first step in running a complete simulation is to configure the simulation scenario, which

includes the initial time, a set of models, and any initial events. A scenario is represented by a

Configuration Object. The engine must load a Configuration Object before a simulation can begin. When

the engine loads a Configuration Object, it adds the models to its model list, adds any initial events to

the event queue, and sets the current simulation time to the scenario’s initial time.

The simulation engine’s run method begins the simulation and enters the main simulation loop.

While in the run state, the simulation engine takes the first event off the event queue, updates the

59

current simulation time, and determines what models in the model list need to process the event. The

engine passes the event to each of these models and waits for them to finish processing the event. The

models might schedule new events to place on the event queue. The engine repeats this process until

the event queue is empty or until a model requests the termination of the scenario, at which point the

simulation is over.

As an example, consider an airport simulation that models airplane arrivals and departures.

Airport A has 40 airplanes, with departures every 10 minutes. Airport B has 10 airplanes, with

departures every 30 minutes. Airplanes fly between airport A and B and the trip takes 5 minutes each

way. Eventually, all of the airplanes will end up at airport B, and the simulation will end.

A simulation for this example would require an airport model, an arrival event, and a departure

event. An airport model would have an initial number of planes, a departure rate in minutes, a unique

id, and a destination id. Each airport would process an initial departure event. After processing each

departure event, the airport would schedule an arrival event at the destination airport 5 minutes in the

future. The airport would also schedule a new departure event in the future according to the departure

rate. If the airport receives a departure event and has no planes left, the simulation is over.

4.5.2 Event scheduling and subscription

Events represent the interactions between models. To ensure that the simulation can support a

wide variety of models and events, the simulation engine uses a robust mechanism to schedule events

and distribute them to models for processing. This mechanism is a modified version of the one used in

the OASIS simulation specification, developed at MIT Lincoln Laboratory.

The simulation engine supports two separate mechanisms to determine which models need to

process any given event. The mechanism to use is determined by the model that schedules the event.

Models can schedule an Event For One on themselves or on another model by specifying its unique ID.

60

The engine also allows models to subscribe to specific types of events. If the model does not know the

ID of the model(s) that should process the event, it can schedule an Event For None, and any models

that subscribe to the event’s event type will receive it for processing. The EventForOne and

EventForNone classes are decorator classes for domain-specific events and contain the logic to

determine what models will need to process them. The OASIS specification refers to these as managed

events.

4.5.3 Global event broadcasting and time synchronization

The DVERT architecture supports distributed simulations that use multiple simulation engines,

and these engines exchange relevant events as they are scheduled. Models can schedule events

globally, and the engine will broadcast them across the middleware layer to other components and

simulation engines before scheduling an Event For None locally. Global events do not require a

destination model ID because the scheduling model will be unaware of the models on other simulation

engines. Figure 22 shows the global event broadcasting process.

ModelManager SimulationEngine BroadcastManager BroadcastTopic DataWriter

scheduleGlobalEvent(event)

getBroadcastTopic(eventType)

broadcast(event)

broadcastTopic

write(event)

Simulator

addEventBroadcast(eventType, dataWriter)

addEventBroadcast(eventType, writer)

addWriter(writer)

Figure 22 - Event Broadcast Sequence Diagram

61

The simulation engine’s broadcast manager associates each event type with one or more

DataWriters. A DataWriter represents the API to the middleware layer and allows the engine to send

messages to other components. The DataWriters must be configured before the start of the simulation

and registered with the engine. The GlobalEvent base class defines a method to convert the event to a

message that can be sent over the middleware. When a model schedules a global event, the engine

writes the event to each DataWriter that is registered for the event’s type. Any components that are

listening for global events can schedule them within their simulation engines. This presents a serious

time synchronization problem, because simulation engines maintain their current simulation times

separately.

Simulation engines process events in strict time-increasing order. Events can only be scheduled

in the future. Each engine in a distributed simulation maintains its current time separately, and these

times are usually out of sync. If a simulation engine receives a global event from the past, it would

invalidate any processing the simulation engine has done since the time of the event. To solve this

problem, the DVERT engine uses a lookahead mechanism to prevent any simulation engine from

advancing too far ahead of the other engines in the simulation.

A lookahead is a promise not to schedule any more global events for a certain amount of

simulation time [Fujimoto, 2000]. This allows other engines to advance to the current time plus the

lookahead. Simulation engines send their current time and a lookahead every time they broadcast an

event. Each engine remembers the most recent time of the other engines and does not process any local

events beyond the minimum external time plus the lookahead time. Lookahead times must be chosen

carefully so that at least one engine will always be able to process the next event. Because the engines

do not know about each other at the beginning of the simulation, an initial discovery phase occurs

62

before the start of the simulation where engines broadcast one of each global message across the

middleware.

4.6 Component Layer

In a distributed simulation, each simulation engine executes within a process. All processes in

the DVERT architecture extend from a common component base class. A component is a process that

responds to control messages, allowing users to start and stop the simulation’s processes all at once.

The DVERT component base class is inspired by the ROSA II component base class and uses a similar

state machine, shown in Figure 23.

Figure 23: Component State Machine

To create a new component, developers extend the component base class and define

functionality for each run state. Each state in the component’s state machine corresponds to a function

that will be handled by a component subclass. When components are created, the base class initializes

the RTCL middleware layer and creates DataReader threads to listen for control messages. Components

transition between run states in response to control messages, which might come from a user interface.

The component base class contains the state transition logic. The standby state represents a transition

between two run states and is where the component base class determines the next state.

63

Because the component base class initializes the middleware layer, developers don’t have to

explicitly instantiate RTCL in component subclasses. While in the init state, components perform any

initialization required to prepare for the run state, such as creating threads and declaring DataWriters

and DataReaders to communicate with other components. The discovery state is used by simulator

components, which contain simulation engines. Simulation engines need to discover each other before

the simulation begins in order to properly synchronize simulation time (4.5.3). The run state represents

the component’s main loop, and components remain in the run state until they release control or

receive a halt command. The halt state allows components to perform any final actions before

terminating, such as closing files and joining with threads.

Figure 24 - Component and its Subclasses

Figure 24 shows the components that make up the DVERT distributed simulation. These

components work together to form a complete radar simulator that can interface with the Radar

Control Program and be controlled through a user interface.

64

4.7 Middleware Layer

The DVERT simulation architecture uses the ROSA Thin Communications Layer (RTCL) for inter-

process communication. RTCL is described in section 2.3. Components do not communicate directly with

other components. Components read and write messages through the middleware layer using the

DataWriter and DataReader classes. The middleware layer uses a publish/subscribe messaging paradigm

(2.3). In order to communicate, components only need to agree on a topic name for each type of

message. Because publishers don’t need to know about their subscribers, components are decoupled

from each other. For example, the hardware simulator component does not need to know how many

target simulator components it is communicating with. Target simulators can be added as needed to

scale to additional targets, and the hardware simulator does not need to be changed.

The middleware layer encapsulates the transport layer used to distribute messages between

publishers and subscribers. Components can communicate without needing to know whether they are

on the same machine or on different machines connected by a network. As a result, the simulation

architecture is flexible. Hardware and environment simulators can execute on the same or separate

machines without changing any code or configuration.

4.8 Scalability of the Design

The key limitation of the simulator that this project seeks to address is scalability. The layered

architecture described above makes distributed simulations possible. Components allow simulation

engines to execute on separate machines and the middleware layer allows them to communicate. The

primary bottleneck in radar simulation is that the simulator must perform complex computations for

each target that is hit by a pulse in order to compute the energy and shape of the returns. The DVERT

architecture and models are optimized to distribute this computation across as many machines and

processors as possible.

65

Figure 25 - Scalability of the DVERT simulator

In order to scale to a large number of targets, the DVERT architecture supports multiple target

simulators running on separate machines. A large number of targets can be divided among the target

simulators, reducing the amount of work that must be done by each computer. Figure 25 shows a

simulation with 300 targets and three target simulators. Each target simulator runs on its own machine

and is responsible for 100 targets, or a third of the total work. The hardware simulator contains the

transmitter and receiver models and sends each pulse event to the target simulators.

All target models subscribe to pulse events through the simulation engine, as described in

Section 4.5.2. When the simulation engine processes a pulse event, it must pass it to each target for

processing. This process can be parallelized on computers with multiple cores or processors.

66

Target A Target B Target CTarget Simulator Simulation Engine

Process Pulse Event

Schedule Return Event

Schedule Return Event

Schedule Return Event

Process Events for Time T

Figure 26 - Parallel event processing in the simulation engine

Figure 26 is a sequence diagram that shows how pulse events might be processed by targets in

parallel. The engine assigns a thread to each target. In order to reduce the total amount of time required

to process the pulse event, the targets process the pulse event in parallel within their own threads. The

engine must wait for each target thread to finish processing the pulse before it can continue and

advance simulation time. In order to reduce the overhead of creating and destroying threads, the engine

can assign threads from a thread pool that can be as large as the maximum number of threads the

operating system supports for a single process.

It is important to note that the engine has no knowledge of the specific types of models and

events it manages. The parallel event processing optimization described above is possible for any event

67

that has multiple subscribers. The event will be processed by each subscriber at the same simulation

time. In an event-based simulation, any events that share the same simulation time will not affect each

other and can be processed in parallel. Due to time constraints, this feature of the simulation engine

was not implemented, and is further described in Section 6.1.2.

When a single pulse hits N targets, it creates N returns. This could produce a large number of

return messages in a simulation with thousands of targets. In order to reduce the number of messages

sent across the network to the hardware simulator, a copy of the receiver model is located on each

target simulator. The receiver collects local return events and adds them up. Each receiver then contains

a subset of the total returns, which it sends to the aggregate receiver on the hardware simulator. The

aggregate receiver sends the final result back the radar control program adapter by scheduling a global

PulseAux event.

The distribution of targets across multiple machines reduces the amount of work each computer

has to do. The parallel processing of pulse events by targets reduces the amount of work each processor

or core must complete, reducing the overall time required to process a pulse. These factors, combined

with the efficient message passing between simulation engines allows the design to scale to a large

number of targets.

68

5 Results and Analysis

The results of the project are described in terms of the original metrics for success defined for

the project (see Section 1.4). These included the creation of an extensible design that would pass

Laboratory review, prototyping a minimal implementation to validate this design, testing to achieve 80%

code coverage, and providing adequate documentation on how to use and extend the simulator. A

summary of the final state of the project and a review of the project deliverables are discussed in the

following sections.

5.1 Design Review

The primary deliverable for this project was a scalable and extensible simulator design that will

meet the needs of the sponsor for many years into the future. The design, detailed within section 4, was

iterated on over the course of seven weeks and was regularly updated to incorporate new domain

knowledge and new use cases provided by the sponsor. Weekly design meetings were performed with

radar and simulator experts at the Laboratory in order to produce an efficient simulation and an

accurate representation of the radar domain. In order to validate the extensibility of this design, and, as

a metric of success for the project, the team held a final design review with radar experts at the

Laboratory.

The design review was conducted to verify that the simulator design supported all major use

cases required by the Laboratory and that it would be extensible enough to support future radar

simulation needs within the group. Eight members of the Ranges and Test Beds Group, including

simulation and radar experts, attended the design review. The team presented the simulator design and

received a variety of feedback from the Laboratory staff, which is detailed in Appendix C. The project

group presented examples of how the radar hardware models could be extended to support different

types of radar, such as spinning-dish, bi-static, and phased-array systems. The project team emphasized

69

the extensibility of the target base class, and described how the trajectory and radar cross section

classes encapsulate important information about targets and make the design flexible.

Laboratory staff raised several minor concerns about the flexibility of the models in the design.

The first issue was that the radar cross section of a target might need to be calculated at the receiver,

and not at the target as in the design. Calculating the RCS at the target is acceptable for most

simulations, but high-fidelity RCS models depend on the position and orientation of the receiver.

Another minor design concern was the use of a low-fidelity pulse model that included only an average

power and a width. Higher-fidelity pulse waveforms vary in time and have changing power and

frequencies. The Laboratory staff was confident that the design would be flexible enough to support

higher-fidelity pulse models.

Clutter and noise modeling within the simulator was also a point of interest. Members of the

group were curious whether the simulator design could support clutter and noise models to interfere

with radar returns at the receiver. While no actual clutter or noise models were provided in the

simulator design, it was noted that the simulator could simply use additional targets in order to

accurately model clutter from the environment. Noise could be modeled easily at the receiver by its

environment class.

The engine received no criticism during the design review. This is largely because it was

designed to be as generic as possible and, as a result, did not directly relate to domain-specific issues

that were more likely sources of criticism.

Upon completion of the design review, the project group revised the simulator design in order

to address the concerns and suggestions presented by the Laboratory staff. The revised design featured

abstract transmitter and receiver base classes, and the team implemented specific transmitter and

receiver subclasses to allow for more realistic pulse waveform models. The radar cross section

70

calculation remained in the target model, but the team verified that the design could support RCS

calculations at the receiver by passing the target’s RCS object to the receiver within the return event.

Upon making these changes, the design passed Lincoln Laboratory review.

5.2 Implementation Results

The second major deliverable for the project was a working radar simulator. The initial goal of

the implementation was to simulate 1000 point-source targets distributed across multiple machines.

The simulation was intended to be multi-threaded to take advantage of multiple processors and cores.

Finally, this implementation was intended to integrate directly with a ROSA radar control program,

allowing the team to validate its output against the output of the simulator.

As the project progressed over 9 weeks, the project group determined that the scope of these

original objectives was too large to accomplish within the given timeframe. However, the group was

able to develop a stable implementation that satisfied a number of these criteria.

The majority of the work for the implementation involved building the necessary infrastructure

required to create a distributed event-driven radar simulation. The team implemented the entire design

for the distributed simulation engine (see Section 4.5), which supports a generic set of models and

events interacting across multiple machines. The simulation engine supports configurable scenarios and

can dynamically load a set of models and initial events. The team also implemented the component base

class, which all the processes in the simulation extend from. The team developed a user interface

component to allow users to start and stop the simulation. The team also used a graphical display to

help visualize the simulator’s output.

Using this simulation infrastructure, the team implemented the class hierarchy required to

support a diverse set of radar hardware and target models, effectively creating a framework for

developers at the Laboratory to extend using high-fidelity models in the future. The team implemented

71

an example K650Transmitter and K650Receiver model according to parameters from real transmitter

and receiver hardware. The team created a constant radar cross section model and several trajectory

models including fixed-point targets, linear motion, and oscillating motion back and forth between two

points. The team successfully integrated each step of the radar range equation within the transmitter,

receiver, and target models, producing a functional radar simulator.

The final implementation delivered to Lincoln Laboratory was capable of simulating multiple

targets in a distributed, multi-process setting. The team tested the implementation using multiple

environment simulators and multiple targets, and it consistently produced accurate returns. The team

used a common simulator configuration, or scenario, for each acceptance test. The scenario is depicted

in Figure 27, below.

Figure 27- The common acceptance test used in testing the implementation. A stationary and a moving target are used to
test the returns from a single transmitter.

The scenario features a pedestal with a single transmitter and receiver and two target models,

one at a range of 150 km and one moving from a range of 200km to a range of 100km. One target is

stationary, and the other is moving towards the radar. The two targets have constant, fixed radar cross-

sections which are equivalent to each other. A target range of 150 km corresponds to a round-trip travel

72

time of 1000 microseconds per pulse. This made timing issues easier to debug and simplified the

configuration of the receiver, which listens for returns for a short period of time starting exactly 1000

microseconds after a pulse is transmitted. This acceptance test was used to validate the successful

operation of the simulator using multiple targets and multiple target simulators. The output produced

by using this acceptance test was visualized using a real-time graphing tool to illustrate the returns. The

images below show the progression of the returns as time passes.

Figure 28 - The energy returns from two targets (joules) versus the simulation time (µs).

Figure 28 displays the energy returns from two targets as seen by the radar receiver. The

horizontal axis represents time, and the vertical axis indicates the amount of energy returned. The

receive window, or the horizontal axis, begins at 1000 microseconds after the pulse is transmitted and

lasts for 150 microseconds; this means the receiver is looking for targets at a range of approximately 150

to 170 km. Target 1 is stationary, at a distance of 150 km from the transmitter. Target 2 is moving

towards the transmitter, but is currently at a farther distance and produces a lower energy return. This

is the expected behavior of a radar return from these two targets, as the energy returned is inversely

proportional to the target range (see Figure 6). Pulses sent by the transmitter are 50 microseconds wide,

73

and the returns have this same width. The returns from targets 1 and 2 arrive within approximately 100

microseconds of each other, indicating that the targets are at almost the same range from the radar.

Figure 29 – The energy returns from the acceptance test after several seconds of elapsed time.

As time passes, the moving Target 2 eventually passes by Target 1, shown in Figure 29. A larger

amount of energy is returned during the time that they overlap; this is the expected behavior of a radar

return from two targets in close proximity. The simulator’s output matched the project group’s

expectations for the behavior of an actual radar system. Additionally, they matched the expected

behavior when analyzed by a radar expert from the group.

The same testing scenario was performed using one hardware simulator and two separate

environment simulators with identical configurations. The return energy in this scenario was twice the

energy returned in tests with only one environment simulator. This is the expected result, because the

second simulation contained two of each target.

Due to time constraints, the team was not able to fully implement the simulator’s design. All

tests were performed using shared memory as an RTCL middleware as opposed to a simulation over the

network using DDS. This was due to difficulty configuring DDS to support large data loads over the

74

network. Due to time constraints, the team was not able to integrate the simulator with the ROSA radar

control program (RCP). For testing purposes, the team implemented an adapter program to simulate

control messages from the radar control program. The team was also unable to benchmark the real-time

performance of the simulator. Finally, the team was unable to implement the entire multithreaded

simulation engine design within the timeframe of the project.

Although the team was unable to incorporate all the features of the design in the

implementation, the acceptance tests proved that the simulator was capable of a distributed radar

simulation. The prototype radar simulator provided a valuable proof-of-concept for the design and is

capable of supporting a diverse set of hardware and target models. The simulator will serve as a code

base for Laboratory developers to extend in the future.

5.3 Testing Results

The third metric for the success of the project was a test suite containing unit tests that amount

to at least 80% code coverage for all model and engine code. In order to accomplish this, the team used

the CxxTest unit testing framework. The team wrote unit tests to test the individual parts of the engine

and each model. The team also developed integration tests to ensure the engine and models interacted

correctly.

Figure 30- Project code coverage numbers provided by Bullseye Coverage

As shown in Figure 30, the team was able to achieve approximately 80% code coverage in the

engine and models through a combination of unit tests and integration tests. The team developed unit

75

tests to verify the expected behavior of the transmitter, receiver, and target models and related classes

including the environment, radar cross section, and trajectory classes. These tests allowed the team to

refactor code within the model and engine classes and quickly determine if the classes were still

functioning correctly. If changes caused a test to fail, it became immediately obvious that debugging was

necessary. To make integration tests possible for the models, the team developed a mock object for the

model manager class, which represents the interface between the models and the simulation engine.

The mock model manager intercepts events when they are scheduled by models and allows unit tests to

pass them directly to other models. Several unit tests used the mock model manager to pass events

between the transmitter, receiver, and target models, ensuring that they integrated correctly.

The main integration test for the engine was an airport simulator modeling airplane arrivals and

departures. The airport simulator is described in Section 4.5.1. The airport simulator tested the majority

of the engine code and verified that the models were able to schedule and process events in the correct

order.

In addition to unit tests and integration tests, the group also performed performance tests to

ensure that the simulator contained no memory leaks and was capable of running for a long period of

time without issues. The team ran the simulator overnight for a period of approximately 16 hours and

found it was stable and was delivering the proper output. The size of the event queue in each simulation

engine remained approximately constant throughout the simulation, showing that the simulator had no

problem keeping up with control messages from the radar control program adapter. This also suggests

that the memory used by the simulator is stable over long periods of time and that memory is being

properly freed when it is no longer in use.

Including all mentioned tests, the code coverage of the existing model and engine code was

measured to be greater than 80%.

76

5.4 Documentation

The final major deliverable for the project was the creation of appropriate documentation to

accompany the project design and implementation. This documentation should be sufficient enough so

that someone who is completely unfamiliar with the simulator can get it set up and installed, as well as

extend the existing design and implementation to create scenarios specific to their simulation needs.

Documentation was defined as one of the most important parts of the project, because the use of the

simulator after the completion of the project is largely defined by how easily it can be understood and

adopted by Laboratory staff.

As a response to this need, emphasis was placed on several documentation efforts for the

project. The first of these was the use of Doxygen (see section 3.1.8) comments in code, which provide

relevant information for those viewing the actual implementation code, as well as the ability to

automatically generate documentation for the each class in the project. This generated Doxygen

provides useful information such as descriptions of functions and data members, as well as diagrams

and visuals showing the overall design of the project. Doxygen comments were inserted into every

relevant file within the model and engine classes to ensure that future developers would be able to

understand the inner workings of the simulator.

77

Figure 31 - A sample doxygen class diagram

The second major documentation effort for the project was the creation of a simulator User’s

Guide, which detailed how to get the simulator installed and running. This includes a detailed list of the

dependencies required for the project and how to acquire them, along with how to acquire the

simulator package and get it running both within and outside of Eclipse. By the end of the guide, readers

should be able to fully build and run the simulator.

78

Figure 32- A sample page from the User's guide, walking through the installation of the simulator

The third major piece of documentation associated with the project is a second project guide

referred to as the Developer’s Guide. This guide is written for those who already have the simulator up

and running and are looking to extend the existing design and implementation to create their own

custom models. It provides a sample list of use-cases and describes how the current simulator could be

extended to support them. Examples include different types of radar hardware, more advanced targets,

and different radar cross sections. The goal of the Developer’s Guide is to help developers create new

models within the simulator so that they can support new simulation scenarios to fit their specific

needs.

5.5 Summary of Results

Over the course of nine weeks, the project team successfully met a large number of the metrics

for success originally defined for the project. A thoughtful, extensible design which passed a design

79

review held with LL staff was developed. A working implementation to validate the fact that the design

could be distributed and to confirm the correct behavior of basic model classes was created. A

comprehensive testing suite, which acquired the metric of 80% code coverage originally stated for the

project was developed. Finally, a large collection of documentation to ease the technical transfer of the

project to Lincoln Laboratory and promote its future use was written.

80

6 Conclusion

Over the duration of the nine weeks allotted to the project, the project team leveraged

expertise and resources from the Laboratory in order to accomplish the goal of designing a distributed

radar simulator. Through the use of iterative design and collaboration with Laboratory experts, the team

was able to design a set of domain-specific radar models and a robust, generic simulation engine. While

the prototype simulator implementation had to be scoped down from its initial goal of supporting a

large number of targets, it still served to validate the distributed design of the new simulator and prove

that radar computation could be performed over multiple processes. The outstanding issues remaining

with the project are detailed in the following section.

6.1 Outstanding issues

 These issues represent the functionality defined for DVERT at the onset of the project, but which

did not make it into the delivered version. As the project evolved, it became evident that some of these

features were outside the scope of this project. Integration with the radar control program proved to be

a much larger problem than originally scoped and was not directly relevant to the development of the

simulator framework. Multi-threading was an optimization that, while desired, was not immediately

necessary to produce a working prototype. Timing and synchronization of global events are already

implemented within DVERT, but they still require slight refactoring. Finally, middleware configuration for

network transport represents a minor task that was simply considered non-critical to development.

6.1.1 ROSA Interface

The original plan was to implement DVERT based around the same external interfaces used by

the legacy simulator. This plan would enable DVERT to be used interchangeably with the simulator.

Thus, DVERT would be able to take advantage of all the pre-existing components developed as part of

the ROSA II framework, such as an assortment of GUIs for display and control. Additionally, directly

81

interfacing with the actual real-time control software would enable DVERT’s performance to be

examined in response to real-world inputs and deadlines.

As more research was conducted into the transport methods used to interface the simulator

with the radar control software, it became evident that implementing the same interface would be

outside the scope of the project. While ROSA II components communicate over RTCL, the simulator was

developed before the development of the ROSA II framework. As such, a separate UDP based interface

was developed as a ROSA II component to bridge the gap between the simulator and the rest of the

radar control software. The Laboratory also indicated a desire to discard this interface in the future in

favor of communicating directly over RTCL. However, the ROSA II components were still written to listen

over the UDP interface.

To complicate matters further, the data structures being passed around had evolved over the

course of the simulator’s development. As the simulator was adapted to suit new projects involving

hardware with new capabilities, additional fields were simply added to the existing data structures. This

bloat has caused the data structures to balloon to many times their necessary size with dozens of fields

that are specific to given hardware models.

A decision had to be made. On one hand, the UDP interface could be implemented, enabling the

use of the existing components. However, the drawback was that the work would largely be wasted as

the interface would be discarded in the future. Conversely, a direct interface to RTCL could be

implemented, with the tradeoff that the existing control software wouldn’t immediately support the

interface.

After analyzing both options, a solution emerged. A Radar Control Program (RCP) adapter

component was written for DVERT. This component acted as a mock external system, generating control

messages as input to DVERT and listening for its output. This approach eliminated the need to

82

implement the interface between DVERT and the existing radar control software, yet still enabled the

testing of DVERT’s functionality. The RCP adapter sends simplified versions of real control message data

structures to the simulator. The RCP adapter component was written such that the automatic

generation of control messages could be replaced with either an RTCL or UDP listener to interface with

the Laboratory’s radar control software.

6.1.2 Multi-threading

While the current implementation takes advantage of running across multiple processes, the

fact that each process contains a single thread prevents it from realizing the full parallelizability of a

multi-core machine. Ideally, the simulation engine would process all of the events at a given simulation

time in parallel. This process is described in section 4.8. However, this optimization introduces a number

of difficulties within the engine as there are two key critical sections.

The first critical section is the event queue. If two threads try to push events to the queue

simultaneously, the behavior would currently be undefined, potentially resulting in one of the events

being dropped or the simulation crashing as a whole. A thread-safe implementation would ensure that

only one thread would be capable of pushing or popping the queue, ensuring that all threads have

access to a consistent copy of it.

The second critical section is the model manager. As a façade for the simulation engine, the

model manager represents all of the resources of the simulation engine that a model could potentially

access. Rather than individually making the various managers thread-safe, the same effect could be

accomplished by modifying only the model manager.

Within each simulator process, there are separate threads for the execution of the main loop

and for each of the RTCL subscribers that listen for messages from the middleware. This enables the

simulator to continually execute its main loop without having to wait on incoming data. As previously

83

mentioned, the event queue is not currently thread-safe, so two subscribers could potentially write to it

simultaneously, resulting in undefined behavior.

6.1.3 Timing and Synchronization

The timing system used within DVERT also remains to be finalized. While the final delivered

product works, there are still border cases that remain to be debugged. These border cases could be

made more visible and thus more easily addressable through the use of extensive unit and integration

tests. While the majority of the engine is thoroughly tested for robustness, the timing system lacks the

same level of coverage.

More importantly, the issue of deadlock and deadlock recovery was not addressed within the

simulator. Referring back to section 4.5.3, if all of the simulation engines are unable to process an event,

then the simulation has deadlocked. If a simulation engine is unable to process an event, it is unable to

update the other simulation engines as to its current time. This inability to communicate causes the

other simulation engines to be unable to process their events, causing a circular dependency. Currently,

this problem is avoided through the careful choice of event timings within the implemented test

scenarios.

A variety of different solutions exist for this problem. For example, in Parallel and Distributed

Systems [Fujimoto, 2000], Fujimoto describes a deadlock detection and recovery algorithm. The

detection algorithm revolves around constructing a tree. When simulation engines receive an event,

they add themselves to the tree. If they become blocked and are a leaf node, they remove themselves

from the tree and signal their parent. The simulation will have deadlocked when the controller node

that sent the first event is the only remaining node in the tree. Once deadlock is detected, it can be

84

broken by processing the event with the smallest time stamp in the entire simulation1

6.1.4 DDS Configuration

. This time can be

determined by having the controller request the smallest time stamp from each simulation engine and

then broadcasting the smallest time it receives back to all of the engines.

Minor work is still required in the area of configuring RTCL to properly communicate over a

network. Throughout development and testing, shared memory was used as the inter-process

communication (IPC) middleware within RTCL. As all the processes ran on a single machine during

development, shared memory was particularly well-suited for testing. However, once development was

completed, there was a desire to test DVERT across multiple machines on a local network. Naturally, this

test would require the use of a different middleware implementation, as shared memory only works for

communicating between processes on a single machine. DDS was chosen as the intended networking

middleware as it’s both real-time and already supported by RTCL.

6.2 Future work

This section consists of features that were not originally part of the overall scope for the project,

but which proved to be extremely attractive as optional features that could be implemented after the

conclusion of the project.

6.2.1 Load balancing

A significant extension to this project would be load balancing of computation across the

simulators of the distributed system. At the moment, targets are statically instantiated on each

environment simulator at the start of the simulation and they remain on their original machines until

the end of the simulation. Ideally, each machine in the simulation would be responsible for processing

an equal number of targets. In this situation, processing would remain evenly spread across the

1 This event is safe to process because if the simulation was a sequential simulation, the event with the smallest
time stamp would be processed next.

85

machines, netting the largest gain in performance. In the worst case scenario, the majority of targets

that require processing could reside on a single machine. Now, one simulation engine may be overtaxed,

causing it to miss its deadlines, while others are lying dormant.

One method to prevent a situation like this from occurring is to distribute targets in a strategic

manner before the start of a simulation. Targets can be broken up in a number of different ways to

evenly distribute the computation of returns. For example, targets can be broken up by sector, range, or

other parameters in order to distribute them evenly across a number of simulators. The diagram below

illustrates some different types of static initial distributions:

A B C

Figure 33 - Distributing target computation by sector (A), target range (B), or volume (C)

 Another solution to this problem is the use of dynamic load balancing during the simulation. Its

implementation would consist of a two stage process. The first stage is a detection stage. Before the

system can begin balancing, it must be informed of the need to balance. Detection could occur through

the publishing of error message by simulation components when they start to consistently miss

deadlines. Similarly, the system could track the average number of models being processed at recent

time steps and then check to ensure that no one machine has a higher than average number of targets.

86

Upon detecting the need for a rebalancing, transportation events could be scheduled on the

underperforming engines. These transportation events would consist of serializing the object to be

transferred and then scheduling an event to simultaneously remove it from the simulation engine on

which it originated and then add it to the desired simulation engine.

6.2.2 Configuration Objects

Improving the method of configuring scenarios would greatly increase the value and usability of

the simulator. At the moment, an interface, referred to as a configuration object, exists for initializing

models within simulation engines. A configuration object essentially acts as a container for a collection

of models that can be loaded into a simulation engine. Configuration objects are currently hardcoded

into each specific simulation component and are passed into the component’s simulation engine upon

its creation. As a result, modifying a scenario requires that its host component be recompiled. Ideally,

the simulator components could be distributed as executable binaries that reference an external file to

generate their configuration objects at run-time. Run-time configuration would enable the rapid

prototyping of simulation scenarios. Additionally, the simulator could be distributed as a binary with a

collection of swappable XML files, thus eliminating time wasted recompiling. The project team briefly

researched the feasibility of parsing XML files to instantiate models. Unfortunately, C++ lacks a crucial

feature: built-in type reflection. Reflection would have enabled objects to be instantiated without hard-

coding functions for each class that converted from some external schema to the internal class type.

6.2.3 Status Messages

Our implementation currently lacks any inter-process communication regarding the state of the

components currently active in the system. Individual components report their state locally when

changing states, but provide no information to the system as a whole regarding their status. This logging

should be moved from a simple print statement to a separate status topic that is communicated over

87

RTCL. Hooks for this topic were implemented within the component base class to support this feature;

however the simulator currently does not populate the information within that topic. Beyond the

information contained within the base component, specifically its state, this status topic could also be

used to communicate data that is specific to derived components. For example, components with active

simulation engines could report statistics such as event queue size and information regarding the

performance of their data writers and readers. By providing this information, the health of the system

would be much more visible to operators, enabling at-a-glance updates of the system’s status.

6.2.4 Simulator components as ROSA II components

The Laboratory also expressed interest in modifying the simulator components to be fully-

fledged ROSA II components. Each ROSA II component has a finite state machine whose state can be

changed by control messages passed over RTCL. Additionally, each ROSA II component publishes status

messages about itself so other components can be aware of the state of the system. DVERT already

makes use of a component base class that is functionally very similar to the ROSA II component base

class. The DVERT component base class uses a state machine similar to the one contained in ROSA II

components. With some minor refactoring, the DVERT component base class could be replaced with the

ROSA II component base class. This refactoring would enable the simulator to be configured, launched,

and controlled as a ROSA II component. While not necessary, it represents another step into fully

integrating into the ROSA II framework.

6.2.5 Graphical User Interface

There are two separate aspects of the system that would benefit from the development of GUIs.

The first facet is control and monitoring. Currently, the simulator is controlled via a text-based user

interface. This user interface can initialize simulator components and start and stop the components. A

very basic GUI, as seen in Figure 34, was implemented on top of the same interface used by the text-

88

based version. Assuming that status messages were implemented, this same GUI would ideally support

the display of the information contained in the status messages. Having a central location for controlling

the components of a simulator and for monitoring the health of the overall system would aid in both the

use and development of the simulator.

Figure 34 – A Basic simulator Control GUI

The second area where a GUI would be particularly applicable is the display of the return

energy. If ROSA II integration were completed, development of a GUI for the display of output may be

unnecessary as the existing displays could then be leveraged. However, as they are legacy displays, there

may still be a desire to modernize them. Barring that integration, the need for a GUI drastically

increases. To address this need during the project, a 3rd party tool was leveraged to graph the

simulator’s output in real-time. While this tool met the immediate needs of the project, a long term

solution may include fully integrating the tool into a display component or potentially coding a display

component from the ground up.

89

6.3 Concluding Thoughts

At the advent of this project, the project team had no experience with either general simulation

or radar systems. However, by working closely with Lincoln Laboratory staff, the team was able to

leverage the collective expertise of the Laboratory in order to design and implement a sophisticated

simulator architecture. In nine weeks, the project team acquired enough domain-specific knowledge in

order to produce an extensible, distributed simulator design as well as an implementation to validate

this design.

90

Appendix A. Current ROSA Simulator Feature Tree
1. Target simulation

a. Up to 64 targets (on some computers); there is a desire in the group to simulate many
more.

b. Characteristics are defined relative to a simulation start (liftoff) time.

c. Characteristics are defined prior to simulation start, currently via configuration file.

d. Center-of-mass translational motion models:

i. Trajectory models:

1. Fixed point.

2. Ballistic (including atmospheric drag).

3. Time-tagged polynomial state vector (ECR or local RAE).

ii. Duration options:

1. One-shot: target characteristics become valid at the start time and go
invalid at the stop time.

2. Repeating: translational motion model starts over when it reaches the
stop time; example: a plane flying in a closed loop.

e. Inertial rotational motion about center of mass.

f. Multiple scattering centers.

g. Cross section models may vary with time.

i. Constant RCS.

ii. Gaussian: specify mean and std. dev.

iii. Swerling.

2. Environment simulation.

a. Refraction: multiple models in use; which one to use is configurable.

b. Atmospheric attenuation.

c. A low-fidelity clutter model exists but is rarely used.

d. An equally rudimentary surface clutter model exists and is also hardly ever used.

e. Multipath is modeled via a complex reflection coefficient, but time delays are ignored.

3. Hardware simulations are responsive to commands from the radar-control program and report
their current state via entries in the AUX data.

a. Pedestal simulation responds to pointing commands

i. Elevation over azimuth mount.

ii. Uses position feedback loop for coarse pointing control and rate feedback for
fine control.

91

iii. Configurable position, rate, and acceleration limits.

iv. Configurable encoder lsb.

b. Antenna

i. Two model choices:

1. Parabolic dish antenna with configurable multi-horn monopulse feed.

2. Phased array with constant, predefined amplitude taper and subarray
definition.

ii. Configurable gain.

c. The Master Timing System (MTS) used to be an actual system that provided hard
triggers to the hardware, but is now just a collection of algorithms that runs on the
control system for each piece of hardware. Because of the route followed in getting to
this point, the simulator does not actually use these algorithms directly; rather, it
simulates them.

i. Computes transmit time.

ii. Computes receive time.

iii. Keeps track of outgoing and incoming waveforms.

d. Transmitter simulation

i. Configurable peak power.

ii. Response to “triggers on/off” commands.

iii. Response to “inhibit” commands from RF safety controller (via radar-control
RTP).

iv. Configurable transmit line losses.

e. Receivers simulation

i. Modeled as string of black boxes with configurable gain and noise figure and
attenuators.

ii. Gain and noise power computed from the model.

iii. Includes automatic gain control algorithm that is waveform and target
dependent; the target is selected by the control program.

4. Net result: simulates real-time radar data in presence (or absence) of simulated targets.

a. Format of real-time data is identical to live data.

b. Data rate is, on average, identical to live data. (In the event that the simulator cannot
keep up, it drops the data returns)

c. Simulated returns from targets depend on hardware state (e.g., pedestal pointing and
antenna beamwidth) and target characteristics (e.g., position and RCS).

92

Appendix B. Minimal Implementation Requirements As Specified By
Sponsor
1. Target simulations:

a. Simulate as many targets as possible. The minimal goal for the implementation should
be 1000.

b. Center-of-mass translational motion model: One-shot ballistic or time-tagged
polynomial trajectories would be ideal, but simple fixed targets would suffice for the
time being.

c. Constant RCS is adequate.

2. Environment simulation can be disregarded for now.

3. Hardware simulations should report their current state in the AUX data:

a. Although a fixed pedestal pointing would be acceptable (as long as it points the antenna
at the targets), a model that responds to pointing commands will be more useful for
testing.

b. The antenna can be modeled as a parabolic dish antenna with a monopulse feed. It
need not be configurable. A simple look-up table of sum, traverse, and elevation
response vs. angle offsets from boresight should suffice.

c. Timing:

i. The time between transmit pulses is determined by the commanded PRI.

ii. The time between each transmit pulse and the beginning of the corresponding
receive window is computed from a commanded range, radial velocity, and
radial acceleration. (In other words, figure out how long it would take the pulse
to get back to the radar if it is reflected off a target having the commanded
motion.)

iii. Optional: model ambiguous returns; i.e., a return from a given pulse does not
have to arrive back at the radar before the next pulse is transmitted.

d. The transmitter simulation need not be configurable and can be treated as “always on.”

e. A receiver model with constant gain and noise power would be acceptable for the time
being.

4. Net result: simulate real-time radar data in presence (or absence) of simulated targets.

a. Format of real-time data is identical to live data.

b. Data rate is, on average, identical to live data.

c. Simulated returns from targets depend on hardware state (e.g., pedestal pointing and
antenna beamwidth) and target characteristics (e.g., position and RCS).

93

Appendix C. Design Review

Date: Thursday, September 30th, 2010

Comments:

• Radar Cross Section can be calculated at the target, but for the highest fidelity simulation it
should be modeled at the receiver since the orientation and position of the receiver affects the
cross-sectional view of the return.

• The old simulator has specific models for clutter and noise. The new simulator has nothing
explicit for calculating these things. However, the new simulator could create actual targets to
represent clutter and noise.

• Factors such as wave bandwidth are currently not a part of the pulse structure, but could be
added easily.

• The transmitter and pulses created by it only represent the average power and frequencies
being projected. A more accurate transmitter would use a sinusoidal function to model the
changing power and frequency in a given range.

• In-phase and out-of-phase energy from returns is not being calculated. When some of the
energy is returned to the receiver, it is expecting a specific frequency that it listens for.
However, based on environmental effects and the distance to the target, there is a frequency
shift that occurs. This is interpreted as a phase-shift by the receiver, causing some of the energy
to be returned “out-of-phase” based on how much the frequency deviated from the expected
frequency.

• Pulses should have durations when they are transmitted. We were originally modeling the pulse
as being projected over an infinitesimally small period of time. However, a pulse will be
transmitted for a specific amount of time, which affects the number of range gates that will
receive energy returns. This can be added to our existing model very simply by giving pulses a
duration or “width” and changing the calculations that are used to fill up the range gates.

• Trajectories can support a random walk by taking in input from a randomly generated table or
by using a random function with a common seed in order to produce re-creatable data.

• Pulses could be represented as a more complex series of electronic samples. This could be
accomplished using a sinusoidal function as described earlier, or by using a separate pulse
structure to represent each “sample” that is being projected from the transmitter.

• The simulation engine was presented and explained with no negative comments. It was also
explained that RTCL would be used as the wrapper around the middleware used for distributed
communication.

• Despite a few small changes that need to be made, the Lincoln Laboratory staff appears excited
to develop the simulator further. Comment from meeting attendee regarding overall design:
“You presented a design which passed Lincoln Review.”

94

Appendix D. Simulation Engine Class Diagram

+processEvent()
+getHandle()
+setManager()
+getSupportedEventTypes()

ModelObject

+run()
+stop()
+addEvent()
+executeEventsForTime()
+processEvent()
+addModel()
+loadConfig()

-modelList : ModelObjectList
-currTime : SimTime

SimulationEngine+push_back()
+pop()
+front() : Event

EventQueue

+find() : ModelObject
+addModel()

ModelObjectList

-engine : SimulationEngine
ModelManager

SimTime
-eventType

Event

+equals() : bool

ModelObjectHandle

1

1

1

1

1*
1

1

0..11

1 1

1

1

+toIdl()

GlobalEvent<IdlType>
-modelHandle
EventForOne

+subscribe()
-topics
SubscriptionManager

+addBroadcast()
-broadcastTopics
BroadcastManager

1 1

1

1

+addSubscriber()
+removeSubscriber()

-eventType
-subscribers

EventTopic

1 *

+broadcast()

-eventType
-dataWriters

BroadcastTopic

1 *

EventWrapper

1
*

1
1

1
1

+updateTimers()

-externalTimers
-minimumExternalTime

TimingManager

+update()

-currentTime
-lookahead

ExternalTimer

1

1 1 *

-models
-events
-initialTime

ConfigObject

1

1

95

Appendix E. Target Model Class Diagram

+processEvent()
+scheduleEvent()
+getSupportedEventTypes()

-handle
ModelObject

+processPulseEvent()
+scheduleRetuenEvent()

+radarCrossSection
+lifetime
+environment

Target

Missile Clutter

+returnPosition()

Trajectory

+calculateRCS()

RadarCrossSection

ConstantRCS

GaussianRCS

ScattererRCS

Scatterer

+preEnvironment()
+postEnvironment()

Environment

Plane

+getPosition()
-trajectory

PhysicalModel

Lifetime

IntervalLifetime

XPatchRCS

+returnPosition()

Ballistic

+returnPosition()

FixedPoint

+returnPosition()

RandomWalk

EmptyEnvironment

1 1

11

1 1

1

1

96

Appendix F. Hardware Model Class Diagram

+getOrientation()

-azimuth
-elevation

Pedestal

+processUcmEvent()
-pedestal

HardwareModel

+processUcmEvent()
+schedulePulseEvent()

Transmitter
+calculateRadarRangeEquation()
+processUcmEvent()
+processReturnEvent()
+processReceiveWindowEndEvent()
+scheduleReceiveWindowEvent()

-environment
Receiver

+getSupportedEventTypes()
-handle

ModelObject

+getPosition()
-trajectory
PhysicalModel

1 1

+processReceiveWindowEvent()
+processReceiveWindowEndEvent()
+schedulePulseAuxEvent()

-samplingRate
-receiveWindows

AggregateReceiver

-startTime
-width
-sampleRate

ReceiveWindow

-inqData
Gate

1

*

1*

-inPhase
-outOfPhase

InqData

1

*

+returnPosition()

Trajectory

+returnPosition()

Ballistic

+returnPosition()

FixedPoint

+returnPosition()

RandomWalk

1 1

-power
-gain
-frequency
-beamsize
-aperture

K650Transmitter

+updateReceiveWindow()
+processReturnEvent()

-gain
-aperture
-frequency
-samplingRate
-receiveWindows
-environment

K650Receiver

1*

97

Appendix G. Target Simulator Sequence Diagram

98

Appendix H. Hardware Simulator Sequence Diagram

TransmitterModelModelManagerSimulationEngine

ProcessEvent(SendPulseEvent, currTime)

ScheduleEvent(PulseEvent, time)

ScheduleEvent(PulseEvent, time)

EventQueue ModelObjectList

pop()

EventForOne

HardwareSimulator

ProcessEventsForTime(time)

find(TransmitterHandle)

TransmitterModel

push(PulseEvent)

99

Appendix I. Target Simulator Parallelism Sequence Diagram

Target A Target B Target CTarget Simulator Simulation Engine

Process Pulse Event

Schedule Return Event

Schedule Return Event

Schedule Return Event

Process Events for Time T

100

Appendix J. Simulation Engine Global Event Broadcast Sequence Diagram

ModelManager SimulationEngine BroadcastManager BroadcastTopic DataWriter

scheduleGlobalEvent(event)

getBroadcastTopic(eventType)

broadcast(event)

broadcastTopic

write(event)

Simulator

addEventBroadcast(eventType, dataWriter)

addEventBroadcast(eventType, writer)

addWriter(writer)

101

Appendix K. System Deployment Diagram

Hardware Server

Radar Control Program

RCP Adapter <<Component>>

Hardware Simulator <<Component>>

<<RTCL – RTIDDS >>

<<sockets>> Target Server

Target Simulator <<Component>>

libengine libmodels libRTCLAPP

libengine libmodels libRTCLAPP

<<RTCL – shmem >>

libRTCLAPP

Target Server

Target Simulator <<Component>>

libengine libmodels libRTCLAPP

Target Server

Target Simulator <<Component>>

libengine libmodels libRTCLAPP

Controller <<Component>>

libRTCLAPP

User Interface <<Component>>

libRTCLAPP

102

Appendix L. Glossary

Aperture – Area of an antenna, measured in meters squared
Aux – Auxiliary data structure containing metadata regarding the current state of the radar hardware
Azimuth – The rotational position of an antenna about the vertical axis
Communications Middleware – Computer software that provides a set of services to facilitate inter-
process communication
Component – A process with a finite state machine that responds to control messages
Distributed System – Any software system in which multiple computers are used to perform a subset of
the total work
DVERT – “Distributed Virtual Environment for Radar Testing;” the simulation architecture described
within this paper.
Elevation – The rotational position of an antenna about the horizontal axis
Event – A discrete action occurring at a finite time. The sole method of inter-model communication.
Interface – Point of interconnection between two systems
Lookahead – The amount of time into the future that a simulation engine promises to not send a
message
Managed Event – Decorator class containing logic to determine which models will process domain-
specific events
ModelObject – Common class that defines the interface from which all models inherit
Models – Objects within the simulation that contain domain-level knowledge
OASIS – A layered architecture for generic simulation developed at Lincoln Laboratory
Pulse – An electromagnetic wave generated by a radar transmitter
PulseAux – The combination of return energy and hardware metadata that is passed back to the RCP
Radar Cross Section – A measure of a target’s ability to reflect energy, measured in meters squared.
Range Gates – Time-tagged periods during which the receiver listens for return energy. Each period of
time corresponds to a range that a target is estimated to be located at.
RCP – A real-time radar control program responsible for configuring radar hardware
Receiver – Radar hardware that receives electromagnetic returns
ROSA / ROSA II – A hardware and software modernization effort at Lincoln Laboratory
RTCL – An abstraction for communications middleware
Scheduling – Creating a new event
Simulation Engine – Simulation component responsible for scheduling events and keeping them
ordered
Target – Any object that generates a return when illuminated by a pulse
Transmitter – Radar hardware that generates electromagnetic pulses
UCM – Message that contains hardware configuration data. Generated by the RCP

103

References

1. Alhir, Sinan Si. UML in a Nutshell: A Desktop Quick Reference. Cambridge: O'Reilly, 1998. Print.

2. Amdahl, G. M. “Validity of the single processor approach to achieving large scale computing

capabilities.” In Proceedings of the April 18-20, 1967, Spring Joint Computer

Conference (Atlantic City, New Jersey, April 18 - 20, 1967). AFIPS '67 (Spring). ACM, New

York, NY, 483-485.

3. Apache Software Foundation. Apache Subversion. http://subversion.apache.org. 2010.

 Computer Software.

4. AT&T Research. GraphViz. http://www.graphviz.org. 2010. Computer Software.

5. Brindley, Lana. Release Notes for the Red Hat Enterprise MRG 1.2 Release Edition 3. Red Hat, Inc.

 Web. 19 Oct. 2010.

6. Bullseye Testing Technology. BullseyeCoverage. http://www.bullseye.com. 2010. Computer

 Software.

7. D’Addario, Larry R. Large Transmitting Arrays for Deep Space Uplinks, Solar System Radar, and

Related Applications. Tech. Web. 21 Sept. 2010. <http://trs-

new.jpl.nasa.gov/dspace/bitstream/2014/37533/1/05-2202.pdf>.

8. Delaney, William P., and William W. Ward. "Radar Development at Lincoln Laboratory: An

Overview of the First Fifty Years." Lincoln Laboratory Journal 12.2 (2000): 147-66. MIT

Lincoln Laboratory. Web. 19 Oct. 2010.

<http://www.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2radardevelopment.pd

f>.

9. The Eclipse Foundation. Eclipse IDE for C/C++ Developers.

 http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/heliosr. 2010a.

 Computer Software.

104

10. The Eclipse Foundation. About the Eclipse IDE. http://www.eclipse.org/org/. 2010b

11. The Eclipse Foundation. The Eclipse Marketplace. http://marketplace.eclipse.org. 2010c.

 Computer Software.

12. Fitch, Kevin. CxxTest. http://cxxtest.tigris.org. 2009. Computer Software.

13. Fowler, Martin. "Test-Driven Development: A Conversation with Martin Fowler." Interview by

Bill Venners. Test Driven Development. Artima, 2 Dec. 2002. Web. 19 Oct. 2010.

<http://www.artima.com/intv/testdriven.html>.

14. Free Software Foundation. GNU Make. http://www.gnu.org/software/make. 2010a. Computer

 Software.

15. Free Software Foundation. The GNU Compiler Collection. http://gcc.gnu.org. 2010b. Computer

 Software.

16. Free Software Foundation. gcov-a code coverage program.

 http://gcc.gnu.org/onlinedocs/gcc/Gcov.html. 2010c. Computer Software.

17. Fricker, Sébastien. Test Cocoon. http://www.testcocoon.org. 2009. Computer Software.

18. Fujimoto, Richard M. Parallel and Distributed Simulation Systems. New York: John Wiley and

Sons, 2000. Print.

19. Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of

Reusable Object-oriented Software. Reading, MA: Addison-Wesley, 1995. Print.

20. Hartsberger, Leon. Eclipse C++ Unit Testing. http://sourceforge.net/projects/ecut. 2008.

 Computer Software.

21. Gleixner, Thomas. Cyclictest. https://rt.wiki.kernel.org/index.php/Cyclictest. May 2010.

 Computer Software.

22. Hoffmann, Mark R. Eclemma. http://www.eclemma.org. July 2010. Computer Software.

105

23. Kalibera, Tomas. CDx: A Family of Real-time Java Benchmarks.

 http://d3s.mff.cuni.cz/publications/download/cdx09.pdf. 2009. Computer Software.

24. McLaughlin, Brett, Gary Pollice, and David West. Head First Object-Oriented Analysis and Design.

Sebastopol, CA: O'Reilly, 2007. Print.

25. Meyers, Scott. Effective C++: 55 Specific Ways to Improve Your Programs and Designs. Upper

Saddle River, NJ: Addison-Wesley, 2005. Print.

26. MIT Lincoln Laboratory. About the Lab. http://www.ll.mit.edu/about/about.html. Copyright

2001-2010a. Accessed 19 October 2010.

27. Moore, Gordon E. "Cramming More Components onto Integrated Circuits." Electronics

Magazine 19 Apr. 1965. Intel Corporation. Web. 1 Sept. 2010.

28. Nokia, Inc. Qt- A cross platform application and UI framework. http://qt.nokia.com/products.

 2010. Computer Software,

29. O'Donnell, Robert M. "An Introduction to Radar." Lecture. Lexington. 18 June 2002. MIT Lincoln

Laboratory. Web. 1 Sept. 2010.

<http://www.ll.mit.edu/workshops/education/videocourses/introradar/>.

30. Oracle, Inc. JavaDoc. http://www.oracle.com/technetwork/java/javase/documentation/index-

 jsp-135444.html. February 2004. Computer Software.

31. Phippard, Mark. Subclipse. http://subclipse.tigris.org. 2009. Computer Software.

32. Red Hat, Inc. Red Hat MRG Real-time Kernel. http://www.redhat.com/mrg/realtime. October

 2010. Computer Software.

33. Rejto, S. "Radar Open Systems Architecture and Applications," Radar Conference, 2000. The

Record of the IEEE 2000 International. pp.654-659, 2000.

34. Sangiolo, T. L. "Lincoln Space Surveillance Complex (LSSC) Modernization." Proceedings of the

106

2001 Space Control Conference. 2001 Space Control Conference, Lincoln Laboratory,

Lexington. 2001. Defense Technical Information Center, 8 May 2002. Web. 19 Oct. 2010.

<http://www.dtic.mil/srch/doc?collection=t3&id=ADA400867>.

35. Secor, H. W. "Tesla's Views on Electricity and the War." The Electrical Experimenter Aug. 1917.

Tesla's Views on Electricity and the War. Twenty-First Century Books. Web. 19 Oct. 2010.

<http://www.tfcbooks.com/tesla/1917-08-00.htm>.

36. Sommerlad, Peter. C++ Unit Testing Easier. http://accu.org/index.php/articles/1349. 2006.

 Computer Software.

37. Tanenbaum, Andrew S., and Maarten Van Steen. Distributed Systems: Principles and Paradigms.

1st ed. Upper Saddle River, NJ: Prentice Hall, 2002. Print.

38. Thomas Publishing Company. The Electro Magnetic Spectrum. Digital image. Manufacturing

Electronic Microwave Components. Thomas Publishing Company. Web. 19 Oct. 2010.

<http://www.thomasnet.com/articles/automation-electronics/electronic-microwave-

manufacturing>.

39. Toomay, J. C. Radar Principles for the Non-specialist. New York: Van Nostrand Reinhold, 1989.

Print.

40. Vandevoorde, David, and Nicolai M. Josuttis. C++ Templates: the Complete Guide. Boston:

Addison-Wesley, 2003. Print.

41. Van Heesch, Dimitri. Doxygen. http://www.stack.nl/~dimitri/doxygen. October 2010. Computer

Software.

	Worcester Polytechnic Institute
	Digital WPI
	October 2010

	Distributed Virtual Environment for Radar Testing
	James B. Montgomery
	Lucas M. Scotta
	Matthew Ross Lyon
	Repository Citation

	Abstract
	Executive Summary
	Acknowledgements
	Table of Contents
	Table of Figures
	1 Introduction
	1.1 MIT Lincoln Laboratory
	1.2 Real-Time Open Systems Architecture (ROSA)
	1.3 The Legacy Simulator
	1.4 Project Description

	2 Background Research
	2.1 Radar
	2.2 ROSA II
	2.3 RTCL
	2.4 The Legacy Simulator
	2.5 Simulation
	2.5.1 Analytic Simulations and Virtual Environments
	2.5.2 Sequential Discrete-Event Simulation
	2.5.3 Open Architecture Simulation Interface Specification (OASIS)

	Distributed Systems
	2.7 Real-time Computing

	3 Methodology
	3.1 Work Environment and Tools
	3.1.1 Language Choice
	3.1.2 Integrated Development Environment (IDE)
	3.1.3 RTCL
	3.1.4 Boost
	3.1.5 Version Control and Collaboration
	3.1.6 Test Cases
	3.1.7 Code Coverage
	3.1.8 Documentation

	3.2 Software Engineering Practices
	3.2.1 Iterative Design and Development
	3.2.2 Sponsor Collaboration

	3.3 Procedural Timeline
	3.4 Division of Labor

	4 Design and Implementation
	4.1 Functional Requirements
	4.2 Design Overview
	4.3 Layered Architecture
	4.4 Model Layer
	4.4.1 Modeling the Radar Equation
	4.4.2 Models and Events
	4.4.3 The Model Class Hierarchy

	4.5 Simulation Engine Layer
	4.5.1 Configuring and using the simulation engine
	4.5.2 Event scheduling and subscription
	4.5.3 Global event broadcasting and time synchronization

	4.6 Component Layer
	4.7 Middleware Layer
	4.8 Scalability of the Design

	5 Results and Analysis
	5.1 Design Review
	5.2 Implementation Results
	5.3 Testing Results
	5.4 Documentation
	5.5 Summary of Results

	6 Conclusion
	6.1 Outstanding issues
	6.1.1 ROSA Interface
	6.1.2 Multi-threading
	6.1.3 Timing and Synchronization
	6.1.4 DDS Configuration

	Future work
	6.2.1 Load balancing
	6.2.2 Configuration Objects
	6.2.3 Status Messages
	6.2.4 Simulator components as ROSA II components
	6.2.5 Graphical User Interface

	6.3 Concluding Thoughts

	Appendix A. Current ROSA Simulator Feature Tree
	Appendix B. Minimal Implementation Requirements As Specified By Sponsor
	Appendix C. Design Review
	Appendix D. Simulation Engine Class Diagram
	Appendix E. Target Model Class Diagram
	Appendix F. Hardware Model Class Diagram
	Appendix G. Target Simulator Sequence Diagram
	Appendix H. Hardware Simulator Sequence Diagram
	Appendix I. Target Simulator Parallelism Sequence Diagram
	Appendix J. Simulation Engine Global Event Broadcast Sequence Diagram
	Appendix K. System Deployment Diagram
	Appendix L. Glossary
	References

