
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2013

Waterborne Autonomous VEhicle
Angel Genchev Trifonov
Worcester Polytechnic Institute

Daniel Joseph Miller
Worcester Polytechnic Institute

Edward Charles Osowski
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Trifonov, A. G., Miller, D. J., & Osowski, E. C. (2013). Waterborne Autonomous VEhicle. Retrieved from
https://digitalcommons.wpi.edu/mqp-all/3349

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3349&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3349&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3349&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3349&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/3349?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3349&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

4/23/2013

ROBOSUB
Waterborne Autonomous VEhicle

A Modular Development Platform for Underwater Robotics at WPI

A Major Qualifying Project Report

Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

By

Electrical
Team

Ijeoma Ezeonyebuchi

Breanna McElroy

Neal Sacks

Adam Vadala-Roth

Report Submitted to

Prof. Susan Jarvis

Prof. Craig Putnam

Mechanical
Team

Sidney Batchelder

Anna Chase

Cory Lauer

Elizabeth Morris

Christopher Overton

Report Submitted to

Prof. Stephen Nestinger

Prof. Kenneth Stafford

Software
Team

Daniel Miller

Edward Osowski

Angel Trifonov

Report Submitted to

Prof. Michael Ciaraldi

Prof. Craig Putnam

Abstract

This project designed and realized the Waterborne Autonomous VEhicle (WAVE), a submersible modular

robotic platform to enable research on underwater technologies at WPI at minimal cost. WAVE’s

primary design objectives were modularity and expandability while adhering to the regulations for the

international competition held by the Association for Unmanned Vehicle Systems International. WAVE’s

core features include a six degree-of-freedom chassis, a modular electronic infrastructure, and an easily

configurable software framework.

ii

Authorship

The contents of this report can be classified into four categories: mechanical, electrical, software, and
systems level sections. The three sub teams were responsible for writing their respective team sections,
while the system-level sections were written by the senior engineers of the term that the specific
sections were created in. Additionally, the appendices of this report were created on an individual basis.
Although the majority of the sections were created at the team level, each member deserves
recognition for their individual work throughout this report. For sections with multiple authors, they are
credited alphabetically by last name.

1 Introduction .. Batchelder, Osowski, Sacks
2 Background ... Team

2.1 Robotic Submersibles .. Osowski
2.2 Chassis Design Paradigms ... Batchelder
2.3 Propulsion System... Batchelder
2.4 Ballast/Buoyancy Systems .. Lauer
2.5 Thermal Regulation ...Chase
2.6 Power System ... McElroy
2.7 Software Architecture and Framework ... Osowski, Miller

3 System Overview .. Osowski, Sacks
3.1 Functional Requirements of the System ... Osowski, Overton, Sacks
3.2 System Specifications ... Osowski, Sacks
3.3 System-Level Design Decisions ... Osowski, Sacks
3.4 System Breakdown .. Osowski, Sacks

4 Mechanical Design and Analysis .. Mechanical Team
4.1 System Modeling and Equations of Motion .. Morris, Overton
4.2 Chassis .. Batchelder, Chase, Morris
4.3 Electronics Housing ... Batchelder, Chase, Morris, Overton
4.4 Modules ... Batchelder, Morris
4.5 Thrusters .. Batchelder, Chase, Morris
4.6 Ballast .. Lauer

5 Electrical Design and Analysis .. Electrical Team
5.1 Modular Infrastructure .. Vadala-Roth
5.2 Abstract Hardware Device Design ... Vadala-Roth
5.3 Embedded System Design ... Sacks
5.4 Sensor System Design ... Ezeonyebuchi
5.5 Power System Design .. McElroy
5.6 Design of Printed Circuit Boards Ezeonyebuchi, McElroy, Vadala-Roth

6 Software Design and Analysis .. Software Team
6.1 Distributed Processing .. Miller, Osowski
6.2 Software and Environment Selection ... Miller
6.3 Closing the Feedback Loop ... Miller
6.4 Mission Control ... Osowski
6.5 Robot Models .. Miller
6.6 Libraries and Utility Functions .. Miller
6.7 Communications ... Miller
6.8 Human-Robot Interaction ... Trifonov
6.9 Poolside Interface ... Miller, Trifonov

iii

7 System Integration ... Osowski, Sacks
7.1 Electronics Rack ... Osowski, Sacks
7.2 Pressure Vessel .. Osowski, Sacks
7.3 Communications .. Osowski, Sacks
7.4 System Integration .. Lauer, Osowski, Sacks

8 Testing and Validation .. Team
8.1 Mechanical ... Batchelder, Lauer, Morris, Overton
8.2 Electrical ... Ezeonyebuchi, McElroy, Sacks, Vadala-Roth
8.3 Software ... Miller, Osowski, Trifonov
8.4 Integrated System Testing .. Sacks

9 Future Work .. Osowski
9.1 Platform Improvements Chase, Lauer, Osowski, Overton, Sacks, Trifonov
9.2 Future Modules and Features Batchelder, Chase, Osowski, Sacks, Trifonov
9.3 Requirements for AUVSI ... Lauer

10 Conclusions .. Osowski, Sacks
10.1 Successful Tactics .. Sacks
10.2 Reconsiderations... Sacks
10.3 Possible Changes ... Sacks
10.4 AccomplishmentsEzeonyebuchi, McElroy, Morris, Osowski, Sacks, Trifonov

Appendix A: Chassis Design Matrix .. Morris
Appendix B: Ballast Design Matrix ... Morris
Appendix C: fit-PC Feature Comparison .. Osowski
Appendix D: Water Side Deployment and Recovery SOP ... Batchelder, Sacks
Appendix E: User Manuals ... McElroy, Miller, Sacks

E1. How to Safely Use Lithium Polymer Batteries .. McElroy
E2. LPCXpresso Manuals ... Sacks
E3. Eclipse Setup ... Miller

Appendix F: Various ME Equations .. Morris
Appendix G: Ballast Placement .. Lauer
Appendix H: Sensors ... Ezeonyebuchi
Appendix I: Accessing Board Schematics ... McElroy
Appendix J: Code ... Osowski, Sacks
Appendix K: Bill of Materials .. Sacks
Appendix L: IP Rating ... Batchelder
Appendix M: Budget .. Sacks
Appendix N: RPCs .. Miller, Sacks
Appendix O: Example Mission Files ... Osowski
Appendix P: ANT Build File ... Miller

iv

Acknowledgements

WAVE was made possible thanks to the contributions of many outside sources. This section recognizes

the people and companies who were critical to this iteration of WAVE.

Sponsors

The development of WAVE would not be possible without the contributions of sponsors. These sponsors

provided important donations, either in-kind or monetary. In return, these sponsors were featured in all

WAVE signage, and on the team’s website: robosub.wpi.edu.

ARM Holdings

ARM Holdings Inc. provided the electrical design team with a one year license of Keil-MDK ARM Micro

Controller Development Kit. This software was used for compiling software for the Abstract Hardware

Device as well as providing a means to interface with alternate JTAG modules the team received from

NXP. Without ARM Holdings Inc.’s generous donation, the embedded software development for WAVE

would have been difficult and limited.

NXP Semiconductors

NXP Semiconductors provided all the ARM Cortex M4 microprocessors and JTAG programmers needed

to develop the complex embedded computing system aboard WAVE. Each Abstract Hardware Device is

powered by a LPC4337JBD144 ARM Cortex M4 donated by ARM, and all embedded software

development was carried out using the donated JTAGs. Without NXP Semiconductor’s generous

donation of microprocessors and programming hardware WAVE’s internal electronics would have been

far more costly to develop and far more expensive overall. The help of the donations really made the

realization of a complete custom electrical system possible.

https://sharepoint.wpi.edu/mqp/robosub/Shared%20Documents/robosub.wpi.edu

v

Vicor Corporation

Vicor Corporation provided three 28V Wide Input Maxi DC-DC converters. These converters supplied an

output voltage of 12 volts and an output power of 200 watts. The power system required the Vicor Maxi

DC-DC Converters as part of WAVE’s 12V conversion board. Without Vicor Corporation’s generous

donation, WAVE’s power system would not be in the current functional state observed in this report.

Gens ace

Gens ace provided three LiPo batteries for the power system. These donations were 10000mAh, 18.5V,

25C, 5S1P LiPo Battery Packs. The LiPo batteries are at the core of WAVE’s power distribution system.

Gens ace’s donation allowed for the proper distribution of power throughout WAVE’s system.

Advanced Circuits

Advanced Circuits provided all printed circuit board fabrication required for all of WAVE’s custom

electronics. In order to realize all of the electrical subsystems required by WAVE, custom printed circuit

boards were required for each subsystem. Without Advanced Circuit’s donation of their printed circuit

board fabrication services WAVE’s electrical system would have been far more costly in addition to

taking longer to develop, as no other fabrication house is as fast as Advanced Circuits.

IDS Imaging Development Systems

IDS Imaging Development Systems provided two UI-1220LE high performance industrial automation

cameras for WAVE’s stereo machine vision system. These cameras will be used by future teams to

implement object recognition and expanded navigation abilities which will make WAVE a serious

contender at AUVSI in the future. Without IDS Imaging Development System’s very generous donation

of these cameras WAVE would not have a machine vision system and therefore would have poor hopes

of success at future AUVSI competitions.

vi

Pololu Robotics and Electronics

Pololu Robotics and Electronics provided a number of generous discounts especially for the team on

specific items were needed. Pololu provided discounts on 5 volt DC/DC converters, female pin headers,

relay breakouts, and the motor driver for the ballast system. The 5 volt DC/DC converters were used to

power the USB hub for connecting AHDs and the cameras. The female headers were used for the AHD’s

shield connections and pin breakout. The relays and motor driver were used for WAVE’s ballast system,

the relays being used for solenoid control and the motor driver being used for the positive displacement

pumps. Without Pololu Robotics and Electronics’ generous discounts the items the team needed would

have been far more expensive cutting into the budget for other important parts.

Special Thanks

We would additionally like to thank several individuals in the WPI community for their generous

assistance. Kevin Harrington has been extremely helpful throughout the project with helping the team

get the Neuron Robotics Software and Bowler Communications Protocol working, and helping with any

debugging issues that arose. Greg Overton helped smooth and chamfer the edges of the electronics

housing ensuring a good surface to gasket interface. David Ephraim was invaluable to the end-cap

machining and CNC-learning process. Alex Camilo has been extremely helpful throughout the project

providing the electrical design team with technical expertise in all aspects of electrical engineering and

advice in regards to high speed printed circuit board design. Ennio Claretti was very helpful and

generous with his time, giving the electrical team access to special purpose soldering tools and assisting

with some of the electronic assembly where 1-2 pairs of hands was just not enough. Erik Scott was

helpful towards the end of the project working with team members to turn the SolidWorks model into a

beautiful 3D render for use in the presentation, the website, and for promoting the project to new

students.

vii

Advisors

Lastly we would like to thank our advisors, Professors Michael Ciaraldi, Susan Jarvis, Stephen Nestinger,

Craig Putnam, and Kenneth Stafford, without whom the team could not have completed this project.

They have all been part of this project since the beginning and their support and investment in the

project have been of great help. We are most appreciative of all the time they have contributed to our

project while simultaneously advising other projects and teaching courses.

viii

Table of Contents

Abstract .. i

Authorship .. ii

Acknowledgements .. iv

Table of Contents ... viii

Table of Figures ... xv

Table of Tables .. xviii

Glossary ... xix

Acronyms .. xxi

1 Introduction .. 1

2 Background ... 3

2.1 Robotic Submersibles .. 3

2.2 Chassis Design Paradigms ... 4

2.2.1 Chassis Shape .. 5

2.2.2 Chassis Style .. 7

2.3 Propulsion System ... 8

2.4 Ballast/Buoyancy Systems .. 10

2.5 Thermal Regulation ... 12

2.6 Power System ... 13

2.6.1 Nuclear Power Sources ... 13

2.6.2 Combustion Power Sources .. 13

2.6.3 Solar and Thermal Energy ... 13

2.6.4 Electrochemical Power Sources .. 14

2.7 Software Architecture and Framework .. 16

2.7.1 Robot Operating System ... 18

2.7.2 Bowler Communication System .. 19

3 System Overview... 20

3.1 Functional Requirements of the System ... 20

3.1.1 Mobility ... 20

3.1.2 Autonomy.. 20

3.1.3 Safety .. 21

3.1.4 Modularity ... 21

3.2 System Specifications .. 21

3.2.1 Physical Constraints .. 22

ix

3.2.2 Mobility ... 22

3.2.3 Autonomy.. 22

3.2.4 Safety Overrides .. 22

3.3 System-Level Design Decisions ... 22

3.3.1 Module Design .. 23

3.3.2 Module Control ... 23

3.4 System Breakdown ... 24

4 Mechanical Design and Analysis ... 25

4.1 System Modeling and Equations of Motion ... 26

4.1.1 Weight ... 27

4.1.2 Buoyancy ... 27

4.1.3 Drag ... 29

4.2 Chassis ... 33

4.2.1 Initial Designs .. 33

4.2.2 Materials ... 38

4.2.3 Form Factor ... 39

4.3 Electronics Housing ... 40

4.3.1 Waterproofing ... 40

4.3.2 Form Factor and Materials .. 41

4.3.3 Thermal Considerations .. 43

4.3.4 End-caps .. 49

4.3.5 Connectors .. 51

4.4 Modules .. 52

4.4.1 Distribution ... 52

4.5 Thrusters ... 54

4.5.2 Safety Considerations ... 62

4.6 Ballast .. 63

5 Electrical Design and Analysis ... 68

5.1 Modular Infrastructure ... 68

5.2 Abstract Hardware Device Design .. 70

5.2.1 Microcontroller ... 72

5.2.2 Abstract Hardware Device .. 74

5.3 Embedded System Design ... 80

5.3.1 Development Environment ... 81

5.3.2 Functionality Confirmation ... 82

x

5.3.3 Serial Communications ... 82

5.3.4 Other Peripherals .. 84

5.4 Sensor System Design ... 85

5.4.1 Inertial Measurement Unit ... 86

5.4.2 Depth Pressure Sensor .. 88

5.4.3 Liquid Level Sensor .. 89

5.4.4 Temperature and Humidity Sensors ... 90

5.5 Power System Design .. 92

5.5.1 Power Distribution System ... 92

5.5.2 Voltage Rails .. 96

5.5.3 Battery Monitoring System ... 97

5.5.4 Power Tether... 98

5.6 Design of Printed Circuit Boards ... 99

5.6.1 Power Board .. 100

5.6.2 Motor Board .. 104

5.6.3 Sensor Board ... 112

6 Software Design and Analysis ... 115

6.1 Distributed Processing .. 115

6.2 Software and Environment Selection ... 117

6.2.1 Module Communication Framework .. 118

6.2.2 Software Development and Organization .. 119

6.3 Closing the Feedback Loop ... 120

6.4 Mission Control ... 121

6.4.1 Mission Model and Task Manager .. 122

6.4.2 Tasks .. 124

6.5 Robot Models .. 126

6.6 Libraries and Utility Functions .. 126

6.6.1 Transform Matrix .. 126

6.6.2 Logs ... 127

6.7 Communications ... 129

6.7.1 Serial Communications ... 129

6.7.2 AHRS Serial Communications .. 129

6.7.3 Remote Procedure Calls .. 131

6.7.4 Device Factory and Configuration ... 132

6.8 Human-Robot Interaction ... 133

xi

6.9 Poolside Interface ... 134

6.9.1 Communications with WAVE .. 135

6.9.2 Command Objects ... 141

6.9.3 GUI Components ... 142

7 System Integration .. 146

7.1 Electronics Rack .. 146

7.2 Electronics Housing ... 147

7.3 Communications ... 148

7.4 Additional Integration ... 149

7.4.1 Thrusters ... 149

7.4.2 Active Ballast ... 149

7.4.3 Communications Tethering ... 150

8 Testing and Validation .. 151

8.1 Mechanical Testing ... 151

8.1.1 Electronics Housing ... 151

8.1.2 Ballast .. 153

8.1.3 Chassis ... 154

8.1.4 Locomotion ... 154

8.2 Electrical Testing ... 155

8.2.1 Testing the AHD .. 155

8.2.2 Power System Testing and Evaluation .. 160

8.2.3 Sensors .. 176

8.2.4 Low-level Computing .. 178

8.3 Software Testing ... 181

8.3.1 Unit tests ... 181

8.3.2 Observational Testing ... 183

8.3.3 Memory Leak Testing .. 183

8.3.4 Communications ... 184

8.3.5 Poolside Interface Communication Testing .. 186

8.4 Integrated System Testing .. 188

8.4.1 Fully Integrated Submersion ... 188

8.4.2 Safety System Tests ... 188

8.4.3 Maintaining Position ... 189

8.4.4 One-Dimensional Motion .. 189

8.4.5 Two-Dimensional Motion ... 189

xii

9 Future Work .. 190

9.1 Platform Improvements .. 190

9.1.1 Mechanical Improvements ... 190

9.1.2 Electrical Improvements ... 193

9.1.3 Software Improvements ... 194

9.2 Future Modules and Features ... 196

9.2.1 Future Module Development ... 197

9.2.2 External Modules .. 197

9.2.3 Weight Reduction ... 198

9.2.4 Bio-Inspired Propulsion ... 198

9.2.5 Additional Actuator Control .. 199

9.2.6 Robot Simulation Suite ... 199

9.2.7 Modular and Customizable User Interface ... 200

9.3 Requirements for AUVSI ... 201

10 Conclusions ... 202

10.1 Successful Tactics .. 202

10.1.1 Full-team Meetings ... 202

10.1.2 High Level Software Development Environment .. 202

10.1.3 Sponsorships ... 203

10.1.4 Team Website ... 203

10.1.5 Microsoft SharePoint .. 203

10.2 Reconsiderations ... 204

10.2.1 Organization .. 204

10.2.2 Scope ... 205

10.2.3 Documentation ... 205

10.2.4 Unfamiliar Embedded Environment ... 206

10.2.5 Funding.. 206

10.2.6 Budget Management .. 206

10.3 Possible Changes ... 207

10.3.1 Stronger Organization ... 207

10.3.2 More Communication ... 207

10.3.3 Strongly Enforced Deadlines ... 208

10.4 Accomplishments .. 208

10.4.1 Chassis ... 208

10.4.2 Software Framework ... 209

xiii

10.4.3 Electronics Housing ... 211

10.4.4 Power System.. 211

10.4.5 Sensor Suite... 211

References .. 213

Appendix A: Chassis Design Matrix ... 221

Appendix B: Ballast Design Matrix .. 225

Appendix C: fit-PC Feature Comparison ... 226

Appendix D: Waterside Deployment and Recovery SOP .. 227

D1. Preparations ... 227

D2. Deployment .. 227

D3. Recovery ... 228

Appendix E: User Manuals .. 230

E1. How to Safely Use Lithium Polymer Batteries ... 230

E1.1 Charging Safety IMPORTANT! ... 230

E1.2 Guidelines for Storage and Transportation .. 232

E1.3 Guidelines for Battery Disposal ... 233

E1.4 Detailed Steps for Charging... 233

E2. LPCXpresso Manuals ... 241

E2.1 Installation and Registration ... 241

E2.2 Creating a New Project ... 254

E2.3 Downloading Code via JTAG ... 259

E3. Eclipse Setup ... 264

E3.1 Things you’ll need: .. 264

E3.2 Steps: ... 264

Appendix F: Various ME equations ... 268

F1. Hydrostatics and Hydrodynamics ... 268

F2. Propulsion ... 268

F3. Heat Transfer ... 268

Appendix G: Ballast placement ... 269

Appendix H: Sensors ... 270

Appendix I: Accessing Board Schematics .. 273

Appendix J: Code ... 274

Appendix K: Bill of Materials ... 275

Appendix L: IP Rating .. 276

Appendix M: Budget ... 278

xiv

M1. Department Breakdown .. 278

M2. Personal Contributions .. 279

Appendix N: RPCs .. 280

N1. Battery .. 280

N1.1 Packet Format: ... 280

N2. Motor Velocity .. 282

N2.1 Packet Format: ... 282

N3. Emergency Stop .. 285

N3.1 Packet Format: ... 285

N4. Twist ... 286

N4.1 Packet Format: ... 286

Appendix O: Example Mission Files .. 288

Appendix P: Ant Build File ... 289

xv

Table of Figures

Figure 1: An ROV (left, has tether) [7] and AUV (right, no tether) [8] .. 3
Figure 2: Bluefin-12S - A typical Torpedo Shaped AUV [18] ... 5
Figure 3: Non-Torpedo Shaped AUVs: SENTRY (left) [19] and ABE (right) [20] .. 6
Figure 4: Biomimetic AUVS: DHS's BioSwimmer (upper left) [21], USC's Stingray (upper right) [22], SFIT's
Naro-Tartaruga (lower left) [23], and Festo’s AquaPenguin (lower right) [24] .. 7
Figure 5: Pressure Vessel (left) [26], Flooded Shell (middle) [27] and Open Frame (right) [28] AUVs. 7
Figure 6: Propeller Based Propulsion [31] .. 8
Figure 7: Inertial Propulsion [32] [33] ... 9
Figure 8: Biomimetic Propulsion [34] ... 9
Figure 9: Piston Ballast [36] .. 10
Figure 10: Bladder Manipulation Ballast [36] ... 10
Figure 11: Pump Ballast [36] ... 11
Figure 12: Gas Canister Ballast System [36] .. 11
Figure 13: Mechanically Controlled Variable Volume Ballast [37] ... 11
Figure 14: A CAD rendering of the WAVE system depicting the mechanical subsystems. 25
Figure 15: A free body diagram of the hydrodynamics forces acting on a submersible vessel. 26
Figure 16: Weight Distribution of WAVE .. 27
Figure 17: Shielded Frame, Flat-Sided .. 29
Figure 18: SolidWorks Flow Figure for the Open Frame Model ... 30
Figure 19: Open Frame Model .. 31
Figure 20: Pyramid Shield (left) Hemisphere Shield (right): attaches to the front or rear of the vessel 31
Figure 21: The initial layout for the Octo-puck design. ... 34
Figure 22: The initial layout for the Roddy Design .. 35
Figure 23: The initial layout for the Boxy design (mm) ... 36
Figure 24: Initial Stage of Boxy's Design ... 38
Figure 25: 80/20 Cross Section ... 39
Figure 26: Frame Layout: SolidWorks (left), assembled (right) .. 39
Figure 27: ANSYS Simulation Results .. 45
Figure 28: Voltage Divider Circuit ... 46
Figure 29: Heating element with thermistor and thermocouple touching the surface of housing. 46
Figure 30: Thermal Testing Set-Up, Run 1 .. 47
Figure 31: Thermal Testing Set-Up, Run 2 .. 47
Figure 32: Temperature vs. Time Plot ... 48
Figure 33: Set-Up of Second Round of Testing ... 48
Figure 34: End-cap, labeled dimensions ... 50
Figure 35: 5 and 12 Pin WEIPU Connectors. ... 52
Figure 36: Trawling Motor (boxed) [54] [54] .. 55
Figure 37: Modified Bilge Pump .. 56
Figure 38: Thruster Testing Setup ... 57
Figure 39: Graph of Bilge Pump Mechanical to Electrical Power ... 58
Figure 40: Graph of Bilge thrusters Current vs. Voltage ... 59
Figure 41: Bilge Pump Endurance Test, Graph of Force vs. Time ... 60
Figure 42: Seabotix BTD150 .. 60
Figure 43: Graph Seabotix Thruster Data ... 61
Figure 44: Johnson Pump 1000 GPH ... 62

xvi

Figure 45: Propeller Shroud .. 63
Figure 46: Ballast placement ... 65
Figure 47: WAVE's Modular Infrastructure ... 69
Figure 48: Abstract Hardware Device ... 75
Figure 49: Arduino pin layout [55] .. 76
Figure 50: AHD Signal Traces .. 79
Figure 51: Embedded System Architecture .. 81
Figure 52: Sensor Suite ... 86
Figure 53: Microstain 3DM GX3-35 ... 87
Figure 54: GE PDCR 1830 .. 89
Figure 55: Honeywell LLE 10200 ... 90
Figure 56: Power System .. 92
Figure 57: Capacitor Discharge Rate ... 102
Figure 58: Main Power Supply Board.. 103
Figure 59: Conversion Board ... 104
Figure 60: Thruster Controller Board .. 106
Figure 61: Navigation and Locomotion Shield .. 110
Figure 62: Internal Sensor Shield Prototype ... 112
Figure 63: Critical Data Paths and Software Levels... 116
Figure 64: Sample Mission File.. 121
Figure 65: Example RPC Specification ... 132
Figure 66: GUI Screenshot .. 134
Figure 67: Model View Controller Diagram .. 136
Figure 68: Network timing diagram for GUI connections ... 138
Figure 69: Emergency Stop Button ... 142
Figure 70: Mission tree showing an example mission, with all tasks completed 143
Figure 71: The attitude indicator .. 143
Figure 72: The log having several messages generated upon startup .. 144
Figure 73: System uptime, along with a placeholder video area .. 145
Figure 74: System Electronics Rack ... 147
Figure 75: Electronics rack during system testing .. 147
Figure 76: JTAG Testing Setup ... 159
Figure 77: Discharge of Individual Battery Cells ... 161
Figure 78: Discharge of Battery... 162
Figure 79: High Power 2Ohm Resistor .. 162
Figure 80: First Half Charging of Individual Cells .. 163
Figure 81: First Half Total Voltage Output .. 163
Figure 82: Second Half Charging of Individual Cells .. 164
Figure 83: Second Half Total Voltage Output ... 165
Figure 84: Network of Parallel Resistors ... 166
Figure 85: Voltage Divider for Voltage Sensing .. 168
Figure 86: Current Sensing Configuration ... 170
Figure 87: Current Sensing Configuration Shorts Voltage Sensing Inputs .. 170
Figure 88: Typical Vicor Converter Configuration ... 171
Figure 89: Conversion Board Schematic ... 172
Figure 90: Inside the Vicor Converter ... 173
Figure 91: Modification of Conversion Board (Schematic) ... 174
Figure 92: Modified Conversion Board (PCB) ... 175

xvii

Figure 94: Robotic Fish .. 198
Figure 95: BlueSea IP Ratings [57] .. 277
Figure 96: Echo Mission .. 288

xviii

Table of Tables

Table 1: Comparison of common secondary batteries [42] ... 15
Table 2: Summary of Operation Specifications (Specs marked with a ‘†’ are from AUVSI guidelines) 21
Table 3: Drag Force Simulation Results .. 32
Table 4: Design Matrix Criteria ... 37
Table 5: Waterproofing Methods ... 40
Table 6: Interpreted Seabotix Results ... 61
Table 7: Buoyancy of Various Components .. 63
Table 8: Design Matrix Criteria ... 64
Table 9: IMU Comparison Analysis ... 88
Table 10: Depth Sensor Comparison .. 89
Table 11: Temperature and Humidity Sensor Comparison .. 91
Table 12: Estimated Power Budget ... 93
Table 13: Final Power Budget ... 96
Table 14: Tether Resistance and Voltage Drop ... 99
Table 15: Current Sensing 5V Input .. 167
Table 16: Current Sensing 19V Input .. 167
Table 17: Voltage Sensing Testing Data .. 169
Table 18: Conversion Board Output with Current Considered ... 176
Table 19: Chassis Design Matrix - Weight Determination .. 221
Table 20: Chassis Design Matrix - Boxy ... 222
Table 21: Chassis Design Matrix - Roddy .. 223
Table 22: Chassis Design Matrix - Octopuck ... 224
Table 23: Ballast Design Matrix ... 225
Table 24: Fit-PC Comparison ... 226
Table 25: Department Breakdown of Budget ... 278
Table 26: Personal Contributions .. 279

xix

Glossary

80/20® A framing system using extruded beams of aluminum

Abstract Hardware
Device

A general purpose microcontroller with a variety of interfacing options that
can be used for a variety of low-level computing and interfacing tasks.

Ant Apache Ant, a Java scripting library

Basebot A small 3-wheeled robot used by the software team for testing and
debugging.

DC-DC Converter An electronic circuit which converts a source of direct current (DC) from
one voltage level to another

Device file A file containing the serial number and path of every AHD

DyIO A hardware USB computer peripheral that allows quick and easy connection
between any computer and other hardware peripherals plugged into the
DyIO’s channels, such as sensors, LEDs, servos, etc.

Electrical Team The group of students responsible for the design and development of the
electrical part of WAVE

fit-PC The Mini-PC which contains the Ubuntu server, which is used to run the
Java code

Future teams Future WPI MQP group(s) that will take WAVE and build, expand, and
improve upon its design

Interface/Poolside
Interface/GUI

The interface used to perform different functions on WAVE, such as
debugging, communication, running missions, sending commands, etc.

Manager/Task Manager The function that runs through the XML Mission File and executes the tasks
in the specified order asynchronous tasks are started as soon as they are
encountered

Mechanical Team The group of students responsible for the design and development of the
mechanical part of WAVE

Mini-PC A self-contained off the shelf computer; they are the smallest, full-featured
computers available, inherently power efficient and contain their own
power supply; they are usually not upgradeable

Mission/Mission
File/XML Mission file

A collection of synchronous/asynchronous task descriptions written in an
XML file to be executed by WAVE

Model The core of the Model-View-Controller Pattern and represents a particular
set of data; WAVE includes several different models such as a Battery
Model or a Mission Model

Modular/Modularity The ability to integrate any individual functional hardware or software into
the system

Modules Components that extend WAVE’s functionality in some specific manner
designed to be removable and replaceable

PID controller/loop Control loop feedback controller used in WAVE’s control systems

Protocol An “agreement” between two different modules for how to communicate
data.

PWM signal Pulse-Width Modulation is a modulated signal with variable duty cycle
usable, for example, for motor speed control.

Server/Echo server An echo server used to link the driver library and the LUFA

Software Team The group of students responsible for the design and development of the

xx

software part of WAVE

SolidWorks A 3D mechanical computer-aided design program

Subsystem The individual electronics that comprise the system as a whole; the ability
to add/remove subsystems is what makes the platform modular

Task The different operations/functions WAVE performs

The Team If referred from one of the specific group sections it means that specific
group, such as ME; if used in a general section, such as Introduction or
Background, it means to the whole MQP group

xxi

Acronyms

ADC Analog Digital Converter

AHD Abstract Hardware Device

AHRS Attitude and Heading Reference Sensor

AUVSI Association for Unmanned Vehicle Systems International

AUV Autonomous Underwater Vehicle

BCP/S Bowler Communications Protocol/System

CoB Center of Buoyancy

CoG Center of Gravity

CPU Central Processing Unit

CS Computer Science

DoF Degree of Freedom

DyIO Dynamic Input / Output

ECE Electrical and Computer Engineering

GPIO General Purpose digital Input/Output

I2C Inter- Integrated Circuit

IC Integrated Circuit

IDE Integrated Development Environment

IDL Interface Definition Language

IMU Inertial Measurement Unit

IP Ingress Protection

ISP In-System Programming

JAR Java Archive

LED Light-Emitting Diode

LUFA Lightweight USB Framework for AVRs

LiFePo/LFP Lithium Iron Phosphate/Lithium Ferro-phosphate battery

LiPo Lithium-Polymer battery

ME Mechanical Engineering

MIP Microstrain Inertial Product

MQP Major Qualifying Project

NRSDK Neuron Robotics Software Development Kit

NR Neuron Robotics

NiCd Nickel-Cadmium battery

NiMH Nickel-Metal Hydride battery

OS Operating System

PAFC Phosphoric Acid Fuel Cell

PCB Printed Circuit Board

PEFC Polymer Electrolyte Fuel Cell

PEMFC Proton Exchange Membrane Fuel Cell

PIC32 Personal Interface Controller 32 bytes

PID Proportional Integral Derivative

PWM Pulse Width Modulation

ROS Robot Operating System

ROV Remotely Operated Vehicle

RPC Remote Procedure Call

xxii

RTC Real Time Clock

SCT State Configurable Timer

RX/TX lines Receive and Transmit lines

SDK Software Development Kit

SPI Serial Peripheral Interface

STAIR STanford Artificial Intelligence Robot

UART Universal Asynchronous Receiver/Transmitter

USART Universal Synchronous/Asynchronous Receiver/Transmitter

UUV Unmanned Underwater Vehicle

WAVE Waterborne Autonomous Vehicle

WPI Worcester Polytechnic Institute

XML Extensible Markup Language

1 Introduction

Underwater robots are used in a variety of applications including oil well maintenance [1], deep-sea

exploration [2] and underwater ordinance disposal [3]. As such, underwater robotics has become a

major field of research and development at many colleges and universities. Most of the collegiate level

robotic submersibles are focused on completing challenges as part of a robotics competition but these

vehicles also have a number of avenues of potential development as academic research platforms.

Commercial underwater robotic platforms are typically prohibitively expensive for academic

research and collegiate Autonomous Underwater Vehicle (AUV) competitions. Furthermore, most

commercial AUV platforms are designed for a specific purpose and do not lend themselves to general

research. Many of the commercial modular AUVs, such as the Bluefin-12S [4], pose heavy constraints on

adding custom modules making them undesirable for research. Remotely Operated Vehicle (ROV) kits

such as OpenROV [5] are more economically feasible but lack basic computing and autonomous

functionality. These kits typically only have a microprocessor for computing and are not designed to do

any complicated calculations or decision-making. Adding on-board computing and custom modules

would require additional ad-hoc hardware development to a rigid design.

This project was designed to develop an extensible, open-architecture underwater robotics

research platform with the ability to mount custom modules via a universal interface. The Waterborne

Autonomous VEhicle (WAVE) is an underwater vehicle capable of autonomous waypoint navigation and

obstacle avoidance. The development of a highly reconfigurable and extensible underwater robotics

platform eliminates fundamental hardware development, allowing more effective utilization of research

time, energy, and funds. WAVE’s capabilities beyond basic movement and navigation are defined by the

modules attached to it. These modules have standardized hardware and software interfaces that will

interface with WAVE electronically. WAVE’s design can be partitioned into three primary sections: the

2

computational core, the chassis, and the modular electrical systems. WAVE is capable of completing a

multitude of tasks. This is accomplished through the standardized mounting and electronics system for

implementing modules that can be easily integrated with the robotic platform. Thorough

documentation on how the system works helps new users understand and modify the system to

accomplish the tasks they set for WAVE. This modular design also provides a platform for future

projects.

Past Worcester Polytechnic Institute (WPI) Major Qualifying Projects (MQPs) on AUV research

platforms shared similar traits to project including economic accessibility and modularity. The IIH1

project [6] emphasized cost effectiveness but suffered a number of defects which hindered usability.

Subsequent projects were forced to dedicate resources to fix lingering issues before implementing their

original goal. Although this project was conceived separately, it could be considered a successor to the

IIH1 AUV. By learning from the errors of the IIH1 project, and by focusing on hardware expandability for

future projects, the team can create a more enduring project than the IIH1. This will fill a gap in WPI’s

research capabilities by providing the university with its first adaptable underwater research platform.

This platform will open up several avenues of research that could have far-reaching implications

including underwater human-robot interaction and underwater cave exploration.

The remaining sections of this report are organized as follows. Chapter 2 gives a background on

AUVs and their components. Chapter 3 identifies and lists the requirements and specifications for

WAVE. Chapters 4-6 discuss the design and analysis process of the three subsystems: Mechanical,

Electrical, and Software. The integration of these three subsystems is presented in Chapter 7. Chapter 8

discusses subsystem testing and validation. Chapter 9 details future work and Chapter 10 concludes the

report. The Appendices provide further details, figures, and code that could not be fit into the report

proper.

3

2 Background

To develop a standardized mounting, electrical and computing system, several criteria pertaining to

robotic submersibles need to be evaluated. This chapter will include a brief description of the history of

robotic submersibles. It then includes descriptions and analyses of various aspects of their design. These

subsystems include the chassis, the propulsion system, the ballast and buoyancy system, thermal

regulation, the power system, and the software architecture. Several robotic submarines have been

analyzed throughout the chapter, ranging from professionally-constructed to student-made vehicles.

2.1 Robotic Submersibles

Robotic submersibles come in two varieties: ROVs and AUVs. ROVs are Remotely Operated underwater

Vehicles that are physically tethered to a vessel while AUVs are non-tethered Autonomous Underwater

Vehicles. Both types fall under the term Unmanned Underwater Vehicle (UUV).

Figure 1: An ROV (left, has tether) [7] and AUV (right, no tether) [8]

Most early ROV development was funded by the US Navy beginning in the 1960s to create

vehicles for performing deep-sea rescue or to recover objects such as military ordinance on the ocean

floor [9]. Following these initial developments, the offshore oil and gas industry began using ROVs to

help develop offshore oilfields and by the 1980s were an essential part of the industry as the wells were

being drilled at depths too deep for human divers [10]. Since the 1980s, ROV use has expanded to a

4

number of other fields such as the construction and maintenance of offshore pipelines and other subsea

structures, as well as a number of research fields such as searching for shipwrecks [11] and researching

marine life [12]. The advancement of artificial intelligence has allowed the robotic submersible industry

to expand its development of AUVs in the use of robotic submersibles for tasks that ROVs cannot

accomplish [13].

The Association for Unmanned Vehicle Systems International (AUVSI) is the leading international

non-profit organization devoted to the unmanned systems and robotics community [14]. They hold a

yearly robotic submersible competition whose guidelines are being used in the development of this

project. AUVSI was founded in 1972 as the National Association of Remotely Piloted Vehicles (NARPV),

triggered by the use of Remotely Piloted Vehicles in the Vietnam War [15]. By the late 70s, the

association was called the Association for Unmanned Vehicle Systems, but as the industry expanded

through the 80s and 90s, demand for the organization's services became global. In 1996, AUVS officially

became AUVSI and now has 2,100 member organizations in 60 countries. The AUVSI Robosub

Competition is cosponsored by the US Office of Naval Research and the AUVSI foundation, which is a

charitable organization that promotes the educational initiative of the AUVSI. This international

competition brings together high school and college students from the US and other countries and

offers a monetary prize to the groups that are able to navigate the course and successfully complete

objectives. [16]

2.2 Chassis Design Paradigms

AUVs come in a variety of shapes and styles depending on their operating criteria. Many commercial

AUVs are torpedo shaped although non-torpedo and even biomimetic chassis are not uncommon.

Depending on the shape, an AUV can be designed with different levels of water permeability: pressure

vessel style chassis hermetically seal the interior of the craft; flooded shell style chassis allow water to

5

permeate the interior of the craft; open frame designs have little sense of an interior at all allowing

water to flow naturally through the AUV’s structure. These different shapes and styles lend themselves

to different applications [17].

2.2.1 Chassis Shape

The most prevalent commercial AUV form factor, as shown in Figure 2, harkens to that of a torpedo, a

long cylinder. Torpedo designs typically have one rear prop thruster and are steered using control fins.

They exhibit low water drag due to a small forward motion profile making them very hydrodynamic and

efficient to propel. Due to high efficiency, the torpedo design is the design of choice for missions

involving long distance travel where long term drag forces can reduce the range of an AUV with a given

energy capacity. Torpedo designs are best suited for open water operation. However, torpedo-designed

AUVs have reduced mobility. Although they are capable of 6 degrees-of-freedom (DoF) motion, motion

along those DoF are not independent i.e. they are non-holonomic. For instance, to change orientation, a

torpedo-shaped AUV must also move forward; their turn radii are rated as a function of their body

length. This makes them unsuitable for operation in tight environments or maneuvering around

obstacles.

Figure 2: Bluefin-12S - A typical Torpedo Shaped AUV [18]

Non-torpedo shaped AUVs come in all manner of shapes and configurations but generally

sacrifice hydrodynamic efficiency for some other desirable property like stability, maneuverability, and

modularity. Examples of non-torpedo shaped AUVs are shown in Figure 3. Their less-hydrodynamic

6

properties make them generally slower and more susceptible to currents than torpedo shaped AUVs,

but also more mobile in that they tend to have greater independent control of their DoF. A comparison

can be made between underwater and aerial vehicles where torpedo shaped AUVs are to planes as non-

torpedo shaped AUVs are to helicopters.

Figure 3: Non-Torpedo Shaped AUVs: SENTRY (left) [19] and ABE (right) [20]

A specific subclass of non-torpedo shaped AUVs are biomimetic designs, which emulate qualities

found in the natural world as shown in Figure 4. They typically exploit the high mobility and flexibility of

marine animals to create AUVs of similar physical ability. They tend to feature fins, tails, hydrodynamic

optimized shapes, flexible bodies and high accelerations. Aqueous biomimetic designs are still a hot

research area; as such, there are few such commercial AUVs on the market.

7

Figure 4: Biomimetic AUVS: DHS's BioSwimmer (upper left) [21], USC's Stingray (upper right) [22], SFIT's Naro-Tartaruga
(lower left) [23], and Festo’s AquaPenguin (lower right) [24]

2.2.2 Chassis Style

There are three major UUV chassis styles: pressure vessel, flooded shell, and open frame [25]. Examples

of each are shown in Figure 5.

Figure 5: Pressure Vessel (left) [26], Flooded Shell (middle) [27] and Open Frame (right) [28] AUVs.

Pressure vessels hermetically seal the inside of the craft against the external wet environment.

These are easy to manufacture and maintain with an easily accessible interior, but are prone to

catastrophic failures if the hull is breached or improperly sealed. The space within the vessel is also

limited, reducing expandability, and can be prone to internal condensation if not properly handled.

8

Flooded shells are similar in appearance to pressure vessels. However, they contain hulls

designed to let water into the housing. With flooded shells, water-sensitive components are

independently waterproofed from the hull. The buoyancy from such a system comes less from the air

trapped by the component housings and more from the materials used for or in the hull such as

syntactic foam, a machinable lighter-than-water incompressible material. Syntactic foam provides more

ruggedness than a pressure vessel while still providing a hydrodynamic shell for water to flow around.

Open frame designs do not protect individual components from the water. They tend to not be

hydrodynamic because frames often create eddies and resistance in the water. However, this design is

highly expandable, allowing for easy exchange and maintenance of components and modules.

2.3 Propulsion System

Currently, there are three main propulsion systems employed in AUV research and development:

propellers, buoyancy driven propulsion, and biomimetic propulsion. [29] [30]

Figure 6: Propeller Based Propulsion [31]

9

Figure 7: Inertial Propulsion [32] [33]

Figure 8: Biomimetic Propulsion [34]

Propellers provide steady and easy-to-calculate thrust output, but typically lack efficiency.

Buoyancy driven propulsion adjusts the mass of the AUV by changing the internal buoyancy of the craft,

which allows the AUV to travel up and down in the water while translating along a saw-tooth dive

profile. Buoyancy driven propulsion is extremely efficient, allowing for long term missions by affecting

slight changes in internal buoyancy of the craft to allow the craft to glide through the water in a saw-

tooth path. However, buoyancy driven propulsion systems lack agility in the water because of their

restriction to a gliding path, thus they are not used in tight quarter operations. Biomimetic propulsion

includes systems that are modeled after living organisms. Biomimetic propulsion is not used in active

AUV deployment, but research is being conducted regarding efficiency and effectiveness.

10

2.4 Ballast/Buoyancy Systems

Ballast designs vary from fluid manipulation control to completely mechanical control. The most

common form is the use of a piston to flood and evacuate a compartment with water to change the

buoyancy, as used in SeaExplorer [35] and Seaglider [30]. Figure 9 shows a diagram of a piston ballast

system.

Figure 9: Piston Ballast [36]

 Both of these AUV's also use another form of ballast involving the movement of oil into and out

of an external bladder. Figure 10 shows a diagram of this bladder manipulation ballast.

Figure 10: Bladder Manipulation Ballast [36]

While Figure 10 shows the control of air, the same basic principle is applied in SeaExplorer and

SeaGlider with the addition of piston control. Oil is forced into the bladder via a piston which increases

the volume of the craft, causing it to rise. Some designs use a pump to force water into a ballast tank,

11

membrane or rigid, to change the buoyant properties of the craft. Figure 11 shows a diagram of a pump

ballast system.

Figure 11: Pump Ballast [36]

Others use a limited use system focusing on a container of compressed gas to quickly empty a

tank of water. This requires that the gas canister be refilled periodically between missions. Figure 12

shows a diagram of a gas canister ballast system.

Figure 12: Gas Canister Ballast System [36]

On the mechanical side, the 2010 paper Low Cost Submarine Robot [37] introduced the idea of

mechanically expanding the volume of the hull to control buoyancy. A screw motor elongates the hull

which is protected by a hydraulic seal, increasing or decreasing the volume as needed. Figure 13 shows

an example of mechanically controlled variable volume ballast.

Figure 13: Mechanically Controlled Variable Volume Ballast [37]

12

There are other systems for controlling ballast that were disregarded due to their need of

constant

2.5 Thermal Regulation

Electronic components have maximum operational temperatures, while also emitting energy in the form

of heat due to inefficiencies. Convection, conduction, and radiation are the three primary methods of

heat transfer. Convection is the heat transfer from an object to its surroundings, due to fluid motion.

Conduction is heat transfer through contact. Radiation is heat transfer from the emission of

electromagnetic radiation. Through these methods of heat transfer, the vehicle must be able to

dissipate enough thermal energy to maintain an acceptable temperature for the electronics to operate

safely.

There are different ways to manage heat built up inside the pressure vessels of a submersible.

The technology industrial submarines utilize to balance the heat within their vessels is beyond the scope

of the project due to size and cost restrictions, but some processes that are used may have application

at a smaller scale. One of the main sources of heat generation within a submersible is the power source.

Power dissipation from the power source causes overheating which may compromise other subsystems

and components in the submarine. For years Bluefin robotics struggled with their battery enclosure.

Tests resulted in “dangerous off gassing, the need for refrigeration for maximum cycle, and costly

pressure vessels that had to be opened for each charge cycle.” [38] Over time Bluefin settled on using

lithium ion batteries in conjunction with an electronic system to control and monitor cell voltages,

temperature, and current to create a system less prone to failures and overheating. The system was

enclosed in a corrosion resistant, pressure tolerant housing. The challenges faced by Bluefin

demonstrate the complexity of maintaining a live battery on a sub, and the importance for appropriate

materials and monitors to allow it to run.

13

2.6 Power System

An important AUV design consideration is the selection of the power source. Many factors play a role in

deciding what power source is best for the AUV’s application and which characteristics are most

important to the AUV including desired speed, type of sensors needed, and length of mission. Multiple

types of untethered power sources are used in underwater vehicles including nuclear, combustion,

solar, thermal, and electrochemical [39].

2.6.1 Nuclear Power Sources

Nuclear power sources can last for a long period of time without refueling and can operate as a closed

system. Though this concept has been proven successful, they are very large, expensive, and highly

regulated making them impractical for most AUVs.

2.6.2 Combustion Power Sources

Combustion power sources have also been developed and used for underwater vehicles. While this type

of power source is viable for large underwater vehicles, the amount of power and speed attained is not

very practical for smaller AUVs.

2.6.3 Solar and Thermal Energy

Both solar and thermal energy have been successfully utilized to support long-endurance missions, such

as environmental monitoring and oceanographic surveying [40], with minimal maintenance. This is a

more recent advancement in AUV design and is a field for further research and development. Due to

these technologies only being in the early stages of development it would not be efficient to use solar or

thermal energy in a smaller, inexpensive AUV [41].

14

2.6.4 Electrochemical Power Sources

Electrochemical power sources, the most common power source for small scale submersibles, use

chemical reactions to create electrical energy and can be categorized into four groups: fuel cells,

seawater cells, primary batteries, and secondary batteries.

2.6.4.1 Fuel Cells

Fuel cells create electrical energy by the reaction of oxygen and fuel, without combustion. They are

larger and more complex than primary and secondary batteries. Examples of fuel cells include

phosphoric acid fuel cell (PAFC), polymer electrolyte fuel cell (PEFC), and proton exchange membrane

fuel cell (PEMFC).

2.6.4.2 Seawater Cells

Seawater cells utilize the oxygen in the seawater to create a reaction similar to fuel cells. As a result of

using its own environment as fuel, it has a high energy density, but consequently has a low power

density. It is common for magnesium to be used as the anode material in these cells.

2.6.4.3 Primary Batteries

Primary batteries are portable non-rechargeable voltaic cells that have a high energy density, are safe,

easy to use, and are inexpensive. However, they are designed to only be used once and can outgas

hydrogen if stored for a long period of time. Examples of primary batteries include alkaline cells and

Lithium primary cells.

2.6.4.4 Secondary Batteries

Secondary batteries, portable rechargeable voltaic cells, are the most popular choice for powering AUVs.

Secondary batteries have many different trade-off points and should be selected based on the intended

application for the AUV. Table 1 compares common types of secondary batteries.

15

Table 1: Comparison of common secondary batteries [42]

Nickel Cadmium (NiCd) batteries are best for applications where they will be in constant use and

actually form crystals on their cell plates if left sitting and not fully discharged. They charge quickly, work

in a wide range of temperatures, are inexpensive, and have a high number of charge/discharge cycles.

However, they have a low energy density, need to be recharged after storage, are unfriendly to the

environment, and are subject to charge memory issues.

16

Nickel-Metal Hydride (NiMH) batteries have a high energy density, require less maintenance,

and are more environmentally friendly than NiCd’s, but also have a high self-discharge rate, are less

durable, and more expensive.

Lead Acid batteries are inexpensive, reliable, well understood, and require minimal

maintenance, but cannot be stored discharged, have low energy density causing them to generally be

heavy, have a limited number of charge/discharge cycles, and are also environmentally unfriendly.

Lithium Ion (Li-ion) batteries, when first developed, had many safety issues, specifically during

charging. However, research advanced the use lithium ion batteries making them safer and ubiquitous.

These batteries still need special care when charging and discharging. Also, they may be subject to aging

defects, have transportation regulations, and are costly. However, lithium ion batteries have a high

energy density, are low maintenance, have a small self- discharge rate, and are relatively lightweight.

Lithium Polymer (LiPo) batteries are much like their predecessor, Li-ion batteries, but replace the

porous separator with a dry, solid polymer electrolyte. Much like a thin film of plastic, the electrolyte

allows ions to be exchanged but does not conduct electricity itself. This is the original design of the LiPo

battery, but it had poor conductivity and its internal resistance was too high, hindering its effectiveness.

To compensate for this, gelled electrolyte is used instead of a solid polymer. Lithium polymer batteries

have a high energy density, allowing for thin and lightweight designs. LiPo batteries are low-

maintenance, pressure-compensated, and have improved safety but are still more expensive and more

dangerous than NiCd, NiMH, and lead acid batteries [43].

2.7 Software Architecture and Framework

The software onboard an autonomous robot is responsible for interpreting sensor data and deciding

how it should move or act. These various responsibilities call for a robust computational system, capable

17

of making time-sensitive calculations and relaying sensor data throughout the system quickly and

efficiently.

As there are many different kinds of robots, there are many different software architectures and

frameworks used by robots. Some complete robotic software platforms exist to help developers easily

create software based on predefined functions through a graphical user interface such as Microsoft

Robotics Developer Studio [44]. Microsoft’s platform and others, such as Webots, allow for virtual

simulation of systems as well. However, there are many robots with requirements that do not fit existing

software packages and, therefore, the software must be written from scratch [45].

All robotic systems have some sort of embedded code component for basic functionality. This

code is usually written in C or a similar low-level language depending on the electronics board being

used. However, these boards do not have the processing power for high-level decision making.

Therefore, most advanced robots also include a central processor or computer, running an operating

system (OS) such as Linux or Windows, high-level function processing. The on-board computer then runs

a high-level program, which will typically use an object-oriented language such as Java or C++. This

program handles all of the decision-making and mission control logic. Many AUVSI teams use a similar

framework such as Cornell’s Nova robot, which uses a custom software stack running on a Linux single-

board computer [46]. Some teams also take advantage of the various open-source frameworks for

different special functions such as image processing and video capture which are often run on a

separate machine from the decision-making machine. A separate processor is used since these tasks are

usually computationally expensive and take up too much processor time that could slow down decision

making on the primary machine.

One of the key features of any robot software framework is an effective communication

protocol between the high-level decision-making machine and the embedded computing system.

18

Depending on the environment, some teams may implement a custom software framework. However,

there are many predefined software frameworks available. One such framework is the Robot Operating

System (ROS) [47], developed by Willow Garage. Another framework, the Bowler Communications

System (BCS) [48], is quite popular on the WPI campus. The BCS was designed by Neuron Robotics, in

tandem with the DyIO, an embedded controller. BCS and ROS both provide strong frameworks for

distributed control and computation, essential to any complex robotic system. They are necessary since

running all control for the robot on a central processor can result in significant communication delays

when sending information to subsystems. By having dedicated module boards control the subsystems; a

central processor can focus on the bigger-picture operations for the robot and can send commands and

control values to the embedded boards which then do the processing and calculation on their end. The

ROS and BCS frameworks have their own strengths and weaknesses, and varying feature sets.

2.7.1 Robot Operating System

ROS is an open-source Robot Operating System developed for the STAIR project by Stanford University

[49]. ROS acts as a structured communications layer running on top of a standard Linux environment

(typically Ubuntu).It disseminates data through pipelines to its various processes. ROS has five core goals

which guided its development: peer-to-peer communication and control, tools-based environment,

multi-lingual support, lean implementation, and free availability and open-source [50]. ROS has been

natively implemented in C++, Python, Octave, and LISP. Its inter-process communication uses XML-RPC

[51]. Very short message descriptions are constructed using the Interface Definition Language (IDL)

which is then sent via HTTP. These messages are language-independent; allowing each process to be

implemented in whichever language is best suited to the situation.

19

2.7.2 Bowler Communication System

The BCS was developed by Neuron Robotics [52] and has a similar function to ROS. The BCS was

designed to facilitate messaging between Neuron Robotics’ DyIO microcontroller and a PC. Like the

XML-RPC used by ROS, BCS uses remote procedures calls called Bowler RPCs. A series of procedures are

wrapped together into a Namespace, encapsulating a given set of functionality. Each transmission is

sent as a series of Bowler packets and pieced together at the receiving end. This layout makes BCS

extensible and ideal for communicating between separate microcontrollers.

20

3 System Overview

Before the individual subsystems were taken into consideration, WAVE was approached from a system’s

level perspective. This involved creating a concrete set of system-level requirements and specifications

along with determining major design decisions that encompass multiple subsystems. Having a well

thought-out high-level system alleviates certain challenges from subsystem design. Each individual

subsystem would have to adhere to the system-level requirements.

3.1 Functional Requirements of the System

WAVE will serve as a platform for research and collegiate competitions. The functional requirements for

WAVE include basic AUV operations such as motion, accessibility, autonomy with sensor feedback,

tether control, and safety systems. Further requirements for a completed platform include component

modularity for application extendibility and flexibility, wireless communication and control.

3.1.1 Mobility

The mobility requirements including maximum operating depth, mission duration, and maximum speed

were determined by looking at what was required to compete in the AUVSI competition and what would

be feasible given the budget and material constraints of the project. WAVE must also be able to

maintain depth and position using ballasts and motors.

3.1.2 Autonomy

WAVE is required to be autonomous to compete in AUVSI. Full autonomy requires WAVE to sense the

environment and navigate to various waypoints. It will need to localize global waypoints relative to its

location and determine the best way to navigate to those points as well as perform various tasks. WAVE

should also recognize tasks it is unable to accomplish if, for example, certain modules are not

connected.

21

3.1.3 Safety

Safety overrides will be necessary due to the environment WAVE is operating in, as well as the volatility

of its batteries. The pressure vessel will require sensors to detect internal flooding, condensation, and

critical temperatures. WAVE will automatically stop operations and surface if these sensors detect

anything dangerous, as preventing damage to the electronics or the batteries is a top priority during

operation.

3.1.4 Modularity

WAVE is a platform intended to enable underwater research and development, as well as serve in

various competitions. The system will need to be easily modified in mechanical structure, electrical

subsystems, and software infrastructure. WAVE’s physical frame should provide an easy interface for

adding and removing new components such as manipulators, launchers, sensors, etc. In order to ensure

future modularity, the electrical hardware should be able to interface with additional actuators, sensors,

and peripherals. WAVE’s software could be easily modified to handle different inputs or outputs.

3.2 System Specifications

Table 2 summarizes the desired technical specifications for WAVE, in particular the physical and power

constraints.

Table 2: Summary of Operation Specifications (Specs marked with a ‘†’ are from AUVSI guidelines)

Criteria Value

Maximum Operation Depth 12m

Minimum Run-Time Duration 20 min

Desired Speed along primary axis 0.5m/sec

Maximum Dimensions 0.91m x 0.91m x 1.83m†

Depth Control Accuracy ±12cm

Maximum Mass 54kg†

Maximum Open-Loop Voltage 60V†

Minimum Supply Power 700W

22

3.2.1 Physical Constraints

WAVE’s chassis and pressure vessel must adhere to the AUVSI specifications and fit within 3x3x6 feet

(0.91x0.91x1.83 m) and weigh less than 120 pounds (54 kg), out of the water. While AUVSI states its

specifications in English units, as an engineering endeavor, WAVE’s design specifies metric units.

3.2.2 Mobility

WAVE is intended to be used in calm enclosed bodies of water with a maximum depth of 30 meters. To

provide basic motion, WAVE will have at least four DoF comprising a subset of the three translational

directions (surge, heave, sway) and the rotational direction of yaw. It will also need to be able to control

its depth and position to within ±15.24 meters. WAVE’s desired speed was 0.5 meters per second.

3.2.3 Autonomy

WAVE will be able to autonomously navigate between waypoints and perform tasks based on a mission

given to it on start-up. Sensor data will be used to negotiate WAVE’s surrounding, allowing the vessel to

avoid obstacles and collisions, as well as find targets

3.2.4 Safety Overrides

WAVE shall be able to detect any potentially dangerous situations and automatically surface. Users can

use an emergency shut off switch to shut down to prevent harm to the robot. Under the event that the

emergency shut off is triggered (software, or hardware switch), the sub will immediately cease all

motion, and rise to the surface. Also, power from the batteries will be cut off from the system in order

to minimize damage in the event of leaking.

3.3 System-Level Design Decisions

While WAVE can be easily divided into mechanical, electrical and software systems, due to the

complexity and interconnectivity of these systems, a number of decisions must be coordinated at the

system-level to allow successful integration of the subsystems.

23

3.3.1 Module Design

WAVE was designed as a modular platform to allow for expandability by future teams and to allow it to

be used as a research platform with easily modifiable characteristics. By being modular, WAVE has the

potential to achieve a multitude of goals and objectives as opposed to being restricted to a small set of

requirements and specifications.

To design WAVE, a series of basic requirements for a module were developed. Any module

developed for use with WAVE must meet three requirements: the module must be able to easily

connect to the chassis frame, compatible with the standardized electronics system, and communicate

with WAVE’s central processor. For more details on the specifications of modules see section 4.4.

3.3.2 Module Control

The computing and control basis for each module is accomplished using an abstract hardware device,

which has been designed to be able to operate as any of a number of personalities based on instructions

from the main computer as detailed in section 5.2.2. By having a uniform device, the communications

between the modules and the core is easier to control and monitor. All modules of the robot will be

controlled by abstract hardware devices. Some will be system critical while others will be less essential.

All will be running off identical boards. Modules will be able to be easily added, dropped, or swapped by

having a high-level software executive that can easily check which modules are attached and modify its

actions accordingly. Future teams will be able to use the standard device functionality to easily design

their own modules for use on the robot. All modules that will be used in the AUVSI competition must

conform to the size and weight restrictions previously specified, but payloads used simply for research

will not have these restrictions.

24

3.4 System Breakdown

WAVE’s architecture can be broken down into three categories: mechanical, electrical and software. The

mechanical design encompasses chassis form factor and material, electronics housing, and mobility. The

electrical design includes the modular electronics infrastructure, power distribution, and sensing

capabilities. The software design covers the distributed processing, mission planning, and human-robot

interaction.

25

4 Mechanical Design and Analysis

The design of the mechanical aspects of WAVE primarily took into account modularity, extensibility, and

reliability. Safety, accessibility, and controllability were also considered. Multiple designs and materials

were considered for the various aspects of WAVE, primarily including the frame and the housing for the

electronics and the external modules. These were analyzed qualitatively through design matrices and

quantitatively using calculations, software simulations, and experimentation. The four mechanical

subsystems, shown in Figure 14, include the frame, thrusters, ballast, and electronics housing. The

approach taken towards the various challenges in the design of the mechanical subsystems is described

in this chapter.

Figure 14: A CAD rendering of the WAVE system depicting the mechanical subsystems.

26

4.1 System Modeling and Equations of Motion

The hydrodynamics of underwater vessels affect their nimbleness, ballasting properties, and propulsion

power requirement. The hydrodynamics forces acting on a submersible vessel are weight, buoyancy,

drag, and thrust. A free body diagram of a simple submersed vessel is shown in Figure 15.

Figure 15: A free body diagram of the hydrodynamics forces acting on a submersible vessel.

 ⃗⃗ ⃗ ̂ (Eq. 1)

 ⃗⃗⃗⃗ ̂ (Eq. 2)

 ⃗⃗⃗⃗

 ̂ (Eq. 3)

 ⃗⃗ ⃗

 ̂

 ̂

 ̂ (Eq. 4)

where is the force of gravity on an object, is the mass, is the acceleration due to gravity, is

the buoyancy force, is the density of water, is the volume of the object, is the drag force, is

the drag force coefficient, is the cross-sectional area of WAVE perpendicular to the motion, and is

the velocity. The thrust, is generated by the propulsion system.

X

Z

FT

FG

FB

FD
CoG

27

Each of these forces was controlled through design. The weight was determined by the material

composition of the submersible, lift by the buoyancy of the craft and its ballast system, drag by the form

factor of the craft, and thrust by the available power of the propulsion system.

4.1.1 Weight

The weights of various components included within the craft were known. To determine the overall

weight, the component weights were summed. The components include (but are not limited to) the

frame, electronics housing, motors, and ballast as shown previously in Figure 14. The weight distribution

of the robot can be seen in Figure 16. The total weight is 21.2 kg.

Figure 16: Weight Distribution of WAVE

4.1.2 Buoyancy

The buoyancy of a system is measured by how much the fluid around the system supports the system’s

weight. For this system, the first step was to find the mass and volume of all components involved. To

calculate the buoyancy of WAVE, the mass and volume of each component was estimated using the

55%

9%

6%

18%

12%

Weight Distribution of WAVE

Electronics Housing

Frame

Motors

Ballast

Miscellaneous

28

values found in the component specifications and in the information posted online by the

manufacturers. These calculations occurred during the research phase of the project when the teams

were determining which components would best serve the needs of the project. Once these values were

determined and summed, the additional buoyancy or weight needed for a particular mission was

calculated. These calculations considered the weight and the buoyant force on the system, which were

calculated using the equations for buoyant force (Eq. 1) and weight (Eq. 2). This net force equation gives

 () ̂ (Eq. 5)

From this equation, the volume of material necessary to achieve the desired buoyant force could be

calculated. Passive ballast in the form of buoyant form would be placed along the frame to manipulate

the CoB as close to the CoG as possible.

The ballast system had two aspects: passive and active. The passive ballast was comprised of

buoyant foam and weights strategically placed on the frame. This was used to make the craft slightly

positively buoyant before the mission began. The active ballast consists of tanks whose buoyancy could

be modified during the course of a mission. It was used for in-mission system balance and buoyancy

control. The ballast system was analyzed in order to aid in the placement of buoyancy tanks and weights

on the model for the purpose of balancing the craft. Analysis was done manually using buoyancy

equations. Although SolidWorks does not have a built-in buoyancy calculation tool, the buoyancy force

is given by the weight of the water displaced by the model. The force would be found by changing the

material of the parts of the assembly to water, and then using the mass properties function to find the

total mass from which the weight could be found.

29

4.1.3 Drag

Drag force opposes the motion of the vessel and is form-based. The overall design of WAVE is complex.

Hence, module placement and vessel shielding will affect the vessel’s performance. The drag coefficient

of WAVE was first calculated empirically for a simple case, a flat-faced shielded frame using the drag

force equation,

 with a drag coefficient of 1.05 and a velocity of 0.5 m/s, giving a drag

force of 5.4 N. The model used to perform this calculation is shown in Figure 17.

Figure 17: Shielded Frame, Flat-Sided

In order to analyze more complex configurations for WAVE, the Flow Simulation add-in in

SolidWorks was used to find the force. An image of a flow figure generated using this software is shown

in Figure 18.

30

Figure 18: SolidWorks Flow Figure for the Open Frame Model

SolidWorks was used to simulate the same simple-case model. The results from the calculation

and the simulation were compared. This comparison allowed for the confirmation of SolidWorks as an

accurate way to determine the drag forces for more complex orientations. Once verified, SolidWorks

was used to simulate various shapes in order to determine the optimal configuration for the craft. The

configurations included various sizes of an open frame model with the electronics housing, a shielded

frame with flat sides, and shielded frames in various shapes. An open frame model consists of the frame

and the pressure vessel; whereas the shielded models are fully closed off from the water to prevent the

water from forming eddies around the various modules. The open frame is shown in Figure 19 while the

pyramid and hemisphere frame attachments are shown in Figure 20.

31

Figure 19: Open Frame Model

Figure 20: Pyramid Shield (left) Hemisphere Shield (right): attaches to the front or rear of the vessel

Table 3 gives a listing of the various drag force simulations run on simplified CAD models using

SolidWorks Flow Simulation software. It gives the type of model, dimensions, cross-sectional area (),

32

drag force (), drag coefficient (), and drag power (). Not all of the simulations were run at 1

meter per second, because the maximum velocity required by the system is 0.5 meters per second.

Table 3: Drag Force Simulation Results

Type Frame Size (m)
Electronics

Housing Size
(m)

 (
) (N) (W) (N) (W)

 v = 0.5 m/s v = 1 m/s

OPEN 0.26 x 0.31 x 0.46
0.10 x 0.20 x

0.41
0.047 7.96 1.38 3.98 31.76 1.38 31.76

SHIELDED
Flat-Sided

0.26 x 0.31 x 0.46 N/A 0.081 7.64 0.77 3.82 29.51 0.74 29.51

SHIELDED
Pyramid Front

0.26 x 0.31 x 0.46 N/A 0.081 7.09 0.71 3.54 16.35 0.41 16.35

SHIELDED
Pyramid Back

0.26 x 0.31 x 0.46 N/A 0.081 4.71 0.47 2.36 18.63 0.47 18.63

SHIELDED
Pyramid Front

and Back
0.26 x 0.31 x 0.46 N/A 0.081 16.35 1.64 8.18 18.22 0.79 18.22

OPEN 0.38 x 0.38 x 0.61
D=0.10
L=0.51

0.044 4.63 0.85 2.31 -- -- --

OPEN 0.38 x 0.38 x 0.61
D=0.15
L=0.51

0.050 5.92 0.89 2.96 -- -- --

OPEN 0.38 x 0.38 x 0.61
D=0.20
L=0.51

0.069 7.56 0.90 3.78 -- -- --

OPEN 0.38 x 0.38 x 0.61
D=0.25
L=0.51

0.087 7.74
0.72

6
3.87 -- -- --

OPEN 0.38 x 0.38 x 0.61
D=0.20
L=0.25

0.070 7.25 0.86 3.63 -- -- --

OPEN 0.38 x 0.38 x 0.61
D=0.20
L=0.38

0.070 7.56 0.90 3.78 -- -- --

OPEN 0.38 x 0.38 x 0.61
D=0.20
L=0.51

0.070 8.04 0.95 4.02 -- -- --

OPEN 0.38 x 0.38 x 0.61
0.10 x 0.20 x

0.51
0.060 5.25 0.75 2.62 -- -- --

OPEN 0.38 x 0.38 x 0.61
0.15 x 0.20 x

0.51
0.070 6.67 0.81 3.34 -- -- --

SHIELDED
Flat Front

0.38 x 0.38 x 0.61 N/A 0.150 17.35 0.97 8.67 -- -- --

SHIELDED
Flat-Sided

0.38 x 0.38 x 0.61 N/A 0.140 12.61 0.71 6.31 -- -- --

SHIELDED
Hemispheric

Front
D=0.53

0.10 x 0.20 x
0.51

0.230 23.22 0.83 11.61 -- -- --

SHIELDED
Pyramid Front

and Back
0.26 x 0.31 x 0.46 N/A 0.081 4.117

0.41
3

2.06 -- -- --

SHIELDED
Hemispheric

Front and Back,
Cylindrical Sides,

Flat Back

D= 0.53 N/A 0.228 17.79 0.64 8.90 -- -- --

Type Frame Size (in)
Electronics

Housing Size
(in)

 (
) (N) (W) (N) (W)

33

After the full system was modeled in SolidWorks, a drag simulation was run on the model. This

model included the frame, electronics housing, and the thrusters. The power required to overcome drag

force at a constant velocity of 0.5 meters per second was 4.6 watts.

4.2 Chassis

The chassis is a frame that supports all the other aspects of WAVE, including the pressure vessel,

thrusters, and modules. The decisions supporting the design and material choices for the chassis are

detailed in this section.

4.2.1 Initial Designs

Several different broad design concepts were considered in order to determine the final design. Each of

these concepts was non-torpedo-shaped open-frame designs for reasons discussed in Section 2.2.1.

Once these concepts were gathered, there was a discussion over the benefits and detractors of each of

these preliminary designs. After each design had been thoroughly discussed, an initial design matrix was

used to pare down the designs to the three that were viewed as most likely to succeed.

The three models that were considered included a design shaped like an octagonal-puck (Octo-puck), a

box-frame design (Boxy), and a rod-attachment based design (Roddy). Octo-puck is shown in Figure 21,

Roddy is shown in Figure 22, and Boxy is shown in Figure 23.

Octo-puck's design was thought to increase modularity due to versatile module placement

options. This versatility would furthermore allow for the manipulation of the centers of gravity (CoG)

and centers of buoyancy (CoB). Wires would have run through its frame.

34

Figure 21: The initial layout for the Octo-puck design.

Roddy consisted of a tube with rods extending from it perpendicularly at each end. The modules

connect to the electronics housing by wires run through the rods and would be directly mounted to the

two rods.

35

Figure 22: The initial layout for the Roddy Design

The box-frame design had a chassis in the shape of a box with an electronics housing located in

the center of the box. Much like Octo-puck, modularity in this model could be accomplished by placing

modules at any position or angle within the chassis, which would connect to wires extending from the

main electronics housing.

36

Figure 23: The initial layout for the Boxy design (mm)

A second design matrix was created, which can be seen in

37

Appendix A: Chassis Design Matrix. The criteria of this decision matrix are seen in Table 4.

Table 4: Design Matrix Criteria

Criterion Description

Battery Access How easily the battery can be accessed, removed, replaced, and
re-sealed up.

Electronics Housing Access How easy it would be to get around the chassis to access the
electronics.

Module Placement How easy it would be to add modules to the design.

Part Replacement How easy it would be to replace parts if they break.

Waterside approach/retrieval How easy it would be to get the chassis to and into the pool
using only members of the MQP.

Ease of manufacturing How easily manufactured it would be.

Hydrodynamic shrouding How easy it would be to put a hydrodynamic shroud over the
chassis

Hydrodynamics without many
modules

How hydrodynamic the design would be without many modules.

Hydrodynamics with many modules How hydrodynamic the design would be with many modules.

Level of design simplicity How complex the design would be. This could potentially affect
the likelihood of the design to malfunction.

Ruggedness How resilient the design would be in case of bumping into a wall
or a short fall.

Buoyancy Redistribution How far the buoyancy tubes can be moved around the design.

Rule of Cool How cool is the design. This is important in that a design that the
team thinks is cool and awesome will increase team motivation.

Each of these criteria was weighted, and then rated for each design on a scale from 1 to 10.

After this matrix was completed, the design was finalized and further measurements and concepts were

started.

38

Figure 24: Initial Stage of Boxy's Design

Based on the design matrix outcomes, the Boxy design was selected as the final chassis design.

The major contributing factors were manufacturability and inherent modularity.

4.2.2 Materials

Material selection for the frame was based on four major aspects: weight, corrosion resistance, ease of

assembly, and ease of using the completed design. The material needed to be lightweight to allow for

easier underwater manipulation, corrosion resistant to keep it from degrading over time, easy to

assemble and attach modules to, and easy to use. Given these criteria, aluminum was chosen for the

frame material because aluminum is corrosion-resistant, lightweight, and readily available. Aluminum is

commonly used by AUVSI teams, and is also both cost-effective and easily modifiable. 80/20 Aluminum

is known for its modularity, ease of use, and high quality. 80/20 is designed to be simple to put together

and attach other components. Parts can be slid on and off of these bars easily through the open slots, as

shown in the 80/20 cross-section in Figure 25.

39

Figure 25: 80/20 Cross Section

Aluminum is a lightweight metal that does not corrode when exposed to water. What little

corrosion may occur in chlorinated water can be countered by simply rinsing the metal after testing.

Finally, 80/20 is easily accessible and cheap, so those who would use the robotic platform can more

easily purchase replacement or custom parts for the simple frame. Additional considerations such as

material strength and thermal properties are detailed in later sections.

4.2.3 Form Factor

The frame was constructed to support all of the components of WAVE, including the electronics housing,

ballast tanks, thrusters, and sensor housing. The frame is 71.7cm long, 41.3cm wide and 18.4cm high.

The layout of the frame is shown in Figure 26.

Figure 26: Frame Layout: SolidWorks (left), assembled (right)

40

There are cross-bars placed along the base and sides of the craft to allow for motor placement.

The cross-bars along the top of the craft are placed 20.32 cm(8 inches) apart to allow for mounting the

ballast system.

4.3 Electronics Housing

The electrical components of WAVE need to be protected from the underwater environment. This

means that many of the components need to be contained within housings. The determination of the

number of electronics housings and the physical considerations of the housings are outlined in this

chapter. The physical considerations include the shape, size, materials used, the waterproofing, and the

thermal aspects.

4.3.1 Waterproofing

Four different methods for waterproofing electrical components were examined: hermetic pressure

vessels, bathed pressure vessels, coating using the cast method, and coating using the sprayed method.

Pressure vessels surround sensitive elements with a re-sealable casing. Empty space within the pressure

vessels can be filled with air, which means the pressure vessel is hermetic, or some other non-

conductive fluid like mineral oil, which means that the pressure vessel is bathed. Another method of

waterproofing components involves directly coating elements to form a bonded protective non-

conductive layer. The types include casting the electronics in acrylic or spraying components with latex.

Since electrically insulated materials also tend to be thermal insulators, only low power components

tend to be protected in this method. A list of pros and cons for these methods is listed in Table 5.

Table 5: Waterproofing Methods

Method Pros Cons

Hermetic Pressure Vessel Intuitive
Available off shelf parts

Must be well sealed to be airtight

Bathed Pressure Vessel Pressure Tolerant
Less prone to water ingress

Messy to access electronics
Disliked by Pool Staff

41

It was determined that hermetic pressure vessels were the best method of waterproofing

components because of their ease of component access, organizational capacity, and reduced threat of

thermal overload. More information on the design of the hermetic pressure vessel can be found in

Section 4.3.3.1.

4.3.2 Form Factor and Materials

The differences between using off the commercial-off-the-shelf (COTS) and self-manufactured pressure-

sealed tube for the electronics housing were considered. It was determined that since most COTS

waterproof boxes are made of non-thermally conductive plastic, such a solution would put the

electronics housing at risk of overheating.

The best shape for withstanding pressure is a sphere, but spherical structures are hard to

manufacture or are expensive, especially ones that are hollow and open-able, so this option was

disregarded. Two tube shapes were examined for the pressure sealed electronics housing: cylindrical

and rectangular.

Cylindrical pressure vessel design is the engineering norm since structurally it is the most

appropriate tubing shape for withstanding high pressure differentials because the load of the water is

distributed equally around the surface area. It also would not have any places for leaks except at the

bottom and top of the cylinder, where the end-caps would be attached.

An analysis was done to see how the loads affected the cylinder, which would determine which

material would be best. The stress around the circular perimeter and the stress around the length of the

cylinder were found for aluminum, PVC, and acrylic. Aluminum was the strongest of these materials -

the stress across the length of the tube equaled 6.68∙106 Pa, and the stress along the perimeter equaled

3.8∙106 Pa.

42

Equations for hoop stress were used to calculate the stress across the length of the tube and the

stress around the circumference. First the stress was looked at over 90 degrees. The following formula

was used to calculate for this stress.

∫ ()

(Eq. 6)

where is the pressure inside the housing, is the radius, and is the thickness of the cylinder. This

gave a stress of .

To calculate the longitudinal stress the following formula was used:

 (Eq. 7)

This gave a stress of .

Given these values the von Mises stresses were calculated, then plugged into the Distortion

Energy Theorem to calculate for the factor of safety. The following formula was used to calculate for the

von misses stress.

 √

(Eq. 8)

Setting the hoop stress along the circumference as the first principle stress, σ1, and the longitudinal

stress σ3, the von misses stress, σv, was found to be . The von misses stress is then

plugged into the distortion energy theorem in order to find the safety factor.

(Eq. 9)

This formula takes the yield strength of aluminum, SyAl, into account while solving for the safety

factor. When yielding occurs in any material, the distortion strain energy per unit volume at the point of

43

failure equals or exceeds the distortion strain energy per unit volume when yielding occurs in the

tension test specimen. This formula was important to explore in this situation because water can cause

buckling in this case. For the aluminum cylinder, the factor of safety equaled 23.8. This is in comparison

to acrylic which equaled 21.236, and PVC which was 20.629. Though PVC was a cheaper solution, and

acrylic would allow the electronic parts to be visible, aluminum was chosen because of modularity and

extensibility. 80/20 brand aluminum is easier to mount future modules to in the future.

A rectangular tube shape was chosen because it can be used more efficiently for electronic

components because these components are rectangular. Due to the inefficiencies caused by the shape,

the cylindrical pressure vessel would need to have a significantly larger volume than the rectangular

tubing, and would therefore generate substantially more buoyant force based on (Eq. 2). Although the

rectangular tubing is theoretically more prone to failure at high pressures, it was assumed then tested

that a rectangular tubing of sufficient thickness would be able to withstand pressures at the maximum

pool depth because the factor of safety was so high for the cylindrical tube in the hoop stress

calculations.

The size of the electronics housing was driven by the single largest housed electronic

component (the fit-PC) which measures 16cm X 16cm X2.5cm. This measurement gave the minimum

allowable width of the housing face. The length and height of the design was determined in SolidWorks

by arranging the other internal components of the housing and creating the shape such that it

encompasses all the components.

4.3.3 Thermal Considerations

The electronics enclosed in pressure vessels release heat as a byproduct of their operation. In an

enclosed space, heat from electrical components can build up beyond the tolerances of the

components. This is especially true of high current components such as motor drivers. With the goal of

44

keeping the design of the housings simple, these components are made out of thermally conductive

material to promote natural heat exchange with the exterior of the craft. This ruled out materials such

as acrylics or plastics. Since the material of the craft must also be rigid and resistant to harmful

corrosion, the material selected for the housing is aluminum which exhibits the desired properties and is

economically available.

General equations for heat transfer were used to predict the ability for the aluminum housing to

dissipate thermal energy to the surrounding water. Shown below are the equations used

(Eq. 10)

 (Eq. 11)

In (Eq. 10) and (Eq. 11), U is the heat coefficient of the system, h1 and h2 are the convection

coefficients of the fluids on either side of the aluminum (air and water), k is the thermal conductivity of

aluminum, dw is the thickness of the aluminum, A is the surface area of the aluminum, ΔT is the

difference in temperature of the fluids, q is the energy dissipated by the system [53]. After plugging in

values, assuming the inside of the electronics housing is 70oC and the water is 27.8oC, approximately

298W of energy would be dissipated through the housing. The main electronics components generate

roughly 300W of power, which means that around 70oC the system would be dissipating as much energy

as the electronics are generating.

4.3.3.1 Thermal Simulation

In addition to testing, thermal analysis on the electronics housing was conducted using ANSYS. A

simplified model of the components, as well as blocks representing air and water, was imported from

SolidWorks. Materials and worst-case heat generation values were assigned to the various components.

The final simulation results are shown in Figure 27.

45

Figure 27: ANSYS Simulation Results

The temperatures within the housing range from 21°C to 211°C. This number was achieved using

a Steady-State Thermal Analysis, which doesn’t depict time elapsed. Thermal testing will negate these

numbers, as explained below.

4.3.3.2 Thermal Testing

Thermal testing of the pressure vessel was performed to determine the temperatures at various points

in the housing using convection and radiation as the primary sources of heat transfer. For this

experiment, it was assumed that conduction between the components and the housing would be

negligible. These tests were performed in air, rather than in water. A resistive heating element with a

resistance of 27.6Ω, a thermistor, and a thermocouple were used for this experiment. The thermocouple

was used to verify the values received from the thermistor circuit. The element was powered through a

wall outlet at 120V. The element had a dial that would adjust the percentage of voltage that was

allowed through the system. This percentage could be calculated by finding the voltage required to

generate power. This is done using Ohm’s Law,

. For the set-up of the experiment, a resistive

46

heating element was placed into the housing on ceramic tiles to prevent heat transfer from conduction

where the element contacted the housing. The thermistor was wired into a voltage divider with a

resistor of 120Ω, and was powered using a National Instruments DAQ Box (NI USB-6229). This circuit

can be seen in Figure 28.

Figure 28: Voltage Divider Circuit

The thermistor was then placed against a wall of the housing as shown in Figure 29.

Figure 29: Heating element with thermistor and thermocouple touching the surface of housing.

Thermocouple

ple

Thermistor

Heating Element

Thermistor

47

The first round of testing generated 500W of heat in the center of the tube using the heating

element. This simulated the worst-case heat generation by the electronic components. The various

placements of the heating element and the thermistor are shown in Figure 30 and Figure 31.

Figure 30: Thermal Testing Set-Up, Run 1

Figure 31: Thermal Testing Set-Up, Run 2

In the first run, the thermistor was placed towards the middle of the tube; in the second run, the

thermistor was placed off-center, nearer to an end-cap; and in the third run the thermistor was placed

next to an end-cap . The temperature increased over time, until it reached steady state. This can be seen

in Figure 32, which shows a plot of the temperature versus time for the second placement of the

thermistor.

48

Figure 32: Temperature vs. Time Plot

The steady state temperature was 185°C right by the heating element and 178°C at the end of

the housing.

The next round of testing was used to simulate the effect of the motor driver board, which is the

largest contributor to heat generation, on the batteries, which are the most volatile, heat-sensitive

component. The set-up for this test is shown in Figure 33.

Figure 33: Set-Up of Second Round of Testing

Worst-case, the motor board released 300W of power. The board is located right next to the

end-cap with connectors in it to allow for wires to go through easily, and the batteries are located on

129

139

149

159

169

179

189

0 5 10 15 20 25

Te
m

p
er

at
u

re
 (

°C
)

Time (minutes)

Temperature (°C) vs. Time (minutes)

49

the opposite side of the housing. The resistive heating element was set up to generate 300W of heat at

one end of the housing, and the temperature was measured at the opposite end of the housing. The

final steady-state temperature was 182°C.

 This test was performed in the open air at approximately 22°C. Air is significantly less thermally

conductive than water. In water, the heat would dissipate from the housing to the outside water much

more efficiently, thus keeping the internal temperature lower.

4.3.4 End-caps

The end-caps were a critical design component of the electronics housing. Like the housing-tube, they

were made out of aluminum which provided thermal conductivity, resistance to corrosions, and a rigid

material to mount electrical through-connectors to. Other materials, specifically acrylic, was considered

but was rejected due to its brittleness which could cause cracks that would create leaks. Other plastics

were briefly considered but were incapable of matching the thermal properties of aluminum. Other

metals were not considered to avoid potential difficulties of using mixed metals in thermally variant,

salinized bathed environment.

The end-caps were designed as plates capable of fitting over the ends of the aluminum tubing.

They feature a groove that allows housing walls-ends to snuggly fit in it, effectively ‘capping’ the tube-

end. The plates were 13mm (½ inch) thick to ensure rigidity despite multiple connector through-holes,

to provide enough material was available for bottom-tapping screw holes to secure connectors, and to

accommodate the 1 cm deep machined groove. The end-caps were manufactured in the WPI Washburn

shops using CNC mills based on CAD models. The corners of the groove were kept rounded so as to

avoid stress concentrations on the silicone seal, described next.

The grooves were partially filled with Sylgard-184, a two-part curing silicone elastomer soft

enough to compress under the attachment load between the end-cap and the housing tubing. It was

50

experimentally determined in section 8.1.1.1 that a half-filled groove (5mm) provided both enough

silicone to hermetically compress and enough groove wall-surface to secure the ends of the aluminum

tubing. To calculate the amount of silicone to use, the cavity-volume of the groove was determined

using, and then halved, as seen in (Eq. 12) and (Eq. 13).

 () (Eq. 12)

(Eq. 13)

where is the depth of the groove (10mm), is the width of the groove (8.4mm), and and are

the inside lengths of the grooves, as shown in Figure 34 below.

Figure 34: End-cap, labeled dimensions

The unit of volume used was cm3 which was is easily converted to liquid volume unit ml used to

measure out the silicone curing reagents. Sylgard-184’s two-part curing elastomer specifically needs to

be mixed in a 1:10 ratio so the total needed volume was divided by 11. One part of 11, the curing agent

W

L1

L2

51

(typically about 1.5 ml), was measured using a syringe and the 10 parts base silicone gel was measured

out in a small graduated glass. The compounds were mixed, poured evenly into the groove, and allowed

to cure on a horizontal surface for 2 days.

The in-house made silicone gasket was used over O-rings because, although O-rings are a tried

and true sealing medium, the rectangular nature of the end-caps and housing did not have provided

optimal geometry for O-ring use.

Two methods of securing the end-caps to the electronics housing were explored: ratcheting

straps and latches. Ratcheting straps were beneficial during testing due to their simplicity and

effectiveness however the desire for individually removable end-caps obviated their use. Latches that

hook the end-caps onto the frame were ultimately used in the design because they allowed for

individually removable end-caps and were perceived to be less cumbersome to use regularly.

4.3.5 Connectors

One of the end-caps was designed to accommodate connectors that would allow for an electrical

interface between in inside and outside of the electronics housing. To prevent leaks the connectors had

to be waterproof. This lead to the selection of IP68 rated connectors of various types (see Appendix L:

for definition). IP68 USB and Ethernet connectors were used, as well as WEIPU pin connectors. 5pin and

12pin connectors were selected for variety and expandability. The 5pin connectors are rated at 30amps

per pin allowing for high current power transmission for thrusters and the like, while the 12pin

connectors allowed multiple channels for signal transmission. The pin connectors are shown in Figure

35. The layout of connectors on the end-cap was modeled to ensure that enough space exists on the

face of an end-cap to accommodate the needed number of connectors.

52

Figure 35: 5 and 12 Pin WEIPU Connectors.

4.4 Modules

WAVE is designed based on modularity, meaning that auxiliary components may be added to provide

functionality for specific mission requirements. The use of 80/20 allows for components to be mounted

and dismounted with ease. Provided that modules are inherently neutrally buoyant, they can be placed

on any spot on the frame without having to modify the existing buoyancy system. The system for

attaching these components to the chassis in terms of distribution and housing is described in the

following sections.

4.4.1 Distribution

A driving criterion for determining the housing system for these components was distribution. In a

distributed system, each component would be kept in its own personal, waterproofed enclosure. In a

centralized system, all of the electronics would be kept in a single pressure vessel.

A distributed system would allow components to be placed anywhere within WAVE's frame,

allowing for many mass distribution options which could be used to create different stable sub

configurations. Having many pressure vessels for components increases the total number of pressure

53

seals, which increases the risk of leaking. If one vessel was to leak and suffer a catastrophic failure, only

one component would be damaged. Another consideration is that a distributed system would expose

more wires to water and would use many more connectors, increasing the cost and complication of the

craft.

A centralized system features all of the electronics in a single pressure vessel. This limits the

range of locations on the submersible where the housing could be fastened to ensure a balanced craft.

Additionally, if the pressure vessel were to suffer seal failure, the entire electronics contents of WAVE

would be jeopardized. A seal leak would be less likely to occur than in a distributed system because it

would only have a single seal point of failure rather than many.

A hybrid distribution system, in which most of the electronics were kept in a centralized

pressure vessel except for external sensors that are sensitive to electrical noise, was determined to be

preferable. The decision to keep certain external electronics in their own pressure vessels was chosen

because some sensor signals can be sensitive to electrical noise, especially over longer cords. An

external hub for peripherals allows for signal processing before the signal attenuates. Overall, such a

setup results in a safe and effective system.

The determination of the battery housing was a difficult decision. The battery could either be

kept in its own housing or within the primary pressure vessel. Keeping the battery in a separate

container allows for weight configurability, replaceability, and safety. Furthermore, an external battery

would allow WAVE’s battery to be swapped out or charged without opening the electronics pressure

vessel and exposing its insides to a potentially humid exterior. Since lithium polymer batteries can be

volatile, a battery contained within its own housing would not physically damage the other electronics in

the event of failure. Alternatively, housing the battery within the electrical pressure vessel would mean

fewer connectors through housings and fewer wires exposed to water. The costs relieved by the

54

reduced number of connectors and containers are substantial. Issues with excessive exposure to

humidity could be combatted by using desiccant packets or another absorptive material to contain the

excess moisture. For these reasons, the battery is not contained within its own housing.

Neutrally buoyant modules had a negligible effect on the stability of the system. Modules which

were not neutrally buoyant, such as Due to the attempted neutral buoyancy requirement imposed on

modules, their placement and distribution on the frame was trivial from a stability point of view.

Modules which don't comply with the thrusters and batteries were placed on the frame so as to

increase craft stability: heavier-than-water parts are prioritized to be low in the frame whereas lighter-

than-water components are held higher. In the case where placement was critical, passive ballast,

including buoyant foam and weights, were added to the frame to compensate for craft imbalance.

4.5 Thrusters

Thrusters were needed to propel WAVE through the water. They were selected based on the

estimated power required to move WAVE at the specified 0.5 m/s velocity considering the drag forces

on the craft, as was shown in section 0 about The ballast system had two aspects: passive and active.

The passive ballast was comprised of buoyant foam and weights strategically placed on the frame. This

was used to make the craft slightly positively buoyant before the mission began. The active ballast

consists of tanks whose buoyancy could be modified during the course of a mission. It was used for in-

mission system balance and buoyancy control. The ballast system was analyzed in order to aid in the

placement of buoyancy tanks and weights on the model for the purpose of balancing the craft. Analysis

was done manually using buoyancy equations. Although SolidWorks does not have a built-in buoyancy

calculation tool, the buoyancy force is given by the weight of the water displaced by the model. The

force would be found by changing the material of the parts of the assembly to water, and then using the

mass properties function to find the total mass from which the weight could be found.

55

Drag. Since the estimated power required to appropriately drive WAVE in the forward direction was 10

Watts, a thruster pair capable of at least 10 Watts of thrusting power was needed. It was concluded that

if the forward thrusters were capable enough to nominally drive the craft forwards, then those same

thrusters could be used to move the craft along the different axis too. Several different potential

thrusters were examined: trawling motors, commercial UUV thrusters, and modified bilge pump motors.

In the spirit of keeping to COTS materials, custom built thrusters were only a passing consideration.

 Trawling motors, although more than capable of supplying enough power, were found to be too

heavy and power hungry. Weighing in on average at about 4 to 5 kg per unit and drawing up to 30 amps

they were inappropriate for this application.

Figure 36: Trawling Motor (boxed) [54] [54]

Commercial UUV thrusters, such as the one shown in Figure 42, are ideally suited for the

application seeing as that is what they were designed for. They are efficient and produce ample yet

controllable amount of thrust. Unfortunately they are also expensive, at least $600 each. For this reason

they were made inaccessible for regular use on WAVE. Two Seabotix BTD 150s were lent to the project

by Navel Engineering Support Team (NEST) for the duration of the MQP which allowed for the

exploration of thruster modularity.

56

Bilge pumps in and of themselves struggle to provide enough thrust simply by pushing water

with their impellers, but if modified with a RC boat props can generate enough mechanical power to

drive a small to medium UUV. A modified bilge pump is pictures in Figure 37. They also fall within

acceptable electrical operational parameters and are naturally waterproof and are the most affordable

to the three COTS thrusting systems. For these reasons they were selected as the most appropriate

thrusters to use on WAVE.

Figure 37: Modified Bilge Pump

Tests were done to verify that the potential motors were fully suited for the application.

Furthermore, different propellers were tested to try and optimize the efficiency of the thrusters.

4.5.1.1 Thruster Testing

These motors were subjected to thrust tests to give experimental motor data for better simulations of

the design, and to determine if the thrusters would be sufficient to move the craft at 0.5 m/s. This was

accomplished by doing static and flow tests in a tub of water using force-meters. The motor was

strapped to a wooden rod, which was then strapped to a wooden board held in place on top of the tub.

A force sensor was attached to the rod. This way, when the motor was turned on, it would exert a force

on the rod, which could be read by the force sensor as a function of the moment created between the

rod, which functioned as a pivot arm, and the force sensor. The set-up is shown in Figure 38.

57

Figure 38: Thruster Testing Setup

Tests were run on a bilge pump before it was modified to fit a propeller. Force, flow rate, and

power were measured from the bilge pump. The bilge pump was then modified to include a propeller.

To do this, the white encasing (shown in the previous picture) was removed using a hand saw. After

removing the encasing, a blue impeller was revealed. This blue propeller was removed to expose the

bilge pump shaft. Next, the propeller needed to be attached to the bilge pump shaft which would be

used in the final design. In order to do this a collar was fixed to the shaft with a screw. The propeller was

attached to a screw and positioned inside the collar. This set-up stabilized the propeller to the bilge

pump.

Bilge Pump

Force Meter

58

The graph in Figure 39 shows the mechanical power versus the electrical power for an

unmodified bilge pump and a bilge pump modified for two different propellers.

Figure 39: Graph of Bilge Pump Mechanical to Electrical Power

This graph shows the relations of the unmodified bilge pump, and the first and second tests on

the propeller-modified bilge pump in terms of the mechanical versus the electrical power. Mechanical

power was measured as flow multiplied by force. The electrical power was measured as current

multiplied by voltage. This relation is meant to show the efficiencies of the motors. The graph shows it

takes 100 W of electrical power to convert to 10 W of mechanical power, which shows the low efficiency

of the motor.

(w
)

(w)

59

The graph in Figure 40 shows bilge pump current versus voltage.

Figure 40: Graph of Bilge thrusters Current vs. Voltage

The graph shows the trend between the current and the voltage of the pump, and the first and

second test done on the propeller-modified bilge pump. The thrusters were able to run continuously at

12 amps.

A test was done to determine the endurance of the motor. The purpose of this test was to

measure the force generated by the pump over the length of a typical WAVE mission. The graph in

Figure 41 shows the force generated by the bilge pump over the course of 20 minutes.

60

Figure 41: Bilge Pump Endurance Test, Graph of Force vs. Time

As shown in the graph, the motor maintained a relatively constant force over the course of 20

minutes. Several things were discovered about the bilge pump through these tests. These motors have

low efficiencies. Also, after 20 minutes the bilge pump motors still maintained a steady thrust. This is

important because it shows the motors are capable of running throughout the length of time needed for

the AUVSI competition.

4.5.1.2 Specifications

The thrusters being used on WAVE are Seabotix BTD150 and Johnson Bilge Pumps.

The Seabotix BTD150 is pictured in Figure 42. Seabotix thrusters are recommended for small

AUV operations. They have a nominal voltage of 12 V, and a maximum current rating of 4 amps. Each

motor weighs 754 grams.

Figure 42: Seabotix BTD150

61

Following are charts showing data relevant to the performance of the Seabotix motor. Though

nominal performance occurs as 12v, Table 6 shows how the motor performs at higher temperatures.

Although the Seabotix motor can be run up to 6A, the life of the motor will drastically shorten.

Figure 43: Graph Seabotix Thruster Data

Table 6: Interpreted Seabotix Results

62

The other type of motor being used on this submarine is a modified bilge pump. Two bilge pump

models were considered: Rule 1100GPM and Johnson 1000GPM. Although the Rule pump, shown in

Figure 37, was tested to be marginally more efficient, the Johnson pump, shown in Figure 44, was

deemed easier to shroud for safety and was cheaper. Another benefit of the Johnson model was that it

did not need modification other than adding a propeller whereas the Rule model had to have its shell

removed through cutting.

Figure 44: Johnson Pump 1000 GPH

4.5.2 Safety Considerations

The primary safety consideration for these thrusters is protection from the propellers while the craft is

in motion. This concern is addressed through shrouds, which form a protective shield around each

propeller. The Seabotix motors being used are already fully equipped for underwater use. As such, their

housing consists of a shroud to protect the propeller blades while the craft is in motion. The bilge pumps

do not come with a shroud because they are built for use with an impeller, rather than a propeller, so

63

shrouds had to be constructed for them. The primary options for constructing these shrouds were to

modify PVC piping or use rapid prototyping. PVC was chosen because it is significantly cheaper, although

it requires more manual manipulation. The shrouds can be seen in Figure 45.

Figure 45: Propeller Shroud

4.6 Ballast

The ballast system needed to handle the load of all components of the base WAVE platform as well as

most modules that might be added in the future with little to no redesign. To define the system, the

overall buoyancy properties of WAVE were found by calculating the net buoyant force of each

subsystem and finding the total buoyant force experienced by the platform. (Eq. 1), (Eq. 2), and (Eq. 5)

were used with great frequency for this process as well as the specifications for each component, as is

seen in Table 7.

Table 7: Buoyancy of Various Components

 Mass (kg) Volume (cm3) Net Buoyancy (N)

Electronics Housing 18 12585 -53.121

Frame 1.86 1721 -1.364

Motors 2.294 1266 -10.062

64

Once the net buoyancy of the craft was found, a ballast system could be designed around

needing 64.5N of positive buoyancy.

There are three potential options for the ballast system: a passive system, which utilizes

buoyant foam and weights to achieve neutral buoyancy, an active system utilizing actuators to

manipulate the buoyancy, and a hybrid design which uses a combination of the passive and active

options. Each of these options was discussed and put into a design matrix for analysis. This design matrix

can be seen in Appendix B: Ballast Design Matrix.

Table 8: Design Matrix Criteria

Criterion Description

Cost Overall cost both monetarily and in system resources.

Manufacturability How easily the system can be manufactured.

In mission flexibility (trimming) The range of control during a mission.

Payload range The ability for the system to accommodate variable loads
without extensive redesign.

 The forms of ballast considered for control of the buoyancy were a fully active system utilizing a

pump or piston, a passive ballast system utilizing buoyant foam, and a hybrid design using elements of

both. After these options were compared through a design matrix comparing the options, the direct

injection system combined with a small amount of buoyant foam was determined to give the most

control for the least cost and complexity. It was determined with the equations above that the system

needed to account for 68.6N of negative buoyancy. To do this, a system utilizing two Schedule 40, 10.16

cm (4”) PVC tanks with lengths of 20.32 cm(8”) and 0.007 cm3 (427.6in3) would supply the necessary

positive buoyancy to counter the down force. Testing for the system was then performed. The PVC seals

were tested for water-tightness, the pump was tested for positive displacement and reversibility, and

the entire system was tested for controllability and speed.

65

The ballast system needed to be balanced to ensure uniform effect on WAVE, controllable via

motors through the electronics board, and rigid for survivability in the different environments the

platform will be deployed. The decision was made to use two reversible positive displacement pumps

with a pair of PVC canisters. Each pump will be connected to a window motor to drive it, and the entire

assembly is water proof, so no extra waterproofing is necessary. Each will be attached to the frame

across from each other halfway along the length of the side bars on the top level of WAVE. They will

have connecting tubes running to their own ballast tank, so each pump is only affecting one tank at any

given time.

There are two individual ballast tanks vertically attached to either end of the frame, front and

back.

Figure 46: Ballast placement

They will both be connected via 3/4inID tubing to the pumps with tight seals to keep from

leaking. The vertical tanks will provide stability for the water within the tanks to reduce sudden pitch

changes as the water moves, and they will allow for control of overall robot pitch. The tanks were

designed to only need 2.5 to 5 cm of water to bring the craft to neutral buoyancy.

PVC was chosen because it is lightweight and durable. It can also be customized to be different

shapes as needed and is cheap compared to materials such as acrylic and Delrin. Further, the material

66

property data of PVC is widely available, making research and calculations of weight and buoyant

properties easier. For the tanks, the following calculations were used to determine the minimum

buoyant force supplied by the system:

The density of Schedule 40 PVC is 1.41g/cm3.

 ()

 (() ())

The above value is for only one tank. There will be two tanks, as well as 7.007*10m3 (427.6in3)

of buoyant foam, attached to the WAVE platform. The buoyant foam’s properties are shown below;

67

The pumps were selected for their ability to fill the task of being reversible pumps that had the

potential to move water quickly in and out of the ballast tanks. The pumps are rated at 852 liters (225

gallons) per hour, though that number is more than enough to fill the needs of the robot given that the

amount of water needed to be moved is 0.95 liters(0.25 gallons). At peak performance, the pump can fill

the tanks to the required level in 4 seconds. Peak performance of the pumps is achieved at 1200rpm,

but the pumps on WAVE will be run at 150rpm. This means that the tanks will take roughly 30 seconds

to fill completely to the point of having negative buoyancy equal to that of the positive buoyancy with

empty ballast tanks. The pumps weigh only 226.8g each and have a net buoyancy of each pump is

positive 0.185N.

68

5 Electrical Design and Analysis

The electrical infrastructure of WAVE requires coordination between several robotic subsystems. The

electrical system needed to be modular in order to allow for future expandability. Multiple hardware

and software configurations were considered when deciding on the modular infrastructure.

Additionally, computational and form factor requirements were factors that drove the design process.

The powering and programming of this system were important processes for the electrical team. During

the design process, four requirements were taken into consideration. These requirements were that

WAVE must have a modular infrastructure, support low-level drivers, implement a reliable power

distribution system, and interface with a wide range of sensors. The specifications for the system, as

highlighted in previous sections, were that the max-open loop voltage had to be 60V, and the power

system had to be able to source at least 700W. These specifications were used to complete the design

and meet the system requirements. In this section, the processes for deciding all aspects of the electrical

system are outlined.

5.1 Modular Infrastructure
Most robots only have one specific directive, whereas WAVE is designed to be able to have a variety of

tasks to execute. Currently no off-the-shelf electronics exist to implement this degree of modularity, so a

new electronics system had to be constructed to achieve the desired result.

The modular infrastructure that powers WAVE had to meet a series of basic requirements. The

system had to be easy to use, utilize standardized communication protocols, and be highly scalable and

parallel. Ease of use does not necessarily relate directly towards modularity, but promotes widespread

adoption of the system powering WAVE for use by future projects. The use of industry standard

communication protocols such as USB and Ethernet made the infrastructure compatible with a wide

range of existing hardware, leading to more modularity. Using standard protocols also reduced the cost

of the system and the development time. Scalability is important to the modular infrastructure because

69

if WAVE was to be modular, the platform needed to be able to accommodate a multitude of accessory

modules.

Figure 47: WAVE's Modular Infrastructure

Parallel processing is essential to a modular system. Each module has a dedicated processing

unit, so that modules will not interfere with each other in terms of processing load. The combination of

parallel processing and scalability means WAVE gains more power with the addition of more computing

modules. Although these additional modules can add additional power and cabling requirements, the

computational performance gained by adding more processors in parallel are important to consider.

Parallel processing is the ability to carry out multiple operations or tasks simultaneously, and the ability

to capitalize on this capability was crucial.

70

In order to implement this modular system for WAVE a custom embedded computing device

was required. The custom device needed to be an abstract piece of electrical hardware that could apply

to various applications. This custom embedded computing platform was called the Abstract Hardware

Device (AHD). When implemented, the modular infrastructure was composed of four AHDs which all

serve specific functions to give WAVE basic functionality, more AHDs can be added to expand WAVE’s

capabilities.

5.2 Abstract Hardware Device Design
The first major challenge of designing and implementing the modular infrastructure for WAVE was the

design of the AHD. With the electrical structure being the core of WAVE’s modularity, a parallel

processing platform was required. This platform needed to be highly scalable and easy to use. Through

analyzing existing microcontroller boards, a list of requirements for WAVE’s modules was determined.

The design analysis yielded the following requirements:

 High Speed Serial Communication over Standard personal computer interfaces e.g. Ethernet

&USB

 Motor Control Capabilities

 Compatibility with a large range of both analog and digital sensors,

 General purpose digital IO capabilities

 Real time closed loop control implementation

 Cost effective design

 Integration with a large variety of external add-on hardware

The requirements for the microcontroller board were determined based on the basic

requirements for the modular infrastructure and the requirements that all robotics oriented system

controllers must implement. No current modules existed that would provide the future extensibility

71

desired for this project. Therefore, the decision was made to create the Abstract Hardware device from

scratch.

The next step after establishing basic requirements for the Abstract Hardware Device was to

choose the hardware that would power it. Choosing hardware for the AHD first required establishing

concrete specifications for the AHD itself. The first requirement for the AHD was to be able to

communicate with PCs at a high speed. A central processing unit was necessary for WAVE’s design, so

the AHD needed to consider this fact. For more information on WAVE’s distributed processing, refer to

6.1. With today’s computers the most popular serial interfaces are USB and Ethernet. USB was the first

choice for a serial link due to its high frequency of use on PCs; however, USB does have constraints.

USB’s most relevant constraint is data bandwidth. If this system was to be truly modular, the

infrastructure could not be limited by bandwidth. Ethernet is another very common and powerful

communication interface. Ethernet is a widely used standard with bandwidth limitations far exceeding

that of USB. Another less relevant constraint of USB is that it is limited to 4.9m (16ft) cable length in

other applications (non AUV) that constraint could be problematic. Ethernet solves that problem with

the ability of transmitting upwards to 304.8m (1000ft) cable lengths. Since both USB and Ethernet are

industry standards the decision was made to include both on the AHD.

Another specification that needed to be accounted for by the AHD was the ability to drive

motors. Motor drivers and controllers are commonly controlled using a pulse width modulation signal

(PWM). Driving the motors is an important task for the AHD to complete, and PWM signal generation is

the most widely accepted standard for accomplishing our desired goal. Thus, the decision was made to

account for PWM signals when designing the AHD. Rather than bit-bang a signal, the AHD required

hardware PWM generation. It is important for the AHD to be able to generate all PWM signals using

discrete hardware instead of with software via bit banging because software PWM can hinder

72

computational performance as well as using up all available onboard timers of the processor that could

be better used for more important control system functions.

Also, the AHD had to be able to interface with sensors and additional hardware. Conventionally

other controllers accomplish the task of sampling sensors and interfacing with additional hardware with

the following onboard circuitry: General purpose digital IO, analog-to-digital converters, and low level

primitive serial communication. General purpose digital IO (GPIO) is used for interfacing and controlling

digital hardware. GPIO is handled by the digital pins or general purpose pins on a given controller. GPIO

pins read in high or low signals and output high or low signals; this process is used to read digital sensors

and trigger digital hardware. Analog sensor sampling is accomplished by an analog-to-digital converter

(ADC). An ADC converts a range of analog voltage to integer numbers that the controller uses within its

on board program to accomplish its task. ADCs are the only way to interface with analog sensors;

therefore, having ADCs built into the controller was important for the AHD. Aside from interfacing with

analog and digital sensors the AHD needed to be able to interface with additional hardware that doesn’t

connect over analog or digital IO. To accomplish the task of hardware expansion the AHD needed to

feature some of the more common low level serial interfaces such UART/USART, SPI, and I2C.

5.2.1 Microcontroller

Now that the embedded computing requirements for the abstract hardware device have been

established, the next step in development was to choose the controller (microcontroller) that would

power the AHD. Microcontrollers from a range of manufactures were examined to find one that would

fit our list of requirements. Only two were initially deemed acceptable, AVR and PIC32.

While a lot of the AVR models (particularly the AVR32 models) had all the desired features, they

had a few problems. The AVRs were very expensive: most of the models that had all the desired features

cost around 11-15 USD in quantities under 1000. For the purpose of this project, that price range was

73

unacceptable. In addition to being costly, the AVR32 has a max clock speed of 66MHZ. Since the AVR32

was based on out-of-date hardware architecture, this family of microcontrollers would not be relevant

to our hardware needs. One positive feature of the AVRs that was very appealing was a large open

source software community with out of the box usable software libraries that would be helpful for

implementing the AHD. One of these libraries was the LUFA stack, the lightweight USB for AVR stack.

This USB stack is known for being highly efficient with minimal latency, a solution to a problem we will

have to deal with in the future. In the end, however, the cons of the AVR outweighed the pros and we

went on to examine additional controller families.

The PIC32 chips have a high clock speed, low cost, all the serial peripherals we needed, and a

nice set of developer tools as well as already supporting the Neuron Robotics Bowler protocol (one of

our potential software solutions). Unfortunately the PIC32 had too many deal breakers. The PIC32

suffers from closed-source driver software that Microchip controls. This is a problem because if one

wants to utilize the full processing potential of the PIC32 they need to purchase Microchip’s optimized

compiler software to have all the driver code run at full speed. While Microchip offers a free non-

optimized compiler, the differences in performance are far too large to merit using the PIC32. Without

the optimized compiler things such as USB and Ethernet would be plagued with inconsistent latency

issues, something that would negatively affect the overall performance of the modular system.

The AHD required a lot of features, and neither the AVR32 nor the PIC32 could meet every

requirement. In fact none of Atmel’s and Microchip’s offerings could satisfy the stringent hardware

requirements demanded by the Abstract Hardware Device specification. From researching what was

new in the microcontroller market, the reality was discovered that almost every major IC manufacturer

including Atmel was moving to ARM based solutions. In the industry ARM processors are gaining

popularity in embedded applications. ARMs are usually known for being used to run small embedded

74

operating systems for simple computer devices such as cellphones and digital media devices. In recent

years there was the birth of a new generation ARM, the Cortex M ARM. The Cortex M series come in

the following configurations: M0, M0+, M1, M3, and M4. The numeric value on the M scale correlates to

clock speed features and mathematical computation capabilities. After researching, the conclusion was

reached that NXP Semiconductor had the best offering of ARM Cortex M series controllers. NXP’s

offerings were very cost effective, filled with features, and had excellent documentation, high clock

speeds, open source software libraries, outstanding tech support, and friendly developer tools. After

searching through NXP’s catalogue and comparing the information with all of the criteria outlined

above, a Cortex M4 was decided to be the most appropriate controller for the AHD. Another feature

that was discovered shortly after finding Cortex ARMs was that NXP had ported over the LUFA stack to

their processors, having support ready to go for all their Cortex M3 and M4 models. This fact was the

selling point that made NXP’s Cortex M4 implementation win over the other chip families. In the end the

NXP LPC4330FBD144 was chosen for having all of the serial protocols needed: ADCs, the LUFA stack for

efficient USB applications, a 204MHZ clock speed, an onboard asymmetrical M0 processing core at

204MHZ, and a complete repository of example code and comprehensive documentation.

5.2.2 Abstract Hardware Device

The physical layout of the Abstract Hardware Device is outlined in the following section. The decisions

behind the pin layout, schematic, signals, and integrated design are explained in further detail. These

four items describe the core characteristics of the Abstract Hardware Device.

75

Figure 48: Abstract Hardware Device

5.2.2.1 Pin Layout

Once a controller had been decided upon, the next step was to begin the design of the AHD. First off,

the pin-out of the AHD needed to be decided. The pin out was important for additional hardware to

attach to the AHD and provide modularity. Initially, a standard single row of pins was favored as

plugging into a breadboard for prototyping would be easy. After more research, the idea of using the

Arduino shield layout was brought up. The Arduino layout has compatibility with a large range of off-

the-shelf hardware that would hasten module development as well as being a popular open source

hardware standard. Ultimately the Arduino layout was chosen for compatibility with off the shelf

hardware. With less additional hardware needed to develop, the process would be better. However,

when time came to design the circuit board for the AHD, the physical form factor of the Arduino was not

used. The form factor of the Arduino was too small to fit all of the USB, Ethernet, and supporting

circuitry for the NXP chip. Instead of designing an entirely new form factor with Arduino pin out, the

AHD was designed to implement the form factor of the Racal Micro development board, which is a

longer board shape that already had the Arduino headers. Going with an existing open source form

factor helps simplify the design process. The Arduino Leonardo pin layout can be viewed in Figure 49.

76

Figure 49: Arduino pin layout [55]

77

5.2.2.2 Schematic Design

For the design of the schematic and circuit board for the AHD, the

program Altium Designer 10 was selected for an intuitive user interface

and advanced routing tools. During the process of creating the schematic

for the AHD, the LPC4330FBD144 was discovered to lack the necessary

number PWM outputs. To solve this problem, a coprocessor based on the

ATMEga328MMH was added. A coprocessor was chosen over converting

GPIO pins into PWM outputs using an internal clock module because it

posed no negative impact to the processing core. The ATMega328MMH

was chosen over other microcontrollers because it consumes minimal

power, has a complete prewritten code library for all required functions,

and the development tools were inexpensive compared to other

offerings. The schematic for the board was created primarily from the

reference design provided by NXP with some slight modifications to

make sure everything would function correctly. For a more detailed look

at the Abstract Hardware Device reference Appendix I: Accessing Board

Schematics

.1 .

78

5.2.2.3 Signals

When the schematic was complete the next step was routing the signals on the board itself. Routing for

the board was very straight forward when it came to the Ethernet section. The Ethernet traces had to

follow strict electrical standards. The RX and TX lines needed to be routed as differential pairs. In order

to produce a working Ethernet circuit, the reference design for the Ethernet circuitry was consulted and

followed strictly. In a case like this one, the best method is to stick to manufacturer reference designs to

avoid bug-ridden or non-working circuits. The Ethernet section was traced almost identically to the

reference design with respect to the Rascal board form factor and surrounding circuitry.

Every section of the board design was retraced about three times. The main challenge in PCB

design is choosing the orientation of the controller and where all the complementary circuitry is placed.

After experimenting and retracing, the perfect placement and pin mappings were determined. Then the

entire board was retraced a final time and read for fabrication. The process of getting the board

fabricated is a challenge in its own right. Traces, holes and vias had to be adjusted several times until

they met the manufacturer’s machine specifications. Working with the fabrication company and their

online design checking tools, all the errors were eliminated over the course of a week and the board was

ordered. This first design was the prototype of the AHD, and multiple revisions were needed to attain

maximum functionality.

79

Figure 50: AHD Signal Traces

5.2.2.4 Integrated Design

After the design and prototyping period of the project the much discussed Abstract Hardware Device

(AHD) is finally a reality. The final AHD module manifested as a custom printed circuit board (PCB) based

around the NXP LPC4337JBD144 ARM Cortex M4F micro-controller chosen during the design and

methodology process. The PCB provides the LPC4337JBD144 with all of its required supporting circuitry

and all the AHD specific hardware peripherals and interfaces. The supporting circuitry includes a board

level power supply , JTAG programming interface, Real Time Clock (RTC) crystal oscillator, system clock

crystal oscillator, in system programming (ISP) interface, boot source jumper select, reset circuitry,

analog power conditioning, and bypass capacitors on every voltage pin. The power supply consists of a

3.3 and 5 volt rail; each rail of the supply is damped, decoupled, and filtered to assure consistent

voltages for stable operation of the LPC4337JBD144. The JTAG programming interface consists of the

10 pin ARM Cortex M JTAG/Debug port , debug enable (DBGEN) pin jumper circuit, and the JTAG test

reset (TRST) pin jumper circuit. The crystal oscillators consist of a separate crystal for both RTC and

system clock and their associated load capacitors, these oscillators provide the LPC4337JBD144 ARM

processing core and real time clock peripheral with the required clock signals they need to function. The

ISP programming interface consists of a 3 pin header wired to RX/TX of the LPC4337JBD144’s UART1

80

interface and to ground as well as a ISP reset button. If the user does not wish to use a JTAG

programmer they can load on firmware over the ISP interface by holding down the reset to put the

LPC4337 in ISP program mode. The reset circuitry consists of a reset button for pulling the reset pin low,

a 10k pull-up resistor (bypassed with a 100nF cap), and a logic buffer to prevent ESD from resetting the

LPC4337JDB144. The analog power filtering section connects the onboard ADC’s analog power input,

and analog ground to 3.3v power plane and the ground plane through ferrite beads. The boot source

jumper select consists of a 2X4 pin header. One set of 4 pins are wired to the boot select pins on the

LPC4337 and the others are wired to ground; the boot select jumpers are used for choosing a where the

LPC4337 will boot from. Lastly every pin on the LPC4337JBD144 that receives power from the 3.3v

power plane has a bypass capacitor to ensure stable voltage is constantly supplied.

The AHD specific peripherals and hardware interfaces are what make the AHD what it is and not

just a simple microcontroller breakout PCB. The onboard peripherals for the AHD include, a 10/100

Ethernet transceiver and jack, a USB 2.0 port, and overvoltage protection. The hardware interface is

how the AHD is expanded into an application specific module for WAVE. The AHD hardware interface

consists of Arduino Leonardo compatible pin headers and three additional AHD specific headers for

module applications that require more digital inputs than what is available on the Arduino headers.

Through the hardware interface the AHD achieves Arduino Leonardo hardware compatibility and

functionality with the only difference of being 3.3v compliant on all digital pins. In order to achieve this

sort of compatibility an analog signal level/range conversion section was added to the analog input

header to achieve 5 volt sensor compatibility.

5.3 Embedded System Design
The modularity of WAVE required a well thought-out embedded system design. A development

environment needed to be determined. The functionality of this environment also needed to be

confirmed. Communications also needed to be established between AHDs, sensors, and the Fit-PC. The

81

components of the embedded system design can be classified into two distinct groups: serial

communications and other peripherals. The layout of WAVE’s embedded software architecture can be

seen in Figure 51: Embedded System Architecture

Figure 51: Embedded System Architecture

5.3.1 Development Environment

In order to access the modular infrastructure on the Abstract Hardware Device, embedded computing

had to be implemented to ensure low-level functionality. All of the embedded programing was written

in the C language. The software was developed in the LPCXpresso programming environment provided

by NXP and Code Red Technologies. In this environment, Neuron Robotics’ Bowler protocol was ported

over to interface with the NXP-provided libraries. This combination would successfully allow for all of

the low-level functionality of the Abstract Hardware Device to be configured and controlled from the

top level program.

82

5.3.2 Functionality Confirmation

Before writing unique functions, two sets of example code were implemented to prove functionality.

First, a series of LPCXPresso development tests were used. These examples confirmed that the

development environment was set up correctly. Additionally, they proved that code could compile

correctly with the driver libraries and that the functionality of multiple peripherals including LED, UART,

Ethernet, and Audio could be ascertained.

Once these tutorials were proven to be successful, another series of example projects were

tested. Specifically, we utilized NXP’s Lightweight USB Framework for AVRs (LUFA). The LUFA stack

enables communication over USB, which allowed all of the modules to interface with each other and the

central processing unit. The LUFA stack came with several example projects to test communication over

USB. LUFA can be utilized as a device, a host, or both. The successful implementation of these tests

proved this functionality. Once communications had been handled at the embedded level, functions

could be designed and implemented for the peripherals. Each module had methods that needed to be

defined at the higher level in Java, but before those functions could be implemented, basic functionality

needed to be established at the embedded level. Afterwards, the higher level methods had the green

light for design.

5.3.3 Serial Communications

The serial communications design encompasses how different module hosted on an AHD would

communicate with each other as well as with the Fit-PC. Four serial communications standards were

used in the design of the embedded system. These standards are USB, Ethernet, SPI, and I2C.

USART/UART was designed to implement SPI and I2C protocols. Having a wide range of communications

standards is necessary because different sensors communicate using different formats. Therefore, to

fulfill the goal of making WAVE a truly modular development platform, a wide variety of communication

83

protocols were planned. Even if certain protocols were not used in this iteration of the project, future

teams may need these communication standards.

5.3.3.1 USB

USB is the primary means of serial communication in the WAVE embedded system design. Each module

was designed to be able to send data to and receive data from the fit-PC. USB 2.0 technology was

preferred over USB 3.0 in this design because of the widespread acceptance of 2.0 as well as the team’s

inexperience with 3.0. The Bowler Communications protocol was designed to be ported over to the

AHDs and monitored through USB serial communication. The port was designed to be completed over

USB, and progress of moving the Bowler firmware was to be monitored through the USB echo server.

While each AHD has the means of communicating via all of the serial communication peripherals, USB is

the only peripheral that is actually implemented by all of the modules at this time.

5.3.3.2 Ethernet

Ethernet is a secondary means of serial communication in the embedded system design. The Ethernet

design is in a preliminary state. Since USB was designed to be the primary means of serial

communication for the first iteration of WAVE, the software design for Ethernet was not as in-depth.

Ethernet was still deemed necessary because future teams may want to communicate over a UDP stack,

so the technology was included in the design of the embedded system. Room exists for future teams to

expand the scope of Ethernet support in the AHD.

5.3.3.3 USART/UART

USART and UART are both devices that can implement asynchronous serial communications. Both

contain two wires. One wire is the transmitter (TX), and the other one is the receiver (RX). Both UART

and USART implement asynchronous modes. Both USART and UART were necessary for the design of

the embedded system because asynchronous transmission may be needed for different AHDs to

84

communicate with each other. While WAVE currently does not implement USART or UART

communication, the ability for future development necessitated the incorporation.

5.3.3.4 SPI

SPI is a daisy-chainable 3 or 4-wire serial interface. These wires include one for clock synchronization

between the two communication devices, sending data in sync with the clock wire, receiving data in

sync with the clock wire, and the chip select which is used to enable a slave device connected over the

previously mentioned wires. SPI is very popular in industry and necessary for the design of the

embedded system. Different AHDs need to be able communicate in synchronous modes, which SPI

enables. The sensors on this iteration of WAVE do not require SPI communication, but different sensors

with similar capabilities require SPI. Additionally, the ability to daisy-chain different modules and

stipulate which ones are slaves and which one is the master is an important feature in this design.

5.3.3.5 I2C

I2C is a two wire serial interface that is also daisy-chainable. One wire is for transmission and receiving

and one is for clock synchronization. For a low-level serial interface I2C is fast as well as being easy to

use from a programming standpoint. Some of the sensors used in WAVE communicate using I2C, so this

standard was incorporated in the design of the embedded system and deemed critical.

5.3.4 Other Peripherals

The design of the other peripherals stipulates how the data sent via serial communications is obtained.

While they are linked to communications their design is a separate process. These other peripherals are

ADC, SCT, and GPIO.

5.3.4.1 ADC

Some of the peripherals and sensors generate an analog signal as their output. Therefore Analog-to-

Digital Converters are necessary components of the embedded system design. The ADCs will convert

85

these analog signals to a digital data. The digital input can then be sent to the Fit-PC or other modules

via serial communications.

5.3.4.2 SCT

In addition to supporting a wide range of serial communication protocols the controller must have a

state configurable timer (SCT). A SCT equates to high speed mathematical computations which are

essential for implementing real-time closed-loop control. A State Configurable Timer allows for real-time

closed-loop control. Real-time closed-loop control is an essential application for the AHD, so a controller

with a SCT was a must.

5.3.4.3 GPIO

General Purpose I/O pins can be configured as either inputs or outputs. GPIO pins provide a flexible

infrastructure while reducing costs. These two facts are responsible for the inclusion of GPIO in the

embedded system design. When set as an output, the values of these signals can be changed to either

high or low. When set as an input, the states of these signals are read through GPIO control register bits.

Additionally, GPIOs can be used as status indicators (for example, with LEDs), which is another important

piece of the system design.

5.4 Sensor System Design
For the sensors sub-system design, the chosen components would sense the following parameters:

inertial measurements, compartmental flooding, temperature, humidity and depth sensing. The

sections below detail the decisions that went in to deciding upon the specific components for the

design.

86

Figure 52: Sensor Suite

5.4.1 Inertial Measurement Unit

In deciding on an inertial measurement unit, the factors considered were: functionality, pricing, and user

interface. The first model examined was the SparkFun Digital IMU Breakout - IMU3000. This model was

initially chosen due to the fact that this sensor has both an accelerometer and gyroscope allowing us to

measure both acceleration and angular acceleration. In addition this device had programmable sample

rates for the gyroscope and accelerometer which could be used with the modular infrastructure. The

decision was made not to proceed with this device because it contained a gyroscope and a breakout in

which an external accelerometer would be attached. In addition this device did not include a

magnetometer or compass. In conclusion the device was too basic for the tasks required of the inertial

measurement unit.

The next model considered was the Atmel ATAVRSBIN2. This inertial measurement unit has 9

degrees of freedom, and also contains an accelerometer, gyroscope, and magnetometer. The rates at

87

which acceleration and angular velocity are measured are programmable. This ability is ideal for

allowing future teams to change the rate at which acceleration and angular velocity are measured

depending on the environment of the robot. The Atmel ATAVRSBIN2 has an I2C interface for all three

sensors and produces a digital output which when sent will give us data responding to the orientation of

the WAVE modular system. In addition to these functionalities this IMU also has a temperature sensing

unit that may be used in order to measure the internal temperature of the pressure vessel. This device

did contain all the necessary functionalities, but the decision was made not to go forward due to the fact

that the device would not provide the necessary level of accuracy and precision. The level of precision

required of an IMU is based on how fast of a rate the dynamics of the craft change. WAVE’s dynamics as

it moves underwater would be changing very slowly. In a dynamic system with a slow rate of change the

IMU data needs to be sampled over a longer period of time. Sampling from an IMU over a longer period

correlates to more error in the data. If WAVE is to navigate reliably an IMU with a much lower drift is

required so that data can be sampled at the appropriate rate for WAVE’s change in dynamics without

inducing too much error.

Figure 53: Microstain 3DM GX3-35

Ultimately, the Microstain 3DM GX3-35 (shown in Figure 53: Microstain 3DM GX3-35) was

decided upon. This model includes many of the same features as the Atmel ATAVARSBIN2. As such this

88

model allows for programmable rates which allow for the user to change the measurement scales upon

the different sensors contained in this module. This model contains a tri-axial accelerometer, tri-axial

gyro, and a tri-axial magnetometer. This model measures with greater accuracy and precision compared

to the Atmel ATAVARSBIN2 and other low end IMUS. In addition this model has also been successfully

used in other under water platforms. For the purposes of the project, this module will be powered via

USB and calibrated to be read and display measurements onto the GUI developed by the software team.

A side-by-side comparison of features and price is shown in Table 9: IMU Comparison Analysis.

Table 9: IMU Comparison Analysis

Sensor Price

(to team)

Accelerometer Gyroscope Magnetometer

Sparkfun

Digital IMU

39.95 N Y N

Atmel

ATAVARSBIN2

45.16 Y Y Y

Lord Microstrain

3DM-GX3-35

0 Y Y Y

5.4.2 Depth Pressure Sensor

In selecting a pressure sensor the factors that were considered were: price, measurement range, and

durability. The first pressure sensor that was considered was the Honeywell – PX2AN2XX150PSCHX. This

pressure transducer can measure between 0 - 6.8 atm. This transducer has an operating voltage of 5V,

producing an analog output corresponding to the depth. This pressure sensor was a good choice

although is listed to be optimal in the following environments: HVAC, Air Compressors, and light

hydraulic system.

89

Figure 54: GE PDCR 1830

As such, the decision was to use the GE PDCR 1830(shown in Figure 54: GE PDCR 1830) which is

a depth and liquid level sensor that outputs a voltage between 4 mv and 20 mv. The optimization of this

sensor for water environments led to choosing this sensor. This sensor can measure between 0 – 1.02

atm. The millivolt output needed to be amplified using an instrumentation amplifier before being read

into an ADC. This device is powered by 10 V and as such will implement a buck converter in order to step

down the voltage from the 12 V power source. The comparison of these two modules is displayed in

Table 10: Depth Sensor Comparison.

Table 10: Depth Sensor Comparison

Sensor Price (to team) Operating Range Suitable for Underwater

Honeywell
PX2AN2XX150PSCHX

89.48 0-6.8 atm N

GE PDCR 1830 0 0-1.0 atm Y

5.4.3 Liquid Level Sensor

The team considered two varieties of liquid level sensor when designing the sensor suite. The first of

these was the Basement Watchdog Water Alarm, a commercially available product, for use in your

home. Powered by a 9V battery this sounds an alarm when the sensor probe touched water. This sensor

90

could be removed from the Basement Watchdog Water Alarm, in order to create a flood sensor that fit

the needs of the robot. As such the decision was made that it would be preferable to buy a sensor that

already provides this functionality because the cost of components would outweigh the cost of a sensor.

In keeping with this the Honeywell LLE102000 Liquid Level Sensor was selected. This sensor uses a

supply voltage of 5V and provides a digital output corresponding to if water is or is not detected within

the system. This sensor detects water when the dome is fully submerged in water at a depth of 22.49

mm. This system would be optimally designed to contain flood sensors in as many points to compensate

for any shifting of the robot while under operation. It is necessary that the flood sensors be located at

least near the end-caps which are the first entry point for any water leaking into the pressure vessel. As

such this system was designed in order to include at least two flood sensors located at the two ends of

the pressure vessel. Although, at this stage of the design only one flood sensor was implemented within

the pressure vessel due to size constraints. For this implementation the flood sensors was mounted

dome down near the center of the pressure vessel although for optimal implementation it is necessary

that the flood sensors be mounted dome upwards to function properly also that for future

implementations the flood sensor be located at the four corners at the vessels to account for any tilting

and also along the horizontal sides of the vessel as well.

Figure 55: Honeywell LLE 10200

5.4.4 Temperature and Humidity Sensors

It was also necessary to detect temperature and humidity. In order to do so temperature sensors were

employed in order to detect the temperature of different components. A humidity sensor was chosen in

order to detect the ambient humidity. In considering temperature and humidity sensors they were

91

chosen based off sensing capabilities within the electronic pressure vessel. An outline of these

capabilities is outlined in Table 11: Temperature and Humidity Sensor Comparison.

Table 11: Temperature and Humidity Sensor Comparison

Sensor Price (to Team) Temperature and
Humidity Sensing

Number of Sensing
Channels

Humirel HTM1735LF 27.28 Both Ambient Temperature
Ambient Humidity

Microchip TC-74 11.84 Temp Sensing Only Up to 8 Locations
Sparkfun HD100 9.95 Humidity Sensing Only Ambient Humidity

The first sensor examined was the Humirel HTM1735LF temperature and humidity sensor board.

This board has sensors to detect both temperature and humidity, containing a negative temperature

coefficient thermistor and a relative humidity module. This model was initially chosen for cost efficiency

and implementation in previous designs. Although later in the project, the need to sense temperature at

multiple locations was discovered. This capability could not be easily accomplished using the Humirel

board, therefore a change was made to the Microchip TC-74 to sense temperature and the Spark fun

HD100 in order to sense humidity. The Microchip TC7-74 is supplied with 5V and is capable of sensing

temperatures between -40 and 125 . This temperature sensor has is relatively accurate 3 at

temperatures between 0 and 125 and between 2 for temperatures lower than 0 . The Spark

Fun HD100 is capable of detecting humidity between 1 and 99% relative humidity. Both of these devices

communicate via the I2C interface. All of the temperature and humidity measurements will be

communicated via one I2C bus line. Temperature is sensed in seven different locations, and ambient

humidity is sensed.

92

5.5 Power System Design
In order to ensure modularity, WAVE required a power distribution design capable of sourcing high

power with multiple voltages available. The batteries and voltage rails needed to be determined, as well

as how to implement a safe and reliable system.

Figure 56: Power System

5.5.1 Power Distribution System

As all subsystems were simultaneously being created, it was necessary to determine power constraints

in order to successfully design WAVE’s power distribution system. With this, the mechanical engineering

team was given the constraint to choose thrusters that operate between 12 and 18.5 volts (V)

nominally, as research and experience have shown these to be typical motor values. Additionally, the

custom AHDs and computer were given the constraint to operate off 3 amps (A) or less as experience

had shown this to be sufficient power for the application. From this, a worst-case, estimated power

93

budget was created based upon what WAVE might contain and was used as a foundation for starting the

power system design. This initial estimated power budget is shown in Table 12. Note that this was the

preliminary power analysis for the system, which was updated as power specifications were determined

from the other subsystems. The final power budget is shown in Table 13.

Table 12: Estimated Power Budget

Component Max Current(A) Nominal Voltage(V) Max Wattage(W)

Thruster 1 6 18.5 111

Thruster 2 6 18.5 111

Thruster 3 6 18.5 111

Thruster 4 6 18.5 111

Thruster 5 6 18.5 111

Thruster 6 6 18.5 111

Buoyancy Actuator 1 4 12 48

Buoyancy Actuator 2 4 12 48

Buoyancy Actuator 3 4 12 48

Buoyancy Actuator 4 4 12 48

PC 3 12 36

AHD with Motor Control Shield 3 12 36

AHD with Onboard Sensor Shield 3 12 36

AHD with Power Management Shield 3 12 36

AHD with Buoyancy Control Shield 3 12 36

AHD with Emergency Protocol Shield 3 12 36

AHD with External Sensor Shield 3 12 36

6 Additional Modules (1 AHD each) 18 12 216

Total 99 1326

With this information, the power source had to be able to safely supply 99A at different voltages

which totals to 1326W. WAVE’s power source selection began by examining lithium polymer batteries.

As discussed in section 2.6.4.4, LiPo batteries are known to be light in weight and high in energy density

in comparison to other battery chemistries, which was why they were examined first. The highest

capacity lithium-polymer battery available for off-the-shelf purchase was 10Ah. To find the worst-case

run time use this equation:

94

(

)

where CapacityDischarge is assumed to be 70% and is the amount of the battery’s energy used before

turning the system off to recharge the battery for the next use. (This is especially important for lithium

polymer batteries, because cells discharged under 3.0V can lose their capacity and degrade the overall

battery performance.) With one 10Ah lithium polymer battery, the worst-case run time would be 4.24

minutes; however, the system requires a 20 minute run-time as shown in Table 2 of section 3.2.

This short run time brought up the consideration of connecting two 10Ah lithium polymer

batteries in parallel for a total of 20Ah, resulting in 8.48 minutes for the worst case run-time. Though it

is possible to connect lithium polymers in parallel, it can be very dangerous, especially with such large

batteries. Given the volatility of lithium polymers batteries, there was apprehension about connecting

them in parallel so this consideration was put to the side. The possibility of using a safer, more familiar

battery chemistry that could still source the current, but with a higher capacity was then considered.

Lead acid batteries filled the requirements, but by this time in the design process, two thrusters

were chosen that run off a nominal voltage of 19V. To power these thrusters, two 12V lead acid

batteries would need to be connected in series, which would give us a 24V output. The 10Ah lithium

polymer battery weighs 1.2 kg, in contrast to only one lead acid battery weighing around 3.3kg. Though

lead acid batteries meet the power specifications, they would add an additional 5.4 kg to the weight of

the chassis. That weight would have to be counteracted by other buoyant components or by constant

actuation by the vertical thrusters. “LiFePo” batteries were also considered, but an off-the-shelf unit

that met the current specifications was not found. Two LiPo batteries onboard were again considered,

but with one connected solely to the motors, the other connected solely to the electronics; however,

the team was not enthusiastic about this and wanted a system that shares an equal load and discharges

evenly. An integrated chip produced by Linear Technologies was found with the ability to automatically

95

switch back and forth between two batteries, giving the run-time capacity of two batteries in parallel

but without them actually being connected. This would have given us the desired safety and capacity,

but was not implemented due to how close it was found to the deadline of a finished power system.

The initial idea to have LiPo batteries in parallel was revisited. An RC battery management unit

(BMU) was found and additional research found many successful examples of batteries connected in

parallel when particular LiPo safety guidelines were followed; these guidelines can be found in Appendix

F. With these various options and with extensive modularity in consideration, the decision was finalized

to create the power system with the ability to be powered by up to 3 LiPo batteries in parallel.

The battery that was chosen is a 5S, 18.5V, 10Ah, 25C, lithium polymer battery made by Gens

ace. This means that each battery is comprised of five individual lithium polymer cells connected in

series. An individual cell when fully charged is 4.1V and should not be discharged below 3V. The voltage

of each cell in series adds to create a total nominal voltage of 18.5V, but will be 21V when fully charged.

The battery can source 10 amps continuously for 1 hour before needing to be recharged again and the

“C rating” of 25C indicates that it can source 25 times the amount of capacity it has; therefore, it can

safely source 250A.

To ensure system safety during every WAVE mission, each battery has its own BMS connected

that monitors the voltage of each individual cell in the battery. It connects directly to the battery’s

balancing plug and if a voltage difference of 0.2V is found between any two cells, a network of resistors

is used to slowly balance the battery pack. Also, Schottky diodes were implemented to keep batteries

from charging or discharging each other and safety fuses were also included in the design.

As mentioned previously, the power budget was adjusted as design decisions were made and

the finalized budget can be seen in Table 13.

96

Table 13: Final Power Budget

Component Max Current (A) Nominal Voltage (V) Max Wattage (W)

Seabotix BTD150 5.8 19 110.2

Seabotix BTD150 5.8 19 110.2

Bilge Pump 6 12.5 87.5

Bilge Pump 6 12.5 87.5

Bilge Pump 6 12.5 87.5

Bilge Pump 6 12.5 87.5

Window Motor 2.5 12 30

Window Motor 2.5 12 30

Fit-PC 1.5 12 18

AHD Actuator Control Shield 1 12 12

AHD Onboard Sensor & Safety Shield 1 12 12

AHD Thruster Control Shield 1 12 12

AHD External Sensor Shield 1 12 12

2 Additional Modules (1 AHD each) 2 12 84

USB Hub 4.9 5 24.5

Total 53 828.9

According to these updated values, Equation 1 shows the worst-case run time with 1 LiPo

battery connected to be approximately 8 minutes long. The average run time for 2 batteries is estimated

to be around 20 minutes, but this depends on the type of mission deployed.

5.5.2 Voltage Rails

Due to the modular nature of the system, it is important to have industry standard voltages available for

ease and flexibility of device implementation. For lower current devices, such as sensors, 3.3V and 5V

97

are common voltage specifications. Also, many other devices, such as motors, operate on 12V.

Therefore, a 12V rail was designed to power each AHD which will then have its own 3.3V and 5V rails

onboard through voltage regulators. As deciding the best type of battery and configuration for the

system took longer than anticipated, designing a high current voltage regulator became impractical.

With this, a Vicor DC/DC converter was found that will convert the unregulated 18.5 nominal voltage

from the battery into the 12V rail and can source 200W at 16.67A continuously; however, this does not

entirely fulfill the requirements of the system. This is one of the highest powered DC/DC converters

found with an efficiency of 85%, so two of these converters were implemented.

5.5.3 Battery Monitoring System

As previously mentioned, lithium polymer batteries can be dangerous if not given proper care and

attention. Each cell in a healthy battery should discharge evenly, but in the case that one cell is bad and

discharges more quickly, it will continue to do so until the battery is ruined or even combusts. If a

lithium polymer cell is discharged below 3V it may be permanently damaged and not maintain a charge

afterward. Also, if a battery becomes too hot, it may suffer from thermal-runway resulting again in a

ruined battery or combustion. Therefore, it is very important to monitor the current being sourced by

the batteries, the voltage levels, and as common practice, the temperature – all in real time.

Initially, voltage and current sensors made specifically for lithium polymer batteries by RF-Flyer

were going to be daisy-chained and implemented for this purpose. They connect directly to the

batteries’ balancing plug, allowing each individual cell within the battery pack and the total current

being sourced to be directly monitored by the fit-PC. This was the plan until the lead time on the current

sensor was discovered to be impractical for the design deadline. Also, the decision to connect batteries

in parallel while implementing the BMS for additional safety removed them as an option as the BMS also

connects to the balancing plug and cannot be daisy-chained.

98

The system was then redesigned to incorporate four Allegro Hall-effect current sensors; three to

sense the current of each battery and the fourth to sense the power tether. Desiring as little voltage loss

as possible, the voltage sensing was decided to be accomplished through an isolation unity gain

amplifier monitoring the main 18.5V rail. This draws a negligible amount of current and will have a

voltage divider on the output that steps the voltage down to a value between 0V and 3.3V and passes it

to the analog to digital converter, where 3.3V at the ADC input corresponds to 21V at the battery. More

information regarding the voltage sensing can be found in section 8.2.2. A temperature sensor will be

placed directly on each battery pack for monitoring and was discussed in section 5.4.4.

As the batteries are able to source 250A continuously, the current is not being monitored solely

for battery health, but is also used to ensure proper system functionality. For instance, if two batteries

are connected in parallel and one is sourcing more current, this shows that the system should be

examined. Along with the voltage sensing, the current sensing is also a way to monitor the amount of

the battery that has been discharged. It is recommended that lithium polymer batteries be discharge to

around 70% of the capacity or less before ending the mission and charging again. When the battery is

fully charged it has a voltage of 21V and a capacity of 10Ah; when discharged it should never drop below

15V without a load or below 7Ah. Therefore, WAVE has the ability to monitor the battery capacity by

sampling the amount of current at a given time interval and subtracting it from the 10Ah capacity, by

monitoring the voltage level, or both. Also, the temperature of the batteries should never exceed 120°F.

Should any of these limits be exceeded, the design called for the fit-PC to turn off the motors and

surface as described in section 4.3.6. For more information on how to safely use LiPo Batteries,

reference Appendix E1. How to Safely Use Lithium Polymer Batteries

5.5.4 Power Tether

The tether system was to be used as an option for testing and consists of two 14 AWG modified power

cables, one of 3m and the other of 30m. The length used depends on the type of testing to be done. The

99

shorter cable allows for more power to be transferred whereas the longer cable allows for more

mobility. Table 14 accounts for the voltage drop through the cable by showing the voltage that WAVE

would receive depending on the current and length of the cable

Table 14: Tether Resistance and Voltage Drop

Cable Length Resistance of Cable Voltage In (20A) Voltage In (50A)

3m 0.025756 23.48 22.71

30m 0.25756 18.85 11.12

A suitable AC power supply, or a pair of regular automotive lead acid or marine batteries in

series for a total of 24V can be used as the tether power source. An optional regulator could be added

inside WAVE to create a more stable input voltage and a more controlled testing environment. The

tether and tether power source was not purchased as it was not a priority for WAVE, but it is something

that can be implemented in the future and was accounted for in the design.

5.6 Design of Printed Circuit Boards
With any printed circuit board design there’s a strict set of guidelines to ensure that all electrical signals

can travel their desired paths without interference, ensure minimal crosstalk between adjacent signals,

ensure a robust mechanical structure, and to ensure proper functionality of active electrical

components. There are several basic principles to keep in mind when designing a printed circuit board.

The components must be laid out in such a way that straight traces can be used. Right angle traces

should never be used. Instead, two forty-five degree angles should be utilized. Signals between layers

should never be overlapped. Power supply traces should be kept away from analog and digital signals.

All connections to common ground should follow the shortest path of inductance (e.g. PCB traces are

essentially inductors, the lower the inductors the better). Finally, there should always be a continuous

100

ground plane beneath analog and digital signals. An important decision is what design paradigm should

be used – either the maze or X/Y paradigms should be used.

5.6.1 Power Board

In order to distribute the amount of power required by WAVE, custom printed circuit boards that can

safely source high power were made. First, understanding of high power PCB designing restraints was

required. The power supply PCB was first made as one board, but was later divided into two separate

PCBs to better meet standardized sizes, which results in a lower manufacturing cost. The two boards are

the main power supply board and the power conversion board. See Appendix I: Accessing Board

Schematics for more details and schematics of the board.

5.6.1.1 Designing High Power PCBs

When designing a PCB for high current and high voltage it’s best to stick to the basics to start but in the

end high current design requires a few more rules to follow. When transmitting high current power

through a PCB standard trace widths fewer than one hundred thousandths of an inch are not sufficient.

When designing high current PCBs the same concept of requiring thicker wire for high current power

transmission applies it is not as simple as “thickening the traces”. In order to achieve the same

properties of thick copper wire traces must be made wider or instead replaced with copper pours. A

copper pour is polygon drawn in the PCB design software and will later be made out of copper when the

PCB is manufactured. By making polygons with a significantly larger area than normal sized traces the

volume of copper that the signal will be running through is greatly increased. Just like thicker wire has a

larger volume of copper than thinner wire and therefore can carry more current the same applies to

PCBs. If a PCB meant for high current power transmission were to be designed using standard width

traces, there would be many problems such as overheating of nearby components due to increased heat

in the PCB, thermal damage to the PCBs materials, and in the worst case burning of the PCB or traces

exploding. When designing the power distribution PCBs for WAVE for both the 12v supply board and

101

the 18.5v battery input board all of the traces for the 18.5v power rails were constructed from copper

pours. On both supply board the paths in which high current power travels are made from copper pours;

any other signals, sensor or low voltage supplies were routed using standard sized traces following the

design rules of basic PCB design outlines previously discussed.

5.6.1.2 Main Power Supply Board

The main power supply board can be seen in Figure 58 consists of current sensing, voltage sensing,

signal conditioning, and outputs a nominal 18.5V rail which is the main voltage rail of the system. The

board has four input connection points. Three of the input connection points are designated for the

three batteries to be connected in parallel and the fourth connection is designated for powering WAVE

through a tether. Each input has its own safety fuse, Schottky diode, LED for indicating battery or tether

presence, current sensor, and voltage sensor consisting of an op amp and a voltage divider. The current

and voltage sensors go into a Microchip MCP3208 SPI analog to digital converter which connects to an

AHD for monitoring the power system. The power traces of each input converge, creating the main rail,

which has a network of filtration capacitors. Following the capacitors is a large resistor that drains the

capacitors after the system is turned off. The discharge rate of the capacitors can be seen in Figure 57.

The capacitors are discharged to less than 1V after 30 seconds and are completely discharged after 7

minutes and 45 seconds. This prevents capacitors with stored energy from accidentally being shorted

and injuring the user.

102

Figure 57: Capacitor Discharge Rate

The main rail had an output which then went into the system’s on and off switch. In this

iteration of WAVE, the switch was located inside the electronics housing. Rectifying this design should

be a high-priority task for future teams. From the switch, the main rail goes into a distribution block

which then drives the motor boards and the power conversion board.

0

5

10

15

20

25

0

0
.5 1

1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5

V
o

lt
ag

e
 (

V
)

Time (Minutes)

Capacitor Discharge Rate

Voltage

103

Figure 58: Main Power Supply Board

5.6.1.3 Power Conversion Board

The power conversion board, as can be seen in Figure 59, converts the 18.5V main rail into 12V which

powers the AHDs, the fit-PC, and any other 12V component that may be needed in the future. Note that

the conversion board had to be modified, as is discussed in section 8.2.2.4.1, so some components are

on the other side of the board. The conversion board consists of two 12V Vicor converters which each

have their own series of bypass and filtering capacitors. The board takes in the 18.5V rail and outputs

two different 12V rails (one from each Vicor converter). One 12V rail is designated to power all AHDs

and the other rail is designated to power the fit-PC. The converters are limited to 200W each; this is why

two converters were implemented, providing a total of 400W available for WAVE’s modular system.

Additionally, a Pololu D15V70F5S3 5v DC/DC converter was connected to the screw terminal on the 12v

conversion board for powering the on board USB hub.

104

Figure 59: Conversion Board

5.6.2 Motor Board

The thruster controller for WAVE is a fairly simple design. The thruster controller designed for WAVE is

based upon the two channel high current motor shield made by Pololu Robotics using the same STMicro

VNH5019 high current H-bridge. The controller was realized by creating a PCB design containing six

VNH5019 H-Bridge ICs each with their own power filtration, charge pump switching FET, and inline

signal resistors (for 3.3v and 5v logic compatibility). To keep the design and operation organized, the H-

bridge ICs were grouped into three pairs, mirroring the configuration of three pairs of thrusters on

WAVE’s chassis. For the H-bridge circuitry the design reflects the Pololu shield and the STMicro

datasheet schematic identically but some modifications were necessary in order to make this system

appropriate for WAVE. It is not possible to control these 6 H-bridges with the standard Arduino

105

Leonardo pin out, so for the controller each pair of H-bridges have their control signals connect to a pin

header; the thruster controller interfaces with an AHD via a custom made shield that connects to the

three headers on the thruster controller via ribbon cables. Another feature that is unique to the thruster

controller design is an improved current sense section. Onboard the PCB is a Microchip MCP3208 SPI

ADC used to sample the current sense signal from each H-bridge closest to the signal source as possible;

this method was chosen in lieu of sending the signal over the ribbon cables where the data could

degrade. The ADC connects to the AHD via the 6 pin SPI port where the ICSP port would be on an

Arduino Leonardo board.

5.6.2.1 Thruster Controller & Navigation Shield

Another challenge posed by this project is a challenge many robotics engineering projects need to

overcome, controlling actuators. In order for WAVE to move it needs six thrusters; in order for those

thrusters to work they will need a controller. The thrusters chosen by the mechanical design team

consist of a combination of two SeaBotix BT150D thrusters with the remaining four being comprised of

Johnson bilge pump cartridges with model boat propellers attached.

The six chosen thrusters are brushed DC motors, this is important because a controller for a

brushed DC motor is significantly different from that of a brushless motor. Brushed DC motors can be

controlled with a single half bridge or a single H-bridge. An H-bridge is a switching circuit that consists of

four switches wired together to form an H shape; between the four switches the direction of the current

running through the motor can be switched allowing control of the motor in both directions. A half

bridge is only half the amount of switches as an H-bridge and only allows control of the motor in one

direction. Brushless motors would require a much more complex circuit consisting of multiple half

bridges for controlling the individual phases. Since the thrusters chosen for WAVE were built around

brushed DC motors a motor controller consisting of H-bridge integrated circuits was needed. The

thruster controller board can be seen in Figure 60.

106

Figure 60: Thruster Controller Board

In the interest of building off the concept of modularity and rapid expandability of the AHD’s

Arduino shield compatibility high current Arduino shields were researched. On the market there were

three high current DC motor control shields that were capable of controlling the chosen thrusters at

their high current draw requirements; the Monster Moto Shield from Sparkfun.com, the Pololu Dual

VNH5019 shield, and he Robot Power MegaMoto shield. While each of these shields were capable of

handling the large continuous current draw of WAVE’s thrusters they all had shortcomings that made

them unfit for the task. The Monster Moto Shield from sparkfun.com while being capable of handling

the current draw of the motors, could not handle the 18.5v that the thrusters were intended to be

running at. The Robot Power MegMoto shield was only capable of driving one motor with direction

control or two motors in one direction. Since WAVE uses a holonomic drive, the MegaMoto could not be

used. That left the Pololu VNH5019 shield, which had the best specifications of them all, capable of

driving two motors in any directions with 12A continuous current draw at voltage ranges from 5.5v to

24v. The Pololu shield had the correct specifications to drive WAVE’s thrusters well, at least one pair of

WAVE’s three pairs of thrusters. The initial plan was to stack three of the Pololu shields on top of each

107

other on a single AHD for closed loop control of all movement in any direction but this plan had faults

that prevented it from being executed.

The Pololu shield, while being perfect for the task, suffered from the following faults:

 Stacking the shields would be unsafe due to the large amount of heat dissipated by the

VNH5019s on each shield,

 The pin out of the shield did not allow more than two shields to be stacked, and

 The current sensing signal from the VNH5019 was analog which would cause problems with

sensing accuracy due to signal degradation.

While the Pololu shield had its faults and could not be used it had a lot of great features, but

those features stemmed from the use of the ST Microelectronics VNH5019 H-bridge integrated circuit.

The VNH5019 H-bridge had everything needed imaginable to drive a high current brushed DC motor

precisely and safely (current sensing built in) so the decision was made to design a custom printed

circuit board based around the ST Microelectronics VNH5019 H-bridge IC to drive all six of WAVE’s

thrusters.

The design of the custom thruster controller started from the source documents of the Pololu

shield. Fortunately Pololu made the schematic for their shield available on their website; from the

schematic and pictures of Pololu’s shield PCB the electrical system designer was able to completely

reverse engineer Pololu’s shield and create WAVE’s thruster controller. WAVE’s thruster controller

needed the ability to control six brushed DC motors but the Pololu shield circuit only covered two

motors. The solution was to duplicate the circuit and PCB layout three times over to achieve six motor

channels. First the Pololu shield schematic was re-laid out in Altium Designer then duplicated so that

there were three schematic sheets, each sheet containing a pair of VNH5019s and their supporting

circuitry. The next step was to unite these schematic documents under a master sheet in Altium to show

108

each pair of H-bridges as subsystems of the controller as a whole. Next the datasheet for the VNH5019

was consulted to make sure the Pololu circuitry followed the reference design guidelines. It was found

that the Pololu design left out some of the recommended power filtering capacitors which were then

added to the design. Lastly, a schematic sheet containing the power source connections and signal

connections was added and linked into the design hierarchy of the Altium project. In essence the

thruster controller is three of the Pololu shields on a single PCB with the control signals broken out to

2x5 pin headers for each pair of VNH5019s instead of Arduino headers. These three 2x5 pin headers

would later be connected to the Navigation and Locomotion shield attached to the AHD responsible for

the locomotion and navigation of WAVE.

As a final note the thruster controller was not simply a clone of the Pololu shield multiplied out

three times – there were a few improvements added for better performance and safer operation. The

first and foremost change was designing it as a four layer printed circuit board with the two outermost

layers being for control and motor driver signals and the two internal layers being for ground and

power. A four layer printed circuit board has the following advantages over a two layer board:

 Dedicated layer for power distribution

 Reduced signal interference with power in its own layer

 Dedicated layer for uniform ground plane

 A uniform ground plane between the two signal dielectrics allows for the shortest path of

inductance to ground to be the same for all ground termination

 Provides the designer with the flexibility to adhere strictly to design guidelines more easily

The four layers allowed all the signals to be separated very nicely, the layer stack consisted of

control signals and current sensing on the top layer, the second layer was the uniform ground plane, the

third layer consisted of the power plane, and the bottom layer consisted of the motor control signal

109

copper pours. The chosen stack profile allowed the sensitive signals to be shielded from the power plane

and motor signal pours leaving a very robust signal conscious design in the end. Another improvement

over the stock Pololu design was better accommodation for the motor current draw. When designing a

PCB to handle high currents, the traces of the high current signals need to be wide in order to make up

for the lack of depth (PCBs are very flat as opposed to low gauge wire). Often times making traces wider

can be problematic or annoying in a PCB design so instead of using traditional traces copper pours are

used, copper pours are arbitrary polygons drawn in the place of traces, these polygons are filled in with

solid copper. Copper pours tend to be wide, their wide profiles translate to a larger volume of solid

copper which in turn translates to a higher current rating. When constructing the copper pours for the

thruster controller as much space as possible on the bottom side of the PCB was taken up for the copper

pours for the motor signals leaving them larger than the ones found on the Pololu shield. In addition to

making the pours larger extra space on the power plane was cut away from the main power sections

and repurposed as internal copper pours for each motor. The end result leaves WAVE’s thruster

controller having significantly more accommodation for high current motors than the stock Pololu

shield. Lastly, the final improvement made to the stock design was better current sense data acquisition.

The stock Pololu shield merely connected the analog signal output from each VNH5019 to a channel on

the Arduino shield’s analog header. In their situation that is perfectly fine since the path the signal has

to travel is very short leaving the possibilities of signal degradation low. In the case of WAVE at the time

of designing the thruster controller it wasn’t clear how far the analog signals would have to travel to the

AHD with the navigation and locomotion shield on it. The solution to the problem was to include an

analog-to-digital converter on the thruster controller to digitize the signals as close to the source as

possible allowing for minimal signal degradation. So in the final steps of the design a Microchip

MCP3208 analog-to-digital converter was added to the thruster controller to digitize each of the six

current sense signals and send the data back to the navigation and locomotion AHD over an SPI link. The

110

MCP3208 was chosen because it has an onboard multiplexer that allows for eight analog signals to be

connected to discrete pins and the required software is trivial to write.

5.6.2.2 Navigation and Locomotion Shield

In order for WAVE to navigate through its environment from position-based navigation, a sensor giving

position and velocity across all axis, control over all degrees of freedom, and the ability to configure all

control loops as closed loops would be required. The Navigation and Locomotion shield, designed to run

off a single AHD, achieves all of these goals and packs them neatly into a custom designed PCB. For

measuring position and velocity WAVE has been outfitted with a Microstrain IMU/AHRS sensor that

communicates over either RS232 serial or USB. For control over all degrees of freedom WAVE has its

custom thruster controller.. The Navigation and Locomotion shield is responsible for uniting all these

features into an integrated system for performing all navigation and motion control of WAVE in

Cartesian space. The navigation and locomotion shield can be viewed in Figure 61.

Figure 61: Navigation and Locomotion Shield

The design of the Navigation and Locomotion shield was met with very few design challenges,

mainly because a lot of them were solved previously by the subsystems it unites together. The main

design challenge with the shield was integrating sensor data into a closed loop control paradigm. The

111

IMU/AHRS being used could only communicate over RS232 serial or USB, the microcontroller onboard

the AHD mainly communicates over lower level serial protocols. While it is fully capable of USB host

functionality the software challenges to implement such integration would be far too challenging to

complete in a reasonable enough time frame. The solution devised for integrating the IMU/AHRS was to

include onboard conversion circuitry that will convert the RS232 signals down to 3.3v logic level UART

signals that the AHD could easily work with. The serial conversion being the only design challenge, the

shield design was relatively simple, consisting of a 2x5 pin header for each pair of H-bridges on the

thruster controller, a 2x3 header for SPI coms, and lastly mapping all of the signals coming in on those

headers to pins on the AHD.

The protocol conversion circuitry to step the RS232 down to 3.3v logic level UART consisted of

two stages, shifting the RS232 down to UART with a shifting IC and converting the 5v logic level output

into 3.3v logic level. The RS232 signals were shifted down using the popular Maxim Integrated MAX220

IC which is designed to shift standard RS232 from a DB9 connector into UART RX/TX at a logic level of 5v.

The main problem with the MAX220 was that its output was 5v and the AHD was a 3.3v device, this

problem was solved with the Texas Instruments TBX0106 bidirectional level shifter. With the help of the

TBX0106 the 5v signals from the MAX220 were stepped down to 3.3v for the AHD.

Going through all the trouble of connecting the IMU/AHRS to the AHD is important because it

enables closed loop control in real time. If the AHRS were to be connected to the Fit-PC over USB with

the locomotion and navigation control loops running on the AHD the system would behave erratically

and unpredictably because the control loops on the AHD would not be able to receive the data from the

IMU/AHRS fast enough. The problem stems from the large amounts of latency introduced via USB

communication in addition to the fact that the Fit-PC is not running a real time operating system nor is it

equipped with custom written kernel extensions to hasten USB communication with the peripheral

112

device aboard WAVE. An easier solution was to develop circuitry onboard the navigation and

locomotion shield to enable the IMU/AHRS to talk to the AHD over serial.

5.6.3 Sensor Board

In order to implement the following sensing modules: inertial measurement, temperature, humidity,

flooding, and depth, the sensing modules were divided into two subunits: external and internal sensing

modules. The internal sensing modules include the following sensors, which will be contained within the

pressure vessel: inertial measurement unit, temperature sensors, humidity sensor, and flood sensors.

The external sensing modules include any sensors that are contained outside of the pressure vessel, the

only sensor that is designed to be mounted outside of the pressure vessel is the pressure sensor which is

used to indicate depth. Due to time constraints this sensor was not able to be fully integrated into the

robot but is designed to be connected to the system through one of the waterproof thru-hull

connectors; the internal connections for the pressure sensor would have been integrated on the ballast

board. A functional prototype of the sensor board can be viewed in Figure 62.

Figure 62: Internal Sensor Shield Prototype

113

The inertial measurement unit will be located on the navigation/motor board. The internal

sensor shield will be housed within the pressure vessel and will contain the following sensors and

support circuitry necessary to measure the following functionalities: temperature, humidity, and

compartmental flooding. The internal sensor shield design is based upon the design of the Abstract

Hardware Device. The internal sensor shield was an extension of the Abstract Hardware Device by the

addition of connections for the temperature, humidity and flood sensors. The Microchip TC77

temperature sensors are designed to be mounted at seven different locations within the pressure

vessel: three of the temperature sensors will be mounted on the batteries with straps, two sensors will

be mounted to sense ambient temperature, and another temperature sensor will be mounted near the

motor controller board to monitor the temperature of the motor driver chips. Due to size constraints

the pressure vessel was only able to include two batteries and as such would only require the

implementation of six temperature sensors. In order to connect to the shield itself each temperature

sensor will be connected via jumper cables to the header connections on the shield. The headers for the

temperature sensors were connected to I2C bus extenders to ensure the information from the

temperature sensors could be communicated over a distance. This bus was part of the design because

future teams may wish to redesign the electronics housing to a longer length. The design contains seven

bus extenders, one for each temperature sensor. The humidity sensor is connected on the internal

sensor shield and communicates over I2C as well. The information for the temperature and humidity

sensors was read by connecting all of the sensors to the same SDA and SCL line. This information could

then been be communicated via communication protocols that were compatible with I2C. The sensors

are queried at a regular interval as specified by the high-level mission control. Two flood sensors are also

connected to the internal sensor shield. The flood sensors are located on opposite ends of the pressure

vessel. In order to connect to the shield itself the sensors were connected with jumper cables to header

pins on the internal sensor shield. This sensor outputs a digital signal from the internal shield. Water was

114

detected in the system when the output was low, and no flooding was detected when the output was

high.

The temperature and humidity sensors were designed to be powered through the voltage

supply on the AHD. The temperature sensor would be powered with 5V and the humidity sensor would

be powered with 3.3 V. As such a voltage divider was implemented to supply the humidity sensor with

power. The flood sensor was also designed to be powered with the 5V supply on the AHD. With all of

the sensors connected to the same voltage supply, protection circuitry was implemented in order to

ensure that the system supplied the necessary power to all components. This protection circuitry

consisted of two components: a voltage regulator and bypass capacitors. The voltage regulator was

connected to the voltage supply in order to regulate that the voltage supplied was always 5.0 V. The

bypass capacitors were located one each component to filter out any noise within the system that might

be caused with the multitude of components and ensured that a steady 5.0 is supplied.

115

6 Software Design and Analysis

With such a complex system of controllers, sensors, and actuators, WAVE needed a robust software

suite to coordinate its many parts. The robot must be capable of real time operations (such as PWM

generation) and high-level mission planning. While a single computer could handle these tasks, it can be

more effective to have multiple machines to handle the different tasks. Low level signal generation and

sensor manipulation is best suited to an embedded environment, whereas mission planning requires

high-level, memory and processor intensive computation. To coordinate all of these various functions, it

was decided to distribute computation between several embedded microcontrollers and a centralized

management computer. The robot may then be monitored via a remote interface, while it operates

autonomously.

6.1 Distributed Processing
This software is responsible for a multitude of tasks such as gathering sensor data, controlling motion,

path planning, inter-device communication, and communication with the poolside user interface.

Keeping in line with WAVE’s design goals of modularity and expandability, the processing has been

distributed between a centralized controller, and each module’s Abstract Hardware Device. As specified

in section 5.2, these devices communicate over USB or Ethernet, and each has a designated

functionality.

The various components of the robot’s computational core require careful organization and

planning. The communication paths must be clearly defined, and easily modified as necessary. As shown

in Figure 63, the various tasks are distributed between the Mission Controller and the Abstract

Hardware Devices. One critical aspect of this layered design is the path of the data used in control loops.

For example, the control loop which would maintain WAVE’s heading requires access to the

accelerometer and gyroscope data. This control loop needs to run several times a second, using certain

thrusters to control yaw. This data path must be contained within a single computing device, to avoid

116

saturating the USB controller with the transmission of time-sensitive heading data obtained on one

controller that needs to be used in the PID control loop running on another controller. To avoid this

constraint of resources, the modules were designed to include all relevant actuators and sensors on the

same AHD.

Figure 63: Critical Data Paths and Software Levels

The primary computer aboard the submarine was one of the only outstanding costs of the

software team. This computer had to be capable of running all of the complex code driving the robot.

Selecting the computer was done through the design matrix shown in Appendix C: fit-PC . This design

matrix allowed the Software Team to compare various qualitative characteristics of the various

computer solutions in a quantitative way. The team ultimately selected a fit-PC 3 because of its small

form factor, low power consumption, and price.

The primary selection criteria for the main controller were small size, low power consumption,

and enough processing power to enable even the most difficult processing tasks, such as computer

117

vision. The team considered two different styles of controller for use in the robot. The first alternative

was a self-contained off-the-shelf computer, typically referred to as a Mini-PC. Mini-PCs have numerous

advantages. They are typically the smallest, full-featured computers available. They are inherently

power efficient, and contain their own power supply. However, Mini-PCs are not fully upgradable, as the

processor is typically not removable. The second alternative was a custom computer, built by the

software team, using commercially available parts. This would allow the team to custom select the

components used inside the robot, and would leave room for future upgrades, including RAM,

processor, and hard drive. However, this design is typically larger than a Mini-PC, and does not include a

power supply.

Ultimately, the team elected to purchase a Mini-PC, specifically a fit-PC3, because it is a cost-

effective, off the shelf solution. The decision matrix showing how the team chose a specific fit-PC model

can be found in Appendix C: fit-PC Feature Comparison. The fit-PC requires only a 12V barrel jack for

power, making it ideal for running inside WAVE. The team chose to install Ubuntu Server on the fit-PC,

because of its extremely low overhead and vast support community.

6.2 Software and Environment Selection
The selection of software to complement the hardware on WAVE is critical to its success. A robust core

library for communicating with embedded devices is crucial. By supporting the Neuron Robotics

Software Development Kit (NRSDK) [56] with extra third party packages, the team was able to focus on

the team’s specific deliverables, tying several discrete components into a cohesive unit. Several key

decisions streamlined the construction of the code-base, such as selection of Integrated Development

Environment (IDE), cross-platform capabilities, and deployment methods. The team cut down

development time significantly by developing software that could be run on Windows or Linux, using the

Eclipse IDE, and deployed to the robot in the form of JAR (Java Archive) files.

118

6.2.1 Module Communication Framework

To orchestrate the robot’s numerous subsystems, a centralized computer running high level object-

oriented code was required. The primary task of this software was to parse and execute mission files.

These mission files (detailed in section 6.4) contained various steps and waypoints to be executed in

order by the Mission Controller. The team determined the Bowler Communications Suite from the

Neuron Robotics Software Development Kit would best fit their needs, after examining numerous

communications methods between the Fit-PC and module AHD boards.

In order to control the low level functions of the robot, the robot needs to implement a reliable

communications framework between the main controller and the Abstract Hardware Devices. Robot

Operating System (ROS), is widely-used in the robotics community, seemed like a natural choice for

WAVE. ROS is installed atop an Ubuntu client, such as the fit-PC, and facilitates communication between

various “nodes,” each performing a specific task. However, upon closer inspection, ROS would require

considerable configuration and code, including a device driver for the AHD. Also, this would require a

first revision of the Abstract Hardware Device to be designed, built, and operational before any

communication code could be tested by the CS team. The NRSDK, however, is designed around the

Bowler Communications Protocol, a clearly defined RPC system for linking computers and

microcontrollers. The NRSDK is written in Java, and has a robust modular framework, and is open

source. Manufactured alongside the NRSDK is the DyIO, a robust microcontroller, capable of several

complex functions out of the box. It features USB communications, and is controlled using the Bowler

Communications Protocol. Ultimately, the software team decided to go with the solution from NR,

because it met most of the framework requirements.

While developing the software suite, the software team was able to use the DyIO as a testing

platform for their code, while the ECE team developed the AHD.

119

6.2.2 Software Development and Organization

Aside from the library selection outlined in the previous section, a critical decision was which

environment to use while developing the software. The team’s main criteria were to be able to develop

and test outside the robot within the same environment, and to simplify deployment to WAVE’s Fit-PC.

6.2.2.1 Integrated Development Environment and Code Repositories

In order to quickly and efficiently develop and test the code, the team elected to use the Eclipse Java IDE

early on. Though memory intensive, this software suite allowed for the addition of several plugins to

help guide the project. It was familiar to all members of the team, many of whom already had it installed

on their machines. The “Subversive” plugin as added to connect Eclipse to a Subversion software

revision repository which is hosted by Google code. For more details on the software repository and

how to access WAVE’s code see Appendix J: Code. Google’s “Window Builder Pro” provided a graphical

interface for GUI design, greatly simplifying the construction of the poolside interface. Eclipse comes

prepackaged with Apache Ant, a simple script interface that can build and package Java code. This

complements the JAR file deployment strategy (Outlined in Section 6.2.2.2).

6.2.2.2 Software Deployment

To upload code to the robot quickly and efficiently, the team chose JAR files to encapsulate the code.

Java Archive files are the standard way to package several Java files for interpretation elsewhere.

However, the JAR creation process can be a bit tedious; however, it is automated easily. As previously

explained, the Eclipse platform includes the Apache Ant scripting library, which allows for simple cross-

platform scripting for a variety of functions. These Ant scripts can be quite powerful, orchestrating

several complex procedures. The buildfile organizes these tasks in the form of ‘targets’, one of which is

shown here:

<target name="jar">

 <manifestclasspath property="lib.list" jarfile="${jarpath}">
 <classpath refid="build-classpath" />
 </manifestclasspath>

120

 <jar destfile="${jarpath}" basedir="."

excludes="**" filesetmanifest="mergewithoutmain">
 <zipgroupfileset dir="${dir.lib-common}" includes="**.jar" />

 <fileset dir="${dir.build}" includes="**/*" excludes="META-INF/*.SF" />
 <fileset dir="." includes="${dir.media}/*" />
 <fileset dir="." includes="${dir.data}/*" />
 <exclude name="${dir.dist}/**"/>

 <manifest>
 <attribute name="Main-Class" value="${main-class}" />
 <attribute name="Class-Path" value="${lib.list}" />
 </manifest>
 </jar>

 <chmod file="${jarpath}" perm="+x" />
</target>

The green characters surrounded by ${ … }represent variables specified at the beginning of

the script file. This function will take all of the compiled .class files within dir.build, along with

the supporting libraries in dir.lib-common and package them in a jar at jarpath. It includes all of

the necessary information to run the JAR on another machine, including the class manifest, and the

location of the main method. This file is then marked as executable and the function returns.

This target and many more were run hundreds of times during the development of WAVE, and

are detailed in Appendix P: Ant Build File.

6.3 Closing the Feedback Loop
During the software team’s design process, one critical constraint was discovered, which would

considerably affect the performance of the robot. The sensors providing feedback to the PID loops must

be present on the same Abstract Hardware Device as the actuators being controlled.

When running PID loops on the embedded controllers, frequent sensor input is required as

feedback to the controller, modifying its output. Three possible data paths were considered, USB, point-

to-point device link, or onboard. If the existing USB connection were used to move sensor data from one

Abstract Hardware Device to another, there would be considerable delay. Round-trip time for any USB

121

device can easily be over 10ms, introducing unwanted latency into the PID loop. To counteract this

latency, inter-device communication was considered. However, this would require significant

modification to the existing Bowler Communications Protocol and supporting embedded code. This

would also only reduce the latency, and not eliminate it. The third option, having the sensors and

actuators on the same device, would nearly eliminate all delays, and allow the PID loops to run faster

and more reliably. The AHDs would not require significant additional code, and only moderate hardware

modifications. In order to mitigate the PID loop latency, the team elected to connect relevant sensors to

the AHDs running the corresponding PID loops, the third option outlined above.

6.4 Mission Control
Mission control is one of the most important parts of WAVE’s software architecture. Without a strong

mission-control framework, WAVE would be unable to perform a complex series of tasks autonomously.

Missions are controlled by the task manager and modeled using a mission model. A mission is given to

WAVE via a user-constructed XML file; each mission is broken up into a series of task objects of various

types representing the different actions WAVE can perform. Figure 64 shows a very simple mission file

that blinks an LED.

Figure 64: Sample Mission File

122

Line 1 is the XML declaration that gives the XML version and encoding. Line 2 is the root mission

element that contains an attribute for the name of the mission. What follows are three task elements,

two of type “Blink” starting at lines 3 and 14, and one of type “Wait” starting at line 11. The blink tasks

have properties for the device to send commands to, the duration for the LED to remain on, along with

the gap between blinks and how many times to blink (lines 4 – 9). The wait task simply includes the

duration to wait for. So this mission first blinks the LED 3 times (for the LED is on for 1000 milliseconds

each blink with 1000 milliseconds between blinks). It then waits for 5000 milliseconds and then runs an

identical blink task to the previous one blinking the LED an additional three times. Additional sample

Mission Files are included in Appendix O: Example Mission Files.

6.4.1 Mission Model and Task Manager

The Mission Model is part of the global robot model which will be discussed in detail in section 6.5, and

represents the mission that WAVE is executing. The mission model takes a given XML file and parses it to

determine what tasks it has to perform and the parameters of those tasks. The task manager then takes

this mission model and takes the task list from it to begin execution of the mission.

The manager iterates through the list of tasks; for each task it first checks if the task is asynchronous and

should be run in the background as detailed in 6.4.2. An example of this would be safety tasks such as

monitoring temperature levels of the electronics. Asynchronous tasks, such as polling a sensor, or

sending data periodically, are handled in parallel. These asynchronous tasks run for the duration of the

robot’s operation or until a certain condition is met. When the TaskManager encounters an

AsynchronousTask as it runs through the list, the AsynchronousTask is removed from the

main mission stack and started in a separate thread. Synchronous tasks, however, cannot be executed in

parallel. Synchronous tasks include navigating to a waypoint, rotating, or anything which must be

executed in a particular order. These tasks “block” the task manager, which will not progress on to the

123

next task until they return. The main runMisssion() function of the TaskManger is included

below.

public void runMission(){

 timer = new Timer((int) updateFrequency, this);
 timer.start();

 List<AbstractTask> taskList = mission.getObject().getTaskList();

 for(AbstractTask task : taskList){
 task.addChangeListener(this);
 }

 Log.V("TaskManager", "Starting a list of " + taskList.size() + " tasks.");

 for(AbstractTask task : taskList){
 if (task.isAsync()){
 AsynchronousTask asyncTask = ((AsynchronousTask)task);
 Log.I("TaskManager",
 "Starting Asynchronous task " + asyncTask.getName());
 mission.getObject().getAsynchronousTasks().add(asyncTask);
 asyncTask.start();
 }else{
 Log.I("TaskManager",
 "Starting Synchronous task " + task.getName());
 task.run();
 }
 }
}

@Override
public void stateChanged(ChangeEvent e) {
 hasChanged = true;
}

@Override
public void actionPerformed(ActionEvent e) {
 if (hasChanged) {
 ObjectServer.send(
 RobotGlobalModels.getMissionModel().getObjectWithLock());
 RobotGlobalModels.getMissionModel().unlock();
 hasChanged = false;
 lastSentTime = Calendar.getInstance().getTimeInMillis();
 }
}

This method begins with initialization of a Timer object. As arguments, the Timer constructor

takes a reference to an ActionListener object, and a period in milliseconds at which to call that

124

object’s actionPerformed() method. TaskManager uses this callback to periodically update the

connected GUIs of any changes to its MissionModel. The updating process and the communication

requirements between robot and GUI are covered in further detail in section 6.9.1.

6.4.2 Tasks

Mission files must be structured in a standardized way in order to be correctly parsed by the custom

XML parser in the Java software. The root element is called “Mission” with an attribute for a mission

name which will display in the GUI and help differentiate between various missions. What follows are a

listing of child elements which are each called a “Task.” These require an attribute “type” which

indicates what type of task element is, and this attribute is used by the parser to correctly take the

information stored in each element and create the respective Java object for that task type. The sub-

elements within each task element represent the various properties of the task objects, and vary based

on the task. The XML parser will read each of these elements to create the fields given to the

constructor for the given task, and if the tag is not found a null value will be put in that field of the task

so it is advisable to always make sure to properly create all elements so incomplete tasks are not

generated, potentially causing issues at runtime. What follows are several example mission files and

descriptions of what the missions in them would do.

Tasks come in several types to handle different actions that WAVE can perform. All task classes

extend the AbstractTask abstract class, which contains basic functionality and properties required

for all tasks. This includes a run() method, setters and getters for task progress and status, as well as a

name for the task. Implemented tasks fall into two categories, synchronous and asynchronous tasks.

These types of tasks are differentiated by their effect on the robot. Synchronous tasks are the type

which must be completed before proceeding on to the next task. These tasks include moving to a

location before manipulating an object at that location. Asynchronous tasks are tasks that can be

performed concurrently to the synchronous tasks, such as polling sensors or restarting a watchdog

125

timer. Classes that extend AsynchronousTask are run asynchronously, whereas classes that do not

are performed in synchronous order. The task manager iterates through the interpreted list of tasks,

invoking the run() method on each. The run() method within AsynchronousTask overrides the

run() method it inherits from the Runnable interface. This causes this method call to return almost

immediately, spawning a new thread to handle this task.

Asynchronous tasks that have been implemented are tasks for sensor polling and blinking LEDs.

The LED blinking task shown earlier was part of the initial testing of the software using DyIOs, and could

also be used for debugging. The DyIO-based testing will be further detailed in section 8.3.4. Once basic

Asynchronous functionality was implemented, more complicated sensor polling was implemented, in

particular an AHRSPollingTask for polling WAVE’s IMU. This task simply polls the IMU at a specified

period and then sends updated values to the GUI to update the Attitude Indicator which is detailed in

section 6.9.3.3.

Synchronous tasks that have been implemented include waiting and locomotion tasks, tasks for

driving a testing basebot, and other debugging tasks. LocomotionTask sets up the framework of

how to communicate with WAVE’s motors in order to travel in the pool. As WAVE did not reach full

system integration by the end of this project this task could not be fully implemented. There are two

different wait tasks implemented, a generic WaitTask, and a WaitForGUITask. WaitTask simply

waits for a given time in milliseconds, while WaitForGUITask waits until a GUI connects so that if

debugging has to happen WAVE does not start running before a user can view all debugging information

in the GUI. Without a fully assembled robot a smaller basebot was acquired in order to test the

functionality of the software without being able to test on WAVE itself. Modified locomotion tasks were

created to send commands to this basebot to drive its motors. Additional details on the basebot testing

can be found in section 8.3. Debugging tasks were written to send echo messages to the GUI and to

126

blink LEDs in order to better test communications between the fit-PC, the GUI, and the embedded

systems.

6.5 Robot Models
Measurements of its own state and that of its environment are central to the operation of WAVE. There

are a number of detailed Model classes, which describe the various facets of the robot. These models

contain a number of sub-models, allowing the user to easily encapsulate a particular system into a set of

models. For example, the RobotModel contains two TransformMatrix models, discussed in the

following Utility Functions section, representing the robot’s current position, and the robot’s desired

position. These models are used to drive the robot’s motion planning, and are periodically sent to the

GUI for display. The MissionModel discussed in section 6.4.1 is another such model, which is

included in the main RobotModel.

6.6 Libraries and Utility Functions
There are numerous classes created to serve a single particular purpose, which should be accessible

from anywhere in the code-base. These types of files are frequently referred to as “utility” functions and

classes. Several core utility classes have been outlined below.

6.6.1 Transform Matrix

As learned in RBE 3001, Transform Matrices provide a simple and elegant way to reference coordinates

in 3D space, easily performing coordinate frame transformations without the need to implement these

complex mathematical operations every time. The TransformMatrix class provides a simple

implementation of the classic transformation matrix. These objects are handy for encoding the roll,

pitch, and yaw angles, and allowing them to be chained together, or easily compared to one another.

The matrix equations used to populate the TransformMatrix object are shown below, followed by

the corresponding code snippet.

127

[

 () () () () () () () () () () () ()
 () () () () () () () () () () () ()
 () () () ()

]

private void buildMatrix(double roll, double pitch, double yaw,
double x, double y, double z) {

 // Roll = Gamma
 // Pitch = Beta
 // Yaw = Alpha
 double ca = Math.cos(yaw);
 double cb = Math.cos(pitch);
 double cg = Math.cos(roll);
 double sa = Math.sin(yaw);
 double sb = Math.sin(pitch);
 double sg = Math.sin(roll);

this.set(new SimpleMatrix(new double[][]
{{ca*cb, ((ca*sb*sg) - (sa*cg)), ((ca*sb*cg) - (sa*sg)), x},
{sa*cb, ((sa*sb*sg) + (ca*cg)), ((sa*sb*cg) - (ca*sg)), y},
{-1*sb, cb*sg, cb*cg, z},
{0, 0, 0, 1}}));

}

6.6.2 Logs

Monitoring the dozens of concurrent events occurring on WAVE can be a complex task. Printing directly

to the console results in messages mixed together and inconsistently formatted, when printing is done

in multiple threads. To standardize these messages, and organize them chronologically, WAVE

implemented a logging system, with parameterized entries. Each log entry contained a number of fields,

outlined here:

128

 Time – An object of type java.util.Date that stores the date that the entry was created.

This field is automatically populated by the constructor, and accessible through a getter method.

 LogLevel – A custom enumerator object which stores one of the Log’s 5 logging levels. These

levels are prioritized in ascending order: Verbose, Debug, Info, Warning, and Error. This allows

these messages to be filtered by the Poolside Interface but still recorded by WAVE.

 Topic – A string representing the topic which this entry pertains to. These topics are passed to

the constructor, allowing the user to “group” entries pertaining to a particular topic.

 Thread ID – A string field containing the name of the thread which generated the message. In a

multithreaded environment, these strings will help to identify the exact source of the message.

 Message – The textual message wished to be logged by the logging system.

The logging base system contains a simple queue for new messages. Upon startup, the Log will

spawn a new thread, which simply waits for new entries to be added to the queue. The logging thread

code is actually a single line, shown here:

 while(true) Log.notifyListeners(Log.pendingEntries.take());

The log sends these entries to all registered listeners, each implementing the LogListener

interface. These listeners register with the log, and are notified of each new entry the log receives. This

Observer Pattern allows the log to scale easily to several observers, while the separate thread and

message queue allow the Log publishing functions to return extremely quickly. Some key

LogListeners included in the Log package are the LogArchive, ConsoleLog, and FileLog.

A single LogArchive object is registered with the Log, when the robot starts up. This archive

stores a copy of each entry generated, for polling by GUIs. This allows the individual entries to be

broadcast at generation, as opposed to sending the ever growing log archive. When objects like the GUIs

require access to the previous log entries, they simply send a Command object (outlined in section 6.9.2)

requesting the Log Archive. The DefaultCommandHandler responds by sending the

LogArchive object stored in the Log.

129

The ConsoleLog simply echoes every log entry to the standard Java output stream, which

may be mixed with other standard console output. The FileLog functions similarly, printing each

LogEntry to a new line in a plaintext file, specified in the FileLog’s constructor.

6.7 Communications
Communications are an important aspect of WAVE’s operations. Different robot components have to

communicate with and exchange data between each other. Not only that, but the poolside interface has

to be able to “talk” with the Fit-PC and all AHDs. This section will detail the various methods of

communication between components.

6.7.1 Serial Communications

Serial communications are central to the AUV’s operation. Reliable communication between the Fit-PC

and any number of serial devices is critical to the robot’s modularity and expandability. Included in the

NRSDK is a library called NRSerial. This library allows for simple, cross-platform communication between

any attached serial devices. The baud rate and target device are selected in the serial connection

constructor, and is used in communicating with the AHDs, the DyIO, and the AHRS for testing.

6.7.2 AHRS Serial Communications

The Microstrain 3DM-GX3-25 9-axis IMU (3 gyros, 3 accelerometers, 3 magnetometers) provides two

modes of serial communication. The first is their Microstrain Inertial Product (MIP) Data

Communications Protocol. This protocol has two options for data transmission, the first and more

complex of the two uses multi-byte command and response packets, providing greater flexibility, but a

more complex implementation on the receiving side. The team opted to use the Single Byte

Communication Protocol, where a single byte is sent to the AHRS, initiating a multi-byte response. A few

key methods from the USB AHRS testing class are shown below.

130

private synchronized static ByteBuffer getBytes(int bytes)
throws IOException {

 buffer = ByteBuffer.allocate(bytes);
 for (int i = 0; i < bytes; i++) {
 buffer.put((byte) dataInStream.read());
 }
 buffer.position(0);
 return buffer;

}

The getBytes() method returns a number of bytes from the serial data input stream.

“dataInStream” is a static variable, initialized by the AHRSManager.connect(String port)

method. This function blocks until it has received the number of bytes specified by the “bytes”

parameter. These bytes are assembled into an object of type ByteBuffer and returned.

private static float getFloatFromStream() throws IOException {
 return getBytes(4).getFloat();

}

This getFloatFromStream() function simply wraps a call to the above getBytes() function.

This function reads in the next four bytes from the input stream, and parses them as a 32 bit IEEE-754

floating point integer. The endianness of the AHRS data, specified in its specification sheet, matches the

big endianness of Java, allowing these values to be assembled easily.

public static TransformMatrix getAttitudeMatrix() throws IOException {
 sendCommand(getAttitudeCommandByte);

 TransformMatrix result = new TransformMatrix();
 result.setRoll((double) getFloatFromStream());
 result.setPitch((double) getFloatFromStream());
 result.setYaw((double) getFloatFromStream());
 getBytes(6);
 buffer.clear();
 return result;

}

This static method, utilized by several external classes, sends a command to the AHRS, and

parses all of its returned data. It adds it to a new TransformMatrix object, and returns it. This

simple method quickly and accurately returns the full orientation matrix, relative to the fixed earth

131

coordinate frame, oriented northward. Position reckoning uses this method very frequently, when run

over USB. Rather than USB communications, the AHRS was designed to be polled by the AHD. This

would allow for much faster interrupt-driven sensor polling, which would result in much more accurate

position reckoning.

6.7.3 Remote Procedure Calls

RPCs, or Remote Procedure Calls, lie at the core of the Bowler Communication Protocol. In the NRSDK,

these calls take the form of serial packets, known as Bowler Datagrams. Contained within are several

header fields, which define several parameters of the RPC transaction to be made. Some key header

elements include the source and destination MAC addresses used on the USB network, and the RPC

code field, which specifies the procedure that this packet represents. These RPC codes are four bytes

long, and typically correspond to an abbreviated word, represented in ASCII. For example, the WAVE’s

battery health status RPC uses the code “batt”. The payload of the Bowler Datagram is dependent on

the RPC specified, and can vary between 0 and 251 bytes.

The WAVE team outlined several custom RPC calls, and detailed their contents and usage. An

example packet layout is shown here, and the full details for all RPC calls can be found in Appendix N:

RPCs.

132

Figure 65: Example RPC Specification

6.7.4 Device Factory and Configuration

In order for the system to know the serial number and path of each AHD, a Device Factory function was

utilized. This function utilizes a simple text file in order to configure the various computing-related

devices that have been incorporated into the submarine. This file contains the unique identifier tag of

each device, followed by the Windows and Linux hardware path of the device. Depending on the

operating system, the appropriate path is assigned to each device. The reason both paths are present in

the file is two-fold: first, because the serial number of each device is contained within the Linux path,

and second, testing and deployment used different operating systems – tests were performed using

Windows and those tests needed the path in Windows, while the deployed submarine runs on Linux.

133

This file will be used by the Device Factory. It will store all the information about the devices in

two tables. One table will map devices to their serial numbers, and the other will map devices to their

hardware path. These tables can be accessed through the Factory in order to retrieve serial numbers

and/or hardware paths of specific devices.

6.8 Human-Robot Interaction
During WAVE’s underwater operations, a method for real-time system monitoring and debugging was

required. For this purpose, a poolside graphical user interface was developed. The goal of this GUI is to

provide a graphical depiction of the status of the robot, and provide feedback that assists with

debugging. This interface must display mission-critical system information, such as battery life and

memory usage, as well as output from the sensors, such as temperature and humidity inside the robot,

relative position, path, heading and velocity. Additionally, the interface must allow remote activation of

safety features, such as emergency stop, reboot or surface.

As in any user interface, WAVE’s GUI must be easily understood, and able to easily and reliably

convey information to the observer. The two main options for the robot’s interface were either to

provide a strictly textual interface accessed by SSH or to create a graphical user environment. A plain

console has many advantages, such as extremely low overhead and a simple implementation. However,

a graphical user interface allows us to efficiently represent complex data. However, the rendering of a

graphical interface can impart more overhead on the main system, and requires significantly more time

to develop. To counteract these additional computational requirements, the team designed a separate

GUI program, run on the user’s machine, which connects to the submarine over the local network. The

submarine will then require only periodic updates to be sent to all connected machines, and not require

a graphical environment to be run on the fit-PC.

134

Additionally, WAVE needed a way to connect to the GUI when submerged during testing. This

was necessary in order to get real-time data, as well as a graphical indication of how the robot was

performing in the environment it was built for. For this purpose, it was deemed appropriate to utilize a

communications tether. WAVE and the poolside interface would connect via a waterproofed Ethernet

cable. This connection would allow real-time upload/modification of mission files, as well as code

changes on the fit-PC. This tether would need to be of sufficient length, so even at the bottom of the

pool, the robot could stay connected.

6.9 Poolside Interface
In this section, a more detailed explanation of the GUI’s features will be provided. These features

include: details about the methods of communication between the robot and the interface, command

packets utilized by the robot, GUI components and their functionality, along with screenshots of said

components.

Figure 66: GUI Screenshot

135

6.9.1 Communications with WAVE

Before the Poolside Interface (commonly referred to as the GUI and shown in Figure 66) can display any

data, a bidirectional connection must be established. As with all other aspects of WAVE, both the GUI

and its connection to the robot must be modular, keeping in line with the original design goals.

6.9.1.1 Model/View/Controller Pattern

The Model View Controller (MVC) design pattern allows robust construction of user applications,

separating data objects from its visual representations and the methods that manipulate the model. This

pattern scales well to include dozens, if not hundreds of models, views, and controllers.

On WAVE, however, the views exist only on the GUI interfaces, and the controllers are really the

environment in which the robot operates. WAVE’s various sensors detect changes, both within and

exterior to the robot, and update the various models accordingly. These updated models are then sent

to all of the connected GUIs, where they will be informed of this change, so that the views may update.

In order to bridge this gap, the WAVE team developed a modified MVC pattern, to include a

network socket through which models may be transmitted to the GUI. A block diagram of the

implemented MVC pattern is shown in Figure 67.

136

Figure 67: Model View Controller Diagram

The endpoints are responsible for serializing the given models, transmitting them across the

network, and de-serializing the objects at the receiving end. This process, and all the classes involved are

detailed in the following section.

6.9.1.2 The ObjectServer, ObjectPipeEndpoints, and Serialization

The process of accepting GUI connections on the WAVE platform begins on the Fit-PC with the

ObjectServer. The ObjectServer combines several static methods and fields, and is initiated

with the start of the robot. Starting the ObjectServer will spawn a new thread, which simply spins in

a loop, accepting clients as they connect to the server’s listening port (default port number is 4000). This

loop, upon detecting a new connection, spawns a new ObjectPipeEndpoint to handle

communications, and passes to its constructor the newly generated socket. This new

ObjectPipeEndpoint is then registered with the ObjectServer, which adds it to the server’s list

of connected GUIs. The new connection is added to the Log, and the cycle repeats. This exact code loop

can be seen here. This loop runs quite quickly, allowing multiple users to connect in quick succession.

137

@Override
public void run(){
 while (running) {
 try {

// Block while waiting for a new connection
 ObjectPipeEndpoint client =

new ObjectPipeEndpoint(server.accept());
// Register this new client with the ObjectServer

 register(client);
// Log this connection

 Log.I(ObjectServer.class.getSimpleName(),
"Accepted new client. Client count: " +
openSockets.size());

// Repeat
 } catch (IOException e1) {
 running = false;
 }
 }
}

This same code has been translated into a network timing diagram, which helps to illustrate the

order of events, and the components which invoke them. As shown on the right of the diagram in Figure

68, the connection is initiated by the GUI, and accepted by the ObjectServer. Upon accepting this

GUI, the ObjectServer passes responsibility to a new ObjectPipeEndpoint, which handles all

further communication.

138

Figure 68: Network timing diagram for GUI connections

As mentioned previously, WAVE is designed to support multiple GUI connections. This is where

the ObjectServer.register() method comes in. Every ObjectPipeEndpoint that is

spawned by the ObjectServer is also added to a list of connected GUIs. Every time a model is

updated on the robot, the program calls the ObjectServer.send(Serializable obj)

method, which flips through the list of connected GUIs, and sends along the new model (or any object,

for that matter.) The code for this send method is included here. This method iterates over the entire

list of open sockets, invoking their send(Serializable) method individually. In the event that the

given endpoint is no longer active, it is removed from the list of open connections.

139

public synchronized static void send(Serializable obj) {
 for (int i = 0; i < openSockets.size(); i++) {
 ObjectPipeEndpoint client = openSockets.get(i);
 if(client.isRunning()){
 client.send(obj);
 } else {
 openSockets.remove(client);
 Log.I("ClientConnection",
 "A client disconnected. Client count: " +
 openSockets.size());
 }
 }
}

The ObjectPipeEndpoint objects encapsulate both the input and output streams for objects,

providing a simple interface for sending and receiving. The constructor takes in a socket as a parameter,

which is assumed to be already connected. The input and output streams of this socket object are

passed as constructor parameters to the ObjectPipeEndpoint’s ObjectInputStream and

ObjectOutputStream fields, respectively. The endpoint simply serializes objects for sending, and

feeds them through the ObjectOutputStream. Upon creation, the ObjectPipeEndpoint also

spawns a thread, used for reading input from the ObjectInputStream. As new objects are received,

they are de-serialized, and distributed to all classes which are currently observing this endpoint for a

particular type of object. This special form of the Observer/Observable pattern was created specially by

the WAVE team, and is referred to as the “Type Observable” pattern.

6.9.1.3 The Type Observable pattern

To facilitate the distribution of new objects from an ObjectPipeEndpoint, the team designed a new class,

TypeObservable. This class, similar to the Observer class, distributes objects to registered objects

via their inherited notify(Object obj) method. Just as TypeObservable extends the standard

Observable object, it is observed by TypeObserver objects, each implementing the

Observer interface.

140

This new Type Observable pattern nearly mirrors the Observer pattern directly, with one key

modification. When a TypeObserver registers with a TypeObservable object, they include an example

object of the type of object they would like to observe for. Rather than storing all registered objects in a

simple Vector, as does the Observable class, the TypeObservable takes the class name of the

example object and uses this as the Key to index into a HashTable. The values of this hash table are

vectors, containing references to all of the objects which have registered for the type represented by

the generated key. The addObserver(TypeObserver o) method is included here, illustrating

how observers are added to the hash table.

/**
 * This method adds a new observer to this TypeObservable object.
 * @param o TypeObserver The object to be notified upon the receipt of a new object
 * @param key String This string will represent the
 */
public synchronized <T> void addObserver(TypeObserver o, String key) {
 if (o == null)
 throw new NullPointerException();
 if(!observers.containsKey(key))
 observers.put(key, new Vector<TypeObserver>());
 if (!observers.get(key).contains(o)) {
 observers.get(key).addElement(o);
 }
}
/**
 * Generates the string representation of the given object
 */
private String genKey(Object arg) {
 return arg.getClass().getName();
}

The second function genKey(Object arg) is a simple wrapper for the class string retrieval

method. The notifyObservers(Object arg) follows, showing just how the TypeObserver

utilizes the string hash map. When a new Object is presented to the TypeObservable, its class’s

string equivalent is generated by the genKey() method. This string is then used as the key, indexing

into the hash map, retrieving the corresponding list. This list contains all of the observing objects for the

type of the given object. This object is then copied to a simple array which is then iterated over,

141

notifying all of the observing classes. If no classes are currently observing for the given type, the array

list will return null, which is converted to an empty vector. This empty vector is then iterated over,

returning immediately, while notifying no objects.

public void notifyObservers(Object arg) {
 /*
 * a temporary array buffer, used as a snapshot of the state of current
 * Observers.
 */
 Object[] arrLocal;

 //Synchronize this section, preventing concurrent modifications when adding a
 new observer
 synchronized (this) {
 if (!changed)
 return;

 Vector<TypeObserver> v = observers.get(genKey(arg));
 if(v != null) {
 arrLocal = v.toArray();
 } else {
 arrLocal = new Object[0];
 }
 clearChanged();
 }

 // Loop through the snapshot array, calling the notify methods of all
 registered objects
 for (int i = arrLocal.length - 1; i >= 0; i--)
 ((TypeObserver) arrLocal[i]).update(this, arg);
}

The TypeObserver pattern enables the ObjectPipeEndpoint to distribute new objects

as they are sent to the various poolside interfaces. While these endpoints are bi-directional, it does not

enable the GUIs to command the robot itself in any way.

6.9.2 Command Objects

Command Objects enable the GUIs to send commands to the robot, which alter its behavior, or indicate

emergency states. The primary use of these objects is to retrieve large pieces of data from the robot. For

example, rather than constantly sending out the entire log each time a new entry is added, WAVE simply

broadcasts the latest LogEntry to all connected GUIs. In order to maintain a list of all of the log

142

entries since startup displayed on the GUI, each GUI will send to the robot a Command object with

“archive” as the command field. This field is parsed by the DefaultCommandHandler aboard WAVE,

which is then responded to directly. Other commands implemented aboard this first iteration of WAVE

include requesting the mission model, and initiating an emergency stop.

6.9.3 GUI Components

The system supports multiple GUI connections to the robot. A number of components have been

developed to assist with robot controls, mission planning and debugging. These components are

included in the poolside interface.

6.9.3.1 Emergency Stop Button

To prevent damage in case of a malfunction, an emergency stop button (shown in Figure 69) halts all

current activities and makes the robot surface. This command has the highest priority and cannot be

canceled and/or interrupted by another command.

Figure 69: Emergency Stop Button

6.9.3.2 Mission Control

Robot missions were made using a mission control tree/stack model shown in Figure 70. It lists all of the

past, current and future tasks to be performed by the robot. This GUI component is populated from the

stream of MissionModel objects sent by WAVE. As the TaskManager steps through these tasks,

their progress is updated accordingly. The list is scrollable if not all tasks fit on screen.

143

Figure 70: Mission tree showing an example mission, with all tasks completed

6.9.3.3 Attitude Indicator

Proper robot function requires various measurements to be taken. An attitude indicator (shown in

Figure 71) shows the orientation of the robot, as well as roll, pitch and yaw. These measurements are

taken from the IMU and converted into coordinates to update the indicator.

Each of the indicator’s components, such as the horizon and horizontal lines, are drawn on a

separate image first, and then combined to form the attitude indicator, as seen below.

Figure 71: The attitude indicator

144

In addition, rather than redrawing the images on every update, they are transformed using an

AffineTransform matrix, which sets the images’ new orientation. First the center of the image is

generated based on the image width and height:

 double locationX = ringImage.getWidth() / 2;
 double locationY = ringImage.getHeight() / 2;

Then, based on the location, the inner circle of the indicator is updated using the AffineTransform

matrix:

 AffineTransform rollTransform = AffineTransform.getRotateInstance(-1*roll,
locationX, locationY);
 AffineTransformOp rollImage = new AffineTransformOp(rollTransform,
AffineTransformOp.TYPE_BICUBIC);
 return rollImage.filter(ringImage, null);

6.9.3.4 Log

Messages, alerts and errors are displayed in a log. The log output displays robot and GUI specific

messages, errors, warnings and exceptions. The log supports different filtering options, based on the

type of message.

Figure 72: The log having several messages generated upon startup

145

6.9.3.5 Timer

To help with mission control, the GUI contains a timer (shown in Figure 73) to keep track of mission

uptime (each newly connected GUI will start from however long the robot has been on). Placeholder

areas for two cameras showing real-time feeds have been provided.

Figure 73: System uptime, along with a placeholder video area

146

7 System Integration

Integration of WAVE started upon the completion of the design and implementation of the mechanical,

electrical, and software subsystems. Due to time constraints, full integration was not achieved. This

section details the integration of various components as well as future steps to complete the process of

integration.

7.1 Electronics Rack

The electronics rack is an integration of the mechanical and electrical subsystems. Designed to allow for

ease of access to multiple components, the rack has room for all of WAVE’s standard electronics. As

noted in the mechanical design and analysis, the dimensions of the rack take the electronics and

pressure vessel into consideration. Additionally, if the electronics were to reach a certain temperature,

WAVE would not be able to function reliably. Overheating would lead to catastrophic results, so the

placement of components was a well thought-out decision for the integration. The placement of the

electronics was also an important factor. Certain components generate more heat than others. Specific

placements on the rack take this fact into account through positioning components in close proximity to

the walls of the electronics housing. Other components, such as the fit-PC and the LiPo batteries, are

fairly large in comparison to the other electronics. The arrangement of each component on the rack is

important for the integration, as can be seen in Figure 74. The electronics rack during system testing can

be viewed in Figure 75.

147

Figure 74: System Electronics Rack

Figure 75: Electronics rack during system testing

7.2 Electronics Housing

As with the electronics rack, the electronics housing is an assembly of mechanical and electrical

subsystems. Specifically, the integration comprises of the electronics rack with all boards attached,

148

water-proof connectors, and the rectangular housing. The water-proof connectors are located on the

end-caps and are for electrical connections between the internal electronics and external modules. This

iteration of WAVE planned to have external connections with the motors, ballast system, and

communications tether; therefore, the ability to both communicate and distribute power between the

interior electronics and exterior modules or shore-based objects is necessary, so that WAVE can be

extensible by future teams.

The most important factor of this integration is the waterproofing of the housing. WAVE is

designed for underwater use, and the electronics housing must protect the electronics from the

platform’s environment. Waterproofing is essential for the protection of WAVE’s internal components

because moisture could lead to dangerous situations. Moisture would be detrimental to all of WAVE’s

components, but the batteries are the biggest concern. WAVE requires LiPo batteries to achieve the

desired level performance levels and they can become volatile if they get wet. The electronics housing

allows for safe power distribution throughout the system. Due to the end-caps being removable and

waterproof, the electronics racks can be removed easily without any concern about a trade-off between

accessibility and safety. For additional details about the integration of this system see 10.4.3.

7.3 Communications

Communications is a combination of the electrical infrastructure with the software architecture. As

outlined in previous sections, the bridge between these two subsystems is the Bowler Communications

Protocol. The embedded software defines the methods for functionality in C. These methods are then

sent to the high-level architecture in the form of RPCs. The high-level computing architecture then uses

the RPCs to enable the desired functionality. Communication is established over USB between the AHDs

and the fit-PC. Ethernet communication capability exists but was not implemented in this initial version

of WAVE. The integration between embedded and high-level software was critical. Without a link

149

between them, the functions to drive WAVE’s capabilities could not be interpreted. This communication

also includes the link between sensor data and the fit-PC. Being able to receive this information allows

the high-level software to interpret WAVE’s surroundings and status and to plan and execute missions

accordingly. These accomplishments are detailed in section 10.4.2.

7.4 Additional Integration

Time constraints restricted the full integration of WAVE, but additional steps were planned. These steps

are outlined below but were not implemented.

7.4.1 Thrusters

The most important of these planned steps was the inclusion of the bilge pumps and thruster the

Seabotix thrusters into the system. This step involves all three subsystems. Mechanically, each thruster

would be mounted to the outside of the chassis. Electrically, the thruster leads would be connected to

the motor board through the waterproof connectors. In regards to the software, the fit-PC would

communicate with the AHDs which in turn connects to the motor board to drive the motors. The

integration of the thrusters with the mechanical, electrical, and software subsystems allows WAVE to

traverse underwater environments. This integration is an important step for developing WAVE as a

research platform and competing in AUVSI.

7.4.2 Active Ballast

Like the thruster, the ballast system involved all three systems of WAVE. The tanks and their pump

assemblies would be attached to the frame mirrored to each other to keep the system’s center of

gravity and center of buoyancy balanced as close to the true center of WAVE as possible. Further, the

front ballast tank would be attached with a latch system that would allow it to easily swing out of the

way of the electronics housing door. Its interaction with the power system would be a connection from

the electronics housing to each motor and to the pressure sensors within each tank. Finally, the fit-PC

150

would use the electronics board to control the motors by receiving data from the pressure sensors

within each tank, allowing it to trim the tanks as needed while underway.

7.4.3 Communications Tethering

In order for WAVE to communicate with the outside world while operating in a pool or other

environment, it needs a way to send data out of the water. Due to the fact that most wireless data

transmission methods are not very effective at transmitting through water, a tether is the most practical

way to have this communication. A communications tether does not have to be complicated, all it needs

is an Ethernet connection between WAVE and some device outside of the water. That device could be a

router that then sends data to various PCs or it could be the end-user’s computer directly. The two main

design considerations would be that the tether itself is water-proof, as well as making sure that the

tether does not get in the way of WAVE’s operations. A reasonable length for the tether would be at

least 9.3m (30.48ft), which is a lot of cable that could potentially get tangled or weigh WAVE down. The

easiest solution would to have some sort of buoyant material that prevents the tether from sinking to

the bottom of the pool and could also keep the slack of the cable away from WAVE. This tether would

allow for future users to fully take advantage of the debugging capabilities of WAVE’s GUI by being able

to get real-time information about WAVE’s status while actively operating in a pool.

151

8 Testing and Validation

Before WAVE’s myriad of systems could be fully integrated and tested as a single entity, they needed to

be tested individually to ensure that they were all functional and would not have a failure that could

potentially compromise the entire robot. The following sections detail the testing of the various

subsystems of WAVE and their results.

8.1 Mechanical Testing

The mechanical subsystems had to be tested and validated before they could be integrated into the

whole system to ensure that they function as expected. Specifically, the subsystems are the electronics-

housing pressure vessel, the active-ballast system, the structural chassis, and the overall locomotion of

the craft. The testing of these subsystems is described below.

8.1.1 Electronics Housing

The electronics housing is the part of the submersible that acts a barrier between the water-sensitive

electronics and the aqueous environment surrounding the sub. It is therefore an important subsystem

which requires testing and validation because failure of this subsystem jeopardizes all of the electronics

in the sub. The two most important failure modes of the electronics housing pressure vessel involve

leaking and overheating. Other potential failure modes include, but not limited to, shorting, overloading

electronic components, software crashes, and collisions with environment. The tests for the

waterproofing and thermal dissipation of the housing are described below.

8.1.1.1 Waterproofing

It is paramount that the electronics stay dry, so testing of the fully-assembled pressure vessel is

necessary. Assembled relevant components include the tubing, the end-caps at each end of the tubing,

and the electrical connectors through the end-caps.

152

The testing of the pressure vessel was accomplished progressively: first empty with no

connector holes, then empty with the waterproof connectors in place, and finally containing its intended

hardware. One submersion test was not deemed enough to validate the waterproofing of the system.

With the electronics inside the housing, the actual weight and buoyancy was taken into account. The

success of these tests validated the waterproofing.

The first stage of testing was accomplished over a period of several days. The electronics

housing consisting of the tube and the solid/undrilled end-caps was sealed using ratcheted straps to

keep the caps in place. It was then immersed in the WPI pool at a depth of 4.3 meters for 20 minutes,

agitating it every few minutes. Initially, the housing leaked during this test. Upon evaluation, the cause

of the seal failure was determined to be the rough finish on the hand-machined ends of the tube. After

having the ends of the tube smoothed using a CNC machine, the housing did not leak during a

subsequent test. No bubbles were observed exiting the vessel and the interior was dry.

The second stage of testing occurred after the holes were machined for the connectors, and the

waterproof connectors were added. The testing process was the same as the first stage of testing. The

housing did not leak during the course of this test. This was indicated by putting a grey t-shirt inside the

housing, near each end-cap, when the vessel was removed from the water, the shirts were still clearly

dry.

8.1.1.2 Thermal Considerations

Initial, brief thermal tests were conducted after the thermal simulations produced alarming steady-state

temperatures. These tests are described previously, in Section 4.3.3.2.

Due to time considerations, integrated thermal testing was not able to be accomplished. Given

more time, the pressure vessel’s heat transfer capabilities would be experimentally tested using the

following procedure to ensure that the vessel was able to dissipate more heat than the electronics were

153

able to generate. The electronics are put into the pressure vessel along with temperature sensors. The

vessel is then sealed and submerged in water. The electronics are powered and run for 15 minutes, the

length of a standard mission. The testing is intended to simulate a typical mission, including placing load

on the motors and actively reading sensor data. During this test, the temperature is monitored and

recorded. If the temperature rises above the maximum temperature threshold of the contained

electronics, the power to the electronics is cut, and the housing is removed from the water and opened

to allow for quick ventilation.

8.1.2 Ballast

The ballast tank was subjected to several tests during the building process. Once the tank was

assembled and the access hole was drilled, it was filled with water to check for leaks. All seams were

then sealed with Epoxy resin and the tank was filled again, and the difference in weight between a full

tank and an empty tank was measured. Next, the injection nozzle was fitted with Epoxy resin and tested

for leaks at the seam by filling the tank and stopping the nozzle with a piece of crimped tubing. The tank

was inverted so the water would apply the most pressure to the area around the nozzle, and no leaks

were observed. A nozzle was attached to the pump and the pump was connected to a 12V motor. The

12V motor was run at a 63% duty cycle at 18.5 volts for several minutes to check both for overheating

and for power requirements in running the motor. Since the motor controller is connected to the 18.5V

rail, all motors have to be run at a 63% duty cycle to prevent damage. The pump assembly was then

attached to the tank via tubing and placed in a large tub of water. The motor was run at 18.5V and the

tank was filled until the pump could not force any additional water into the tank, which was 617mL full

out of a total volume of 2059mL. During this test, the motor never drew more than 2.5A.

154

8.1.3 Chassis

Due to time constraints, stress testing of the chassis could not be accomplished. The greatest stress

expected of the chassis is to support its own weight plus that of all of WAVE's onboard equipment,

totaling up to approximately 21kg worth of mass. This happens while the craft is out of the water,

particularly during the hoisting of the craft in and out of the pool. The water itself will distribute stresses

on the frame evenly so that the stress while submerged is assumed to have a negligible effect.

Given more time, testing would have followed this procedure. To ensure that the chassis can in

fact support the expected forces the chassis is loaded up to the appropriate amount of afore-mentioned

weight. Also the chassis is suspended, using cables from all four corners to a single attachment point.

This test will simulate putting the vessel in the water using a crane.

8.1.4 Locomotion

Due to time constraints, this testing was not able to be completed. Given more time, the testing would

follow the following procedure. To ensure that WAVE can travel at the design specification's minimum

0.5 m/s velocity the chassis (complete with electronics housing), thrusters, and ballast systems would be

put into the water, in accordance with Appendix D: Waterside Deployment and Recovery SOP to have

its locomotion measured with a stopwatch over a known distance. In this test WAVE is driven at full

speed past one swimmer on one side of the pool and kept on a straight course until it passed another

swimmer at a known distance away from the first swimmer. This is made easier by using the patterned

tiles lining the WPI pool. When the swimmers see the front of the UUV pass by them on their

perpendicular, they immediately signal the person on shore with the stopwatch. This is also made easier

by lining up perpendicular to the patterned pool tiles. The first and second swimmer's signals indicate

that the chronometer be started and stopped, respectively, recording the time. The swimmers leave

distance between themselves and the sub in order for the sub to accelerate and decelerate in order to

155

gain a meaningful measure of cruising speed. The above exercise is performed 10 times and the clocked

times averaged in order to have a good estimate of the time it takes WAVE to cover the known distance.

By dividing the averaged time by the known distance the cruising speed of WAVE can be determined,

which will either meet or not meet the 0.5 m/s forward velocity requirement.

The above exercise can be further performed on the lateral and vertical axis in order to have

known travel speeds along those axes. To measure travel time along the vertical axis, start WAVE at a

known depth, like the bottom of the pool, and time its ascent to the surface.

8.2 Electrical Testing

The electrical subsystems underwent testing before the planned integration with WAVE. The platform

required the verification of the AHDs, power system, sensor suite, and embedded software before full

system assimilation could be possible.

8.2.1 Testing the AHD

Testing of the Abstract Hardware Device was a long and tedious process involving several stages of

surface mount soldering with different tools leading up to the last step of testing programming over

JTAG. Testing the AHD is broken down into multiple sections: populate onboard power, populate

microprocessor and associated supporting circuitry, JTAG test, populate and verify USB, populate and

verify Ethernet, and lastly add all female pin headers. The reason for breaking the AHD testing into

discrete tests goes along with the concept of getting a board up in running in steps. Printed circuit

boards like the AHD are essentially massive circuits with many components wired in parallel. Each of the

sub circuits within this massive parallel circuit either are dependent on one another or can affect one

another either negatively or positively. In the interest of making hardware debugging easier, the

assembly of the board is broken into steps, starting with the power supply and going up from there. In

the case of the AHD, the types of components used were nearly all surface mount components of

156

varying package type. To solder these components to the board a hot air reflow station was required. A

hot air reflow station consists of a hot air gun, foot controlled solder paste dispenser, and usually a

stereo microscope. Using the tools part of the reflow station the AHDs were fully assembled.

Assembling and testing the power supply is the first step because every other section of the

board needs power to function and in the case of the AHD cleanly filtered and highly stable power is

required to ensure stable operation of the ARM microprocessor aboard the AHD. The power section of

the AHD is almost all surface mount with the exception of two input filter caps and the DC barrel jack.

When assembling the power section the first step is to solder on the input Schottky diode, and the two

regulators for 3.3v and 5v along with their bypass and damping capacitors. After the regulators are

attached the section must be tested by connecting the power input to a bench-top power supply and

monitoring the output of each regulator with a volt meter. If the voltages are around where they are

supposed to be then assembly can continue. If not then the power section must be checked for either

shorts or improperly soldered components. In the case of AHD 1.0 the dot indicator on the Schottky

diode did not the PCB so it had to be flipped otherwise there was a short circuit. When assembling the

power section of AHD 2.0 there were no such problems as the Schottky diode used on 2.0 was a

different type.

Moving on with the AHD assembly the next step was to attach the microprocessor and

components that it needs to function. The microprocessor being used is the NXP LPC4337JBD144 which

is a thin quad flat package (TQFP) with 144 pins. This sort of package requires different soldering tools

not found in the reflow station setup. For soldering the 144 pin TQFP a UV lamp reflow station was

needed. This sort of tool uses a UV lamp to melt the solder attaching the component to the PCB. A UV

lamp was required because there are 144 pins to attach simultaneously and it’s important for them to

all be solidly attached. A UV lamp reflow station was available for use in the Sensitive Robotics Lab in

157

Fuller Laboratories. Using the UV lamp the microprocessor was soldered onto the AHD. Next the

supporting circuitry of the microprocessor was populated, this includes crystal oscillators and their load

capacitors, pull-up resistors, reset circuitry, and bypass capacitors.

After the microprocessor and supporting circuitry is added to the PCB with the already

functional power supply section the next step is to populate the JTAG interface section then test if the

board can connect to the JTAG programmer. The JTAG programming interface consists of a 1.27mm

pitch 10 pin header (2X5) and pull-up resistors on the two inner most pins. In the case of AHD 1.0 the

JTAG connector was a surface mount model so care had to be taken to solder it without melting the

plastic parts but for AHD 2.0 the JTAG connector was through hole and only the resistors were surface

mount.

At this stage everything required to test the core functionality the AHD has been soldered on to

the PCB. Before moving further with assembly it is important to test LPC4337JDB144’s ability to

interface with the JTAG programmer. If it cannot interface at this stage there is either a problem with

soldering, an improper JTAG circuit or damaged components. When AHD 1.0 met this stage it was

unable to program over the JTAG interface. When AHD 1.0 met this stage it was unable to program over

the JTAG interface. Upon closer examination of AHD 1.0, looking through the data sheet, and reviewing

the reference design (LPC4330-Xplorer Schematic) it was found that AHD 1.0 was lacking bypass

capacitors on all voltage input pins and the JTAG interface was lacking pull-up resistors. In an attempt to

get AHD 1.0 to program the PCB was modified with external pull-up resistors on the JTAG interface, and

the power section was removed and replace with wires that connected the 3.3v rail to a bench-top

power supply.

After many attempts of trying to get AHD 1.0 to program it just wouldn’t work. All signals were

examined with an oscilloscope, all JTAG signals were making it to the correct pins but still the LPC4337

158

would not connect to the JTAG. Next the clock signals were checked but with ARM Cortex M4’s the chip

does not start up the crystal oscillators and internal clock circuitry until a JTAG link is established. One of

the first things that happen at the start of a JTAG link is that the processor is configured for how it is to

run. The configuration for the processor is set in a C header file called systconfig.h; in this file the max

clock speed is set and the sources of all clock signals for the core clock and peripherals are defined. Since

the JTAG link was not ever successful with AHD 1.0 there weren’t any clock signals when examining the

crystal circuitry. In the end AHD 1.0 was unable to program over JTAG. In the field of embedded

computing and especially in regards to PCB design this usually indicates that the board will not work

correctly even with external modifications.

Since AHD 1.0 was unable to pass the basic test of JTAG program validation a new design was

required. AHD 2.0 was almost a complete redesign compared to AHD 1.0. The changes in AHD 2.0

included a JTAG section with pull-up resistors on each of the four lines, retraced USB section with equal

length differential pairs for the two data lines, reroute of the entire Ethernet section following the equal

length differential pair design guidelines in a stricter manner, Arduino Leonard breakout header spacing

instead of Duemilanove, additional digital IO breakouts, removed PWM coprocessor (using pins that

support the state configurable timer for PWM instead), and bypass capacitors of 100nF were added to

all voltage inputs on all devices. When the redesign of AHD 2.0 was completed it was sent out and

manufactured by Advanced Circuits. After 3 days of waiting the new boards were ready to undergo

testing and validation.

Assembly of AHD 2.0 followed the same rules as AHD 1.0, starting with the power section, then

moving on to the microprocessor and, lastly, the JTAG section before the crucial JTAG test. After AHD

2.0 was populated to the same degree AHD 1.0 was before the redesign it was time to test JTAG

programming. The first few attempts of JTAG programming AHD 2.0 were unsuccessful. Since AHD 2.0

159

was following the design specifications laid out by ARM and NXP it was puzzling as to why it was not

working. Before moving forward the board was tested for short circuits by examining every single

component underneath a stereo microscope. The LPC4337 was replaced thinking that the first one may

be dead from a short, and the ceramic capacitors on the power section were replaced with tantalum

equivalents to ensure more stable operation of the voltage regulators. After all the modifications the

AHD 2.0 still refused to program over JTAG. The AHD JTAG testing validation setup can be viewed in

Figure 76.

Figure 76: JTAG Testing Setup

In a more extreme and aggressive tactic one of the two spare PCBs of the AHD 2.0 design was

populated from scratch being examined under the microscope closely every step of the way. Even the

fresh AHD 2.0 board still refused to program. Looking in the datasheet and comparing it with what NXP

tech support said about JTAG pull-up resistors, it was found that only the TCK and TDO JTAG wires

needed pull-ups and that pull-ups on the other lines may cause problems. The extra pull-ups were

160

removed. Still the AHD 2.0 would not program. Upon closer examination using a volt meter to manually

check every connection it was found that the reset button was wired incorrectly. Given the way in which

it was laid out on the board it was acting as a short to ground holding the LPC4337 in reset permanently.

The next step was to remove the reset button and attempt to program. After the reset button was

removed the AHD 2.0 was connected to the JTAG and a programming routine was instantiated in

LPCXpresso which ended in success.

Since the new AHD design was able to program it was safe to move forward with assembly and testing.

When the microprocessor is able to be programmed it’s best to test the functionality of lower level

peripherals before testing higher level peripherals such as Ethernet and USB in this case. After achieving

success in JTAG programming, the GPIO driver function library was tested for reading and writing to

digital IO pins with great success. At this stage the project was coming to a close so not every feature

was tested on the AHD. Despite the lack of time to complete thorough testing procedures, the AHD’s

ability to be able to be programmed and debugged over JTAG and run code is a sign that the design is

likely to be stable and functional.

8.2.2 Power System Testing and Evaluation

The Power System testing involved four primary areas of validation. Familiarity needed to be gained and

confirmed with the battery charge and discharge curves. The main power supply board needed the

voltage and current sensing to be evaluated. Lastly, the conversion board needed to have the 12V rail

confirmed to be as expected.

8.2.2.1 Battery Testing

The power system is designed to distribute the power from the battery inputs throughout WAVE. The

batteries provide a nominal voltage of 18.5V, which is the rated voltage. When the battery is fully

charged it has an open circuit voltage of 21V and when fully discharged it has a voltage of 15V. Figure 77

161

and Figure 78 show the discharge curves of the battery when sourcing approximately 10A for 70

minutes. The voltages of the individual cells were recorded from the battery management unit display

and the battery voltage output value was measured by a digital volt meter. From the two charts, it can

be seen that the cells in series do add up to the measured battery voltage as expected with a variance of

±60mV between the measured output and the individual cell sum, which is acceptable. A high power

resister of 2Ω was used to discharge the battery and can be seen in Figure 79.

Figure 77: Discharge of Individual Battery Cells

2.95

3.15

3.35

3.55

3.75

3.95

4.15

1 11 21 31 41 51 61

V
o

lt
ag

e
 o

f
In

d
iv

id
u

al
 C

e
lls

Minutes Discharged

Discharge of Individual Cells

Cell 1

Cell 2

Cell 3

Cell 4

Cell 5

162

Figure 78: Discharge of Battery

Figure 79: High Power 2Ohm Resistor

After the discharge test, the battery was charged again and the curve was mapped using

LogView, which is compatible with the charger. The charger has a safety feature built in that ends the

charging cycle after 5000mAh have been put into the battery. As the capacity of the battery being used

is 10,000mAh, the charging ended in the middle of the charging curve and was then started again. Figure

80 shows the voltage of the individual cells vs. time and Figure 81 shows the total voltage vs. time for

the first half of the charge cycle. These charging curves behave as expected. As can be seen in Figure 80

the batteries were discharged to approximately 16.5V, which is where the charging curve begins.

Provided 5A for one hour, the battery was charged to 19.5V as expected.

15.5

16

16.5

17

17.5

18

18.5

19

19.5

20

20.5

1 11 21 31 41 51 61

V
o

lt
ag

e

Minutes Discharged

Discharge of Total Output

Voltage Output

Sum of Cells

163

Figure 80: First Half Charging of Individual Cells

Figure 81: First Half Total Voltage Output

164

Figure 82 shows the voltage of the individual cells vs. time and Figure 81 shows the total voltage

vs. time for the second half of the charge cycle. As can be seen in Figure 81 the battery was charged to

approximately 19.5V, which is where the charging curve begins. Provided 5A for the remaining charge

cycle, the battery was charged to the full capacity of 21V over 56 minutes as seen in Figure 82 and Figure

83.

Figure 82: Second Half Charging of Individual Cells

165

Figure 83: Second Half Total Voltage Output

8.2.2.2 Current Sensor Testing

Allegro ACS259 Hall IC current sensors were supplied by Allegro Sensors. They were first tested by using

a supplied ACS259 development board connected to a power supply powering a network of 8 Ω, parallel

resistors with switches that either add the resistor to the parallel network or open it from the circuit to

exclude them from the network as can be seen in Figure 84.

166

Figure 84: Network of Parallel Resistors

The higher current sensing Allegro Sensor ICs are generally bidirectional. Though this functionality is not

utilized for WAVE, the sensor’s high current sensing capability with low power loss was optimum for

WAVE’s power system. The sensor is rated to sense ±150A and has a maximum common supplied

voltage of 3.6V, but has an absolute maximum supplied voltage of 8V. The testing was performed by

powering the sensor from a DyIO which provided a 5V power supply, causing the ±150A to be mapped

from 0V to 5V. When no current passes through the sensor, an output of 2.5V is expected. This means

that 2.5V – 0V maps the current value in the negative direction and 2.5V – 5V maps the current value in

the positive direction. A total of 2.5V is available to represent 150A in one direction, yielding a

conversion factor of roughly 16mV/A. In addition to powering the sensor, the DyIO was used to read the

voltage output signals.

Table 15 shows the sensing behavior given a 5V input into the network of parallel resistors and

Table 16 shows the same set up, but with a 19V input. The signal out differs the greatest from the

expected value with a difference of 70mV and is underlined in Table 16. This 70mV divided by the 16mV

conversion factor, concludes that the current sensor has an accuracy of ±4.375A. Note that for both

167

tables the resistance is the actual measured resistance. The current sourced is the actual recorded value

from the display of the power supply, which was used for reference as these values were not in

accordance with Ohm’s law. The expected signal out is calculated by multiplying the current sourced by

the 16mV factor and adding it to 2.45V as was the measured 0A signal output. Also, the signal out is the

value recorded from the DyIO NR Console GUI.

Table 15: Current Sensing 5V Input

Resistance (Ω) Current Sourced (A) Expected Signal Out(V) Signal Out (V)

Open 0 2.45 2.45

8 0.7 2.46 2.45

4 1.3 2.47 2.45

2.66 1.8 2.48 2.45

2 2.4 2.49 2.45

1.6 2.9 2.5 2.45

1.33 3.4 2.5 2.45

1.14 3.8 2.51 2.5

1 4.3 2.52 2.5

0.89 4.7 2.53 2.5

0.8 5.1 2.53 2.5

0.73 5.6 2.54 2.5

0.67 6 2.55 2.5

Table 16: Current Sensing 19V Input

Resistance (Ω) Current Sourced (A) Expected Signal Out(V) Signal Out (V)

Open 0 2.45 2.45

8 2.4 2.48 2.45

4 4.6 2.52 2.51

2.66 6.7 2.56 2.51

2 8.7 2.60 2.56

1.6 10.6 2.62 2.57

1.33 12.5 2.65 2.62

1.14 14.3 2.68 2.62

1 16 2.71 2.64

0.89 17.6 2.73 2.67

168

8.2.2.3 Voltage Sensor Testing

The voltage sensing section uses an op amp in conjunction with a voltage divider using a 174k Ω and 1M

Ω resistor, providing a conversion factor of 0.148 multiplied by the battery voltage. The circuit shown in

Figure 85 was tested on a bread board and worked as expected, however; the surface mount resistors

that were ordered did not match the footprint on the board. To compensate, 165k Ω and 1M Ω resistors

were found on campus and were used on the actual PCB, giving a conversion factor of 0.142.

Figure 85: Voltage Divider for Voltage Sensing

The results of the voltage sensing test on the PCB can be seen in Table 17 where the 165kΩ and

1M measured values are the actual, corresponding measured resistances. The expected value was

calculated using the actual measured results for the conversion factor and multiplied by the 18V input.

The measured value is the actual value measured by a digital voltmeter.

The measured value did not correspond to the expected value and had an equal value for every

battery input. The test was configured with only one power input, but the same voltage was displayed

on each voltage sensing rail. There should only be one output on the corresponding input rail and the

169

other three voltage sensing dividers should output 0V. As can be seen in Table 17, this was not the case,

which led to the discovery that the current sensors are shorting the voltage sensing inputs.

Table 17: Voltage Sensing Testing Data

 165kΩ Measured 1MΩ Measured Expected Value (V) Measured Value (V)

Battery 1 165.0k 1.18M 2.576 0.59

Battery 2 164.4K 1.23M 2.476 0.59

Battery 3 165.4K 1.18M 2.582 0.59

Power Tether 153.2k 0.99M 2.814 0.59

Figure 86 and Figure 87 show the schematic for the current sensors section and its outputs (labeled

Bat_Sense_1 etc.) that then go into the voltage sensor. Figure 87 shows, in red, how the voltage rails are

actually connected and how the inputs to the voltage sensing section are all actually shorted together.

This causes the battery rails to be combined in parallel before the voltage sensing occurs on the board,

giving each battery sensing input the same value. It is unknown why the value of 0.59V was obtained as

this was far from the expected value. Additional testing would need to be performed to understand this

behavior. The board would need to be redesigned to have the capability to monitor individual battery

voltages.

170

Figure 86: Current Sensing Configuration

Figure 87: Current Sensing Configuration Shorts Voltage Sensing Inputs

171

8.2.2.4 Conversion Board Testing

To test the conversion board, a power supply was connected to the board with a 5MΩ resistor

connected as the load. The conversion board did not work as expected, but would output either 0V or a

voltage between 3V-9V and would make an audible buzz. During debugging, it was found that the

converter was implemented incorrectly in two ways. First, the foot print of the converter was labeled

backwards in the schematic. Second, the grounding of the device was misunderstood and therefore,

connected incorrectly. Figure 88 was referenced when making the schematic for WAVE, which can be

seen in Figure 89.

Figure 88: Typical Vicor Converter Configuration

172

Figure 89: Conversion Board Schematic

In the diagram in Figure 89, the middle, bottom screw securing the converter to the PCB board is

grounded. From this, it was incorrectly assumed that because the baseplate is conductive, each screw

should be connected to each other and to the ground plane on the board. However; the earth ground

symbol is used and in this instance is intended to represent that the baseplate should be isolated from

the system.

Figure 90 shows how the converter is actually configured on the inside and shows a transformer

being implemented. It is known that the negative input and output of the transformer should be directly

grounded and isolated from one another. With these design errors, modifications to the board had to be

made and can be seen in Figure 92.

173

Figure 90: Inside the Vicor Converter

8.2.2.4.1 Conversion Board Modification

To modify the design, first the converters were flipped. As the footprint was laid out backwards in the

schematic, it was in turn, laid out correctly when applied to the bottom side of the board. The capacitors

located at C7, C15, and C16 in Figure 91 were removed. The screws were insulated so that they no

longer touched their ground pad, allowing the base plate of the converter to be completely isolated

from the circuit. The negative input pin has a modified wire connecting it to the ground of the 18.5V rail

distribution block and the negative output pin has a modified wire connecting it to the nearest screw

terminal ground on the board. Both of these modifications are shown in red in Figure 91 and can

physically be seen in Figure 92. The black “X’s” in Figure 91 mean that with the modification, there is no

longer anything directly connected to that solder pad.

174

Figure 91: Modification of Conversion Board (Schematic)

175

Figure 92: Modified Conversion Board (PCB)

8.2.2.4.2 Modified Conversion Board Testing

The conversion board was designed to take the main supply rail from the main power board and convert

it to a clean 12V signal. This 12V rail is then used to power the Fit-PC, AHDs, and any other 12V

component that may be added in the future. Of these, the fit-PC is the most sensitive to power input

and can be powered between 10V-16V. The conversion board was first tested with a power supply

swept from 16V up to 22V and the output maintained exactly 12V throughout the entire sweep. Then

the board was connected to the main power board, powered by one battery, and given a load of 5MΩ.

It provided an output of 11.99V, which is well within the fit-PC powering capabilities. This was a positive

result, but only 2.4µA were being sourced. A closer look at the voltage output with various currents was

considered and the results can be seen in Table 18, where the voltage input was 19V, the “Current

Sourced” is according to the power supply display, and the “Measured Out” is the output voltage of the

conversion board measured with a digital voltmeter. As expected, the output voltage was steady as the

current changed.

176

Table 18: Conversion Board Output with Current Considered

Resistance (Ω) Current Sourced (A) Measured Out (V)

Open 0 11.99

8 1.3 11.99

4 2.3 11.99

2.66 3.3 11.99

2 4.3 11.99

1.6 5.3 11.99

1.33 6.3 11.99

1.14 7.3 11.99

8.2.3 Sensors

Each of the individual sensors needed to be tested to confirm functionality of the sensor suite. The

capabilities of the flood sensor, pressure sensor, and temperature sensor each needed to be validated.

The following subsections outline these tests.

8.2.3.1 Flood Sensor

The first test that was performed with the flood sensor was a test to determine how deep the flood

sensor had to be submerged in order to show detection of water. In order to do so the flood sensor was

set up as shown below in. The output of the flood sensor was displayed on a serial monitor after

interfacing it with an Arduino Uno. When tested it was determined that when the dome is completely

submerged in water the output changes from logic high to logic low. As the flood sensor must be

mounted upward this would be at a depth of 22.49 mm. At this level some of the electronic

components which are attached to the floor of the electronic rack would already be submerged in water

before communicating this information back to the GUI. As a result it is suggested that the flood sensor

design could be improved through the use of probing wires or a shorter dome that would detect water

at a lower level.

8.2.3.2 Pressure Sensor

 For the pressure sensor following tests were designed but not implemented: power up test, sensor full

submersion Test, pressure test in air. For the first test the pressure sensor would be powered with 10 V

177

using a bench top power supply and the voltage output would have been measured using a digital multi-

meter. This would be used to show functionality. After it was ascertained that the pressure sensor was

functioning properly then the next test to perform would have been the full pressure sensor full

submersion test. In this test the pressure sensor would have a marking along the cable denoting

different depths. As the pressure sensor was submerged to different depths the output readings would

then be recorded. In order to verify if the correct depth corresponded to the reading the following

calculations would have to perform. Depth conversion to psi to ensure that it is well within the

operating range of the pressure sensor, after this is verified a conversion factor can be formed between

the voltage output and the depth.

8.2.3.3 Temperature Sensor

The temperature was not able to be tested on other components within the vessel due to time

constraints. Although in order to ensure that the data value from the temperature sensor were

correctly identified with the correct value of temperature. The temperature sensor was compared to the

value of a calibrated thermocouple and found to be accurate to +/- 2 degrees C.

8.2.3.4 Humidity Sensor

The humidity sensor was tested via breadboard design with the Ardunio microcontroller. It was not

possible to find calibrated humidity sensor in time to compare with current outputs of the system.

8.2.3.5 Integrated System Test

The integrated sensor test involved providing a breadboard design of the system and testing the system

functioning as a whole. In order to perform this test the system was first bread boarded. After the

system had all the elements connected then it functionality of each sensor then had to be tested. When

the system was all powered up the first functionality to be tested was the temperature sensors. Initial

findings found when connected to the Arduino Uno in order to give temperature outputs the outputs

178

were not displaying as connected. As such the next step was to go back and re-verify the connections.

When this was done it was found that there were some wiring problems with the SDA and SCL line via

the I2C bus extenders after these wiring problems were corrected and the temperature sensors were

reconnected to the Arduino Uno the appropriate temperatures than began to display. The next step was

to verify that the flood sensors were working within the system as well. This was also done by

interfacing the sensor with the Arduino Uno in order to test whether the output was correct in the

presence of water. This test proved successful. The next test was interfacing the humidity sensor with

the system via the Arduino Uno. This test proved successful as well. Complication occurred when the

humidity sensor and the temperature sensor were trying to read out on the same I2C address. This was

due to the calling of the wrong address for the humidity sensor. Some problems encountered within this

system was the fact that due to the extensive wiring sometimes there were delays in information and

that it was not possible to receive a constant value. In addition the bypass capacitors within the system

also caused an issue taking long periods of time to discharge and as a result affecting the operation of

different sensors. As such in the future it would be advantageous to add circuitry to discharge the

capacitors at a faster rate and choose lower values for bypass capacitors.

8.2.4 Low-level Computing

The embedded system needed to be verified to ensure the functionality of the software. The ability to

download code and communicate was critical.

8.2.4.1 JTAG download confirmation

Before the LPC 4330 dual core processor could be incorporated into the Abstract Hardware Device, the

functionality of the M4 core needed to be confirmed. The NGX LPC4330-Xplorer board was obtained to

run tests on the M4 core. NXP provides several example projects for LPCXpresso, which simplified the

testing process. The first example project used was entitled Blinky. While this project was very simple,

the example proved to be an important test of the M4 core’s capabilities. There were four goals of this

179

test: compile code in LPCXpresso, download code via JTAG, communicate with the M4 core, and

perform a simple task. In the case of Blinky, the simple task was to alternate flashing the two LEDs on

the Xplorer board. As this example project was ready to work out of the box, the only challenge posed

was to correctly link the project to the M4 core driver library. After integrating the driver library into the

include directory of the project, the code compiled. The project was then downloaded over JTAG and

was able to communicate with the M4 core. Once the download process was complete, the LEDs on the

Xplorer board did in fact alternate blinking. This test successfully confirmed the four goals. For all future

embedded testing, test code would be downloaded via JTAG to the M4 core.

8.2.4.2 Echo Server

As stated in previous sections, Neuron Robotics’ Bowler firmware was used to write namespaces and

help communications between the embedded and computational systems. To complete the Bowler

port, USB communication needed to be fully operational on the Abstract Hardware Device. Again, the

LPC4330-Xplorer board was used to confirm this functionality. In order to test USB, the Lightweight USB

Framework for AVRs (LUFA) had to link to the driver library and any other projects testing USB. This task

proved to be more challenging than linking the example project from before, but eventually both the

driver library and LUFA were linked and compiling. An echo server project was then created to test USB

communications. An echo server receives a character from a CPU terminal via a serial communications

port. The M4 core then receives the data and echoes the character back via the COM port after a brief

pause. The serial communications port in this scenario was USB.

After creating an echo server project, properly linking that project to the driver library and LUFA,

configuring the descriptor file to the Xplorer board, and downloading the project via JTAG, the echo

server was ready to be tested. Initially, the echo server was tested in Microsoft Windows, but the CPU

using that operating system was unable to establish a serial communications port with the Xplorer

board. The reason that this test did not work in Windows was because of an issue with the driver

180

software being unable to access the board. After the failure of this test, the next logical step was to run

the echo server in a different operating system. Linux Ubuntu was chosen to be the next operating

system used because drivers are not necessary. By using a Linux operating system, the echo server was

recognized through a terminal. This test proved that USB communication to the Xplorer board is

possible in Linux but not in Windows. While the echo server functionality was never confirmed, the

problem was determined to be with the descriptor file. WAVE’s development can be continued by

future teams, and in regards to the echo server, they will know to target the descriptor file in a Linux

environment.

8.2.4.3 Embedded RPC Calls

During the development of the abstract hardware device, the ability to use the Bowler Protocol to send

remote procedure calls had to be tested. This test was conducted using the Neuron Robotics’ Dynamic

Input/Output module (DyIO).The DyIO is able to interface with a CPU over USB and has multiple pin outs

for peripherals. For the sake of testing RPCs, a potentiometer, a servo motor, and an LED were selected

as the peripherals. All testing with the DyIO was conducted in a Linux Ubuntu virtual machine.

The first test was for the battery RPC. A function was written for getting battery voltage from

any of the three batteries. Initially, three dummy values would be used to represent the batteries. After

this functionality was confirmed, the potentiometer would be used to get values. The functions worked

on their own with the dummy and potentiometer values; however, when trying to interface these

functions with the Bowler RPC calls, the terminal did not display any values. Before trying to solve this

problem, functions were written for the other two peripherals. This choice was made to determine if the

problem was with the battery function or with interfacing functions in general. The servo motor was

used for motor voltage RPCs. A function was written to send a PWM servo signal. Using the DyIO, this

function was successful, but once again the function could not be interfaced with the Bowler RPCs.

181

At this point, the decision was made to use the LED to interface with already existing RPCs. The

DyIO has a ping RPC, which flashes an LED on the module continuously when in use. An LED was

configured to a peripheral port, and a function was written to mimic this functionality. As with the other

two tests, the function worked independently, but did not work with an RPC. This third result was

surprising because and already existing RPC was used. The problem was determined to be with the

bridging loop between the Bowler protocol and all WAVE functions. When this problem was

determined, not enough time existed to rectify this solution. Future teams will be able to see these

results and know where to start with embedded RPC testing.

8.3 Software Testing

While a true test of WAVE’s software framework would require a completed robotic platform to run on,

it was possible to test the individual software components with simpler, stand-alone methods. These

testing methods allowed for smaller segments of the code to be tested, as well as proving the

functionality of the software without a fully operational robot. Several methods were used to test the

functionality of the software, with unit tests and observation of various features running being the two

primary methods.

8.3.1 Unit tests

Unit tests are a major part of any software development process. They ensure classes and methods

exhibit expected behavior. They allow testing of specific components without running the whole

program every single time. Java provides the JUnit framework designed specifically for testing purposes.

These tests are a separate part of the main program – they have their own code, and are run

independently. Testing every single part of the system would’ve taken too much time, so the focus was

on testing the most critical robot components.

182

8.3.1.1 ObjectPipeEndpoint and the Poolside Interface

As the ObjectPipeEndpoint is a critical component in WAVE’s operation, it required very careful

testing. A series of JUnit tests were created to test the serialization, transmission, and deserialization of

various objects. One such test case is included here:

@Test
public void testFirstObject() {
 // Send one Item over the pipe
 System.out.print("Adding Observer... ");
 client.addObserver(this, testObject);
 System.out.println("Done.");

 try {
 Thread.sleep(sleepTime);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 System.out.print("Sending First Object... ");
 ObjectServer.send(testObject);
 System.out.println("Done.");

 waitForObject();

 assertNotNull("Object not received over pipe.", obj);
 System.out.println("Comparing objects: ");
 System.out.println("\tOriginal: " + testObject.toString()); // Did you
 // get the
 // item?
 System.out.println("\tReceived: " + obj.toString());
 assertTrue("Object recieved of incorrect type.",
 obj.getClass().equals(testObject.getClass())); // Is it what you
 // sent?
 assertTrue("Object received not equal to object sent.",
 obj.equals(testObject)); // Is it what you sent?
 System.out.println("Success!");
}

This test method includes several logic checks which confirm or deny the successful transmission

of an object over a local port. The test begins by observing the ObjectPipeEndpoint “client”, for

objects which match the type of the “testObject.” The test then waits for a short amount of time to

allow the operating system to handle the creation of the sockets, and for the connection to be secured.

Then, the test object is sent to the ObjectServer. The test waits for a new object to be received, as

183

object serialization occurs in a separate thread. When waitForObject() returns, the new object is

compared against the one sent through the ObjectPipeEndpoint. Several assert calls are used to

determine its validity, including a null check to ensure than an object was received, an

assertEquals() confirming that the new object has the correct type, and finally, an

assertTrue() call which wraps a call to the test object’s equals() method. With all of these tests

returning successfully, the team was sure that the ObjectPipeEndpint functions correctly.

8.3.2 Observational Testing

Observational testing is simply testing different features and observing their operations. This is slightly

different than unit testing. In unit tests, specific scenarios and cases are tested, and perhaps engineer

failing cases on purpose to see if the program handles them correctly. Observational testing is just

letting the feature run normally and noting any abnormal behavior. Several GUI components assist with

this. For example, the log can be used to detect bugs with message outputs.

Observational testing is useful while testing multiple concurrent GUI connections. When a new

GUI connects to the robot, the log displays information about the event. If nothing, or an error, is

displayed, unwanted behavior is present. The same kind of logic can be used to test connections to the

robot over the network as opposed to a local host. It can be observed from the log if the GUI connects to

the robot, or if there was an issue. A simpler example is just running the GUI and seeing if the stopwatch

runs correctly.

8.3.3 Memory Leak Testing

An important issue in software development is code aging. Aging refers to the progressive performance

degradation or sudden hang/crash due to exhaustion of operating system resources. Memory leaks are

a potential cause or contributing factor in software aging, as they can exhaust available system memory.

To ensure no resources went to waste, Eclipse Memory Analyzer was utilized. This feature tracked how

184

much memory the code was using during operation. If system memory was not released after the

software completed its run, this would indicate a memory leak.

Testing was done by leaving the code to run for some period of time and observing how it’s

using operating system resources. After completion of the test run, memory allocation was observed in

an attempt to locate leaks or other issues. Using the detailed information from the analyzer allowed for

optimization and bug fixes. This ensured correct resource allocation, no memory leaks and code

durability.

8.3.4 Communications

One of the primary software deliverables of WAVE was to establish several communications pathways to

facilitate the distribution of information throughout the system. In order to ensure the stability of these

various systems, each one needed thorough testing.

8.3.4.1 Testing Bowler Communication

As stated previously, one of the key factors when selecting the Bowler Communications System was the

availability of the DyIO to test preliminary functionality. The DyIO, a small embedded microcontroller

developed by Neuron Robotics is tightly integrated with the Bowler Communications System out of the

box, and supports a wide range of functionality. DyIOs were used to test various aspects of the software

system, including the generation and interpretation of Bowler Command Packets. The team was able to

simultaneously test the mission control system and Bowler communication through the use of simple

blink pattern mission files. One such file, included here, synchronously blinks the SOS pattern through an

LED, while asynchronously blinking another LED at a fixed rate.

185

<?xml version="1.0" encoding="UTF-8"?>
<Mission name="Test Mission 2">

 <Task type="Echo" message="Commencing SOS!"/>

 <Task type="AsyncBlink">
 <Device>BlinkTest</Device>
 <Port>12</Port>
 <Duration>200</Duration>
 <Gap>200</Gap>
 <Inverted>False</Inverted>
 </Task>

 <Task type="Blink">
 <Device>BlinkTest</Device>
 <Port>3</Port>
 <Duration>300</Duration>
 <Gap>150</Gap>
 <Count>3</Count>
 <Inverted>False</Inverted>
 </Task>

 <Task type="Wait">
 <Duration>500</Duration>
 </Task>

 <Task type="Blink">
 <Device>BlinkTest</Device>
 <Port>3</Port>
 <Duration>600</Duration>
 <Gap>150</Gap>
 <Count>3</Count>
 <Inverted>False</Inverted>
 </Task>

 <Task type="Wait">
 <Duration>500</Duration>
 </Task>

 <Task type="Blink">
 <Device>BlinkTest</Device>
 <Port>3</Port>
 <Duration>300</Duration>
 <Gap>150</Gap>
 <Count>3</Count>
 <Inverted>False</Inverted>
 </Task>

 <Task type="Wait">
 <Duration>1200</Duration>
 </Task>

</Mission>

186

This mission begins by logging a message, stating that it is about to send the SOS pattern. It then

spawns a new AsynchronousTask, running in a new thread, which will periodically blink an LED

attached to port 12. The duration and frequency of these blinks is specified within the XML elements

included within the AsyncBlink task element. It then begins a series of timed blink messages, which

control a separate LED on the attached DyIO. As you can see from the XML above, the durations of these

blinks varied, creating the different Morse code symbols.

8.3.4.2 Testing AHD Communication

Unfortunately, the Abstract Hardware device was not downloading code correctly until the last days of

the project, and has yet to run the Bowler Server. However, as soon as the Bowler Server is downloaded,

and all of its drivers written and functioning, the DyIO from the team’s previous tests should be easily

replaced with the AHD. As the AHD completes several checks to ensure that its core functionality is

stable (such as the SOS blinking test mentioned above), the Electrical team can begin to implement

WAVE’s custom RPC calls.

As with the initial testing of Bowler Command packets, the functionality of these custom RPC

calls can only be verified through various methods of observation. For example, to test the motor speed

RPC call, you could measure the PWM channel of the AHD with an oscilloscope. As different speeds are

commanded by subsequent motor velocity RPC calls, the PWM signal should change accordingly. This

could then be tested outside the robot by attaching the motor driver board, and some extra motors. By

observing their rotation and speed the functionality of the motor velocity RPC call could be verified.

8.3.5 Poolside Interface Communication Testing

During the construction of the GUI, the team noticed a particular exception, which were thrown

periodically by the ObjectPipeEndpoint. This ConcurrentModificationException,

seemed to plague our systems, as it was thrown at irregular intervals, and was not readily reproducible.

187

This error was not catchable by the ObjectPipeEndpoint, and could not be handled dynamically.

After extensive debugging, it was determined that this error was caused by concurrent access to the

shared RobotModel objects.

To control access to these objects, a simple mutual exclusion lock was created to wrap these

models. The RobotGlobalModel class is shown below, showing the locks and the objects they

contain.

public class RobotGlobalModels {
 private static LockedObject<RobotModel> robotModel =
 new LockedObject<RobotModel>(new RobotModel());
 private static LockedObject<MissionModel> missionModel =
 new LockedObject<MissionModel>(new MissionModel());
 private static LockedObject<LogArchive> logArchive =
 new LockedObject<LogArchive>(new LogArchive());
 private static TaskManager manager = new TaskManager(missionModel);
 private static SystemClock clock = new SystemClock();

 static {
 robotModel.getObject().setCurrentLocation(
 new TransformMatrix(0, 0, 0, 0, 0, 0));
 robotModel.getObject().setDesiredOrientation(
 new TransformMatrix(0, 0, 0, 0, 0, 0));
 . . .

The file continues, initializing the remaining models, and implementing several simple getters and

setters, which have been omitted here for brevity. These LockedObject objects extend Java’s

ReentrantLock class. This standard Java element provides the functionality of an atomic lock,

synchronizing access. The LockedObject class implements a method getObjectWithLock()

which returns the object which it wraps. If this lock is currently held by another thread, this method will

block until the object is unlocked. By surrounding access and modification of these objects, proper

concurrency was restored, and the ConcurrentModificationException stopped being thrown.

188

8.4 Integrated System Testing

While the team was never able to do fully integrated system tests due to a number of technical

problems which prevented WAVE from becoming fully functional, a number of tests were planned. If

WAVE had been fully integrated into a functioning system the following tests would have been done to

prove the system’s capabilities.

8.4.1 Fully Integrated Submersion

The first planned test was a fully integrated submersion. This test comprised of two parts. Firstly, the

integrated system would be submersed with all of the electronics offline. This procedure allows us to

test the electronics housing as it supports the weight of all electrical components. Also, removing power

from the electronics better ensures their safety, should this test reveal a new leak. Once the first

submersion test was completed, the next step would be to run a test with all of the electronics online.

This second part would validate the functionality of the electronics while WAVE is submerged. This test

is for submersion purposes only and navigation would not be executed.

8.4.2 Safety System Tests

In order to ensure WAVE responded appropriately in case of an emergency, two safety tests would be

conducted. The first test would be to activate the E-Stop switch from the poolside user interface. Upon

activating the E-Stop switch, WAVE’s power system would deactivate. This system was planned but not

designed in this version of WAVE. All of the electronics would be disabled and prevent damages from

occurring. Secondly, another test would be conducted to ensure that the emergency ascension protocol

functioned. WAVE would sense internally that the platform was in a dangerous situation and trigger the

process of surfacing.

189

8.4.3 Maintaining Position

At certain points during missions, WAVE would need to remain in place. This capability would be tested

through a combination of thruster control and active ballast. The thrusters and ballast would work in

tandem to allow WAVE to ‘hover’ in place.

8.4.4 One-Dimensional Motion

With six degrees of freedom, WAVE’s one-dimensional movement would need to be verified. Movement

among the lateral x and y axes would be tested through the thrusters. Additionally, the thrusters would

work with the ballast system to control depth and confirm movement along the z-axis. Once lateral

motion was validated, rotational movement would be tested. The thrusters would be tested in their

ability to generate roll and yaw, while the ballast system would be used to generate changes in pitch.

8.4.5 Two-Dimensional Motion

Upon the verification of one-dimensional motion, movement throughout two dimensions would be

tested. Each combination of movement described in Section 0 would be tested. The completion of these

tests would validate WAVE’s ability to successfully maneuver through any underwater environment. This

process requires extensive future work in order to achieve functionality.

190

9 Future Work

Several additional improvements could be implemented by future teams to enhance WAVE. The basic

platform could be further developed, a number of new modules to augment WAVE’s abilities could be

created, and all of this could come together to make WAVE ready to compete at the AUVSI Robosub

Competition.

9.1 Platform Improvements

WAVE is still in the fairly early stages of development. In comparison to the long-term sustainability of

WAVE as a research platform, this first year of development is only a fraction of the capabilities. Many

platform improvements can be incorporated in the mechanical, electrical, and software systems to

increase the scope of WAVE.

9.1.1 Mechanical Improvements

There are several improvements that could be added to the mechanical subsystems on WAVE. The

chassis could be redesigned to allow for more modular mounting points with the addition of more 80/20

aluminum crossbars. The electronics housing could be redesigned to allow for separate chambers for

batteries. These chambers would provide a barrier, preventing the batteries from affecting the other

components in the electronics housing if a failure were to occur. Additional connection ports would be

beneficial by allowing a greater number, and thus a wider variety, of modules to be connected to WAVE.

One of the project’s goals is to create a design that is customizable to the needs of the user, and more

connections would give latitude in that regard. However, there is a limit to expanding this connectivity,

as more connections are also more potential leaks and eventually the risks would outweigh the benefits

of continuing to add connections.

191

9.1.1.1 Electronics Housing

The electronics housing could be improved. Currently the electronics in the housing do fit, but the size

restrictions limit the WAVE platform to two batteries. The size of the housing could be increased to

allow for an additional battery as well as for easier wire placement within the housing. Additional

measures could be taken to ensure adequate thermal dissipation such as the addition of thermal paste

or conductive materials to the walls of the housing. More connectors could be added to the housing to

allow more modules and components to be added to the WAVE platform. Additionally, the batteries

could be moved to a separate housing for easier access and an external power switch could be added to

reduce the need to constantly access the electronics housing.

9.1.1.2 Frame

The frame’s overall size could be increased to allow more room for the wiring and tubing around the

electronics housing. A larger frame could also benefit the platform by allowing modules to be shielded

within the dimensions of the frame’s edge, reducing risk of damage to modules and components during

use of the platform. However, to stay within the boundaries established by AUVSI, the frame can only be

increased by 49.7cm in with, 72.6cm in height, and 111.3cm in length. Further, manipulators or

extendable modules could be designed to fold into the area inside the frame, keeping them protected as

well. Work could also be done to reduce the weight of the frame such as with the Killick Frame, which is

discussed in Section 9.2.3. This would reduce the load on the ballast system and overall increase the

agility of the platform.

9.1.1.3 Ballast

Regarding the ballast system, there is much that can be done to improve the overall design. Adding

sensors in the tanks to measure the pressure, or flow meters at the nozzles would allow greater control,

and give the robot the ability to fine-tune its vertical position in the water. The tanks could be

redesigned to have a more accurate fit to the nozzles being used to connect the tubing from the pumps

to the tanks. The current nozzles need to be reinforced with epoxy resin to prevent leaks. The tanks

192

could also be remade out of acrylic or another transparent material to allow for more accurate

observation and testing. It is currently impossible to directly observe the water in the tanks.

While the motors being used to power the ballast system work well for the project’s needs, they

are not ideal. They could be replaced by waterproof motors which would have a longer performance life

while working underwater. Further, the pumps being used on the robot, while great as an initial

prototype, place an incredibly high torque requirement on the motors being used. The required torque

to start the pump is approximately 1.1Nm (9.5 in-lbs), a number which many motors within the

acceptable weight and size range that are usable on the robot have trouble meeting. These could be

replaced with different positive-displacement pumps that require less power to turn.

The attachment method used for the ballast system, specifically it being located on the side of

the robot where the electronics housing will be opened, can be altered to allow easier access. As it

stands, the user must unscrew the cable ties to remove the tank to gain access to the opening of the

electronics housing. These cable ties could be replaced with a latch system that would be undone with

minimal effort. An alternative design using a hinge system could allow users to swing the tank out of the

way so that it never has to be truly removed from the frame. Lastly, an external kill switch must be

implemented in case of an emergency.

9.1.1.4 Thrusters

While the motors on the submarine are serviceable, they leave room for improvement. More efficient

motors could easily be fitted to give WAVE a longer run-time. These motors would drastically reduce

travel time while underwater, allowing for the collection of greater quantities of data and more time to

complete objectives set by future WAVE users.

193

9.1.2 Electrical Improvements

In addition to mechanical changes, future teams will be able to expand upon WAVE’s electrical

infrastructure. The extensibility of WAVE’s electronics is evident, and teams can extend the modularity

with future development and improvements.

9.1.2.1 USB Host Functionality

USB device capabilities were examined in the design and analysis, but host functionality was not taken

into consideration for this iteration of WAVE. Specifically, the AHDs are currently designed to use USB to

communicate with the fit-PC as a device. None of the components of the sensor suite communicate via

USB. This decision was reasonable for the initial development of WAVE, but in order to account for

future growth as a research platform, host functionality should be considered. AHDs as hosts would be

able function as a central processing unit, similar to the fit-PC. The inclusion of this capability will

increase the utility of the AHDs in the system. The number of sensors and modules that would be able to

interface with WAVE would increase due to the ability of these components to be USB devices. Finally,

the processing load on the fit-PC will be reduced, as the CPU will no longer be the only USB Host on

WAVE. Proficiency in USB devices (on the part of the development team) will be necessary as this

standard can be difficult to implement. Future teams must plan to allocate a sufficient amount of time

to achieve this functionality if they decide to include it.

9.1.2.2 Boot loader

Currently, the only way to download code to the AHD’s core is via JTAG communications. This method is

acceptable for debugging code; however, using the JTAG can be tedious and waste copious amounts of

time. Since the AHDs will already be connected to the Fit-PC via USB, implementing a boot loader would

provide an additional way to download code. Using a boot loader would allow for the run-time

environment to be sent from the Fit-PC to the AHDs after the completion of internal self-testing. This

194

capability enables programming on-the-go, which would be a huge upgrade towards making WAVE

modular.

9.1.2.3 Sensor Upgrades

For this system sensors were implemented to measure the following parameters: temperature,

humidity, water leakage, and pressure. These are the bare essentials of what is needed in order to

implement a working system. For the future, the WAVE modular system can be improved with

implementation of more and perhaps additional sensors. One specific example is that flood sensors

should be placed in more than two locations in the pressure vessel in order to ensure that leaks can be

rapidly detected regardless of the current attitude of the WAVE system.

9.1.3 Software Improvements

While WAVE’s current software suite provides a strong foundation for running WAVE’s tasks and

delivering important information to users, there is still room for improvement.

9.1.3.1 Integration with AHDs

Due to the troubles with getting embedded software running on the AHDs and control boards, limited

work was done for PID control functionality. This would be the highest priority to make WAVE’s software

more useful for actively driving the robot. Fully implemented PID control would allow WAVE to properly

take sensor data into account and properly adjust motor speeds and directions both for maintaining

position in the water as well as successfully traveling between waypoints in its environment.

Additionally, more work could be done to relay additional sensor data to the user of the

Poolside interface. As sensors are added, whether these are cameras, pressure sensors, or something

else entirely, the ability to see what these sensors are currently reading in the GUI could be of immense

use for debugging purposes.

195

9.1.3.2 Poolside Interface

The GUI itself has room for improvement as well. The attitude indicator could be made smaller, allowing

room for other indicators and/or gauges. Luckily, the JFreeChart library has already been included with

the latest copy of the code, so the addition of several gauges would be rather trivial. Mission controls

could be implemented as well, such as stop/pause task, go to next/previous task, restart task/mission.

To help with mission control, a map showing current, starting and goal position, as well as speed and

heading, could be implemented. A status bar could show estimated time of mission completion, as well

as how many other GUIs are currently connected to the robot. There are many ways that users could

use the GUI to interact with WAVE in the future, but these implementations would depend on the needs

of different groups and their missions.

9.1.3.3 Software Testing and Validation

In terms of testing the code, there are several more opportunities for testing that were no pursued by

the team. Test driven development was considered, but was deemed too costly (as it required tests be

written first, then the code to make the test successful) and not really applicable to WAVE’s design. The

software either required the physical devices or had to be “tricked” into thinking that it had those

devices in order to test code. Because of limitations such as these, the team fell behind on writing test

cases. Instead, several parts were fully developed by going back and forth between writing code and just

running it to see if it works, which is not proper software testing procedure. Improvements could

include incremental testing of the various code features, instead of waiting to have major components

done before starting to test them. Thorough testing of several of the utility functions (such as the

transform matrix functions) could have been done. Several other aspects, such as boundary conditions

and robot models, had little to no testing done before deployment. Major components, such as these,

should have received more testing to confirm desired functionality.

196

9.1.3.4 Mission Enhancements

Finally, in conjunction with functional embedded code, task management functionality could be greatly

expanded. With fully functional embedded software managing WAVE’s systems, more RPCs could be

implemented to send data between the Fit-PC and the control boards, and tasks could be added to

handle these additional inputs and outputs and do various actions based on them. Tasks could be made

to be paused or handled in a different order based on what WAVE perceives in its environment, as well

as have tasks be able to generate other tasks as necessary. For example, if a locomotion task is driving

WAVE to a point, but along the way the sensors detect an item to retrieve, WAVE could react properly.

WAVE’s task system has the capability to be extended so that in this example, WAVE could pause the

current locomotion task, generate a task to retrieve the item with an arm, and then continue onwards to

the destination. Furthermore, the addition of basic flow control logic, such as if/else, while, for loops

would allow for much greater complexity within a mission

 Similarly, a simple messaging system should be established for GUI communication. This would

allow messages to be sent to a particular “Master” GUI, which will block until cleared by the user. The

robot would then

9.2 Future Modules and Features

Given more time and money, modules and features would be added to the device. The following

modules are of interest for future work: a mechanical arm, a torpedo launcher, active ballast, and

improved motors. Both the mechanical arm and the torpedo launcher would be necessary for the AUVSI

competition. Reduced weight would be a good feature to include in future iterations of this design.

Additionally, bio-inspired propulsion would be an interesting field in which to perform research and

development.

197

9.2.1 Future Module Development

As stated in the sections about the abstract hardware device the AHD serves as the standardized

embedded computing platform on which WAVE, WAVE’s modularity, and hardware expansive nature is

based upon. Using the AHD and the AHD Shield Hardware Development Kit (HDK) an additional module

performing any AUV centric function can be rapidly developed and implemented for WAVE. The AHD

Shield HDK is an Altium Designer project template that includes a schematic document, part library, and

a PCB document. In essence, the AHD Shield HDK is a premade Altium project for making shields for the

AHD. This HDK reduces the difficulties associated with designing a shield, by default the PCB shape is

premade and locked, all the headers are preplaced and locked on the PCB, and a complete library of all

the components for the shield are included. Given the setup provided in the HDK all a designer needs to

do is add the circuitry of their module to the premade schematic and import the components into the

PCB document and lastly run the traces. By providing a comprehensive HDK for module development

using AHDs the hope is that many future modules will be design and implemented on WAVE.

9.2.2 External Modules

An arm could be added to facilitate the manipulation of elements around the submarine. As a testing

platform, this design, as well as a successful implementation of an arm, would be invaluable to study

projects. In the shorter term, many AUVSI challenges require the ability to actively manipulate external

objects to achieve a goal.

Torpedo tubes or more specifically, launch bays would be useful in the deployment of sensor

arrays. The ability to load and deploy different types of payloads such as sensor clusters for data

gathering would give future groups a chance to more easily gather data from underwater research.

198

9.2.3 Weight Reduction

In addition to more modules, additional features could also be improved on the device. Reducing the

weight of the robot could reduce the overall expense of its transportation. A smaller staging crew and

transportation vehicle could be utilized to get the WAVE platform to its mission area. Because the focus

is to build an accessible and easy to use base platform, ease of transportation would greatly increase the

viability of the design over a wider spectrum of groups.

9.2.4 Bio-Inspired Propulsion

Research could also be done into the field of bio-inspired propulsion, such as fins and sea-life

appendages. Many sea creatures possess efficient modes of travel, and it could benefit the design to

consider such alternatives. Jet propulsion as inspired by a squid was considered initially. Also fish fins

could be explored. A robotic fish is shown in Figure 93. Gills were designed that allow this robot to move

freely through the water. In relation to the current design, the thrusters could be replaced with fins or

other propulsion systems inspired by marine life. This substitution would not necessitate a complete

redesign of the WAVE platform.

Figure 93: Robotic Fish

199

9.2.5 Additional Actuator Control

Further actuator control could be implemented in future iterations of WAVE. This additional control

would extend beyond the scope of thrusters. AUVSI competitions and certain missions could require an

external manipulator to complete tasks. Any manipulator added to WAVE would require an actuator

board. These boards would be of similar structure to the thruster and ballast boards and would

communicate with AHDs. Additionally, any manipulator would require custom RPC calls specific to the

module. Finally, additional actuators would need to be integrated with the waterproof connectors on

the end-cap. Extra connection points are available on the end-cap for actuators that can be added to

WAVE’s modular system.

9.2.6 Robot Simulation Suite

A common method for testing robots without having to actually run them in their environment is to use

software simulations. However, when the team investigated the availability of free or low-cost robot

simulations, none were discovered for underwater robots. A software simulation environment would

allow future WAVE teams to simulate how WAVE would perform under varied conditions and load outs.

This allows testing outside of the pool, saving significant time, effort, and, in case of unexpected failures,

money.

This suite could include various features to aid teams in their simulations. To simulate an

underwater environment, there could be an option to add obstacles, such as rocks, fish, and buoys. One

could also configure the depth, pressure, and temperature of the water, as well as simulate water

currents. The simulation run could show current position, speed and direction, with the ability to move

to checkpoints of a predefined route. The interface of this suite could have the option to add sensor

data noise for a more realistic simulation. Other aspects of this interface could include the ability to

arrange and configure the robot modules in order to determine weight and expected power usage.

200

Based on that configuration, one could select model and power for thrusters. Additionally, actual

battery usage based on current configuration and activity could be displayed. Another feature of this

suite could be the ability to upload the actual robot JAR file used to run WAVE. Then, the suite could

simulate an environment for the robot, such as generating artificial sensor data. This way, the uploaded

code could be tested if it’s working as expected.

9.2.7 Modular and Customizable User Interface

When it was decided that WAVE’s user interface should allow for multiple connected clients, one of the

goals was to allow for different members of the WAVE team to focus on viewing different information

simultaneously. However, in its current form WAVE’s GUI displays the same information to every user,

which makes having multiple clients less necessary. As WAVE’s functionality expands, more features will

likely be added to the GUI, which could potentially lead to a very cluttered and difficult to manage

interface. This could be avoided by making the GUI modular and customizable.

Making a modular and customizable GUI would mean allowing for the GUI to be divided into

different “modules” some of which could correspond to physical modules attached to WAVE, and others

to more general objects such as the log. Users could change out different GUI modules at will depending

on what information they wanted to view, and could potentially change the size and location of such

modules on the screen to allow for a more customized and personal UI. This process could also be

automated, with WAVE potentially having a number of default configurations that could depend on

what modules and functionality WAVE currently has, which can already be easily determined using the

existing properties and devices files. An additional possibility would be to have separate GUI

configuration files that different users could customize and use on their personal computers. The

software could then find and access these files on startup, allowing each individual user to potentially

201

start up the GUI with a different configuration. These options, while not necessary to WAVE’s

performance, all could contribute to a more useful and intuitive interface for WAVE’s users.

9.3 Requirements for AUVSI

In order to have a chance of being successful in the AUVSI competition, the robot requires several

systems that are not currently included in its design. A vision processing unit capable of color

recognition is required for the different types of challenges that AUVSI poses to the competing teams,

such as this year’s stoplight challenge where the robot needs to be able to recognize the color a

stoplight is showing and respond accordingly. A recurring theme in the AUVSI competition is the use of a

torpedo launcher to score points by shooting a torpedo through different sized holes in a wall. As such,

the robot will need a torpedo launcher for this portion of the challenge. Finally, a manipulator will need

to be added that can handle different course objects. This year, the objects in question were a steering

wheel and a shifter, simulating the driving of a manual transmission car, and an object that simulates

delivery of a box of food. These are the basic requirements that are needed to be successful in the range

of challenges AUVSI poses to teams each year, and having modules to meet these needs would greatly

increase the viability of WAVE.

202

10 Conclusions

Upon the completion of this project, multiple conclusions were drawn. Certain tactics were deemed as

being successful for the growth of WAVE, whereas other tactics needed to be reevaluated and

reconsidered. In regards to the tactics that were unsuccessful, possible changes to their approach were

determined. While a lot of time was put into determining different approaches, the project also yielded

a multitude of results. These accomplishments will help future teams further understand how to work

with and continue to develop WAVE as a research platform.

10.1 Successful Tactics

Tactics labeled as successful were ones that had a major positive impact on the project experience.

These tactics were generally more thought-out and serve as a model for the thought process that should

be put into every idea.

10.1.1 Full-team Meetings

For the majority of the year, the individual sub-teams met on a regular basis; however, the only

regularly scheduled inter-team communication was the general body meetings. During the Spring Break,

the entire team met every day, and these meeting yielded positive results and progress. After the break

concluded, the whole team continued to meet regularly. At these meetings, the sub-teams were able to

deliver progress and get consistent feedback and suggestions from the other groups. While meeting at

the integrated team level did not seem overly important at first, this belief was proven to be incorrect.

Strong inter-team communications leads to more consistent results, and full-team meetings were a

strong contributor for WAVE’s accomplishments.

10.1.2 High Level Software Development Environment

Choosing Eclipse for the high level software development environment proved to be an excellent choice.

Due to the familiarity from robotics and computer science courses, Eclipse proved to be a reliable choice

203

with many helpful resources available on campus. Additionally, the use of the Bowler Protocol as the

bridge between high-level and embedded computing was also helpful. The ability to speak with the

firmware’s developer (Neuron Robotics) on a regular basis proved critical. This decision shows that using

reliable sources is more important than potentially more powerful ones.

10.1.3 Sponsorships

The team’s budget was relatively small for the number of participants in the project as well as the scope

and complexity of WAVE. From the start, the ability to get parts donated was deemed critical. While a

formal sponsorship sub-team never came to fruition, many individuals were able to obtain sponsors.

Many parts were obtained in exchange for promoting the sponsoring companies on the team website,

poster, and robot. These donations saved the team thousands of dollars. Without sponsorships, these

parts would be unattainable with the given budget. Rather than compromise the design process, having

sponsorships enabled the team to use optimal components for many of WAVE’s subsystems.

10.1.4 Team Website

Having a team website was a successful tactic for obtaining sponsors and donations. The website was

updated on weekly basis with blogs. These blogs outlined the progress that the three sub-teams had

made in the previous week and events for the upcoming weeks. Team bios existed and provided a brief

description of each member and advisor. The website had the ability to upload media. Pictures and

videos of WAVE’s progress were provided for site visitors. The level of professionalism about the

website showed visitors the magnitude of WAVE and encouraged potential sponsors to provide

donations to the team.

10.1.5 Microsoft SharePoint

Using Microsoft SharePoint enabled the team to exchange documents and information through a

reliable source. Many documents including this report could be modified by multiple team members at

204

the same time when using SharePoint. Wiki pages were used to store meeting minutes and agendas.

The picture library stored vital design images and flowcharts. In the event that an unintended change

was made to a file, SharePoint’s version history allowed the team to revert back to previous revisions

with relative ease. Lastly, SharePoint documents when people upload or make changes to files. This

accountability helped ensure that each team member would work reliably.

10.2 Reconsiderations

Not all of the team’s approaches were one hundred percent successful. Many of these tactics needed to

be reconsidered throughout the project. Unfortunately, most of them hindered the development of

WAVE, but they serve as a warning for future teams.

10.2.1 Organization

From the start of the project, a lack of organization existed. As stipulated earlier, the team did not meet

as a whole very often. Even a lack of communication within the sub teams existed for a period of time.

Unfortunately, this disorganization hindered the progress of the project at times. Miscommunications

caused problems throughout the year. While senior-engineers were elected each term to serve as

organizational leaders of the sub-teams, this approach proved to be flawed. The senior-engineers had to

divide their time between technical and organizational aspects of the project, and as a result both parts

faltered. In hindsight, the team could have employed a project architect who would be in charge of

organization and responsible for resolving technical disputes. A project architect would have

streamlined many of the team’s major technical decisions, while designing to a fixed set of

specifications. As any difficulties arise, the project architect would be tasked with devising a solution

instead of having all the sub-teams struggle to reach a consensus. With a project architect and engineers

putting their full efforts towards their prospective tasks, WAVE could have enjoyed more success.

205

10.2.2 Scope

One problem encountered with such a large team was an overestimation of the project’s scope. The

strong inter-team dependencies caused large decisions to be decided upon in an untimely manner.

Because of this, a lot of the team’s goals were unable to be accomplished. With such a large scope,

problems inevitably arise. The team underestimated the amount of time needed to complete certain

tasks. For example, creating WAVE’s platform from scratch hindered the fully integrated systems testing.

If the scope of the project had been to create a platform, the goal would have been more easily

obtained. Even though the team understood that certain goals would not be reached, the expectation

was still to have a fully functioning platform by the end of the year. The combination of high

expectations and a large scope set the team up for disappointment at different times. With a more

reasonable scope, WAVE would have more completed features. Future teams should take this fact into

account when planning to work on WAVE.

10.2.3 Documentation

Many may not see this problem at this point in time, but the documentation throughout the early stages

of WAVE’s development was not particularly strong. With the teams meeting on an infrequent basis,

questions could have been answered better through online documentation. The team had a Microsoft

SharePoint page. While SharePoint was used to share important documents, this communications tool

was not utilized strongly at first. Rather than keep important decisions documented, the sub-teams

would schedule meetings that sometimes took weeks to happen and wasted valuable time. When this

process was deemed to be ineffectual, the team began to utilize the wiki-pages on the SharePoint to

store meeting minutes. Whenever a sub-team had an important question, they could reference the

notes before scheduling an unnecessary meeting. This reevaluation allowed for the team to utilize time

better for WAVE, but the time lost in the beginning of the year would have to be made up for.

Documentation will be important for future WAVE teams in order to better utilize their time.

206

10.2.4 Unfamiliar Embedded Environment

While LPCXpresso is a highly touted software development tool, the decision to use this unfamiliar

embedded environment was, in retrospect, not a wise one. The major advantage of using Eclipse as the

high-level software environment was familiarity with the software. WPI utilizes Eclipse for all robotics

classes as well as numerous programming classes. Therefore, if a problem appeared, the team would

have multiple resources to help fix the situation. With LPCXpresso, no one was available to help resolve

problems. This lack of help, coupled with inexperience with the software, led to many problems. Code-

Red’s technical support was not very helpful in resolving these issues as well. Due to the choice to use

the free software over the paid versions, the project was not deemed as a priority by Code-Red. If the

team had chosen software and a development environment that was more familiar, fewer problems

would likely have appeared, and people and resources would be available to help solve any difficult

problems.

10.2.5 Funding

Sponsorships were a key component to aiding the team’s budget issues; however, not enough people

obtained outside funding. A few individuals got sponsors, which were huge developments, but everyone

should have been actively looking to get funding. The team had to buy many components out of pocket.

Due to the lack of funds between the team members, the optimal components could not be purchased

in every scenario. With a more active pursuit of outside funding, WAVE’s infrastructure would be

comprised of the most optimal components.

10.2.6 Budget Management

Although the small amount of funding was a problem, the bigger problem was budget management.

Even though the project consisted of three sub-teams, the budget was allocated for the entire group. As

a result, reckless spending ensued. Sub-teams ended up spending more money than was allocated for

them, and the team ended up in debt to the robotics department. Shortly after, a budget manager was

207

appointed, and the budget was balanced. Having a budget manager was a great change, and this

reassessment allowed the team to make purchases more carefully. Future WAVE teams should appoint

someone to this position from the beginning of their project.

10.3 Possible Changes

As with any project, the team noticed opportunities that weren’t be maximized. Possible changes to

procedures would allow for optimal efficiency. All of these changes were briefly touched upon in the

reconsideration section. These possibilities should be strongly evaluated by teams wishing to continue

the development and use of WAVE.

10.3.1 Stronger Organization

The team felt that the organization of the project was a problem. The individual sub-teams were

organized, but there were inconsistencies at the group level. Stronger organization should be an

important factor in the future. The project team needs to meet on a regular basis. Documentation must

also be better. It would be a good idea to employ a management major on the team to be in charge of

all organization. Additionally, budget management must be taken into consideration at all times.

Basically, every aspect of the project must be more organized. In the future, teams should plan the

organization process in the year before undertaking the project. Working on WAVE requires

organization at all times, and teams cannot afford to fall behind at any point in the project.

10.3.2 More Communication

Communication is extremely important with a large team but was not properly executed throughout this

project. Firstly, sub-teams need better communication with each other. Many design decisions had to be

postponed because of uncertainties with the other teams’ specifications and abilities. Communication

on a regular basis would solve this issue. The communication between students and advisors could have

also been better. Certain requirements for the project were ignored for a long time because no one was

208

asking questions about them. Assumptions were made that some criteria might not be necessary

without any confirmation. WAVE teams should make sure to communicate with their advisors beyond

the general body meetings and not be afraid to ask questions about any uncertainties.

10.3.3 Strongly Enforced Deadlines

Many deadlines were set throughout the year, but they were not strongly enforced. Frequently, teams

would miss a deadline, and WAVE’s progress was stifled. Deadlines did not appear to be important from

all sides of the project giving people no incentive to complete them on time. Managers need to be able

to keep people accountable for their deadlines. A suggestion for future teams is to develop a system

where individual progress is measured as well as team progress. A Gantt chart was discussed but never

implemented. Such a chart would serve as physical evidence of an individual’s contributions and

setbacks, and everyone would be held more accountable.

10.4 Accomplishments

This project achieved many technical goals in the first year of WAVE’s implementation. These

accomplishments go a long way in showing proof of concept for WAVE’s design and analysis. Future

teams will be able to observe these achievements and obtain a better understanding of what they can

accomplish with WAVE.

10.4.1 Chassis

The frame was successfully assembled in the configuration necessary to seat the electronics housing and

to allow the motors and ballast tank to be properly attached. The 80/20 brand aluminum gives latitude

for the placement of the components and later modules. The electronics housing was machined to

specifications and the connectors were attached to the front plate. Fittings were machined to attach the

electronics housing to the frame.

209

10.4.2 Software Framework

The software team was successful in utilizing the NRSDK. The most relevant aspects of this framework

were incorporated into the code design. More specifically, the AHD design and several task classes are

the objects that implement the NRSDK. The main aspects utilized from this framework were the DyIO

controls, serial connections, channel controls and representation of a Bowler abstract device.

10.4.2.1 Communications

The Bowler Communications Protocol was the major component in the development of communications

for WAVE. The software team found success in developing several serial methods of exchanging data.

Custom RPCs can be developed for the appropriate robot tasks and then uploaded to a DyIO. The RPCs

can then be tested by creating an appropriate task for that RPC. Additionally, communication between

the IMU and the GUI has also been developed, with the GUI receiving the appropriate data.

The software team was successful in developing an ObjectServer. The server was

responsible for accepting GUI connections. With each GUI, the server spawns a thread. Upon a new

connection, an ObjectPipeEndpoint object is spawned to handle communications between the

GUI and the robot. As each GUI starts, it initiates a connection to be accepted by the ObjectServer.

The new GUI is accepted by the server and it passes responsibility for all further connections to the

ObjectPipeEndpoint.

The Model View Controller design pattern was successfully utilized as well. In WAVE’s case, the view is

the GUI, and the controllers are the environment in which the robot operates. Sensors detect any

changes and update the appropriate models. These updated models are then sent to all connected GUIs

and the view is updated. This MVC pattern is slightly modified to include a network socket. This socket

serves as a “gate” through which all models are transmitted to the GUIs. The

210

ObjectPipeEndpoints are responsible for serializing the given models, transmitting them across

the network, and de-serializing the objects when they arrive at the GUI.

A new class, TypeObservable, was designed in order to facilitate the distribution of new objects

from an ObjectPipeEndpoint. When a TypeObserver registers with a TypeObservable

object, they include an example object of the type of object they would like to observe for. The

TypeObserver pattern enables the ObjectPipeEndpoint to distribute new objects as they are

sent to the various poolside interfaces. While these endpoints are bi-directional, it does not enable the

GUIs to command the robot in any way.

10.4.2.2 GUI

The GUI accomplished several major things. WAVE’s poolside interface is successfully able to

communicate with the robot. The GUI can receive mission progress, system uptime and log messages.

All of the components update based on the robot status. The attitude indicator updates based on data

received from the IMU. The mission tasks update as the robot progresses through them. All messages

are sent to the log, even if they’re sent at the same time or from different threads. Log filters are

implemented, and filter messages based on their type, such as error or task status. System uptime starts

as soon as the main robot code is started, and then successfully synchronizes between GUIs, depending

on the time that they connected to the robot. The emergency stop button correctly creates an E-Stop

event and is put into the log.

10.4.2.3 Task Management

WAVE’s software system is successfully able to manage a series of tasks as part of a larger mission.

These missions are fully customizable by users and can be easily swapped allowing WAVE to change its

functionality without having to modify and recompile code. WAVE is able to take a list of synchronous

and asynchronous tasks, and successfully iterate through them. Asynchronous tasks are started in their

own threads while synchronous tasks are iterated through in order. Creating new types of tasks is simply

211

a matter of creating a new Java class that extends the abstract task class and implementing whatever

functionality is needed, allowing for easy expandability to handle more varied and complex tasks in the

future as WAVE’s capabilities grow.

10.4.3 Electronics Housing

The electronics housing is a pressure vessel fabricated out of extruded aluminum rectangular tubing

with end-caps attached on either end. The housing was designed and fabricated keeping waterproofing

and thermal considerations in the forefront. Each end-cap had a groove machined, which was then filled

with a silicone gasket to prevent leaks. The housing contains an electronics rack, which is used to

support electrical components of WAVE, including the fit-PC, several sensors to monitor internal

conditions, and all of the PCBs. Several waterproof connectors go through the end-caps in order to

connect the thrusters, ballast system, and any external sensors.

10.4.4 Power System

The power system achieved high modularity and is capable of powering most any mission that WAVE

could embark on. Printed circuit boards capable of sourcing high power were successfully created. With

this, capability to distribute power throughout WAVE’s entire system was achieved. High powered

lithium polymer batteries were obtained and familiarity was gained with this newer battery chemistry.

The requirement of obtaining a run-time of at least 20 minutes was fulfilled. Voltage rails of 18.5V, 12V,

5V, and 3.3V were successfully created and are available throughout the system providing flexibility

when choosing components for future modules.

10.4.5 Sensor Suite

A sensor suite was designed incorporating sensors capable of detecting temperature, humidity, and

compartmental flooding. An AHRS/IMU was chosen and implemented to show working functionality

212

with the GUI. Also a pressure sensor was chosen in order to measure depth. The internal sensor suite

was breadboard tested and proved working functionality as an integrated subsystem.

213

References

[1

]

SINTEF, "Robots Taking Over the Job On Offshore Oil Drilling Platforms," 1 January 2008. [Online].

Available: http://www.sciencedaily.com/releases/2007/12/071221230852.htm. [Accessed 10

December 2012].

[2

]

"Undersea Robots for Deep Sea Exploration," [Online]. Available:

http://www.me.jhu.edu/r_ocean.html. [Accessed 10 December 2012].

[3

]

G. M. Trimble, "Autonomous operation of the Explosive Ordnance Disposal Robotic Work Package

using CETUS untethered underwater vehicle," [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=532396&tag=1. [Accessed 10 December 2012].

[4

]

"Bluefin-12S," [Online]. Available: http://www.bluefinrobotics.com/products/bluefin-12s/. [Accessed

10 December 2012].

[5

]

[Online]. Available: http://openrov.com/page/about. [Accessed 10 December 2012].

[6

]

D. Radu, M. French and B. Habin, "Design of Autonomous Underwater Vehicle and Optimization of

Hydrodynamic Properties and Control," 28 4 2008. [Online]. Available: http://www.wpi.edu/Pubs/E-

project/Available/E-project-042809-153324/unrestricted/Final_Report_sub@WPI09.pdf. [Accessed

22 4 2013].

[7

]

"Video Ray ROV," 2009. [Online]. Available: http://www.wesurveys.co.uk/ROV_1_25pc.jpg. [Accessed

4 April 2013].

214

[8

]

"Project: ORCA-2," 1999. [Online]. Available: http://web.mit.edu/orca/www/2000_comp1999.shtml.

[Accessed 4 April 2013].

[9

]

"Autonomous operation of the Explosive Ordnance Disposal Robotic Work Package using CETUS

untethered underwater vehicle," 10 Dec 2012. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=532396&tag=1. [Accessed 22 4 2013].

[1

0]

National Commission on the BP Deepwater Horizon Spill and Offshore Drilling, "The History of

Offshore Oil and Gas in the United States," [Online]. Available:

https://docs.google.com/viewer?a=v&q=cache:L-

XORMFenMoJ:www.eoearth.org/files/154601_154700/154673/historyofdrillingstaffpaper22.pdf+&hl

=en&gl=us&pid=bl&srcid=ADGEESiw2DtN1iVzllRwUB1WIYQszAbgHRMClL8dxK3CUAVFPuZS8zmnf-

52HocZKph53OQ_CqXQPdbTB_sVLt-T2fpCNcPB. [Accessed 11 December 2012].

[1

1]

L. Allsop, "Hi-tech robots search ocean floor for ancient shipwrecks," [Online]. Available:

http://articles.cnn.com/2010-11-18/tech/titanic.robots.shipwrecks_1_historic-shipwrecks-rms-

titanic-ocean-floor?_s=PM:TECH. [Accessed 2012 Dec 11].

[1

2]

"Robots dive into marine science," [Online]. Available:

http://www.vims.edu/features/research/marine-robots.php. [Accessed 8 December 12].

[1

3]

S. Gittings, "Remotely Operated Vehicles (ROVs)," [Online]. Available:

http://oceanexplorer.noaa.gov/technology/subs/rov/rov.html. [Accessed 28 9 2012].

[1

4]

"About us," [Online]. Available: http://www.auvsi.org/home/aboutus. [Accessed 29 September 2012].

215

[1

5]

Association for Unmanned Vehicle Systems International, "History," [Online]. Available:

http://www.auvsi.org/Home/History. [Accessed 29 September 2012].

[1

6]

AUVSI Foundation, "Robosub," [Online]. Available:

http://www.auvsifoundation.org/foundation/competitions/robosub. [Accessed 26 September 2012].

[1

7]

V. P. Shah, "Design Considerations for Autonomous Underwater Vehicles," [Online]. Available:

http://dspace.mit.edu/bitstream/handle/1721.1/39893/182543456.pdf. [Accessed 29 September

2012].

[1

8]

"Bluefin-21," 2013. [Online]. Available: http://www.bluefinrobotics.com/products/bluefin-21/.

[Accessed 17 4 2013].

[1

9]

Woods Hole Oceanographic Institute, "SENTRY," [Online]. Available:

https://www.whoi.edu/fileserver.do?id=56044&pt=10&p=39047. [Accessed 20 4 2013].

[2

0]

S. Dawicki, 2006 September 1. [Online]. Available: http://www.whoi.edu/main/news-

releases/2006?tid=3622&cid=16409. [Accessed 2013 20 4].

[2

1]

A. Tarantola, "Bioswimmer," [Online]. Available: http://gizmodo.com/bioswimmer/. [Accessed 2013

April 20].

[2

2]

C. Barngrover, "The Stingray Project," 29 4 2008. [Online]. Available:

http://cseweb.ucsd.edu/~cbarngrover/masters/research.html. [Accessed 22 4 2013].

[2

3]

R. Boyle, "Coming Soon: Robot Sea Turtles That Carry Cargo in Their Shells," 10 4 2012. [Online].

Available: http://www.popsci.com/technology/article/2012-10/robot-sea-turtles-carrying-cargo-

216

their-shells-are-more-awesome-robot-fish. [Accessed 22 4 2013].

[2

4]

FESTO, "AquaPenguin," [Online]. Available:

http://www.festo.com/rep/en_corp/assets/pdf/AquaPenguin_en.pdf. [Accessed 22 4 2013].

[2

5]

AUVSI and ONR, "Engineering Primer for AUV Team Competition," July 2007. [Online]. Available:

http://higherlocifdownload.s3.amazonaws.com/AUVSI/fb9a8da0-2ac8-42d1-a11e-

d58c1e158347/UploadedImages/Support_Primer_r1.pdf. [Accessed 29 September 2012].

[2

6]

"DRDO," 30 January 2012. [Online]. Available: http://spsmai.com/exclusive/?id=31&q=DRDO-ready-

to-demonstrate-indigenous-AUV. [Accessed 4 April 2013].

[2

7]

L. Billings, "Deep-sea Discoveries on Expedition Using ASTEP AUVs," 8 July 2008. [Online]. Available:

http://astrobiology2.arc.nasa.gov/articles/deep-sea-discoveries-on-expedition-using-astep-auvs/.

[Accessed 14 March 2013].

[2

8]

"MOHAWK," [Online]. Available: http://www.f-e-t.com/our_products_technologies/subsea-

solutions/rovs-observation/mohawk/. [Accessed 4 April 2013].

[2

9]

AUVSI/ONR, "AUVSI/ONR Engineering Primer Document," AUVSI/ONR, 2007.

[3

0]

IRobot, "1KA Seaglider," [Online]. Available:

http://www.irobot.com/us/robots/Maritime/Seaglider.aspx. [Accessed 29 September 2012].

[3

1]

Wm. Olds & Sons Pty. Ltd., "ROV and AUV Thrusters," [Online]. Available:

http://www.olds.com.au/marine/ROV_AUV_Thrusters.html. [Accessed 22 April 2013].

217

[3

2]

U. o. Washington, "Applied Physics Laboratory, University of Washington," [Online]. Available:

http://www.apl.washington.edu/projects/seaglider/summary.html. [Accessed 22 April 2013].

[3

3]

Applied Physics Laboratory, "Seaglider," [Online]. Available:

http://www.apl.washington.edu/projects/seaglider/summary.html. [Accessed 22 April 2013].

[3

4]

A. Tarantola, "Is This Tuna-Bot the Future of US Harbor Security?," 21 September 2012. [Online].

Available: http://gizmodo.com/5945095/is-this-tuna+bot-the-future-of-us-harbor-security. [Accessed

22 April 2013].

[3

5]

Alcen, "SeaExplorer," [Online]. Available: http://acsa-alcen.com/robotics/seaexplorer. [Accessed 28

November 2012].

[3

6]

B. Martin, "Model Submarine Diving Technology," [Online]. Available: http://www.rc-

sub.com/resources/index.php5. [Accessed 22 April 2013].

[3

7]

P. Chotikarn, W. Koedsin, B. Phongdara and P. Aiyarak, "Low Cost Submarine Robot," Songklanakarin

Journal of Science and Technology, Songkla, 2010.

[3

8]

Bluefin Robotics, "Energy," [Online]. Available: http://www.bluefinrobotics.com/technology/energy.

[Accessed 29 September 2012].

[3

9]

X. Wang, "Review of Power Systems and Environmental Energy Conversion for unmanned underwater

vehicles," [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1364032111006095

. [Accessed 18 September 2012].

[4 "TAUVROS SAUV Configuration," [Online]. Available: http://auvac.org/configurations/view/222.

218

0] [Accessed 28 November 2012].

[4

1]

"First Underwater AUV Powered Entirely by Ocean's Thermal Energy," [Online]. Available:

http://www.rovworld.com/article4168.html. [Accessed 29 November 2012].

[4

2]

B. University, "Comparison Tables of Secondary Batteries," Battery University, [Online]. Available:

http://batteryuniversity.com/learn/article/secondary_batteries. [Accessed 20 September 2012].

[4

3]

L. A. Gish, "Design of an AUV Recharging System," [Online]. Available:

http://dspace.mit.edu/bitstream/handle/1721.1/33445/62887131.pdf. [Accessed 18 April 2013].

[4

4]

Microsoft, "Product Information," [Online]. Available: http://www.microsoft.com/robotics/#Product.

[Accessed 22 April 2013].

[4

5]

M. Somby, "A Review of Robotics Software Platforms," [Online]. Available:

http://www.linuxfordevices.com/c/a/Linux-For-Devices-Articles/A-review-of-robotics-software-

platforms. [Accessed 28 September 2012].

[4

6]

"Robotic Sub running Devian wins International Competition," [Online]. Available:

http://cuauv.ece.cornell.edu/node/1848/. [Accessed 2 October 2012].

[4

7]

ROS.org, "About ros.org," [Online]. Available: http://www.ros.org/wiki/About%20ros.org. [Accessed

22 April 2013].

[4

8]

Neuron Robotics, "Bowler Communications System," 16 May 2012. [Online]. Available:

http://wiki.neuronrobotics.com/Bowler_Communications_System. [Accessed 22 April 2013].

[4 E. B. A. Y. N. Morgan Quigley, "STAIR: Hardware and Software Architecture," AAAI, 2007.

219

9]

[5

0]

S. U. Computer Science Department, "ROS: An Open-Source Robot Operating System.," September 28

2012. [Online]. Available: http://pub1.willogarage.com/~konolige/cs225B/docs/Quigley-icra2009-

ros.pdf.

[5

1]

W. Contributors, "XML-RPC," 27 September 2012. [Online]. Available:

<http://en.wikipedia.org/wiki/XML-RPC>.

[5

2]

Neuron Robotics, "About Us," [Online]. Available: http://www.neuronrobotics.com/about/.

[5

3]

J. R. Welty, C. E. Wicks, R. E. Wilson and G. L. Rorrer, Fundamentals of Momentum, Heat Transfer, and

Mass Transfer, 5th edition, Jon Wiley & Sons, Inc., 2007.

[5

4]

"ABout Trolling Motors," [Online]. Available: www.trolling-motor.info . [Accessed 2013 4 22].

[5

5]

S. Fitzgerald, "Keyboard Logout," Arduino, 7 April 2012. [Online]. Available:

http://arduino.cc/en/Tutorial/KeyboardLogout. [Accessed 22 April 2013].

[5

6]

"Neuron Robotics Development Kit," 2012. [Online]. Available:

http://www.neuronrobotics.com/neuronrobotics/store/nrdk/.

[5

7]

B. Systems, "IP (Ingress Protection) Ratings," 2013. [Online]. Available:

http://www.bluesea.com/viewresource/117 . [Accessed 10 April 2013].

[5 SINTEF, "Robots Taking Over The Job On Offshore Oil Drilling Platforms," 1 January 2008. [Online].

220

8] Available: http://www.sciencedaily.com/releases/2007/12/071221230852.htm. [Accessed 10

December 2012].

[5

9]

John Hopkins University, "Department of Engineering," [Online]. Available:

http://www.me.jhu.edu/r_ocean.html. [Accessed 10 December 2012].

221

Appendix A: Chassis Design Matrix

The weights for each item are determined in Table 19. Each individual rated each criterion. The average

of these values was used as the weight for that item.

Table 19: Chassis Design Matrix - Weight Determination

Mechanical Electrical Software Avg Criteria

AC CL CO LM SB AV BM IE NS AT DM EO

8 9 8 6 9 7 7 8 Battery Access

10 9 8 5 10 6 9 8 Electronics Housing Access

8 8 8 9 9 8 6 8 Module Placement

8 8 9 8 8 6 8 8 Part Replacement

5 4 7 5 7 7 5 6 Waterside approach/retrieval

7 6 9 4 8 6 7 7 Ease of manufacturing

4 4 3 3 7 7 3 4 Hydrodynamic shrouding

3 3 5 3 1 5 3 3 Hydrodynamics without many modules

 3 3 6 10 5 1 5 Hydrodynamics with many modules

9 8 5 4 5 6 7 6 Level of design simplicity

8 6 7 7 8 8 5 7 Ruggedness

5 6 7 7 7 8 7 7 Buoyancy Redistribution

6 3 4 6 1 2 4 4 Rule of Cool

10 7 4 2 9 4 6 6 Gut Feeling

Each team rated the three designs based on the criteria. Table 20 shows Boxy, Table 21 shows

Roddy and Table 22 shows Octopuck.

222

Table 20: Chassis Design Matrix - Boxy

Mechanical Electrical Software Avg W.
Avg

Criteria

AC CL CO LM SB AV BM IE NS AT DM EO

8 8 7 10 8 9 8 8 4 7.8 60.0 Battery Access

10 8 5 10 6 9 9 7 6 7.8 63.3 Electronics Housing
Access

7 8 7 10 7 8 6 8 7 7.6 60.4 Module Placement

7 8 10 10 5 8 7 7 5 7.4 58.5 Part Replacement

10 8 6 10 8 9 7 7 5 7.8 44.4 Waterside
approach/retrieval

10 9 10 10 8 10 8 8 9 9.1 61.2 Ease of
manufacturing

5 4 7 9 6 7 9 8 8 7.0 31.0 Hydrodynamic
shrouding

5 5 5 8 7 7 6 7 5 6.1 20.1 Hydrodynamics
without many

modules
 3 3 7 5 6 7 4 5.0 23.3 Hydrodynamics with

many modules
7 8 7 10 8 8 8 8 9 8.1 51.0 Level of design

simplicity
10 7 7 10 7 9 8 9 8 8.3 58.3 Ruggedness

9 7 8 10 8 9 9 8 8 8.4 56.7 Buoyancy
Redistribution

4 2 2 10 4 7 5 8 4 5.1 19.0 Rule of Cool

7 8 7 10 5 8 6 10 6 7.4 44.7 Gut Feeling

 103 651.97

223

Table 21: Chassis Design Matrix - Roddy

ME ECE CS Avg W. Avg Criteria

AC CL CO LM SB AV BM IE NS AT DM EO

6 8 7 5 7 5 6 6 7 6.3 48.9 Battery Access

6 8 5 6 6 7 4 6 8 6.2 50.7 Electronics Housing
Access

6 7 5 5 6 5 5 5 8 5.8 46.2 Module Placement

5 5 3 5 7 5 5 5 8 5.3 41.9 Part Replacement

10 8 7 7 7 8 6 4 4 6.8 38.7 Waterside
approach/retrieval

9 8 4 9 8 8 7 7 5 7.2 48.5 Ease of
manufacturing

10 10 3 7 7 9 8 6 3 7.0 31.0 Hydrodynamic
shrouding

10 9 7 7 6 10 8 8 4 7.7 25.2 Hydrodynamics
without many

modules

10 8 4 7 6 8 8 8 2 6.8 31.6 Hydrodynamics with
many modules

10 8 5 7 8 9 7 6 4 7.1 44.7 Level of design
simplicity

7 6 4 7 3 6 5 4 3 5.0 35.0 Ruggedness

8 10 2 7 6 8 8 7 4 6.7 44.8 Buoyancy
Redistribution

5 9 7 5 1 7 5 6 8 5.9 21.9 Rule of Cool

6 8 5 5 1 5 7 6 3 5.1 30.7 Gut Feeling

 89 539.69

224

Table 22: Chassis Design Matrix - Octopuck

ME ECE CS Avg W. Avg Criteria

AC CL CO LM SB AV BM IE NS AT DM EO

8 8 6 9 2 9 8 7 4 6.8 42.9 Battery Access

8 8 5 7 2 9 8 6 4 6.3 39.4 Electronics Housing
Access

8 8 9 7 7 8 8 7 7 7.7 44.3 Module Placement

8 7 8 6 7 8 8 7 5 7.1 37.9 Part Replacement

8 7 5 8 7 9 7 7 5 7.0 47.4 Waterside
approach/retrieval

7 6 6 8 6 7 7 6 8 6.8 49.0 Ease of manufacturing

7 5 6 6 7 8 8 5 7 6.6 45.9 Hydrodynamic
shrouding

6 5 7 6 5 8 8 5 6 6.2 47.7 Hydrodynamics without
many modules

6 4 6 6 5 7 6 5 5 5.6 37.7 Hydrodynamics with
many modules

6 5 5 7 6 8 8 5 7 6.3 45.0 Level of design
simplicity

8 7 6 8 4 9 8 7 8 7.2 36.1 Ruggedness

9 9 10 8 7 10 9 7 7 8.4 56.3 Buoyancy Redistribution

8 5 8 4 1 10 5 4 6 5.7 33.4 Rule of Cool

8 7 6 4 2 9 6 4 7 5.9 30.1 Gut Feeling

 94 593.11

225

Appendix B: Ballast Design Matrix

This design matrix uses a scale of 1 to 5, where 1 is bad and 5 is good. Cost is the estimated expense to

create the system. The manufacturability is how easy it is to fabricate the system. The in-mission

flexibility is the ability of the system to trim while in the water. Payload range is how much control of the

buoyancy system there is before the craft is placed in the water.

Table 23: Ballast Design Matrix

Weights A
n

n
a

C
h

ri
s

C
o

ry

Li
sa

Si
d

n
ey

 To
ta

l

Weighted total

 Full Piston Design

2 Cost 2 2 4 2 2 12 24

3 Manufacturability 2 2 2 2 2 10 30

1 In mission flexibility (trimming) 4 3 4 3 5 19 19

4 Payload Range 2 3 2 2 3 12 48

 Total: 121

 Full Foam Design

2 Cost 5 4 3 3 4 19 38

3 Manufacturability 5 4 4 3 5 21 63

1 In mission flexibility (trimming) 1 1 1 1 1 7 7

4 Payload Range 5 4 4 3 4 20 80

 TOTAL: 186

 Hybrid Design

2 Cost 3 4 5 4 3 19 38

3 Manufacturability 3 4 4 3 3 17 51

1 In mission flexibility (trimming) 3 4 5 5 3 20 20

4 Payload Range 3 5 4 5 3 20 80

 TOTAL: 189

226

Appendix C: fit-PC Feature Comparison

Table 24: Fit-PC Comparison

Device CPU RAM HDD OS Power
Connection

Watts Base
Price

Extras Total

Fit-PC2i
Linux

1.6
GHz

2 GB 250
GB

Linux
Mint

12 Volt 6W low/8W
full/1W standby

397 0 397

Fit-PC2i
Diskless

1.6
GHz

2 GB None None 12 Volt 6W low/8W
full/1W standby

325 50 375

Fit-PC2i SSD 1.6
GHz

1 GB 16GB
SSD

None 12 Volt 6W low/8W
full/1W standby

352 0 352

Fit-PC3 LP
Barebone

1 GHz
2core

None None None Unregulated
10-16Volt

7-15W 381 80 461

Fit-PC3 Basic
4GB

1 GHz
2 core

4 GB None None Unregulated
10-16Volt

8-17W 403 50 453

Fit-PC3 Basic
Barebone

1 GHz None None None Unregulated
10-16Volt

8-17W 369 80 449

Fit-PC3 value
Barebone

1.2
GHz

None None None Unregulated
10-16Volt

8-17W 328 80 408

The extras considered were 2 GB of RAM for $30, and a 32 GB solid state drive for $50. The Fit-

PC3 Basic 4GB was chosen, and a 64 GB solid state drive was purchased for only slightly more than the

32GB drive would have been. This PC was chosen due to it being the most powerful model that also fit

WAVE’s power constraints.

227

Appendix D: Waterside Deployment and Recovery SOP

D1. Preparations

1. Ensure that the deployment team is allowed to use intended body of water ahead of time

2. State launch intentions and day of deployment to whoever may be in charge of the body of

water

3. If anyone will be in the water with the UUV, know ahead of time who they will be

4. Make sure that any batteries are charged

5. Know what configuration is intended to be run and plan the UUV's passive ballast accordingly.

a. If it will be the UUV's first water test using a new module configuration, see step 13

below.

D2. Deployment

1. Transport the UUV to the launch site

2. Inspect the UUV for damage or anomalies

a. Are the end-cap seals clean? If not, clean them. Remove debris such as hair or sand.

Compressed air and/or alcohol swabs can help here

b. Are components securely fastened? Try jiggling them. Check screws and other metal

components for harmful corrosion. If so, …???

c. Do the LiPo batteries look "puffy"? If so, that's very bad. Do not use. For more info on

battery safety, reference Appendix E1.1 Charging Safety IMPORTANT!.

d. Before inserting the electronics rack into the housing, visually inspect the boards and

wires. Are there any burnt spots or areas that look like they may short? Use the GUI and

warning LEDs to determine if there is a problem. If so, carefully inspect each component

and identify the problem(s). Regardless, keep the electronics rack outside of the

housing.

e. Is there any sign of moisture inside the electronics housing? If so, carefully dry the

interior. Leave end-caps off until completely dry.

3. Install the batteries

4. Power up the computer and electronics

228

5. Perform a computer systems check

a. Is the computer responding? Check if the fit-PC’s lights are on and if the CPU is

communicating with the poolside user interface.

b. Is the correct subsystems configuration loaded? Check the GUI to make sure.

c. Are online systems nominal? As with the previous checks, use the GUI to ensure no

problems are occurring.

6. Connect whatever wires remain to be connected between the end-cap and the electronics rack

7. Enable power and slide the Electronics Rack into its housing

8. Double check that the end-cap seals are clean

9. Seal the main electronics housing. Make sure the end-caps are tightly fastened using the clasps.

10. Perform a second check system check to ensure that high power subsystems report nominal

a. Pulse very briefly the thrusters to ensure that they do indeed work.

11. Notify the nearby vicinity that the UUV is being put into the water

a. If it is being carried or hauled into the water by hand, have two people handle the sub

and a third person spotting or overseeing if possible.

b. If a crane or skyhook is being used, secure the four top corners of the sub using the

provided four-strap system. Have one person steady the UUV as it is lifted and moved.

Keep the crane operator in communication with the steadier. Once in-water, let the lift-

straps hang loose.

12. Make sure the UUV levels itself out. Active ballast should try to do this on its own

a. If it is the first or second time the particular module configuration is used, the UUV

should be deployed in calm shallow water, ~1.2m (4 ft) deep, and two people should be

in the water with it to adjust passive ballast. The craft should be approximately neutrally

buoyant, approximately level in pitch (tilt up/down), and as level as possible in roll (tilt

side to side).

b. If a crane was used, remove the support straps.

13. WAVE is now mission ready

D3. Recovery

1. Remove the craft from the water and place it in its transport cradle.

229

a. Warning - the housing may be hot.

b. One or two people will have to be in or near the water to either retrieve the craft or

hook it up to the crane.

2. Thoroughly rinse the UUV off with fresh/ hose water

3. Retreat from the immediate waterside location

4. Dry off the UUV somewhat (stop drippings) with particular attention to the end-cap areas and

wires

5. Open the electronics housing, taking care not to drip onto its contents.

6. Switch off the high current switch

7. Download log files and any other data from the computer then power it all down such that the

batteries may be safely removed

8. Remove the batteries. Set them aside for cool down or charging (in a dry area!)

9. Secure the UUV and its components for transport

10. Notify body of water's authority that you have concluded your session

230

Appendix E: User Manuals

E1. How to Safely Use Lithium Polymer Batteries

E1.1 Charging Safety IMPORTANT!

The primary cause of lithium polymer fires is due to overcharging, so follow these instructions carefully!

1. Use charger that is approved for lithium batteries. The charger may be designed for Li-Ion or

LiPo, because they charge in the same way. Do NOT use NiCd or NiMH chargers. Charging is one

of the most hazardous parts of using lithium batteries; this is why using the correct charger is

the first step to safety.

2. Inspect batteries visually before each charge. Ensure there are no physical defects in the

balancing connections, wires, or packaging.

3. Place batteries into LiPo safety bag. In the case that an explosion does happen, the fire will be

(mostly if not completely) contained.

4. Use a safe surface to charge your batteries. If explosion does occur, the least amount of

damage will be done.

5. NEVER charge the batteries unattended. Always monitor the batteries while charging. If

batteries start to puff or if smoke is seen, promptly disconnect the batteries. If a cell balloons

quickly, place it in a fire safe place if possible. After you have let the cell sit in the fire safe place

for at least 2 hours. Discharge the cell/pack slowly to 3V per cell and then throw the battery

away.

231

6. Ensure that the cell count on the charger is correct. The 10000mAh Gens Ace LiPos are 5S,

meaning they are made of 5 individual cells connected in series within the pack. Ensure that the

charger reflects 5 cells.

7. Watch the charger very closely for the first few minutes of operation to ensure that the

correct cell count continues to be displayed. If the cell count changes, stop charging, reset the

charger information, and try again while continuing to closely monitor the charger and battery.

8. Check the voltage of each individual cell on the charger and ensure they are equal. If they are

not within 0.2V of each other, then they are not equal and should be balanced before

proceeding to charge. If they are not properly balanced before charging, over discharging may

happen and the battery may explode even if correct cell count is chosen on charger. Do not

measure individual voltages from balancing plug using volt meter probes because cells might

accidentally be shorted in the process. Note: If the pack is unbalanced after every discharge, a

cell is faulty and the battery pack should be replaced.

9. Charge at 1-3C as recommended from the battery manufacturer. The batteries are 10000mAh;

therefore, 1C=10A, 2C=20A, and 3C=30A. Do not exceed 30A.

10. Do NOT exceed 4.2V for each individual cell and do not drain any cell under 3.0V (without

load). These are the maximum and minimum operating conditions for each LiPo cell. Over

charging may lead to thermal runaway and cell rupture, which can lead to combustion. Over

discharging may short a cell, which can also lead to combustion.

11. Do NOT fully charge in cold temperatures. Voltage increases with temperature. If the batteries

are fully charged in a colder temperature and then moved to a warmer temperature, this will

have the same effect as over discharging the batteries and can result in battery damage and

explosions.

12. DO NOT puncture the cell, ever. It may puff quickly and then explode. If a cell balloons quickly,

place it in a fire safe place if possible. After you have let the cell sit in the fire safe place for at

least 2 hours. Discharge the cell/pack slowly to 3V per cell and then throw the battery away.

13. Keep batteries from being struck in any way. If batteries are jostled, through a crash, through

being dropped, etc., carefully monitor the batteries’ behavior for at least 20 minutes. The

232

batteries may appear to have no damage, but it is possible that they are shorted inside. Ensure

that they are behaving normally.

14. Avoid water. Though the packs are water proof, avoid getting water on them. Pure water is

non-conductive and will not do anything to the batteries, but pool water can be conductive and

if both terminals are submerged, the battery will short and possibly lead to combustion. If

batteries do get wet with, dry them completely before use.

15. Charge your batteries in an open ventilated area. If a battery does rupture or explode,

hazardous fumes will spew from the battery.

16. Keep an ABC fire extinguisher nearby, but not too close to the batteries. In the event that a

battery does explode and fire escapes the LiPo safety bag, use the fire extinguisher. The LiPo

battery itself will continue to burn until the battery has no energy left, regardless of the

extinguisher; however, the extinguisher will keep the fire from spreading. Keep the extinguisher

close enough that it can quickly be obtained to respond to the fire, but not so close that it is

within the flames of the fire itself!

17. Do not charge near flammable substances.

18. Do not think “it won't happen to me”. This thought leads to not following the proper procedure

for safely using LiPo and is the underlying cause for many LiPo fires.

E1.2 Guidelines for Storage and Transportation

1. Fully charge batteries, and then discharge between 50%-60% of their capacity for long term

storage. Discharge to 30% for flights.

2. Keep at room temperature ideally between 0°C - 21°C, 40°F- 70°F. Do not exceed 120°F.

3. Do not leave in direct sunlight for extended periods of time.

4. Always store in LiPo safety bag or fire proof container. Never leave them loosely lying around.

5. Ensure all connectors are covered. This prevents accidental shorts which could lead to

combustion.

6. Do not store next to combustible material.

7. Never leave in vehicle indefinitely. Temperature of vehicle can easily rise above LiPo safety

temperature of 120°F.

233

E1.3 Guidelines for Battery Disposal

1. Discharge to 0V with a low load across the pack.

2. Slice small incision through the outer pouch along the edge where the blade cannot

accidentally go into the plates.

3. Drop the pack with incision into a container of salt water to completely discharge the pack.

4. Throw battery away.

E1.4 Detailed Steps for Charging

Turn Power Supply on.

Press the two middle buttons in to configure the channels in parallel.

234

Use right current and voltage knobs to set the output to 21V and 2.5A (for a total of 5A).

Get the charger.

235

Plug in the battery connection power cables.

Plug the power cables of the charger into the power supply.

Turn Power Output on. iCharger will turn on. The screen will light up with a display.

236

Connect the battery extension to the battery balancing plug.

Insert the extended balancing plug into the charger.

Connect the battery to the charger.

237

Place battery into the LiPo safety bag.

Tuck wires into the side of the pouch closing.

Seal the bag closed.

238

Press “Inc” until the “PROGRAM SELECT Lithium battery” screen is displayed.

Press “Inc” until “LiPo BALANCE CHG” screen appears. Ensure that the screen displays the 18.5V(5S)

option for charging WAVE’s batteries. Also, ensure everything is connected properly and voltage and

current is correct. Hold “Start” for 3 seconds to begin charging.

Screen will look like below.

239

Press “Inc” to view voltage of individual cells.

 Press “Stop” when LiPo reaches 21V (4.2V per cell). After pressing “Stop”, disconnect the battery

from the charger battery connection—do NOT pull plugs from charger! Then disconnect the balancer,

and then turn the power off to the iCharger. Put everything back in iCharger box when finished.

240

Every 10 Cycles Check the Internal Resistance to monitor aging effects on battery.

Hit leftmost button until “Special modes” is displayed.

Press the Start/Enter button. The MOTOR DRV screen will display. Press “Inc” until the “Measure

Internal resistance” screen is displayed. Hold “Start” down for 3 seconds.

The screen below appears, showing the internal resistance of each cell.

241

E2. LPCXpresso Manuals

E2.1 Installation and Registration

1. Before beginning the installation process, please check to make sure that your device meets the

following requirements:

 Operating System

o Microsoft Windows –

 XP 32-bit (SP2 or greater)

 Vista 32-bit or 64-bit

 Windows 7 32-bit or 64-bit

 Windows 8 32-bit or 64-bit

o Mac OS X

 10.7 (Lion)

 10.8 (Mountain Lion)

o Linux

 Ubuntu 9

 Ubuntu 10

 Ubuntu 11

 Fedora 12

242

 Fedora 13

 System RAM

o 512 MB minimum

o 1 GB recommended

 Hard Disk

o 300+ MB of available space

 Screen/Display Adaptor

o 1024 by 768 minimum recommended

 Internet Connection

o High-speed internet to download and register software

2. Once you have confirmed that your device is compatible, go to the Code Red website and create

an LPCXpresso account, which is necessary to download and register a copy of LPCXpresso.

http://lpcxpresso.code-red-tech.com/LPCXpresso/

3. Now that you have your own LPCXpresso account, you will able to download the installer file.

Under downloads choose LPCXpresso 4 specific to your operating system. (Note: to install for

Linux, the download file needs to be marked as executable using chmod +r). The installation

wizard will open. For the first prompt, simply choose Next.

http://lpcxpresso.code-red-tech.com/LPCXpresso/

243

4. Next you will need to read and accept the License Agreement. Then click Next.

244

5. You will be provided with information regarding LPCXpresso. Read the information then click

Next.

245

6. Now you must choose a destination location for LPCXpresso. You can use the default location or

select Browse to choose another location. When a destination has been chosen, click Next.

246

7. Now you must choose which debug drivers to install. Select Code Red Debug drivers and NXP

LPC-Link drivers by checking the boxes to the left of them. Then click Next.

247

8. You will then be prompted to select the start menu folder. It is recommended that you use the

default location, which is the destination folder from earlier, but if you want to choose a

different location choose Browse. Afterwards click Next.

9. You will be provided with the opportunity to select additional tasks for the installation process.

Choose whichever tasks you desire and click Next.

248

10. Review the summary information on the next pane. When you are ready, click Install.

249

11. Wait patiently while LPCXpresso is installed.

250

12. When the installation has finished. Select Launch LPCXpresso and click Finish.

251

13. Once LPCXpresso launches, you will need to activate your copy by selecting Help-> Product

activation -> Create serial number and register.

14. A dialog box will open with your serial number. Please select Open in external browser and Copy

Serial Number to clipboard and then click OK.

252

15. In your browser, click Send me my activation code. Then wait for a code to be sent to the email

address provided for your account.

16. Once you receive your code via email, in LPCXpresso select Help -> Product Activation -> Enter

Activation Code.

253

17. A dialog box will appear prompting you for your 32-digit activation code. Enter your code and

click OK.

18. Congratulations! You have now successfully installed and registered your own copy of

LPCXpresso.

254

E2.2 Creating a New Project

1. In order to create a new project in LPCXpresso, first select File -> New -> Project.

2. The New Project Wizard will then launch. Please Select C/C++ -> LPCXpresso C Project to begin

creating your project. Then click Next.

3. The Abstract Hardware Device utilizes the Cortex-M4 Core. Therefore, select NXP LPC4300

projects -> C Project (Cortex-M4). Then click Next.

255

4. You will then be asked to specify a project name. By choosing to use the default location, the

new project will be saved in your workspace. Name your project and click Next.

256

5. You will then be prompted to select an MCU to configure the project to. Select LPC4330 as the

target and click continue.

257

6. After selecting a target MCU, the wizard will ask for any CMSIS Library’s that you would like to

link the project to. Please select None for both drop-down menus. Also deselect the check-box

to dis able CRP in the target image. Then click Next.

258

7. One last step before your new project is created. Do not select an external memory

configuration file. Also select Enabled_SoftABI for the floating point unit, Default for C Dialect,

and src for User source directory. Click Finish.

259

8. You have now successfully created a new LPCXplorer project. You can see the project folder and

add new source files in the project explorer.

E2.3 Downloading Code via JTAG

1. Before you can download software to the MCU, you must add external flash space to your

project. Right click on your project and select Properties.

260

2. Expand C/C++ Build and select MCU settings. Under MCU settings notice the Memory Details

for the flash driver. Click Edit…

3. A new window should appear. Click Add Flash.

261

4. Notice a new line of Type Flash has been added to the bottom of the Memory Configuration

table. Change the Name to SPIFlash, Location to 0x14000000, and Size to 0x40000. Then click

Up five times until the new flash is at the top of the Memory Configuration. Click OK in both

dialog windows.

262

5. Once you have your AHD and JTAG connected to your CPU, you are ready to begin downloading

your project. To begin the process, click Program Flash icon from the top toolbar.

6. The Program Flash window will open. Select the Use JTAG interface checkbox,

LPC18_43_SPIFI_4MB_64KB.cfx for the Flash Driver, Mass erase for erase options, and the .axf

file generated by your project for the select file. Click OK.

263

7. You have now successfully downloaded code to your board and are able to explore the

functionality of the AHD and LPCXpresso.

264

E3. Eclipse Setup

E3.1 Things you’ll need:

1. The latest copy of eclipse, downloaded and extracted

a. http://www.eclipse.org/downloads/packages/

b. Download “Eclipse IDE for Java Developers”

c. Extract wherever you like

2. An installed JDK (Java Development Kit) (1.6 or 1.7 should do fine)

3. A Google account

4. Internet Access

E3.2 Steps:

E3.2.1 Install Subversion

1. Open up eclipse.

2. Select your workspace location (DO NOT PUT WORKSPACE IN DROPBOX)

3. Help > Eclipse Marketplace > Search “Subversive”

4. Install the highlighted plug-in

http://www.eclipse.org/downloads/packages/

265

5. Restart Eclipse

6. When prompted To “Install Subversive Connectors” select all and install all

E3.2.2 Installing the Google Code Mylyn Connector (Task List and Bug tracking)

1. From Eclipse: Help > Install New Software

2. Enter http://knittig.de/googlecode-mylyn-connector/update/

a. Instructions: http://code.google.com/p/googlecode-mylyn-connector/

3. Follow the instructions to install

4. Restart eclipse

5. On the task list drop down on the right, choose “Add Repository”

http://knittig.de/googlecode-mylyn-connector/update/
http://code.google.com/p/googlecode-mylyn-connector/

266

6. Select Google Code

7. Enter the following credentials (substituting your username and password)

8. Yes, add a Query

9. Choose “Open Issues”

E3.2.3 Checking out the Repository

1. Navigate to https://code.google.com/p/robosub-2012/source/checkout

2. In Eclipse: Window > Open Perspective > Other > SVN Repository Exploring

https://code.google.com/p/robosub-2012/source/checkout

267

3. Use the credentials specified by the Google Code page

a. Use only the URL portion of the Write access section

b. https://robosub-2012.googlecode.com/svn/

c. Use the Google Code Generated password

4. Check out the project as…

5. Check out as a new project in your workspace

https://robosub-2012.googlecode.com/svn/

268

Appendix F: Various ME equations

F1. Hydrostatics and Hydrodynamics

The buoyant force is given by , where is the buoyant force, is the density, is the gravity,

and is the volume.

The simplified continuity equation is , where is the velocity and is the area for the entry

and exit of a control volume.

For an incompressible flow, Bernoulli’s Equation is

 , where is the pressure,

is the density of the fluid, is the velocity, is the acceleration of gravity, and is the elevation relative

to a reference plane.

The drag force is given by

 , where is the drag force, is the density, is the drag

coefficient, is the cross-sectional area perpendicular to the motion, and is the velocity.

F2. Propulsion

The thrust is given by ̇(), where is the thrust, ̇ is the change of mass with

respect to time, and () is the speed of the exhaust fluid relative to the moving object.

The power required to overcome drag is

 .

F3. Heat Transfer

Heat transfer due to conduction is given by (), where is the thermal conductivity

of the material, is the area, is the higher temperature, and is the colder temperature.

269

Heat transfer due to convection is given by (), where is the heat transfer

coefficient, is the area, is the temperature of the surface of the object, and is the temperature

of the environment suitably far from the surface so as to not be affected by it.

Heat transfer from an object due to radiation is given by
 , where is the Stefan-

Boltzmann constant, is the emissivity of the object, is the surface area of the emitting body, and is

the absolute temperature.

Appendix G: Ballast placement

The passive ballast needs to be added incrementally with equal portions attached to the frame as close

to each of the 4 corners of the frame of WAVE as possible. The buoyant foam should be cut into

cylinders of with a diameter between 5 cm to 10 cm depending on needs of the platform for the

research being conducted. These cylinders should be distributed evenly around the top level of the

frame, focusing on keeping distribution mirrored and balanced.

270

Appendix H: Sensors

For the sensors it is necessary to understand each sensor and how it will interface with the board design.

Temperature Sensor – Microchip TC 74

Reference Data Sheet for more Specification

Each temperature sensor communicates with a board via an I2C interface. In order to be able to

use this you will need to set up the code necessary in order to use and I2C with the Arduino Leonardo

Interface. In order to communicate via I2C you will have to follow the following instructions.

i. Plug in and Power up the sensor

ii. Look up the address of the sensor

iii. Use the Wire Library to set up the functionalities in order to communicate with the sensor.

Humidity Sensor- Sparkfun HD100

271

Reference Datasheet for more specifications

The humidity sensor also communicates with the I2C interface.

1) Plug in and Power up the sensor

2) Set Up the pins to communicate with a digital Interface such as the Arduino Leonardo

3) Use the Wire Library to set up the functionalities in order to communicate with the sensor.

4) Set up the Fout pin to communicate with PWM pin.

5) Use the following equation in you code in order to calculate the relative humidity.

Pressure Sensor

272

In order to use the pressure sensor you must first make sure that the sensor is calibrated to the

range in which you plan to measure upon. The pressure sensor that was used within the design was a

loan from NEST and was calibrated to measure between 0 – 15 PSI.

Flood Sensor

 In order to user the Honeywell Flood Sensor you must set up your microcontroller to be able to

read digital outputs.

1) Plug in and Power up the sensor

2) Set Up the pins to communicate with a digital Interface such as the Arduino Leonardo

3) Set one pin to power, one to ground according to the pinout

4) Write code in order to retrieve values from the flood sensor.

273

Appendix I: Accessing Board Schematics

I.1: Design Files and PDF Of Abstract Hardware Device Schematic and Printed Circuit Board Layout

https://github.com/adamjvr/WAVE_Abstract_Hardware_Device

I.2: Design Files and PDF Of Thruster Controller Schematic and Printed Circuit Board Layout

https://github.com/adamjvr/WPI_WAVE_Thruster_Controller

Design Files and PDF Of AHD Shield Development Kit Schematic and Printed Circuit Board Layout

https://github.com/adamjvr/WPI_WAVE_AHDShieldHDK

Design Files and PDF Of Active Ballast Controller Schematic and Printed Circuit Board Layout

https://github.com/adamjvr/WAVE_Ballast_AuxAct_Controller

Design Files and PDF Of Power Supply Boards Schematic and Printed Circuit Board Layout

https://github.com/adamjvr/WPI_WAVE_PowerElectronics

Design Files and PDF Of Navigation & Locomotion Shield Schematic and Printed Circuit Board Layout

https://github.com/adamjvr/WAVE_Navigation_and_Locomotion_Shield

Altium File Viewer Download for viewing Altium files directly

http://www.altium.com/en/products/downloads

https://github.com/adamjvr/WAVE_Abstract_Hardware_Device
https://github.com/adamjvr/WPI_WAVE_Thruster_Controller
https://github.com/adamjvr/WPI_WAVE_AHDShieldHDK
https://github.com/adamjvr/WAVE_Ballast_AuxAct_Controller
https://github.com/adamjvr/WPI_WAVE_PowerElectronics
https://github.com/adamjvr/WAVE_Navigation_and_Locomotion_Shield
http://www.altium.com/en/products/downloads

274

Appendix J: Code

Elements of both the embedded and java code have been discussed throughout the report, particularly

in chapters 5, 6, and 8. Additionally, more details about the code can be found in: E2. LPCXpresso

Manuals, E3. Eclipse Setup, Appendix N: RPCs, Appendix O: Example Mission Files, and Appendix P: Ant

Build File .

In order to access the embedded level software, connect to the Neuron Robotics Bowler

Communication Server SVN at http://nr-sdk.googlecode.com/svn/trunk/. Once access to the SVN has

been established, select trunk -> firmware -> device. Inside this folder is all of the driver software. Test

code such as the echo server can be accessed through the zip files.

To access the Java code you will first have to install a software plugin for eclipse by following the

instructions at the following link: http://code.google.com/p/googlecode-mylyn-connector/. Then go to

the task list and add a repository and select Google code. The credentials you need to access the

database are:

 Project URL: https://code.google.com/p/robosub-2012/

 Label: Robosub

 Then use your personal Google account username and password

http://nr-sdk.googlecode.com/svn/trunk/
http://code.google.com/p/googlecode-mylyn-connector/
https://code.google.com/p/robosub-2012/

275

Appendix K: Bill of Materials

 Propellers

 PVC Connectors

 80/20

 Prototype Parts

 Electronics Housing Tube and Plate

 (2) Ballast Pumps

 (2) Motor Shrouds

 (1) Rubber Diving Brick

 Sylgard-184 Silicone Elastomer, 2-part curing

 (1) Solid State Drive

 Flood Sensor

 (6) Motors

 Heat sinks

 Ethernet Pair Connector

 Waterproof Connectors

 (1) Schottky Diode

 (1) Fire Extinguisher

 Battery Connectors

 Battery Charger

 Thermal Paste

 Pololu DC-DC Converters

 Vicor DC-DC Converters

 (3) Gens Ace LiPo Batteries

 (1) Fit-PC

276

Appendix L: IP Rating

IP is an acronym for "Ingress Protection" against objects and water that intrude into the enclosure of

any type of equipment. It is typically followed by two digits: the first gives an indication as to protection

from solid objects and the second as to water, as can be seen from the diagram below. Since WAVE is a

fully submergible craft, some of its components must have IP68 ratings in order to not take on water.

The IP ratings are defined in the IEC standard 60529, which was developed by the International

Electro-technical Commission

277

Figure 94: BlueSea IP Ratings [57]

278

Appendix M: Budget

M1. Department Breakdown

Table 25: Department Breakdown of Budget

Date Department Vendor Cost Balance

10/9/2012 ECE Micro Controller Pros 63.71 2,016.29

11/1/2012 ECE Sparkfun 15.44 2,000.85

11/7/2012 ECE Digikey 33.00 1,967.85

11/7/2012 ECE Sparkfun 43.59 1,924.26

11/19/2012 CS Compulab 423.00 1,501.26

12/5/2012 ECE Advanced Circuits 169.92 1,331.34

12/5/2012 ECE Newark 39.37 1,291.97

12/5/2012 ECE Digikey 9.54 1,282.43

12/5/2012 ECE Mouser 192.69 1,089.74

12/10/2012 ECE Infotech 25.42 1,064.32

12/12/2012 ECE Ebay 11.98 1,052.34

12/12/2012 ECE Digikey 44.63 1,007.71

1/15/2013 ECE Vicor 22.35 985.36

1/24/2013 ECE Acepower Electronics 67.60 917.76

2/1/2013 ECE Mouser 255.44 662.32

2/5/2013 ECE Ebay 84.88 577.44

2/7/2013 ME American Micro Industries 124.59 452.85

2/12/2013 ECE HobbyKing 42.66 410.19

2/12/2013 ECE HobbyPartz 102.25 307.94

2/22/2013 ECE Newark 26.32 281.62

2/22/2013 ECE Mouser 476.72 -195.10

2/22/2013 ECE Ebay 66.13 -261.23

2/22/2013 ECE Digikey 11.97 -273.20

2/27/2013 ECE Digikey 17.85 -291.05

2/27/2013 ECE Pololu 95.37 -386.42

279

M2. Personal Contributions

Table 26: Personal Contributions

Vendor Cost

HobbyPartz $20.18

Home Depot $8.00

Home Depot $75.00

MetalsDepot $182.97

Harbor Freight $62.08

Home Depot $8.09

Inavas Medical $37.99

Lowes $16.00

Amazon $21.12

Amazon $67.27

Mouser $40.45

Amazon $31.66

Ebay $17.97

Ebay $12.50

Ebay $237.40

Semiconductor On $11.00

Home Depot $21.22

Ebay $18.80

Turn 4 Hobbies $41.35

Ebay $7.79

HobbyPartz $70.16

Pololu $46.36

Staples $12.00

Amazon $158.30

80/20 $486.86

280

Appendix N: RPCs

N1. Battery

N1.1 Packet Format:

Request sent to the AHD will be of the following format:

 [2012/1/30 21:57:55:993] Debug : TX>>

 Raw Packet: 03 74 f7 26 00 00 00 10 00 05 a9 62 61 74 74

 Revision: 3

 Device ID: 74:F7:26:xx:xx:xx

 Packet Type: GET

 Direction: (0) Synchronous

 Reserved: 0

 Data Size: 4

 Checksum: 169

 RPC: batt

 Data: 62 61 74 74

The response generated by the AHD will be of the following format:

[2012/1/30 21:57:55:993] Debug : TX>>

 Raw Packet: 03 74 f7 26 00 00 00 10 00 05 a9 62 61 74 74 XX XX. . .

 Revision: 3

 Device ID: 74:F7:26:xx:xx:xx

 Packet Type: POST

 Direction: (0) Synchronous

 Reserved: 0

 Data Size: n

 Checksum: 169

 RPC: batt

 Data: 62 61 74 74 XX XX XX XX XX . . .

And the data (marked XX in the above diagram) will take the following format:

281

Byte MSB LSB

0 Number of Batteries

1 Battery 1 Voltage (129 = 12.9V)

2 Battery 1 Amperage (129 = 1.29A)

3 Battery 1 Temperature (Degrees Fahrenheit)

4 Battery 2 Voltage (129 = 12.9V)

5 Battery 2 Amperage (129 = 1.29A)

6 Battery 2 Temperature (Degrees Fahrenheit)

7 Repeat for # batteries in Byte 0

Total size of the data field will be:

 () (()) ()

→

This data field will then be separated into appropriate fields in the Java program, and the data

distributed appropriately. A value of -1 for byte 0 would indicate an error.

282

N2. Motor Velocity

N2.1 Packet Format:

Request sent to the AHD will be of the following format:

[2012/1/30 21:57:55:993] Debug : TX>>

 Raw Packet: 03 74 f7 26 00 00 00 10 00 05 a9 6D 6F 74 72

 Revision: 3

 Device ID: 74:F7:26:xx:xx:xx

 Packet Type: POST

 Direction: (0) Synchronous

 Reserved: 0

 Data Size: 4

 Checksum: 169

 RPC: motr

 Data: 6D 6F 74 72 XX XX XX XX. . .

The response generated by the AHD will be of the following format:

[2012/1/30 21:57:55:993] Debug : TX>>

 Raw Packet: 03 74 f7 26 00 00 00 10 00 05 a9 6D 6F 74 72 XX

 Revision: 3

 Device ID: 74:F7:26:xx:xx:xx

 Packet Type: STATUS

 Direction: (0) Synchronous

 Reserved: 0

 Data Size: n

 Checksum: 169

 RPC: motr

 Data: 6D 6F 74 72 XX

And the data (marked XX in the above diagram) will take the following format:

283

Byte MSB LSB

0 Number of Motors

1 Motor1 Duty Cycle and Direction

2 Motor2 Duty Cycle and Direction

3 Motor3 Duty Cycle and Direction

4 Motor4 Duty Cycle and Direction

5 Motor5 Duty Cycle and Direction

6 Motor6 Duty Cycle and Direction

7 Repeat for # motors in Byte 0

Total size of the data field will be:

 ()

Directions for driving motors:

 0 for a stopped motor

 -127 for full reverse

 128 for full forward

284

The additional byte specified in the response packet will indicate the number of motors set. This

number should always equal the "n" form the first packet. If the original "POST" packet specifies more

motors than the board can handle, it should return an error by replying with a -1 in this field.

285

N3. Emergency Stop

N3.1 Packet Format:

Request sent to the AHD will be of the following format:

[2012/1/30 21:57:55:993] Debug : TX>>

 Raw Packet: 03 74 f7 26 00 00 00 10 00 05 a9 65 73 74 70 53 4F 53

 Revision: 3

 Device ID: 74:F7:26:xx:xx:xx

 Packet Type: CRITICAL

 Direction: (0) Synchronous

 Reserved: 0

 Data Size: 4

 Checksum: 169

 RPC: estp

 Data: 65 73 74 70 53 4F 53The packet will generate no response.

Byte MSB LSB

0 ASCII ‘S’

1 ASCII ‘O’

2 ASCII ‘S’

This packet is used to indicate and emergency situation that requires the robot to surface and

power down. It will be handled differently by each module.

286

N4. Twist

N4.1 Packet Format:

Request sent to the AHD will be of the following format:

[2012/1/30 21:57:55:993] Debug : TX>>

 Raw Packet: 03 74 f7 26 00 00 00 10 00 05 a9 74 73 77 74

 Revision: 3

 Device ID: 74:F7:26:xx:xx:xx

 Packet Type: POST

 Direction: (0) Synchronous

 Reserved: 0

 Data Size: 4

 Checksum: 169

 RPC: twst

 Data: 74 73 77 74

The response generated by the AHD will be of the following format:

[2012/1/30 21:57:55:993] Debug : TX>>

 Raw Packet: 03 74 f7 26 00 00 00 10 00 05 a9 74 73 77 74 XX XX. . .

 Revision: 3

 Device ID: 74:F7:26:xx:xx:xx

 Packet Type: STATUS

 Direction: (0) Synchronous

 Reserved: 0

 Data Size: n

 Checksum: 169

 RPC: twst

 Data: 74 73 77 74 XX XX XX XX XX . . .

And the data (marked XX in the above diagram) will take the following format:

Byte MSB LSB

0-3 X Velocity (m/s)

287

4-7 Y Velocity (m/s)

8-11 Z Velocity (m/s)

12-15 Angular Velocity about X-axis (rad/s)

16-19 Angular Velocity about Y-axis (rad/s)

20-23 Angular Velocity about Z-axis (rad/s)

Each four-byte parameter is an IEEE 754 32-bit floating point number. This fully defines the

robot’s velocity in six degrees-of-freedom.

288

Appendix O: Example Mission Files

The construction of mission files and task structures is discussed in detail in section 6.4.2. What

follows is a selection of example mission files used during WAVE’s testing.

Figure 95: Echo Mission

The mission shown above simply tests if communication with the GUI is working by first waiting

for a GUI connection. Once WAVE receives confirmation that a GUI has connected, it sends a series of

‘echo’ test messages, each separated by 5 seconds.

289

Appendix P: Ant Build File

<project default="run" name="WAVE RoboLib SDK" basedir="."
xmlns:svn="jwaresoftware.svn4ant.client">

 <property file="build.properties" />

 <property name="dir.src" value="src" />
 <property name="dir.build" value="build" />
 <property name="dir.data" value="data" />
 <property name="dir.doc" value="doc" />
 <property name="dir.media" value="media" />
 <property name="dir.dist" value="dist" />
 <property name="dir.test" value="test" />
 <property name="dir.lib-common" value="lib-common" />
 <property name="dir.lib-gui" value="lib-gui" />
 <property name="dir.lib-extra" value="${dir.lib-common}" />

 <!--Default properties for compiling the sub code-->
 <property name="main-class" value="com.robosub.main.Main" />
 <property name="project.name" value="RobosubLib-${app.version}" />
 <property name="jar.name" value="${project.name}.jar" />
 <property name="jarpath" value="${dir.dist}/${jar.name}" />
 <property name="dir.lib-extra" value="${dir.lib-common}" />

 <path id="build-classpath">
 <pathelement location="${jarpath}" />
 <fileset dir="${dir.src}" includes="**/*.jar" />
 <fileset dir="${dir.data}" includes="**/*" />
 <fileset dir="${dir.media}" includes="**/*" />
 <fileset dir="${dir.lib-common}" includes="**/*.jar" />
 <fileset dir="${dir.lib-gui}" includes="**/*.jar" />
 <fileset dir="utils/" includes="*.jar"/>

 </path>

 <path id="build-classpath-gui">
 <pathelement location="${jarpath-gui}" />
 <fileset dir="${dir.src}" includes="**/*.jar" />
 <fileset dir="${dir.data}" includes="**/*" />
 <fileset dir="${dir.media}" includes="**/*" />
 <fileset dir="${dir.lib-common}" includes="**/*.jar" />
 <fileset dir="${dir.lib-gui}" includes="**/*.jar" />
 <fileset dir="utils/" includes="*.jar"/>

 </path>

 <!--Code for setting references necessary to compile th GUI-->
 <property name="main-class-gui" value="com.robosub.gui.Main" />
 <property name="jar.name-gui" value="${project.name}-gui.jar" />
 <property name="jarpath-gui" value="${dir.dist}/${jar.name-gui}" />

290

 <!--################################## COMPILATION CODE
######################################-->

 <target name="clean">
 <delete dir="${dir.build}" failonerror="false" />
 <delete dir="${dir.doc}" failonerror="false" />
 <delete dir="${dir.dist}" failonerror="true" />
 </target>

 <target name="prepare">
 <mkdir dir="${dir.build}" />
 <mkdir dir="${dir.dist}" />
 </target>

 <target name="compile" depends="prepare">

 <depend srcDir="${dir.build}" closure="true" />

 <!-- debuglevel="line" -->
 <javac srcdir="${dir.src}" destdir="${dir.build}" debug="on"
classpathref="build-classpath" includeantruntime="true" />

 <!-- <unzip dest="${dir.build}">
 <fileset dir="${dir.lib-common}">
 <include name="**/*.zip"/>
 <include name="**/*.jar"/>
 </fileset>
 <fileset dir="${dir.lib-extra}">
 <include name="**/*.zip"/>
 <include name="**/*.jar"/>
 </fileset>
 </unzip> -->

 </target>

 <!--################################## JAR CODE
######################################-->

 <target name="jar">

 <manifestclasspath property="lib.list" jarfile="${jarpath}">
 <classpath refid="build-classpath" />
 </manifestclasspath>

 <jar destfile="${jarpath}" basedir="."
 excludes="**" filesetmanifest="mergewithoutmain">
 <zipgroupfileset dir="${dir.lib-common}" includes="**.jar" />

 <fileset dir="${dir.build}" includes="**/*" excludes="META-
INF/*.SF" />
 <fileset dir="." includes="${dir.media}/*" />
 <fileset dir="." includes="${dir.data}/*" />

291

 <exclude name="${dir.dist}/**"/>

 <manifest>
 <attribute name="Main-Class" value="${main-class}" />
 <attribute name="Class-Path" value="${lib.list}" />
 </manifest>
 </jar>

 <chmod file="${jarpath}" perm="+x" />
 </target>

 <target name="jar-gui">

 <manifestclasspath property="lib.list" jarfile="${jarpath-gui}">
 <classpath refid="build-classpath" />
 </manifestclasspath>

 <jar destfile="${jarpath-gui}" basedir="." excludes="**"
filesetmanifest="mergewithoutmain">
 <zipgroupfileset dir="${dir.lib-common}" includes="**.jar" />

 <fileset dir="${dir.build}" includes="**/*" excludes="META-
INF/*.SF" />
 <fileset dir="." includes="${dir.media}/*" />
 <fileset dir="." includes="${dir.data}/*" />
 <exclude name="${dir.dist}/**"/>

 <manifest>
 <attribute name="Main-Class" value="${main-class-gui}" />
 <attribute name="Class-Path" value="${lib.list}" />
 </manifest>
 </jar>

 <chmod file="${jarpath}" perm="+x" />
 </target>

 <!--################################## TEST AND RUN CODE
######################################-->

 <target name="test" depends="run">
 <mkdir dir="${test.dir}" />
 <test destfile="${test.dir}/${ant.project.name}.test"
basedir="${build.dir}">
 <junit>
 <classpath refid="classpath.test" />
 <formatter type="brief" usefile="false" />
 <test name="TestExample" />
 </junit>
 </test>
 </target>

 <target name="run">
 <echo message="Attempting to run!" />
 <java jar="${jarpath}" forked="true" args="" />

292

 <echo message="JAR launched." />
 </target>

 <target name="run-gui">
 <echo message="Attempting to run!" />
 <java jar="${jarpath-gui}"/>
 <echo message="JAR launched." />
 </target>

 <target name="compile-jar">
 <antcall target="compile"/>
 <antcall target="jar"/>
 </target>

 <target name="compile-jar-run">
 <antcall target="compile" />
 <antcall target="jar" />
 <antcall target="run" />
 </target>

 <target name="clean-compile-jar">
 <antcall target="clean"/>
 <antcall target="compile" />
 <antcall target="jar" />
 </target>

 <target name="clean-compile-jar-run">
 <antcall target="clean" />
 <antcall target="compile" />
 <antcall target="jar" />
 <antcall target="run" />
 </target>

 <!--################################## DOCUMENTATION AND DISTRIBUTION CODE
######################################-->

 <!-- Generate javadocs for current project into ${dir.doc} -->
 <target name="javadoc" description="Generate program documentation">
 <mkdir dir="${dir.doc}" />
 <javadoc sourcepath="${dir.src}" destdir="${dir.doc}" />
 </target>

 <!-- Package javadocs into ${dir.dist} -->
 <target name="javadoc-jar" description="Generate program documentation">
 <jar basedir="${dir.doc}" destfile="${dir.dist}/${project.name}-
javadoc.jar" />
 </target>

 <!-- Package the source files into ${dir.dist} -->
 <target name="package-sources" description="Create source file JAR">
 <!-- <jar basedir="${dir.src}" destfile="${dir.dist}/${project.name}-
${project.version}-sources.jar" /> -->

293

 <jar basedir="${dir.src}" destfile="${dir.dist}/${project.name}-
sources.jar" />
 </target>

 <!-- Create all necessary Jar files and copy into ${dir.dist} -->
 <target name="do-release" depends="compile, jar, javadoc, javadoc-jar,
package-sources">
 <mkdir dir="${dir.dist}" />
 <copy file="LICENSE-2.0.html" todir="${dir.dist}" />
 <copy todir="${dir.dist}">
 <fileset dir="${dir.doc}" includes="**" />
 </copy>
 </target>

 <target name="upload">
 <taskdef classname="net.bluecow.googlecode.ant.GoogleCodeUploadTask"
classpath="utils/ant-googlecode-0.0.3.jar" name="gcupload"/>
 <gcupload
 verbose="true"
 username="Peaches491@gmail.com"
 password="fX2nX6mJ3mb8"
 projectname="robosub-2012"
 targetfilename="${jar.name}"
 summary="Version ${app.version} of ${app.name}"
 filename="${jarpath}"/>
 </target>
 <target name="upload-gui">
 <taskdef classname="net.bluecow.googlecode.ant.GoogleCodeUploadTask"
classpath="utils/ant-googlecode-0.0.3.jar" name="gcupload"/>
 <gcupload
 verbose="true"
 username="Peaches491@gmail.com"
 password="fX2nX6mJ3mb8"
 projectname="robosub-2012"
 targetfilename="${jar.name-gui}"
 summary="Version ${app.version} of ${app.name} GUI"
 filename="${jarpath-gui}"/>
 </target>

 <target name="fitpc-upload" description="upload jar file to FitPC">
 <!-- Must add
 utils/ant-commons-net.jar &
 utils/commons-net-3.2.jar to ANT classpath -->
 <ftp
 server="robosub.dyndns.org" port="12122"
 userid="sub"
 password="Robosub1!"
 action="send" verbose="yes" >

 <fileset file="${jarpath}" />
 </ftp>
 </target>
</project>

	Worcester Polytechnic Institute
	Digital WPI
	April 2013

	Waterborne Autonomous VEhicle
	Angel Genchev Trifonov
	Daniel Joseph Miller
	Edward Charles Osowski
	Repository Citation

	tmp.1535548689.pdf.x6bbX

