
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2009

EBAY QUERY LINGUISTIC SERVICE
Antoniya Toneva Statelova
Worcester Polytechnic Institute

Radoslav Valentinov Petranov
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Statelova, A. T., & Petranov, R. V. (2009). EBAY QUERY LINGUISTIC SERVICE. Retrieved from https://digitalcommons.wpi.edu/
mqp-all/1073

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/212984695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1073&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1073&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1073&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1073&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/1073?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1073&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/1073?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1073&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Project Number: DXF-EB92

EBAY QUERY LINGUISTIC SERVICE

A Major Qualifying Project Report

submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Radoslav Petranov

Antoniya Statelova

Date: April 18, 2009

Approved:

Professor David Finkel, Major Advisor

2

Abstract

In this project we designed, tested and implemented a query service for expanding and normalizing
titles and searches. With regards to finding synonyms in titles, phrase recognition algorithms were
developed as well. An additional service was created to find appropriate categories for a query to assist
the search of synonyms. An application was then built on top of these two services to help users expand
their searches and build advanced queries with no additional knowledge.

3

Table of Contents

Abstract .. 2

Table of Figures ... 4

Table of Tables .. 6

1. Background ... 7

1.1. eBay Overview ... 7

1.2. Query Expansion .. 7

1.3. Web Service Protocols.. 10

1.3.1. Simple Object Access Protocol (SOAP) .. 10

1.3.2. Representational State Transfer (REST) over Hypertext Transfer Protocol (HTTP) 11

1.4. Web Service Technologies .. 13

2. Synonym Look-Up Service (SLS) ... 13

2.1. Information Storage ... 13

2.1.1. Reading from file .. 14

2.1.2. Hash tables and vectors .. 15

2.1.3. MySQL Database .. 16

2.1.4. Comparison and Conclusion ... 16

2.2. JavaServlet Implementation of Service ... 17

2.2.1. Phrase Recognition Algorithms ... 18

2.2.2. Service Implementation .. 21

3. Category ID Suggesting Service (CISS)... 22

4. Advanced Listing Finder (ALF) .. 23

5. System details and Maintenance ... 29

6. Issues Encountered .. 32

6.1. MySQL Connector/J .. 32

6.2. XMLHttpRequest API in JavaScript .. 33

References .. 34

4

Table of Figures

Figure 1 - Example of query expansion via the PubMed thesaurus (2) .. 8

Figure 2 – The SOAP request structure .. 11

Figure 3 - The SOAP response structure ... 11

Figure 4 - The REST request structure .. 12

Figure 5 - The REST response ... 12

Figure 6 - Look up for a keyword in the hash table scenario ... 15

Figure 7 - State of SLS .. 18

Figure 8 - Start with keyword1 ... 18

Figure 9 - Add keyword2 and try again ... 18

Figure 10 - Start with keyword2 ... 18

Figure 11 - Add keyword3 to phrase .. 19

Figure 12 - Start with whole string ... 19

Figure 13 - Remove a word and try again ... 19

Figure 14 - Remove words until left with "keyword1" .. 19

Figure 15 - Start with all the remaining words.. 20

Figure 16 - Look at remaining words .. 20

Figure 17 - Look at remaining words .. 20

Figure 18 - Start with first two words ... 20

Figure 19 - "keyword1" remains .. 20

Figure 20 - Look at the next two words .. 21

Figure 21 - Consider the last window ... 21

Figure 22 - Phase 1 of ALF .. 24

5

Figure 23 - Phase 2: Selecting a category ... 25

Figure 24 - Phase 3: Select phrases .. 26

Figure 25 - Modified phrases update the synonym list ... 26

Figure 26 - Phase 2 with Additional Options requested .. 27

Figure 27 - Show results and refine search ... 28

Figure 28 - Application Set Up.. 29

Figure 29 - SLS File Structure ... 30

Figure 30 - "main" table details.. 31

6

Table of Tables

Table 1 – Abstract example for SLS table ... 16

Table 2 - Real world example for SLS table ... 16

Table 3 - Test results .. 17

7

1. Background

Before looking at the analysis and design of the web service for the project, it would be useful to

become familiar with the history of eBay to clarify the relevance of this project to the company. Also

some terms and protocols will be introduced, since they will be referred to further on in the paper.

These include query expansion, Simple Object Access Protocol (SOAP) and Representational State

Transfer (REST) over Hypertext Transfer Protocol (HTTP). A brief introduction to the different languages

available for developing web services will also be included.

1.1. eBay Overview

In 1995 Pierre Omidyar created “AuctionWeb”. At the time, “AuctionWeb” was the first of its kind,

which is what led to its success; it allowed people to offer and seek items through it, thus creating an

online marketplace. It started as a small project at first hosted on Omidyar’s personal computer only to

grow incrementally into the company we today know as eBay. Today the company is open to 39

markets, has approximately 276 million users registered worldwide, and accounts for more than $2039

worth of goods exchanged every second. EBay has grown to contain an online self-regulating economy

where the people themselves determined the behavior of the market. [4]

The more people joined this network, the more information the company had to maintain; more entries

were being listed, more users were signing up for accounts, and more changes were occurring

concurrently on the site. Searching through all this information efficiently and maintaining it consistent

prove to be a challenge. Also all the information collected from user activity provides a resource for

analysis and improving designs. Analyzing emerging patterns in user behavior and making use of them

leads to many possibilities for expansion and improvement of the implementation already in place.

The Research Labs were created at eBay for just those purposes – optimization (in searching, stream

processing, computing), machine learning, visualization and cross-platform development. [5] The

problem of search is just as important as it has ever been and has become extremely complex in trying

to save time and space. Additionally, different searching principles have been developed to offer new

kinds of services to people, such as clustering similar items or offering more specific product

classification. Furthermore, human error in listings on eBay can create noise within the data on the

website, so these errors have to also be managed or at least recorded. This grows into an even greater

issue when you add the complexity of the natural language and all attempts at processing it using

machines. All these issues are tackled by the eBay research labs who take on the endeavor to create

new features and improve the already existing ones.

1.2. Query Expansion

8

As the amount of stored data on computer systems grows, so does the demand for its precise

management. While storing information in many cases is a short process and takes constant time,

retrieving it from the database may not be so easy and efficient.

The way searching works on most systems today is by using keywords. Whenever data needs to be

retrieved from a database, the user specifies a number of terms that describe the desired information

and then the searching mechanism goes through the database and determines what the suitable

matches are. This, however, can be a very burdensome and inaccurate process in the sense that in many

occasions the initial keywords may not return what the user needs. This is caused by a number of

reasons such as the inability of the user to accurately describe the information that he or she demands,

the existence of spelling mistakes, the difference in vocabulary and way of expression of the various

database contributors.

One of the solutions to this challenging information retrieval (IR) problem is query expansion (QE).

Query expansion is a technique that improves retrieval performance by reformulating the original query

– either adding new terms or reweighing the original terms. [1] In the context of web search engines,

query expansion refers to the evaluation of the user specified keywords and the expansion of the query

using words or phrases with a similar meaning. This technique usually uses a thesaurus; a list of words

that the query expansion terms are selected from. Other methods involve finding a statistical or

linguistic relation between the query and a set of documents. A good overview of Query Expansion can

be found in Efthimiadis’ Query Expansion. [3]

Query expansion, based on the means of obtaining information, can be divided into three major

categories: Manual QE, Interactive QE and Automatic QE. [3]

Manual query expansion is based on the ability of the user to give the system more precise information

about the data he or she is looking for. In other words, manual QE demands user intervention. This

technique assumes that the user has advanced understanding of the system, the indexing mechanism

and the domain knowledge, which is rarely the case. [2] Figure 1 best demonstrates the difference

between a simple user-defined query and a more advanced system-generated query.

Figure 1 - Example of query expansion via the PubMed thesaurus [2]

The first and third lines show simple user-defined queries. The second and fourth lines depict more

complex versions of the same two queries respectively. Only very advanced syntax understanding would

allow any user to create such sophisticated queries that would return more relevant information. This

9

inherent complexity is the main reason that makes manual query expansion an unsuitable technique for

most available search engines.

Interactive Query Expansion refers to techniques where the user has some interaction with the system

in the query expansion process. This set of techniques includes Relevance Feedback, which is based on

collecting sets of users’ opinions on the search results with which they have been presented. The results

from that feedback then affect the future search results for that exact query; the search results which

have been rated to be better go up in the list, the ones rated to be worse go down.

Automatic query expansion (AQE), on the other hand requires no additional input from the user, since

all the work is done by the system itself. In this way, AQE provides an expanded search to the users with

no additional feedback on their part, which saves them both time and patience. However, AQE is more

unreliable than the previous two query expansion techniques, since the system might not be educated

enough to “guess” for what the user was searching. Thus it is important to perfect this type of

expansion, so it accumulates knowledge about queries and results most accurately and

comprehensively. AQE includes techniques based on search results and knowledge-collecting structures.

AQE is additionally used in collaboration with IQE techniques in such a way that with every search the

system updates the values of the query and documents it is searching through so that the next time the

query is processed, the query value is matched up with more appropriately valued documents. This

method also includes the generation of partial queries to enhance the search. This allows a broader

spectrum of results, since the queries generated are not as restricting as the original one. On the other

hand, this method of ranking documents doesn’t relate the queries and documents, but rather holds

collections of parts of queries which are related to one another. In this way, when performing the search

those related parts can be interchanged or added to make the resulting set of documents more precise

in its subject matter.

One method of storing such relations would be an association thesaurus: a particular list of words with

weights, which can be used interchangeably within queries. The success of the exchange of words in the

query is based on the term weights since they correspond to the relevance of each term to the list in the

thesaurus. For example, the association thesaurus includes the word “bag” and the words associated

with it are “purse” with 80% relevance and “backpack” with 70% relevance. This thesaurus information

means that if a query contains the word “bag”, there’s an 80% chance we’d want to replace “bag” with

“purse” and a 70% chance we’d want to replace it with “backpack”.

Another method of storing is term clustering; it stores thematically related words, which when added to

the query would make the search results a lot more specific. For the “bag” example, this will involve

storing “bag”, “purse” and “backpack” in one cluster and picking the most appropriate one for a specific

query containing any one of them.

10

Similarly there exists term co-occurrence which stores parts of queries that are observed to often

appear together, so the query could be expanded to include one part, if the other is already in place (3).

For example, if you’re searching for “bag”, a popular phrase has been proven to be “travelling bag” so it

will be suggested to you by the query expander.

1.3. Web Service Protocols

In 1998 Microsoft created a protocol for internet communication to replace all the middleware

technologies at the time. This Simple Object Access Protocol (SOAP) would not depend on platform and

language thus providing a standard for any client-server web service communication. They came out

with the first version (SOAP 1.0) of the protocol in 1999 and two newer versions have been released

since then (SOAP 1.1 and SOAP 1.2). Both newer versions of SOAP have become a well known and

commonly implemented standard. But in 2000 with his PHD dissertation, Roy Thomas Fielding created a

new school of architecture for web services – Representational State Transfer (REST). Fielding’s idea

proposed a web service based on a standard already ubiquitous in use - Hypertext Transfer Protocol

(HTTP).

1.3.1. Simple Object Access Protocol (SOAP)

SOAP is an XML-based protocol that defines a set of rules for structuring messages allowing information

exchange between applications. SOAP is not tied to any particular transport protocol but the

widespread usage of HTTP makes it a very popular choice. SOAP allows programmers to create message

exchange and client-server communication frameworks that are completely OS and programming

language independent.

The best way to describe what a SOAP web service looks like is by giving an example. A typical SOAP

client-server communication over the HTTP transport layer can be seen in Figure 2 and is described

below.

GET /zipTemp HTTP/1.1

Host: example.com

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"

 xmlns:sth="http://www.example.com/weather-service">

 <env:Body>

 <sth:GetWeatherAtZIP>

11

 <sth:zip>01609</sth:zip>

 </sth:GetWeatherAtZIP>

 </env:Body>

</env:Envelope>
Figure 2 – The SOAP request structure

The first four lines from the text in Figure 2 represent the HTTP binding of the SOAP message. Simply put

they tell the HTTP protocol to send the XML code to the specified URI (in this case

‘http://www.example.com/zipTemp’) using the GET method. The XML itself is an example of the typical

SOAP structure described in the ‘soap-envelope’ namespace. The entire message is enclosed within the

<Envelope> node which in turn must contain the <Body> node. There are a number of optional nodes

that can also be included within <Envelope> and <Body> but we don’t need to focus on them at the

moment. In this case the application on the server side will know that the requested zip will be stored

within the <GetWeatherAtZIP> and <zip> nodes.

HTTP/1.1 200 OK

Content-Type: application/soap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"

 xmlns:sth="http://www.example.com/weather-service">

 <env:Body>

 <sth:GetWeatherAtZIPResponse>

 <sth:zipTemp>85.2</sth:zipTemp>

 </sth:GetWeatherAtZIPResponse>

 </env:Body>

</env:Envelope>
Figure 3 - The SOAP response structure

Once the request has been received, the server has a number of options. It can either: read it, do
something and not send a response (in the case of one-way message communication); it can read it and
signal an error; or it can read it and send back an appropriate response. In the example above, the
server sends the XML SOAP envelope preceded by the HTTP binding lines that simply notify the client if
the request was successfully received on the other side. In the example shown in Figure 3, the server
sends a response containing the temperature at the requested zip code.

1.3.2. Representational State Transfer (REST) over
Hypertext Transfer Protocol (HTTP)

12

REST is an architectural style that can be summed up as four verbs: GET, POST, PUT, and DELETE. The

verbs have the following operational equivalents:

 GET – read

 POST –create, update, delete

 PUT – create, update

 DELETE – delete

REST revolves around the idea of a more concise and less complex information exchange with less

needless overhead. Instead of sending each request in a separate message, REST would use the URI and

the HTTP method that it was send by, to determine what the necessary action is. A service to get the

details of a user called 'jsmith', for instance, would be handled using an HTTP GET to

‘http://example.com/users/jsmith’. Deleting the user would use an HTTP DELETE, and creating a new

one would be done with a POST.

To better illustrate the difference between SOAP and REST, we will re-write the simple client-server

communication from the previous section, but this time following the RESTful style for writing web

services.

GET /zipTemp/01609 HTTP/1.1

Host: example.com

Accept: text/xml

Accept-Charset: utf-8

Figure 4 - The REST request structure

The only information needed for a RESTful web service is the URI and the sending method used. The

HTTP request in Figure 4 tells the server that it needs to return the temperature associated with zip-

code 01609.

HTTP/1.1 200 OK

Content-Type: text/xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"?>

<sth:tempResults xmlns:sth="http://example.com/weather-service">

 <sth:zip>01609</sth:zip>

 <sth:temp>80.7</sth:temp>

</sth:tempResults>

Figure 5 - The REST response

The response (Figure 5) consists of an HTTP binding shell that describes that status and type of the

request, and a short XML that contains that zip and the requested temperature. Note that the zip is only

included for validation purposes and is not really crucial for the service in general.

13

1.4. Web Service Technologies

Since the discussed protocols SOAP and REST over HTTP are language independent, implementation of a

web service can be done using one of several languages possible - Java, PHP, Ruby, Perl, or Python.

Some of these (such as Java, Python, and Ruby) are more powerful than the others (Perl and PHP).

Depending on the application of them, each has its pros and cons so let’s discuss each further.

Java is the most ubiquitous object-oriented language among software developers today. The main

reasons for its popularity include versatility, efficiency, platform portability and security. Additionally,

Java has many developed libraries, which provide more than enough functionality for building and

testing web services. The downside to Java though is that since it’s platform-independent, its

performance suffers. [6]

Similarly, Python and Ruby offer alternative general-purpose object-oriented languages, but they’re not

as widespread as Java. They each have their strengths; Ruby was created to be highly intuitive for the

user, and in it everything is an object. Python, on the other hand, is a language which is open source and

relies on the community-based development model. [7, 8] Their performance is significantly better than

Java’s when it comes to web services, but we still have room for improvement.

Both Perl and PHP are both scripting languages used for generating dynamic html pages, and although

they aren’t as rich as the previously mentioned languages, their performance is unmatchable. They

possess all the capabilities for developing a web service, however since Perl and PHP were explicitly

created for explicitly for web services, they also perform with a much greater speed.[9,10]

2. Synonym Look-Up Service (SLS)

The Synonym Look-Up Service is a JavaServlet which runs on a Tomcat server, using a MySQL server as

for a backend database. The purpose of the service is to read in a query that the user has entered,

attempt to split it into phrases, and return those phrases with their known synonyms in JSON format.

Phrases are recognized based on the data we have from synonym files given to us, since no other

phrases really matter to us. Following are details on the decisions we made on how to store the data for

our service and the algorithms to be used for phrase recognition.

2.1. Information Storage

14

EBay has a number of server applications that all use the Java-based Tomcat Servlet technology so we

were advised to proceed and develop our web service also in the form of a Java Servlet to be hosted on

a Tomcat server. Choosing a way to store all the synonym information, however, wasn’t so straight-

forward. We had 3 possible options:

 Store all the information in the text files that we were provided with and just read from them

whenever a request is made to the web service

 Store all the information in the server’s random access memory and load it all whenever the

application is started or updated

 Store all the information in a database such as MySQL and access it whenever a request is made

or whenever the data needs to be updated

To make the right decision we developed and tested all three options described above. The files we

started with were flat text files where every new row contains a group of synonyms. A row itself has the

following structure:

Category MainKeyword <statistics for MainKeyword> Keyword2 <statistics for

Keyword2> Keyword3 <statistics for Keyword3> etc.

Where all the keywords in a row are synonyms in the specified category; if we’re trying to look up

synonyms for any one of these keywords in the specified category, we will get the whole list of keywords

in the row. Additionally, the MainKeyword in the list is considered to be the most often used word from

this synonym group. As a rule, every keyword in the file is encountered only once, because in this way

any keyword will only be associated with one synonym group from the file instead of having multiple

synonyms groups and becoming ambiguous.

2.1.1. Reading from file

The first and conceptually simplest method possible for storing this data is just keeping it in the original

file we are given and every time we need to find a word’s synonyms we parse through the file. This has a

couple of obvious flaws – it will become slower as the size of the file grows, and problems with

synchronization may occur, if the file needs to be updated or replaced. The big-O performance of this

method will depend on the length of the file; this means that if the file has n lines of synonyms, the

average runtime of the algorithms will be n/2, so the runtime will be limited by O(n). On the plus side,

this method of storing will use little runtime memory and won’t require much, if any, population and

updating time. This search when implemented just looked for any occurrence of a search word or phrase

in the line of keywords, rather than looking for the occurrence of the exact phrase, which gave a greater

possibility of finding synonyms quicker; this implementation gave us a rough set of results to compare

its look up time to the rest of the methods’ performances.

15

2.1.2. Hash tables and vectors

The next method for storing data was the complete opposite – the basic idea was to load the whole file

into memory, thus entirely optimize the look up time. The initial concept was to store all words in a hash

table, where each word was a key and it would be paired up with a value which was an integer. There

would then be an additional hash table with keys which consisted of those same integers and values

which were the list of words. Every word list look up would take 2 hash table calls. Looking at Figure 6,

an example of the look up for Keyword3, we can see that we need a call to get the number of the group

which Keyword3 belongs to, and then we need a second call to look up the string value for that group,

which is the final piece of information we need.

Figure 6 - Look up for a keyword in the hash table scenario

As the data stored grows, the performance of look up will not be affected, since every look up in a hash

table takes O(1), no matter how large the hash table. This means that the look up time for both hash

table look ups will still remain a constant, i.e. O(1).

This method of storing although very fast was estimated to use a great amount of runtime memory. The

rough estimation was made on 30 thousand categories with approximately 16 thousand synonym group

entries for each category, about 6 words per synonym group and 7 letters per word; considering a

character is 2 bytes and an integer is 4 bytes, this evaluated to 48.2 gigabytes necessary in memory for

storing these tables.

Since that was a huge amount of memory, we thought about still storing all the information in memory,

but doing it without as much regard for time optimization. The information was stored in a vector

instead of in hash tables; in this vector every row contained just the set of synonyms which were meant

to be grouped together (entries similar to the second column of the second hash table in Figure 6). This

slowed down the search significantly, but it still performed better than searching through the flat file.

The memory-used estimate however was still up to a pretty large number – 37 gigabytes of memory to

just load all this file information.

16

2.1.3. MySQL Database

The database is simple. We store all the information in a single table where each entry has 3 required

components: category, phrase, and synonyms. ‘Category’ is an integer describing the item category in

the eBay database. ‘Phrase’ can be a single word or two and more words merged together into a phrase.

So ‘Keyword1 Keyword2’ and ‘Keyword5’ are both examples of valid phrase values in the sample

database below. The last component is ‘synonyms’ which is just a long string that is made up of all the

phrase synonyms separated by a delimiter, which in our case is a comma. To make things a little more

clear, Table 1 shows an example of a couple valid database entries.

Category Phrase Synonyms

12345 Keyword1 Keyword2 Keyword1 Keyword2,Keyword3

32424 Keyword5 Keyword4, Keyword5

Table 1 – Abstract example for SLS table

A real world example can be seen in Table 2.

Category Phrase Synonyms

34968 brand new brand new, brand new

23863 Handbag purse, hand bag, handbag

Table 2 - Real world example for SLS table

The performance of every MySQL database, similarly to the flat file and contrary to the hash table,

depends on the amount of information stored in the tables. If the tables are relatively small, they are

kept in cache memory, so no reloading is necessary for a look up to be performed and it will take a

constant amount of time, i.e. O(1). However the anticipated size of our table will most likely slow down

the look up performance, resulting in a performance whose upper limit will be O(log(n)).

2.1.4. Comparison and Conclusion

We created a test that calculates the average time to retrieve a record from the database on a sample

file which we were given. We randomly selected 20 different phrases and found the related synonyms

using each of the options that we described in the previous 3 sections: text files, hash tables, a vector

and MySQL database. The population times are based on the only data set we were provided with,

which reflects about a quarter of the phrases and synonyms in one single category. The results from our

tests are summarized in Table 3.

17

 Population Time Average Retrieval

Time

Ram Usage

(storage)

Big-O Notation

Text File 0 seconds 9.6 milliseconds 0 KB O(n)

Hash Table 149 milliseconds 0.12 milliseconds ~460 KB O(1)

Vector 68 milliseconds 1.49 milliseconds ~229 KB O(n)

MySQL 140 seconds 6.75 milliseconds 0 KB O(log(n))

Table 3 - Test results

Several things were also taken into consideration when making the final choice:

 eBay has more than 30,000 categories and we only had data from one of them. Some categories

are likely to have more information in them, making the file size even bigger. We, therefore,

expect that the average retrieval time for looking up synonyms from a file is likely to go up for a

significant number of the eBay categories.

 The excess of 30,000 categories also means that the RAM required to store all the information in

vectors will be approximately 37 GB

 Although populating the MySQL table took 140 seconds on Antoniya’s computer, it only took 83

seconds on Rado’s machine. In other words, we expect that this time will be significantly

decreased when the population script is run on a server.

In conclusion, we decided that using a MySQL database is the best tradeoff between retrieval speed and

realistic RAM usage.

2.2. JavaServlet Implementation of Service

The Java servlet developed for accessing the synonym database was developed initially in two versions –

one developed by Radoslav and the other by Antoniya. Both services were created to recognize phrases

in the search string entered by the request, find synonyms for those phrases, and return the set of

results to the application requesting the information. The main differences in how these services

function consist in the algorithms used to split the request search string accepted and specifics on how

phrases are recognized as such (whether they are exact or only partial matches).

The three main algorithms we came up with for phrase recognition were the following:

 You start with a blank phrase and add words to it, while it is still recognized as the beginning of a

phrase; after a phrase is found, remove it from the search and repeat. This is most efficient

when the known phrase contains few words and don’t have similar words in them.

 You start with the whole search string and cut off words one by one, until you find a phrase in

the search string; repeat the process with the remaining words which are not associated with a

18

phrase yet. This is most efficient, if the phrases found in search string contain a large number of

words.

 You have a window of n words and the algorithm checks if they constitute a single phrase; while

the words in the window are not recognized as a phrase, keep cutting off the last one until they

are. This is most efficient if we know the most words that a phrase can contain and it is the most

common number of words (example: 2 or 3)

2.2.1. Phrase Recognition Algorithms

Let’s look at a simple example to see the different behavior of these algorithms. Imagine the state of the

service was as presented in Figure 7.

Figure 7 - State of SLS

where the list of synonyms for “keyword1” includes “keyword5” and the list of synonyms for “keyword2

keyword3” as a phrase includes “keyword6”. Assume this service receives the search string “keyword1

keyword2 keyword3 keyword4”.

If the first type of phrase recognition algorithm were run on this string, these are the steps that would

be taken for finding the phrases:

Figure 8 - Start with keyword1

 Consider keyword1 and check if it is the beginning of any phrase, and it is, since

keyword1 -> keyword5.

Figure 9 - Add keyword2 and try again

 Since keyword1 was found as a beginning of a phrase, see if you can add keyword2 to

that phrase and get synonyms for it. But “keyword1 keyword2” is not in our synonym

table, so we remove “keyword2” and note that we’ve found a phrase “keyword1” and

its synonyms “keyword5”

Figure 10 - Start with keyword2

19

 Start a new phrase, considering “keyword2”; we continue to add words, since it’s the

beginning of a phrase – “keyword2 keyword3”

Figure 11 - Add keyword3 to phrase

 “keyword3” is added to the phrase, so now we’re considering “keyword2 keyword3”

Similarly to Figure 9, “keyword4” gets added but the phrase is no longer found in the look-up table so

we remove it and add “keyword2 keyword3” as a phrase with its synonyms “keyword6”. At last

“keyword4” is considered and since it has no synonyms, it is added as a phrase by itself. All these steps

result in the correct phrase separation of the query into “keyword1”, “keyword2 keyword3”,

“keyword4”.

The concept of the second algorithms is the exact opposite – you take the whole search string and then

start removing the words until you find a phrase.

Figure 12 - Start with whole string

 Check if the whole search string is a recognized phrase, but we do not have “keyword1

keyword2 keyword3 keyword4” in our look up table, so we cut off a word

Figure 13 - Remove a word and try again

 Check if the remaining piece is recognized as a phrase; it also is not, since “keyword1

keyword2 keyword3” is not related to a synonym list;

Figure 14 - Remove words until left with "keyword1"

 We keep following previous steps until we’re left only with “keyword1” (neither of the

phrases “keyword1 keyword2” or “keyword1 keyword2 keyword3” are recognized as

phrases); since “keyword1” by itself is recognized as a phrase (and there are no more

words to remove), it gets stored

20

Figure 15 - Start with all the remaining words

 Reset the phrase to all the remaining words, and check if they’re recognized as a phrase;

since they’re not, remove the last word

Figure 16 - Look at remaining words

 Look at the remaining phrase “keyword2 keyword3”; it’s found in our look-up table so

it’s added as a phrase to our list of phrases found

Figure 17 - Look at remaining words

 The remaining words consist only of “keyword4” so even though it’s not recognized as a

phrase, it’s a single word so it gets added to the list of phrases

This results in completing the execution of the second method for phrase recognition. It again results in

the query being split into the phrases “keyword1”, “keyword2 keyword3”, “keyword4”.

The third and last algorithm uses a window of words, so for the purpose of our example we will make

that window to be two words long. This means that similarly to the second algorithm explained we will

take words and remove from them until phrases are found, however, we will not be taking all the

remaining words for consideration but only the next two.

Figure 18 - Start with first two words

 Consider the first two words, and since they don’t form a phrase, remove “keyword 2”

Figure 19 - "keyword1" remains

 The single word remains, so it gets added to the list of phrases; then consider the next

two words

21

Figure 20 - Look at the next two words

 The next two words considered are “keyword2 keyword3” and they’re recognized as a

phrase so they get added to the list of synonyms

Figure 21 - Consider the last window

 Since only one word remains, it gets considered by itself; a single word even if not a

recognized phrase gets added to the list of phrases so “keyword4” gets stored

This achieves the same result for the list of phrases as the previous two algorithms. After all the phrases

are known, their synonyms can simply be populated by direct look-ups in the table and returned by the

service.

2.2.2. Service Implementation

Radoslav’s service implements the third out of these three methods. This service looks for the longest

possible exact matching phrase which has synonyms. It starts with a string of length n and if synonyms

are found, it records the phrase and continues the phrase search from the first word that is not part of

the newly found phrase. Because of this, the algorithm doesn’t need to look for partial matches; the

word which follows a phrase has either already been considered to be part of the phrase, or it makes

the phrase contains too many words, and needs not be considered. The HTTP request for the service

follows the syntax shown below:

http://host:8080/FFWS/rService/typeSearch/excludeReps/n/category/searchString

In this request, the category and search string are obviously the category in which to look for phrase

synonyms and the search string, which to split into phrases. The typeSearch value is not so obvious – it

can be set to one of 3 values – “single”, “synonyms”, or “generalize”. If “single” is chosen, then the

whole search string is considered as a single string and it takes only one look up to get its synonyms. This

setting requires no phrase recognition and it is the same for both services. The “synonyms” setting

returns a JSON format of the phrases found and their synonyms, which is the general use of the service.

The last setting possible is “generalize”, which can be looked at as a form of normalization – it returns

the phrases found in the search string and the most common phrases that can replace them. For

example, if you have the set of synonyms “Dolce and Gabbana” to be “D&G”, “Dolce&Gabbana”,etc.,

then if any of these phrases is recognized in a search string the value of their generalization will be

“Dolce and Gabanna”, since it is the most commonly used phrase for expressing the idea.

22

The last unmentioned parameter in the search is the excludeReps parameter, which allows the user to

ask for all synonyms which do not contain the current phrase within them. For example, if you’re

searching for “dolce”, the results will include “dolce and gabbana”, “d&g”, “dolce & gabanna”, etc. If

excludeReps is set (vs. notExcludeReps) “dolce and gabbana”, “dolce & gabanna” and all similar phrases

containing “dolce” as a separate word will be excluded from the results. The reason for this is that if you

search for OR(“dolce”,“dolce and gabbana”), it will give the exact same results as just searching for

“dolce”, since the addition phrase performs a more restricted search instead of enriching the result list.

Antoniya’s service on the other hand implements the first out of these methods. The HTTP request for

the service follows a similar syntax to Radoslav’s but does not require a value for n:

http://host:8080/FFWS/aService/typeSearch/isExactMatch/excludeReps/category/searchString

Similarly to Radoslav’s service, here we see that the type of search, excluding repeating words, category

and search string have to be specified, however as previously mentioned, the size of the window of

words needs not be specified. Because of the way the service functions, it also allows the possibility of

finding partially matching phrase, i.e. finding a set of words in the search string which represent the

beginning of a phrase, but do not necessarily complete it. The method for phrase recognition the

algorithm uses needs to use partial recognition, however after finding a partially matching phrase it can

go back and cut off words until an exact phrase is recovered. But this takes a lot more time than

Radoslav’s algorithm, since first we build up a phrase and then reverse that break it back down, so it’s a

lot more inefficient at exact phrase matching. On the plus side, it will find a phrase of any length no

matter what the request specifications are.

Both of these services are available on our server, and since they use a set of common structures can

easily be maintained simultaneously. There is also the availability to extend the service to implement

the third possible algorithm if at any point it proves to be a feasible design decision.

3. Category ID Suggesting Service (CISS)

The main purpose of Category ID Suggesting Service (CISS) is to take a query and then be able to suggest
an appropriate set of categories to the user. Although created and refined in the last minute, this is
probably the most essential part of the entire project as without the appropriate category we are simply
unable to suggest any synonyms for the user’s query.

http://host:8080/FFWS/aService/typeSearch/isExactMatch/excludeReps/category/searchString

23

We were given 3 text files that contain all the queries made on eBay in the past year. Each entry in this
file contains a query followed by a list of all categories that users browsed when entering the specific
query. The category ID’s relevance is in turn evaluated by a number that represents the number of times
this specific category ID was viewed each time a person entered the given query. To summarize that, an
entry in this file contains of a query and a list of category ID’s with appropriate confidence level. We
were advised to just load the information in a huge hash table where each entry is a query (i.e. string)
pointing to the most popular category ID associated with this query (i.e. another string). As one can
imagine, however, these files are far from exhaustive and one can easily find out that a simple addition
of a size unit or some additional detail can easily result in a query that does not exist in the file. This
shortcoming would leave us with no category to suggest to the user and that makes our entire project
practically useless because phrases have very different synonyms in each category. Without an exact
category ID SLS doesn’t know how to split the initial query and recognize the different phrases.

We, therefore, decided to take a little different approach to creating our CISS. First of all, we need to
give the user a choice of category. So instead of just storing one category ID per query, we store the top
4 categories that the user used when searching for results. We then first match the entire query to our
hash-table-based database and see if any matches exist. If they do, we return the entire trees of the top
4 categories and ask the user to choose one (category ID). If an exact match is not present we simplify
and analyze the query by removing the last word and matching it again. This is repeated until a match is
found. This technique assumes that each query is composed by adding more descriptive words only
after the main objective of the query is established. In other words we assume that most people will
write “shoes dolce and gabbana size 8” instead of “size 8 dolce & gabbana shoes”. To be on the safe
side, we also decided to also handle the case where the descriptive and not so essential words are
added before those holding the main purpose of the query. If no match is found even after all words
have been eliminated, CISS will remove the first word and repeat the process of eliminating words from
end to front once again, until a match is found.

The drawbacks of this method are several. First of all, this technique can be quite time consuming for
longer queries. On the bright side, however, it will only need to go through all possible combinations of
adjacent words only if the user begins his query with less essential words and ends with the crux of the
query (i.e. “black size 8 shoes” instead of “shoes black size 8”.) Secondly, CISS will run till first match is
found. A more reliable (and also more time consuming) approach would be to go through the entire
query and keep track of the different existing matches. This would allow CISS to suggest a category with
a higher confidence level. Another issue is the lack of unit support. In other words, instead of treating “4
GHz” as one word and removing it all together, the service will take an extra cycle to remove the phrase
from the query. Unit support, therefore, can potentially make the service a little more efficient and
reliable by both decreasing execution time and the chance of giving false results.

Another possible expansion, tied to CISS, that could enhance the entire ALF application with a better
user experience would be an advanced category selection tool that would allow the user to still select a
category if he is not happy with what CISS suggested (which is unlikely but possible nonetheless).

4. Advanced Listing Finder (ALF)

24

The next phase of our MQP consists of developing a web application that implements SLS and CISS, and
helps eBay users to find more of the listings they need and less of those that are of no use to them. Our
Advanced Listing Finder (ALF) works in four major phases:

Phase 1:

Figure 22 - Phase 1 of ALF

We first ask the user to enter a search query in the provided input field. Once the “Search” button is
clicked the user goes to Phase 2. The partial and exact matching of phrases corresponds to the settings
for SLS, explained in Section 2.2.2.

25

Phase 2:

Figure 23 - Phase 2: Selecting a category

ALF sends the query to CISS which in turn analyzes it and returns the 4 most commonly viewed
categories corresponding to this particular search. Instead of simply listing the categories we decided to
give the user a little more freedom and show him the entire category trees. This improves the chances
that he can select a category that fits hits needs. Clicking on the “Select Category” button will lead the
user to the next step.

26

Phase 3:

Figure 24 - Phase 3: Select phrases

ALF then sends the query to SLS which in turn analyzes it, splits it into phrases and returns all phrases
and all available synonyms for each phrase. We then provide the user with a very simple interface that
informs him of the phrases and synonyms that SLS has found and also allows him to modify the list of
phrases (Figure 24). At this point the user can select all phrases and synonyms that he would like to
include in his search by marking the checkbox associated with them. If a modification is made to the
search, ALF’s interface changes immediately, providing the user with the new list of phrases and their
synonyms. When a modification is made to the phrases themselves, ALF changes reflect a change in only
the synonyms lists (Figure 25).

Figure 25 - Modified phrases update the synonym list

27

We also give the user an option to incorporate advanced query syntax to his search. The advanced query
syntax is completely optional and will show up only if the user clicks on the appropriate checkbox (Figure
26).

Figure 26 - Phase 2 with Additional Options requested

This is achieved by attaching a drop-down menu to each phrase synonym. In this way the user is given
the option to specify an advanced syntax type that he wants to apply to each different synonym. The
four available options are as follows:

 Leave as is (default): This is the option selected by default. It treats each word in the query
normally with no advanced syntax applied. It would return all listings that match all words in the
phrase in any order. Example: used book

 Apply OR operator: This option uses the parentheses syntax which tells the API that any listings
containing any of the words in this phrase is a good match. Example: (used, book)

 Apply quotations: This is the quotations mark syntax. It is especially useful for titles, names, or
anything else where the order of words is important. It will return all results that contain all
words in the phrase in the specified order. Example: “used book”

 Apply asterisk: This implements the asterisk syntax. It returns all listings that contain any word
that begins with the selected phrase. Example: book* would return listings containing any of the
following: book, books, bookshelf, etc

Once the user has selected all the phrases and synonyms of his interest, he can proceed and click on the
“Show Results” button. This will lead him to the final phase.

28

Phase 4:
We send the new query to the eBay API, parse the results and display them on the right side of the same
page, giving the impression that the user has entered the advanced query on the main web site. As this
is taking place, ALF analyzes the first 50 listings and records each word in the listings and the number of
times it is found in them. Since the results are sorted by “Best Match”, this ensures that ALF analyzes the
best results for the user. The interface then presents its findings to the user in the form of the top 40
most frequently encountered words. He is then given an option to mark those that he would like to
avoid finding in his search. Once the selection is made, the user clicks on the “Refine Search” button and
the process is repeated but this time with newer listings and the user is given another option to refine
his search even further.

Figure 27 - Show results and refine search

The screenshot above gives an idea of what the web page looks at this moment. ALF displays 50 results
per page and allows the user to go back and forth through pages using the “Next Page” and “Previous
Page” buttons. The text field on top of the entire result’s section displays some information about the
number of results that were returned by the original query and the number of results that were
returned by ALF’s expanded and refined query. All previous menus and options are still accessible
through the “Edit Previous Search” button in the “Tools” section.

29

5. System details and Maintenance

Figure 28 - Application Set Up

The final implementation of our application incorporated several services and tried to create an

interactive and educating user experience. Figure 28 shows the specific services used and their physical

locations. The application itself (ALF) is located on the erl10.arch.ebay.com server, and it’s accessible via

port 8080 (the Tomcat server) running on the machine. On the same server (erl10.arc.ebay.com) we also

host our SLS and CISS, but they can be relocated on separate machines, if necessary. The SLS also uses

30

the “wsdb” database on the d-sjc-sbalouki.corp.ebay.com via port 3306 (MySQL server) to access the

synonym data, stored there off the flat files. The last service our application uses is the eBay developer’s

API, whose details and documentation can be found at http://developer.ebay.com.

ALF by itself is a JavaScript driven website, which uses AJAX to create a more pleasurable user

experience. All the steps described in the ALF section are created as separate DOM elements and shown

or hidden in their assigned <div> tags as necessary depending on the current step the user is on. There

are a couple of main functions in the script which correspond to loading the page and the functionality

of the three main buttons – find phrases, show results, and refine results. There are many helper

show/hide functions, as well as information processing functions and global variables to keep track of

details necessary to maintain the state of the site. All of these can be found properly documented in the

script itself.

SLS is one of our two JavaServlet services, which allows us to look up synonyms. It follows the file

structure shown in Figure 29.

Figure 29 - SLS File Structure

The external library MySQL Connector/J is imported in the project and is necessary for the proper

connectivity to the MySQL database. The common package contains all the functions necessary for the

functioning of the services, which are located in the services package. The test package contains tests

we wrote for some of our classes, which were not meant to be thorough but just test functionality

without running the project on a server.

http://developer.ebay.com/

31

The services package contains the two services SLS offers – Radoslav’s (rservice.java) and Antoniya’s

(aservice.java) algorithm implementations, both described in (Section X – will refer to the location in the

final write up). The common package contains the classes which create the backbone of both services.

The TitleComponent, MySQLComponent and Utils classes contain only static functions, which are

grouped by their purpose. The TitleComponent class contains all the functionality necessary for splitting

a query into phrases and getting the synonyms. The MySQLComponent class maintains the connection

to the MySQL server and makes all the appropriate calls for populating and requesting information from

the database. The Utils class contains helper functions for manipulating strings and arrays. The

PopulateDB class is a standalone class which uses MySQLComponent to allow population of the

database. The LookUpState and Formatter classes are object-oriented classes, which are used in the

TitleComponent on finding the synonym phrases and building the response of the service. The

LookUpState class keeps track of the current data being considered as a phrase and details regarding it.

The Formatter class keeps track of the found phrases and their synonym lists, which simplifies

formatting the final result. Although the current formatting is JSON, adding a simple function to the

Formatter class can easily create a different form of output from the service.

As mentioned, the MySQLComponent connects to a database called “wsdb” which is located on a

different server - d-sjc-sbalouki.corp.ebay.com. The database contains a single table, which can be seen

in Figure 30.

Figure 30 - "main" table details

The category and word attributes are defined to be the primary key of the table, so it is required for the

combination to be unique and neither of them can be null, but no additional restrictions exist. The list of

synonyms is the third attribute in the table, which will be looked up based on its category/word primary

key. This is the reason a word search has to contain a specific category related to it, otherwise multiple

results can be found and since the service only returns the first result from the list, it can offer no

guarantee whether the one returned will be correct.

32

6. Issues Encountered

6.1. MySQL Connector/J

MySQL Connector/J is the driver we used to make MySQL calls from SLS. The driver allows a connection

to be established with the MySQL server, specific parameters to be set for this connection (full list can

be seen at http://dev.mysql.com/doc/refman/5.0/en/connector-j-reference-configuration-

properties.html), and then query and get results from the database specified to be in use. Since the

connection takes time to be established, and it is used by SLS as a read only connection, we decided to

create a static connection at the start-up of the service and keep it in use for all requests made to the

service.

This decision worked properly, until the connection became idle for a long time. Inactivity over the

connection would make it drop and not be restored until the whole service was reset (since that is when

it would be initialized). Since this behavior was not feasible for our service, we had to come up with a

way to keep the connection from dropping.

A complex and obvious way to correct this issue was to keep the connection active artificially by pinging

it every time we fear the connection will timeout from inactivity. This potential solution consists in

creating a separate thread to run alongside the main service and have the job of pinging through the

connection every 7.5 hours (since the connection times out after 8 hours of inactivity). However, thread

management and synchronization is not the first choice for solving the problem, since it’s more likely to

overcomplicated things and create more problems along the way, so we looked for a simpler solution to

our problem.

Using the parameter possibilities that the JDBC (Java Database Connectivity) allowed and an additional

validation query to the database, we came up with an alternative solution. Setting the parameter

“autoReconnect” to true, forces the connection to be reestablished, if it had been dropped due to

inactivity. However, if a call is made to a connection which has been disconnected due to inactivity, as a

result, the call reactivates the connection, instead of actually getting processed itself. So the “Select 1;”

validation query is sent before every actual query to make sure the connection is still active, or if it’s not

– that it gets activated for the actual query call. This solution also allows the connection to be inactive

whenever the service is being idle, so maintenance can be done on the database itself, if necessary.

33

6.2. XMLHttpRequest API in JavaScript

The XMLHttpRequest API in JavaScript allows http calls to be made through DOM to a server without

having to reload the current page or navigate the user away from it to get new data. The

XMLHttpRequest is used as an AJAX technique which allows the JavaScript to send a request to a

different URL than the one the user is currently browsing, get the results back, and incorporate them in

the current webpage immediately in any way necessary. For example, we used this technique for getting

results from SLS in ALF after the user had entered a search query. The XMLHttpRequest allowed us to

send a request to the server hosting SLS immediately once the user pressed the search button, the

service then returned the response, which in its turn was displayed on the website via JavaScript DOM.

The XMLHttpRequest object however has two modes – synchronous and asynchronous. By definition,

synchronous means that the HTTP request and received response have to be completed before the

script goes on with executing. Asynchronous would then be expected to consist of the request and

received response happening in parallel with the execution of the rest of the script. However, the

asynchronous mode allows for the script to keep running, until the response from the HTTP call is

received and interrupts it to load the data received. But we want to use the data received as a response

from the HTTP call immediately after the call itself, and in the case of asynchronous mode, this response

doesn’t get processed quickly enough. Although asynchronous was a recommended mode of execution

for the request, we decided against it because of these timing issues, which didn’t allow us to get our

response data in time. On the other hand, if the SLS becomes too slow and takes time to receive and

process data, the page might end up freezing due to this synchronous request we’re making.

Another issue which we encountered when working with XMLHttpRequest was a security issue it has on

requesting websites from another server. If a request is sent to a different machine, no matter what the

network specifics on it are, as long as it’s not the same server the JavaScript was downloaded from, an

error occurs because of a security breech. The workaround for that was a local JavaServer Page, which

the XMLHttpRequest sends a request to with the URL it wants the source of, and on its behalf the JSP

fetches the page from the specified URL and hands it back to the JavaScript.

34

References

1. Vechtomova, Olga and Wang, Ying. “A study of the effect of term proximity on query expansion”,

Journal of Information Science, 2006, p. 11.

2. Cui, Hang; Wen, Ji-Rong; Nie, Jian-Yun; Ma, Wei-Ying. “Query Expansion by Mining User Logs”, IEEE

Transactions on Knowledge and Data Engineering, Vol. 15, July-August 2003, Pages 829-839

 3. Efthimiadis, Efthimis. “Query Expansion”, Annual Review of Information Systems and Technology

(ARIST), 1996, Pages 121-187

4. Internal Communications (DL-eBay-IC-iWeb-News@ebay.com). “eBay At-A-Glance”. eBay Internal

Web. Jan.31, 2008. <http://iweb3.corp.ebay.com/Company/Pages/eBayAt-A-Glance.aspx>

5. eBay Inc. (2007). “Research Focus Areas”. Retrieved on March 3, 2008 from

http://www.ebayresearchlabs.com/erlresearchfocus.html

6. Sun Microsystems. “Learn about Java Technologies”. Retrieved March 3, 2008 from

http://java.com/en/about/

7. Python Software Foundation. “About Python”. Retrieved March 3, 2008 from

http://www.python.org/about/

8. Stewart, Bruce. “An Interview with the Creator of Ruby”. 29 Nov. 2001, retrieved March 3, 2009 from

http://www.linuxdevcenter.com/pub/a/linux/2001/11/29/ruby.html

9. The Perl Foundation (2002-2009). “The Perl Directory: About Perl”. Retrieved March 3, 2009 from

http://www.perl.org/about.html

10. The PHP Group (2001-2009). “What is PHP?”. Retrieved March 3, 2009 from http://www.php.net/

	Worcester Polytechnic Institute
	Digital WPI
	April 2009

	EBAY QUERY LINGUISTIC SERVICE
	Antoniya Toneva Statelova
	Radoslav Valentinov Petranov
	Repository Citation

	tmp.1535548689.pdf.h86ZR

