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Abstract 
Distributed computing is becoming more and more prevalent in engineering today. Swarm 

robotics is simply an extension of that, not only dividing the computing power, but also the physical 

capabilities. This project served as a proof of concept investigation into the feasibility and potential 

effectiveness of a hierarchical swarm topology (HST), which better mimics the organization of many 

societal structures. This goal was approached by designing a three-tier robotic swarm as well as a 

specialized abstract coverage algorithm designed to map an unknown area.  Experiments were 

conducted by modifying the total number of robots in the HST.  Results supported the original 

hypothesis that by adding robots, overall runtime and individual workload is reduced.  
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Executive Summary 
 This project aimed to be a proof of concept hierarchical swarm system.  The idea for the project 

resulted from observing the inefficiencies of traditional swarm communications which often utilize the 

interconnected topology.  A hierarchical swarm mimics the societal structure often used by humans by 

using a tree-like communication topology.  Specifically, the robots form a hierarchy which only allows a 

robot to talk to its parent or its direct children.  This also implies that no one robot is aware of the 

number of levels in the swarm or the number of total robots involved.  Due to the fact that any one 

robot only is responsible for coordinating a small subset of the entire swarm, the computations and 

communications required are reduced. 

This project implemented a three level system with one robot on level 0, two robots on level 1, 

and four robots on level 2 of the communication tree.  The goal of the swarm was to autonomously map 

an unknown area.  The data collected from this swarm aims to prove the validity of the hierarchical 

topology as well as show its future for expandability.  Data was collected by creating virtual 

representations of every robot in the swarm allowing for testing on swarms much larger than could 

physically be built. 

 Autonomous mapping was performed by using an abstract coverage algorithm utilizing the 

concept of a bubble.  A bubble is an area in which a robot can gather information.  Each robot in the 

swarm can be abstracted to a bubble allowing any member of the swarm to map an area in a different 

way.  This can be used to take advantage of the hierarchical communications which allows a robot to 

distribute tasks to children to increase parallelization. 

 Robots were constructed to show that a physical implementation of the swarm architecture was 

possible.  The robots were capable of traversing a flat terrain and mapping an area with IR rangefinders.  
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The robots were also capable of localization through odometry.  Lastly, a custom PCB was designed to 

allow for the use of all required sensors. 

 The project did successfully implement a three tiered swarm which was able to successfully map 

an unknown area.  The simulation was also effective at providing a means for further data collection 

allowing meaningful data to be collected regarding the expandability of the swarm architecture.  The 

data collected shows that the amount of work for any member of the swarm is directly related to the 

total number of robots in the swarm.  The combination of a working physical swarm, a working and 

expandable virtual simulation, as well as the data collected proves the viability of a hierarchical swarm 

system.  This project serves as an introduction into the hierarchical concepts with hope that further 

research would follow. 

Introduction 
 Swarm robotics aims to solve complex problems using multi-agent systems, often mimicking real 

life entities.  The very name “swarm” comes from watching already existing collections of animals, such 

as insects, packs, or flocks, and attempting to implement the observed behaviors in an unknown 

environment. Swarm robotics, while broad, has a few defining characteristics.  It deals exclusively with a 

multi-nodal system, often working on problems where a distributed approach to the solution will serve 

better than centralized control.   

 Swarm Intelligence encompasses the set of patterns which emerge from a set of robots 

interacting with each other.  The swarm is sometimes modeled after an already existing animal 

population. There are a variety of popular swarm models, each aimed at solving a different type of task.  

There is the Ant Algorithm, which attempts to mimic the pheromone tracking performed by ants when 

moving to and from a food source [1].  Another algorithm that related to finding food is the Bee 

Algorithm, which mimics the behavior of bees when searching for nectar [2].  A more general algorithm 
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aimed at finding resources in an unknown location is known as the PSO or Particle Swarm Optimization 

algorithm which is designed to best approximate flocks of birds looking for a single meal in a large, 

unknown area [3].  While the application of all swarms remains relatively vast, one commonplace factor 

is the simplicity of the algorithms.  They are often built with a very small number of behaviors, 

sometimes as few as one concrete rule. 

 Another issue that often appears in the set of problems well suited to a multi-agent system is 

the concept of area coverage where a set of mobile-nodes are attempting to fully uncover an either 

known or unknown area [4].  The basis for the field is laid in investigating how a single robot would span 

a given space, and is then adapted to the multiple robot system [5] [6]. While coverage algorithms are 

not the main focus of this project, they were a substantial portion of the implementation. 

 However, what appears to be an often overlooked concept when it comes to the optimization of 

any such algorithms is the topology, or interconnectivity of the various nodes of a swarm.  The two most 

common topologies of a distributed agent system are the interconnected and ring topologies [7] [8] [9]. 

An interconnected topology works by allowing every node to communicate with every other node in the 

swarm.  Ring topology allows a node to communicate with two adjacent nodes.  Other implementations 

have at times been suggested but appear to be studied in relatively limited amounts.  This project aims 

to expose the feasibility and future optimization of a new topology; a hierarchical structure modeled 

closely to the natural simplification of information handling and distribution in today’s society.   

 The first rule when forming a Hierarchical Swarm Topology (HST) is that any node may only talk 

to its direct superior or its subordinate(s).  The HST also stipulates that unlike a traditional single level 

swarm which uses the fully connected or ring topology; nodes cannot communicate with nodes on their 

own level.  This structure allows for a robust template to be used when passing out information and 

responsibilities.   
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 While we aim to implement a coverage algorithm using a HST, the other goal of this project is to 

demonstrate the highly scalable swarm communication architecture resulting from the rules of the HST. 

The main advantage of an HST comes from its significantly reduced number of communications when 

compared to a variety of other topologies.  The second advantage comes from the scalable nature of the 

HST.  If a communication bottleneck is reached at any point between a superior and its subordinates, a 

new superior (of the same level as the original) can be created and assigned a portion of the original 

superior’s subordinates, thereby easing the load on all parties.   

 
 
 

Figure 1: The structure before the addition of another mid level node (top), the structure after the addition of another mid 
level node (bottom).  Notice that the workload of all mid level nodes has been reduced as a consequence. 
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implemented for this project has a goal of mapping an unknown area while searching for candles in 

order to extinguish them and show that not only can HST have multiple and fully expandable levels, but 

also that different levels within the same swarm can actually perform different physical tasks while 

working towards a common swarm level goal.  What was actually accomplished was the construction of 

a multi level swarm which can map an unknown area however due to time and budget constraints 

candles could neither be detected nor extinguished. Despite some of the shortcomings, the hierarchical 

topology as a proof of concept was still found to be valid. 

Background 

Swarm Robotics 

 Swarm robotics is the study of distributed systems which usually perform tasks that can be 

easily parallelized [10].  This system involves simple tasks and orders combined to produce large and 

sometimes complex results. The key aspect of a swarm is the persistent communication between 

individuals in a constantly changing state. In contrast to traditional robotic systems, swarm robotics puts 

emphasis on having many robots working together, and scalability. 

 A key aspect of many individual swarm robots is the unit cost. This is important because keeping 

costs low allows for the construction of more robots and therefore a more powerful swarm.  With these 

constraints, efforts are focused on individual simplicity contributing to an overall complexity at a higher 

level. Here simplicity is an entirely relative measure based on the overall complexity of a given task.  

Simplicity could also be defined compared to a hypothetical single robot solution which accomplishes 

the same task equally well.  These include tasks such as agricultural crop collection, mass area mapping, 

and mining. On the smaller scale, swarm robotics could be used on a microscopic level to enter the 

human body and achieve any number of results. 
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Swarm Intelligence 

Swarm intelligence is the basis for simple and expandable behavior to complete a particular task.  

This is broken down into categories based on the nature of the observed behavior. The first split is 

between natural and artificial swarm intelligence [11].  The difference between the two is based on the 

systems in which they are trying to study or model. Natural swarm intelligence, for instance, is a study of 

a naturally occurring biological system. Artificial swarm intelligence on the other hand is used to study 

human artifacts or hypothetical systems. The dichotomy breaks down further, as each of these classes of 

swarm intelligence can belong to either a scientific or engineering stream. Belonging to the scientific 

stream of swarm intelligence means that the goal is to try and observe the individual mechanisms that 

drive the functionality of the swarm. The engineering stream is not meant for researching the 

mechanisms, but to use them to achieve some goal relevant to the particular model of swarm 

intelligence. 

Swarm intelligence in general has a few fundamental characteristics. The first and likely most 

obvious property is that a swarm must contain multiple individuals. Whether these are called nodes, 

agents, boids, etc. is irrelevant, but these individuals must be able to communicate with each other in 

some form [10]. Other than communications, the robots can be physically and programmatically distinct 

allowing for a heterogeneous swarm.  In order to communicate, all members must be able to exchange 

information with one another regardless of whether or not it is done directly, or through some form 

imparted upon the environment also known as stigmergy [12]. The last major property of a swarm 

intelligence system is that the overall behavior of the system must converge without any input from a 

non-member during the swarm’s operation. To better understand this, think of a bee hive.  As a hive 

thrives, all internal and external affairs occur due to each bee undergoing some task it has some 

information about from another member of the swarm; this includes populating, handling young, 

foraging for food, etc. All of this goes on smoothly without the input of some ‘bee moderator.’ 
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Swarm Advantages 

The advantages and disadvantages of using a robotic swarm versus a conventional single-robot 

solution are heavily dependent on the problem being approached. A common advantage of using a 

robotic swarm is when the fundamental problem to be solved is coverage. For instance, in military 

operations using a robotic swarm to defuse a bomb does not take advantage of anything it has to offer 

because the task cannot easily be parallelized. On the other hand, using a swarm of Unmanned Aerial 

Vehicles (UAVs) for large scale surveillance is highly advantageous compared to trying to get the same 

coverage using a single robot. Trying to survey the same effective area as a small swarm would be very 

difficult and costly for a single robot. To be able to match the area and speed at which a number of 

cheaper and simpler robots could do the task would require drastic increases in the quality and range of 

the mobility and sensor systems onboard, and may still be inadequate in comparison. 

Along with the idea of coverage, is the great potential for expandability. Single robot applications 

have to be designed with tight task specifications in mind such as completion time. Proper engineering 

will yield something capable of doing the designated goal sufficiently. If any goal becomes more difficult 

to meet, (for instance, if the previously mentioned completion time is now shorter) there is a good 

chance that it will require a lengthy and costly redesign. If a swarm is being designed, it is possible that 

some of the requirements becoming tighter can be resolved by adding additional robots. There will be a 

limit to this in most systems, but the ability to add more of the same hardware into the field should 

increase the longevity of the design until the problem changes or grows far beyond the useful capacity of 

a single swarm. Increasing the size of the swarm can also be used to enhance the number of redundant 

systems to allow for fault-tolerance. 

Implementing a swarm provides the possibility to make swarm members simpler. To offset the 

limitations of each individual robot, there is the notion of parallel processing. This method utilizes the 

fact that the swarm consists of many members to complete a task. For instance, if a large amount of 
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work needs to be done, it could be intelligently divided amongst the members to find multiple parts of 

the solution simultaneously. This reduces the negative impact of using cheaper, less powerful hardware. 

Along those same lines, simple physical tasks can also be accomplished in parallel rather than in series. If 

a portion of the physical task can be assigned to each member of the swarm, it can be completed faster 

than a single robot. As the task becomes more demanding, more members of the swarm can be added 

while this would simply take more time for a single robot without a redesign.  

By keeping item costs down and unit design simple, replacement and repair of these units is very 

feasible. Since each unit only has a comparatively small investment behind its construction, they can be 

used more liberally, particularly in potentially hazardous environments. The consequences of losing an 

individual swarm member are much lower than losing the single robot. In a swarm with different types 

of robots, tactical decisions could be made in dangerous situations to sacrifice the less valuable 

members if necessary. As an extension of that, loss of a single swarm member does not mean the loss of 

all of the information the group can gather; it simply weakens the swarm’s ability to gather information 

and complete tasks relative to how many members remain and are necessary. Robots can be cycled out 

of duty briefly while the remainder of the swarm continues to operate in case one is damaged or in need 

of refueling. In a single-robot application, operations would have to cease during repairs or refueling. 

In summation, the pros are: 

 More flexible coverage 

 Expandability 

 Fault-tolerance / Redundant systems 

 Parallelization 

 Reduced relative unit cost 
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Swarm Disadvantages 

While swarm systems have many potential advantages over single agent systems, there are also 

some downsides.  Since a swarm depends on communication to function, bandwidth issues and 

communication delays from long transmission paths can arise. Also, the simplistic nature of a robotic 

swarm requires a cleverly designed system and impressive intelligence to be able to achieve physical 

tasks that a single, larger unit can. 

One of the major limitations in swarm robotics is the ceiling on communications. This ceiling 

covers anything which will cause a bottleneck due to the finite speed at which data can be transferred.  

For a reasonable number of robots sending non-trivial amounts of data, expanding a swarm quickly 

becomes problematic in most topologies which negatively impacts scalability. Whether due to the 

number of ‘hops’ made in order for data to reach its destination,  the total number of communication 

lines, or sheer transfer volume, there is a limit to any communication system. Different topologies 

address different weaknesses in communication; however this will be discussed later. Similarly, individual 

robots in a swarm may fall short of computing requirements due to their much simpler design. This 

should ideally be avoided with proper allotment of labor, but it is an easy trap to fall into, as even the 

most accurate CPU load prediction is not particularly useful if the software design has major changes. 

Another potential disadvantage for a swarm is for accomplishing physical tasks (actuation and 

mobility). Designing a single robot to physically accomplish a task is by no means trivial in most cases, 

but is at least reasonably straightforward. To have a robotic swarm be able to achieve a similar task and 

attempt to meet requirements will require very intuitive design, as well as very robust problem-solving. 

For example, if the task is to drive a 1 pound payload across a 6 inch gap, it is simpler to have a single 

robot carry the load across rather than have a swarm of robots where each share a part of the load. 

In summation, here are the cons of using swarm robotics: 
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 Communication bottlenecks 

 System design is more complex 

 Poor performance if task is not parallelizable 

Swarm Topologies 

While swarm robotics is still a fairly fresh concept, it still has some well-established topologies, as 

well as some lesser-known, and more experimental ones [7]. Topologies exist to determine all channels 

for communication between all agents in the swarm. Probably the simplest to understand is the 

interconnected (or fully-connected) topology.  In this configuration, every agent in the swarm 

communicates with every other member. While this makes communicating between any two robots 

trivial, this topology is not very expandable. For a swarm with n robots, each robot has to be able to 

handle n – 1 communications at any time. This very swiftly creates a bottleneck even using a 

communication method with high data-rates. 

 A common alternative to an interconnected topology is the ring topology [9].  Ring dictates that 

each node is able to communicate with two neighbors. Through this requirement, the topology forms a 

ring when all nodes are connected. Unlike an interconnected topology, ring doesn’t arrive at a 

bandwidth bottleneck with swarm expansion, however the complexity required for decision-making and 

the actual delay of communication from opposing sides of the ring can become a hindrance. 

 Another option is the “small-world” topology. This example may be a bit newer as a topology 

compared to ring and interconnected, but has clearly begun proving its value (especially in PSO) [13]. 

The small-world topology goes off of the ideas of the “six degrees of separation”, such that each agent is 

a small number of communication steps to reach any other agent. This greatly reduces the setbacks that 

a ring topology encounters. As an extension of that, it also has less of a bandwidth bottleneck than 
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interconnected. While small-world has advantages over both ring and interconnected, it also has 

weaknesses compared to each as well, but achieves a decent balance for greater expandability. 

Coverage Algorithms 

While topologies are very core to the implementation of a swarm system, the desired goal of this 

project was mapping, which entails the use of a coverage algorithm. The concept of a coverage algorithm 

is far from new in the realm of computer science. The goal of gathering complete information in an 

unknown space has been researched before. The problem is not unique to robotic swarms or even 

robots at all. As a general rule, coverage algorithms must be complete, but beyond this, the field 

branches significantly. A few simple examples of single-agent coverage algorithms are the Backtracking 

Spiral Algorithm (BSA) [5] and the Coverage Path Planning Algorithm (CPPA) [14]. In the former, the agent 

undergoes a simple wall-following behavior, marking any scanned area as currently inaccessible. This will 

eventually spiral inwards until all three sides are either blocked by an obstacle or marked as inaccessible. 

At this point, the algorithm seeks the nearest point that hasn’t been scanned and starts a new spiral. The 

latter, CPPA, is a bit more complicated, and has many variations. One case uses triangle meshing to 

determine agent locations and a circle overlay to represent the robot’s useful area (whether it is 

information gathering or physical size). When the circles cover the entire world, then it is complete, and 

a path can be derived from the circumcenters of the triangles. Minimizing this path length optimizes this 

version of the CPPA. 

In order to determine what ‘coverage’ specifically means in the algorithm depends on the 

desired task. For a mapping robot, full coverage is achieved when all sensor data used can construct a 

complete picture of the map. This differs from a Roomba, which would achieve coverage by physically 

driving through as much of the map as possible. Driving through the entire space is usually sufficient, but 

not always necessary for all system models. In a scenario that simply requires data collection for finding 
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objects, driving through the space is not required as long as the robot has some kind of range-finding 

sensor. 

 For systems with multiple agents (robots), many of the more rudimentary coverage approaches 

fail, and some cannot even be easily adapted to the task. BSA for instance, does not lend itself well to 

multiple-robot configurations, but some versions of CPPA can be fairly reasonably extended in order to 

distribute work. The arc-coverage CPPA for instance, which uses laterally overlaid rounded rectangles for 

maximum performance, must have a large adaptation to guarantee robots do not collide while covering 

different areas due to intersecting paths[14]. The triangle meshing CPPA on the other hand generates a 

single set of path points which can be split among robots, but does not take into account maps with 

unreachable areas and assumes the space is fully accessible [15]. An example of an implemented multi-

robot application exists for boundary inspection [6]. This instance approached the problem using the k-

Rural Postman Problem (kRPP). While this case behaves fairly optimally, a truly optimal system using this 

approach is NP-hard, so a heuristic was used instead. 

Previous Hierarchical Swarm Attempts 

The concept of a hierarchical topology in network systems has been recognized for its flexibility 

and reasonable number of connections. The concept of a tree topology, (as it is also known in network 

systems) is to have a single root node with at least two tiers of children below that (only one tier would 

make it a star topology). Each tier lacks connections to nodes on the same tier, and only shares a 

connection with one node at a depth one less than the current. That is to say, each node (except the 

root) has one parent, and can have any number of children below it, including zero. This is a fairly useful 

and simple system, often used in data structures as well for its efficiency. 

As a topology for a robotic system, very little work has been done on the subject, but there is 

one specific publication relevant enough to this paper to mention here. This research article discusses 
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the idea of allowing groups of robots nearby to form agents which self-organize to form collective 

agents [8]. Each of these collective agents works as a group, with a single line of communication to other 

agents; the hierarchy assembles as the groups contain groups, eventually consisting of the entire swarm. 

Within each collective group, agents can be allowed to talk to one another, or potentially reorganize as 

necessary.  This ability to talk to one another on the same level is the main difference between the 

research performed in that article and this project. 

The publication goes on to test four variations on a three-tier hierarchical topology, the top level 

and mid-level both being attempted with either interconnected or ring topologies. This was tested using 

a variation of particle swarm optimization (PSO) known as PS2O, which implements PSO per level of the 

swarm. In testing, the four variations of PS2O (for each ring/interconnected per level) outperformed 

every other algorithm in the test for unimodal, multimodal, and discrete functions. In the benchmark 

tests, the PS2Os performed the best in terms of convergence rate, accuracy, and robustness, not to 

mention being the only ones to consistently complete and minimize a few of the tests. 

Hierarchal Swarm Topology 
 A hierarchal swarm topology works off the idea of having multiple levels within one operating 

swarm.  Traditionally most swarms work in a “flat” nature where although all the nodes may or may not 

talk to each other, they are all considered as being on the same level.  As stated earlier, traditional 

swarms are implemented with either an interconnected topology (Figure 2a) or a ring topology (Figure 

2b).  The interconnected topology achieves the goal faster, but requires a significantly larger amount of 

communication overhead and connection handling between each robot.  The ring topology minimizes 

the number of communications per robot, but causes information to be disseminated out to each node 

significantly slower. The hierarchal swarm topology aims at a mixture of the function between both of 
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these that allows for efficient information exchange throughout the entire swarm while minimizing the 

number of required communications (Figure 2c).   

 
Figure 2: a. The Interconnected Topology (Left), b. The Ring Topology (Center), and c. the Hierarchical Topology (Right). 

Structure 
 The structure of a hierarchal swarm topology splits the swarm into various levels, and then 

assigns each node in a level a superior of a higher level and subordinates of a lower level.  It also 

provides an incredibly flexible structure due to the fact that the number of levels in a swarm, and also 

the number of nodes in a given level, is entirely dynamic. There are however a few rules that a swarm 

operating in a HST must follow in order to function properly.   

Rule 1 

  There must be only one robot of the highest level.  This node is often called the queen node 

since it has the highest level picture of what the swarm is trying to achieve and is also responsible for 

the central information delegation to the rest of the swarm.  The queen will be making decisions that 

influence the swarm the most, since all other decisions made by lower level nodes are made directly 

from the provided information delegated by the queen.  If another node existed on this level, the queen 

could not make executive decisions while guaranteeing no conflicting orders were given.  The queen is 

often referred to as “Level 0”, while all other members of the swarm are referred to as somewhere 

between Level 1 to Level N.  
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Rule 2 

Any node in the swarm can only communicate with its one superior node, and any of its own 

subordinate nodes.  The reason for this is to provide better structured communications.  While a ring 

topology also reduces communications compared with an interconnected topology, a ring topology 

assumes that the neighboring nodes are the nodes most important to communicate with.  The 

hierarchical swarm topology allows for a better heuristic for selecting nodes to talk to.  Communication 

lines in a hierarchical structure are known to pass data relevant to both the sender and recipient.  

Another important consequence of this is that any node in the swarm is strictly prohibited from 

communicating with any other node of the same level.  

Analogy of Structure 
 The concept and implementation of an HST can be considered very similar to a police station.  In 

a police station there is often one chief.  From there, there are many levels between the chief and the 

lowest ranking officers.  General directions and all the information is reported to the chief, who then 

delegates out specific tasks to his/her subordinates.  Each subordinate then uses the information they 

have at hand to further delegate out the work and determine the best way to obtain more information 

or perform a task.  This process continues until you have the lowest level of police, which may be an 

officer on patrol.  Now, the reason this structure works is because while the police chief has the most 

information, he/she does not have the time to actually do all of the police work him/herself.  Just like in 

an HST each level accomplishes their given task independent of their peers and report back to their 

superior.  The police chief would not have time to patrol every street on his/her own and nothing would 

ever be done if every officer communicated amongst themselves to divide the workload. 

 Also very similar to a HST, is the dynamic nature of the police structure.  For example if you look 

at one particular part of the analogy, say the dispatcher taking in calls from the public and then giving 

each call to a particular officer on the street to investigate, there is a limited number of officers that 
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each dispatcher can coordinate.  However, if the police department continues to add officers to the 

street, each one must also be assigned to a dispatcher until eventually that dispatcher becomes 

overloaded.  At that point, it becomes necessary to add another dispatcher into the police department 

and give some of the work (officers) from the first dispatcher to the newly added one.  That dispatcher 

then also needs to be given a superior to report to.  However, the rest of the department doesn’t have 

to adapt to having a new dispatcher, no protocols need to be changed. The dispatcher’s superior simply 

now has one more person to which work can be delegated (Figure 1). 

 The second rule from the structure is also well demonstrated in this analogy, given the fact that 

two people of the same level should never be required to communicate.  For example continuing with 

the analogy from above there shouldn’t be a reason that two officers have to ask each other what to do, 

they should always be going through their dispatcher when they need new information or work to be 

assigned.  Also each dispatcher has a different set of officers, so the information that either dispatcher 

has is unlikely to be relevant to one another; therefore they should always go through their superior in 

order to obtain instructions. 

Delegation of Work and Information 
 This section will mainly discuss how different types of problems could be solved with an HST and 

the guidelines of how work should be delegated among the swarm.  The goal is simply to convey the 

basis for how problems should be solved, not actually give implementation notes.  The reasons for this is 

while the concepts should remain relatively universal, the actual implementation will and should change 

depending on the particular problem trying to be solved.   

 In general, the solution of decision making of the swarm should be written in such a way that it 

can be generalized to a multi-level system and so that the information gathered by the subordinates can 

in some way be turned into the information needed by the higher levels.  For example in PSO which 
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aims to find a “food source” with a large number of nodes, each node has to report back how close it is 

to the given food source. With the HST, each of the subordinates would find their distance to the goal 

and give that information to the superiors, who could then pass the group minimum up to the queen.  

The important aspect is that the solutions should be designed in such a way that information can be 

compiled into a form that can be sent up or down as many levels as needed without losing integrity.  

Pros and Cons of HST 
 One of the largest pros of hierarchical swarm systems is their scalability. Within this, there are 

many smaller, yet important advantages. In swarm robotics, communication is always a very important 

issue. There are many robots cross communicating constantly, with potentially high amounts of data. It is 

necessary to be able to transmit and receive all this data without information being lost or dropped. 

With hierarchical swarm systems, robots only communicate with their parents, and however many 

children they have directly underneath them. This makes for much less overall communication to 

perform the same amount of work. A robot “knows” any commands or data it receives can only come 

from its parent or its children respectively. This directly influences scalability, because generally swarms 

are limited by the amount of communication that can be handled. With less overall communication, the 

scale of the swarm can be much larger. 

 Increasing the physical size of a hierarchical swarm is much easier than adding a robot in a 

normal swarm system. In a non-hierarchical swarm, every robot has to be made aware that there is a 

new robot in the swarm. In a hierarchical swarm, the new robot's parent and children are the only 

robots that need to know about the addition. Also, more layers can be implemented as new robots are 

added, keeping communications much simpler than regular swarm systems. 

Application Ideas 
 Hierarchical swarm systems can be applied to many different problems and situations. Area 

mapping is one great use. The highest level can know the size of the area needed to be mapped and can 
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designate sections to lower levels, which can then be redistributed until the area is mapped and sent 

back up the chain to the queen. A hierarchical swarm works particularly well for this application because 

mapping is usually highly parallelizable and the hierarchical topology provides a mechanism for properly 

distributing the workload. Also, different branches can be given different values based on their mapping 

effectiveness and can be given areas to map that fit their value. Depending on the swarm and type of 

robots, areas can be mapped that are as small as individual rooms or as large as full towns.  

Our Swarm 
 The following sections outline in detail the implementation of an HST for this particular project.  

They discuss the structure of the HST, and then transition into the Mechanical, Electrical, and Software 

components of the project. 

Problem 
 For this project the goal was to create a hierarchical swarm topology and use it to find and 

extinguish simulated fires in an unknown space.  In order to locate the fires the group needed to 

implement a coverage algorithm that would ensure that the space was fully covered.  The task was to be 

implemented with a three level HST with one level 0, two level 1 robots and four level 2 robots.  This 

project also aimed to show the scalability of an HST by simulating the running of the swarm with more 

robots than could be physically built.  Although the firefighting goal was not completely met, many 

design decisions were made in mind with allowing the goals to be completed eventually given enough 

time or budget. 

Breakdown of Hierarchy 
 This section describes the capabilities and responsibilities of each level in the swarm.  The 

swarm consists of three levels, two of which are administrative and one of which is object detection.  

While they share some code and abilities, the two administrative levels are significantly more complex.  
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The top level of the swarm is known as the queen or level 0 and controls the function and direction of 

the entire swarm, specifically the second level.  The second level is known as “the worker” or level 1 and 

is directly under the control of the queen.  The name is derived from the fact that it was originally 

intended to be the level of the swarm responsible for extinguishing the fire.  It will have the same basic 

functionality as the queen however it only needs to be aware of a smaller sub section of the map.  The 

lowest level of the swarm being created known as “the scout” or Level 2 will be the physical interface of 

the swarm and the outside world.  While both levels 1 and 2 were intended to be mobile, level 2 is the 

only level with actual sensors for scanning the world around it.  An in-depth description of the various 

levels of the swarm is below. 

 
Figure 3: The three-level swarm to be implemented 

Queen / Worker 

 The worker and queen both serve as directors of the swarm.  The only difference between the 

functionality of the two is that the queen will be able to see the entire map and the worker will utilize 

sub-portions of the map assigned to it by the queen.  However their operations on the map remain 

identical.  It was intentional that the queen and workers would divide the map in the same manner to be 

Level 0 - Queen 

Level 1 - Worker 

Level 2 - Scout 



Hierarchical Swarm Robotics  20 
Worcester Polytechnic Institute 2011 

completed by their children.  In that way, it can be proven that the swarm could be expanded to an 

arbitrary number of levels.  The only changes needed would be to add more robots and assign the 

correct parent-child relationships.   

 When either level 0 or 1 is told to map an area, both will run the same coverage algorithm to 

determine the optimal placement of their children.  In brief, the coverage algorithm chooses the optimal 

locations to place a given robot’s children, and then outputs a path for each child with its next location 

and radius to scan at when it arrives there.  Once the child robots arrive at their destination and perform 

a scan, they asynchronously send information back to their parent. 

The important attribute of this system, is that the queen does not know how the worker has 

populated the map, nor does the worker know how the scouts have gotten information about the map.  

In fact, the queen does not even know the scouts exist.  To the queen, it is unsure if the workers asked 

children to get information about the area or if the worker actually had scan equipment, nor does it 

matter.  Also, the worker does not know that the scouts actually scanned the area: they could in fact 

have had children to which work was further delegated. 

The queen and worker were both running code written in Java.  The Java side of the code 

handles all administrative features such as the coverage algorithm, path planning, the lists of children, 

and all other pertinent information about performing scans.  The queen and worker were both 

virtualized due to time and budget constraints. 

Scout 

 The scouts required separate hardware and software from the queen and worker in order to be 

mobile and able to observe the physical world.  The simplified hardware of the scout also limits the 

software requiring it to be partially rewritten.  When it is told to move to a new location the request is 
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handled in the same way that the worker handles the request; however the process it executes when it 

is told to scan is entirely different in that it has no children to delegate the work to. 

 When the scout is told to scan, it utilizes a 180 degree servo with two IR range finders with a 10 

– 80cm range and reports back objects as they are seen.  Having two sensors allows for faster mapping 

as two readings can be taken simultaneously.  When the scout sees an object within the range that it 

was told to scan, it will immediately report back to the worker that it saw something at the given 

location and will also report it’s certainty as to the location of the viewed object. The certainty 

(probability of an object’s location) is reported as standard deviation.  The standard deviation represents 

the average expected error in the location of a given object.  The actual value is a compilation of factors, 

including the accuracy of the sensors as well as odometry errors due to limitations in the localization.  

When the scout has finished a scan it will report back that the scan at the given location has been 

completed. 

 The scout does not house information about the surrounding area for any extended period of 

time: It simply informs the worker when it sees a point and then forgets about it.  It also does not 

contain any form of a map to use while path planning, instead it gets a set of waypoints from its parent 

and assumes that those points will be correct and keep it out of harm’s way.  Unlike the queen and 

worker the scout was written entirely in C. 

Budget 
 As stated earlier, a swarm is often designed with cost in mind.  This swarm was no exception.  

The total budget for this project was $2500 which includes cost of materials for the final robots as well 

as any cost for prototyping and testing.  This figure also includes the cost of most of the worker 

components even though they eventually became virtualized.  The cost to build each scout is roughly 

$200, but an exact estimate is difficult to give due to some components requiring batch ordering.   
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Methodology 
 For this project, every team member was involved with every aspect of design.  The project was 

split into four major sections: mechanical, electrical, low level software, and high level software.  The 

mechanical section covers the design and assembly of the robot.  The electrical section covered the 

design of the PCB and selection of sensors.  The low level software was the code which would run on a 

small microcontroller and actually drive the robot while the high level software was involved with 

swarm control.  Each section was assigned a leader tasked with the ultimate responsibility of ensuring 

that a section was completed.  Andrew Haggerty led the mechanical design, Eric Jones led the electrical 

and low level software design (as the two were closely related), and Ricky Goloski and Nick Alunni split 

the work on the high level software.  The high level software was very complex so the group felt it was 

deserving of having more people assigned to it.  Figure 4 shows the four Gantt charts reflecting the 

progress of the group throughout the year. 

Mechanical 

Task Aug Sep Oct Nov Dec Jan Feb Mar Apr 

Initial Design     
       Prototype 1 Assembled 

 
    

      Redesign 1 
  

  
      Prototype 2 Assembled 

   
  

     Redesign 2 
   

    
    Prototype 3 Assembled 

    
  

    Final Redesign 
    

      
  All 4 Bots assembled 

      
    

 

Electrical 

Task Aug Sep Oct Nov Dec Jan Feb Mar Apr 

Generating Requirements   
        Component Selection 

 
    

      Board Design 
  

    
     Populating First Board 

    
  

    Electrical Testing 
     

    
  Populating Remaining 

Boards 
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Low-Level Software 

Task Aug Sep Oct Nov Dec Jan Feb Mar Apr 

Processor Selection 
 

  
       Drivers for Low Level I/O 

  
  

      Drivers for Sensors 
  

  
      Incorporating μC/OS-II 

   
  

     First Board Completed 
    

  
    Debugging Low Level I/O 

    
  

    Debugging μC/OS-II 
    

  
    Localization Module 

     
    

  Communication Module 
     

    
  Command Module 

     
    

  Final Testing 
       

  
 

High-Level Software 

Task Aug Sep Oct Nov Dec Jan Feb Mar Apr 

Bubble Concept   
        Swarm Rules 

 
  

       Coverage Algorithm 
  

        
   Mapping 

    
    

   Communication 
    

      
  High Level Robot Control 

     
      

 Path Planning 
     

  
   Text Simulation 

      
  

  Gui Simulation 
       

    

Metrics 
        

  
Figure 4: Gantt charts for the mechanical, electrical, and software design. 

Mechanical Design 
 There were several main design goals for the mechanical aspect of the swarm robots. 

Completing these goals resulted in the best robot design possible for the given tasks.  The robot was 

designed primarily using SolidWorks. 

 High Strength to Weight Ratio 

◦ the robot needs to be light weight, but still be durable and resilient 

◦ this goal focuses on material selection and construction methods 

 Accurate Odometry 

◦ the robot needs to be able to traverse reasonable distances without too much drift 

◦ this goal focuses on drive-train selection, and odometry related setups 

 Movement Speed 

◦ has to be able to travel at a reasonable speed for timely completion of a map 

◦ It was decided that 1 foot per second movement speed should be sufficient 
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◦ this goal focuses on wheel size and motor choice 

 360 Degree Uninhibited Scanning 

◦ the robot needs to be able to sweep it's sensors in a full circle for data collection 

◦ this goal focuses on turret rotation choices such as 

▪ servo 

▪ mounting location 

▪ turret design 

 Low Cost 

◦ the mechanical aspects of the robot need to be relatively inexpensive to fit within the 
budget 

◦ this means selection of all parts needs to be carefully planned for maximum cost-
effectiveness ratio 

 

 Because it was desirable to test on areas as small as a few square meters, making the robots as 

small as possible was desirable. With the given size of the sensors and other hardware, a 6 inch cube 

was deemed the most appropriate.  The robot could not be made smaller without imposing unrealistic 

constraints on the space available for the electronics. 

Material Choice 

 The weight of the robots is always very important, both for physical handling of the robot and 

the extra torque required from the motors. If the motors use more torque to drive the robot, they will 

draw more current and therefore drain the battery more quickly.  Because of these constraints, it was 

decided to have a robot under 5 pounds. Since most of the hardware weighs roughly a constant amount, 

the decision was made to reduce weight as much as possible through material choice. 

 There were many choices when it came to material as seen below in Figure 5. Aspects that 

needed to be considered were weight, strength, price, ease of manufacturing, and ease of use. The 

group first looked at aluminum. Aluminum is very light for the amount of strength it has and the size of 

the robots means the amount of stress would not be too severe. Aluminum is also relatively cheap; this 

project would have been able to acquire it for 10 dollars per square foot. Construction out of aluminum 

requires using bolts because welding aluminum is very difficult and not recommended. Other metals are 
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generally heavier, and if not are much more expensive. The group then looked at acrylic plastic. Acrylic is 

extremely light for the amount of strength it gives. Its main downfall is that it is quite brittle and can 

crack if given too much of a shock force. Acrylic is a very cheap material at fewer than 7 dollars a square 

foot, and only about 2 dollars a square foot if bought as scrap material. It is very easy to manufacture 

acrylic using a laser cutter. Working with the laser cutter is easier than operating a CNC machine and is 

also more time effective. Acrylic can be assembled using glue and pressure fitted, which also can save on 

cost compared with aluminum. 

 Based on looking at all of these different materials’ strengths and weaknesses the group decided 

to use acrylic. The amount of pros clearly outweighed all the cons compared with other materials. Cost, 

assembly difficulty and time, and strength are all great aspects of acrylic that made the group settle on 

this material [16]. 

Metrics: Strength Weight (10 = 
Lightest) 

Cost (20 = 
Cheap) 

Ease of 
Use 

Ease of 
Assembly 

Total 

Maximum 
Value: 

10 10 20 30 30 100 

Aluminum 6 7 15 20 10 58 

Acrylic 3 9 20 25 25 82 

Steel 9 3 10 15 15 52 
Figure 5: Table comparing various materials for use on the robot. 

Drivetrain Selection 

 There are many different drivetrains available, and determining one that would fit the group’s 

needs took some time. The design requirements for best results were determined to be accuracy, price, 

and ease of implementation. Clearly when navigation is an issue, having a drivetrain that is accurate and 

reliable is key for a robot to successfully traverse the field of operation. Because of this fact, it was easy 

to eliminate many drivetrains that involve large amounts of slip and high levels of computing to control 

accurately. Some of the systems the group decided against were tank steering systems (track and 4 

wheel skid steer), and other high slip, low accuracy systems.  See Figure 6 for details. 
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Drivetrain Pro Con 

Ackerman Steering No wheel slip High complexity relative to 
other designs 
Wide turning radius 

Tank steer with treads High versatility and able to 
traverse many terrains 
Zero turning radius 

High amount of wheel slip 

Differential drive Ease of implementation and low 
cost 
No wheel slip 
Zero turning radius 

Requires casters for balance 

Figure 6: A comparison of common drivetrains. 

 With the selection narrowed, the main choice was between an Ackerman steering system with 

turnable wheels similar to a car, and a simple differential drive system with casters on front and back for 

stability. The good thing about an Ackerman [17] system is the accuracy of turning that can be done with 

little to no slip. The user is only limited to the quality of the servo. The downsides to an Ackerman type 

of system are the lack of “zero-turning-radius” in that it needs to turn on an arc to be able to change 

direction and location. Another downside is the complexity of the system. There are many more moving 

parts than other simpler drivetrains, and much tuning could be required. The other system, differential 

drive with casters, is much simpler than car steering. Since the wheels are centered on the middle of the 

robot, perfect rotational motion can be made without any translation. This makes for easy orientation 

without worrying about minimum turning radii or space constraints. Also, since the two wheels are 

fixed, forward and backward motion can be directly controlled by motor speed, making even more 

precise movement. There are, however, a couple downsides to this system. Since it is a balanced 

system, the surface it operates on needs to be fairly uniform and flat. Any major bumps or incline 

changes can cause the robot to stall or get stuck. Since the location of the test area is known to be 

completely flat, this downside is relatively negligible. The system is much simpler than other drivetrains 

because the only moving parts are the wheels and motors spinning. The simple design limits the number 

of possible issues that could potentially occur. Also, assembly time and costs are lowered due to the 

reduction in the number of parts. 
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 Based on the research and weighing the pros and cons of each drivetrain systems, it was 

decided to go with a differential drive system, balanced on casters. It met all the design requirements 

with regards toaccuracy, low slip, and highreliability. 

Robot Design 

 With the size, weight, material, and drivetrain decided, the overall design of the robots was the 

next step. Using SolidWorks as the main design platform, initial drawings were drafted, and reviewed. A 

slotted construction method was chosen due to the ease of assembly and structural soundness that type 

of connection gives. Each fitting piece would have a tab at the end to be able to fit into an appropriate 

sized slot on the piece it would attach to.  Another issue that needed to be taken into account was stress 

concentrations.  Due to the slot construction methods, stress concentration was only an issue in a 

couple locations, specifically in the wheel well. 

The initial design was very basic. A two tiered circular base platform was designed. Instead of 

purchasing actual casters for the drivetrain, a type of slider was designed by crossing two pieces of 

acrylic with rounded sections to be in contact with the floor. 
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Figure 7: Initial CAD drawing of the robot. 

 As specific parts were determined, the initial model was able to be refined to better reflect 

actual dimensions of the selected components. It was discovered that cutting a hole in the center of the 

PCB for mounting the servo and turret would be too expensive if outsourced, and too risky if performed 

by the group, so a servo turret “step” was designed that the servo would go above the PCB and hold the 

servo and attached turret. 

 It was determined this model was far enough along in the design process that a prototype could 

be cut and assembled out of acrylic. This being one of the first times using the laser cutter, some trial 

and error was required to get the laser intensity and layout correct. When finished with the cutting, the 

parts were assembled using glue. The parts fit fairly well together, and the first model was done. 
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Figure 8: First assembled prototype of the robot. 

 After this model was complete, all that was left was to continue to update the model with 

correct dimensions and adjustments. One key piece that was added was the bracket for the wheel 

encoders. Also, the bottom mouse sensor mounting platform was added and holes and slots were 

included for the mouse sensors themselves. 
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Figure 9: Second prototype of the robot - now with holders for the quadrature encoders. 

 The second prototype proved to also have a few major flaws that needed to be changed. The 

standoffs for the encoder brackets were relatively weak compared to other aspects of the robot, and 

were hard to align correctly in assembly. To fix this the overlap of the standoff onto the robot base was 

increased. The offset of the encoder bracket from the robot was too close to easily fit the wheel and 

shaft adapters needed for connecting the motor to the wheel and the wheel to the encoder. 

This offset was increased so that there would be enough room for the adapters and wheel 

without increasing the width of the robot very much. After mounting the mouse sensor board on the 

newly designed platform, it was discovered that the rocking of the robot, along with slight ground height 

changes would make accurate sensor readings impossible with this design. To fix this, after weighing 

several options, it was decided to design a mouse sensor “sled” that would float along the ground, not 

directly connected to the robot, but moving on vertical slides. There would be two of these on the 

robot, so that each sensor would be able to float independently of the other. To accommodate these 

new sleds, the old sensor platform was removed and holes for the sleds were placed in the base. 
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Figure 10: Enclosure (sled) for a single mouse sensor. 

Initially, the plan was to have springs push the sleds down onto the ground for a solid 

connection with the floor. However, since the robots are very light weight, springs would reduce the 

traction of the drive wheels too much. Also, the springs would get caught on the bolts they were 

intended to ride on and would not allow for smooth floating. However the good news was that the 

mouse sleds floated well without springs because of the weight of the sleds and size of the holes in the 

main platform. 
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Figure 11: The final, fully assembled robot with encoders, wheels, PCB, and sensor turret. 

Due to electrical issues described later, the mouse sensor sleds were not used in the final 

design. The sleds were removed from the design, leaving encoders as the only form of localization. 

Above is a picture of one of the four final assembled robots. A minor fix was added post-design to fix 

encoder issues, which can be seen on the outer side of the robot. All parts were installed on the four 

robots, including the PCB, wheels, motors, encoders, servo, and turret with sensors. 

Electrical Design 
This section describes the electrical design choices made when constructing the robots.  All 

electrical PCB design was completed in the free version of Eagle. 
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Queen and Worker 

 The top levels of the swarm (the queen and the workers) are based mostly in software rather 

than hardware so it is simpler to discuss their reduced hardware requirements first.  Due to time and 

budget constraints, the worker became entirely virtual and could be running on the same laptop as the 

queen.  However, the electrical design still reflects the original goal of having worker level robots in the 

physical world and therefore much of this section describes how the worker would run provided it was 

not virtualized. 

Design Requirements 

 The queen requires the most processing power out of any level of the swarm.  However, there is 

no reason the queen needs to be mobile so its role can be fulfilled by a laptop.  The worker has similar 

requirements to the queen however less processing power is required and mobility was originally 

desired.  For this reason the BeagleBoard was chosen for its large online community support, small size 

and relatively low power consumption.  The BeagleBoard also has the I/O capabilities to be able to 

directly communicate with sensors if needed.  However, it was decided that the simplest method would 

be to have a separate board (dubbed the MobileBoard) used for direct sensor communication and 

motor control.  The MobileBoard would be capable of reading and interpreting the sensors to provide 

the BeagleBoard with any information needed.  This design allows for the BeagleBoard to concentrate 

solely on high level processing and allow low level control to be offloaded onto another system. 

MobileBoard 

The MobileBoard serves as the main control platform for the scouts and was intended to serve 

as a method of low level hardware control for the workers.  As mentioned before, when the workers 

became virtual, parts of the design became vestigial, however their original purpose is discussed below.  

Another component that was eventually removed from the project was the detection of candles but 

again, they are discussed in terms of how they were intended to be used. 



Hierarchical Swarm Robotics  34 
Worcester Polytechnic Institute 2011 

Design Requirements 

 The low level control board of the swarm had several design requirements which affected the 

choice of electrical components.  The robot would be battery powered so steps were taken to attempt 

to conserve power.  Another requirement was that the robot would be able to perform its own 

localization which would require a non-trivial amount of processing power as well as I/O peripherals to 

communicate with various sensors.  The robot would also have to relay findings to its parent which 

would require wireless communication.  In order for the robot to be able to move, motor driver circuitry 

was needed.  This could take the form of either a DAC (Digital to Analog Converter) or H-Bridge.  

Another design requirement was that it could detect both physical objects and “heat” (which for 

practical reasons took the form of an IR beacon rather than an actual heat source).  The final design 

requirement was that the same board could be used for low level motor control/sensor interfacing for 

the worker or used as the main control board for the scout. 

Power Supplies 

 The decision was made early on that one of the easiest ways to conserve battery life was to use 

a switching regulator rather than a linear one.  A switching regulator works by essentially generating a 

PWM signal whose duty cycle is adjusted so that the RMS voltage of the square wave is equal to the 

desired output voltage.  To power the MobileBoard, the desired outputs were 5V and 3.3V (the 

operating voltages of the components used) and the input voltage ranged between 7.5V for two fully 

charged batteries to as low as 6V for two nearly dead ones.  The use of switching regulator dramatically 

improves the efficiency of the circuit, due to the fact that a switching regulator operates transistors in 

either a fully on or fully off state resulting in over 90% efficiency.  In contrast, a linear regulator simply 

dissipates excess voltage (or more accurately power because current is passing through the regulator as 

well) as heat and the efficiency is determined only by the ratio of output to input voltages.  For a fully 

charged set of batteries, this would be 5V/7.5V or 66% efficient. 
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 Care was also taken in ensuring that power supplies were adequately filtered and that grounds 

were separated.  In order to reduce the effects of noise on the circuit, the main 5V and 3.3V supplies 

were split in to power, digital, and analog sections.  Power sections received only minimal filtering in the 

form of a capacitor on the output of the switching regulator to handle brief spikes in current draw from 

a motor.  The digital sections were filtered through an LC circuit to form a low pass filter to both remove 

some of the ripple voltage created as a byproduct of a switching regulator and help protect against 

potential voltage surges created by the back EMF of a motor.  The analog sections received an additional 

filter in order to create a voltage source as clean as possible for the components which would be most 

sensitive to noise.  A similar practice was done for grounding.  Any high current component was 

connected to power ground, digital components were connected to digital ground, and analog 

components were connected to analog ground.  All three grounds were connected at only a single point 

so that any noise induced in the ground by either power or digital components would not have adverse 

effects on analog components such as an ADC (Analog to Digital Converter). 

Motor Control 

 In order for the robot to be able to move it is a requirement that the microcontroller needs to 

have a method for controlling the speed of a motor.  The motor control would be best accomplished 

with an H-bridge circuit as this can operate without the use of a split power supply and is more efficient 

than a linear DAC.  A dual H-Bridge IC (TI’s SN754410) was selected with a max output current capacity 

of 1A which exceeded the maximum of 600mA draw from a single motor.  Since a motor behaves similar 

to an inductor, when the H-Bridge disables the output channel (i.e. when the controlling PWM signal is 

low) the inductance of the motor will not allow for current to stop instantaneously causing a very large 

voltage surge on one of the motor terminals likely damaging the H-Bridge in the process.  In order to 

protect against this, schottky diodes were placed at both terminals of each motor which would become 

forward biased and conduct whenever either terminal exceeded 5V or fell below 0V.  The reason 
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schottky diodes were selected was for their fast recovery time allowing them to become conductive 

before the voltage spike caused by the motor became too high. 

Object and Heat Detection 

 Object and heat detection are best accomplished by separate sensors.  A sharp IR rangefinder 

works well for detecting a range to an object and an IR phototransistor operating on a different 

wavelength is used for detecting “heat” or in this case, an IR emitter on the same wavelength as the 

detector.  Since the IR rangefinder and phototransistor operate on separate wavelengths, the two do 

not interfere with each other.  When used simultaneously, the IR rangefinder can accurately measure 

the distance to a given object and the heat sensor can be used to detect if the object observed by the 

rangefinder is a virtual heat source or simply an ordinary wall.  The IR heat detector could also be used 

for a second purpose.  By modulating the IR emitter as a square wave with a preset duty cycle the same 

circuitry for a virtual candle can be used as an IR beacon that a robot can recalibrate against in order to 

correct for odometry drift (assuming the location of the IR beacon is known).  This feature was never 

implemented however the hardware still supports it. 

Localization Sensors 

 Tracking the position of an indoor robot accurately is not a simple task.  With GPS unusable 

indoors there is little existing infrastructure which can be used for accurate positioning.  Wi-Fi 

localization can narrow down the position to within the range of a single access point however this is 

not nearly accurate enough for this application.  Odometry requires no additional deployment and has 

very good short term accuracy but suffers from uncorrectable drift over time causing long term accuracy 

problems.  Every other localization technique designed for indoor use was simply too expensive for this 

project.  One of the more expensive is the Stargazer system which relies on observing predefined 

markings on the ceiling with a camera and by observing the position and orientation of those markings 
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could calculate the position of a robot.  This system however would require putting a $900 camera on 

each robot (more than the cost of every other component combined). 

 With this in mind, the final choice for sensors were encoders attached to the drive wheels and 

optical mouse sensors on either side of the robot to track ground movement relative to the robot.  The 

use of multiple sensors allows for redundancy so if one sensor were to receive a bad reading the other 

would likely still be correct.  In that way, the amount of drift experienced can be reduced (although not 

eliminated).  The encoders directly measure angular displacement of the wheels and work well for being 

used as feedback for a PD velocity controller.  The encoders are prone to wheel slip but otherwise are 

unlikely to miss any counts while the wheel is moving.  The optical mouse sensors have the advantage of 

being immune to wheel slip as they measure the displacement against the ground directly however they 

are able to occasionally misjudge the actual displacement and any drift experienced is not able to be 

corrected without the help of another sensor.  The mouse sensors were found to be unusable for this 

project due to strict mounting tolerance which could not be achieved.  Again however, the support for 

the sensors still exists in the hardware and software. 

Wireless Communication 

 When a parent robot wishes to issue a command to a child or a child wishes to relay information 

back to a parent it must have a way of transmitting this information.  Several wireless protocols exist 

which are capable of performing this function.  802.11 Is widely used for wireless internet access and 

supports high data rates and good range at the cost of consuming a relatively large amount of power.  

Bluetooth supports mid range data rates (enough for audio streaming) and has a limited range but 

consumes less power than an 802.11 transceiver.  The final major protocol which was studied as a 

potential candidate was ZigBee which is designed for low data rates, extremely low power, and ranges 

comparable to and possibly exceeding 802.11.  Digi International has created XBee modules which use 

the ZigBee protocol to allow for transmission of data from point to point through the ZigBee mesh 
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network.  The XBee modules proved to be the simplest to use, lowest power, and most cost effective for 

this swarm.  Therefore, the choice was made to use the XBee modules for wireless communication. 

Processor Selection 

 With all of the peripherals chosen it was then possible to begin selecting candidates for a 

microcontroller to serve as the main processor for the MobileBoard.  The microcontroller needed to 

have a variety of I/O capabilities to support communication over UART for the XBee module, SPI for the 

encoder counter and optical mouse sensors, and it also needed the ability to read analog values with an 

ADC to use the IR rangefinders.  The microcontroller also would be responsible for updating its position 

very frequently which requires a reasonable amount of processing power.  Finally, the processor must 

consume low amounts of power in order to conserve battery life.  There were two major candidates for 

the microcontroller: TI’s MSP430F5438 and Atmel’s Xmega128A1.  The MSP430 is known for its 

extremely low power consumption and had the I/O peripherals required to communicate with every 

sensor.  The Xmega’s power consumption is higher however it has a faster clock speed as well as an 

extensive set of peripherals.  Both processors were compatible with μC/OS-II (a real time operating 

system or RTOS, which will be explained further in a later section) having both the RAM and flash 

memory required. 
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 MSP430F5438 Xmega128A1 

Clock Speed 16MHz 32MHz with DFLL for 
increased accuracy 

RAM 16kB 8kB 

Flash Memory 256kB 128kB 

Timers 3 16-bit 8 16-bit 

ADC 12-bit 2 12-bit 

DMA 4 channel 4 channel 

SPI 8 4 Master/Slave + 8 
Master Only 

UART 4 8 

Tools Provided Free limited IDE’s 
available 

AVR Studio provided for 
free with no limitations. 

Figure 12: Comparison of the MSP430F5438 and the Xmega128A1. 

 The table shows that although the MSP430 has more RAM and code space, the Xmega is the 

faster chip and the clock is also able to be automatically calibrated for increased timer accuracy.  Speed 

and ease of use were the deciding factors because having more RAM or code space than needed does 

not yield better performance.  Having more processing speed on the other hand simply allows for faster 

polling of the sensors and a faster interrupt response time.  The faster CPU would also be useful to 

offset the fact that neither processor had an FPU (Floating Point Unit) so all floating point calculations 

must be emulated in software. 

Circuit Design 

 Circuit design proved to be a difficult task as no member of the group had any previous 

experience with PCB design.  Therefore, there was a steep learning curve involved in getting the 

schematics for the MobileBoard completed.  In addition to this problem, there was also the issue of 

having several devices with different operating voltages.  The BeagleBoard intended to be used by the 

mid level robots used 1.8V I/O levels but the Xmega used 3.3V levels.  The IR rangefinder and encoders 
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worked on 5V however the encoder counting IC ran on 3.3V and the ADC in the Xmega uses a 1V 

reference voltage.  Clearly a solution was needed for converting many of the logic levels used.  This 

solution came in the form of a simple circuit involving a single N-Channel MOSFET and two pull up 

resistors.  The circuit used is shown below. 

 

Figure 13: Circuit of the N-Channel MOSFET and two pull up resistors. 

 This circuit allows for bidirectional logic translation between any two levels (V1 and V2).  This 

circuit would have been used to allow the Xmega to communicate with the BeagleBoard as well as for 

the Xmega to use a PWM signal to control the 5V servo.  In order to solve the problem of interfacing the 

5V encoders with the 3.3V encoder counter, a simple voltage divider was used.  The voltage divider 

stepped the 5V encoder pulses down to approximately 3.3V.  This approach was used again to ensure 

that the output of the IR rangefinder remained within the 0-1V range detectable by the ADC of the 

Xmega 

 Another important feature added to the MobileBoard was the ability to selectively enable or 

disable the IR rangefinders and servo motor.  Both of these devices would not be used while driving and 

it therefore was deemed prudent to disable them to prolong the life of the batteries.  The enable circuit 
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used a P-Channel MOSFET to act as a switch to connect or disconnect power to the IR sensors and servo 

motor. 

 One of the final ancillary components added to the MobileBoard were debugging LED’s.  These 

LEDs were designed to provide a means to send a simple debugging message in the event sending data 

out the UART port isn’t an option.  The advantage of such a simple debugging system is that it does not 

rely on any potentially error prone software driver. 

 
Figure 14: The finished board with all major components labeled. 

Software Design 
 The software design for this project was split into two distinct parts, one for the high level code 

that was controlling the worker and queen, and one for the lower level code that was controlling the 

scout robots.  The queen and worker code was all written in Java for ease of use and portability.  It is 

also possible to have a BeagleBoard, which would have run the workers, utilize a JVM so that the 

workers could run the Java code.  The queen can also run Java since the queen runs virtually on a 

computer or could have also used a BeagleBoard.  The scout however needed a language that had 

greater control over memory usage as well as the ability to run a real time operating system with 
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threading on a rather limited microcontroller.  Both the high and low level code were created using the 

Eclipse IDE.  AVR studio was used for debugging the low level code running on the Xmega. 

 The software was also designed from the beginning to be written in a very modular way so that 

it would be applicable to a wide range of applications as well as being reusable and expandable.  The 

purpose of the code is that the same code being used for the group’s relatively limited scope of one 

queen, two workers, and four scouts should be expandable to many more robots. 

Coverage Algorithm 

This section gives an in depth look at how the coverage algorithm designed for this project 

functions and is utilized. 

Thinking in Bubbles 

A bubble is a space in which information can be gathered.  These information bubbles always 

exist around a robot.  A bubble can either be defined by the robot’s body, sensors, or a collection of 

other robots, but a bubble always represents the area around a robot in which the robot can gather 

information about the world.  

For example, imagine a man standing in a room with a blindfold.  If he has his arms to his side it 

may seem that he doesn’t know anything about the room.  However, since he can always be sure that 

he is standing in the room, the place in which he is standing is free. The bubble of information is exactly 

the same size as he is, as he can only be sure that his location in space is unobstructed.  If the man then 

extends his arm, and moves around in a circle (and it is assumed that there are only walls in which to 

touch, no furniture of other objects that may be missed), his information bubble can now be said to be 

the circle around him with the radius of his arm. He knows that by spinning with his arm out (and not 

touching anything) that all the space the distance of his arm away is free.  This can continue in any such 

fashion such as using one’s eyes, or a stick, or whatever way of sensing one may have available. 
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The same applies for a robot.  If all it has are bump sensors, its bubble is defined by its location 

in space.  It knows that all the space taken up by its body is not in fact unknown, but is instead free.  If 

the robot has an IR sensor, it knows that it can gather information anywhere from 10 – 80cm in radius 

(with the IR sensors used on this project) from itself.   

The bubble concept is a way of abstracting a means of gathering information such that within 

the context of this swarm, two robots of different levels have no reason to know how information is 

being obtained, simply that they can request information from a given bubble, and then have that 

information returned to them.   For the scouts, they know their bubble size based off of the range of the 

IR sensor.  At startup, the upper levels of the swarm send a request for information to their children.  

The information packet that comes back contains all the needed information, which is the current 

location of the child and its minimum and maximum bubble size.  For example, when a scout joins with a 

worker it will inform the worker that it can be asked for information anywhere between 10cm away and 

80cm away. When the worker asks for information, it does so by communicating the idea of “give me 

information in a X cm radius around yourself.”   In that way, the worker can receive information from 

the scout without ever having to worry about where it comes from or how it is gathered. 

The same concept can then be further abstracted to the next level up in the swarm.  A worker’s 

information bubble is defined by the space in which all of its scouts can gather information.   At a 

minimum, this size is considered to be the minimum size for all the scouts to fit and scan with their own 

minimum radius around the worker.  The maximum bubble for the worker is considered to be the 

maximum communication range of the hardware that the worker is using to communicate.  Due to this, 

the maximum bubble size of the worker will vary based on hardware implementation.   

 However, the important fact is that the queen does not care how the worker gathers 

information; all the queen cares about is the size of the bubble the worker can gather.   The queen is 
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unsure if the worker has children itself, if it is doing any scanning with sensors, or if it is simply driving 

around the entire space it has been given.  More importantly, the queen does not care.  All the queen is 

concerned with is that if it asks the worker for information around it, the worker will in some way gather 

that information and report it back to its parent when complete. 

 
Figure 15: Three different ways of gathering information in a bubble.  Using a sharp IR sensor (left), driving to all points in the 

bubble (center), and breaking the bubble up further for children (right). 
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Figure 16: Diagram of the swarm and various bubbles used.  Note that the queen is unable to see how the workers are 
populating their bubble and different bubbles on the same level involve zero overlap. 

Overall, this concept of the bubble is what will allow the group to abstract the information 

gathering process so that no two levels ever need to be aware of how the other levels are working.   

  While this project decided to use circles to represent bubbles, it should be mentioned that this is 

not mandatory.  Bubbles can be represented in an incredible number of ways, the only prerequisite 

being that a parent knows what type of bubble it should be giving.  A bubble simply has to have a 

minimum and maximum size that it is capable of obtaining.  Bubbles could be in the shape of squares 

characterized by their minimum and maximum size length, or even amorphous blobs with bounds as the 

minimum and maximum square area of the shape.  



Hierarchical Swarm Robotics  46 
Worcester Polytechnic Institute 2011 

 
Figure 17: A robot using a square bubble (Left).  A robot using an amorphous bubble (Right). 

Description of Coverage Algorithm Basics 

 At the highest level, the coverage algorithm is designed to output a list of locations that a 

robot’s child should drive to, as well as a radius at which they should gather information once they reach 

their next destination.  Explicitly, the queen will run the coverage algorithm for all the workers (since all 

the workers are children of the queen), which will determine the next locations for each worker as well 

as the radius to scan at once the worker has reached that destination.  Each worker will then run the 

coverage algorithm for all of their children (the scouts), which will output final locations for each child as 

well as a scan radius for each scout to scan. 

The algorithm will work by taking in a map of the area it has been asked to gather information 

on, as well as a list of all the children that the robot would like to place on the map.  By having the 

children placed on the map, it is also implying that the robot would like its children to drive to that 

location (if the final location is different than the current location), and then gather information from 

within the bubble radius generated by the algorithm. 

 To solve the problem of where to place robots and how large an area they should scan, a series 

of rules and optimizations were developed in order to allow for the various levels of the swarm to 

operate simultaneously, while constantly being unaware of the actual number of levels within the 
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swarm, or the knowledge of “neighbors” within a robots own level.  The rules and optimizations for the 

swarm are discussed in detail next.   

Greedy Algorithm Vs. Optimal Solution 

 Originally when the Coverage Algorithm was still in its relative infancy a dynamic programming 

solution was perused that would generate the true optimal placement of a child’s bubble. However, it 

was soon discovered that this was significantly less than trivial and was in fact an intractable problem.  

Once this was determined, it was also found that a greedy approach to the same problem provided a 

good approximation of the optimal solution that the dynamic programming solution would have 

provided.  For those reasons, it was decided that a greedy approach would be used in order to place the 

robots on the map.  The greedy approach would simply select the best locations for the robots given a 

set of criteria and a way to rank all the possible locations. 

 Rules of the Coverage Algorithm 

 The rules of the coverage algorithm are the guiding principles of how the algorithm will run.  

While the optimizations are designed to allow the algorithm to complete in a faster or more efficient 

manner, the rules are needed in order to allow the algorithm to complete at all.  Each rule has a specific 

function that was determined by studying how the robots would behave in the real world.  Below is a 

statement of each of the rules, as well as its justification and real world significance.   

Rule 1: Bubbles Generated by the Coverage Algorithm Cannot Overlap 

 The first rule of the coverage algorithm is the most crucial to the running of actual robots in a 

physical environment.  The rule simply states that the bubbles generated by the coverage algorithm 

cannot overlap.  The reasoning behind this is that the children of a parent will only know or gather 

information from within that radius and by ensuring that they do not overlap, it allows for a few key 

facts to be assumed.  It allows a robot to know that if its children do not overlap, then its children’s 
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children will also not overlap, etc.  If the bubbles could overlap, then a robot’s “grandchildren” 

(children’s children) could collide due to the fact that they are mapping the same region. 

 
Figure 18: A sample of how the bubbles might be placed by the coverage algorithm.  Note that none of the bubble centers 

are in unknown space and none of the bubbles overlap. 

 From this rule also stem a few implications about how the robots gather information 

themselves.  The main implication is that robots should throw out any information that is obtained 

about a space outside the given bubble.  For example if a worker is told to scan a given area, and then 

placed a scout (one of its children) in such a way so that the scout scans outside of the bubble of the 

worker, the information about the area outside of where the worker was told to scan will be 

disregarded.  The reasoning behind this is that, as stated above, the worker can only be sure about the 

information it is gathering inside its own bubble.  If the scout had seen an object outside the workers 

bubble and reported it back, the worker has no way of knowing if it is an object, robot, or something 

entirely different such as sensor interference.    
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Figure 19: Depiction of a level 2 robot (bubble shown in green) scanning within a level 1 robot’s bubble (shown in blue).  
Since the level 2 robot’s bubble extends beyond the Level 1 robot’s bubble, none of the information outside the level 1 

robot’s bubble (shown as the grey squares) will be saved. 

 The second implication is that the robot can only place its children within the bubble (note that 

the bubble may extend beyond the bubble of the assigning robot but the data will be thrown away) it 

has been assigned.  Following the same example as above, the worker cannot place any of its scouts 

outside of the bubble assigned to it by the queen. Again for the same reasons above, this is because the 

worker would have no way of knowing what may lie just outside its bubble, and may end up driving the 

scout into another robot or even off a cliff.  

 
Figure 20: Valid placement of children by the coverage algorithm (left), invalid placement by the coverage algorithm (right). 
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Rule 2: Coverage Algorithm Cannot Route a Robot through Unknown Space 

 The second rule for the coverage algorithm has to do with placing the bubbles while taking into 

account the unknown certainty of un-scanned space.  The second rule states that the robot must be 

placed in known space and be able to reach that location without traveling through unknown space. The 

reasoning was that if a parent tells its child to drive and scan in unknown space, it has no actual way of 

knowing if the child is capable of reaching its destination. 

Rule 3: Bubbles Must Follow the Assigned Minimum and Maximum Size 

 The final rule of the coverage algorithm is a bit more of a common sense implementation.  A 

bubble placed by the coverage algorithm must comply with the minimum and maximum bubble sizes 

that were given to the parent by the child.  The reason for this is simply because the child has reported 

that for whatever reason the bubble it is assigned must conform to the specified minimum and 

maximum and asking the child to exceed those limits may not be possible for the child to do. 

Heuristics of the Coverage Algorithm 

 These heuristics were determined to be best for this specific usage of the coverage algorithm.    

1) Bubbles Must be the Same Amount of “Work” 

 The first heuristic that was determined for the successful running of a swarm in the real world is 

that bubbles placed by the coverage algorithm should take the same amount of effort to scan.  The 

amount of work to uncover the area should be reduced down to a simple and comparable factor. Some 

examples of expenditures could be time or energy.  The heuristic that was used for this project was that 

the bubbles must be the same size.  This simple heuristic works well for a swarm where the hierarchy is 

“balanced” (all nodes on a given level have the same number of children) and where all of the scouts use 

the same sensors to scan an area.  One example where this heuristic is less optimal would be where the 

queen tells two workers to scan the same size area but one worker has two scouts to work with and the 

other has five.  Clearly the worker with the larger number of scouts can complete the same task more 
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quickly however the queen is not aware of this.  For the scope of this project however, using bubbles of 

the same size was considered a reasonable way to divide the workload. 

2) Number of Bubbles Placed should be a Maximum 

 The second heuristic for this implementation of the coverage algorithm was that the number of 

bubbles, and therefore children that a parent attempts to place during a given iteration of the coverage 

algorithm, should always attempt to be a maximum.  Specifically what this means is that it is always 

better to place more robots, even if the total area of the bubbles is smaller.  For example, it is better for 

a queen to place 3 workers with a minimum scan radius, than it is for a queen to place 2 workers with a 

larger scan radius, or even 1 worker with a maximum scan radius.  The major reason for this is due to 

the fact that it should be faster to have multiple children running in parallel than it would to have a 

single child doing more work in series.  In other words, the only reason the coverage algorithm would 

choose not to utilize all children would be if there is not enough space to fit all children even when using 

their minimum possible bubble sizes. Therefore the decision was made that a robot should only be 

removed if all of the robots are already at their minimum scan radii. 

 
Figure 21: A nearly completed map with four robots attempting to scan.  Three of the robots are capable of scanning with 

their minimum radii; however a fourth robot cannot be placed without bubble overlap. 

3) Bubble “Value” Should be Maximized 

 This heuristic was implemented as a means of determining where children should be placed to 

optimize the area that would be revealed vs. the cost of moving the robot.  A child will likely have many 
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different possible locations where it could be placed however some of them would uncover very little 

area or may force the robot to drive a great distance. 

 
Figure 22: Picture of various locations a robot could move to and scan with a radius of 3 cells and their corresponding value.  
The location marked 35 is highest value because it scanning at that location would uncover a high number of cells without 

much driving.  The locations marked 25 and 15 are progressively lesser value due to the fact that they uncover a similar 
number of cells however require significantly more travel.  The last location marked 2 is lowest value due to the fact that it is 

close, however scanning there would not uncover a large number of cells. 

The simplest method to perform a cost-benefit analysis is shown in the equation below. 

          

Here V represents the value of a bubble, C represents the number of cells which the bubble would 

reveal, and D represents the required distance for a robot to drive to begin scanning.  Note that the 

value for C is not simply the number of cells contained within the bubble, as only cells which are not 

already scanned can be revealed.  It is also worth noting that depending on the obstacles in the bubble, 

not every cell is guaranteed to be scanned when the child completes its bubble.  However, since there is 

no way of knowing this, the value function is optimistic and assumes the best case scenario that all cells 

in a bubble that are un-scanned will be revealed.  The parameters α and β are arbitrary constants which 

can be tuned to reflect the value gained by uncovering more cells or the value lost by driving more. 
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 In this particular implementation of the coverage algorithm, good results have been achieved by 

setting the cells uncovered constant (α) to be 1, and the distance driven constant (β) to be 3.  What this 

means is that for every cell driven, 3 additional cells need to be uncovered to make the extra time spent 

driving worth the effort.  In the event that two bubbles are evaluated to the same number, no 

preference is given between the two and the selection is more or less at random. 

4) Midpoint of Bubble must Border Known and Unknown Space 

 This heuristic is designed to reduce the amount of time it takes to complete an iteration of the 

coverage algorithm.  Although the value metric discussed will work for determining the value of any 

bubble placement (including ones which place the bubble in entirely known space), it is a waste of 

resources to attempt to place bubbles in a location that will definitely not be optimal.  Rather than 

obtaining potential value of a bubble at every possible location a robot could drive to, the requirement 

is added that a bubble must be placed somewhere that borders unknown space.  This will ensure that at 

least one cell will be uncovered when the scan is performed and eliminates all of the useless bubble 

placements. 

 
Figure 23: Picture of robot scanning in known space, uncovering no new information (left).   If the robot is placed on the 

boarder of known and unknown space it is a guarantee that at least one new cell of information will be uncovered (right). 

In-depth Description of the Coverage Algorithm 

Pseudocode Description 
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Function: coverage-algorithm(ChildList, Map) 
returns: location to place children, scan radii, and exit status 
inputs:  

ChildList, a list of all children of the robot running the coverage algorithm 
Map, The currently known information about what areas are free and which are blocked 

 
Local variables: 

ValidList: A list of all points which are adjacent to an unknown space 
DrivableList: A list of all points that are in the valid list and the robot can physically reach 
PlaceableList: A list of all points which are in the drivable list and are not too close to another robot 
scanRadius: The current radius to place all bubbles with 

 
Make A Complete List of Valid Points 
 IF the list is empty, 

return with no children placed and a status indicating the map is already complete 
While there are children to be placed on the map 

Clear temporary assignments  /* remove any old leftover assignments from previous iteration of 
while loop*/ 

 For Each Child 
  If the Dijkstra’s has not been run 
   Run Dijkstra’s Algorithm for the child 
   For each point in the complete valid list 
    If the point is driveable by the child add it to the driveable list 
   Set that DIjkstra’s has been run 
  For Each point in the child’s driveable list 
   If the point is far enough from every robot, add it to the placeable list 
  If the placeable list is not empty 
   Determine the value of every point in the list 
   Temporarily place the robot at the most valuable point 
 If all robots were successfully placed 
  Move idle robots 
  Set temp locations to be final locations 

Return The path to give each child and the bubble radius to scan at when they arrive at 
their destination and exit status indicating that the map still is not fully covered 

 Else  
  If the scan radius is a minimum 
   Remove a child 
   Mark child as idle 
  Else 
   Decrement the scan radius 
 
 If there are no more robots to place 

Return No placement for any children and exit status stating that the map is not fully 
covered however it cannot be completed 

Figure 24: Pseudo code description of the coverage algorithm. 
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 Although the pseudocode appears quite complicated, the process can be described in English 

without too much difficulty.  Following the rules and heuristics stated previously, the algorithm attempts 

to place all children at their maximum scan radius without allowing any two bubbles to overlap.  If the 

bubbles do not overlap, the children can be placed successfully and the algorithm returns the path to 

assign them as well as the scanning radius to use.  If the bubbles cannot be placed without overlapping, 

the algorithm retries placing the children using smaller scan radii.  If the scan radius is at a minimum, the 

algorithm will remove a child and check if the overlap has been removed.  If it is forced to remove all 

children the algorithm determines it cannot obtain any more coverage of the map. 

 Although the cursory explanation of the algorithm is sufficient for understanding the general 

process for placing children, it is not descriptive enough to explain some of the details implied in the 

pseudocode that help improve runtimes.  From the beginning, the first step is simply to generate a list of 

every cell which is adjacent to an un-scanned cell (for reasons stated in the heuristics section above).  

This is known as the valid list.  If this list is empty, it means that there are no cells in the map which are 

not scanned so the map has been entirely revealed.  Therefore, the coverage algorithm does not need to 

do anything because there is nothing left to cover. 

 If there are still points that border unknown space the coverage algorithm begins attempting to 

place children.  Dijkstra’s algorithm [18] is run on every child to find the optimal path to every cell in the 

map (if any path is possible).  This can be used to eliminate points from the valid list that are not actually 

reachable by the robot.  A new list is generated that contains only points that are both valid and 

reachable by the robot known as the drivable list. 
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Figure 25: Picture of a map showing locations that are valid and drivable, as well as valid and un-drivable. 

 The drivable list can then be reduced even further by removing points which conflict with 

existing bubbles.  This removal stops the algorithm from placing bubbles which can overlap each other.  

The algorithm builds what is known as the placeable list which contains all points that were in the 

drivable list and do not cause any overlap among existing bubbles.  The reason for continuing to reduce 

this list so many times is because this results in the smallest number of points to evaluate for placement.  

The evaluation process is the function mentioned earlier (V= αC – βD) and although it is not incredibly 

complicated, computing the value for C (the number of cells which a robot would uncover) does require 

enough calculations that it is prudent not to waste time computing the value for points which are in the 

valid list but the child could not actually drive to or be placed at due to bubble overlap. 

 When the placeable list has been built for a child, the algorithm computes the value for every 

bubble which could be created at a point in the placeable list and chooses the point that yields the 

highest value.  Once a child has been placed, the coverage algorithm repeats the entire process again for 

the next child until all children are placed.  Note that as stated earlier, if a child cannot be placed then 

the algorithm restarts from the beginning attempting to place children using smaller bubbles.  When the 

bubbles cannot be made smaller, the algorithm instead removes a child. 
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 A significant consequence of this is that if the algorithm is forced to restart, due to being unable 

to place a child, it has effectively lost any progress made when placing the children and starts from 

scratch.  Therefore, it is important that the reduction steps taken to produce the placeable list are done 

on a single child at a time rather than creating all valid points for all children, then reducing the list to 

the drivable list for all children, then reducing to the placeable list for all children.  If the latter approach 

were taken, if the algorithm found that it could not place all children it would have wasted the effort of 

performing all the list reduction steps.  Alternatively, if the process is done in a different order where 

the list is reduced down to the placeable list for child 1 before even populating the valid list for child 2, 

as soon as a child is found to have an empty placeable list there is no need to continue attempting to 

place any more children because it is known that at least one child cannot be placed with the current 

scan radius.  By using this fail-fast method the runtime of the algorithm is reduced significantly.  

 The last important function the coverage algorithm performs is “Move Idle Robots.”  This deals 

with the fact that if not all children are able to be placed; some of the children will not participate in 

scanning with their siblings.  However, the children may need to move out of the way to prevent them 

from sitting inside another child’s bubble.  “Move Idle Robots” simply checks to make sure that any 

robot that has not been utilized by the algorithm is not in the way of any robots which will be given 

bubbles to scan.  If an idle robot is in the way, it is assigned a path that will move the robot out of the 

way. 

Other Interesting Features 

 The below sections describe specific aspects of the algorithm that were agreed as generally 

interesting and unique.  The details discussed here are not particularly related to the process the 

algorithm uses as a whole, but the features described here were deemed interesting enough to mention 

in this paper.  
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Removing the Closest Robot 

 One interesting feature that was implemented was choosing the closest robot to be removed 

when the coverage algorithm reaches a minimum scan radius and then must choose to remove a robot.  

In the original implementation of the algorithm, it would simply remove the first child stored in its list of 

children.  Through further thought analysis, it was decided that the best robot to remove would be the 

one that is closest to all the other robots.  Here, closest is defined as the robot with the shortest average 

distance to all other robots.  The thought behind this idea was that if robots are closely clustered 

together, they will be forced to spread out more in order to scan with larger bubbles.  By spreading out 

further, their drive distance is increased.  Therefore, a simple method was created of removing the 

robot that is deemed the greatest cause of the clustering. 

 
Figure 26: Picture of the “closest robot” calculations.  The robot in the center would be deemed the closest since the sum of 

its distances to the other robots will be the minimum of the four robots shown on the map. 

Exponential Decay of the Scan Radius 

 The second useful feature that has been implemented actually granted the greatest reduction in 

coverage algorithm run time.  When the coverage algorithm decrements the scan radius from a 

maximum to a minimum while attempting to place children, it decreases the scan radius logarithmically 

rather than linearly.  This is useful for example when the queen is attempting to place its children (the 

workers).  The workers have a very large maximum scan radius because they are only limited by the 

communication range of the XBee modules (roughly 400m).  It is unlikely that the maps tested in this 

project are large enough to utilize two workers with 400m radius bubbles, so the coverage algorithm will 
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need to attempt to place the workers many times with smaller and smaller radii until both can be used.  

Doing this linearly on a 20m x 20m map will take at least 390 decrements before both workers can fit 

within the map (assuming 1m per decrement).  In order to speed up the process, the radii were 

decreased in an exponential manner where the next radius to try is 90% of the previous one.  In the 

previous example, rather than stepping through 400m, 399m, 398m, etc., the algorithm will try 400m, 

360m, 324m, etc.  This provided a good balance for quickly reducing the bubble size when needed 

without having a low resolution of bubble sizes for smaller bubbles. 

Move Idle Robots 

 Although the function that “move idle robots” provides was described earlier, this section 

covers how it works in more detail.  Once the coverage algorithm was finished placing as many as robots 

as it could, it would check to see if any of the robots in its list were not told to scan.  If there were any 

robots that weren’t currently scanning, the algorithm would check if any of the robots were in conflict 

(within the scan radius) of other robots that were being told to scan.  If any of the idle robots were 

within another robots radius, the coverage algorithm would then move those robots out of the way.  By 

moving the idle robot, it would no longer be sitting in the way of any other robot’s bubble or their drive 

path. 

 The way this was performed was to come up with a list of all the points that were covered by a 

scan of the other robots.  That list was then expanded to include all points that any robot would drive 

through while getting to their next location.  Then, for each idle robot that iteration, the coverage 

algorithm would spiral out from the idle robot’s current location in order to find the closest possible 

location that was not in the list of conflicted points.  Once the idle robot had a new home, that location, 

and the path to reach it, was added to the list of conflict points so that no two idle robots were routed 

to the same position.  The spiral pattern was chosen in order to attempt to minimize overall drive 

distance of the idle robots.  
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 Finally, an addition was made so that any idle robots moving to new locations would be told to 

move before the other children who were scanning.  Moving them first was implemented because it was 

unknown whether or not they were moving because they were sitting on another robots path or if they 

were within the scan radius.  If they were sitting on another robots path then a collision would have 

happened regardless of the attempts of the coverage algorithm to prevent accidents. 

 
Figure 27: Picture of an idle robot moving out of the way so that it does not interfere with the scanning robot. 

Later Additions to the Algorithm 

 The following sections outline later improvements to the coverage algorithm that were 

discussed as possible additions but were not implemented.  

 Bubble Memory 

 The final version of the coverage algorithm placed bubbles on the map always starting at the 

maximum bubble size, and then working its way to the robot’s minimum bubble size.  While this will 

always result in the coverage algorithm placing the largest bubbles possible on the map, in the case 

were the coverage algorithm has to place very small bubbles it is likely that time will be wasted trying to 

place many bubbles that will not fit.   

 It was observed during the much of the testing of the swarm that the sizes of the bubbles 

between iterations of the coverage algorithm were often very similar.  It was extremely rare for the 

coverage algorithm to place a bubble of minimum size in iteration n and then a bubble of maximum size 

in iteration n+1. From observing this pattern, the ability for the coverage algorithm to remember 
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previous bubble sizes was devised but never implemented.  The plan was to have the parent remember 

their children’s previous scan radius in-between iterations of the coverage algorithm.  If the child was 

told to scan at a radius of 50cm in iteration n, then it would start at a radius of 50cm in iteration n + 1.  

From there, if the 50cm bubbles work, the coverage algorithm works its way upwards increasing the 

bubble sizes until it cannot place all children or reaches the maximum bubble size.  If the coverage 

algorithm could not place the current bubble size, it would then decrease until it found a size that could 

be placed on the map as it would normally. 

 By performing this process, the coverage algorithm should be able to cut down on the overall 

number of attempts needed to place bubbles on the map.  In general, it should always take fewer tries 

to place bubbles on the map than the currently implemented version (or the same number of tries for 

the worst case of a jump from maximum to minimum). 

Same Work Bubbles 

 As discussed earlier the current version of the coverage algorithm can only place bubbles that 

are the same size.  A later implementation would be to add the ability for the coverage algorithm to 

place bubbles that were the same amount of work instead of physically the same size. Work would be 

determined by a wide variety of factors, including how many children the particular robot had or what 

sensors the robot was using.  For example a robot using a long range LIDAR could be given a significantly 

larger bubble than a robot using a short range Sharp IR sensor, but the bubbles would be the same 

amount of relative work since both robots only need to swing their sensor in a circle to find information 

about the bubble given. 

Mapping 

 Since the main goal of the swarm was to map an unknown space, a fairly important section of 

the software design was the actual representation of the area to map and how exactly to do so. The 

requirements of representing a map included a way to have the probability that an object existed at any 
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given location, a way to properly represent line of sight for methods of data collection and usage, and 

the ability to use the map for path planning. 

Data Representation 

 It was decided that the actual implementation of the map would be a grid-occupancy map 

deemed the probability map, or “ProbMap”. This map would simply be a two-dimensional vector of 

cells. Each map cell contains information that is used by the coverage algorithm and most of its 

subsections. The first part of the cell information is the Boolean value for ‘scanned.’ This is simply the 

notion of whether or not the value of that cell is known. Un-scanned cells are unknown space and 

cannot be traversed safely because they have yet to be observed by a member of the swarm. The next 

major component of a cell is the blocked value. This corresponds to the probability that there is a 

permanent physical object blocking this space. The value ranges between 0 and 1, with 1 being a 100% 

probability that the space is impassable. As mentioned earlier, when a scout reports back the location of 

an object, it also reports some uncertainty about the location.  This uncertainty is the standard deviation 

for a Gaussian normal distribution probability density function (pdf) centered on the object’s observed 

location.  The lower the standard deviation the more concentrated the pdf will be and therefore higher 

blocked values will be assigned in a smaller area.  The threshold for determining what blocked value is 

required to consider the cell blocked is held by the map itself. 
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Figure 28: A few sample Gaussian PDFs.  This figure shows how the probability a given cell is blocked is wider spread for 
higher standard deviations. 

To physically store a map corresponding to a non-rectangular bubble is vastly inconvenient and 

unnecessarily complex. The Boolean for “in bounds” exists for ease of data representation. The best 

solution was to store the circumscribing rectangle, and simply ignore any points marked as not in 

bounds. This is not the most memory efficient, but no part of the swarm storing one of these probability 

maps was anywhere near its memory limit. The final piece of information in the map cell is that of being 

‘occupied.’ This differs from blocked in that it is a temporary assignment. Occupied is used for Dijkstra’s 

and path planning to mark locations as temporarily blocked such as robot locations. 
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 It may have become apparent that the cell holds no information regarding its location. This was 

done intentionally, as each cell shouldn’t have knowledge of its own location, as it is irrelevant to the 

cell information. The actual map class handles that information, as accessing the map at a particular 

location will simply return the information requested about that cell, without making the information 

redundant or more difficult to access. It was desirable to be able to access cells using global coordinates.  

For example, the point (5cm, 5cm) would correspond to the same point for every robot in the swarm.  

To understand why this was a problem, imagine a worker scanning a 100cm bubble centered on the 

point (200cm, 200cm).  As stated previously, the circular bubble is stored as a circumscribing rectangle.  

The rectangle that circumscribes the example bubble is the square that goes from (100cm, 100cm) to 

(300cm, 300cm).  There is therefore no reason to worry about storing information about points with an 

x or y coordinate below 100cm or above 300cm.  To handle this, the map class not only contains the 

cells, but the Cartesian offsets for the map (in this case 100cm in the x and 100cm in the y direction). 

This makes map access universal regardless of where they begin in physical space, and still allowing for 

zero-indexing in memory. 
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Figure 29: Map offset example.  The child working on the sub-problem defined by the blue bubble only needs to store the 

blue square in memory.  In order to ensure that coordinates are accessed globally, the offset of (x’, y’) is needed so that (0, 0) 
will reference the same point for all robots. 

Interpreting Incoming Data 

 When a scout is scanning an area, it only identifies points that are specifically blocked and 

allows the parent to assume all other points are free.  However, if the scout is facing a wall it is not right 

to assume that everything beyond the wall is free.  Instead, those points should remain unknown as they 

have not actually been observed.  Based on the location of the child and assuming that the child is using 

some sort of line of sight sensor, it is possible to calculate which points would be ‘hidden’ behind the 

wall.  This also presents a problem because there is no way for the parent to know if the child is 

physically performing the scan or is dividing the workload to children.  The solution used in this project 

was to provide a separate packet that the scout could send to a worker identifying that the worker 

should assume line of sight coverage when identifying unknown points.  The worker however, was able 

to explicitly inform the queen about which points within the bubble were not scanned.  Therefore, the 
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worker uses a different packet which tells the queen not to attempt to infer which points were not 

scanned.  The terminology used in this project for points which were hidden from a scan was 

‘shadowing’. 

 
Figure 30: Example of shadowing.  Note that the blocked cell (colored black) causes all cells colored gray to be shadowed. 

 The shadowing method used by the worker to calculate shadowed points for the scouts uses an 

integer ray-tracing function designed for use with the probability map [19]. The ray-tracing function is 

given two points (x and y in centimeters) and it returns every cell from point one to point two. Unlike 

most ray-tracing functions, this implementation returns a list of not just all the cells that are intersected 

by the line, but also every cell that shares a vertex with the line (Figure 31: Two examples of ray-

tracing.). 

 

 

Figure 31: Two examples of ray-tracing. 
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 Using this information, the shadowing method does a sweep where the child was to determine 

which points are shadowed, picking point 1 as the child’s location and point 2 at a distance away equal 

to the radius simulating the line of sight of a rangefinder. When the ray-trace hits a blocked point, 

anything between that blocked point and the edge of the bubble is in shadow. 

Dijkstra’s Algorithm 

 One of the simplest and probably most conventional methods for navigation is to use Dijkstra’s 

algorithm to compute viable paths. Since this algorithm is so widely used and documented, this section 

won’t go too in depth on the algorithm, but more on how it was tied into this project. From a high level 

perspective, part of the software package is the abstract implementation of Dijkstra’s. Its construction 

as a functional interface simply required the probability map to implement all the methods required of 

its parent, the “DijkstraCapableMap,” and for the cell to extend the “DijkstraNode.” By implementing 

these, this allowed Dijkstra’s algorithm to be run on the probability map. Dijkstra’s was chosen over 

other options for its simplicity and completeness. The only real alternative for this implementation 

would have been to use A*, an extension of Dijkstra’s which finds individual locations as fast (or much 

more often, faster) through the use of heuristics. However, the goal was to find the shortest path to all 

points, not a single solution. Knowing this, using A* has no advantages, and is slightly more complex. 

 The core functionality that Dijkstra’s required for any graph (not just the grid occupancy map in 

this project) is the ability to get the neighbors of a node, and get edge cost. As a simple rectangular grid, 

edge-cost is uniform and can be assumed to be one, and the considered nodes are in the four cardinal 

directions (NSEW), not the diagonals. The reason this works on an occupancy map is due to how the 

implemented ‘get neighbors’ method works. In this method, any cells that would be outside of the 

actual physical space of the map cannot be returned, nor can any cells that are determined to be “un-

drivable.” The notion of drivability considers both the cell Dijkstra’s algorithm is currently considering as 

well as all adjacent cells to account for the size of the robot.  Another important aspect to drivability is 
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that if a cell is temporarily blocked due to another robot occupying the space, Dijkstra’s will treat it the 

same as if it were blocked permanently and therefore route around it. 

Path Planning 

 As stated in the previous section, the main tool for path planning was Dijkstra’s Algorithm. This 

alone, however, would not suffice for the physical implementation. The resultant path on a grid map 

would consist entirely of horizontal and vertical paths, which would be unreasonable for a physical robot 

to drive 10 cm, turn +90 degrees, drive 10cm, turn -90 degrees, and continue on like that simply to go 

diagonally. To solve this, a path optimization was written. 

 The path optimization code works off of the aforementioned principle of drivability. Using the 

resultant path from A to B that Dijkstra’s created, the path can be optimized for sensible kinematics and 

shorter drive distance. The path optimizer is reasonably simple at a high level. It takes each point in the 

shortest Dijkstra path and tries to skip the next one. If all points of intersection along the resultant line 

are drivable, the tested node is removed. To help explain this, take a look at Figure 32a. This is a simple 

example of a Dijkstra-generated path on a small map with a couple obstacles. Each of the points shown 

is a waypoint that is part of the enumerated path. Figure 32b shows the first step to simplify this path, 

by skipping the second node, (the first and last cannot be skipped) it tests the blue path using the ray-

tracing function to make sure all intersected cells are drivable. If this test is true, the skipped node is 

permanently removed. If the test fails, it moves to the next node in the path. Figure 32c shows an 

example test where the simplified path is not drivable, so the index moved to the next node. Figure 32d 

shows the path partially completed, and Figure 32e shows the optimization fully completed. 
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Figure 32: Various stages of path optimization. 

 Optimizing the paths wasn’t the only requirement beyond using a basic Dijkstra’s 

implementation. In simulation, robots cannot collide with one another, so the problem of robot collision 

is less immediately evident than creating a path through blocked or un-scanned space. To be sure no 

collisions could occur during child movement, the children would be told to move at different times if 

necessary as dictated by the function dubbed the ‘wave generator’. Without the wave generator, if the 

paths that children were assigned crossed at any point, there is the potential that they would collide 

with each other.  The check for path overlap is done using the same ray-tracing function as before, using 

the optimized path for each child. The collection of cell coordinates returned by the successive ray trace 

on each path is a representation of the space occupied by the child over the course of the path. If any of 

the cell coordinates coincide, the wave generation function will create a new wave, as the number of 

waves must be great enough to remove all path conflicts by staggering robots. The reason the ray-trace 

function was used instead of simply determining simple y = mx + b intersections between the lines is to 

be able to expand the path to include robot areas. This assures that any paths that don’t quite intersect, 
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but are close enough where robot size would be an issue, will still have enough padding to be safe. For 

every child assigned by the wave generator, it is placed into the best wave to minimize the number of 

waves. The parent can then send all the children in each wave at once, then move onto the next wave. If 

there were no path conflicts, all the children will be told to move simultaneously. 

 
Figure 33: Three examples of conflicting paths requiring children to be sent in different waves. 

Communication 

 Communications are one of the most important aspects of an HST.  The main goal of the 

communication architecture was that it would facilitate the hierarchical nature of the swarm by making 

it seem as natural as possible to communicate to only a robot’s parent or its children.  Another goal of 

the system was to be entirely hardware independent to allow for a more flexible swarm where different 

levels may communicate over different devices.  The method used to accomplish both of these goals 

was to have each robot enumerate all of its children with a single number (1 for the 1st child, 2 for the 

2nd, 3 for the 3rd, etc.) and the parent robot with the number 0. 

 This method achieved the main design goal of encouraging the use of hierarchical 

communications by enumerating the identity of each robot on a local basis rather than a global one.  If 

instead each robot were to be enumerated with a globally unique number (such as 0 for the queen, 1 

and 2 for the workers, 3, 4, 5, and 6 for the scouts) then each robot would need to remember the rules 
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as to which enumerations are valid to send to and which are not.  A worker for example would need to 

know out of all possible enumerations that it is only valid to send to 0, 3, or 4.  This approach not only 

gives each robot information about the total number of robots which exist but does not expand well 

either.  If there were over a thousand robots in the swarm and each only node had a small number of 

children, it would not make sense to force every robot in the swarm to coordinate on startup to ensure 

that no two members were assigned the same number.  By enumerating the robots locally, child 

number ‘1’ on any node in the swarm would correspond to a different robot.  In fact, it is a guarantee 

that numbers will be reused throughout the swarm, however because the repeated numbers occur on 

robots that are not related to each other the repetitions are irrelevant.  It also does a significantly better 

job at encouraging hierarchical communication because all enumerations that exist for a single robot 

correspond to a valid node which can receive communications.  For example, if worker A has two 

children it will be able enumerate them as 1, 2, and 0 for the worker’s parent.  If another worker B exists 

with 4 children it could enumerate them as 1, 2, 3, 4, and 0 again for the parent.  In both cases if either 

robot needs to communicate with a parent it must send to robot ‘0’.  This may or may not correspond to 

the same parent but the beauty of this system is that it does not matter.  Because worker A and B are 

not related to each other as parents or children of one another, they are only concerned with who their 

parent is or who their first child is with complete ignorance to the parents or children of any other robot. 

 The second major benefit to this system is hardware independence.  One of the important 

features of the hierarchical swarm topology is that each level need not run the same hardware.  A 

natural extension of this is that each robot need not be using the same communication protocol.  In the 

swarm used by this project all robots communicated with the ZigBee protocol, however for the sake of 

discussion, assume another swarm were constructed that used 802.11 for communication between the 

scouts and workers, and RS-232 cables for communication between workers and the queen.  In both 

systems there is a valid way of remembering which address is associated with each robot.  In the Wi-Fi 
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network the IP address could be used and in the RS-232 network the serial port name could be used.  

The issue arises in that it isn’t very practical to store something like an open socket and an open serial 

port in the same way.  Therefore, in this communication system, the robot’s destination address is 

reduced to a single number for higher level functionality such as managing children or reporting to a 

parent.  Each communication module holds a lower level driver which must be able to map between the 

enumerated number and whatever device specific addressing method is used.  The communication 

module is ignorant of how the device actually functions and essentially treats it like a generic I/O 

stream.  The device driver will take care of remembering what hardware address is associated with a 

given enumeration by a simple lookup table.  In the Wi-Fi / RS-232 network described above, there 

would be two separate drivers (as well as a wrapper for both of them to determine which the 

communications module should use).  Each of these handle communications in their own way but all 

that the communications module would know is that when bytes are written in on one end, they should 

be read back again by the communication module of the destination robot. 

Scout Code 

 The scout level of the swarm was required to be able to receive commands from its parent, scan 

an area with an IR sensor, and keep track of its own position while driving to other locations if 

commanded.  In order to fill these requirements the group determined that the best solution would be 

to use a low level operating system to schedule the various tasks.  μC/OS-II had been used in previous 

projects and is free for educational use and therefore was selected as the operating system for the 

Scout.  The code was designed to be as modular as possible both so the code would be easily 

expandable and to allow for easier debugging.  The use of any named I/O peripheral registers (such as 

PORTA or SPID) was limited to a single file so that all pin specific information was kept in a single 

location.  Finally, the code makes use of the observer design pattern whenever possible due to the 

mostly asynchronous nature of the Scout. 
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The level of complexity in the scout code could be reduced significantly with the use of a real 

time operating system (RTOS).  The use of an RTOS enables multi-threaded programming in order to 

simulate the running of multiple tasks concurrently.  For example, in order for the scout to track its 

position it would need to poll the encoders at some given frequency such as 100Hz.  Entirely 

independent of that, the scout needs to be able to receive a scan command, activate the IR turret and 

collect and send back data.  Without an RTOS, switching back and forth between independent tasks 

would require some sort of custom scheduler with a state machine to track which task should run.  One 

such method would be to create several time slices and each slice would call a method to run a given 

task.  This method however suffers from being non-preemptive meaning that a task needs to voluntarily 

give up control (in this case, control would be released when the function called by the time slice 

scheduler returned).  If a task took longer than anticipated to complete, it could overflow into another 

time slice and potentially disrupt any system with sensitive timing requirements such as a PID loop. 

The solution here is to use an RTOS such as μC/OS created by Micrium.  A time slice scheduler 

described above is clearly not a sufficient but μC/OS uses a more sophisticated preemptive model.  

Under μC/OS, each task is assigned a priority and the highest priority task which is able to run is given 

control.  This way, if a system contains two tasks A and B with A having the higher priority, task A will 

run until it needs to wait to access some resource at which point task B will start.  Task B will run until 

whatever condition A was waiting for is met which will suspend B and resume task A.  The advantage 

here is that neither task A nor B need to be aware of each other’s existence.  Unlike the simple time 

slicing scheduler, there is no way that task B could take “too long” to complete a task and steal 

processing time from task A. 

Consider the problem mentioned earlier where at least two tasks (one for localization and one 

for handling commands) need to run concurrently.  To accomplish this, the localization task is given the 
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highest priority and will read data from the sensors, process that data to calculate the current location 

of the robot, and then go to sleep for 10ms (the period of a 100Hz cycle).  During the 10ms time when 

the localization task is sleeping, the command task can run to begin executing a given command such as 

scanning an area with the IR sensor.  Once 10ms have expired, regardless of the progress made on 

performing the scan, the processor will switch and begin running the localization loop again before 

switching back to the scanning task.  The command can take an arbitrarily long amount of time to 

execute but it will only run when there is no higher priority task to execute. 

Using μC/OS-II for this project 

μC/OS is designed to be portable to multiple processor architectures by isolating the few 

processor specific details to what is known as the port.  The port is responsible for defining the size of an 

integer, the direction of stack growth, and also for writing some assembler functions for saving/restoring 

registers to perform a task switch.  Luckily for the group, the Xmega128A1 already had a port free to 

download from Micrium’s website.  Unfortunately, the port contained several bugs.  The remainder of 

this section details issues encountered with the original port. 

The first problem was related to how the original creator of the port handled critical sections of 

code.  A critical section refers to a segment of code which must be executed without being interrupted 

by anything else.  For example, if some variable is incremented by an interrupt then the interrupt should 

be disabled before the variable is read to ensure that the variable does not change during the process of 

reading it.  This particular port of μC/OS handles critical sections by saving the status register into a local 

variable and then resetting the status register with the saved value once the critical section ends. 

Originally, the function used to save the status register would always store the register in R16 

(an arbitrary choice).  Unfortunately the compiler had no way of knowing that the register had been 

clobbered by the critical section and could have been using R16 for something else.  If the complier 
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stores something such as the high byte of a 2 byte integer, the integer will be corrupted every time a 

critical section is entered.  This problem caused variables to seemingly change at random throughout 

the code in unpredictable ways that could vary from run to run, or even from different complies of 

slightly modified code.  The solution used was to access the status register from the C code (as the 

status register is available for both reading and writing on the Xmega128A1, a feature usually not 

available on a microcontroller) which allows the complier to do the job of determining which registers 

are in use rather than forcing the programmer to guess. 

The second bug was much more subtle however just as serious.  Upon entering an interrupt the 

first thing which must be done is to disable future interrupts until all registers are saved and μC/OS is 

notified that the program is in interrupt context.  μC/OS tracks the level of interrupt nesting so that it 

does not attempt to switch to a new task until all nested interrupts are complete.  In the port provided 

by Micrium, this step was ignored which is most likely harmless, but in the rare occasion that two 

interrupts occur at almost the same time, only one of the interrupts will be properly serviced.  The 

instinctual approach is to simply add a disable interrupt instruction to the beginning of every interrupt, 

but this creates another problem.  If interrupts are disabled before all registers are saved then the status 

register will be saved as having interrupts disabled.  If this task is later resumed, it will load the status 

register back exactly as it was saved (with interrupts disabled).  Note that this problem will only appear 

when a task is suspended in interrupt context but then resumed in normal context.  This is because if 

the task were suspended in normal context, then interrupts would not have been disabled before saving 

the registers.  Similarly, if the task is resumed through interrupt context rather than normal context, 

upon returning from interrupt context the return from interrupt instruction will re-enable interrupts 

regardless of the state of the status register saved. 
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To fix this problem, whenever an interrupt is entered, future interrupts are disabled.  When the 

registers are saved, rather than saving the actual value of the status register, the saved copy of the 

status register is modified so that the interrupt bit is set.  Now whenever the task is resumed through 

any context it will be restored with interrupts enabled.  There is no risk of accidentally enabling 

interrupts when they were previously disabled because this fix is only applied when registers are 

suspended while executing an interrupt, so it is known that interrupts must have been enabled in order 

execute an interrupt in the first place.  With these fixes applied, μC/OS was fully capable of running on 

the Xmega and the fixes for these bugs were sent to Micrium for their future releases. 

Board File 

One of the major methods used to keep the code modular was to remove as many references to 

specific I/O peripherals as possible.  This was done by giving each external chip its own .c and .h file.  For 

example, the encoder counter would have an encoder_counter.c and encoder_counter.h file.  The .c file 

would maintain a pointer to a struct containing any hardware defined constants.  Continuing the 

encoder counter example, the SPI port and slave select pin would be stored as fields of the setup struct.  

The board file populates the fields with the correct hardware values.  The code segment for encoder 

counter is again provided below.  The SPI port and slave select pins are defined as an array here because 

there are two encoders and it is simpler to access both through the same .c file. 

xmega128a1_board.c code snippet 

   static encoder_counter_setup_t encSetup; 

   static PORT_t* encCntrSSPorts[]= {&PORTE, &PORTE}; 

   static uint8_t encCntrSSPinMasks[]= {PIN0_bm, PIN1_bm}; 

 

   encSetup.spiDevice= &spiDSetup; 

   encSetup.SPIinitFunc= &initSPI_EncCntr; 

   encSetup.ssPort= encCntrSSPorts; 

   encSetup.ssPinMask= encCntrSSPinMasks; 

 

   init_encoder_counter(&encSetup);  

 

encoder_counter.c code snippet 
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static const encoder_counter_setup_t* sSetup= 0; 

void init_encoder_counter(encoder_counter_setup_t* setup) { 

   sSetup= setup; 

} 

Figure 34: Sample code from the xmega128a1_board.c file. 

At this point, any time a function in the encoder counter needs to do something, it simply needs 

to reference the value in the setup struct.  For example, the SPI port for encoder counter 1 would be 

sSetup->SPIDevice[1].  Although this appears to be overcomplicated, there are significant advantages to 

using this approach.  One is that in the event of a change of the board hardware, say the addition of a 

white wire after one of the pads is lifted when the processor is soldered; it is known with absolute 

certainty that the only file which contains references to specific pins is the board file.  The second 

advantage is that this approach lends itself well to a change as drastic as switching to a different 

processor altogether.  The setup struct would need to be modified and the low level SPI driver would 

need to be rewritten as well, however, beyond those changes the rest of the code is hardware 

independent.  Even if neither the board nor the processor changes, there is still the benefit of only 

having to actually type the register one time.  This helps cut down on debugging time by reducing errors 

caused by simple typos. 

Task organization 

μC/OS is capable of supporting a very large number of threads (much larger than would ever be 

needed by this project).  However, the real limitation is caused by limits in the RAM and speed of the 

microcontroller.  Each thread requires its own stack space and switching between threads requires some 

overhead.  It is therefore desirable to keep the number of threads down to a minimum to obtain the 

most efficient use of the limited resources on the Xmega.  There are three threads used on the scout.  

These threads are the locomotion task, communication task, and a command task. 

The locomotion task is responsible for both tracking the current location of the robot as well as 

handling motor control to drive the robot to a given location.  The locomotion task does not determine 
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which location to drive towards; instead, it provides a publically accessible method to allow other tasks 

to set a given endpoint that the locomotion task attempts to reach.  The reasoning behind combining 

both driving and localization is that the same sensors used to determine the speed of the motors to 

create a feedback element for the PD velocity controller are also used in odometry calculations to 

calculate the location of the robot.  Additionally, by combining the two processes, the motor controller 

is able to detect how far away the robot is from the setpoint and dynamically adjust the set speed of 

each motor so that the robot will steer towards and stop at the given endpoint. 

The communication task is responsible for everything between the initial XBee serial output 

until the command is parsed and formatted so that the command task can take over.  By separating the 

communication from command handling, it allows multiple command packets to be received and 

buffered if the robot is currently busy executing a fairly lengthy command such as driving along a series 

of waypoints.  At its lowest level, the task waits for the XBee to transmit data out the UART so that it can 

be received and parsed.  At this point, the XBee driver strips out the sender address and looks up the 

enumerated integer ID associated with the given address.  This is the lookup table described by the 

communication section earlier.  Then, the array of bytes that is the data payload of the XBee packet is 

converted from a serial form to a struct with fields for each parameter of the command.  Now the 

command is ready to be passed on to the command task.  This is done by performing a deep copy of the 

information in the command struct into a queue maintained by the command task.  The reason a deep 

copy is needed is because as soon as the command is passed on, the communication thread returns to 

its idle state waiting for serial data from the XBee.  This causes the struct created by the communication 

task to go out of scope and could not be reliably read at a later time by the command task. 

The command task waits for new commands to enter the queue from the communication task 

and executes them in a first in first out (FIFO) order.  The command task is responsible for ensuring that 
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the robot performs the given instructions and then sends responses back to the parent.  For example, if 

the robot is told to drive a certain path, the command task will instruct the locomotion task to drive to 

each waypoint in the list until the end of the path is reached.  The command task will then send a packet 

back to the parent informing it that its child has reached the destination and is awaiting further 

instruction.  Originally, the transmission back to the parent took place on its own thread and essentially 

did the reverse of the communication task.  This was later removed because the next command in the 

queue should not be started until the parent is informed that the first command has been completed.  If 

the transmission occurred on a separate thread, the command task would be required to wait until the 

transmission thread finished before proceeding defeating the entire purpose of separating them into 

different threads in the first place.  In addition to this it also would increase overhead on the Xmega to 

support an additional task so the decision was made to combine the sending of a response with the 

processing of commands. 

Experiments 

 The experiments in this project were designed to modify the total number of robots in the 

swarm in order to determine if the work on any one node decreased as the total number of robots 

increased.  The goal of the experiments was to prove the original hypothesis that the work on each 

robot would decrease.  In order to conduct these experiments beyond the original number of robots in 

the swarm, a simulation was designed to run the robot’s code in greater numbers in order to collect 

data.  The simulation and data collected are discussed in detail below. 

Simulation 
 In order to test the full capabilities of the swarm it quickly became apparent that running 

everything on a physical robot would not be cost effective, nor would it be practical to wait until 

everything was built in order to begin testing.  For these reasons, a method of simulating the robots was 
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developed.  The simulation was required to support an arbitrary number of robots.  That way, a swarm 

of a very large size could be constructed virtually in order to prove the point that the design is 

expandable without the limitation of being unable to physically build hundreds of robots. 

 The simulation works primarily by replacing all drivers of the robots designed for use on physical 

hardware and replace them with drivers designed to work virtually providing an abstraction layer.  For 

example, rather than building a driver designed to coordinate the wheel velocity of a robot for 

locomotion, the virtual driver would essentially cause the robot to teleport along its path in virtual 

space.  Similarly, the communication driver would simply write directly to a receiving buffer of another 

robot rather than communicating through an XBee module.  Then, each robot is started as a separate 

thread on the same machine where they execute their code as if they were real.  With these changes, 

when the robots ran virtually the interfaces between the drivers and the application remained intact 

and caused the robots to behave identically in simulation as they would in reality.  There were however 

some important differences.  Robots could not ‘collide’ virtually.  In other words, because the virtual 

driver for locomotion would simply teleport the robot to a destination a robot could be routed straight 

through a wall and the simulation would not detect any errors.  Note that if the code is running 

properly, robots should drive around each other, but hypothetically if the code was broken, collision 

errors would only be noticeable in the real world.  Another key factor is that in simulation, the robots 

had perfect odometry and localization which was not available in reality.  Even with these differences 

however, the simulation proved to be an invaluable tool in both debugging as well as demonstrating the 

expandability of the swarm. 

 Another useful feature of running the robots virtually is that the simulation could intercept 

every communication between every robot and use this information to reverse engineer what the state 

of each robot would be at any given time.  This gave the simulation access to see things that would 
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otherwise be unknowable when looking at a single level of the swarm.  The state of each robot as 

determined by the simulation could then be displayed graphically along with the currently revealed 

map.  The simulation was successful at running with over 100 robots on maps of over 10,000m2 in size.  

It was found that the biggest limiting factor in how large the swarm could be virtually was the amount of 

available memory on the computer rather than due to failures in the expandability of the software.  

Figure 35 shows a screenshot of the simulation in progress. 

 
Figure 35: The simulation in progress of scanning a 5m x 2.5m map with two workers and four scouts. 

Data Collection 

 Below are various pieces of data collected from the simulation of the hierarchical swarm.  The 

main pieces of data that were collected were the scan area (in cm2) and the drive distance of each of the 

robots (in cm) from the start of the simulation until the map was completely scanned.  All of the tests 

were performed on a map of 20m by 20m.  The size was chosen arbitrarily as a fairly large map that was 

expected to cause problems if any were to exist. 
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Figure 36: Average scan are of the Level 1 and Level 2 robots compared to the total number of robots. 

 This first graph shows the average scan area for both the level 1 and level 2 robots of the swarm 

compared to the total number of robots in the swarm.  Level 0 is not shown on the graph since its scan 

area is simply equal to the total area of the map.  The graph shows that for both the level 1 and level 2 

robots, the average scan area decreases as the number of robots in the swarm increases.  The level 1 

robot’s are slightly more sporadic most likely caused by the large minimum bubble size.  As a 

consequence of the coverage algorithm, trying to fit larger bubble sizes can sometimes result in the 

same area being scanned multiple times.  The level 2 robots, however, can be seen to have a smooth 

decay in terms of how much area each robot is scanning.  The level 2 robots’ average scan area is shown 

in greater detail and discussed below. 
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Figure 37: Average scan are of level 2 robots compared to the total number of robots. 

 The above graph shows the average scan area of the level 2 robots compared to the total 

number of robots.  There are 6 different series on the graph, one for each of the various number of level 

1 robots used while testing.  Specifically, every combination between two level 1 robots to seven level 1 

robots, with two to eight level 2 robots operating per level 1 robot were tested.  The collected data 

shows an interesting fact, that the average scan area is actually entirely dependent on the total number 

of robots, and the number of mediator robots (any robot on a level higher than the leaf node) does not 

actually increase or decrease the total amount of work of the leaf node robots.  That means that if a 

swarm were to reach a communication or computational bottleneck, it is possible to add an additional 

mediator robot at whatever level is needed without worrying about increasing the overall workload of 

the swarm.  Similar results were found when looking at the overall drive distance of the various robots 

in the swarm.   

0

500000

1000000

1500000

2000000

2500000

3000000

5 15 25 35 45 55 65

S
c
a
n

 A
re

a
 (

c
m

2
)

Number of Robots

Average Scan Area vs. Number of Total 
Robots

2 Workers: Scout Scan Area

3 Workers: Scout Scan Area

4 Workers: Scout Scan Area

5 Workers: Scout Scan Area

6 Workers: Scout Scan Area

7 Workers: Scout Scan Area



Hierarchical Swarm Robotics  84 
Worcester Polytechnic Institute 2011 

 

Figure 38: Average drive distance of Level 2 and Level 1 robots compared to the total number of robots. 

 Similar to the average scan area of the robots, the average drive distance also shows a general 

decrease as the total number of robots increases.  The red series is the average drive distance of the 

Level 1 robots of the swarm.  The data shows that while the drive distance goes down slightly, overall 

the average drive distance of the level 1 robots does not decrease very much on a map of this size.  The 

reason for this is that the workers have such a large maximum bubble size that they are never utilized to 

their full capacity.  On a map that is 20m by 20m, since most of the work of the level 1 robots is actually 

performed by the level 2 robots, their work does not increase substantially.  In fact, there is almost no 

increase in the number of iterations of the coverage algorithm the level 0 robot has to perform for two 

level 1 robots on a 20m x 20m map instead of seven level 1 robots.  However, since most of the driving 

and scanning is actually performed by the level 2 robots, their drive distance can be seen to decrease 

rapidly with the increase in total robots.  This data closely mirrors the results seen when analyzing the 

average scan area. 
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Results 

Mechanical Results 

 Overall the mechanical design and implementation of the robots was a success. Throughout the 

design process there were things that were done well, and things that could have been done better.  

When analyzing the structural aspects of the design that could have been improved, a couple of aspects 

stand out. Firstly, the amount of revisions needed to come up with the finalized design was excessive 

and could have been avoided. Increased amount of peer review of each design could have reduced the 

number of revisions between the initial design and the final product. The second structural design issue 

was the ease of repair of other mechanical parts. The design and initial construction of the robot was 

simple, however if any non-structural part broke, the design would cause the broken piece to be very 

hard to reach and repair. 

 When analyzing the mechanical attachments to the structure of the robot that could have been 

done better, one key issue stands out. The initial design of the drive shaft was thought to be sound but 

instead showed flaws while testing.  The initial shaft was made using cut aluminum tube in order to 

mate a circular motor shaft with a square drive axel.  It was thought that the tolerances provided with 

cutting them by hand would be fine, but this proved incorrect after minor testing.  New shafts were 

designed with the testing results taken into consideration, unfortunately, due to complications with the 

Rapid Prototyping Machine (RPM) they were never installed on the final version of the robots.   

 With these issues, there were also aspects of the mechanical design that were done very well 

and resulted in successful outcomes. Structurally, the physical strength of the robot, along with its ease 

of assembly was key. The interlocking acrylic pieces provided a high amount of strength, making 

physically breaking the robot very difficult. Only once or twice did an acrylic piece snap due to 

mishandling, and this was able to be easily fixed with glue. Since the structure was designed with 
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interlocking pieces, assembly was fairly simple, with glue being applied to slotted pieces, and being held 

together for a couple minutes.  In this way, an entire robot could be structurally assembled in under an 

hour. 

 The mechanical attachments of the robot also had some well designed aspects. Specifically, the 

mounting of the motors, and the encoders stood out as successful designs. The motor mount design 

kept the motors well secured and left the electrical wires easily accessible. The encoders, although a 

secondary design addition, were very securely mounted on the outer edge of the robot.   

 The casters on front and rear kept the robot balanced, while the rubber tread wheels had plenty 

of friction to not slip on normal smooth surfaces. The accuracy of the robot localization, as stated 

before, was only limited by the accuracy of the encoders, which in turn was limited by our budget. The 

mechanical design could be changed to be better in several ways, but successfully accomplished the 

goals decided on in the initial planning stages. 

Electrical Results 
 The electrical design component of this project enjoyed some success but was not without its 

shortcomings.  The first major setback was that the optical mouse sensors were found to be unsuitable 

for odometry based navigation.  The second problem encountered was the highly limited range on the 

IR ‘heat’ sensors.  Despite these problems, the core desired functionality still existed and the vast 

majority of the electronics worked flawlessly. 

 The optical mouse sensors were intended to be the primary means of localization due to their 

immunity to wheel slip and their high resolution.  Initial testing also appeared quite promising.  Once an 

enclosure was built to properly hold the sensors they were very sensitive to even small movements and 

could correctly be translated around a flat surface without accumulating excessive drift.  The problem 

occurs when a second sensor is added.  An individual sensor has a nominal resolution of 2000 
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counts/inch, however this value changes drastically with respect to the height of the sensor above the 

ground.  If the sensor differs as much as .1mm from the ideal height, the resolution is affected largely 

enough so that it is rendered useless for odometry. With a single sensor, the translation error is 

somewhat manageable.  Once a second sensor is added, each sensor has a slightly different resolution 

and therefore accumulates a very large amount of angular drift.  The reason for this is because if the 

mouse sensors are placed 5cm apart, a difference in resolution of only 1% will cause the orientation of 

the robot to drift by over 2 degrees for every 10cm of driving ((10*1.01 – 10*.99)/5= .04 radians= 2.3 

degrees).  This performance was not nearly reliable enough to allow for the usage of the sensors which 

resulted in their removal from the design. 

 The second problem arose from difficulties in the IR heat detectors.  In an effort to cut down on 

cost, the IR heat detectors were built from scratch rather than using a premade solution.  Unfortunately, 

the custom IR detector had a range of only a few inches which does not even exceed the outer 

perimeter of the robot itself.  The problem appears to be that the IR LED selected for use as a stand-in 

for a candle did not emit enough power to result in any reading with the sensor.  Another issue was that 

due to time constraints there would not be sufficient time to build the simulated candle IR beacons as 

well as have a method for remotely turning them on or off.  As the real focus of the project was on the 

nature of a hierarchical swarm topology and not on the specifics of firefighting, it was deemed best to 

drop the firefighting aspect from the design and refocus on mapping and swarm communications. 

 With the exception of the two problems noted above, the electrical components of the project 

worked quite well.  When the encoders became the primary sensor for navigation it was found that 

after a robot is told to drive in a pseudo-random pattern for 100 meters, the accumulated drift is 

roughly 50cm which accounts for 5mm of drift for 1 meter of driving.  For conservative results this 

number was rounded up to 1cm per meter of driving for use when the standard deviation of an obstacle 
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that was detected is sent to a parent.  The XBee modules were also found to be highly reliable and 

capable of providing a full end to end communication between modules.  Another success was found in 

the Sharp IR rangefinders which were found to be capable of measuring the distance to an obstacle 

accurately out to 80 cm and even as close as 8 cm (smaller than the size of the physical robot).  Finally, 

the battery life of an individual robot is roughly 2 hours which is due in part to the highly efficient 

switching regulators used as opposed to the less efficient linear regulator alternative.  Another major 

contributor to the battery life was the ability to completely disconnect components when they were not 

in use which prevented devices like the IR rangefinders or servo turret from being a continuous drain on 

the batteries.  In conclusion, although the optical mouse sensors and heat detection did not perform as 

needed, the more important aspects of the project such as communication and mapping did function as 

good as or better than expectations. 

Software Results 
 As the bulk of the project design was in software, the results were perhaps the most telling as 

far as successes and failures. Among the successes in the software design was the proven functionality 

of the coverage algorithm, as well as the overall expandable design not limited to the three-tier 

implementation done in this project. In contrast, some of the shortcomings of the software lie in the 

organization of the probability map and related classes as well as being rather fragile. 

 The major victory of the software design, and perhaps the project overall, is the expandability of 

the swarm with the current software implementation. While the code may appear to be implemented 

specifically for the three-tier implementation, it can in fact be theoretically any number of levels deep, 

with a single Queen, any levels between zero and n – 1 as Workers, and Scouts at the bottom of the 

tree. This should not be misconstrued as a requirement for a balanced uniform hierarchy either. In other 

words, there is no requirement that all robots of a given level need the same number of children or that 

all branches must go equally deep.  Due to the information hiding and selective ignorance of each level, 
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it has no knowledge other than its immediate subordinates.  While this demonstrates a great amount of 

flexibility, it does not serve a significant advantage with the current implementation. This does, on the 

other hand, have merit if the idea of “work” is implemented as well as asynchronous assignment of work 

to children.  In a hypothetical task, a swarm may have to scan the surface of the earth. This rather 

mighty job would likely require a swarm several levels deep, so the order in which it completes the task 

is difficult to predict. What if it were imperative that the District of Columbia, Philadelphia, PA, and 

Boston, MA be completed as soon as possible? With a uniform hierarchy, it is difficult to ensure this will 

happen, but if a much shallower branch was deployed as a special task force, these areas could be 

prioritized without sacrificing the best coverage for the bulk of the swarm. The shallower branches will 

complete and report to the queen much faster than the deeper branches would be able to.  This 

example shows the flexibility of the design as a whole. 

 A small success along the lines of expandability is the potential flexibility for the platform. In 

theory, this code would work just as well on any platform able to localize and run a Java application. The 

swarm could consist of hovercraft, legged robots, treaded robots, etc. with no more adjustment than 

physical size considerations and adjusting the heuristic for movement cost. 

 Another area in which the software can be considered successful is the coverage algorithm. As 

stated before, the problem of coverage in a multiple agent system is an intractable problem, so finding 

the optimal solution was not a reasonable goal. Instead, a greedy approach was used, making use of a 

heuristic weighing the cost of moving robots versus scanning map cells. This result was not likely to be 

optimal, but was clearly sufficient and completed the task reasonably without a massive computational 

overhead. The approach always attempted to place all robots over keeping a certain size scan radius. For 

higher levels, this makes complete sense, as it doesn’t make sense to discard a level 1 robot for an 

iteration when it could reduce their bubble size. Since a scanned area could very easily take a long time, 

it is not very good utilization to have half the swarm sit idle. Approaching the leaf nodes however, this is 
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not always the best choice. For instance, it is a little more efficient for the Scouts in the three-tier swarm 

to be removed and allow the others to have larger scan bubbles than to maximize the number of robots 

placed upon reaching a minimum scan radius. While not impossible to change the way the coverage 

algorithm chooses child locations and scan radii, it violates the hidden information somewhat, since it 

knows that its children are better placed with larger bubbles than larger quantity. This infraction is not 

severe though, as it doesn’t know this would be because the Scouts have no children, merely that it is 

advantageous for some reason. After analyzing the benefits and shortcomings of both, it was decided 

simply to use the original priority of placing robots over maximizing the bubble sizes. This was for two 

reasons; the software remains significantly more generic by having a uniform selection across levels, and 

that the benefit on the lowest level was not significant enough to be worth the added complexity. 

 As an extension of the coverage algorithm’s success, the robots were placed and given move 

orders in such a way that the physical robots could move around safely and without worry of colliding 

with one another. This was not all handled directly by the coverage algorithm, but by the union of 

various methods for handling robot placement and path planning.  This created a good system to work 

with the placements chosen by the coverage algorithm. The simulation was paramount in finding and 

debugging this sort of problem before testing things on the physical swarm. One of the tools which 

helped achieve this was the “wave generator,” which detected intersections between child paths (or 

paths close enough to be problematic) and would send children in waves to guarantee avoiding a 

collision. Another tool was the “move idle robots” method which determines the best place to move 

robots not placed by the coverage algorithm, but are in the way of other robots scanning. Although both 

of these appear to be benign problems, ignoring them would have been serious mistake. 

 A very important success in this project that was briefly mentioned above is the simulation. In 

the real world, robot localization is at best, imperfect, as is the case with any sensor data. Regardless of 

how accurate or precise the sensors are (especially using odometry), or how good of a model the 
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Kalman filter has, there will be error. Like so many high-school physics problems, the simulation can 

operate in a theoretically perfect and simplified environment without error. It is worthy of noting, 

however, that the code running on the simulated robots is exactly identical to that of the physical 

implementation. The only thing that makes those robots simulated is their kinematics being updated 

without the need to drive, and the communication being handled without hardware. Since the 

simulation is such an accurate representation of the actual swarm behavior, it was used for most of the 

data collection. It could properly test many metrics of swarm performance in a tiny fraction of the time 

it would take to observe the physical swarm. 

 The software design had its shortcomings as well. An increasingly obvious problem with the 

software design was that of the probability map (ProbMap) class. This served as the hub for all data 

regarding the map, and also nearly every interface and function to it. While the class quickly became a 

bit unwieldy, it couldn’t be considered a ‘failing’ early on. The final nail in the coffin for the class was the 

failure to properly use or distinguish between internal units (using the map index) and external units 

(using centimeters). The class’s abundant interfaces often use index references to obtain and set cell 

information, however it has become clear that all public methods of the map should have been made 

using centimeters, and all private methods can be allowed to use internal units where appropriate. A 

common error while writing code in other sections of the program was to accidentally use internal units 

where it should have been external units, or visa-versa. Despite the commonality of these errors, they 

were not always immediately evident, wasting valuable time. This became extremely problematic as the 

class added more and more functionality. Needless to say, many lessons were learned while working 

with this class, and those mistakes would not be made again. 

 A less severe issue was the improper organization and interdependencies in some of the more 

complicated sections of the code. Using the term “spaghetti code” might be a bit harsh and inaccurate, 

as the program flow was not unstructured or particularly confusing, but the problem is still worthy of 



Hierarchical Swarm Robotics  92 
Worcester Polytechnic Institute 2011 

noting. For instance, the moveIdleRobots method has direct dependencies on data configured by the 

coverage algorithm while they should be completely separate. This brings attention to the real 

underlying problems, which are the lack of defensive programming and the fragility of the code as a 

whole. The flow of the system was designed very well assuming no failures were encountered at any 

point. Unfortunately, if an error did occur, (Java exception, missed packet, etc.) there was no way to 

recover from it, and the entire swarm would halt and either crash or hang indefinitely. There were some 

proposed ideas for making the code less fragile, however none of them were simple enough to be 

completed in a reasonable timeframe, often calling for a complete system overhaul. 

Discussion 
The goal of this project was to create a proof of concept hierarchical swarm.  This was 

successfully achieved by creating a three tiered swarm consisting of one level 0, two level 1’s, and four 

level 2’s.  The result was a swarm that was capable of autonomously mapping an unknown area 

approximately 2.5m by 2.5m.  This swarm was considerably different than other attempts at swarm 

mapping solutions due to the hierarchical structure.  Many other solutions utilize the interconnected 

topology which can result in a significant increase in the number of communication lines present 

between all the robots.  The swarm was then expanded by using a simulation of the robots and their 

communication structure in order to run it on a greater number of robots.  The simulation has 

successfully been run with over 110 robots until the computation limits of attempting to run what is 

supposed to be an entirely distributed system on a single computer were reached. The project was also 

successful in creating an abstract coverage algorithm capable of placing any number of robots on a map 

such that they can all scan as much area as possible. 

Originally, the goal of the project was to create a hierarchical swarm designed to find and 

extinguish fires within a large unknown environment (specifically the gymnasium).  This task however 

was soon determined to be far beyond the budget or scope of the project.  Therefore, the original 
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objective was relaxed to focus on mapping a smaller area in order to prove the core hierarchical 

concept.  Additionally, due to time limits the mid level robots were never constructed and instead were 

made entirely virtual.  While they do run the same code as the actual robots (as discussed in the 

simulation section), they were also supposed to be driving with the scouts in the unknown map.  Instead 

they were left as programmed entities without any physical bodies.  The children in the map will act as if 

the workers are in the map and will route around them when going from place to place.  

Future Work 
The following sections outline a few features that would have been desirable to implement 

however were left out due to time constraints. 

Node Failure Detection 
 One feature that would be a nice addition is node failure detection, or the ability to gracefully 

recover from any node going offline in the swarm.  This is made particularly difficult due to the abstract 

nature of the swarm and the fact that, for example, if a Level 1 node were to die, all of the level 2 nodes 

would have to find a way to become re-distributed throughout the swarm, which may potentially break 

previously set communication rules.   While there have been some ideas for implementation, after much 

deliberation there remain two central problems.  First, how does a node in the swarm detect that 

another node has failed, and how does a node recover from such a failure, with the best case being that 

no communication protocols are broken. 

 It was determined that that best way to check for a node failing in the swarm was to monitor 

communications.  One way to do this was the idea of a “heartbeat” thread that would reset a counter 

each time a node receives a message from its parent or the other way around.  If too much time passed 

the robots would check to see if the corresponding node was still operational by sending some form of 
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communication and then waiting for a reply.  If too much time elapsed, then the sending node would 

assume the other had died and take steps to correct the issue. 

 No ways of re-distributing the swarm were found that did not involve breaking the strict 

communication rules developed earlier.  The only way of moving around resources was to have the 

children of the parent communicate to the other robots in the same level as the parent and be assigned 

accordingly.  The process is that the children would communicate to the next level up that they were 

free and could be re-assigned to anyone.  Another complex issue was that even once children were 

reassigned to a new parent, the children would be outside their new parent’s bubble.  Therefore, the 

parent would not have a valid way of routing the orphaned robots from their current location to 

somewhere inside the bubble. 

Emergency Stop / Other Safeties 
 In addition to the ability for the swarm to adapt gracefully if a node were to die, the swarm also 

currently lacks many general safety features.  There are a variety of these in terms of both software and 

hardware implementations that would be useful additions. 

 The first safety feature would be an emergency stop command that could be sent to any or all 

nodes in the swarm in order to cause them to immediately stop whatever command is executing and 

wait for further instructions.  This would be useful in the event that the queen or human operator who 

noticed imminent danger could stop the swarm from progressing, and specifically be able to resume the 

swarm once the danger had passed or things were adjusted.  Currently the swarm has the ability to be 

killed entirely, which will perform the stopping ability, but then has no way of resuming later.  

Hardware-wise, there is also no protection for the swarm in case a node was to drive off an edge and fall 

to harm.  The addition of sensors to detect such falls or other dangerous obstacles would be a nice 

addition; however it is hard to cover all the possibilities since the physical hazards are rather 
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implementation specific.  In particular, the board developed for this project does have the ability to use 

bump sensors if they were added to the robot body in case the robot were to hit an obstacle.  

Unfortunately due to time constraints, the bump sensors were never added to the robots causing them 

to be unable to detect a collision. 

SLAM and the UKF 
 One of the limiting factors noted throughout the project is the lack of scalability involved with 

odometry.  Odometry can be improved by using better and better sensors however it is fundamentally 

flawed in the sense that it is entirely open loop and is not able to correct itself as it drifts further and 

further from the correct pose.  There are two proposed methods of fixing this problem.  The first and 

easiest is to simply incorporate a sensor capable of measuring absolute location such as GPS.  The 

problem with simply relying on GPS location is that there will likely be a large amount of noise in the 

signal causing the robot to appear as if it is rapidly ‘jittering’ around a given point.  This can be corrected 

through an averaging filter or more intelligently through a Kalman filter.  Even this method however has 

its problems.  Mainly the issue is that for indoor localization, GPS will likely be unavailable.  Other 

localization techniques that do work indoors are either not accurate enough or are simply too expensive 

to be practical.  Although it is outside the scope of this project to actually implement, it is worth 

discussing how localization could theoretically be improved. 

 The solution to this problem is to use simultaneous localization and mapping (SLAM).   SLAM is 

based on the principal that as a map is constructed a robot should be able to determine its own position 

relative to that map.  This process lends itself well to be implemented with a Kalman filter because the 

prediction equation can be fulfilled with the robot’s odometry data, and the update equation can 

correct the odometry data using the newly gathered map data.  This process however is non-linear due 

to the use of sine and cosine when calculating the displacement of a robot at a given heading.  

Therefore, SLAM is typically done with an extended Kalman filter.  The extended Kalman filter (EKF) 
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works similarly to a standard Kalman filter, however it linearizes the equations using a first order 

approximation typically done with Jacobian matrices [20].  The unscented Kalman filter (UKF) further 

improves upon this by using a process known as the unscented transform to achieve greater than first 

order approximations without having to calculate the Jacobian [20]. 

 The first step in any SLAM algorithm is to be able to identify features or landmarks which could 

be observed and re-identified at a later time.  One type of landmark that works well is a wall.  For the 

sake of discussion assume that a robot has a sensor which can detect the range and azimuth to an object 

and is capable of calculating the sample point’s x, y location in the Cartesian plane.  A wall would be 

observed by the robot as a set of blocked areas which happen to fall on a straight line.  The landmark 

being composed of multiple sample points helps reduce the effects of noise and makes the identification 

more reliable.  The next question is now how to determine which sample points to associate with a wall 

and which should not be.  The idea of a linear best fit line is a good start, but this approach would be 

defeated if two separate walls can be observed such as the intersection at a corner.  A better approach 

is to use the random sampling and consensus algorithm (RANSAC).  This algorithm works by first 

selecting a point at random out of all sample points.  Then, a small number of nearby points are selected 

and a linear regression is applied to this small sample.  From there, the linear fit is checked against all 

sample points and if enough of the sample points are on or near the line then the line equation is 

assumed to correspond to a wall.  This process is then repeated until either every sample point is on or 

near a line, or until the process exceeds a given number of iterations.  The algorithm is tuned by varying 

parameters such as the number of iterations to run, how close a point must be to a line to be considered 

on the line, or the number of points which must lie on the line to consider it a wall.  Despite the random 

nature of the selection, the algorithm can provide good performance.  The major benefit is that there is 

no limit to the number of lines which can be extracted from a given set of data.  It is also very good at 

ignoring outliers or even small gaps in a wall [21]. 
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 Once a wall has been identified, it is convenient to represent the line as if it were a single point, 

both for remembering the location of the landmark as well as comparing future sightings to see if the 

landmark is the same.  One method for doing this is to draw a line from the origin (or any other agreed 

upon arbitrary point) to the wall such that the line drawn intersects the wall at a right angle.  The point 

of intersection is the point which the wall is ‘condensed’ into.  At this point, the algorithm has found all 

walls and is now storing each wall as a single point.  When future scans observe walls, a simple heuristic 

to determine if a wall has been seen before is to simply compare the expected location of any wall with 

all observed walls and assume whichever observed point is nearest to the expected location is the true 

location of the wall.  This is also known as the nearest neighbor approach [21]. 

 Now the robot has a map of all known landmark locations (walls) as well as the new positions of 

newly observed walls (many of which are simply the old walls re-observed).  Using this information 

allows the robot to compare where it believes it is located against known reference points in the map to 

correct for errors in the belief state.  This is a perfect job for the UKF.  The full steps for the UKF are 

listed below [22]. 

Predict: 

1. xa
k-1|k-1 = [xk-1|k-1

T E[wk]
T]T 

Augment the state matrix x with the expected mean value for the noise wk (likely zero) 

2. Pa
k-1|k-1 = [Pk-1|k-1 0; 0 Qk] 

Augment the covariance matrix P with the covariance matrix Q which is a covariance matrix of 

the state matrix x 

3. χ0
k-1|k-1 = xa

k-1|k-1 

χ i
k-1|k-1 = xa

k-1|k-1 + (sqrt((L + λ)Pa
k-1|k-1))i  i= 1..L 

χ i
k-1|k-1 = xa

k-1|k-1 - (sqrt((L + λ)Pa
k-1|k-1))I - L  i= L+1 .. 2L 
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Derive 2L + 1 sigma points from the augmented state where L is the dimension of the 

augmented state. (sqrt((L + λ)Pa
k-1|k-1))i  is the matrix square root of the ith column of (L + λ)Pa

k-

1|k-1 and λ= α2(L+κ) – L where α and κ are scaling parameters typically set to 10-3 and 0 

respectively. 

4. χ i
k|k-1 = f(χ i

k-1|k-1, uk-1) I = 0..2L 

Perform the nonlinear prediction equation where u is the input vector if it exists. 

5. xk|k-1 = Σi= 0..2L Ws
i χ i

k|k-1 

Pk|k-1 = Σi= 0..2L Wc
i [χ i

k|k-1 – xk|k-1] [χ
 i

k|k-1 – xk|k-1]
T 

Ws
0 = λ/(L + λ) 

Wc
0 = λ/(L + λ) + (1 – α2 + β) (β is set to 2 for Gaussian noise, α is same as before) 

Ws
i = Wc

i = 1/(2(L+λ)) 

Recombine sigma points with given calculated weights. 

Update 

1. xa
k|k-1 = [xk|k-1

T E[wk]
T]T 

Pa
k|k-1 = [Pk|k-1 0; 0 Rk] Where Rk is the noise covariance 

2. χ 0
k|k-1 = xa

k|k-1 

χ i
k|k-1 = xa

k|k-1 + (sqrt((L + λ)Pa
k|k-1))i  i= 1..L 

χ i
k|k-1 = xa

k|k-1 - (sqrt((L + λ)Pa
k|k-1))I - L  i= L+1 .. 2L 

3. yi
k = h(χ i

k|k-1) I = 0..2L 

Perform nonlinear update measurement equation. 

4. z’k = Σi= 0..2L Ws
i yk

i 

5. Pkk = Σi= 0..2L Wc
i [yi

k – z’k] [y
i
k– z’k]

T 

6. Pxkk = Σi= 0..2L Wc
i [Xi

k|k-1 – xk|k-1] [y
i
k– z’k]

T 
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7. Kk = Pxkk Pkk
-1 

Compute Kalman gain 

8. xk|k = xk|k-1 + Kk(zk – z’k) 

Update the state with measurement vector zk 

9. Pk|k = Pk|k-1 – KkPkkKk
T 

Update the covariance matrix 

As the previous equations state, the UKF constantly predicts the next state (in this case with odometry 

data) and then corrects the state with measured data (in this case with the map landmarks).  The UKF 

performs well even with highly nonlinear equations and requires no Jacobian derivative calculations.  

The only two equations which are required are the prediction equation f(x): 

[x  y  θ]T = [x+d cos(θ)  y+d sin(θ)   θ+φ]T 

Where d is the forward distance driven and φ is the change in orientation. 

The second equation needed is the update equation h(x): 

[sqrt((x – xl)
2 + (y – yL)

2)   atan2(y – yl, x – xL) .. ]
T 

The first entry in the matrix is the range to a landmark and the second is the bearing to it.  xL, yL 

is a landmark location and the measurement matrix contains one range bearing pair for each 

landmark observed. 

Although due to its computational complexity and complicated mathematics, 

implementing this filter was deemed outside the project scope.  However, such a filter would 

greatly help improve the expandability of the swarm as it would allow for the mapping of larger 

areas without the limitations imposed by odometry. 
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Social Implications 
 Another important consideration is where this project could lead to in terms of real-world 

applications.  This project aimed to develop a new highly scalable swarm architecture capable of being 

used in a variety of ways.  The swarm can be highly heterogeneous which allows the swarm to be used 

for tasks such as firefighting, search and rescue, and environmental cleanup.  For firefighting, the swarm 

could be divided such that one level searches for fires while another level is tasked with putting the fires 

out.  Search and rescue applications could employ a mixture of ground and aerial robots.  The aerial 

robots could focus on surveying an area while the ground units could focus on rescuing the survivors.  

For an environmental cleanup swarm, one level could contain oil spills while another separates and 

removes oil from already contaminated water.  As all these examples demonstrate, the hierarchical 

ideas proposed in this paper are intended to be more general rather than application specific.  Although 

traditional swarm topologies are still applicable to these problems, the hierarchical topology proposed 

aims to greatly improve the scalability of a swarm to much greater levels than would be possible with a 

swarm running an interconnected or ring topology. 

 This project also explored some of the aspects required to implement a swarm as an actual 

product.  The robots were made mostly out of cheap acrylic to allow for cheap manufacturing and also 

were made into a rounded shape to reduce the risk of injury during handling.  ROHS components were 

used wherever possible to promote ecological construction.  In addition to ROHS, additional standards 

on the mechanical and electrical design were used whenever necessary.  Such standards included design 

considerations when making the custom circuit board as well as the robot chassis.   

 All data and results in this project are portrayed in an ethical manner.  The meaning behind this 

is that none of the data has been intentionally misrepresented in order to portray a different point than 

what would normally be inferred from the data.  The tests were complete and well documented.  All 

claims as to the ability of our swarm mentioned in the paper or any other presentation of the above and 
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below work directly stem from our hypothesis as supported by the data.  This project lies on the 

precipice of human knowledge within the confines of combining hierarchies into swarm system.  The 

introduction of this new knowledge to the swarm and robotic communities indicates that learning is in 

fact never finished and continues for a lifetime.   

Conclusion 
 In conclusion, the goal of this project was to create a proof of concept hierarchical swarm.  This 

goal was successfully accomplished by creating a three tier swarm capable of autonomously mapping an 

unknown area.  While this implementation used four physical robots and three virtual robots, it was 

successfully virtualized using up to 111 virtual robots to scan a significantly larger unknown space.  

While the project did not compare the viability of a hierarchical swarm when compared to already 

existing swarm topologies, it did show that a hierarchical swarm can in fact be used to solve problems 

well suited for distributed robotic systems.  The intent of this paper is to fill a void found while 

researching hierarchical information structures in robotics as well as multi-robot sensor based area 

coverage.  With the success of this project, future work can be now performed in order to compare 

hierarchical topologies to other, better established, forms of swarms. Specifically, research could be 

conducted to show the ability of a hierarchical topology to solve a problem when pit against an 

interconnected or ring topology.   
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