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 Abstract 

Neuropsychiatric disorders alter neural activity in those who suffer from these diseases. 

High-throughput screening can be used to find drugs with fewer debilitating side effects than 

current treatments. C. elegans nematodes are ideal models for high-throughput testing and for 

observing neural activity in intact neural circuits, but current screening experiments using C. 

elegans are conducted manually, which is time-consuming and hands-on for the researcher. 

Automated screening systems save time and effort, but are expensive and cannot be tailored to fit 

the specific needs of neural imaging in C. elegans. We designed an automated, modular, and 

inexpensive system for use in chemical screening with C. elegans. This improved chemical 

delivery system used off-the-shelf robotic hardware, a 3D-printed microplate tray, and open-

source electronics and control software, costing ~$300. Our method sequentially delivers test 

chemicals from a 96-well microplate, with low cross-contamination (<0.01%) and satisfactory 

switching speed (<1 min) between chemicals. We validated our system by reproducing the dose-

response results published in a previous C. elegans chemical screening experiment.  

Keywords―C. elegans, automation, high-throughput screening, neural imaging 
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Chapter 1: Introduction 

The brain is the least understood organ in the human body. Responsible for a wide variety 

of functions, the brain allows us to think, remember, perceive, control movements, and interact 

with one another. Approximately 86 billion neurons, or nervous system cells, communicate to 

relay and process information throughout the body via electrical and chemical signals (Azevedo 

et al. 2009). The health of these cells and their connections is imperative to the execution of 

neurological functions. Unfortunately, neurological disorders can hinder these processes due to 

malfunctions in the nervous system, causing decreased functionality in behavior and cognition. 

In diseases like schizophrenia and autism, the complex factors that cause these functional deficits 

are relatively unknown. 

 Schizophrenia and autism are two prevalent neuropsychiatric disorders that adversely 

affect patients' quality of life. While these conditions can be managed with medicinal and 

psychiatric interventions, neither of them is curable. Furthermore, the drugs that are used to 

alleviate symptoms, most commonly antipsychotic drugs, often result in adverse side effects, one 

of which is the increased risk of venous thromboembolism (Parker et al. 2010). Due to the 

immense complexity of mammalian neural systems, these disorders are difficult to study in such 

models, especially in human beings. For this reason, as well as many others, Caenorhabditis 

elegans (C. elegans) is a promising model system for in vivo neuropsychiatric disorder research 

and drug discovery. 

Researchers have explored various animal models to test novel neurotherapeutics with 

the end-goal of finding a treatment for neurological diseases. Conducting experiments using 

mammalian models, such as rodents, is marked by challenges. In a neuroprotective therapy 

study, approximately 500 drugs were tested on rodent models, but only one of these drugs passed 
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clinical trials and became an approved therapy (Chesselet, 2012). This example emphasizes the 

degree of throughput needed to adequately screen for drug options. Additionally, due to the large 

library of drugs that remain to be tested for the treatment of neurological diseases, mammalian 

systems are not practical models. Microscopic nematodes are a viable alternative, providing a 

number of benefits, one being their capacity for high-throughput applications. C. elegans, which 

are microscopic, transparent roundworms (approximately 1 mm long), are an ideal animal model 

for a number of reasons. They are easy to maintain, since they require a simple environment 

(agar filled petri dish) and food source (E. coli) for growth, and they reach maturity in three days, 

allowing for convenient experiment staging. The nematode’s transparent body provides a clear 

visualization of internal structures and processes.  C. elegans contain exactly 959 cells, 302 of 

which are neurons and 95 of which are body wall muscles. C. elegans was the first animal to 

have its genome fully sequenced, with further studies resulting in the complete mapping of its 

neural network (Sleigh, 2010). C. elegans genes are also 50 percent homologous to human genes, 

and their proteomes are 83 percent homologous to those of humans, making them suitable 

models for neuropsychiatric disease research (Caldwell, 2008; Lai et al, 2000). Scientists can 

manipulate and mutate C. elegans to match the same diseased genes that would be present in 

human patients, thus increasing their utility as neuropsychiatric models. Testing many different 

therapies for neurological diseases on mutated worms, high-throughput chemical screening 

involves sequentially introducing chemicals or chemical cocktails to a microfluidic arena where 

the C. elegans reside. Upon exposure to the stimuli, the worms typically respond, and these 

responses can be quantified behaviorally and neurologically using computer software 

(MATLAB, ImageJ, etc.) (Larsch, et al, 2013). These tests can be used to refine the candidate 
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pool for successful drug therapies, which can then be scaled for mammalian studies, with the 

ultimate goal of reaching clinical trials in humans. 

Currently, two methods exist for chemical screening applications using C. elegans. One 

of these methods is manual screening, which involves sequentially flowing different chemicals 

from a 96-well plate through a microfluidic arena containing C. elegans. The activity of these 

worms is either recorded on a behavioral level, using bright-field microscopy video recordings, 

or on a neurological level by imaging fluorescently labeled neurons. This is an effective method 

of microfluidic liquid delivery because it is relatively inexpensive (beyond the cost of the 

microscope, camera, and computer system), easy to conduct and troubleshoot, and adaptable 

(Giacomotto et al, 2012). However, because this method is conducted manually, it is susceptible 

to human error. This produces unrefined results, such as air bubbles and incorrect timing of 

chemical and liquid switching. By introducing air bubbles into the arena, the worms are not 

homogeneously exposed to the liquid, which can prevent them from coming in contact with the 

stimuli, ultimately altering the results. Similarly, because chemical screening is a systematic, 

time-dependent process, inserting the liquid into the arena too quickly or too slowly can affect 

the data collected and corrupt the results. Moreover, the experimenter has to be present for the 

entirety of the experiment, which poses problems with efficiency. 

The other method of chemical screening, automation, can be accomplished through three 

combined major functions: pipetting, liquid delivery, and sorting. The Gilson PIPETMAX can 

transfer a tray of 96 pipet tips concurrently from one 96-well plate to another, thus only serving 

the purpose of mass-pipetting (Pipetmax). The BioTek MicroFlo is a fluid dispensing system that 

can be used to transport C. elegans, as the nematodes can be mixed into a liquid medium, but this 

only transfers C. elegans from the library to the microfluidic arena by means of liquid delivery 

12 
 



 

and does not address pipetting or sorting (Greene, 2007). The COPAS BIOSORT is a sorting 

machine that uses calcium imaging to read the degree of fluorescence emitted from test subjects. 

However, this imaging can only occur after the reagent has already been added and not during 

the uptake process, which limits its use in same-time automated monitoring (Copas). All of these 

devices are very expensive, on the order of at least tens of thousands of U.S. dollars, and each 

only executes one specific task. There is no standalone-automated system that carries out all 

three tasks of automation by itself, thus there is a need to create a system that can perform these 

functions, while dynamically monitoring neural activity in C. elegans. 

We plan to create an automated system to improve the throughput of the chemical 

screening of C. elegans by alleviating the current drawbacks associated with these methods. Our 

system will use inexpensive, polydimethylsiloxane (PDMS) cast microfluidic arenas that are 

capable of holding many nematodes at once. We aim to combine the dynamic capabilities of 

manual screening with the precision and ease-of-use associated with more expensive, automated 

chemical screening devices. Our formal client statement is to design, develop, and assess an 

automated system to improve the throughput of neurological screening assays in C. elegans by 

sequentially delivering chemicals from a 96-well plate to a microfluidic arena. After developing 

the system, we will test it to ensure that all of the functional constraints are met. These include 

the prevention of air bubble entry, contamination, and incorrect timing of chemical switches. If 

the device falls short of meeting any of these requirements, we will revise the design 

accordingly. Once we have a working system, we will use it to conduct chemical screening 

experiments using the C. elegans nematodes. 
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Chapter 2: Literature Review 

Here we present a thorough synthesis of relevant information collected in our research of 

neuroscience, C. elegans, and chemical screening. Specifically, we emphasize human 

neuropsychiatric disorders, their effects on the brain, and the implications of research in the field. 

We then discuss C. elegans and the nature of research conducted with these nematodes. We 

conclude by explaining a specific venue of neuropsychiatric disorder research, using chemical 

screening, and C. elegans as disease model experiments to facilitate drug discovery. 

 
2.1 Neuroscience 

In this section, we explain the general physiology of the brain, focusing on human neural 

anatomy and neurotransmitters. We then explain how irregularities in neurotransmitter systems 

can lead to neuropsychiatric disorders, chiefly schizophrenia and autism spectrum disorders. We 

subsequently transition from the effects these disorders have on sufferers to current treatment 

methods, as well as what current research is being done for the advancement of neuropsychiatric 

disease treatment. 

2.1.1 Neurobiology 

This section serves as a general introduction to the field of neurobiology. Emphasis is placed on 

human neural anatomy and processes. 

The brain is the least understood organ of the human body, due to the complexity of both 

its anatomy and function. The brain is comprised of approximately 86 billion neurons, or nervous 

system cells, which communicate with one another through electrical and chemical signals 

(Azevedo et al., 2009). Neurons vary in function, chemical activity, and shape, but they generally 

contain the same fundamental cellular components. As shown in Figure 1 below, neurons 
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comprise a primary cell body (soma), axons, and dendritic projections. The cell body contains a 

nucleus and maintains the fundamental cellular functions required for the life of the cell (Squire, 

2008). 

 

Figure 1: Neuron anatomy and physiology 
(http://www.helcohi.com/sse/body/nervous.html) 

 

There are three different classes of neurons in the body: sensory, motor, and interneurons 

(Bear et al., 2007). Sensory neurons are responsible for sensing things in the body’s 

environment, and are also referred to as afferent neurons because they relay information inward, 

to the central nervous system (CNS). Motor neurons are required for the execution of actions, 

which can manifest as things like physical movement or secretion from glands (Bear et al., 

2007). Motor neurons are also referred to as efferent, because they communicate information 
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away from the CNS. Interneurons bridge the gap between sensory and motor neurons, allowing 

them to interface with one another (Bear et al., 2007).  

Neurons communicate with one another by sending electro-chemical signals via synapses 

and gap junctions (Bear et al., 2007). Chemical synapses are much more common in the CNS 

and have the ability to induce both excitatory and inhibitory responses. This form of neural 

communication is caused by the propagation of action potentials, which originate at the axon 

hillock (where the soma and axon meet) and travel through the axon to other neurons (Bear et al., 

2007). This cascade of events results from the exchange of ions (sodium (Na+), potassium (K+), 

calcium (Ca2+), and chlorine (Cl-)) into and out of neurons through transmitter-gated (t-gated) 

and voltage-gated (v-gated) ion channels, which ultimately enables the release of 

neurotransmitters.  

Neurotransmitters are signaling molecules that are synthesized in the cell body or axon 

terminal, packaged into synaptic vesicles, carried down the axon along microtubules (only the 

peptide molecules that are synthesized in the cell body), and released across the synapses present 

at the terminal end of each axon (the synaptic button, or axon tip as labeled in Figure 1) (Bear et 

al., 2007). Figure 2 below, illustrates the synaptic connection between two neurons, and the 

release of neurotransmitters across the synaptic cleft to interact with receptors on the 

postsynaptic neuron. 
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Figure 2: Release of neurotransmitter molecules across synapse (Bear et al., 2007) 

 

 There are two major classes of neurotransmitters: small molecule neurotransmitters and 

peptide neurotransmitters (Bear et al., 2007). The former class is divided into a number of 

different sub-categories that include: Acetylcholine, amino acids (e.g. glutamate, γ-aminobutyric 

acid (GABA), glycine), purines (e.g. ATP), and biogenic amines (e.g. dopamine, norepinephrine, 

and serotonin (5-HT). (Purves, Augustine, Fitzpatrick et al., 2001). These signaling molecules 

play important roles in a number of different neurological functions. The communication of 

neurons ultimately enables the body to sense internal and external environmental cues, and relays 

information to the brain and muscular system to allow for executed responses. Proper 

neurological activity is required for thinking, remembering, perceiving, controlling movements, 

and social interactions. 

17 
 



 

2.1.2 Neuropsychiatric Disorders 

Abnormalities in the activation of voltage-gated ion channels in the central nervous system can 

directly cause abnormalities in “neurotransmitter release, neuron excitability, gene 

transcription, and plasticity.” Specifically, “point mutations in calcium, sodium, and potassium 

channel genes” are highly associated with certain neuropsychiatric disorders, such as bipolar 

disorder, schizophrenia, and autism (Hyman, 2010).  

Schizophrenia 

Schizophrenia in particular is caused by definitive neurobiological abnormalities. More 

explicitly, the cerebral cortex deteriorates, “most severely in prefrontal and temporal regions.” 

This thinning of the cerebral cortex is due to a decrease in dendritic branching in cortical 

neurons, and not because of cell death, as commonly believed. Additionally, cortical 

interneurons produce less GABA than necessary, thus establishing a major deficit of the brain’s 

primary inhibitory neurotransmitter. Finally, hormonal and neurotransmitter imbalances in the 

midbrain neurons significantly contribute to schizophrenia, by means of “excessive dopamine 

release in ventral and perhaps dorsal striatal projections of midbrain dopamine neurons” 

(Hyman, 2010). This results in increased excitability of the midbrain neurons and thus alters 

motor control and hormone release as well. 

To accurately gauge the importance of schizophrenia research, the worldwide lifetime 

prevalence, also known as the number of surviving individuals with the disease at any given 

point in time, must be clear. Although there is much variation between different geographic 

regions, social status, and sexes, McGrath et al. estimated the median lifetime prevalence of 

schizophrenia in all persons to be four per one thousand people, or about 0.4 percent of the 

population. Data from 46 countries were amassed, and an estimated 154,410 cases were 
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consolidated, ultimately yielding this comprehensive estimate of worldwide prevalence 

(McGrath et al., 2008). 

Autism 

As autism is a spectrum disorder, symptoms range from mild to severe, depending on 

which form of the disease the sufferer has. Kanner syndrome is a form of autism that manifests 

as mental retardation. This can cause frustration in sufferers, which can then become aggression. 

On the other side of the spectrum, Asperger syndrome is a form of autism in which sufferers 

generally have higher levels of intelligence than normal. Their motor skills tend to be 

uncoordinated, but most have exceptional musical ability and rote memory. Additionally, a 

defining factor in Asperger syndrome is an obsession with routine (Autism main symptoms, 

2007). Comprehensively, autism causes behavioral and social hindrances, which manifest in 

difficulty communicating and uncomfortable social interactions (NINDS, 2009). 

Autism, like schizophrenia, is primarily caused by abnormalities in neurotransmitter 

systems. Variations in ion channel genes cause abnormal levels of serotonin and similar 

neurotransmitters in the brain, which then alters the excitability of the neurons. This can be 

attributed to abnormal brain growth during fetal development of autistic persons (NINDS, 2009). 

Early brain overgrowth then would result in increased neuron numbers in the prefrontal cortexes 

of young children with autism. Additionally, the characteristic imbalances in neurotransmitters 

are coupled with irregularities in the immune system. This then leads to neuroinflammation, 

which is common in persons with autism (Lai, 2014). 

Calahorro et al. estimate that roughly one percent of people have autism, but the rate of 

autism is rising, due to the fact that it is increasingly being recognized as a spectral disorder 

(Calahorro, 2011). Yeargin-Allsopp et al. reported the prevalence of autism spectrum disorders 
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in young children ages three to ten, in metropolitan Atlanta, which was 34 per 10,000 

(Fombonne, 2003). 

2.1.3 Drug Research  

This section notes the current approaches being taken to treat these diseases in humans and the 

limitations that accompany them. This sets the stage for the clinical need for high-throughput 

drug discovery. 

Schizophrenia and autism differ in that schizophrenia is a psychotic disorder, while 

autistic spectrum disorders are pervasive developmental disorders (PDD’s) (Odle, et al., 2011). 

Psychotic disorders are widely treated with antipsychotic drugs, while PDD’s can be treated with 

general psychotropics, e.g. “antidepressants, stimulants, antipsychotics, or anti-epileptics.” 

Approximately half of patients suffering from PDD’s are prescribed one or more of these 

medications (Santosh et al., 2001). Leucht et al. conducted a study testing the efficacy of 

antipsychotics against placebo, and the results distinctly indicated that treatments with 

antipsychotics have much lower relative risks than placebo, at 27 versus 64 percent (Leucht et 

al., 2012). 

Although their efficacy has been widely tested and accepted as higher than that of 

placebo, antipsychotics have a number of side effects, namely weight gain and extrapyramidal 

side effects (Leucht et al., 2013). Extrapyramidal side effects are commonly involuntary muscle 

movement irregularities, such as dystonia, rigidity, hypokinesia/akinesia, dyskinesia, akathisia, 

and tremors/parasthesias. In layman’s terms, these are the erratic increase in muscle movement 

and the dramatic decrease in muscle movement speed (Houltram, 2004). 

These side effects, while coupled with efficacious treatments, are quite severe and barely 

manageable. If a treatment can be developed without causing such drastic side effects, the use of 
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such a drug would be relatively widespread. Thus, there is a need to research drug alternatives 

and test whether the efficacy can be improved and side effects can be minimized. 

 
2.2 C. elegans 

This section provides an introduction to C. elegans history, anatomy, genetics, and 

research applications. Additionally, their use as a model system for neurological studies is 

discussed. 

2.2.1 History of C. elegans Research  

This section serves as an introduction to C. elegans research, providing the reader with a 

fundamental understanding of how long this field has been in existence, and how it has evolved 

over the past 50 years. 

Early research 

C. elegans are roundworm nematodes that are naturally found in soil or decaying plant 

matter (Felix, 2010). Dr. Sydney Brenner began C. elegans laboratory research in 1963. He 

sought to use C. elegans as a model organism for biology and neurology research due to their 

rapid life cycle, simple reproductive cycle, compact genome, and microscopic size (Ankeny, 

2001). Brenner used ethyl methanesulphonate (EMS) to mutate the C. elegans in order to test 

their behavioral response and survival rates. Experiments with EMS allowed Brenner to 

characterize 100 genes that were further mapped into six linkage groups (Ankeny, 2001). 

Brenner’s preliminary research prompted further C. elegans experimentation, making it the first 

animal to have its entire neural network mapped, thus allowing them to be applicable in various 

types of genetic and neurological drug testing. 
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The earliest drugs testing techniques with C. elegans consumed large amounts of time 

and were labor and resource intensive. It was not until 2006 that C. elegans were used for a large 

scale high-throughput drug screen by Dr. Kwok and his colleagues to assess bio-activity of 

various compounds (Riley et al., 2014). As research progressed and methods for high-throughput 

experimentation were refined, scientists began utilizing C. elegans for drug discovery for 

neurological disorders due to their anatomy and simple genetic makeup (Ankeny, 2001). 

2.2.2 C. elegans Anatomy 

This section provides an anatomical overview of C. elegans, important for framing their 

usefulness in neurological research.   

General anatomy 

C. elegans nematodes are an ideal animal model for high-throughput biological research 

applications due to their size, life cycle, ease of reproduction, and anatomical and genetic 

simplicity. C. elegans are transparent, one-millimeter long worms that allow for easy laboratory 

maintenance. They can grow on agar plates or in liquid cultures with E. coli as a food source 

(Wood, 1987). Additionally, they mature to young adulthood in three days and live for 

approximately two to three weeks, given that they are under optimal temperature (20°C) and 

supplied with a sufficient amount of E. coli (Bono, 2005). Once they become young adults, C. 

elegans are able to reproduce, both sexually and asexually. Figure 3 below displays the C. 

elegans life cycle progressing from an egg to an adult. There is a point in the maturation cycle, 

after the middle of the first larval stage, where the C. elegans can enter an arrested development 

state called dauer, or the non-aging state. This is caused by two environmental factors – high 

temperature and lack of food (Riddle, 1988). C. elegans can survive up to four months during 
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this state of starvation and minimal mobility. The four-month dauer larva can be stored and 

utilized for future experimentation (Wormatlas, 2006). 

 

Figure 3: C. elegans life cycle with given durations during development 

 

There are two C. elegans sexes, hermaphrodite (XX) and male (XO), as shown in Figure 

4. Hermaphrodite C. elegans can self-fertilize, which allows them to produce genetically 

identical offspring as well as males. Hermaphrodite self-fertilization can produce 300-350 

offspring, which is significantly greater during male fertilization (Wood, 1987). Furthermore, 

male mating simplifies the isolation and maintenance of mutated strains in the C. elegans 

(Anderson, 1995). The number of cells that make up C. elegans also depends on the gender; 

hermaphrodites contain 959 cells, while males contain 1031 (White, 1988). These cells comprise 
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the hypodermis, muscles, digestive tract, reproductive system and nervous system (Figure 4). 

The C. elegans transparent body also provides researchers with a visualization of the nematode’s 

internal organs.  

 

 

Figure 4: C. elegans genders, hermaphrodite and male, with respective anatomical structures 
(Wormbook.org) 

Neural anatomy 

In 1998, C. elegans became the first multicellular organism with a completely sequenced 

genome, comprised of 302 or 381 genomes, in hermaphrodites and males respectively. This 

breakthrough induced further research of C. elegans to enhance the biological understanding of 

all animals (Hope, 1999). The hermaphrodite’s neurons can be grouped into 118 classes: 39 of 

which are sensory neurons, 27 motor neurons, and the remainder interneurons (Bono, 2005; 

White, 1988). The male C. elegans has 79 extra neurons (381 total), which are devoted to the 

male mating behavior (White, 1988). The neurons are predominantly located in the head around 

the pharynx of the C. elegans, as shown in Figure 5. In the body, there is also a continuous row 

of neurons at the midline and some scattered at the lateral parts of the body (Wormatlas, 2006).  
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Figure 5: C. elegans neural network with each neuron location within the body. 
(http://www.neuroinformatics2012.org/abstracts/the-neuroml-c.-elegans-connectome) 

 

C. elegans with 302 neurons have approximately 5000 chemical synapses, 600 gap 

junctions, and 200 neuromuscular junctions (Bono, 2005; White, 1988). Additionally, common 

neurotransmitters have been assigned to C. elegans neurons. These neurotransmitters include 

acetylcholine, glutamate, γ -aminobutyric acid (GABA), serotonin, and dopamine (Bono, 2005). 

The synapse and neurotransmitter can determine the excitability and inhibitory response of C. 

elegans. The neural response can be studied when C. elegans undergo various stimuli (Riley et 

al., 2014). 

2.2.3 Genetics 

This section serves as an introduction to C. elegans genetics, illustrating how they can be used 

as models for human disease genes. This has significant research implications, in that C. elegans 

can open the door to rapid means of clinical research, and they provide a less complicated 

methodology than working with larger, more complex animals. 
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General Genetics 

The genome of C. elegans is approximately 8 x 107 base pairs of DNA distributed across 

five autosomal chromosome pairs and either one or two sex chromosomes. This size is only 

about half that of Drosophila and is much smaller than the human genome, which is 

approximately 6 x 109. However, this is partially due to the number of repeated genes. In C. 

elegans the proportion of repeated genes is only 17 percent, while in humans the proportion of 

repeated genes is significantly higher at 50 percent (Wood, 1987). This results in about 50 

percent C. elegans genes have a homolog found in the human genome. The proteome of C. 

elegans has a more significant homology with the human proteome at approximately 83 percent 

(Lai et al., 2000). This means that the proteins made by the genes in C. elegans are very similar 

to the proteins in humans, despite their drastically different levels of complexity and 

functionality. 

The sex of a nematode is dependent upon the sex chromosome arrangement. If there is a 

pair of X chromosomes, the nematode is a hermaphrodite. Hermaphrodites are capable of self-

fertilization by performing both spermatogenesis and oogenesis, the former of which occurs 

earlier in the life cycle. The other sex of C. elegans is a male with the ability to perform 

spermatogenesis. The sperm produced by males is able to inseminate the hermaphrodites. 

However, the population ratios do not favor the male sex, as fitness dictates that self-fertilization 

is more favorable. As such, less than one percent of hermaphrodite offspring is male. 

Additionally, when males inseminate a hermaphrodite the result is a 50 percent split between 

males and hermaphrodites (Gilbert, 2013). Therefore, it is easy to control the population to a 

desired sex. 
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Genetic Engineering Capabilities 

The occurrence of recombination is found in oogenesis and spermatogenesis, in both 

males and hermaphrodites. However, due to the higher frequency of recombination in 

hermaphrodites, due to two sex chromosomes, the hermaphrodites have been studied more in 

depth. The rate of recombination increases with temperature and decreases with age of the 

nematodes (Wood, 1987). This means that spermatogenesis produces the most recombination 

early in the life cycle of a C. elegans. This takes place during the hermaphrodite’s molting 

transitions to allow for oogenesis when it matures. Mutations usually occur on the autosomes and 

so those are targeted when genetically engineering nematodes. 

One way to induce mutations is through the use of ethyl methanesulphonate (EMS). EMS 

is a monofunctional alkylating agent that has a rate of mutation of 5x10-4 per gene (Wood, 1987). 

There are a number of other mutagens for random mutation, but EMS was the most common due 

to it being a method from Brenner. Recent developments have been made in genetic engineering 

to insert genes into the C. elegans genome, which can be performed by utilizing the CRISPR 

associated protein 9 (Cas9) (Waaijers et al., 2013). Cas9 has the ability to target certain 

sequences in the genome and break the double strand of DNA to insert genetic information. 

While this method is a relatively new development, it holds promise for gene targeting success in 

the future. 

2.2.4 Research Applications 

This section provides an overview of different applications that C. elegans have been used for, 

demonstrating the tangible benefits as a model system.  

C. elegans have proven to be an ideal animal model for high throughput screening in 

order to discover effective pharmaceutical therapies, chemicals, or even toxicology that have 
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neural or behavioral effects. C. elegans have been utilized for many high throughput drug 

discovery applications, thus replacing the labor and resource extensive cell based systems, due to 

their 60-80 percent homology to humans, genetic tractability, and versatility (Gosai et al., 2010; 

Riley et al., 2014). Various experiments have been conducted for drug discovery for 

neurodegenerative disorders such as Alzheimer's, Parkinson's disease, and Huntington’s disease, 

amyotrophic lateral sclerosis, frontotemporal dementia, and spongiform encephalopathics (Gosai 

et al., 2010). Generally, these experiments are run with various strains of mutated C. elegans to 

mimic the symptoms of the specific disorder to accurately evaluate drug efficacy and absorption, 

distribution, metabolism, excretion, and toxicity (ADMET) (Riley et al., 2014). 

C. elegans are also useful for various chemical genetics applications. Researchers are 

able to fast forward and reverse genetic tools to identify drug targets and understanding the 

mechanism of action of specific drugs using C. elegans. For example, feeding C. elegans with 

bacterial expressing dsRNA alter the C. elegans gene expression. This type of experimentation 

has induced genome-scale chemical genetics examination (Riley et al., 2014). Figure 6 below 

shows various types of C. elegans research methods including: morphology, locomotion, 

immobilized fluorescent imaging and live fluorescent imaging. Each of these methods would be 

applicable to different neurological and behavior studies. For example, the first instrumentation 

method listed would be for behavior C. elegans studies while, the second and third 

instrumentation methods would be for neurological C. elegans studies (Riley et al., 2014) 
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Figure 6: Various applications for C. elegans research including the instrumentation, phenotype/assays, 
advantages and disadvantages (Riley et al., 2014) 

 
2.3 Chemical Screening 

Chemical screening is a method for high-throughput experimentation, commonly used in 

drug discovery. Here we explain how chemical screening experiments are currently conducted, 

what methods are used, and what methods can be used in the future. 

2.3.1 Manual Process of Chemical Screening for C. elegans  

This section discusses the current system used for the chemical screening of C. elegans. 

Additionally, it includes an overview of the protocols used to create microfluidic arenas and 

conduct neural imaging (Ca2+) experiments.  Finally, a brief review of the mathematical models 

used to quantify neural responses is provided. 

 For current chemical screening applications using C. elegans, the gold standard for high-

throughput behavioral and neurological studies is the manual screening approach. Described by 
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Larsch et al. and Lagoy & Albrecht, microfluidics are a useful way to record and analyze C. 

elegans. This method involves the use of transparent, polydimethysiloxane (PDMS) microfluidic 

devices to house C. elegans, which provide complete visualization of the worms. These devices 

allow for the collection of data from a large number of animals, as some devices are capable of 

housing up to 100 nematodes. Additionally, they can be used with both bright-field and 

fluorescent microscopy, enabling the study of behavioral and neurological responses, 

respectively. Pure laminar flow and the minimal amount of liquid contained in these devices 

allows for rapid and reliable switching of liquid stimuli. 

 The process of fabricating PDMS devices is relatively inexpensive and can be used to 

produce arenas with varying features. The process begins with soft photolithography 

microfabrication to create a silicon wafer master mold, which is described by previous methods 

(Larsch et al., 2013). The physical process of producing a silicon master is minimally time 

consuming (2-3 hours), however the creation of photomasks with the correct dimensions can take 

many iterations. Fortunately for our applications, optimal photomasks for the production of 

devices to study young adult C. elegans have been developed.  Upon completion of the 

microfabrication protocol, PDMS mixture (10:1 ratio of polymer-to-crosslinking agent) poured 

over silicon wafer in a large diameter petri dish, degassed, and baked to elicit crosslinking 

(Lagoy & Albrecht, 2014). Devices are then cut out of the dish using a scalpel and carefully 

separated from one another along borders using a razor blade. Inlet, outlet, and worm loading 

ports are created using a 1mm dermal punch. These methods have been previously described by 

Lagoy & Albrecht, and a schematic of the PDMS device fabrication is shown below in Figure 7. 
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Figure 7: Polydimethylsiloxane (PDMS) device fabrication (Lagoy & Albrecht, 2014) 

  Once the devices are cut out from the complete PDMS mold and punched, they are 

washed using ethanol and water, and dried with compressed air. They are then placed between a 

fluorinated piece of glass (arena side of PDMS) and an untreated piece of glass (top side of 

PDMS device), sealed using a clamp system, and degassed prior to conducting experiment 

(Figure 8). 

 

Figure 8: PDMS device for experimental use (Lagoy & Albrecht, 2014) 

 

31 
 



 

  For screening applications, chemical stimuli are drawn by gravity through the 

microfluidic arena containing C. elegans. This setup involves pipetting liquid chemicals into the 

wells of a 96-well plate, loading the worms into the arena, establishing flow of the chemicals 

through the device, and recording the behavior or neurological responses using a microscopic 

camera (Larsch et al., 2013). A schematic overview of this system is displayed in Figure 9 

below.  

 

Figure 9: Schematic of manual chemical screening assay 

 Depending on the use of bright-field or fluorescent microscopy, the behavior or 

neurological responses of C. elegans can be recorded for computational analysis. For behavioral 

studies, the movement of worms can be analyzed using MATLAB, and the average behavioral 

responses to chemical pulses, stripes, and gradients can be quantified (Larsch et al., 2013). The 

chemical screening method that our project aims to augment with an automated robotic system, 
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involves the quantification of neural responses to a library of chemical stimuli. As previously 

reported, ImageJ, which is a scientific image analysis software developed by the National 

Institutes of Health (NIH), can be used to assess the intensity of fluorescently labeled neurons in 

C. elegans (Schneider, 2012).  This is used to study dynamic calcium activity in the neuron of 

interest, which indicates the signaling activity of the cell/neural pathway. As shown in Figure 10 

below, the neural activity of each particular animal can be distinguished, which allows for the 

establishment of a baseline of fluorescent intensity for each worm (Larsch et al., 2013). This 

baseline is important for determining the overall change of intensity, thus the varying degrees of 

response between different worms.  

 

Figure 10: ImageJ analysis of calcium activity of C. elegans AWA neuron in response to 1μM diacetyl 
(Larsch et al., 2013) 

 For the images analyzed in Figure 10 above, the worms were paralyzed using a drug 

called tetramisole (Larsch et al., 2013). The inclusion of this paralyzing agent allows for better 

neural analysis using ImageJ, because the worms move very little, making it easier to 
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consistently distinguish them from one another. While this method provides more stable data 

collection, it is not ideal due to the somewhat unknown additional effects of tetramisole, as well 

as the prevention of free movement. One of the greatest advantages of utilizing microfluidics for 

C. elegans research, is that their behavior can be assessed in a systematic manner; paralyzing the 

worms is somewhat contradictory to the overall goal of being able to study worms in as close to 

a native environment as possible. Calcium imaging tracking software, NeuroTracker 1.0, was 

developed in an attempt to overcome the problems associated with tracking the neural activity of 

freely moving C. elegans. This system was accompanied by a number of limitations, including 

large generation of data and the inability to distinguish worms from one another, both of which 

pose problems for high-throughput applications (Cupido, Feng, & Hess, 2014). To address these 

issues, the previous MQP developed a revised code called NeuroTracker 2.0, which allows for 

improved automation and enables the collection of neural data from up to 20 freely moving C. 

elegans. 

Together the manual system for chemical screening and NeuroTracker 2.0 provide a good 

setup for high-throughput drug discovery research using C. elegans. The major limitation with 

this system is the reliance on manual operation of the chemical switching, which our design aims 

to augment. 

2.3.2 Automated Systems  

This section reviews the automated systems, both for liquid handling and C. elegans research, 

which have been explored. 

Existing systems for automated fluid delivery 

 The existing systems for automated fluid delivery are expensive, designed to only 

transfer liquid, and are not easily modified. For example, the Precision Microplate Pipetting 
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System from Biotek, which uses eight pipetting tips that are able to fill a 96-well plate from a 

single reservoir (Larson, 2012). After the system is programed, it can be unattended for the 

duration of the liquid delivery to the desired plate. The system is able to dispense liquid, mix 

within the well (similar to a micropipettor), conduct serial dilutions, and transfer samples from 

one plate to another. The system is not able to transfer liquid to non-96 well plate containers, 

which means it is not capable of transferring to a microfluidic arena. The main drawback of the 

current systems on the market is that they focus only on transfer to a plate of wells and not to 

various containers. Additionally, the Precision Microplate Pipetting System is very expensive at 

$20,000.  

Existing systems for automated C. elegans research 

 C. elegans are commonly studied due to their desirable characteristics (mentioned 

above), and there are a number of automated devices that have been designed to automate C. 

elegans analysis. One such apparatus is the BioTek MicroFlo, which is traditionally used to 

dispense specific volumes of liquid into a well plate. Although, it has also been used to dispense 

nematodes into a 96-well plate from a reservoir (O’Reilly, 2014). This system is beneficial 

because it is able to sort C. elegans in an automated fashion. However, it is not able to analyze 

them by any means. Additionally, the MicroFlo is also expensive, costing $13,000 on the 

secondary market. 

 One of the best devices on the market for analysis of C. elegans is the COPAS BIOSORT 

(O’Reilly, 2014). The BIOSORT is able to sort nematodes based on a number of parameters. By 

drawing from an entire population, the system is able to sort C. elegans based on size, number, 

and the fluorescence intensity. This system is ideal for monitoring the fluorescence of treated 

neurons in C. elegans, but the results are passive, only measuring how a reagent affected the 
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nematode at the peak of response. Essentially, the active uptake of a reagent cannot be seen, 

limiting the experimental results. Another drawback is the price for sale for $300,000. 

 One last method used to sort C. elegans is a modified use of fluorescence-activated cell 

sorting (FACS) (O’Reilly, 2014). As the name implies, this method is typically used for sorting 

fluorescent cells. A novel method has been developed to modify existing systems to sort C. 

elegans larvae based on fluorescence, which is called live animal fluorescence-activated cell 

sorting (laFACS). FACS is able to sort up to 100,000 larvae in one hour. This is beneficial 

because one can use the same system to sort cells and C. elegans larvae instead of having 

different systems dedicated to each. However, a drawback is the size limitation, which only 

allows young larvae to be sorted, as the system is traditionally just used for cells.  

2.3.3 Arduino System 

This section introduces the Arduino microcontroller and software environment. It serves to 

relate our literature review to our project strategy, indicating the methodological route we will 

take. 

The Arduino prototyping device “is a microcontroller development platform paired with 

an intuitive programming language that you develop using the Arduino integrated development 

environment (IDE)” (Blum, 2013). The software is based off of C/C++, and it sets the stage for 

writing a computer program, which can then be uploaded to the Arduino board. 

The hardware board is based off of an 8-bit Atmel AVR microprocessor, an oscillator, 

and a voltage regulator; it “processes inputs and outputs between the device and external 

components” that can be attached to the device (McRoberts, 2013). Adding separate components 

to the system can transform this device into a dynamic, programmable control unit for almost 

any application. Some external companies, including Adafruit, TinkerKit, Annikken Andee, and 
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Xbee, are approved by Arduino as viable producers of Arduino-compatible technology, and they 

even have products for sale through Arduino’s site (Shields/3rd Party). These extra components, 

called “shields,” are attachable circuit boards that add robust functionality to the Arduino project 

(McRoberts, 2013). 

In addition, the Arduino is fundamentally open source, meaning “all the design files, 

schematics, and source code are freely available to everybody.” Furthermore, it means that the 

Arduino software and hardware can be readily integrated into independent projects that steer 

away from the standard design protocol, and commercial distribution of these projects using 

Arduino’s designs is permitted (Blum, 2013).  

Since Arduino is a comprehensive and open-source product, its applications can vary 

greatly. Automation is well within Arduino’s capabilities in terms of mechanical and electrical 

functionality. Arduino’s online community, with its wide-reaching audience, will have the proper 

resources for our team to be able to find a suitable route for creating an automated chemical 

screening system. 
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Chapter 3: Project Strategy 

The overall goal of this project is to create a device that enables the automated delivery of 

a chemical library to a microfluidic arena containing C. elegans nematodes. The purpose of this 

system is to facilitate high-throughput drug discovery for the treatment of neuropsychiatric 

disorders, which can be modeled using this organism. Moreover, we hope that this platform 

technology can be applied to other biological research, providing an automated alternative to 

applications such as cell culture studies, and staining. Using our background research and input 

from our project advisor, Dirk Albrecht, we have identified the following objectives and 

constraints to develop an approach to the task at hand. 

 
3.1 Client Statement 

At the onset of this project, our initial client statement was to: Create an automated 

system to improve the throughput of microfluidic experiments using C. elegans. After discussing 

the scope of the project with our advisor, and determining the current state of chemical screening 

in C. elegans, we revised our client statement to be to: 

Design, develop, and assess an automated system to improve the throughput of neurological 

screening assays in C. elegans by sequentially delivering chemicals from a 96-well plate to a 

microfluidic arena. The system must deliver chemicals with a minimum flow rate of 

0.1mL/minute and switch chemicals within one minute or less, while preventing the introduction 

of air bubbles. Additionally, the system must fit within the geometric confines of the current 

imaging apparatus. 

This revision more clearly states the scope of our project, specifically with the addition of 

"assess," "neurological screening assays," "sequentially delivering chemicals from a 96-well 
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plate to a microfluidic arena", and the specific constraints associated with sequential delivery. 

The constraints given to us by our advisor provide minimum specifications that our system needs 

to achieve. Assessment of our system will increase the credibility of our project, since ensuring 

that the design actually works is essential to its scientific and commercial validity. 

Distinguishing the microfluidic experiments as "neurological screening assays" defines the 

experiments for which the system is intended, thus helping us tailor our system specifically to 

these experiments. The inclusion of "sequentially delivering chemicals from a 96-well plate to a 

microfluidic arena" clarifies the particular process our system aims to augment. With this goal in 

mind, we identified the following objectives and constraints, which provide a framework for the 

creation of an optimal design. 

 
3.2 Objectives 

Creating central objectives helped guide us in the design process. The objectives are 

outlined and categorized as follows: accurate, efficient, precise, safe, and user friendly. An 

objectives tree is shown below in Figure 11, which summarizes what we hope to accomplish by 

keeping each objective in mind throughout the design process. 
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Figure 11: Objectives tree containing the primary and sub-objectives 

To determine the importance of each objective in our design process, the objectives were 

ranked in a Pairwise Comparison Chart (PCC) (Table 1 below). After establishing a thorough 

description of each objective, the team began comparing them. Accurate received the highest 

ranking in the PCC, emphasizing the significance it has in our project. Our system has many 

accuracy specifications that will determine the quality of its performance while running 

experiments. The second highest ranking objective is precise. It is important for our system to be 

precise so that experiments can produce consistent and reproducible results. The third ranking 

objective is efficient. The efficiency of the system is less important than accuracy and precision 

because this objective caters to the convenience of the operator rather than to the functionality of 

the system. However, ideally the system will be hands-off with minimal effort for the operator. 

Objectives

Accurate

Proper Rinse

Correct depth for fluid 
intake

Navigated to designated 
well

Efficient
Minimal duration

Minimal operator manual 
effort

Precise Consistent, reproducible 
results

Safe
No chemical spilling

Proper training

User Friendly
Modular

Adaptable software
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The lowest ranking objectives are safe and user friendly. Safety is always a concern when 

working in a laboratory, but we predict our system will not pose any danger to the operator. 

Finally, the user friendliness of the system is not as important as its overall efficacy. Our advisor, 

Professor Albrecht, discussed the importance of our objectives and helped us refine our rankings. 

The PCC analysis of our objectives establishes a foundation for further development of our 

design process. 

Table 1: Pairwise Comparison Chart (PCC) for ranking the five primary objectives 

 

3.2.1. Accurate 

In order for this system to be used for the collection of high-throughput neural imaging 

data, accuracy is imperative. For this project, accuracy means that the system remains error-free 

in its delivery of chemicals from the 96-well plate to the microfluidic arena. Thus, the automated 

chemical switches must be executed in a systematically reproducible manner. To generate viable 

results, the switches from one well to the next need to be controlled in an accurate spatial pattern 

to ensure that the chemicals are delivered in the intended order, with proper rinsing between 

different chemicals to prevent cross-contamination and a complete flush before the collection of 

data for each new chemical. Furthermore, the system needs to achieve the correct depth in the 
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2mL well to allow for 20 minutes of fluid delivery, without the introduction of air bubbles into 

the arena. 

In summary, the sub-objectives that are encompassed by accuracy are listed below, 

ranked in order of importance (most important  least important). The sub-objectives were 

ranked based on our advisor/client’s directives. 

a. Navigates to a designated well under given commands 

b. Properly rinses between chemical switches 

c. Reaches correct depth for fluid intake 

3.2.2. Precise 

In order for our system to be used for viable data collection, it needs to be precise. For 

this project, precise means that the system must generate consistent, reproducible results. The 

experiments we conduct using the system must yield results that all fall within a reasonably 

narrow quantitative range, thus exhibiting statistical precision. 

In summary, there is only one sub-objective that is encompassed by precision, which is 

shown below. 

a. Consistent, reproducible experimental results 

3.2.3. Efficient 

To optimize the automated throughput of the system, it needs to run experiments in an 

efficient manner. Due to the time-consuming nature of manual chemical screening experiments, 

a key objective is that this system requires minimal user intervention after setup. As opposed to 

the current method, which requires the operator be present to execute the chemical switches by 

hand, an automated system would allow the operator to focus on other tasks during the 
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experiment. Additionally, it is also important to minimize the time required for each chemical 

switch, as this prevents wasting time that could otherwise be used to collect neurological data 

from the worms. Prolonged chemical switches do not have a negative effect on the validity of the 

data, but it decreases the throughput of the system.  

In summary, the sub-objectives that are encompassed by efficiency are listed below, 

ranked in order of importance (most important  least important). 

a. Minimize time the operator spends on the experiment 

b. Minimize duration of chemical switching 

3.2.4. Safe  

In our system, safety is an important aspect. If the system poses a direct threat to the 

wellbeing of the operator, its practicality becomes questionable. Because of this, we plan for our 

system to be safely operable for any user, whether they are learning how to use it for the first 

time or have already mastered using it. This will be accomplished by ensuring that the system 

will not cause chemical spills through normal use, which could pose harm to the operator. 

Additionally, with moving parts there is always a heightened risk of mechanical failure, but for 

our design we plan to minimize the chance that such a malfunction could cause a chemical 

spillage. Furthermore, we will require that all users go through safety training before using the 

system, thus reducing the likelihood of improper use. By minimizing the risk of chemical 

spillage, mechanical failure, and improper use, we hope to prevent harmful outcomes due to 

operating this system. 

In summary, the sub-objectives that are encompassed by safety are listed below, ranked 

in order of importance (most important  least important). 
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a. No chemical spilling 

b. Proper user training 

3.2.5. User Friendly 

Ease of use will ensure that our system is competitive with similar products that are 

commercially available. The only parts of this setup that need to be changed from one 

experiment to the next are the 96-well plate, the PDMS arena with C. elegans, and the waste 

container. Changing these parts will be very intuitive so that proper setup is logical. 

Additionally, the software that will control the apparatus will also be easy to use and 

customizable so that the running of experiments will not be cumbersome. 

In summary, the sub-objectives that are encompassed by user friendly are listed below, 

ranked in order of importance (most important  least important). 

a. Ease of setup 

b. Adaptable software 

 
3.3 Constraints  

As outlined by our advisor, the four categories of design constraints are physical, 

financial, efficacious (or experimental), and temporal. The only physical constraint is that the 

design must fit within the geometric confines of the existing imaging apparatus in Professor 

Albrecht's lab. Since we will be designing moving components that will attach to an existing 

apparatus, we must take precautions so as to avoid collisions of any components of the system 

with the existing apparatus. 

The only financial constraint is our budget of roughly $500. 
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For efficacy, there are four distinct constraints. Switching between each individual 

chemical well must occur within one minute; furthermore, when switching between each 

chemical, a 0.01% carryover rate is the highest value that is acceptable for our purpose, since 

mixing multiple chemicals together can corrupt the collected data. Air bubbles must be prevented 

from entering the microfluidic arena during each chemical switch, so that there are no random 

gaps in the stimuli. Additionally, each individual 2 mL chemical well must last for 20 minutes, 

so the system must allow for a minimum flow rate of 0.1 mL/minute. 

Lastly, the temporal constraint is that we finish the entire project within the allotted MQP 

timeframe. Table 2 below shows a visualization of the categorization of these constraints. 

Table 2: Constraints organized into categories 

Financial • Budget must not exceed $500 

Physical • Must fit within the geometric confines of the imaging apparatus 

Efficacy 

• Chemical switching must occur in less than 1 minute 
• Allow for a minimum flow rate of 0.1 mL/minute 
• Air bubbles must be prevented during chemical switch 
• 0.01% chemical carryover across wells 

Time • Finish within MQP timeframe 

 
3.4 Project Approach 

 In order to accomplish the goals set out for this project, we devised a project approach to 

which we plan to adhere. We have separated our project goals into two categories: design and 

validation. The design component of our project includes completing the existing microscope 

apparatus in Dr. Albrecht’s lab. This involves constructing a method of chemical extraction from 

the 96-well plate by means of z-axis motion; the x- and y-axis components to the motion 
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involved in chemical extraction from the 96-well plate have already been designed and created 

by Dr. Albrecht. 

The 96-well plate is attached to the apparatus using an aluminum holder that we 

developed, and is moved in a Cartesian-coordinate system, in the plane parallel to the lab floor, 

using Arduino software and a DC stepper motor. The chemicals should then be extracted from 

the plate using rigid tubing and height difference, to manipulate the liquid to move downwards 

into the arena. We use Arduino-controlled components to carry out this z-axis motion, since the 

x- and y-axis components were both already operating through the same technology. We believe 

using Arduino technology for all movement involved with chemical extraction streamlines the 

design and use of the apparatus as a whole. 

The validation portion of our project involves conducting initial experiments to ensure 

that the apparatus meets all of the fundamental design objectives and constraints. Following this 

preliminary assessment, we will conduct previously studied neural screening experiments, to 

ensure that this apparatus is able to reproduce the results obtained using the existing methods. 

We hope that after the completion of our project, the overall experience and results of conducting 

high-throughput chemical screening experiments using Dr. Albrecht’s apparatus will be more 

robust, hands-off, and reliable than through the current manual method. 
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Chapter 4: Alternative Designs 

Using our objectives, constraints, and project approach that we previously outlined, we 

began the process of bringing our device to fruition. We researched potential pieces and methods 

that can be used to complete the apparatus, in accordance with the previously established 

functions, needs, and specifications. We brainstormed alternative designs and compared them to 

each other, weighing out the advantages and disadvantages of each, in order to decide upon a 

final design concept. We then modeled the physical setup of the apparatus as a whole in 

SolidWorks to ensure that everything would fit together and move properly. Finally, we discuss 

the experiments we will conduct to ensure that the apparatus closely follows the guidelines 

previously set for our design, while still maintaining functionality. 

 
4.1 Needs Analysis 

In terms of the results of our design and the preferences associated with them, set by our 

advisor, the experimental constraints are the “needs” of our design. To reiterate, switching 

between each chemical must occur in less than one minute, the setup should allow for a 

minimum flow rate of 0.1 mL/minute, air bubbles must be prevented during chemical switches, 

and there must be no greater than 0.01% chemical carryover across the wells. After meeting with 

our advisor, it was clarified that chemical switches must actually occur within a matter of 

seconds, and not just within one minute. Therefore, we sought to find a robotic component that 

prioritizes speed and accuracy of movement, in order to accommodate for this slight change in 

constraints. 

As for the “wants” of our design, these are the experimental objectives we previously 

outlined. These entailed that the apparatus and the experiments carried out are accurate, efficient, 
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precise, safe, and user-friendly. Table 1 and Table 2 display visual representations of the relative 

importance of these characteristics. 

Additionally, in order to complete the apparatus, our team has to design a platform that 

will hold the 96-well plate when it is going through chemical switching. To do this, we need to 

think about how this piece will fit into the overall apparatus spatially and then we will create a 

model using SolidWorks computer-aided design software, so that we can analyze how the 

different parts will fit and move together. As delineated by our advisor, this holding platform 

cannot be heavy, should not deform easily, and must have as little ground clearance as possible 

between the microscope platform, to minimize the tube length at the 96-well plate/microfluidic 

arena interface. Therefore, we will need to find materials and a design that fit these criteria. 

 
4.2 Conceptual Designs 

The final design was heavily dictated by the experimental constraints and suggestions 

from our advisor. At first there were a number of ideas that made use of different methods and 

were analyzed, but as the constraints became more defined the design took a more definitive 

shape. At the outset, since the x- and y-axis components were already constructed using Arduino 

hardware and software, we considered using the same technology for the z-axis motion ideal. 

However, since these components were already constructed, it left us with a limited space to 

work within. 

The 96-well plate holder could not be higher than the moving platform, so we decided 

that a two-piece holder secured together by screws was the best design. This was intended to 

limit the amount of material needed, and allowed for more structural integrity, compared to 

soldering two pieces together. 
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Next, we analyzed the method by which to obtain the liquid from the 96-well plate 

through the z-axis. This component must accommodate rigid tubing, for fluid delivery from the 

96-well plate to the microfluidic arena, and perform fast chemical switches, as stated in the 

constraints. Our design options for the z-axis motion, along with explanations of our decision 

processes for each, are detailed below. For each option, we wanted to capitalize on the design 

objectives we described previously, while keeping our constraints in mind. 

Linear Actuator 

With rigid tubing and the need for quick switching, we posited that a miniature linear 

actuator would be ideal to move the tubing. However, the commercial options available for this 

device were limited in options for length and speed. Moreover, it is expensive and very heavy, so 

we opted to find different design ideas. A visual representation of this design is shown below in 

Figure 12. 

 

Figure 12: Conceptual drawing of the linear actuator 
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Elevating Platform 

We considered an elevating platform, which essentially was a lab jack placed on top of 

the 96-well plate holder, and underneath the plate itself. This eliminated any need for attaching 

the tubing to any moving part, since the x-, y-, and z-axis movements would all be controlled by 

the motion of the plate. However, this was also a very bulky design and we feared it would 

increase the risk of chemical spills onto the apparatus, since the entire plate would be constantly 

moving. Additionally, this component is a rather costly one, so if we chose to pursue the idea, we 

would design our own 3D-printed version in Solidworks and have it machined in steel or 

aluminum. Still, this would be heavy and thus susceptible to excessive spillage since such large 

parts would be moving rapidly in each axis, seen below in Figure 13. 

 

Figure 13: Conceptual drawing of the elevating platform design 
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Rotating tire 

The rotating tire design includes the use of one servo motor and two tires. This design 

will be oriented horizontally and feed the tubing in-between the two rotating tires. The servo will 

control the movement of the tubing. The tubing will also be held in place on the base of the 

design to prevent it from moving out of place on either side. The conceptual drawing of this 

design can be seen below in Figure 14. This design will be inexpensive, however it is likely to be 

inaccurate. 

 

Figure 14: Conceptual drawing the rotating tire design 
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4-Link Hinge 

 The 4-link hinge design will include four joints and a servo motor. As the servo motor 

rotates 180 degrees at a fixed link it, will force the other links to move accordingly (up or down 

at the same degree), seen in Figure 15. The tubing will be attached to the moving links and sway 

under the given servo commands. This design will be inexpensive, but the swaying of the tubing 

will cause inaccurate movements.   

 

Figure 15: Conceptual drawing of the 4-link hinge design 
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Screw 

We also considered the screw design, which includes the use of a stepper motor and 

various machined parts. The stepper motor would spin the threaded “screw” machined 

component in order to move the attached “nut” component up and down. The tubing will be 

attached to the “nut” part of the design and held vertically in a casing, Figure 16. We analyzed 

this design and it will be expensive with all of the custom parts and will need a lot of testing 

prior to its use. 

 

Figure 16: Conceptual drawing of the screw design 
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Pulley 

We also analyzed the design concept of a pulley, with a belt running around two separate 

wheels arranged along the z-axis, and the tubing attached at two points along the belt in order to 

secure it, but not force it to snap, seen in Figure 17. The movement of the wheels would be 

controlled by a micro servo motor, which is very fast and inexpensive. Overall, this design would 

be very tall, consuming a considerable amount of space along the z-axis, but not as bulky in 

terms of surface area in the x- and y-axes. Moreover, the micro servo motor itself is very light, 

and the accuracy of its movement is high. 

 

Figure 17: Conceptual drawing of the pulley design. 
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Slide Potentiometer 

Taking all of these options into account, the linear actuator was effectively the most ideal 

option, save for the high cost and bulkiness. We opted to find a lightweight, inexpensive version 

of this device and encountered the motorized slide potentiometer (slide pot). This option was 

smaller, relatively lightweight, fast, very reasonably priced, and capable of position sensing, 

which is crucial to our design. Since this discovery proved to be very promising, we pursued it 

further. Shown below is an image of this product. 

 

Figure 18: Slide potentiometer from Sparkfun Electronics. 

 

In order to optimize our design, we had to consider the specifications for each design we 

conceptualized. The specific factors we considered included range of motion, relative accuracy, 

speed, cost, control system, and which motor is included in the design. We estimated range of 

motion based on information provided by motor data sheets or through calculations, if the motor 

would be incorporated in a system we developed. Accuracy was qualitatively approximated 
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based on how we believed the system would perform the required tasks. The speed was 

evaluated using data sheets; for systems that would have required us to build a motor, we did not 

include a speed value, as we did not know the specific dimensions of the system. The cost of 

each system was approximated based on the motor and additional materials required. The control 

system and motor categories were both dictated by the type of motor being implemented. A 

summary of each of these specifications can be found below in Table 3. Prior to conducting these 

experiments, we will prioritize our design choice based on the holistic optimization of 

specifications, including the relative qualitative characteristics. 

Table 3: Design Specifications to Facilitate Optimization 

Z-axis 
Movement 
(50mm) 

Linear 
Actuator1 Pulley Screw Platform2 Rotating 

Tire 
4-Link 
Hinge Slide Pot 

Range of 
motion 10-100 mm 100 mm 100 mm 100 mm 100 mm 100 mm 100 mm 

Accuracy High Medium- 
High Medium Medium Medium Low-

Medium Medium 

Speed 23 mm/s 123 mm/s <100 
mm/s 

<100 
mm/s 123 mm/s 123 mm/s 200 mm/s 

Cost $70-90 ~$30 ~$30 ~$75 ~$30 ~$30 $19.95 

Control 
system 

Direct 
position 

Direct 
position 

Direct 
position 

Direct 
position 

Direct 
position 

Direct 
position 

Motor 
speed 

control 

Motor Internal 
stepper 

Servo3 
(13.6g) 

Stepper4 
(200g) 

Stepper/ 
High 

torque 
servo5 

Servo Servo DC 

 

1 http://www.firgelliauto.com/products/high-speed-actuator 
2 http://www.ctechglass.com/ctech-lj2503-p-47.html   
3 http://www.rakuten.com/prod/neewer-mg90s-metal-gear-rc-speed-torque-micro-servo-9g-for-trex-
align/275316982.html?listingId=375596357&sclid=pla_google_NeewerDirect&adid=29963&gclid=CIS38sH2z8ICFchr7AodCkIAtg 
4 http://www.adafruit.com/products/324?gclid=CNz7rez3z8ICFcXm7AodgH8A9g 
5 http://www.gpdealera.com/cgi-bin/wgainf100p.pgm?I=FUTM0654 
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4.3 Functions (Specifications) 

After constructing the chosen design, we will conduct validation tests to make sure that 

the design is properly fulfilling each constraint specified by our advisor. Table 4 below outlines 

these tests. In order to quantify chemical crossover, we will fill each well with water in place of a 

chemical, and we will use spectroscopy, which is a method of determining the concentration of a 

substance present in solution by measure the way light is absorbed or reflected through the 

liquid, a pH test after dissolving a solute in each well (for example, salt), or gas chromatography, 

which is a way to determine the chemical purity of a solution. To sense pressure feedback when 

the tube is inserted into the well, in order to make sure the tubing does not hit the bottom of the 

plate, we can either place a very sensitive pressure sensor underneath the plate and have a 

continuous reading of the pressure available, or we can monitor the feedback from an actuator 

attached to the tubing. To ensure proper flow rate, trial and error is an option, in which we will 

adjust the height of the 96-well plate to approximately adjust the flow rate. We can also calculate 

the flow rate across the arena, since it is constant, using the volume of the liquid and the distance 

across the arena. Additionally, we could calculate the flow rate through the tubing using the 

height of the column and the density of the liquid. Lastly, to ensure proper speed of chemical 

extraction, we can record the change in height over time using imaging software, or we can 

attach a marker at a certain position on the tubing and use visual confirmation that it is moving at 

an appropriate speed. 
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Table 4: Function-Means (Morphological) Chart for Validation Tests 

Function Means 
1 2 3 

Quantify chemical 
crossover Spectroscopy pH test Gas chromatography 

Sense pressure 
feedback 

Pressure sensor 
under plate 

Feedback from 
tubing actuator ••••• 

Ensuring proper flow 
rate Trial and error Calculate flow rate 

across arena 
Height and density 

calculation 

Ensure proper speed 
Record and analyze 

change in height over 
time 

Visual confirmation 
of flow through 

tubing 
••••• 

 

4.4 Feasibility Study/Experiments 

 To assess the feasibility of the developed system, there are a number of studies that must 

be conducted. These experiments range from those that ensure the fundamental design objectives 

and constraints are met, to those that determine the system’s ability to successfully reproduce C. 

elegans chemical screening assays. These procedures were introduced in Section 4.4, but we will 

go into greater detail about our experimental protocols in this section.  

To prove that our design is a feasible solution to the problem being addressed by this 

research, there are a number of explicit benchmarks that must be assessed. These milestones 

include the quantification of chemical crossover, the determination of pressure feedback, the 

establishment of proper flow rate, and the verification of timely switches between chemicals. To 

analyze these parameters, we will evaluate the means presented above in Table 4.  

To quantify the rate of chemical crossover, we will use either spectroscopy or a pH test. 

We anticipate that these means will be reliable and provide a timely and cost-effective way to 

assess our system. Both of these means involve similar experimental protocols; we will load a 

96-well plate with either a dye of known concentration or a salt solution of known pH. These 

solutions will represent the “chemical” being studied for level of crossover. The first column of 
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the well plate will alternate between “chemical” and distilled (DI) water, and the second column 

will be filled with the same stock of DI-water used in column one. With this protocol, we should 

be able to measure the level of dye carried from the first “chemical” well to the second, after it 

has been rinsed. This will be determined using spectroscopy to measure the concentration of dye 

in the second well (which should be just DI-water) after the tubing has been moved to it, or by 

determining the pH of the liquid in this well. 

As discussed in the previous section, we will measure the degree of contact between the 

tubing and the bottom of the 96-well plate using either a sensitive pressure sensor or by direct 

feedback from an actuator. This evaluation will depend on which final design we choose to 

implement for the z-axis movement. If we use one of the design options that utilizes a servo 

motor, we will likely have to use the pressure sensor, as the motor will likely not have feedback 

capabilities. Some of the linear actuators we have researched include a feature for feedback, 

therefore if we choose to implement on of these motors, we may not need an external pressure 

sensor to conduct this preliminary measurement. 

Our assessment of flow rate through the microfluidic arena will be mathematically 

evaluated and confirmed with trial-and-error experimentation. We will utilize all three of our 

means for this research, beginning with a mathematical calculation of flow rate, followed by a 

measurement of the flow rate across the arena, and finally by observing the amount of liquid that 

passes through the system over a specific duration of time. To measure the flow rate across the 

arena, we will pulse dye through the microfluidic arena and quantify the time it takes to pass 

from one side to the other. In a similar manner, we will flow liquid through the system for a 

specific duration of time (e.g. 1-10 minutes) and measure the volume that accumulates in the 

outflow reservoir. This final step will allow us to adjust the height difference of the inflow and 
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outflow locations to optimize the flow rate of the system (i.e. 0.01 mL/min). Our preliminary 

studies will also involve testing the flow rate when the system is operating under experimental 

conditions. These tests will include determining the duration each well can be drawn from and 

confirming that the flow rate remains constant after each chemical switch. 

Our final preliminary study will be to evaluate the speed of chemical switches. This 

parameter has been thoroughly investigated in our search of an optimal z-axis component for the 

automated system. Once this component is incorporated, we will quantify the rate at which the 

movement from one well to the next occurs, by recording the switch and analyzing the video. 

This will also be studied by determining the rate at which one “chemical” clears the arena and is 

replaced by another. This will likely be conducted by alternating a clear liquid (i.e. S. basal 

buffer) with a buffer containing dye. 

Upon completion of the preliminary studies used to ensure that all of design constraints 

are met, we will conduct experimental studies using C. elegans. The initial experiments will 

involve repeating a chemical screening assay that has been previously studied using the manual 

method. This comparison will allow us to assess our system’s ability to reproduce scientific data, 

which is needed to draw the conclusion that it is a successful alternative to the manual method, 

which is the current gold standard. We will likely reproduce a small-scale version of the AWA 

chemical screen presented by Larsch et al., in which neural responses to a range of chemical 

molecules were assessed by quantifying change in fluorescent intensity.  

4.5 Modeling 

In order to test the validity of our designs we created SolidWorks models. The current 

system was assembled using parts from OpenBuilds online resource center, such as the gantry V-

slot plate, the V slot bars, wheels, and screws seen in Figure 19. The initial automated system, 

60 
 



 

built by our advisor, was responsible for x- and y-axis movement. Our project addresses the z-

axis movement and creates a platform to hold a 96-well plate during testing. The modeling 

system is used to test the physical constraints and barriers surrounding the platform and z-axis 

design components.  

 

Figure 19: Current automated system, responsible for x and y axis movement, in Solidworks 

 
In SolidWorks, we were able to accurately model the size and dimensions of the 96-well 

plate platform, shown below in Figure 20. This model will be 3-D printed and attached to the 

current system to determine if there are any spacial constraints that SolidWorks did not display. 

Figure 21 displays the 3-D printed platform integrated with the system.  
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Figure 20: 96-well plate platform model for 3-D printing 

 

 
Figure 21: 3-D printed platform model with 96-well plate and current x- and y-axis system 
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To assess the preliminary SolidWorks design of the 96-well plate platform with the 

current apparatus, the model 3-D printed in Worcester Polytechnic Institute’s rapid prototyping 

lab is shown in Figure 22. The printed model was then screwed and secured in to the designated 

V-slot plate.  

 

Figure 22: Preliminary 3-D printed platform 

After testing the 3-D printed model with our current system, we will machine the 

finalized platform from compressed aluminum. In order to machine this platform, it needs to be 

split into two components to conserve material and minimize cost. The two components include 

the arm and the base seen in Figure 23.  
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Figure 23: The base and arm of the platform model that will be machined as the final product 

Before machining the base and arm of the platform, we evaluated the 3-D printed model 

and created another model of the machined part with the current system (base-teal, arm-gray), 

shown below in Figure 24. 

 
Figure 24: Machined base and arm model with the x and y system 
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4.6 Preliminary Data 

4.6.1 Load Test from SolidWorks 

Upon integrating the preliminary 3-D printed platform with the current apparatus, the 

platform deformed under the weight of the 2ml 96-well plate. This deformation caused the 

platform to collide into various parts of the imaging apparatus. A new design was created as a 

solution to the deformation. The base of the plate was made 2mm thicker (from 3mm to 5mm), a 

taller wall was inserted along the back of the platform (height of 7.5mm) to prevent medial 

bending, and the arm was thickened to absorb more of the stress applied by the force. The 

stresses of the new design can be seen below in Figure 25. The dimensions for this platform can 

be seen in Appendix D. 

 

Figure 25: Stress Present of Updated 96-Well Plate Holder Design 

 

Figure 26 below displays the newly rendered platform with ABS plastic material, under a 

force of two Newtons. The scale bar to the right of the platform displays the location of 

65 
 



 

maximum displacement the platform will experience under a 2N load. The maximum 

displacement ~ 1.1mm is shown in the far corner of the platform. Since the displacement does 

not exceed 1.1 mm, the platform will not collide with the imaging apparatus. 

 

Figure 26: Displacement of the Updated Platform made of ABS under the Force of 2N 

 

 After this modeling, we went ahead and 3-D printed the holder once again. The final 

product can be seen below in Figure 27. 
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Figure 27: Updated 96-well Plate Holder 3-D Printed 

 

4.6.2 Arduino and Slide Potentiometer 

To test the speed and strength of the slide pot, we first connected a 9 volt battery to its 

terminals and switched the polarization of the battery back and forth to qualitatively observe how 

fast the slider moved from one extreme of the track to the other extreme. We determined the 

speed was adequate, so we proceeded to crudely test the strength by suspending the slide pot, 

with a sharpened piece of tubing attached to the slider, above a 96-well plate covered with plastic 

seal, and switching the terminals of the battery so that the slider would shoot downwards and the 

tubing would pierce the seal. The outcome was satisfactory, as the seal was pierced almost every 

try, so we continued to test the speed and strength of the slide pot more accurately, using 

Arduino software and hardware. 

Initially, we tested the integration of the slide pot with Arduino software and hardware by 

connecting it to the Uno microcontroller board. This test performed the same motion as our first 

test, shooting from one extreme of the track to the other extreme. Refer to Appendix A for the 

sketch containing the code used for this test. 
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Per our advisor’s suggestion, we used the position sensing functionality of the 

potentiometer on the slide pot. This facilitated the accuracy of its movement when we 

implemented Arduino code to control it. Each position on the track of the slide pot was assigned 

a number 0 through 1023. Our goal was to move the slider from position 0 to roughly position 

400 as quickly and precisely as possible, stay at that position for several seconds (however long 

it takes the x-axis and y-axis movements to complete), and then move from position 400 to 

position 0 as quickly and precisely as possible, without overshooting or ricocheting backwards at 

any point throughout this process. Since we had already tested that the slide pot was strong and 

fast enough, we wanted to make sure it could reach those same criteria while traveling a smaller 

distance both ways; after adjusting parameters such as the position of the origin and the speed, 

this result was satisfactory. Refer to Appendix B for the sketch containing the code for this test. 

Also per our advisor’s suggestion, we used the Arduino Motor Shield Rev3 to facilitate 

the controls of the slide pot’s DC motor. This motor shield is based off of the L298, which is a 

dual full bridge driver that takes transistor-transistor logic levels as an input, and in turn “drives 

inductive loads such as relays, solenoids, DC and stepping motors” (L298 Dual Full Bridge 

Driver). The motor shield independently controls each attached motor’s speed and direction, and 

it can control two DC motors, or one stepper motor. 

After conducting simple tests using a digital multimeter to measure the voltage passing 

through the motor shield and confirm that it is compatible with the voltage levels passing 

through the setup, we combined all of our z-axis components with our advisor’s previous work, 

so that the slide pot could run off of the same Arduino Uno that controlled the x- and y-axis 

system. Following this, we combined the code that controlled the x- and y- axis system with our 

code as well. 
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After combining the components together, we realized powering the slide pot with 

household electricity, versus a 9 volt battery, resulted in very fast and powerful movement, to the 

point where we needed to reduce both, or at least find a way to buffer the slide pot’s movement. 

We attempted this by changing the parameters of the code once more, creating a buffer in the 

code, and creating a small physical buffer at the bottom of the slide pot as well. Ultimately, our 

code setup included a function in which the slider would slow down as it approached its 

destination. Refer to Appendix C for the sketch containing the code used for the entire apparatus. 

Once we determined our integration of each component to be satisfactory, we focused on 

combining the Arduino code of the x-, y-, and z-axis components with the software controlling 

the microscope, Micro-Manager. When the Arduino-controlled system’s movement completes, it 

sends a signal to Micro-Manager, which streamlines the timing of each movement. 

4.6.3 Z-Axis Mounting 

After coordinating the x-, y-, and z-axis movement came the task of mounting the z-axis 

component and connecting the tubing to it. As a preliminary test, the slide potentiometer was 

secured to a ring stand and the rigid tubing was attached to the moving part of the slide 

potentiometer using tape. Once the principles behind that test were confirmed, a more permanent 

mounting solution needed to be established. 

To suspend the device an appropriate distance above the 96-well plate, an apparatus 

consisting of three stainless steel bars was constructed. The bars were secured together with 

cross bar holders and then attached to the entire imaging apparatus, as seen in Figure 28 below. 

The cross bar holders are adjustable so that the height of the horizontal bar can be changed. The 

bars were also sawed to a shorter length so as not to protrude unnecessarily. 
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The slide pot has two mounting holes in it, two centimeters apart from each other, so that 

it could be secured to another device. A piece of sheet metal was acquired and cut into a triangle, 

in which we drilled three holes, two small ones, two centimeters apart and one large one, so that 

it would secure the potentiometer and be connected to the mounting bars. To incorporate the 

slide pot for z-axis movement, we connected the slide pot to the aluminum triangle, and the 

aluminum triangle to the horizontal mounting rod, securing it over the 96-well plate, as shown in 

Figure 28 below. We connected the slide pot to two of the holes we drilled at the vertices of the 

triangle, using nuts and bolts of sufficient size for fixation. The third vertex was connected to a 

small mounting rod, which was fixed with another cross bar holder. We were able to change the 

specific location of the slide pot by adjusting the position of each mounting rod with respect to 

the cross bar holder.  

After that was accomplished, the tubing needed to be attached to the potentiometer. To 

make sure that the rigid tubing would not bend upon contact with the plastic seal, it was decided 

that placing the tubing into metal hypodermic tubing would ensure that no bending would occur. 

The hypodermic tubing would also be able to be permanently mounted to the slide pot and the 

tubing would easily be changeable. The hypodermic tubing was selected to make for a secure fit 

and was long enough to make sure the tubing could hit the bottom of the well with no 

detrimental bending of the tubing. Upon choosing the best fitting hypodermic tubing, which was 

2 inches in length and has an inner diameter of 0.061 inches, a portion was carved out using a 

Dremel tool so that the tubing could be inserted in the middle of the tubing so as to minimize the 

length it took to reach the microfluidic arena.  It was then secured to the moving part of the slide 

pot using malleable wiring. The entire setup can be seen below in Figure 28.  
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Figure 28: Slide pot and rigid tubing mounting setup 

4.6.4 Initial Dye Test 

To assess the functionality of our assembled automated system, we conducted an initial 

dye test. This experiment involved executing a series of well switches, alternating between dyed 

water and clean water. The purpose of this study was primarily to confirm the ability of our 

system to work given a set of sequential commands. Our plan was to flow dye from well A1 

through the microfluidic system, then to stop the flow, switch to well B1 to rinse, and continue 

on to well A2, which contained pure water. This simple test would allow us to evaluate a number 

of preliminary success parameters qualitatively. Firstly, we wanted to make sure that liquid 

would flow from the 96-well plate to the arena. Secondly, we wanted to ensure that air bubbles 

were not introduced during the switches. Lastly, we wanted to see, in general, how much residual 

dye was left over after the rinse cycle. 

71 
 



 

For this study, we used a microfluidic device created by our advisor, which is named 

"P2". This device (shown below in Figure 29) has four inlets, one worm loading port, and one 

outflow port. In the figure, “A” denotes the buffer port, “B” denotes the chemical inlet, the 

control inlets are abbreviated “ctrl1” and “ctrl2”, “loading” indicates the worm loading port, and 

“out” refers to the outflow port. 

 
Figure 29: P2 Microfluidic Device 

Usually, the four inlets are used to connect the chemical-containing reservoir (i.e. 96-well 

plate), a buffer reservoir, and two tubes that are attached to a control reservoir via a switch valve. 

The only liquids that ever flow through the arena are the chemical and the buffer. Only one of 

these liquids ever flows through the arena at any given time, and their alternation is dictated by 

whichever control liquid is flowing. For simplicity, we used a P2 device that only had the 

chemical and buffer inlets punched. With this setup, we could not switch between the two 

liquids, as they both flowed through the arena at the same time, but it was very simple to balance 

the flows of the two inlet liquids, which allowed us to determine an appropriate mounting height 

for the buffer reservoir. For the purpose of qualitatively evaluating functionality of our system, 

this two-inlet P2 device was suitable. 
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Unfortunately, we ran into an obstacle during the first step of this evaluation―when we 

set up the system and began to flow the dye, it did not enter the arena. We deduced that this was 

due to the fact that the accompanying buffer reservoir experienced less resistance than the well 

containing dye. We further realized that this was likely influenced by two factors, the height 

difference of each reservoir (i.e. buffer and well) and the length of each tube connecting the 

reservoirs to the arena. Once we balanced the heights to compensate for the variation, we were 

able to visualize the correct distribution of the dye and clear liquid in the arena. Due to some 

bubble complications, unrelated to the automated switching, we were not able to assess whether 

the act of switching would introduce bubbles. Additionally, because the dye was very faint, we 

were not able to quantify how much residual dye was left after each switch. Due to these 

obstacles, we planned a series of validation experiments that would allow us to qualitatively and 

quantitatively evaluate these parameters. 
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Chapter 5: Design Verification & Results 

We conducted three main validation tests, including a switching rate study using 

fluorescein, a cross-contamination study also using fluorescein, and a neural screening assay 

with C. elegans, using the attractive odor diacetyl. These experiments were both progressions 

from the initial dye test, since the results from that validation test were not conclusive, nor did 

they provide us with quantitative results. Overall, the purpose of these tests was to validate that 

our initial constraints and objectives were met. 

5.1 Chemical Switching Rate 

We initially tested the duration needed to completely switch from fluorescein to DI-

water. To do this, we established the flow from a fluorescein-containing well, and switched the 

tubing to a DI-water well. We recorded this transition using fluorescence microscopy, and 

quantified the results of this transition using an ImageJ tool that analyzes fluorescent intensity 

levels over time, called “Intensity vs Time plot”. The results from this analysis are shown below, 

in Figure 30. When the fluorescence levels out at the baseline intensity, this signifies a complete 

chemical switch, which occurred after approximately 50 seconds. 
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Figure 30: Chemical switching rate using fluorescein and ImageJ to quantify results 

 

5.2 Cross-Contamination Study 
 

As previously discussed, one of our experimental constraints included having a chemical 

carryover less than 0.01%. We tested this value by using fluorescein and water as substitutes for 

the chemicals that would be used in a traditional chemical screening experiment. The reason we 

used fluorescein and water was because they provided us with a useful platform to assess cross-

contamination between chemicals quantitatively. Fluorescein is a molecule that fluoresces when 

exposed to blue fluorescent light, thus it is very useful as a tracer for imaging. This validation 

test was conducted using two distinct experimental methodologies (i.e. without and with a rinse), 

as shown below in Figure 31 and Figure 32, respectively. For our experiments, we conducted 

method one using wells A1-A12, and method two using wells A1-A6. During the study of 

Method 2, air bubbles entered the microfluidic arena during the latter portion of flow from the 
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well-plate. For this reason, to maintain consistency for our results, we performed a cross-

contamination analysis of only wells A1-A5 for both methods. 

 
Figure 31: Method 1 for fluorescein cross-contamination, without rinse between switches 

 
Figure 32: Method 2 for fluorescein cross-contamination, with rinse between switches 

 

We used the ImageJ tool previously discussed to evaluate the amount of cross-

contamination present during the switches from each fluorescein containing well to the 

successive water well. The analysis process began by establishing a baseline of fluorescent 

intensity, which was done using well A1, as it contained pure DI-water. The analysis for this 

baseline well is shown below in Figure 33. Two measurements of fluorescent intensity were 

taken for each set of images, one in the experimental area of the microfluidic arena, and another 

in a background region of the PDMS where no liquid was present throughout the experiment. By 

taking two separate measurements, we were able to compare the intensity levels, per frame, 

reducing the noise that may be present due to fluorescein’s sheer intensity affecting the areas that 
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did not contain the compound (i.e. the background PDMS). To quantify cross-contamination 

between wells, we took measurements of fluorescent intensity from the wells that contained 

fluorescein, and we compared these values to the succeeding water wells that ideally do not 

contain any fluorescein, unless contaminated. 

 

 

Figure 34 below shows the microfluidic arena during flow from a fluorescein 

experimental well (well A2). The fluorescein wells elicited a spike in intensity over time until the 

Figure 33: Image J software that was used to analyze the fluorescent intensity of the DI-water entering 
the microfluidic arena. The yellow box (indicated with red arrow) is the area that is being analyzed. The 

graphs display the change in mean fluorescent intensity over time (slice of image). 
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stimulus was removed. The background PDMS measurement in the figure below is used to 

quantify how much the fluorescein affected the fluorescent intensity of the “background” or 

surrounding PDMS.  

 

Figure 34: Image J software that was used to analyze the fluorescent intensity of the fluorescein entering 
the microfluidic arena. The yellow box (indicated with red arrow) is the area that is being analyzed. The 

graphs display the change in mean fluorescent intensity over time (slice of image). 

After we obtained the list of 300 fluorescence data points from each experimental well, 

which is equivalent to 30 seconds at 10 frames per second, we were able to quantify the results in 
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Excel using the template shown below in Figure 35. Each 30 second trial included a 10-second 

pulse of fluorescein, occurring from the 5-15 second marks. By subtracting the background noise 

from the intensity levels of the experimental region during each fluorescein pulse, we were able 

to establish a more reliable set of data for each well. The cross-contamination was calculated by 

analyzing each switch from a fluorescein well to a water well, for example, well A2 to well A3. 

For this analysis, a comparison was made between the experimental liquid and the control buffer, 

which, throughout all of our cross-contamination study, was presumably pure DI-water. For our 

calculations, we used the fluorescent intensity values acquired during the 10-second pulse of 

fluorescein to quantify cross-contamination. The results from this analysis are shown below in 

Table 5. It should be noted that in each of these summaries, the time points are referred to in 

terms of frame number, i.e. the 5-15 second marks are equivalent to frames 50-150. 
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Figure 35: Excel spreadsheet used as a template for our data analysis. The highlighted values were the 
most important for our analysis. 

80 
 



 

 

Table 5: Results from the chemical cross-contamination from well A1 to A5, experiment 1 with no rinse 
and experiment 2 with a rinse. 

Experiment 1 (no 
rinse) Fluorescent Intensity Cross-contamination (%) 

A1 (water) 0.350553 N/A 
A2 (fluor.) 3358.147 

0.030872 
A3 (water) 1.01267 
A4 (fluor.) 3306.056 

0.02017 
A5 (water) 0.636682 
Average  0.025521 

Experiment 2 (rinse)   
A1 (water) 0.5763 N/A 
A2 (fluor.) 6457.982 

0.007686 
A3 (water) 0.45143 
A4 (fluor.) 6160.797 0.007199 

 A5 (water) 0.505895 
Average  0.007442 

 

The graphs in Figure 36 below display the change of fluorescent intensity per each 

experimental well, from water wells (A1, A3, A5) to fluorescein wells (A2, A3), using each 

methodology. 

 

Figure 36: (A) Experiment 1:  Fluorescent intensity per each well plate with no rinse; (B) Experiment 2:  
Fluorescent intensity per each well plate with one rinse. 

A B 
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Through these experiments we found that without a rinse cycle the cross-contamination 

was 0.0255%. With the inclusion of a rinse cycle during screening experiments the chemical 

cross-contamination was 0.0074%. 

5.3 C. elegans Automated Chemical Screen 

 Once we completed the tests required to validate that our initial objectives and constraints 

were met, we needed to evaluate our system’s ability to replace the manual method for C. 

elegans chemical screening. To do this, we reproduced an experiment that was previously 

conducted with the manual method, using our automated system, and compared the results 

obtained from each methodology. The experiment, which was originally conducted by Larsch et 

al., involved studying the neural response of a worm strain with fluorescently labeled AWA 

neurons, by means of calcium imaging. This study demonstrated that these neurons respond in an 

attractive manner when the worms are exposed to diacetyl. Furthermore, this study revealed that 

the calcium response to diacetyl occurred with dose dependency; higher concentrations of 

diacetyl elicited larger increases in fluorescent intensity levels. The experiment reported in their 

paper compared a number of different concentrations of diacetyl (i.e. 0.001 μM, 0.01 μM, 0.1 

μM, 1 μM, 10 μM, and 100 μM), each of which was exposed to the worms for a 10-second 

period of time, with 5-seconds of recording before and after exposure, and a 50-second interval 

without exposure or recording between pulses.  

To recreate this dataset, we conducted an automated version, and exposed the worms to 

six different concentrations, 0.1 μM, 1 μM, 10 μM, 100 μM, 1,000 μM, and 10,000 μM each in 

triplicate. These diacetyl concentrations were loaded into wells A1, A3, A5, A7, A9, and A11, 

with intermittent S. basal rinses between those experimental wells. We were able to use all 12 
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wells for this study, as we resolved the issues with air bubble infiltration that occurred during the 

cross-contamination tests. 

Although we recorded all six concentration responses, including those to 1,000 μM and 

10,000 μM diacetyl, Larsch et al. did not report these two concentration levels, so we omitted 

them in our comparison. To create these concentrations, we performed a serial dilution, 

beginning with stock diacetyl (1 M). To create 10,000 μM diacetyl, we pipetted 30 μL of stock 

diacetyl into 30 mL of S. basal buffer. For each serial dilution, we pipetted 200 μL of the 

previous concentration into 1800 μL of S. basal (e.g. 200 μL of 10,000 μM + 1800 μL S. basal = 

1,000 μM diacetyl). This process was repeated for each dilution down to 0.1 μM diacetyl. The 

worms were exposed to each concentration for a 10-second period of time, with 5-seconds of 

recording prior to and 15-seconds following exposure. Each repetition was separated by a 30-

second period without recording, and each new concentration was separated by 45-seconds. 

Concentrations of diacetyl were sequentially delivered to the worms from low (0.1 μM), 

to high (10,000 μM). The worms’ responses were recorded at 10 frames per second, with a blue 

fluorescent light pulsation rate of 10 ms, which was dictated by the MicroManager system set up 

on an accompanying computer. For evaluation purposes, there were 11 animals that we were able 

to analyze for all concentrations, although the device was originally loaded with 21 worms. 

These animals, along with their tagged AWA neurons, can be seen below in Figure 37. It should 

be noted that, while there are 13 green arrows in the figure, two of these worms were omitted 

because they could not be used for all concentrations. This was due to the fact that, despite these 

animals being immobilized via paralysis, some of the paralysis effects wore off during the 

experiment, causing them to go out of frame or collide with one another. 
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Figure 37: Image of C. elegans' AWA neurons responding to diacetyl, where each animal’s AWA neurons 
are labeled by a green arrow. 

Using previously published worm-tracking algorithms (i.e. ImageJ, MATLAB), the 

fluorescent intensity levels of each worm’s AWA neurons were determined with respect to time. 

These values directly correlate to calcium activity, thus they can be used to measure each worm’s 

neural response. The average neural responses of 11 different worms to each diacetyl 

concentration are shown below in Figure 38. 
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Figure 38: Average dose response of C. elegans' AWA neurons to different concentrations of diacetyl, 
expressed by changes in fluorescent intensity. 
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Chapter 6: Discussion 

6.1 Our Results and a Comparison to Larsch et al.’s 

Our fluorescein study not only confirmed that we could meet our experimental constraint 

of there being less than 0.01% cross-contamination between chemicals, but it also found a 

method of conducting this chemical screening experiment that optimizes reaching our cross-

contamination constraint, i.e. Method 2 shown above in Figure 32. Therefore, future chemical 

screening studies would benefit greatly from being conducted using the rinse method.  

Our C. elegans experimental results align quite closely with those obtained by the Larsch 

et al. study, which are shown below in Figure 39. The foremost difference between the Larsch et 

al. methodology and ours is that our study was fully unattended by the researcher due to the aid 

of our automated system. The Larsch et al. study utilized the manual method described in 

Section 2.3.1. Additionally, we delivered 10-s pulses of concentrations of diacetyl in triplicate, 

while Larsch et al. delivered 10 pulses of the same duration. Thus, our complete study was 

shorter in duration than that of Larsch et al. 

Another notable difference between the two studies is that we recorded responses to two 

concentrations, i.e. 1,000 μM and 10,000 μM diacetyl, and Larsch et al. did not, so we omitted 

them in our comparison. Additionally, because these concentrations were so high, they caused 

over-saturated responses in the AWA neurons, thus their inclusion would confound our analysis 

of the results in comparison to the Larsch et al. study. 
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Figure 39: Larsch experimental results; mean AWA fluorescence response to systematic variation in odor 
concentration (10 repeated 10-s pulses) of diacetyl, n= 40 animals38 

Since our experimental methodology was very similar to that of the Larsch et al. study, 

and the results obtained from both were also very similar, we can state that our system was able 

to correctly conduct a neural chemical screening study in C. elegans, without the constant 

researcher attention and intervention needed for manual chemical screening. There are, however, 

small discrepancies between our results and the Larsch et al. results, namely the curves for the 

0.1µM and the 100µM concentrations of diacetyl. These small discrepancies can possibly be 

attributed to variation in the worms’ AWA neural responsivities, as well as different sample 

sizes; Larsch et al. studied 40 immobilized animals, while we studied only 11. Additionally, the 

discrepancies could be attributed to the different number of repeat tests per concentration of 

diacetyl. Because C. elegans can adapt to chemicals, increased exposure to a certain chemical 

will result in an overall lower dose response. We only delivered three 10-s pulses of diacetyl per 

concentration, whereas Larsch et al. delivered 10 repeated 10-s pulses to the animals. Thus, the 
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overall dose responses of the animals in our study are slightly higher than those of the Larsch et 

al. study. 

6.2 Economics 

Our system eliminates the need for purchasing the commercial liquid delivery systems 

discussed above in Section 2.3.2, thus reducing the cost entailing conducting neural chemical 

screening experiments. The total cost for our system, including the Arduino microprocessors, the 

aluminum tracks, the aluminum slides, the mounting rods, the slide potentiometer, the rapid 

prototyped platform, all of the wires, and any other accessories used in the construction of our 

system, amounted to slightly under $300, which is significantly less expensive of any of the 

automated systems described in Section 2.3.2, as they were all priced above $10,000. A side-by-

side comparison of the cost breakdown in relation to other automated systems is shown below in 

Table 6. 

Table 6: Cost comparison of our system with other automated systems 
Part Cost (USD) System Cost (USD)53 

Tracks, slides, and 
mounting rods47,69 167.00 

Biotek Precision 
Microplate Pipetting 

System 
$20,000 

Slide potentiometer 19.95 Biotek MicroFlo $13,000 
Arduino UNO Rev3 

microcontroller board4 21.16 COPAS BIOSORT $300,000 

Arduino Motor Shield 
Rev3 21.16 FACS $18,950 

3D printed platform 23.04   
Total cost 252.31   

 

 

6.3 Environmental Impact 

Our system does not have any significant immediate effect on the environment. 

Nonetheless, improper disposal of screened compounds can result in chemical pollution, but this 
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does not have any implications related to our system, as the researcher is responsible for cleaning 

the work space and proper disposal of experimental compounds. 

6.4 Societal Influence 

Our system provides a more time-efficient method for neural drug screening studies. If 

one were to study all 1280 pharmacologically active compounds in the University of 

Massachusetts Medical School’s Small Molecule Screening Facility (UMMS SMSF) library, 

with three concentrations per compound, it would take 30.27 8-hour work days total, as 

calculated below in Equation 1 (Parelkar).  

Equation 1: Time needed to screen all 1280 pharmacologically active compounds in the UMMS SMSF 
library 

4 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟 × 12 𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟 𝑒𝑒𝑒𝑒𝑐𝑐ℎ × 225 𝑟𝑟 𝑝𝑝𝑒𝑒𝑟𝑟 𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒 = 10,800 𝑟𝑟 𝑓𝑓𝑟𝑟𝑟𝑟 𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑟𝑟 

4 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟 × 12 𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟 ×  2 𝑟𝑟 𝑝𝑝𝑒𝑒𝑟𝑟 𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒 = 96 𝑟𝑟 𝑓𝑓𝑟𝑟𝑟𝑟 𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟 

10,800 𝑟𝑟 𝑓𝑓𝑟𝑟𝑟𝑟 𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝑟𝑟 + 96 𝑟𝑟 𝑓𝑓𝑟𝑟𝑟𝑟 𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟 = 10,896 𝑟𝑟 𝑝𝑝𝑒𝑒𝑟𝑟 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒 

1280 𝑐𝑐𝑟𝑟𝑒𝑒𝑝𝑝𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐𝑟𝑟 × 3 𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐.𝑝𝑝𝑒𝑒𝑟𝑟 𝑐𝑐𝑟𝑟𝑒𝑒𝑝𝑝𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐 = 3840 𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟  

3840 𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟
48 𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒 𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟 𝑝𝑝𝑒𝑒𝑟𝑟 𝑝𝑝𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒

=  80 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑟𝑟 

80 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒𝑟𝑟 × 10,896 𝑟𝑟 𝑝𝑝𝑒𝑒𝑟𝑟 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒 = 871,680 𝑟𝑟 = 14,528 min =
242 ℎ𝑟𝑟𝑟𝑟  𝑎𝑎𝑟𝑟 𝑎𝑎𝑒𝑒𝑟𝑟𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒 𝑐𝑐𝑟𝑟𝑒𝑒𝑝𝑝𝑟𝑟𝑐𝑐𝑟𝑟𝑐𝑐𝑟𝑟  

  

The times used for individual chemical wells and rinse wells (i.e., 225 s and 2 s 

respectively), can be altered according to the specific needs for each individual study. Generally, 

the total duration of a screening study should not exceed several hours, since C. elegans 

responses begin to fluctuate after a certain amount of exposure to neural activity-altering 

compounds. Thus, as long as the time to screen chemicals using one 96-well plate does not 

exceed several hours, the individual times for each well can vary. Using our system eliminates 

the need for constant attention and intervention from the researcher, thus resulting in 242 hours, 
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as calculated above, that can be dedicated to other tasks, since our system is hands-off and 

automated. Therefore, our system would save a researcher approximately 30.27 8-hour 

workdays. 

6.5 Political Ramifications 

Although our system does not have a direct influence on the culture of other countries, it 

can increase the pace of worldwide neural research, making access to in vivo and clinical trials 

much easier, thus increasing the chances of finding adequate drug treatments for 

neuropsychiatric disorders. Building off of these political ramifications of our system, as 

research in this particular field becomes more prevalent, we feel that mental disorders will 

become less of a taboo subject in the world, which in turn will fuel neural research even further, 

thus creating a cycle of acceptance, funding, and research. 

6.6 Ethical Concern 

Since our system is primarily meant for research using a microscopic, invertebrate animal 

model, i.e. C. elegans, there are very few ethical considerations that must be taken into account.  

Animal care protocols are used to outline the considerations that must be taken when conducting 

research using vertebrate models (e.g. mice), but they do not apply to C. elegans. There exists a 

debate over whether or not invertebrates, as a whole, experience pain in the same way 

vertebrates do. Given that C. elegans are invertebrate, low-order organisms, they do not warrant 

standard animal care practices that are required for higher-order, vertebrate species. While 

animal testing is a necessary transition between in vitro studies and human trials, the use of C. 

elegans is far less unethical than other, more complex animal models. 
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6.7 Health and Safety Issues 

Our system has very obvious and immediate implications in the health and quality of life 

of those who suffer from neuropsychiatric disorders with no proper treatment options. It greatly 

increases the possibility of finding drug treatments for mental disorders (such as autism, 

schizophrenia, depression, and many others), while increasing the potential of minimizing 

detrimental side effects associated with drug treatments. 

As for safety issues in regards to the researcher/user, our system poses very little 

immediate threat. The slide potentiometer moves very quickly, but the tubing is not sharp or stiff 

enough to cause personal harm. Contrarily, there is a small risk of a chemical spill occurring, 

which could potentially damage the objective microscope beneath the microfluidic arena, since it 

is an electronic device, unprotected from liquid damage. However, this risk is still present during 

manual chemical screening experiments, although slightly higher with our system, since there is 

no way for the system to self-correct errors. 

6.8 Manufacturability 

Our system is very straightforward to reproduce, since all of our materials are open-

source. In order to facilitate reproduction of our system, we have included all our schematics and 

code involved with the creation of our system. Additionally, our system is comparatively more 

straightforward than other high-throughput screening methods, since highly comparable systems 

are only accessible via a facility-based approach. A total of 105 laboratory facilities have 

experimental setups in which microfluidic C. elegans screening experiments can be conducted, 

but the researcher would have to travel to one of the facilities to be able to use it, whereas our 

system can be assembled and used in any laboratory at a small cost.1 

91 
 



 

6.9 Sustainability 

Our system does not have any immediate effect on sustainability, besides electricity 

usage and the manufacturing of aluminum and rapid prototyped parts. The effects of these 

factors on the environment as a whole is minimal, thus the production of our system has no 

significant impact on ecology. 
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Chapter 7: Final Design and Validation 

7.1 Chemical Screening in C. elegans 

C. elegans are an ideal candidate for chemical screening because of their complete 

connectome and their genetic conservation to humans, which allows them to model human 

diseases that can then be tested. These nematodes are ideal for high-throughput testing because 

they are inexpensive, easily imaged due to being transparent, and are small, allowing many 

animals to be monitored at once. There currently exists a way to monitor neural responses of C. 

elegans to chemical stimuli and it is high-throughput in that many animals can be monitored at 

once and that many chemicals can be administered, but it requires the experimenter’s presence, 

which is limiting. Also, timing by an individual experimenter would not be consistent due to 

human error, so there is a need to automate the process. 

7.2 Creating an Automated System for Chemical Screening 

The team's goal was to create an automated system that would be able to draw chemicals 

from a 96-well plate and deliver them to a microfluidic arena where the response of C. elegans 

would be able to be monitored. Using the imaging system already established, the team only 

needed to be concerned with creating a system that would be able to process input commands 

that dictate the timing and actions of the system. By creating a system that is able to automate the 

chemical screening process, the experimenter would save time and the results would be more 

accurate, due to each stimulus being administered consistently. 
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7.3 Engineering Design 

7.3.1 Overview 

The team was given a system with a standard wheel carriage plate that traveled in two 

dimensions along an aluminum v-rail system. The system was programmed to move in distances 

that correlated to the length and width of each well in a 96-well plate, so that a vertical 

component would be able to draw from a specific well when the carriage plate moved. To ensure 

the proper flow of chemicals, the 96-well plate could not be placed on top of the carriage plate, 

so as to minimize the height difference of the 96-well plate and the microfluidic arena. The 

system also had to switch chemicals within 0.5 seconds, which would dictate the speed and range 

of the components of the system. The team decided to use a system that incorporated a fixed z-

axis component, which would draw the chemicals out of the plate, and a movable xy-plane that 

would facilitate switching between wells.  

7.3.2 96-Well Plate Platform 

In order for the system to function as desired, the chemical containing 96-well plate 

needed to be suspended from the x- and y- moving carriage plate so that it was as close to being 

as low as the microfluidic arena as possible, but while still fitting within the spatial confines of 

the system already created. Two iterations of a 96-well plate platform holder were constructed in 

SolidWorks and then 3-D printed. The first iteration showed that the 96-well plate fit within the 

platform, but was too weak to support the plate without major deformation. The platform was 

then made thicker with supporting walls to minimize deformation and succeeded at holding the 

96-well plate and was firmly attached to the carriage plate. 
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7.3.3 Slide Potentiometer for Z-Axis Movement 

Once the 96-well plate was able to move in the x- and y- direction, a method for moving 

the tubing in the z-axis to draw chemicals from the wells and deliver them to the microfluidic 

arena was needed. A slide potentiometer was chosen due to its speed and low cost. The slide pot 

needed to be programmed using an Arduino; this was done so that it moved enough for the 

attached tubing to reach the bottom of each well, and then also to raise enough so that the tubing 

would not drag along other wells when the plate moved in the x- and y- direction. Hypodermic 

tubing was then secured to the slide pot so that the rigid plastic tubing would be secured to it 

simply by sliding it in, allowing for easy switching of tubing. 

7.4 Experimental Methods 

7.4.1 Overview 

Once the system’s ability to move in the x-, y-, and z- directions, to elicit chemical flow, 

was confirmed, the system needed validation testing to ensure that the efficacy of the system was 

on par with the manual method. Cross-contamination rate from one well to the next was 

investigated by using fluorescein. Once the cross-contamination rate was at the accepted amount 

of less than 0.01%, the system's viability was confirmed with live animal testing that could be 

compared to existing data. 

7.4.2 Fluorescein Cross-contamination Testing 

Cross-contamination is a serious concern when screening drugs; without the ability to 

distinguish individual drugs from one another, the response data will be corrupted. Therefore, we 

had the goal of achieving a chemical cross-contamination of less than 0.01% between drug 

switches. To quantify the cross-contamination of the system, the team used fluorescein to 

measure the cross-contamination between trials. Two methods were used to test cross-
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contamination rate. In one method, fluorescein was sequentially tested with DI-water, and the 

amount of fluorescence that carried over from the previous fluorescein well into the successive 

DI-water well, after subtracting the baseline of fluorescence of the PDMS, indicated the cross- 

contamination. A second method, which included a DI-water rinse after each chemical switch, 

was then used to see if the resulting cross-contamination would be reduced due to a rinse. 

7.4.3 Live Animal Testing 

To confirm the efficacy of our system further, we conducted live animal testing using C. 

elegans. We replicated a study previously conducted by Larsch et al., where the AWA neurons 

respond to diacetyl exposure. The team’s automated dose response was conducted at six different 

concentrations of diacetyl (0.1 µM, 1 µM, 10 µM, 100 µM, 1,000 µM, and 10,000 µM) with 

three pulses each on 11 animals, and the animals’ neural responses were analyzed. The highest 

two concentrations (i.e. 1,000 µM and 10,000 µM) were omitted from our comparison to 

previous studies, due in part to the lack of existing data for these particular concentrations. After 

speaking with our advisor, we deduced that the differences in the results for these two 

concentration levels could be due to saturation of neural responses, as well as adaptation of the 

animals to the chemical stimulus. 

7.4.4 Experimental Setup 

We conducted these experiments in a similar fashion to that described in Section 4.6.4, 

with the exception that all four of the device’s inlets were punched, allowing us to deliver 

chemical pulses. 
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7.5 Results 

From the fluorescein study, we found that the inclusion of a rinse cycle between chemical 

switches effected a cross-contamination between chemicals that was within our initial cross-

contamination constraint of 0.01%. The cross-contamination rate with no rinse was found to be 

0.025% while including a rinse reduced the cross-contamination to 0.0074%, meeting our 

constraint of being lower than 0.01%. A complete chemical switch between well A1 to well A2 

occurred within approximately 50 seconds, which was also within our switching speed constraint 

of 60 seconds. 

Building off of our previous successful results, we conducted animal studies evaluating 

the AWA neural response of C. elegans when exposed to different concentrations of diacetyl. 

Our system was effective in eliciting the expected C. elegans neural responses, after we 

replicated a portion of the previously mentioned Larsch et al. Study. Our results, represented in 

Figure 38, show the fluorescent response of the nematodes' AWA neurons increasing with higher 

concentrations of diacetyl. This matches the results found by Larsch et al. with minimal 

differences. Lastly, our entire project had a budget of $500 to create the automated system. We 

only ended up spending $252.31 for everything we used, so we managed our budget very well by 

choosing good components at an ideal price. It is worth noting that the entire set up could not be 

replicated for this amount, due to the cost of the camera, but the automated system component 

that we constructed was able to fit within all of our restrictions. 

  

97 
 



 

Chapter 8: Conclusions and Recommendations 

As discussed in Chapter 6, the potential impact of our system is immense. Because our 

system is able to accurately replicate a neural chemical screening experiment conducted 

manually using C. elegans, the effects of the Larsch et al. study are intertwined with the effects 

of the creation of our system. Additionally, our system has the added effect of increasing the 

throughput of screening experiments that were already high-throughput to begin with. The 

implications of neural screening experiments in general, associated with the increased throughput 

of such experiments, essentially entails that our system can indirectly improve the quality of life 

of millions of people worldwide who suffer from neuropsychiatric illness, at a faster pace than 

current research methods. Moreover, the researcher can spend the 242 hours it takes to test all of 

the pharmacologically active compounds available completing other research or tasks, thus 

increasing the individual researcher’s overall productivity, which in turn can increase the overall 

productivity of all researchers worldwide. 

Before going ahead and testing all 1,280 chemicals, we recommend testing the system 

even more to see that it is reliable and consistent. While we tested the flow rate and the cross-

contamination for the switching of chemicals, there was more that could have been done to make 

sure the system would be able to handle so hundreds of hours of work. The maximum number of 

wells we tested using the automated system was 12, which was performed in both the cross-

contamination and the C. elegans automated dose response studies. The system did not run into 

any problems when it came to this, but to ensure ideal performance, we recommend running 

several tests where all 96 wells of the plate are accessed. This should be done several times, 

timing each trial to make sure the timing is consistent as well. Another reliability factor we could 

test is the depth the tubing travels in each well. This could be done by filling all of the wells with 
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a certain amount of liquid and then timing each one until the well is empty. If the wells do not 

drain at the same rate, then the thresholds for dipping into the wells would need to be changed. 

One more reliability aspect that can be challenged, which would be lengthy, is to test how many 

Press N' Seal wrap punctures the sharp tubing can endure before becoming dull. This could be 

done by just having the system rapidly puncture different well covers until the tubing fails to 

puncture on the first try. This would give an estimate as to how often the tubing needs to be cut 

to ensure proper function. 

Although we were able to reach the goals we had for our system, there are several 

improvements that can be made to our system, thus strengthening the positive impact it has even 

further. One potential improvement is crafting the plate holder platform out of aluminum. This is 

desirable because the durability of aluminum is much greater than that of 3-D printed plastic and 

is light enough to not impact how the system functions. Another potential improvement is 

creating a remote video monitoring system that the experimenter could check from their office, 

home, or even on their smartphone. By allowing for viewing of the system remotely, the 

experimenter can ensure that the experiment is running properly and safely, as any unattended 

use of chemicals should be handled carefully. A major potential improvement to our system 

would be the ability for it to self-diagnose and solve errors that have occurred. By implementing 

measures to ensure consistent flow rate and proper imaging, time and materials could be saved so 

that no trial is wasted due to an error occurring. One last improvement that could be made is to 

make the overall system safer. While the system is currently only available to trained personnel 

that have specifically been given access, there is a need to ensure that chemical spills do not 

interact with electronics or humans in the area. A constantly running vacuum system where 

potential leaks may occur would ensure that chemicals are not displaced in an undesired area. 
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Additionally, some kind of protective shielding could be useful to limit the exposure the 

chemicals have with humans if there were to be a spill. 
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Appendix D 
 

The following schematic displays the dimensions of the 96-well plate platform that we used in 

our automated system. 

 

 

Units: mm 
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