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Abstract 

Low alloy steels are commonly used in industry for a wide range of applications that require high 

strength and toughness. Each application requires specific properties. In order to modify the alloy’s properties 

to meet these specifications, a variety of heat treatment techniques are employed, including annealing, 

quenching, and tempering. Tempering is a metallurgical process by which toughness and ductility are improved. 

This procedure is conducted by heating the as-quenched martensitic steel to temperatures in the ferrite plus 

cementite phase region for several hours. Tempering is generally carried out in a single cycle temperature-time. 

However, the procedure may be conducted in two cycles with cooling to room temperature between the cycles. 

This process is known as double tempering. The goal of this project is to investigate the effects of single versus 

double tempering on the mechanical properties and microstructure of 4140 steel. To achieve this goal, samples 

of 4140 steel were quenched and tempered at 300, 400, 500, and 600 ºC for the same total heat time in single 

and double tempers. The samples were machined to ASTM standard impact testing. The Rockwell hardness and 

Charpy V-notch impact energy were measured. The microstructure was characterized using optical and 

scanning electron microscopy (SEM), and carbides were extracted from each sample and XRD was used to 

determine their size and geometry. The results are analyzed using the Holloman – Jaffe parameter. 

  

It was found that a four-hour double tempering cycle does not significantly alter the microstructure, 

hardness, or impact toughness of 4140 steel when compared to a four hour single tempering cycle. 
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Introduction 

Steel has long been one of the most sought-after materials in the world. One aspect of steel’s allure is its 

ability to be adjusted and manipulated to achieve optimum performance for different applications. Scientists and 

engineers continue to study how to predict and control the properties of steel by modifying the chemical 

composition and manufacturing processes of different steel alloys.   

AISI 4140 Chromium-molybdenum steel is commonly called 4140 Steel in industry. 4140 Steel is 

composed of (in weight percentage) 0.38-0.43% Carbon (C), 0.75-1.00% Manganese (Mn), 0.035%(max) 

Phosphorus (P), 0.04%(max) Sulfur (S), 0.15-0.30% Silicon (Si), 0.80-1.10% Chromium (Cr), 0.15-0.25% 

Molybdenum (Mo), and the base metal Iron (Fe). The crystal structure of 4140 steel varies between body 

centered cubic and face centered cubic with varying temperatures and phases. Steel’s varying cubic structures 

allows steel to possess numerous desirable mechanical properties in its solid state.    

Based on the composition and mechanical properties that 4140 steel possesses, a wide range of 

applications in industry can be found. Throughout several heat-treating processes the composition of this 

material can be altered and lead to other mechanical properties. By manipulating properties such as ductility and 

machinability, the effectiveness in production of certain parts can be improved. Thus, for its adaptable 

mechanical properties, 4140 steel is widely desirable among industries. Among these applications, the 

manufacturing of machinery parts and components are often built using this high carbon grade steel. For 

example, 4140 is used in common hardware store items such as chain links, nuts and bolts, studs, crowbars, 

sockets, and tool holders. It is also used in mechanical/machinery applications, with items such as piston rods, 

gears and cams, pinions, crankshafts, and various machinery parts and components. Due to high desirability and 

application, 4140 steel was chosen for this study.  

To achieve these desire properties after raw product of steel, the steel can undergo a number of different 

heat treatments. During hardening, steel is heated until it transitions to gamma-phase iron, or austenite, which 

has a face-centered cubic structure (ASM Handbook, Volume 4A 2013). In this configuration, the steel is 

capable of dissolving a large amount of carbon; the open nature of the crystalline structure allows for the 

complete dissolution of carbon. When the workpiece is rapidly cooled, or quenched, it takes on a body-centered 

tetragonal structure. Because the material is cooled so quickly, the carbon atoms do not have time to diffuse out 

of the crystal lattice and the result is a very hard, non-equilibrium, highly strained, and carbon supersaturated 

phase called martensite. The high number of internal dislocations created during the diffusionless austenite-

martensite phase transformation is what gives martensite its high hardness, however an as-quenched workpiece 

will also be very brittle, to the point where it may shatter when dropped (ASM Handbook 2013). In order to 

increase the toughness of the piece, it must be tempered.  



Tempering steel involves heating a quenched workpiece to a specific elevated temperature that is lower 

than the austenite transformation temperature for a specific amount of time, then allowing it to cool slowly. At 

this temperature, the martensitic steel will partially decompose into the ferrite and cementite which are the 

equilibrium phases in the steel. The goal is to retain as much of the strength of martensite as possible while 

increasing toughness enough to make the piece useable for its given application. For some applications, e.g. the 

nozzle on a sand blasting machine, a higher hardness is desirable, while on others, e.g. a hammer head, it is 

important to achieve a high degree of toughness. 

Double-tempered pieces are heated, held, and cooled twice. This may have an effect on the mechanical 

properties of the steel, particularly the impact strength. Double tempering is also used as a selling point for 

steel-based consumer products; mattress manufacturers advertise the fact that their springs are double-tempered, 

which they claim will give their mattress a longer usable life. In this project we will study the effects of double-

tempering cycles on AISI 4XXX steels, with a focus on AISI 4140. 

Currently in industry, companies use different number of tempering cycles depending upon the 

application and materials of the part being heat treated. One tempering cycle is sufficient for lower alloyed tool 

steels such as Wl and 01, highly alloyed grades such as H13, S7, A2, D2, and the high-speed steels require 

multiple tempering cycles. The number of tempering cycles used is also determined by the method in which the 

piece has been quenched. Liquid quenched steels may be tempered once, air hardened steel require a double 

temper, and high-speed steels can require a triple temper cycle.  Between tempering cycles piece must be 

cooled, these cooling temperatures vary with number of cycles being used, the temperatures achieved during the 

tempering cycle, and the cooling method used.  

 The goal of this project is to investigate if there is a difference in the mechanical properties of 

steel after a single long tempering cycle and breaking the long cycle up into two tempering cycles.  

 

 

 

 

 

 



Background  

Before determining if double tempering can make a difference in the mechanical properties of 4140 

steel, one must understand the microstructure of steel, how heat treatments affect the microstructure and 

mechanical properties, and the science behind how those properties are quantified.  

4140 steel begins it life in the liquid phase, this phase is the called the austenite phase. Liquid steel is 

then poured into a cast, where it is cooled down slightly to form a block or cylinder of austenite. These are 

rough forms from which the final desired products and shapes can be derived from. As the austenite cools it 

decomposes into ferrite and cementite by the eutectoid reaction, the product phases are arranged in a very 

characteristic pearlite pattern; the cementite is in the form of plates in a matrix of ferrite. 

There are several heat treatment techniques that can be conducted on steel after it has cooled to a ferrite 

microstructure state and has been cold worked to a near final form. A commonly used heat treatment before the 

final shaping of steel is annealing. Annealing increases the ductility of the metal, reduces the yield and tensile 

strength, and reduces the overall hardness of the steel. Annealing is action of heating the cooled steel up to a 

specific temperature, these temperatures are known and correspond with the various types of steels that are 

produced.  

During annealing the steel microstructure experiences a recrystallization. Recrystallization is the growth 

of new grains form in a cold-worked metal. These new grains have a greatly reduced number of dislocations 

compared to the cold-worked metal. With continued time at the annealing temperature, some of the newly 

formed grains grow at the expense of neighboring grains.  There is some further decrease in strength and 

increase in ductility as the average grain size increases during the grain growth phase of the annealing process. 

The final grain size depends on the annealing temperature and annealing time.  For a particular annealing 

temperature, as the time at the temperature increases the grain size increases.  For a particular annealing time, as 

the temperature increases the grain size increases.  A piece of metal with large grains has lower strength and 

more ductility than a piece of metal of the same alloy with smaller grains. 

 Annealed steel is very soft and easy to machine, manufactures will form annealed steel into it desired 

final form before continue with heat treatments. To increase the hardness of formed steel, the steel will be 

quenched. In quenching, steel is heated until it forms gamma-phase iron, or austenite, which has a face-centered 

cubic configuration. Due to this structure, austenite is capable of dissolving a large amount of carbon; the open 

nature of the structure allows it to absorb carbon from iron carbides in carbon steel. When the workpiece is 

rapidly cooled, or quenched, it takes on a body-centered tetragonal structure. Because the material is cooled so 

quickly, the carbon atoms do not have time to diffuse out of the crystal lattice, leading to the development of 

internal stresses. The result is a microstructure that consists of plates or laths of martensite which is 



supersaturated with carbon, which in non-equilibrium, highly strained, In the vast majority of steels, the 

martensite contains a substantial density of dislocations which are generated during the imperfect 

accommodation of the shape change accompanying the transformation. The plates may be separated by thin 

films of retained austenite, the amount of untransformed austenite becoming larger as the martensite-start 

temperature MS is reduced. 

Upon the completion of quenching, many pieces are tempered to achieve a desired combination of 

combination of hardness, strength and toughness or to relieve the brittleness of fully hardened steels. The 

heating of martensite allows the reversal of the unstable crystalline lattice to the stable body centered cubic 

lattice, produces internal adjustments that relieve stresses and also gives rise to precipitation of carbon particles 

to grow within the martensite in accordance with temperature and time. The changes during the tempering of 

martensite can be categorized into stages. 

 The first tempering stage occurs when iron carbide of epsilon type precipitate with Fe2–3C formula and 

hexagonal lattice; this carbide may be absent in low-carbon steels and low-alloy steels. The Rockwell hardness 

of the steel begins to fall, reaching approximately 60 HRC. The second tempering stage occurs when retained 

austenite in the martensite structure transforms into bainite (in carbon steel). The Rockwell Hardness of the 

steel continues to fall below 60 HRC  

 In the third tempering stage, metastable carbide, Fe5C2, also known as ferrite and cementite form within 

the martensite. When this transformation occurs in high-carbon steel, a dark microscopically visible structure is 

observed in the microstructure. The Rockwell Hardness of the steel is now slightly greater than 50 HRC. The 

fourth tempering stage take place between 500 °C and 600 °C, and only in steels containing Cr, Mo, V, Nb, or 

W. In this stage there is precipitation of alloying carbides and the transformation is called ‘secondary hardness.’ 

Hardness testing 

The surface hardness of a material is the resistance of a material to permanent and plastic deformation. 

Indentation surface hardness testing is the most common method used to determine the hardness of a material. 

While other forms of hardness testing, such as rebound, electromagnetic, and ultrasonic, are used in a variety of 

applications and measure material hardness through other techniques, indentation hardness testing provides 

reliable, and commonly used data. Indentation testing produces quick results and its general use on metals and 

alloys. Knoop and Vickers testing are suitable for thin materials, coatings, and mounted metallographic 

components. Brinell testing is used in materials such as cast iron, large steel framework and aluminum.  

Indentation hardness testing is measured by loading an indenter of a specified geometry and properties 

onto the material for a specified length of time and measuring either the depth of penetration or dimensions of the 



resulting indentation or impression. As the material being tested is softer, the depth of penetration, or indent 

dimensions become larger. The Rockwell hardness of the material is calculated is based on an inverse relationship 

to the measurement of the depth to which an indenter is forced by a heavy total (major) load beyond the depth 

resulting from a previously applied preliminary (minor) load. Initially a minor load is applied, and a zero-datum 

position is established. The major load is then applied for a specified period and removed, leaving the minor load 

applied. The resulting Rockwell number represents the difference in depth from the zero-datum position as a 

result of the application of the major load. The entire procedure requires as little as a few seconds. 

The most common indenter type is a diamond cone ground at 120 degrees for testing hardened steels and 

carbides. Softer materials are typically tested using tungsten carbide balls ranging in diameters from 1/16" up to 

1/2". The combination of indenter and test force make up the Rockwell scale. These combinations make up 30 

different scales and are expressed as the actual hardness number followed by the letters HR and then the respective 

scale. A recorded hardness number of HRC 63 signifies a hardness of 63 on the Rockwell C scale. Higher values 

indicate harder materials such as hardened steel or tungsten carbide. These can have HRC values in excess of 70 

HRC. Rockwell test forces can be applied by either closed loop load cell or traditional deadweight systems.  

Impact Testing 

Since the early 1820’s, scientists and engineers have been publishing research on the effects of impact 

resistance in metals.  In order to accurately and consistently test metals’ resistance to dynamic loads, researchers 

from around the world debated and collaborated for nearly a century to develop a standard impact test.  By the 

1912 meeting of the American Society for Testing and Materials (ASTM), several pendulum-type machines 

(very similar to modern designs) had been developed.  However, one of the most popular designs was proposed 

by Georges Charpy of France, and many then adopted “the Charpy test” for their impact testing (Siewert, et al. 

1999.) 

Modern Charpy impact machines are relatively straightforward and simple to use.  As shown in Figure 

1, a standard notched specimen is placed between two anvils and a weighted pendulum/hammer is released 

from a set height to strike and break the sample.  When the hammer strikes the notched specimen, a portion of 

the pendulum’s kinetic energy is used to break the sample.  The amount of energy used to break the sample is 

read by the scale and displayed on a computer.  This energy is shown as the energy required to break the 

sample.   

 



 

Figure 1: Charpy Impact Test 

 

Hardness, strength, and ductility all play major roles in the impact toughness of metals.  Conducting 

specific tests will be essential in accurately measuring the impact toughness and these other properties of the 

4140 steel samples. One of these tests will be the Charpy impact test.  Charpy impact testing is very common in 

the materials science industry and is straightforward to conduct.  Samples will be tempered before they are cut 

down to the standard dimensions for Charpy impact testing. The samples will be made to follow the ASTM 

Standards for V-Notch Charpy impact testing as shown in Figure 2. Each specimen will cut down from ½” plate 

stock to 10 mm wide and square and 55 mm in length using water jet cutting. Each sample will be machined to 

have a notch at the midpoint along one of the 55 mm long faces.  These notches will be 2 mm deep going across 

the 10 mm width of one of the 55 mm long faces on each sample. Each notch will have 0.25 mm radius and the 

two sides of each notch will create a 45-degree angle. 



  

Figure 2: ASTM Standards for Charpy Impact Test  

X-Ray Diffraction 

XRD is a nondestructive testing technique used to determine the structure of a crystalline material, in 

this case Fe carbides such as Cementite (Fe3C), via the measurement and study of the scattering of incident x-

rays as they pass through the crystal and interfere with one another. The pattern in which the x-rays are 

scattered is dependent on the spacing, structure, and orientation of the crystal lattice, which is distinct for each 

material. XRD analysis makes it possible to determine the average size and approximate composition of 

carbides extracted from steel, which gives insight into the microstructure and carbide development for varying 

temper conditions. 

Scanning Electron Microscopy 

Scanning Electron Microscopy (SEM) uses a concentrated beam of electrons to examine the 

microstructure and topography of a sample, typically at a higher magnification than what is possible through 

optical analysis. The electrons carry a considerable amount of kinetic energy, which is dissipated upon 



interaction with the surface of a sample in varying ways. This generates a signal that reveals characteristics of 

the surface of the material. Study of the fracture surface topography of destructively-tested samples is helpful to 

determine the mode of failure; examination of polished and etched samples reveals and identifies carbides, grain 

development, and phases within the steel. 

 

Experimental Plan  

This section describes the initial plan discussed to determine if double tempering 4140 steel will produce 

different mechanical properties than single tempered 4140 steel  

 

To complete this project two 1’ x 1’ x ½” 4140 steel plates will be acquired from Peterson Steel. The 

direction the plate was rolled in needs to be determined, this is to ensure that the direction the impact testing is 

not completed in the direction in which the grains were rolled. If the rolling direction is not known the steel 

samples could be tested in the weakest direction and mechanical property side of 4140 steel. Impact testing 

must be complete in the direction that is perpendicular to the direction in which the grains are running. Once the 

direction of the plate is determined the rough sample size can be cut.  

A single 1’ x 1’ plate will be selected to be water jet, due to the possibility that an error occurs while 

cutting. Additionally, an estimate of one hundred samples would be needed for testing, and a single plate will 

produce an estimated 120 samples. Each sample will be waterjet cut from the ½” plate stock, with the 

dimensions of 10 mm x 12.7mmx 55mm. The water jet cutting will be completed by Dosco Sheet Metal & 

Manufacturing Inc, located in Millbury, Massachusetts. The samples will require final milling to the ASTM 

standards.  

Before milling the samples to final dimensions, the samples will need to be quenched. Quenching will 

be completed by Bodycote Thermal Processing located in Worcester, Massachusetts. Once quenched the 

Rockwell Hardness of the steel samples will be too hard to be able to safely and affordably mill down the 

samples to final ASTM standards.  

To lower the hardness of samples, the samples will be tempered. Once tempered, the samples will be 

milled to final dimensions within ASTM standards, the notches will then be cut once the samples have been 

milled to final dimensions.  

For each tempering temperature and time there will be ten samples, divided into two groups. The 

tempering temperatures that will be used for this experiment are 300, 400, 500, 600 degrees Celsius.  At each 

tempering temperature, one group will be tempered for four straight hours, the second group will have the four 



hours of temper time split into two two hour temper periods. After the first two hours the second group of 

samples will be removed from the furnace and allowed to air cool to room temperature. The two groups of 

samples will not be tempered at the same time.  

Hardness testing will be completed at the end of the tempering of each sample group. The two two hour 

tempering group will be hardness tested twice. The first test will be completed after the samples have been 

completely cooled to air temperature after the first two-hour temper. The second testing will be completed after 

the second two-hour temper. The four-hour temper groups will have hardness testing completed after they have 

cooled to room temperature.  

The 55 mm length and 10 mm width will be measured with calipers to confirm the accuracy of the 

waterjet cuts, before the samples are machined down from the original .5 inch (12.7mm) height of the source 

plate to a final height of 10 mm per ASTM specifications. After each piece is machined, its dimensions will be 

confirmed to be within the ASTM specification using a micrometer. 

Once tempered, milled, the notches will be cut with a v-notch broach and the samples will be ready for 

Charpy Impact Testing. Each sample will be tested individually, the energy absorbed by each sample will be 

recorded and the fracture surface of each sample will be investigated. The fracture surface of each sample will 

be examined using SEM (Scanning Electron Microscope). The fracture surface for one side of each sample will 

be pictured and the fracture surfaces will be compared. A portion of each sample will be cut and finished for 

carbide extraction. 

The carbides will be extracted from the samples using an electro polishing machine. This iterative 

process entails cutting a small portion of the sample before placing it into the machine. Also, it involves a 

centrifuge and purification method in which the carbides can be separated from the liquid solution and 

impurities can be removed respectively. As a final step, the carbides will be prepared for XRD testing by 

placing them on glass slides. 

X-Ray Diffraction (XRD) will be used to determine the size of carbides from each sample. XRD 

identifies compounds based on their diffraction patterns (size and shape).  XRD results from each sample were 

observed and recorded. Next, the samples were placed under a Scanning Electron Microscope (SEM) to reveal 

external morphology, crystalline structure, and orientation of materials. 

An additional section of the samples will be cut for microstructure analysis of each sample. The cross 

sections will be mounted with conductive powder and polished up to one micron. The mounted and polished 

samples will be examined and pictured at 500, 1,000, 5,000, 15,000, and 30,000 magnifications. The external 

morphology, crystalline structure, and orientation of martensite and carbides will be compared between all the 

samples.  



The results from each test described above will be analyzed for the two tempering methods, and a final 

conclusion will be made.  

 

Experimental Procedure  

This section described the exact procedure completed to achieve the goal of this project and is different 

than the original plan.  

 

A single one foot by one foot 4140 steel plate was sent to Dosco Sheet Metal to obtain one hundred and 

twenty-one samples with the dimensions of 10 mm x 12.7mmx 55mm. The direction in which the plate was 

rolled, was marked with a sharpie permanent marker for the water jet technician. Measuring in the direction in 

which the plate was rolled, cuts were made every 55mm, in the perpendicular direction cuts were made every 10 

mm. A film of coolant was left on the samples upon the completion of water jet cutting.  

The rough dimensioned samples were then taken to Bodycote Thermal Processing for quenching. The 

samples were heated to 850 ⁰C and quenched in oil. While the samples were completing quenching at Bodycote 

the furnaced that was used for tempering need to be heat map and location for the samples to be tempered in 

determined. 

The furnace’s heat profile was mapped to ensure the consistent heating of samples.  A thermocouple was 

calibrated using ice water and room temperature water to assure correct temperature readings. The 

thermocouple was then inserted through the top of the furnace, the thermocouple was wired to a National 

Instruments data acquisition (DAQ) box and the digital reading of the temperature of the furnace was recorded 

in Celsius. The furnace was mapped in five positions, which can be seen below in Figure 3.    

 



 

Figure 3: Heat Map Positions 

 

At each position the temperature of the furnace was set on a range of 350 to 550 degrees Celsius in 50 

degree increments. The temperature reading was taken from the DAQ box after the temperature on the 

thermocouple stayed constant for more than one minute. The data collect from each point and each trial can be 

seen below.  

 

Center    

Trial 

Temperature on 

Dial 

Temperature Read on 

Thermocouple Variation 

1 353 361.9 -8.9 

2 402 412.3 -10.3 

3 453 470.3 -17.3 

4 505 521.7 -16.7 

5 552 570.3 -18.3 

  Average Variation-C -14.3 

             Table 1: Center Position Temperatures 

   

 

 

 

1. 

2. 

3. 

4. Center 

Front of Furnace  

Figure 4: Center Position Dial vs. Thermocouple Temperatures  



Location 1 

(North)    

Trial 

Temperature on 

Dial 

Temperature Read 

on Thermocouple Variation 

1 350 334.3 15.7 

2 402 407.2 -5.2 

3 453 457.2 -4.2 

4 500 507.7 -7.7 

5 554 561.8 -7.8 

  Average Variation-C -1.84 

Table 2: Position 1 Temperatures  

 

 

Location 2 

(East)    

Trial 

Temperature on 

Dial 

Temperature Read 

on Thermocouple Variation 

1 350 349.4 0.6 

2 400 402.8 -2.8 

3 453 458.6 -5.6 

4 505 511.7 -6.7 

5 550 563.2 -13.2 

  

Average Variation-

C -5.54 

 Table 3: Position 2 Temperatures  

 

 

Figure 5: Position 1, Dial vs. Thermocouple Temperatures 

Figure 6: Position 2, Dial vs Thermocouple Temperatures 



 

Location 3  

(South)    

Trial 

Temperature on 

Dial 

Temperature Read 

on Thermocouple Variation 

1 350 340.4 9.6 

2 402 393.5 8.5 

3 453 442.4 10.6 

4 500 503.1 -3.1 

5 552 555.1 -3.1 

  Average Variation- 4.5 

 Table 4: Position 3 Temperatures  

 

 

Location 4 

(West)    

Trial 

Temperature on 

in Dial 

Temperature Read 

on Thermocouple Variation 

1 352 353.8 -1.8 

2 400 402.6 -2.6 

3 453 461.5 -8.5 

4 502 513.8 -11.8 

5 552 566.7 -14.7 

  

Average Variation-

C -7.88 

 Table 5: Position 4 Temperatures  

 

Analysis of the furnace mapping data suggested that for consistent tempering, the samples should be 

positioned as close to the center of the furnace as possible. The center of the furnace showed the most variance 

between the dial reading and the thermocouple reading. The thermocouple was decided to be the controlling 

temperature reading device during tempering. Tempering temperatures were set to the thermocouple digital 

reading and not to readout of the furnace.   

The samples were then received as-quenched from Bodycote and were ready to be tempered. Tempering 

temperatures of 300, 400, 500, and 600 degrees Celsius were then selected. For each temperature, one set of 

five samples was tempered for each tempering method. One set of samples was tempered for two hours and heat 

up time at each tempering temperature. Heat up time is dependent on the furnace and the tempering 

Figure 7: Position 3, Dial vs Thermocouple Temperatures  

Figure 8: Position 4, Dial vs Thermocouple Temperatures 



temperature, this time varied from 15-20 minutes over the four tempering temperatures. Upon the completion of 

the first heat of double each double-tempering cycle, the samples were removed from the furnace and allowed 

to cool to room temperature. One of the 10 mm by 12.7 mm ends of each sample polished with 240 grit 

sandpaper to remove oxidation and process chemicals that remained on the samples from when the samples 

were cut using water jet cutting and quenched in oil. 

Once the samples were polished, a hardness test was conducted using a Rockwell-type hardness tester. 

After calibration of the machine using 45.9 RC and 62.9 RC test blocks, each of the five samples were hardness 

tested in five locations, and the readouts were recorded and averaged in an excel sheet. The samples were 

hardness tested after the first two hours to indicate the effect if the second tempering cycle on the surface 

hardness of the samples. 

Once the samples were polished, a hardness test was conducted using a Rockwell-type hardness tester. 

After calibration of the machine using 45.9 RC and 62.9 RC test blocks, each of the five samples were hardness 

tested in five locations, and the readouts were recorded and averaged in an excel sheet. The samples were 

hardness tested after the first two hours to indicate the effect if the second tempering cycle on the surface 

hardness of the samples. 

Upon completion of surface hardness testing of the first two-hour temper, the samples were then 

tempered again for another two hours in addition to the heat time at each tempering temperature. The samples 

were removed upon completion of the second two hours and allowed to air cool to room temperature. The same 

end that had been polished after the first tempering cycle was polished using 400 grit sandpaper to ensure a 

similar testing surface for hardness testing. Each sample was surface hardness tested five times and their 

hardness recorded and averaged in the same excel sheet, and the overall surface hardness average for each 

tempering temperature the second temper time was calculated. 

One set of five samples were tempered for four hours and equivalent heat up times, at each tempering 

temperature. The samples were allowed to cool to room temperature for a range of 3-4 hours. Once cooled a 

single 10 mm by 12.5mm ends of the sample was selected and polished using 240 grit sandpaper using a blank 

polishing machine to again remove the grit and coolant leftover from the waterjet cutting completed to get the 

rough samples from the original plate. Once polished the samples were hardness tested a Rockwell-type 

hardness machine. The machine was calibrated each time before a sample set is tested. The samples were 

surface hardness tested five times, and averaged for each sample, and the final average surface hardness for four 

hours of tempering at each temperature was calculated.  

Before impact testing could be completed, the samples first needed to me milled to the final dimensions 

of 10 mm by 10 mm by 55 mm listed in the ASTM Standard for Charpy impact testing. The operation was 

carried out on a Haas Minimill located in Washburn Shops 107. Each sample was measured via micrometer to 



confirm that the dimensions established during waterjet cutting were within the tolerances of 10 mm ± 0.075 

mm width and 55 mm +0/- 2.5 mm length. The unmachined height dimension, corresponding to the as-

manufactured thickness of the original plate, was also measured and consistently found to be to 13.4 mm 

(0.5275in.), slightly greater than the listed 12.7 mm (0.5 in). 

The first attempt to remove the excess material began with the creation of a program using G-code. A 

simple operation was planned using a half-inch carbide ferrous end mill to remove 3.4 mm of material in a 

single pass. Using resources available on the MFE Labs website for 4000-series alloy steel in material group P3, 

an initial cutting speed of 450 surface feet per minute (SFM) and a feed rate of 28.1 inches per minute were 

selected. Each workpiece was fixtured using a standard CNC vise fitted with 1.75 in. parallels. The tool offset 

of the end mill was set using an automatic operation, and the work offsets were measured with a precision 

digital 3-axis probe.  

 After simulating the code on the Minimill console, a practice sample was loaded into the machine and a 

dry run of the program was performed by setting the Z-offset to one inch above the sample. The program 

functioned as intended, and it was decided to move forward with the operation. Immediately upon contact with 

the workpiece, the endmill broke and the emergency stop button was applied. After investigation of the 

conditions of the crash, it was determined that the material of the samples had been misclassified, and that due 

to their high hardness the more appropriate designation was P4 or H1. The depth of cut had been too high, and 

the power of the spindle was insufficient to drive the endmill through the material, causing it to bind and 

shatter.  

In order to more easily control and modify the parameters of the program, it was recreated in Autodesk 

Fusion360 software. To compensate for the hardness of the material and the limits of the milling machine, the 

depth of cut was reduced by a factor of four, a ⅜ inch endmill was selected, and the stepover was increased so 

that each depth was split into two passes for a total of eight passes. In order to preserve the heat treatment of 

each sample, coolant was applied during the operation and material was removed only via climb milling. 

Another practice sample was then loaded into the machine, after which the process was again confirmed 

with a console simulation and dry run. The sample was milled successfully; however, it was not within the 

tolerances specified in the ASTM standard. The Z-offset was adjusted to a distance equal to the amount of 

dimensional variance, and another practice sample was loaded and milled to within the correct tolerances. The 

remainder of the samples were then milled and measured with a micrometer to confirm that they were within 

tolerance. 

The last machining step prior to impact testing was to cut V-notches into each sample. This process was 

first performed using a horizontal milling machine fitted with a 45-degree double-angle slotting blade that had 

been fabricated in-house. Due to the hardness of the 300 ⁰C samples, the blade broke before all of the samples 



could be notched. A replacement blade was purchased, and the remainder of the samples were cut without issue 

and evaluated to confirm that they were within the ASTM standard. 

Once milled to final ASTM standards the samples were impact tested. An Instron Charpy Impact Tester 

was used to impact each sample. The impact energy absorbed by each sample was recorded using the software 

Fracta. The Fracta software required calibration prior to the use of the machine. This process was complete by 

setting the maximum pendulum angle to zero and the friction to zero before the pendulum has been moved. The 

pendulum is then raised to the top position and is latched, the maximum latch angle is calculated and the latch 

engagement button is pressed. Several practice tests were completed after calibration with no samples fixtured 

in the machine to ensure there the impact tester was calibrated correctly and that no impact energy was being 

recorded. If the Fracta software and the impact tester were not calibrated correctly, Fracta would read a negative 

energy absorption on test swings with no samples fixtured in the impact tester. Once calibration was insured, 

samples were fixtured one at a time into the impact tester. The pendulum was first raised to point where a safety 

two by four could be put in place to hold the pendulum back and allow safe environment for the insertion of 

samples into the fixture. Samples were fixtured using a set of tongs that were specially modified to line up with 

the notches cut in the samples and the fixturing slot in the impact tester. Notches were position on the opposite 

side of in which the pendulum impacted the sample. After fixturing the pendulum was raised to the maximum 

angle latch angle and latched in place. The latch engagement button was then pressed to register in Fracta that 

the pendulum was in the latch position and ready to be released. With confirmation that the latch is in engaged 

on Fracta, and manual setting of the dial is set to ensure data is recorded if Fracta does not acknowledge the 

release of the pendulum. Each sample was tested and the impact energy was recorded in Joules. After each 

fracture the two pieces of each samples were collected and placed in a labeled bag to ensure proper matching of 

samples pieces and to ensure the fracture surfaces were not altered.  

Before carbides were extracted, a training was conducted by PhD student Haixuan Yu. He trained the 

team on how to use the machines and how to get the samples ready for XRD testing. For the carbide extraction 

of the samples, an electro polishing machine was used. This iterative process started by cutting a small portion 

of each impact tested sample. The sample were cut in the direction of the grain. Once a thin section was 

obtained, it was partially submerged in a solution of 4% hydrochloric acid and ethanol. The electropolishing 

machine was connected to the solution with the sample and was set to run at a voltage of 120 for approximately 

1.5 hours. Once all the carbides were on the surface of the sample, it was removed carefully and placed in a 

small beaker. Ethanol was added to just cover the sample, and the beaker was placed in an ultrasonic cleaning 

machine. In this machine, the carbides resting on the surface of the sample transferred to the ethanol. The 

solution of carbides and ethanol was placed into small capsules using a dropper. The capsule was then placed in 

a centrifuge in order to separate the carbides from the ethanol/hydrochloric solution. When enough carbides are 



extracted, a purification process was conducted in order to eliminate residual hydrochloric acid. During the 

purification process, ethanol was added into the capsule and re-centrifuged to flush out remaining acid. This 

process was completed once the liquid solution was visually clear without any yellowish coloration. In order to 

get the samples ready for XRD testing, the carbides were placed on rectangular testing glass slides. This 

preparation was accomplished by extracting the majority of ethanol in the capsule and using a dropper to place 

the carbides on the glass. 

Eight samples were selected for fracture surface fractography, this was due to limited availability of the 

SEM and the project deadline. The samples were chosen based upon their energy absorbed during impact 

testing. Samples were chosen that best represented the average impact energy from each tempering temperature 

and tempering method. A single sample was fixtured on a conductive plate with copper tape and inserted into 

SEM to ensure no two samples were mistaken for another. The fracture surface of each sample was pictured at 

200, 500, 1,000, and 2,000 magnifications. Fracture surfaces pictures were taken about the middle of the 

samples. With the completion of fracture surface fractography, the same eight samples were cut for mounting 

and polishing. Samples were mounted and then polished using the automated polisher up to 1,200 grits. 

Samples were then removed and polished by hand up to one micron. With the completion of polishing samples 

were inserted in SEM for micrography. Each sample was pictured at 5,000, 15,000, and 30,000 magnifications.  

With the completion of SEM micrography, each desired property for both tempering methods and each 

tempering temperature had been observed.   

Experimental Results  

This section describes the results from each measured and observed property from both tempering 

methods and each tempering temperature has been observed.   

Hardness Testing  

Hardness testing was completed on each tempered sample, surface hardness was also measured at each 

temperature after cooling of the first cycle and prior to the beginning of the second cycle of the double 

tempering method. This hardness testing was completed to see if the first or second tempering cycle would have 

a major impact on the final hardness of the samples or if there would be a major difference between the final 

hardness of the two plus two hours tempered samples. Shown below is the final results from each hardness test 

completed. Each sample was hardness tested five times, the averages for each sample are shown below in 

Tables 6-9. 



 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Average  

600 ºC 4hrs 

Hardness 31.9 32.68 32.52 32.82 31.44 32.272 

       

1st 600 ºC 

2hrs Hardness 29.72 30.32 30.18 30.88 30.34 30.288 

2nd 600 2hrs 

Hardness 32.86 32.38 31.8 32.4 31.96 32.28 

    Table 6: 600 ºC Hardness Averages   

 

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Average  

500 ºC 4hrs  

Hardness 38.64 37.98 37.46 37.58 38.4 38.012 

       

1st 500 ºC 

2hrs Hardness  39.58 38.92 39.06 40.22 38.52 39.26 

2nd 500 ºC 

2hrs Hardness 37.58 36.64 38.04 37.5 36.84 37.32 

Table 7: 500 ºC Hardness Averages 

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Average  

400 ºC 4hrs 

Hardness 44.2 43.62 45.24 43.28 43.5 43.968 

       

1st 400 ºC    

2hrs Hardness 43.74 44.2 42.18 43.8 44.8 43.744 

2nd 400 ºC  

2hrs Hardness  44.42 44.56 45.08 44.14 43.92 44.424 

Table 8: 400 ºC Hardness Averages 

 

 

 

 



 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Average  

300 ºC 4hrs 

Hardness 51.04 50.92 51.16 51.62 51.28 51.204 

       

1st 300 ºC    

2hrs Hardness 47.34 48.36 47.86 46.84 48.22 47.724 

2nd 300 ºC  

2hrs Hardness 49.82 51.28 51.04 51.24 50.48 50.772 

Table 9: 300 ºC Hardness Averages 

 

There is very little variation in the surface hardness of samples between the two tempering methods. 

Rockwell hardness is measured with a plus minus of 1 and rounded to the nearest whole number. 

 

Impact testing  

Impact testing data was recorded in joules and displayed below. The impact energy absorbed was 

recorded with the Fracta software and manually using the impact machine’s dial. Manual records needed to be 

kept as Fracta software would not read when the pendulum was not released in some calibration test and in two 

of the samples tests. If Fracta did not read that the pendulum has been released then the impact energy from that 

test would not be recorded. The tests in which the impact energy was recorded manually are bolded and 

underlined in tables 10- 13.  

 

 

 

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Average  

600 ºC 4hrs 29.33 24.13 29.21 26.25 25.3 26.84 

600 ºC 2hrs + 

2hrs 28.5 26.96 25.89 26.48 22.85 26.14 

Table 10: Impact Energy Absorbed at 600 ºC 

 

 

 



 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Average  

500 ºC 4hrs  16.31 16.54 16.65 15.08 15.19 15.95 

500 ºC 2hrs + 

2hrs 13.6 14.52 15.08 12.84 16.2 14,45 

Table 11: Impact Energy Absorbed at 500 ºC 

 

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Average  

400 ºC 4hrs 9.5 7.81 7.92 8 7.27 8.10 

400 ºC 2hrs + 

2hrs  11.85 12.07 9.76 7.81 14.18 11.13 

Table 12: Impact Energy Absorbed at 400 ºC 

 

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Average  

300 ºC 4hrs  8.57 8.78 8.57 10.86 8.78 9.11 

300 ºC 2hrs + 

2hrs  11.08 10.86 10.53 11.85 10.42 10.95 

Table 13: Impact Energy Absorbed at 300 ºC 

 

Fracture Surfaces  

The fracture surface from one sample from each tempering temperature and a tempering method was 

observed using SEM. The sample with the closet impact energy to the average from each tempering temperature 

and tempering method were selected for observation under SEM. There was a wide variation in the 400 ⁰C two 

hours + two hours impact energies. The fracture surface from the high and low impact energy samples from the 

400 ⁰C two hours plus two hours were also observed under SEM.  Each sample was observed at 200, 500, 

1,000, and 2,000 magnifications. The x500 and x1,000 magnification pictures for the average impact energy 



sample from each tempering temperature and tempering method are shown below in Figure 9 and 10. 

 

 
Figure 9: Fracture Surface of one sample from each tempering time and temperature at x500 magnification 

 

 

 

Figure 10:  Fracture Surface of one sample from each tempering time and temperature at x1,000 magnification 

 



 

The additional fracture surfaces from the variations in the 400 ⁰C 2hrs + 2hrs tempering samples can be 

seen below in Figure 11 and 12.   

 

 

Figure 11: Fracture surface of 400 ºC 2hrs + 2hrs, from low to high energy at x500 magnification  

 

Figure 12: Fracture surface of 400 ºC 2hrs + 2hrs, from low to high energy at x1000 magnification 

 

The average impact energy from the 400 ⁰C 2hrs + 2hrs tempering set is 11.113 Joules. This average 

was best represented by test 5, shown in the middle of the fractography displayed above. The lowest absorption 

in energy, test 1, show a faceted and grainy fracture surface. This fracture surface is comparable to both sets of 



the 300 ⁰C samples, a brittle fracture. The highest impact energy, test 3, displays a dimpled fracture surface. 

Unlike the fracture surfaces of the 500 ⁰C tempering samples, who have similar averages for impact energy, but 

display a transgranular fracture surface. The variation in the fracture surface and impact energy observed in 400 

⁰C 2hrs + 2hrs sample set could be due to an uneven heating in the furnace during one of the cycles of 

tempering, placement in the furnace not being uniform when compared to the placement of the other tempering 

sets, or a microstructural difference in the original martensite composition of each sample in the set prior to 

tempering.  

Carbide Extraction 

 300 ºC 400 ºC 500 ºC 600 ºC 

Average Carbide 

Size 4hrs 

1715 696 471 470 

Average Carbide 

Size 2hrs + 2hrs 

1630 512 512 517 

Table 14: Average carbide size from one sample from each tempering temperature and tempering time 

By conducting an X-Ray Diffraction test, it was possible to tell which carbides were producing certain 

peaks, and at what proportion it was increasing or decreasing. From the reading of each peak, it is possible to 

obtain microstructural information such as carbide size. The results from the micrographs below and sourced 

literature contradict the results gathered in this investigation.  Carbide size should be increasing with tempering 

Figure 13: Visual representation of peak size width, and pattern 



temperatures. Table 14 displays an opposite trend with carbide size decreasing as tempering temperature 

increases. This extraneous reading might have been an error due to lab procedures, not enough time spent in the 

electropolishing bath, or mis calibration of the XRD. Only eight samples were tested, one from each tempering 

temperature and time, due to time restraints. There is no other data from this investigation to compare the results 

of XRD to. Further extraction of carbides needs to be complete to properly identify the error in this data. 

 SEM Microstructure  

With the completion of carbides extraction, pieces of each of the eight samples with carbides extracted 

were mounted for SEM polishing. Due to time constraints and SEM availability only eight samples’ 

microstructures were observed using SEM. The samples were pictures using x5,000, x15,000, and x30,000 

magnification. The x15,000 and x30,000 magnification pictures from each sample can be seen below in Figure 

15 & 16.  

Figure 15: Microstructure of one sample from each tempering time and temperature at x15,000 magnification 

Figure 146: Microstructure of one sample from each tempering time and temperature at x30,000 magnification 



Carbides are the bright white coloring seen in the micrography above. They grow within the martensite 

which is the lighter of two shades of gray, and the ferrite that forms during tempering which is darker shade of 

grey shown in the micrography above. The carbides transition from small elongated particles to larger rounded 

particles as the tempering temperature increases from left to right.  

 

Discussion 

 Upon the completion of testing each parameter outlined in our goal, it was crucial to ensure that the data 

we had collected for the single four hour tempering cycle was consistent with the existing body of work on 

4140 steel. It is best to compare the surface hardness of the samples to the tempering time and temperature 

using the Hollomon-Jaffe parameter. The Hollomon-Jaffe parameter is a dimensionless quantity that can be 

used when the tempering time and temperature is known to predict the hardness of the alloy. The parameter has 

been developed for the heat treatment of steel alloys, each alloy has its own derivation and specific C constant 

parameter range. Figure 17 shows the comparison of the expected hardness line based off the Hollomon-Jaffe 

parameter and the recorded surface hardness of the samples.  

 

Figure 15: Average surface hardness form each sample vs the Hollomon-Jaffe Parameter 



The hardness of the two hours plus two hours tempering cycles have also been plotted on the hardness 

vs. Hollomon-Jaffe Parameter graph. Temperature increases from left to right as hardness decreases. Each set of 

data points from both tempering times align with the Hollomon-Jaffe prediction line. The prediction line is 

different for the two tempering methods due to the difference in time effective between the two tempering 

methods. The time effective refers to the total time the samples are tempered. Each tempering cycle requires a 

heat up time, this is the time required for the furnace to climb back to the tempering temperature after the 

samples have been inserted into the furnace. The time effective is longer for the 2hrs + 2hrs due to the two heat 

up times that are added together to the total tempering time, making the total time effective for tempering at 

2hrs + 2hrs longer then tempering for 4 hours.  

Impact energy as a function of tempering temperature is also a well-documented parameter. Impact 

energy, or energy needed to fracture the sample, will increase as temperature increases. The increase in impact 

energy is not a linear increase in 4140 steel. This is due to the temper embrittlement temperature range that can 

affect alloy steels, including 4140. The temper temperature embrittlement range and time at which temper 

embrittlement effects steels is a debated range in the heat treatment industry. The range for temperature 

embrittlement is a subject of debated has been reported in the ranges of 250 – 400 ºC (Herring, D. H, 2011), 

350- 450 ºC in (Herring, D. H, 2006) and 300- 425 ºC in (Horn, R. M., & Ritchie, R. O. 1978) 

The impact energy for both tempering methods as a function of time are plotted below in Figure 18. 

Figure 168: Average impact energy absorbed of each sample as a function of tempering time. 



 

There is some variation in the impact energy of samples tempered at 400 ⁰C, which causes a slight knee 

in the line of best fit. As discussed before there are a several factors that could have caused the variation seen in 

the impact energy of the 400 ⁰C 2hrs + 2hrs samples. Due to only tempering five samples at each temperature 

for each tempering method, it is not analytically correct to eliminate outliers or support that there should be 

variations seen in the impact energy absorbed by the 400 ⁰C 2hrs + 2hrs.  

To begin comparing if there is any difference between the two tempering methods, two plots can be 

produced to determine if there is a significant difference in the hardness and impact energy absorbed. Figure 19 

plots impact energy absorbed and hardness as a function of time, which are correlated when graphed as a 

function of time; of each sample from each tempering method.   

 

 

As shown in Figure 19, the surface hardness of 4140 steel decreases with increasing tempering 

temperatures, while impact energy absorbed increases as tempering temperatures increases. There is no 

significant variation between the two properties that are plotted above and the two tempering methods. Surface 

Figure 17: Average impact energy and surface hardness of each sample as a function of tempering temperature. impact energy decreases 

with increasing temperature  



Hardness vs Impact energy has also been plotted in Figure 20 to compare the two tempering methods and 

determine if there is any variation.  

 

As shown in Figure 17 and Figure 20 there is no significant variation in the recorded surface hardness 

and impact energy absorbed at each temperature for the two tempering method. Double tempering 4140 steel 

for four hours vs single tempering 4140 steel for four hours, has no impact on the surface hardness and impact 

energy of 4140 steel.  

 

Figure 18: Comparison of surface energy vs impact energy between the two tempering methods 



Both tempering time’s lines of best fit for hardness and impact energy match expected impact energy as 

function of tempering temperatures from previous sourced literature. An expect plot can be seen below in 

Figure 21, and when compared to Figure 19 it can be determined that tempering was completed correctly for the 

single four hour tempering cycle samples  

Fracture surface was inspected using SEM to investigate the effects of double tempering and to validate 

the impact energy absorption data recorded during impact testing. If when looking at the fracture surfaces a 

ductile failure was observed in sample that recorded an impact energy that is correlated with a brittle failure 

then there would be argument that double tempering can have effect on 4140 steels. In this investigation, no 

such fracture surfaces were found. As shown in Figure 14 and Figure 15 the fracture surfaces from both 

tempering method transition from brittle fracture to ductile fracture as tempering temperature increases. Brittle 

fracture requires minimum impact energy to be absorbed, while ductile fracture require double to triple the 

amount of absorbed impact energy. This agrees with the data presented in Tables 6-9 and impact energy as 

function of temperature represented in Figure 18, which show impact energy increasing with temperature. It is 

expected, that impact energy should increase with tempering temperature and the fracture surface should 

transition from brittle to ductile with increasing tempering temperature (G.Krauss). The variation seen in the 

Figure 2119: Impact energy and Rockwell hardness as tempering 

temperature increases. Herring, D. H. (2011) 



400 ⁰C 2hrs + 2hrs samples, do not conform to this pattern described above, there is a large variation within the 

sample set in fracture surfaces and impact energy which is shown in Figures 11 & 12 and Table 12. A large 

sample size is needed and further tests into tempering at 400 ⁰C for a 2hrs + 2hrs tempering cycle to determine 

if the results from this investigation are outliers or if there were other factors that caused our resulted to be as 

varied as they were.  

Carbides were extracted and measured, and the microstructure of the samples were observed to validate 

that the single four hours tempering samples had been tempered correctly and to compare the two tempering 

methods. Carbides are expected to grow in size and transition from elongated cylinders to rounded spheres in 

the martensite matrix (G. Krauss). This transition was observed in the double tempering cycle samples, as 

tempering temperature increased.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Conclusion 

Based upon the data collected from surface hardness testing, Charpy impact testing, XRD carbide 

analysis, and SEM microstructure/fracture surface analysis, it was concluded that there is no significant 

difference between the effects of a single four hour tempering cycle and two two hour tempering cycles, with 

regards to surface hardness, impact energy, and microstructure, in AISI 4140 steel.   

As the tempering temperatures increased, the surface hardness in each sample set decreased. The 

average Rockwell C hardness for 300 ⁰C for 4 hours was 51.2 RC, whereas the average Rockwell C hardness 

for 600 ⁰C for 4 hrs was 32.3 RC.  This is consistent with calculations done using the Hollomon-Jaffe parameter 

equation. However, the impact energy absorbed rose when the tempering temperatures increased. At 300 ⁰C, 4 

hours tempering, the average impact energy absorbed was 9.11 J and the 600 ⁰C for 4 hours samples, the 

average impact energy absorbed was 26.84 J.  

When comparing the data collected from the XRD carbide extraction and the SEM fracture surface, 

there is a distinct inconsistency in carbide size.  The SEM fracture surface pictures show an expected increase in 

carbide size with rising tempering temperature.  However, when the carbides were observed using XRD testing, 

there was a significant decrease in carbide size as the tempering temperature increased.  This mismatch in 

expected results may be due to inconsistent procedure execution, XRD calibration issues or not enough time for 

each sample in the electropolisher.  Testing more samples on both the SEM and XRD could help clarify and 

correct the inconsistencies found in carbide size.   

Future work may include further testing done with tool steel to find a possible difference in the 

properties investigated in this project. Changing the quenching time and temperature could also cause a 

difference in properties between a double and single tempering.  
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Appendix A   

600 ⁰C 4hrs Surface Hardness  

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

Trial 1 30.9 33.8 32.9 32.9 31.9 

Trial 2 32.9 33.9 32.9 33 33 

Trial 3 32 32.1 32.2 32 30.8 

Trial 4 33.3 32.4 32 33.1 30.8 

Trial 5 30.4 31.2 32.6 33.1 30.7 

Averages 31.9 32.68 32.52 32.82 31.44 

 

600 ⁰C 2hrs + 2hrs Surface Hardness  

1st cycle 

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

Trial 1 29.4 31 29 32.3 30.1 

Trial 2 30.1 30.8 30.9 31.8 31.4 

Trial 3 30.8 29.6 28.2 31 30.9 

Trial 4 29.3 30 31.6 30.5 30.1 

Trial 5 29 30.2 31.2 28.8 29.2 

Averages 29.72 30.32 30.18 30.88 30.34 

 

2nd cycle  

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

Trial 1 33.1 32 31 32 32 

Trial 2 32.4 32.9 33 34 31.6 

Trial 3 33.6 31.5 30.5 32.5 32.7 

Trial 4 32.7 33 33.5 32 32.5 

Trial 5 32.5 32.5 31 31.5 31 

Averages 32.86 32.38 31.8 32.4 31.96 

 



500 ⁰C 4hrs Surface Hardness 

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

Trial 1 37.8 37.9 36 36 40.1 

Trial 2 38.1 38.5 37.2 37 38 

Trial 3 37.9 36.3 35.1 37.6 37.9 

Trial 4 39.9 38.3 39.5 38.1 38.9 

Trial 5 39.5 38.9 39.5 39.2 37.1 

Averages 38.64 37.98 37.46 37.58 38.4 

500 ⁰C 2hrs + 2hrs Surface Hardness 

1st cycle  

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

Trial 1 39.5 38.3 38.2 39.6 39.4 

Trial 2 39.6 39.2 38.9 40.7 37.1 

Trial 3 39.5 38.5 39.3 40.9 38.5 

Trial 4 39.4 39.5 39.5 39.4 37.9 

Trial 5 39.9 39.1 39.4 40.5 39.7 

Averages 39.58 38.92 39.06 40.22 38.52 

 

2nd cycle  

 

Sample 

1 

Sample 

2 

Sample 

3 

Sample 

4 

Sample 

5 

Trial 1 37.3 36 36.9 37.3 35 

Trial 2 37.8 38.2 38 37 36.1 

Trial 3 38.6 37.2 38.8 37.9 36.3 

Trial 4 37.4 36.3 37.5 37 37.8 

Trial 5 36.8 35.5 39 38.3 39 

Average

s 37.58 36.64 38.04 37.5 36.84 

 

 



400 ⁰C 4hrs Surface Hardness 

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

Trial 1 (RC) 40.4 40.7 44.3 43.1 39.9 

Trial 2 (RC) 42.2 44.1 42.5 45 44.9 

Trial 3 (RC) 44.5 46.2 46.5 40.9 43.9 

Trial 4 (RC) 46.9 45 47 45.5 43.8 

Trial 5 (RC) 47 42.1 45.9 41.9 45 

Average 44.2 43.62 45.24 43.28 43.5 

 

400 ⁰C 2hrs + 2hrs Surface Hardness  

1st cycle 

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

Trial 1 40 43.3 38 43.4 42.5 

Trial 2 43.8 40 43.9 44.7 46.1 

Trial 3 43.8 46 44 43.8 45.3 

Trial 4 45 45.7 40.8 42.3 44.5 

Trial 5 46.1 46 44.2 44.8 45.6 

Averages 43.74 44.2 42.18 43.8 44.8 

 

2nd cycle  

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

Trial 1 42 46 46 43.2 44.5 

Trial 2 44.8 42.8 45 45.6 45 

Trial 3 45.2 44.6 46.2 43.3 44.9 

Trial 4 44.7 44.4 44.2 44.5 42.3 

Trial 5 45.4 45 44 44.1 42.9 

Averages 44.42 44.56 45.08 44.14 43.92 



300 ⁰C 4hrs Surface Hardness 

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

Trial 1 52.1 52.1 51.9 51.9 52.1 

Trial 2 50.1 52.1 50.6 52.1 51.9 

Trial 3 50.2 49.9 51.1 51.8 49 

Trial 4 50.9 50 50.2 50.2 51.8 

Trial 5 51.9 50.5 52 52.1 51.6 

Averages 51.04 50.92 51.16 51.62 51.28 

 

300 ⁰C 2hrs + 2hrs Surface Hardness  

1st cycle  

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

Trial 1 45.1 49.1 48.3 47.2 49.8 

Trial 2 48.1 47 49.7 48.1 49 

Trial 3 47.6 48.5 47.2 47 46.2 

Trial 4 48.1 49.2 46 45.8 47.1 

Trial 5 47.8 48 48.1 46.1 49 

Averages 47.34 48.36 47.86 46.84 48.22 

 

2nd cycle  

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

Trial 1 48.4 50.9 53 52 49.8 

Trial 2 49.3 52 50 50.9 51.6 

Trial 3 50.2 51.3 51 50.8 50.3 

Trial 4 50.2 50.2 50.9 51.2 50.2 

Trial 5 51 52 50.3 51.3 50.5 

Averages 49.82 51.28 51.04 51.24 50.48 



Appendix B 

x200 Magnification  

 

 

x500 Magnification  

 



x1000 Magnification  

 

 

x2000 Magnification  

 

 

 

 



400 ⁰C 2hrs + 2hrs x200 Magnification  

 

400 ⁰C 2hrs + 2hrs  x500 Magnification  
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