
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2013

Microfabrication of 3D Tissue Engineering
Scaffolds Using a Low-Cost 3D Printer
Elizabeth Laura Mayor
Worcester Polytechnic Institute

Jesse Daniel Halter
Worcester Polytechnic Institute

Nicholas Patrick Trabucco
Worcester Polytechnic Institute

Thomas Sung Butler
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Mayor, E. L., Halter, J. D., Trabucco, N. P., & Butler, T. S. (2013). Microfabrication of 3D Tissue Engineering Scaffolds Using a Low-Cost
3D Printer. Retrieved from https://digitalcommons.wpi.edu/mqp-all/348

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/348?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F348&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu


 

 

 

 

 

 

 

 

 

  

Worcester Polytechnic Institute, Biomedical Engineering Department 

Microfabrication of 3D Tissue 

Engineering Scaffolds Using a 

Low-Cost 3D Printer 

MQP Project Advised by:       Professor Domhnull Granquist-Fraser                                                                                        

& Co-advised by:                      Professor Sakthikumar Ambady 

Student Authors:  Thomas S. Butler, Jesse D. Halter, Elizabeth L. Mayor, 

Nicholas P. (Musselman) Trabucco 

Submitted on April 25, 2013 

Project Unique ID # DGF-111B 



DGF 111-B  1 

Abstract 
Bone tissue engineering has many potential applications including healing bone after trauma, repairing 

and bone defects associated with cancer. However tissue scaffolds are required to create 3D cultures in 

vitro. Current scaffold fabrication techniques do not allow for adequate control over the internal pore 

network. With the advent of rapid prototyping fully customized pore structures are feasible. Here we 

describe the process for creating a biomorphic bone tissue engineering Poly-lactide scaffold using a low 

cost 3D extrusion printer. We have developed a scaffold that is built fully using a 3d printer and 

successfully seeded with mouse osteoblast cells using a collagen hydrogel. We have determined that 

this scaffold has biomimetic geometry and preserves cellular bio-functionality.  
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Chapter 1:  Introduction 
 Tissue engineering is an emerging field with a relatively broad range of medical applications, 

including advanced wound healing and organ replacement. Bone repair has long been considered a 

practice that involves the fixation of the injury while allowing the body to reconstruct itself, or if the 

injury is severe enough sometimes implants are required. With the dawn of tissue engineering another 

option is on the rise. The possibility of creating a biologically compatible implant that allows complete 

recovery of injuries which might not be possible from using other previous methods can be highly 

valuable to those suffering moderate to severe bone damage. 

 Three dimensional manufacturing can be used to create a scaffold that, in conjunction with cell 

seeding, can create similar implants but until recently normal practices have been either highly 

expensive or unable to control the internal structure reliably. Such methods include gas foaming, salt 

leeching and electro-spinning, which allow the control of the pore size and porosity but are somewhat 

difficult to control the interconnectivity of the pores. Rapid 3D printing is a relatively recent process that 

allows the manufacturing of scaffolds with the ability to control the internal structure. The problem that 

arises from the use of this technology is that high-end printers are still expensive. Our goal for this 

project was to develop a method of using an inexpensive 3D printer to produce a scaffold that can be 

used to seed cells and allow them to create a potential bone implant. 

 In order to accomplish such a task there are several factors that needed to be considered, the 

first being the actual printer that would be used. The Makerbot Replicator is an inexpensive 

commercially sold printer that is designed to be used for personal printing in one's home. In order to get 

this kind of printer to create a scaffold that can be used for cell seeding there are several hurdles to 

overcome. The positioning resolution of the Replicator is accurate enough to get the size and definition 

that would be needed but the extrusion diameter was too large to effectively produce the structure. The 

filament chosen to become the material used for the scaffold needed to be both biocompatible and able 
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to be printed with accurately. Aside from the printer's capabilities the other aspects including the 

designed shape of the scaffold and the method of getting cells to attach within the entirety of the 

scaffold. Throughout this project we sought the solutions to these problems. 

 The key to finding a correct morphology that we could use involved finding a shape that we 

could easily model that had the desired porosity, surface area to volume ratio and in many senses 

provide an environment for the cells that would mimic nature. Using computer modeling, a triply 

periodic minimal surface based shape was chosen to be the general structure. Since it was modeled 

using a mathematical formula, it was possible to customize the size of the structure and its pores as well 

as the surface area to volume ratio to match the desired porosity. This model was able to be transferred 

to the Makerbot software in order to print. 

 The printing of the model itself was also looked into in order to maximize its success as a cell 

scaffold. The Replicator is built to handle both PLA (poly-lactide) and PVA (poly-vinyl alcohol), but taking 

into account the degradation time of PLA would allow for cell culturing while PVA would not, PLA was 

chosen. With the material chosen the next step was to achieve the printing accuracy to produce 

structures of the desired size. This required the extrusion nozzle of the printer to be significantly smaller, 

which was accomplished by creating new nozzles using micro-drills. Several sized nozzles were created 

and after testing to see the extruded filament size, the nozzle measuring close to half the diameter of 

the standard nozzle. To get even smaller print sizes we adopted the concept of stretching the filament 

while printing by programming the printer to extrude less material while traveling at the same rate. The 

print speed was also lowered to a fraction of the normal speed in order to reduce the defects that can 

occur during the process. The final testing models were printed to the size of a 10mm x 10mm x 3mm 

squares. 



DGF 111-B  12 

 Cell seeding was the next obstacle that was looked into in order to discover a way to allow the 

cells to enter the scaffold in a uniform density and attach to the walls of the scaffold itself. The concept 

of using a collagen gel mixed with the desired concentration of cells was accepted and after testing a 

couple forms of collagen, the group settled on a rapid setting collagen called PureCol EZ Gel. The idea 

behind using this was to create the collagen/cell mixture, inject it onto the samples and allow it to wick 

into the porous structure of the scaffold.  

 The effectiveness of our design was tested during a two week time span. Testing was designed 

so that scaffolds seeded with bone tissue cells were evaluated for their location in the scaffold and their 

ability to differentiate at many time points. These sections were then imaged for cell presence and 

calcium deposits for which the results were promising.  
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Chapter 2:  Literature Review 

2.1  Clinical Need 

There is a clinical demand for method(s) to produce custom 3D living tissue structures rapidly 

and cost-effectively (Moroni, L. et al, 2008; Fielding, G. A. et al, 2012; Kapfer, S. C. et al, 2011).  There 

are numerous medical applications and end-goals for replacement 3D living tissue found in-progress 

within recent research literature.  Some example tissue engineering applications include replacement 

skin for burn victims (Supp, D. et al, 2012), replacement organs such as kidneys, lungs, liver, and heart 

(Atala, A. et al, 2012; Bronzino, D. (editor), 2006) to address diseases or trauma, disease free 

replacement coronary arteries (Tiwari, A. et al, 2003) to address heart attacks, bone tissue replacement 

to  address trauma or total joint replacement revision surgeries where patients bone is damaged and 

unsuitable to house the replacement artificial joint components (Teraoka, F. et al, 2010; Terrier, A. et al, 

2009), as well as numerous other research and clinical purposes within the fields of tissue engineering 

and regenerative medicine. 

Traditional cell culture techniques, as illustrated in Figure 1 below, used within industry to date 

involve two-dimensional (2D) tissue growth in Petri-dishes, well-plates, or other 2D cell culture 

containers.  These 2D techniques have been found to have limited applicability in the realm of functional 

thick 3D tissue engineering applications, such as the 3D tissue example illustrated in Figure 2 further 

below.  Cutting edge research involving 3D tissue engineering typically involves more complex 

equipment such as 3D tissue bio-reactors and one of two common strategies or a mix of both:  complex 

cellular self assembly and artificial scaffold based approaches (Rolle, M. W., 2012; “Methods in 

Bioengineering: 3D Tissue Engineering”, 2010; Yeong, W. Y. et al, 2004; Yoo, D. et al, 2012). 
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Figure 1 – Example of 2D tissue culture techniques (“Needle & Plate”, www.flickr.com, 2013) 

Many researchers believe the best solution is to learn how living tissues originally develop and 

the bio-signals and controls native within the body to signal this development, in order to re-create the 

natural process in an induced tissue engineering application to regenerate or replace damaged tissues 

(Gwyther, T. A., et al, 2011; Rolle, M. W., 2012).  This approach is best described as self-assembled 3D 

tissue engineering.  While this approach has many merits due to its aim of recreating an already existing 

natural 3D tissue generation process, there are numerous complex interactions and ongoing research to 

address various existing knowledge gaps and challenges between fetal 3D tissue generation and adult 

replacement 3D tissue generation that must be addressed prior to widespread application of self-

assembled 3D tissue engineering (Gwyther, T. A., et al, 2011; Rolle, M. W., 2012).  There are also 

limitations to self-assembly 3D tissue engineering techniques, such as in development of structural 

tissues, such as bone and cartilage of adult patients.  In these applications patients need artificial means 

of providing the necessary structural support while the regenerative or replacement tissue develops, 

until the tissue is capable of withstanding the structural support needed. 
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A shorter-term solution to 3D tissue engineering applications involves utilizing artificial 

biocompatible 3D tissue scaffolds to guide cells into the needed 3D tissue shapes.  These tissue scaffolds 

can be either non-degrading permanent biocompatible replacement tissue scaffold materials, or short 

or long-term degrading biocompatible materials.  While there are numerous applications for non-

structural tissue applications, the use artificial tissue scaffolds for structural tissue have a distinct 

advantage over self-assembly approaches, in that they can be designed to provide the necessary 

structural integrity needed until the 3D replacement tissue has developed enough to provide the 

structural support on its own (Amirkhani, S. et al, 2012; Becker, S. T. et al, 2009; Fang, Z. et al, 2005; 

Fisher, J. et al, 2009; Goonoo, N. et al, 2013; Guarino, V., et al, 2008; Pandithevan, P. , et al, 2009; 

Roshan-Ghias, A. F., et al, 2011; Terrier, A., et al, 2009). 

 

Figure 2 – Representative image for need of live 3D tissue engineering ("Organ-Regeneration-Ear-615.Jpg." wikispaces, 2013) 

2.2  Manufacturing Tissue Engineering 3D Scaffolds 

Tissue engineering 3D scaffold designs have only recently begun to be researched and 

developed in the past decade or two, as manufacturing technology and design control of designs for 

tissue engineering applications were previously lacking.  Significant advances in the equipment and 

manufacturing techniques have been made in recent decades allowing much improved control of 



DGF 111-B  16 

designs and obtaining the necessary order of magnitude necessary, micro- and nano- scales, for tissue 

engineering applications. 

2.2.1  Traditional manufacturing technologies 

Traditional manufacturing techniques such as drilling, machining, and molding processes involve 

subtractive processes, where bulk material in near-net shapes are obtained and modified to generate 

the necessary end-product.  These techniques are inadequate for tissue engineering applications, as 

there is no ability to control the internal structure on the micro-scale to create the internal pore 

networks needed for tissue engineering purposes.  Other manufacturing techniques were necessary for 

pioneering tissue engineering applications to produce controlled internal porous structures.   

2.2.2  Prior scaffold manufacturing technologies 

Techniques such as gas foaming and salt leaching were commonly utilized for early tissue 

engineering scaffold designs, producing scaffold designs with internal porous structures and some 

control of the resulting internal pore size, porosity void fraction, and pore interconnectivity through 

tightly controlled manufacturing techniques.  These designs still lack the necessary internal pore design 

control to produce consistent relevant pore sizes and highly interconnected internal pore structures that 

are beneficial to enhanced cellular in-growth and proliferation (Amirkhani, S., et al, 2012; Hsu, Y., et al, 

2007; Moroni, L., et al, 2008; Nachtrab, S., et al, 2012; Pham, Q. P., et al, 2006; Zeltinger, J., et al, 2001). 

2.2.3  Rapid prototyping manufacturing technologies 

Newly developing rapid prototyping technologies utilizing additive processes, built layer by 

layer, have been utilized extensively in recent 3D scaffold tissue engineering research.  These relatively 

new manufacturing techniques offer much greater control of the internal pore size and pore 

interconnectivity than prior manufacturing techniques (Amirkhani, S., et al, 2012; Armillotta, A., et al, 

2007; Becker, S., et al, 2009; Cheah, C. M., et al, 2003 Part 1 & 2; Kapfer, S. C., et al, 2011; Maher, P.S., et 
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al, 2009; Moroni, L., et al, 2008; Noritomi, P., et al, 2009; Pang, L., et al, 2007; Phattanaphibul, T., et al, 

2011; Sachlos, E., et al, 2003; Woesz, A., 2008; Yeong, W. Y., et al, 2004).  There are numerous types of 

rapid prototyping equipment broadly grouped into the following categories, including granular material 

binding technologies, photolithography technologies, and fused deposition modeling technologies. 

Granular material binding technologies take highly controlled and precision sized powder 

substances and roll out over a building surface in thin layers.  Various technologies are then utilized to 

bind specific regions of the building surface together to build the desired structure, with subsequent 

layers added above and bound to the prior layers to generate a 3D structure.  These granular material 

binding technologies can utilize metal, plastic, or ceramic materials depending on the binding 

technology used, with some available biocompatible materials available for tissue engineering scaffold 

applications.  Selective Laser Sintering (SLS) utilizes lasers to sinter or micro-melt materials together at 

the site of the laser focus, while others use liquid dispensed binding agents, such as chemically reactive 

reagents or adhesives to bind the granular material base into the desired structures (Cheah, C. M., et al, 

2003 – Part 1 & 2; Rajagopalan, S., et al, 2006; Teraoka, F., et al, 2010; Woesz, A., 2008). 

Photolithography based rapid prototyping techniques utilize photo-sensitive liquids that cure or 

solidify when light energy is focused above threshold energy or intensity levels.  Subsequent liquid layers 

are added and selectively solidified to generate the layer-by-layer 3D structure.  The primary materials 

used for this technology are polymeric based, with some biocompatible material formulations available 

for tissue engineering scaffold applications (Amirkhani, S., et al, 2012; Melchels, F. P., et al, 2010; Yoo, 

D., July 2012). 

Fused deposition modeling (FDM) rapid prototyping technologies involves continuous melt 

extrusion of small plastic filaments layer-by-layer with binding to the prior layer to generate the desired 

3D structure.  There are limited stock materials available for FDM based printing, with most commonly 
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available materials being acrylonitrile-butadiene-styrene (ABS) and poly-lactide (PLA) ("3 Dimensional 

Printers Below $20,000 - Comparison Chart." Castle Island Co., 2013).  PLA is a biocompatible material, 

and many other biocompatible materials could also be utilized with this technology for tissue 

engineering scaffold applications (El-Amin, S. F. et al, 2006). 

Significant advances in these relatively recent additive process rapid prototyping technologies 

occur on a regular basis, improving manufactured part resolutions, adding new compatible materials, 

and reducing costs of the equipment with higher manufacturing volumes and industrial and commercial 

utilization.  The cost of some rapid prototyping technologies is becoming low enough to be considered 

cost effective for small office use and personal in-home 3D printing (MakerBot Industries, 2013).  These 

low costs could also significantly increase the volume of tissue engineering research and development 

applications, as prior generation and more expensive equipment justification cost limitations are 

becoming less and less burdensome within the industry.  However, it must first be determined if these 

low-cost 3D printing technologies are capable of producing functional 3D tissue engineering scaffolds at 

adequate resolutions and with biocompatible materials that the prior much more expensive rapid 

prototyping technologies had previously proven feasible. 

A rapid prototyping comparison website exists to compare and contrast all available or soon-to-

be-available technologies under $20,000 ("3 Dimensional Printers Below $20,000 - Comparison Chart." 

Castle Island Co., 2013).  From the comparison chart compiled on this website, it can be seen that that 

majority of these low-cost 3D printing technologies are FDM-based.  While FDM processes are 

continuously improving and reducing the printed part resolution, these technologies remain on the edge 

as potential applications for tissue engineering scaffold designs having biomimetic pore size and porosity 

void fraction ratios.  A currently unavailable, but promising 3D printer based on photo-lithography 

technology having an adequate minimum feature resolution for tissue engineering applications, called 
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the Form1, is reported to be available in the late spring to early summer of 2013 from Form Labs in 

Massachusetts (“Formlabs – the Form 1”, 2013).  Details of the product material utilized and the 

potential availability of biocompatible materials for tissue engineering scaffold applicability in the future 

remains unknown at the time of this report.   

2.2.4  Tissue engineering scaffolds manufactured with rapid prototyping technologies 

There are numerous recent tissue engineering 3D scaffold design research and development 

efforts involving rapid prototyping technologies.  A large portion of these prior rapid prototyping 3D 

tissue engineering scaffold design efforts have involved basic layered grids, unit cells, or gas 

foaming/salt leach techniques (Amirkhani, S., et al, 2012; Armillatta, A., et al, 2007; Becker, S. T., et al, 

2009; Bucklen, A., et al, 2009; Cheah, C. M., et al, 2003 – Part 1 & 2; Fang, Z., et al, 2005; Fielding, J. A., 

et al, 2012; Fisher, J., et al, 2009; Freed, L. E., et al, 1994; Guarino, V., et al, 2008; Hsu, Y. H., et al, 2007; 

Maher, P. S., et al, 2005; Moroni, L., et al, 2008; Nachtrab, S., et al, 2012; Phattanaphibul, T., et al, 2011; 

Woesz, A., 2008; Yeong, Y. W., et al, 2004; Zeltinger, J., et al, 2001), with only a few developments 

involving more complex and uniquely designed biomimetic shapes (Bártolo, P., et al, 2009; Hockaday, L. 

A., et al, 2012; Kapfer, S. C., et al, 2011; Melchels, F. P., et al, 2010; Pandithevan, P., et al, 2009; 

Rajagopalan, S., et al, 2006; Vozzi, G., et al, 2004; Yoo, D., June 2012; Yoo, D., July 2012).  While there is 

some precedence for complex 3D tissue engineering scaffold designs being manufactured using rapid 

prototyping technologies, there appears to be a lack of research into available low-cost rapid 

prototyping technologies for 3D tissue engineering scaffold designs having complex biomimetic designs. 

2.3  Nature inspired biomimetic functional geometry scaffold designs 

Nature has evolved living tissue designs over millions of years to become optimized for specific 

functional tasks.  Examples of nature’s evolutionary design optimization can be found in numerous plant 

and animal species.  Many trees have space filling growing and outreaching branches to maximize the 
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available surface area of their leaves exposed to solar energy.  Many various tissues, such as sea corals, 

and internal lung tissue have continuous folded and repetitive structures and micro-structures to 

maximize their surface area exposed to their environment to provide optimal nutrient and waste 

exchange.  Natural bone tissues have highly interconnected porous structures that allow for internal 

nutrient and waste diffusion, while also maintaining high structural rigidity and support through more 

dense exterior shells, while using the same basic building material throughout. 

Biomimetic design concepts inspired by applicable natural evolutionary processes can yield 

highly optimized designs without need for iterative trial and error based design approaches, potentially 

saving significant time and expenses in the process (Hsu, Y. H., et al, 2007; Rajagopalan, S., et al, 2006).  

This project aims to utilize nature inspired biomimetic functional geometrical designs to generate 3D 

bone tissue engineering scaffold designs. 

2.4  Mathematically modelable scaffold design 

There are numerous advantages to creating complex designs based on mathematically models.  

Mathematical based structural model designs can be utilized to perform structural evaluations and 

simulations of complex shaped designs to determine design strengths in various planes or at specific 

critical design locations.  Mathematical based designs are also easily adjustable to fit various 

specifications or conditions to provide customized designs (Melchels, F. P., et al, 2010; Kapfer, S. C., et 

al, 2011).  Due to the many advantages of mathematically modelable designs, this project aims to utilize 

a mathematically based 3D tissue engineering scaffold design that maintains a highly biomorphic design 

to natural bone structure. 

2.5  Bone tissue parameters for 3D tissue engineering scaffold designs 

Bone tissue has numerous features and typical specifications that apply to 3D tissue engineering 

scaffold designs.  As identified in various prior literatures, bone tissue in-growth and proliferation is 
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typically optimized if the pore size of the scaffold is maintained in the 200-400 micron range (Hsu, Y. H. 

et al, 2007; Teraoka, F. et al, 2010).  This pore size range, along with a continuous surface and highly 

interconnected pores provides conditions conducive to nutrient and waste permeability throughout the 

scaffold design (Hsu, Y. H. et al, 2007; Teraoka, F. et al, 2010).  Natural bone tissues typically have 

porosity void fractions of up to 90+%, while maintaining structural integrity (Hsu, Y. H. et al, 2007; 

Teraoka, F. et al, 2010).  An adequate balance in the 3D tissue engineering scaffold design must be 

found that is capable of providing adequate permeability, structural integrity while also allowing rapid 

cellular in-growth and proliferation throughout the scaffold. 
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Chapter 3:  Project Strategy 
Here we examined the potential of a 3D extrusion printer to build scaffolds for tissue engineers.  

These scaffolds are designed to structurally support cell cultures in a three dimensional environment 

that mimics the setting in vivo. The ability to culture cells in three dimensions allows tissue engineering 

to tackle problems such as designing organ replacements or wound healing systems (Supp et al 2011; 

Bronzino et al 2005). 3d printers have recently become a viable option for completely custom, low cost 

projects (Fang 2005; Maher 2009). The extrusion printers we had available, the Makerbot Thing-O-matic 

or the Makerbot replicator, each cost under ~$2500. These printers use established biocompatible 

materials, Polylactide (PLA) and polyvinyl alcohol (PVA), and so are applicable for printing tissue 

scaffolds (Bronzino et al 2005). Since the structure and morphology of these scaffolds can be completely 

controlled, scaffolds can be built with a highly biomorphic structure that mimics the natural extracellular 

matrix (Ratner 2005). Here we established the goals of our design, through refining our client statement. 

Objectives, functions, and constraints of this design were incorporated in the client statement to 

establish the scope of the design space. 

3.1 Client Statement: 
From our meeting with our advisors, we established this initial client statement: 

“Design, build and evaluate a tissue engineering scaffold using 3D extrusion printing 

technology.” 

This gave us a starting point to move forward in establishing goals for this project. 

3.2 Constraints 
There are four major constraints that govern project. It must be biocompatible, printable, 

sterilizable and within the budget. Being biocompatible is listed as both a constraint and an objective 

because there are different degrees of biocompatibility. Our constraint states that it must allow cell 

growth, in any capacity. As an objective, we plan to maximize biocompatibility.  The material chosen 
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must be a printable material. The budget also constrains the project. We have approximately a $500 

budget to make any changes to the printer, print the scaffold and any prototypes needed, and test that 

the scaffold. The scaffold has to be sterilizable.  This means we need to pick a material that can be 

sterilized in a way that is non- toxic to cells. 

The scaffold must be produced using safe techniques and materials.  Proper personal protective 

equipment (PPE) should be determined for any unsafe processes and worn at all times by all involved in 

carrying out these processes. The team will need to sterilize and test the scaffold with proper PPE‘s and 

other safety equipment and use proper bio-hazard and sharps disposal practices to ensure the safety of 

our team as well as others utilizing the lab space. 

3.3 Objectives 
The project objectives and constraints were determined through research and several meetings 

with the project advisors and the project teams members.  It was determined that the 3D printed tissue 

scaffold high level objectives are:  low cost, rapidly manufactured, biocompatible material, biomorphic, 

permeable, and degradable.  The objectives tree structure generated for this project is below in Figure 3 

for reference. 
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Figure 3 – Objectives Tree Structure for 3D Printed Tissue Scaffold 

Utilizing the highest level of the objectives tree, a pairwise comparison chart (PCC) was 

developed to rank the importance of each of the primary objectives for this project.  The resultant PCC is 

shown below in Figure 4 for reference. 

 

Figure 4 – Pair-wise Comparison Chart for the 3D Printed Scaffold Project 

 

 

Low Cost Rapid Biocompatible Biomorphic Permeable Degradable Totals 

Low Cost XXXXXXX 1 0 0 0 0 1 

Rapid 0 XXXXXXX 0 0 0 0 0 

Biocompatible 1 1 XXXXXXX 0 0 1 3 

Biomorphic 1 1 1 XXXXXXX 0.5 1 4.5 

Permeable 1 1 1 0.5 XXXXXXX 1 4.5 

Degradable 1 1 0 0 0 XXXXXXX 2 
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As shown above in Figure 4, for this project the biomorphic and permeable objectives are tied 

for the highest importance, with each of these scoring a 4.5 out of 5 possible points.  The biocompatible 

material objective is ranked third.  The remaining and least important objectives for this project each 

scored 2 or less points out of 5 possible points (degradable, low cost, and rapidly manufactured). 

3.3.1 Low Cost 

The low cost objective is intended to satisfy both the WPI MQP budget allowance for this project, 

as well as to create affordable scaffolds in an attempt to minimize costs associated with any procedures 

and products utilizing the scaffold designs.  Additionally, this project is utilize a low-cost 3D printer, in an 

attempt to determine if functional tissue scaffold designs are printable, which could indicate a potential 

prior limiting barrier may now be eliminated and allow broader adoption and utilization of 3D printing 

technology within the tissue engineering and clinical industries.  By aiming to minimize costs throughout 

the development process, we can help to minimize end product costs, making them more affordable 

and more applicable to the general public. 

3.3.2 Rapidly Manufactured (Rapid) 

The rapidly manufactured objective is intended to allow for a single rapid prototyping system 

being utilized within a laboratory setting to be capable of producing patient-specific scaffold products in 

a timely manner.  The envisioned finished process involves not only manufacturing the scaffold, but also 

includes post-manufacture sterilization, cellular seeding and proliferation processes.  Minimizing the 

time to manufacture and down-time reduces the overall cost of equipment required and thus helps to 

minimize end-product costs. 

3.3.3 Biocompatible Material (Biocompatible) 

The biocompatible material objective involves developing scaffolds utilizing materials that are 

already established as implantable and resorbable by tissues in-vitro/vivo.  While rapid prototyping 

techniques utilize numerous materials, there are few materials established as implantable and 
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biocompatible which are compatible with the MakerBot 3D printers.  The biomaterials already in 

existence in the proper form for the Replicator are poly-lactide (PLA) and poly-vinyl alcohol (PVA).  There 

are numerous other biocompatible materials that could be processed into the necessary form to be 

utilized by the Replicator, a 1.75mm extruded filament coiled onto a spool. 

A secondary aim within the biocompatible material objective is to use a material that has 

biomimetic mechanical properties as the target tissue being replaced by the scaffold.  This objective is to 

create permanent or temporary, if the material is resorbed, structural integrity within the scaffold 

design until the replacement tissue can take over the structural loads, by picking a material having 

similar mechanical properties to the target tissue being replaced. 

3.3.4 Biomorphic 

The biomorphic objective aims to provide a continuous surface free of sharp edges, a 

biomimetic structure to the native tissue being replaced by the scaffold design, and a mathematically 

modelable scaffold design. 

The natural tissue internal design is free of sharp edges.  Using a design similar to the native 

structure will maximize cellular in-growth and proliferation within the scaffold design, as these designs 

have already been optimized through evolution over millions of years for their intended environment.  

Utilizing some form of biomimetic design, the design will already include many of nature’s functional 

optimizations and reduce iterative design processes and the time and costs associated with them. 

 The aim to be mathematically modelable is intended to provide easier calculations and modeling to 

mechanically evaluate the scaffold design.  For example a mathematical model can be used to evaluate 

the scaffolds structural strength under simulated loading within a structure or fluid flow through a 

structure, and gives a means to easily compare design variations.  Additionally mathematically based 

scaffold models have the ability to be easily customized should minor design changes be deemed 

necessary. 
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3.3.5 Permeable 

The permeable objective is intended to provide the proper internal porosity void fraction, pore 

size(s), and mechanical strength needed within the scaffold structure to withstand biological forces.  The 

porosity void fraction is the ratio of empty space versus filled space within a scaffold design.  Proper 

porosity is a key to effective nutrient and waste diffusion through the scaffold. Without proper nutrient 

diffusion and waste removal within the scaffold, the in-growing and proliferating cells can die due to 

toxicity or a lack of required nutrients. 

Various prior studies have aimed to determine proper scaffold structural porosity void fraction 

and pore size(s) for specific cell/tissue types.  This objective aims to use prior research findings to 

optimize the projects scaffold designs for the proper range of properties (porosity void fraction, pore 

size(s), as well as structural strength, etc.) that promote proper nutrient diffusion and waste removal to 

allow cellular in-growth and proliferation. 

3.3.6 Degradable 

The degradable objective aims to create a complete wound healing solution, where the scaffold 

material can be slowly and safely resorbed and degraded by cellular tissue in-vitro or in-vivo and 

replaced by proliferating cells and extra cellular matrix.  Biocompatible materials have a wide range of 

degradation times, from the relatively quick PVA taking as little as a few hours, to slower resorbing 

materials such as PLA taking months to several years to degrade, or even non-resorbing materials such 

as titanium or stainless steel.  This objective aims to identify the proper mix of specific biocompatible 

material(s) that have the necessary degradation properties needed for the specific replacement tissue.  

The selected material(s) will provide the initial structural support and integrity needed for natural loads 

the replacement tissue scaffold will see within in-vitro or in-vivo environments, while allowing natural 

cellular replacement by tissue to eventually handle this structural support role when fully developed. 
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3.4 Revised client statement 
After reviewing the state of the literature, and interviewing stakeholders, and establishing 

objectives, functions, and constraints for our design, we incorporated this information into our revised 

client statement: 

 “Design, build and evaluate a low cost, under $20, biocompatible  bone tissue engineering 

scaffold using 3D extrusion printing technology that can be fabricated rapidly. Scaffold must be 

sterilizable, degradable, with biomimetic morphology as determined by mathematical modeling. 

Scaffold must have customizable sizes and shapes, and be adaptable to different materials and printers. 

Scaffold must promote cell proliferation, adhesion, and transport waste and nutrients throughout the 

entire scaffold. ” 

This client statement narrowed our design space, and helped establish goals for the project.  

3.5 Project Approach  
 The project began with a client statement proposed by our advisors; use a 3D printer to create a 

tissue scaffold that could be used for biomedical applications. We gained access to a 3D printer called 

the Makerbot Replicator and searched the literature for previous attempts at similar projects.  Various 

organizational tools were used to define the design space, including a Gantt chart, a pair-wise 

comparison chart (see Figure 4), and an objectives tree (see Figure 3).  This refined information was 

incorporated into the revised client statement.  

 Next, we established alternative design concepts by individual and group brainstorming. The 

potential concepts were evaluated and ranked to identify the best designs, and the top few ideas were 

conceptually developed further while the overall best was selected for the project testing phase.  

 The structural design was created on a free-ware mathematical visualization software, called 

K3DSurf, then exported as an .obj file that could be imported into graphic design (i.e. Autodesk 3DS Max 

software) or CAD based software (i.e. SolidWorks).  Once imported the model can be converted to the 
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printer-friendly and compatible file type known as a .stl file.  Once the model existed as a .stl file, it can 

be loaded into the 3D printer software to prepare and print the model on the 3D printer.  With the 3D 

printed model scaffold design, the scaffold can be evaluated in a variety of ways, including seeding cells 

to observe the efficiency as a working tissue scaffold, imaging the material produced at various levels of 

magnifications, validating the accuracy of the final printed scaffold, and measuring the printed porosity 

void fraction and pore sizes.  Numerous versions of mathematical models were evaluated and visualized 

using the K3DSurf software, and these various model equations are included in “Appendix A:  

Mathematical models used” for reference. 
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Chapter 4:  Alternative Designs 
The overall goal of this project is to design a scaffold for bone tissue engineering using a low cost 3D 

printer. Scaffolding is a common technique in tissue engineering to provide structure to 3D tissue 

cultures to control the in-growth and proliferation of seeded cells. As discussed previously, using a 3D 

printer allows for fully controlled micro- and macro-structures of the scaffold, unlike traditional 

scaffolding techniques where the internal pore size, distribution, and pore interconnectivity are limited 

(Yeong et al 2004). Within this section of the report, we will establish the functions and associated 

specifications of the scaffold design, and generate design alternatives based on these guiding criteria. 

These design alternatives can then be ranked and feasibility of the various designs can be assessed so 

that a final design can be selected and fully evaluated as part of this project. 

4.1 Needs Analysis 
Tissue engineering of bone tissue requires specific features in scaffolds for effective cell in-

growth and proliferation within the scaffold designs. The most important features are related to the 

physical structure of the scaffold and the intrinsic material properties of the scaffold. The scaffold needs 

promote proliferation, which can be achieved by a variety of methods. By promoting cellular 

proliferation and ingrowth, the scaffold will create a successful piece of tissue engineered bone—a 

construct made almost entirely of cells and cell derived matrix. This relates back to the issues of 

porosity, pore size and interconnectivity discussed in our objectives. However, given our constraints on 

scaffold fabrication (we must use a MakerBot 3D printer) the feasibility of the printing adequate 

resolution to achieve proper pore sizes and porosity void fraction ratio must be assessed. The structure 

of any potential design must balance the feasibility of printing and the optimum morphology and 

material properties for promoting cellular growth.  

Any scaffold must also mimic the mechanical structural supporting role of the target tissue to be 

replaced, therefore becoming another major function of our design. We have determined that a 
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mathematical model-based scaffold design is advantageous, as it yields a means of easily controlling the 

pore size and porosity void fraction of the model, and also can provide a means for simulation or 

evaluation of mechanical loading or internal fluid flow characteristics of the scaffold design.  

4.2 Functions & Specifications 

4.2.1 Promote cell adhesion  

 Cell adhesion is the ability of cells to attach and distribute themselves within the scaffold design 

once seeded. This is extremely important to a tissue scaffold because without cell adhesion and 

distribution of the cells within the scaffold, the cellular tissue will not proliferate and in-grow within the 

scaffold. The ability of a scaffold material to attach to the seeded cells allows for more rapid in-growth 

into the structure. We plan to focus mainly on the uniform distribution of the cells throughout the 

scaffold for evaluation purposes.  We specify our seeding design will uniformly distribute cells 

throughout the scaffold structure, such that cells are present within all regions of the scaffold when 

evaluated after testing is completed. 

4.2.2 Promote cell proliferation and differentiation 

 Our scaffold will promote cell proliferation, meaning that cells that are seeded into the scaffold 

will proliferate and differentiate into osteoblast-like cells producing calcium deposits within the scaffold 

structure. Regarding the cell proliferation and differentiation specification for our scaffold, we expect to 

find significant calcium deposits throughout all regions of the scaffold to indicate the cells have 

converted into osteo-blast like cells and are producing calcium throughout. 

4.2.3 Diffuse nutrients uniformly 

 Since we are dealing with a 3 dimensional scaffold that will have numerous pores running 

through it, the aspect of having a uniform flow to allow for the effective diffusion of nutrients is 

necessary. Without a uniform flow, certain areas of the scaffold would get more or less nutrients and 

removal of waste than other regions. This can lead to dead zones within tissues which can cause severe 
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problems within the host organism that receives the tissue implant.  Uniform diffusion throughout the 

scaffold can be seen by the effects that it has, such as the absence or quantitatively different 

concentration of cells after the seeding process or lessened differentiated cells within a region.  We 

specify that the scaffold design will not show indications of highly necrotic cells, indicating the nutrient 

and waste diffusion through the scaffold is adequate to promote proliferation and differentiation of the 

cells within the seeded scaffold. 

4.3 Design Alternatives 
The design aspect of this project consists primarily of a major design of the morphology of the 

scaffolding, along with numerous modifications to optimize the scaffold, which are independent of the 

shape selected.  In addition, these design aspects of the project also must conform to the objectives, 

constraints and functions of the overall project. 

The project team utilized a functions-means chart as shown in Figure 5 below and a morphologic 

chart shown in Figure 6 further below to assist in the brainstorming and generation of design 

alternatives for this project.   
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Figure 5 – Functions-Means Chart: major functions for our structure design (the morphology of the scaffold) are included on 
the left most column. The means listed in the other columns are high level concepts of the many ways or options these 
functions can be accomplished. This is broken down more specifically within the morphological chart shown in Figure 6 

 

Various design alternatives were developed for the designed shape and style of the scaffold 

itself.  As shown in the above morphological chart across the porosity (biomorphic) goal row, these 

major design alternatives for the structure shape and style of the scaffold include:  minimal surfaces 

modeling, 2D stacked or 3D space-filling fractal modeling, 2D stacked mesh, and simple unit cells.  The 

remainder of the design options listed in the above functions-means and morphologic chart will be 

grouped and discussed later in this report within the section identified as “4.3.5 Other Design 

Considerations”. 

  



DGF 111-B  34 

 

Goals Option 1 Option 2 Option 3 Option 4 

allow adhesion 
plasma treat with O2, 

N2, or ammonia gas 

surface coat with 

collagen or 

hydroxyapatite (HA)  

rely on intrinsic 

properties of the 

material 

  

primary material 

(biocompatibility) 

PLA PVA ABS   

porosity (biomorphic) 
minimal surfaces 

modeling 

use 2D stacked or 3D 

space filling fractals 

 2D stacked mesh simple unit cells 

vary porosity 

(biomorphic) 

use a gradient of pore 

sizes (linear, radial 

etc.) 

use a stepwise function 

to vary layers of pore 

sizes 

no pore variation   

withstand printing 

use one nozzle and no 

support material 

use one nozzle with 

supports of the same 

material that are 

removed in post 

processing 

use 2 materials, one 

scaffold material, one 

support material that is 

removed 

  

Figure 6 – Morphological Chart: the morphological chart gives specific design alternatives for achieving different design goals 
(both functions and objectives) each row begins with a header that describes the goal and is followed in subsequent columns 
with several means of accomplishing it. This includes all project goals, not just the design for the scaffold morphology. 

4.3.1 Minimal Surfaces Modeling 

The minimal surface modeling design alternative is based on pioneering work performed in 

tissue engineering studies such as those performed by Rajagopalan et al in 2006. These efforts, involving 

triply periodic minimal structures (TPMS), are more easily described as repetitive minimal surface 

patterns that extend continuously in each direction of 3D space, and have been inspired by 

mathematicians and scientists observing and attempting to mimic complex naturally structures over the 

past several hundred years.  To date, TPMS scaffold structures show promise of increased cell 

proliferation and enhanced cell in-growth in comparison to the then-current simple mesh/grid type 

scaffold simple shapes most commonly utilized in tissue engineering scaffolds (Kapfer et al 2011).   An 
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example of a TPMS shape is shown below in Figure 7 as a visual reference to the core of the design 

concept. 

 

 

Figure 7 – Example of a TPMS Structure, (visualized by K3DSurf v0.6.2 Software) 

 

As shown in the above example image, a TPMS surface inherently has an infinitely small wall 

thickness with void-space between these continuous thin walls of the 3D structure.  Utilizing the 

MakerBot Replicator 3D printer, the basic TPMS structure shown above must be modified, as the printer 

nozzle resolution dictates the smallest wall thickness possible.  The TPMS structure must be modified to 

thicken the walls and thus adjusting the pore to void space ratio known as porosity void fraction.  The 

K3DSurf V0.6.2 Software program (Taha, 2012), is capable of visualizing mathematical models, such as 

the above figure of a ‘Gyroid’ TPMS structure defined mathematically as: 

(Equation 1)          S(surface) = cos(x) * sin(y) + cos(y) * sin(z) + cos(z) * sin(x). 

Using simple mathematical principles, the TPMS structure can be varied by affecting both the 

amplitude and period of the sine and cosine wave components of the above mathematical expression.  

These amplitude and period variables, while important, are less critical than the ability to vary the 

thickness of the wall, and the porosity of the overall structure.  Other mathematical manipulation is 
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available to create a ‘thickness’ from the TPMS thin-wall concept, as illustrated in the below K3DSurf 

image, Figure 8, and mathematical equation (Equation 2 below). 

 

Figure 8 – Example of a Thickened TPMS Structure (Visualized by K3DSurf V0.6.2 Software) 

 

The above image is defined mathematically as: 

(Equation 2)           S(surface) =  1-(cos(x) * sin(y) + cos(y) * sin(z) + cos(z) * sin(x))^2 

 As shown, the newly generated thickened TPMS structure now has enclosed tubes and hollow 

porous void space between these tubes.  This model can now be manipulated further to optimize the 

structure to fit the biomorphic structure of bone tissue, by manipulating the ratio of tube thickness to 

hollow region and scaling the structure to meet the size of the overall replacement bone scaffold 

geometry section to be printed. 

 The above examples of modified TPMS 3D structures are not intended to represent the 

optimized  design selected for this project, and are instead just an example of how mathematical 

manipulation of the TPMS structures can be achieved using the K3DSurf V0.6.2 Software to adjust a 

scaffold design to generate biomimetic tissue scaffold designs. 

As indicated above, the size of the pores and the porosity void fraction can be controlled to 

generate a best fit to the biomorphic nature of the bone tissue structure that is capable of being printed 

on the MakerBot Replicator 3D Printer (minimum extruded filament size is the smallest possible wall 
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thickness.  The outer shape of the scaffold can also be manipulated to enclose the model to any 

mathematically defined shape; cubes are shown in the above K3DSurf example images for convenience. 

The resultant block of 3D TPMS-based scaffold structure design can be exported from K3DSurf to an .obj 

file type commonly used in graphic design and CAD software.  An ideal end goal would be export the 

mathematical scaffold model into CAD software, where it can be conformed to the outer boundaries of 

any final replacement tissue shape and size needed.  Once shaped, the CAD model can be exported into 

a format compatible for printing on the MakerBot 3D printer, a .stl file type.  As our team lacks 

experienced CAD operators, this end goal is unlikely to be addressed within the scope of this project. 

4.3.2  2D Stacked or 3D Space Filling Fractals 

This concept is based on recent efforts performed in tissue engineering studies to incorporate 

fractals, which are naturally occurring structures, into tissue engineering efforts (Pandithevan, P., et. al., 

2009).  Some examples of fractals in human anatomy included blood vessel distribution within the body 

and internal lung bronchial pathways.  Other biologic examples of fractal geometries include tree branch 

and leaf vein patterns.  Fractals are a useful, evolution derived tool for efficiently delivering nutrients by 

maximizing interfacing surface area. Examples of 2D space filling fractal designs are depicted below in 

Figure 9. These 2D layers (or other fractal based 2D layer designs) could be stacked into 3D blocks to 

generate the desired 3D bone tissue scaffold structure.    
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Figure 9 – Examples of 2D Layered Space Filling Fractals (images from Kumar et. al. (2009)) 

 

Another fractal design concept is to utilize 3D space filling fractal designs.  An introductory 

meeting was coordinated with a WPI academic computing applications scientist specializing in 

mathematical fractal modeling, Adriana Hera, Ph.D., to gather additional background and availability of 

tools to mathematically model 3D space filling fractals.  Dr. Hera mentioned 3D space filling fractals are 

complex that manipulating the fractals to fill 3D space to create a bone tissue scaffolding design is a 

highly risky task, especially with our team having limited experience with programming and MatLab.  

She mentioned stacking 2D fractals was much more practical for our project goals if fractal designs are 

to be utilized. 

4.3.3 2D Stacked Mesh 

Using a simple stacked mesh is another alternative for generating a scaffold. Simple 2D meshes 

can be stacked into 3D blocks, such as stacking several lattice structures depicted in Figure 10 below.  

These stacked 2D mesh designs are the easiest design concept to print in the printer, but are limited in 

their biomorphic properties, as these designs do not produce continuous internal surfaces with no sharp 

corner features that alternative scaffold designs provide.  Additionally, simple stacked 2D mesh designs 

have been previously printed on low-cost 3D printers, indicating this scaffold approach has already been 
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completed for various tissue scaffolds, and would be repetitive of existing performed research in the 

field of tissue engineering. 

 

   

 

Figure 10 – (a) 2D Mesh Lattice (45
o
 angle) & 2D Layers can be Stacked into (b) 3D Block Structures (iso) 

 

The printed tube of extruded plastic is printed with a hollow spacing between printed tubes and 

upon completion of one layer, the design is printed at a rotated angle on the next and successive layers, 

such that the 2D grids are stacked into a 3D structure having consistent tube and hollow pore structures 

throughout.   

The porosity void fraction and pore size can be easily manipulated to generate this approaches 

best fit to the biomorphic nature of the bone tissue structure.  A basic repeating block design of stacked 

2D mesh could be easily generated and exported to the 3D printer, and again, this has already been 

accomplished in prior research. 

4.3.4 Simple Unit Cells 

 Simple unit cell scaffold designs are based on generating an appropriately sized unit cell shape 

concept, and repeating this cell in 3D space to fill the outer boundaries of any final replacement tissue 

shape and size needed.  Examples of a few unit cell designs are below in Figure 11 for reference. 

Image from Decorativecomponents.com  

 

Image from Amirkhani et. al., 2012 

 

(a) (b) 
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Figure 11 – Simple Unit Cells and 4x4x4 Cubes of Each Unit Cell Concept (images from Cheah, 2003) 

 

The size of the pores and the porosity can be controlled to generate a best fit to the biomorphic 

nature of the bone tissue structure.  As with the layered mesh this design could be completely modeled 

in CAD software before exporting to the printer.  The limitations of the unit cell designs include the 

potential for unutilized secondary pore structures, sharp corner features, and a non-continuous surface, 

each reducing the scaffold design biomorphic, permeable, and cell adhesion properties relative to 

alternative scaffold designs considered. 

4.3.5 Other Design Considerations 

In addition to the primary design alternative variation for this project, shape/concept for the 

scaffold geometry, there are numerous additional design considerations involved in order to meet the 

objectives, constraints and functions of the overall project.  The following sub-sections of this report 

detail these additional design considerations. 

4.3.5.1 Biocompatible Material Selection 

 The MakerBot Replicator 3D Printer has a dual-nozzle capable design (MakerBot 

Industries, 2012). The dual-nozzle design of this 3D printer is typically utilized for printing designs of two 

colors during a printing operation, and can also be utilized to print two separate materials that require 



DGF 111-B  41 

fully independent printing parameters (i.e. extrusion temperature, material extruder feed-rate & nozzle 

printing speeds) (MakerBot Industries, 2012).   A single nozzle design typically results in sagging and 

warping of the extrude tube over longer unsupported regions of the design (MakerBot Industries, 2012).  

For the design of a bone scaffold, the design is purposely porous; intentionally leaving numerous regions 

unsupported during the print operation, and thusly, results in a design with potential for significant 

variances in as-designed versus as-printed scaffolding of the overhanging regions sag prior to solidifying.   

The MakerBot Replicator’s dual-nozzle design and available material selection offers a unique solution 

to this problem.  By utilizing a primary material for the scaffold solid portion of the design, and a 

removable support material to temporarily fill the areas of the scaffold design intended to be porous, 

the supported dual-nozzle printed scaffold design may be a more accurate match the as-designed 

scaffold design, as there are little to no unsupported regions in the dual-nozzle printed design.   An 

additional processing step is necessary for dual-nozzle printed designs, in order to remove the 

temporary support material from within the printed scaffold design (MakerBot Industries, 2012), as well 

as the printing process taking much longer, as the entire volume of the scaffold bounding box is to be 

printed, versus only the walls printed in a single material and single nozzle print. 

The available printing materials compatible with the MakerBot Replicator 3D Printer are 

currently limited to acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), and polyvinyl alcohol 

(PVA) (MakerBot Industries, 2012).  For the purposes of this project, all materials to be selected will be 

of the natural filament color, as there is no information available to determine if the coloring dyes 

utilized are biocompatible. 

 The ABS material is not biocompatible, and therefore is eliminated as a potential material choice 

for use in this project (eliminated from both a primary and a secondary support material choice). 

The remaining available biocompatible materials are PLA and PVA.  The PVA material is rapidly 

water soluble, indicating a scaffold design printed with this material as the primary material would 
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rapidly dissolve in aqueous solutions, such as cell culture media (MakerBot Industries, 2012).   PVA is 

therefore not an applicable primary material for printing the bone tissue scaffold designs for this 

project, however, its material properties (rapidly dissolving in water) have potential for utilization as a 

removable secondary support material as described above, if there is noticeable sagging of printed 

designs at overhanging regions of the printed scaffold design. 

The only remaining available stock material that is both printer compatible and biocompatible is 

PLA.  The PLA material degrades within an adequate time-period to be applicable for bone tissue 

scaffolding application of this project, as it generally takes months to years for PLA to biodegrade in-

vitro and in-vivo (depending on the specific design and biological tissue environment the material is 

utilized within) (Roshan-Ghias, et. al., 2011).  PLA is also a commonly utilized material for biocompatible 

applications, including various tissue engineering scaffold applications, such as the intent of this project 

(Roshan-Ghias, et. al., 2011).  

4.3.5.2 MakerBot Replicator Compatible Nozzles/Extruder Assemblies 

 The standard nozzle bore of the MakerBot Replicator 3D Printer is 0.4mm (400m) (MakerBot 

Industries, 2012).  Bone tissue in-growth and proliferation has been shown to be optimized in scaffold 

designs having pore sizes that range from 200-400m in size, designs having greater than 50% porosity 

void fraction, and (Hsu, et. al., 2011; Taraoka, et. al., 2010).  For this project, the current MakerBot 

Replicator nozzle bore size and desired bone tissue pore sizes would result in scaffold designs with an 

upper porosity void fraction limit estimate of roughly 66 & 50% (for designs having pore sizes of 200 & 

400µm respectively). This indicates the current nozzle bore of the MakerBot Replicator is a limitation for 

the project objective of designing bone tissue scaffold structures with optimized cellular in-growth and 

proliferation designs. Further, initial printed extrusions and the actual nozzle bore hole size were 

measured using microscope imaging, and it was determined that there is some extrusion die swell, 

enlarging the printed extrusion filament above the upper threshold limit of 400 microns.  Additional 
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solutions to reduce the printed extrusion filament size are necessary to achieve our minimum goal of 

printing 400 micron sized pores with an estimated 50% porosity void fraction.  There is potential to 

identify existing off-the-shelf commercially available and compatible nozzles for the MakerBot 

Replicator 1 printer, as well as the potential to manufacture custom nozzles having smaller extrusion 

bore hole sizes.  All of these alternative design options will be further considered, in order to achieve the 

goals of this project. 

4.3.5.3 Biomimetic Pore Size Gradients 

 Natural human bone has pore size and porosity gradients throughout the cancellous and cortical 

portions of the anatomical bone structure (Hsu, et. al., 2011; Taraoka, et. al., 2010).  These variable pore 

size and porosity gradients that occur in natural bone are the result of the bone tissue biomechanical 

physiological response to strain and applied loads applied to the local bone structure that occur during 

normal use (Hsu, et. al., 2011; Taraoka, et. al., 2010).   

 The option of applying gradients of pore size and porosity to various regions of the scaffold 

design may be applicable to this project to achieve a higher level of biomimetic morphology within the 

final design.  Each of the four identified alternative designs for the scaffold shape is capable of being 

modified to apply gradients in pore size and porosity.  However, the extruded plastic filament size is 

again a potential limitation and/or bottleneck to this portion of the design.  The stock MakerBot 

Replicator nozzle extruded filament bore size, as described earlier in the design alternatives portion of 

this report, currently results in an overall porosity design upper limit of roughly 50%, which is already 

lower than desirable to optimize cellular in-growth and proliferation of the printed scaffold design.  If 

the nozzle extruded filament bore size is not capable of being significantly lowered (i.e. to ~0.1- 0.15mm 

/ ~100-150m), applying a pore size or porosity gradient would only further lower the overall porosity of 

the design, and further impede cellular in-growth and proliferation of the overall design.  Due to this 

limitation, application of pore size and porosity gradients is not recommended for this project unless the 
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nozzle extruded filament size of a customized/replacement nozzle can reach the range of 0.1-0.15mm 

(100-150m). 

4.3.5.4 Surface Treatments to Enhance Cell Adhesion and Proliferation 

 The performed literature review for this project identified journal articles describing tissue 

engineering scaffold design improvements for cellular adhesion, in-growth, and proliferation that result 

from enhancing the cellular interfacing material surface properties of the material of the scaffold design 

(Li, Y. H., et al, 2007; Yang, et al, 2002; Pang, et al, 2007). 

The surface of a scaffold design can be enhanced to improve adhesion by performing a plasma 

treatment process and then coating the plasma treated surface with a thin layer of collagen (Yang, et. 

al., 2002).  This combined surface treatment process notably enhanced the cellular adhesion, in-growth, 

and proliferation of seeded cells in comparison to collagen coating the surface without first plasma 

treating the surface (Yang, et al, 2002).   

A final considered potential surface treatment applicable particularly to bone tissue scaffold 

designs is application of a hydroxyapatite coating to the scaffold material (Pang, et al, 2007).  The 

hydroxyapatite coating has very similar material properties to natural bone ceramic-like tissue, and is 

considered a good tissue engineering material for bone tissue applications as it promotes osteoblastic 

in-growth and proliferation (Pang, et al, 2007).  There are multiple methods to generate hydroxyapatite 

coatings on material surfaces, including a relatively simple and low-temperature process to coat various 

material surfaces as implemented by Pang et al (2007). 

The application of these surface treatments to this project are dependent on if the required 

materials and equipment is available to process within WPI laboratory setting, and if these surface 

modification techniques/processes are affordable within the schedule and limited budget available to 

the project.  As these techniques/processes are a secondary design improvements, these design 

enhancements will only be considered if adequate schedule and budget remain after first fulfilling the 
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primary objectives and functions of the project.  If these surface modification design enhancements are 

not able to be evaluated as part of this project, these would be a great starting-point to consider future 

developments for a follow-on project. 

4.4 Conceptual Tentative Final Design 
The initial conceptual tentative final design was determined from a weighted evaluation 

selection matrix/chart, as shown below in Figure 12 for this project.  This selection matrix evaluates only 

the primary design alternative of scaffold shape/geometry, and results in weighted scores for each 

design alternative, with the highest score being the recommended final design path to evaluate further. 

 

Figure 12 – Selection / Evaluation Matrix Chart: Each of the above listed objectives contain a weighting value within 
parentheses.  These weighting values were derived from the earlier Pair-Wise Comparison Chart from Chapter 3  of this 
report by scaling the weighing values to a scale of 1-10, with each design alternative being scored from 1-10 within each 
objective category.  The resultant weighted values are shown in each cell and totaled for each design alternative, with the 
Minimal Surfaces design alternative receiving the highest score of 286 weighted points 

  

 The selection evaluation matrix above helped the team determine which design would best 

fulfill our objectives, and if any alternatives should be eliminated due to conflicts from constraints.  As 

indicated by the question marks (?) in the above selection / evaluation matrix chart, the more complex 

Minimal Surfaces and Space Filling Fractals alternative designs may be prone to additional as-designed 

versus as-printed design errors, as the nozzle size limitation and complexity of the printed layer designs 
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may cause an increase in error compared to the more easily printable design alternatives of Mesh and 

Simple Unit Cell alternative designs.   

The two top ranked design alternatives outscored the remaining two design alternatives in each 

category with the exception of the low cost and rapid objectives (least important weighting multiplier), 

where the only the Mesh design alternative scored modestly higher due to the potential of this scaffold 

design being printed using only a single material and single nozzle, unlike the other designs.  Subsequent 

small scale printing determined the small overhanging distances associated with this projects goal 200-

400 micron pore sizes and estimated porosity void fraction between 50-66% range result in limited 

sagging.  This indicates each design is capable of being printed with a single nozzle and a single material, 

equalizing the minor advantage the mesh design alternative had in this one weighted category. 

Each of the design alternatives will be modified/scaled to provide a pore size of roughly 200-400 

microns, provided adequate 3D printer nozzle bore size and extruded filament size can also be printed in 

this 200-400 micron size range.  Each design alternative will be modified/scaled to achieve the best 

possible printable pore size and porosity void fraction given the design constraints, controlled by the 

final nozzle used.  

4.5 Feasibility Study & Experiments Methodology 

4.5.1 Feasibility studies 

There were experiments done to test the feasibility of each feature of the design before 

continuing to a final design. These feasibility studies looked at single aspects of the model to specifically 

examine their effectiveness; these tests included testing the biocompatibility of the material in a 2D 

culture to verify there are no cyto-toxic reactions to indicate the PLA material is biocompatible.  The 

small-scale printing tested the available custom nozzles and the printer setting optimizations to reduce 

the printed extrusion filament size. 
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Regarding the biocompatibility of the material being used for the scaffold, the ability for cells to 

grow on an unmodified normal piece of PLA was tested. This was done by printing a flat piece of PLA, 

seed cells onto it using 2D tissue culture techniques and recording whether or not there was cellular 

growth after a period of time.  During these tests, there were no identified biocompatibility issues in the 

time-frames evaluated for the PLA material, however, after several days contamination was noticed 

within the 2D culture dish.  This indicates either the PLA material placed in the culture dish was not 

properly sterilized, or that accidental non-sterile cell culture techniques had resulted in contaminated 

culture dishes. The piece of PLA used had no specific biomorphic shape since this was only to test the 

material alone and get a base-line to evaluate potential for cell growth and proliferation. 

 Before proceeding with printing a functional modeled scaffold, the actual capabilities of the 

printer need to be assessed as to make sure that it can handle the printing of our design. The feasibility 

of creating certain designs as well as the nozzle requirements were focused on. Due to the low cost of 

the material we were able to do a trial and error method by first attempting to print our model using 

ABS. Although ABS is not a biocompatible material these tests were just to judge the ability of the 

printer to form the shape. This was the first test done so we had to simply load our designs onto the 

printer and since we had yet to switch from factory default ABS to our ordered PLA, we started test 

prints. The test print was a scaled up version of the design using one nozzle, which allowed us to see 

how well overhangs and curves are handled. The analysis of the test prints was by a purely visual 

method, in which we looked for if the shape held during the process and where mistakes were made on 

the part of the printer. 

Before evaluating the printed functional model scaffolds, additional cell culture system design 

testing and sterilization method evaluations were performed to further optimize the potential for 

successful evaluations for this project.  There were various identified sterilization methods considered, 

with the simplest and easiest method being selected for continued evaluations, sterilization in 70% 
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ethanol for a prolonged time-period of 2+ hours, followed by drying the printed scaffolds in the bio-

safety cabinet (BSC) utilizing an ultraviolet light for an additional 2+ hours.  The cell culture system 

designs and techniques used for this project continued to change and be further optimized up until the 

final evaluation testing began.  

4.5.2 Experiments Methodology 

 Once all of the individual tests were completed, an in vitro experiment using the finished 

scaffold as a whole was performed to assess its functionality. These tests were done with the purpose of 

measuring how well the finished design performs, which include checking for the correct pore size using 

a microscope to measure the resultant pore-size using a free-ware program called ImageJ. 

4.6 Preliminary Data 

4.6.1 Nozzle resolution improvement feasibility study 

The MakerBot manufacturer was contacted to determine if smaller nozzle bore options exist. In 

response, the manufacturer stated they are not aware of any smaller nozzle designs that are directly 

compatible with their MakerBot Replicator.  However, also in response to our email, they submitted 

their standard nozzle CAD design and authorized us to modify the standard nozzle design to have 

custom nozzles manufactured for our evaluation purposes. 

 A customized nozzle or a replacement compatible extruder assembly compatible with the 

MakerBot Replicator 3D Printer is desired to achieve the desired printed filament resolution for our 

models.  A replacement compatible nozzle or extruder assembly with a nozzle printed filament size of 

100-200 microns (if possible/available) could result in bone tissue scaffold designs with an upper void 

fraction of 66-80%, significantly better than at the upper limit of 400 micron pore size.  
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Figure 13 – Comparison of Original 0.4mm Nozzle (left) to Possible 0.1mm Nozzle (right) Designs: note the change in angle of 
the new design, and the need for high tolerances to develop this new nozzle 

 

The replacement commercial-off-the-shelf components currently identified as available and 

partially or fully compatible (partial compatibility requires additional replacement extruder assembly 

components) with the MakerBot Replicator, potentially have nozzle bore sizes as small as 0.25mm 

(250m).  One manufacturer of potentially compatible components, MakerGear.com, listed an 

experimental nozzle having a bore size of 0.15mm (150m) however, this component does not appear 

to be currently available and these nozzles were determined to not be compatible with the MakerBot 

Replicator 3D printer.   

The literature review performed also identified a research paper relating to the various design 

considerations and the process of utilizing computational fluid and thermal dynamic modeling to design 

and optimize a custom nozzle for a RepRap 3D Printer having a smaller nozzle bore size (Ju and Roxas, 

2008).  The RepRap 3D Printer has numerous similar and/or partially compatible design components to 

the MakerBot Replicator 3D.  The research indicated the back-pressure build-up within the nozzle design 

increases significantly with smaller nozzle bore designs, and this may bottleneck due to design 

limitations within the extruder assembly design of the 3D printer (Ju and Roxas, 2008).  Attempts were 

made to generate a computational fluid dynamics (CFD) model using available Fluent software on the 

WPI campus.  The model generated required numerous critical and limiting assumptions, as the material 

properties of the solid and melted (phase change) PLA material, as well as the relatively unknown 
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pressures generated within the nozzle made it too difficult to determine theoretical evaluations of the 

nozzle design with any expected accuracy or realistic results. Therefore, it was proved necessary to 

manufacture custom nozzles to determine their printing effectiveness experimentally.  

Custom nozzles were manufactured in the WPI machine shop using an automated lathe tool and 

Esprit CAD/CAM software tool available in the machine shop lab space.  With assistance from WPI’s 

machinist staff, particularly Torbjorn Bergstrom and Adam Sears, the custom nozzles were 

manufactured from brass hex-stock available in the machine shop, having all features except the final 

micro-drill bore holes.  The WPI machine equipment was incapable to reliably aligning the tool head 

with the needed precision to drill centered and properly aligned extrusion bore holes.  To complete the 

final bore hole drilling needed to manufacture functional custom nozzles to test with the MakerBot 

Replicator 1 3D printer, a machine shop, Industrial Motions Engineering of Woburn MA was contacted.  

The machinists at IME, Mike Mangum and Joe Fustolo agreed to perform the micro-drilling of the 

nozzles for our project at no charge.  Of the 16 nozzles submitted, 14 nozzles were returned, and at least 

1 nozzle of each size, 150, 200, 250, and 300 micron nominal bore size were inspected and found to be 

adequately machined for functional evaluation testing of these custom nozzles.  The remainder of the 

nozzles returned had defects or failures making them unusable for evaluation testing purposes.  This low 

yield of manufactured custom nozzles is believed to be due to the limited budget for machining tools 

resulting is utilization of very cheap and inappropriate micro-drills to result in consistent and high-yield 

nozzles.  Further evaluation of alternative manufacturing techniques for custom nozzles is necessary to 

properly evaluate and determine if improved nozzle quality and yield is possible with available micro-

machining techniques. 
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Chapter 5:  Design Verification: 
 In order to verify our final design we needed to first verify both our printing capabilities with the 

Replicator with our modifications as well as our cell culture model system. We developed protocols for 

testing small scale printing through stretching the filament and through incorporating customized 

nozzles using small test patterns.  We also verified a procedure for differentiating MC-3T3 murine 

fibroblast cells into osteoblastic like cells. After these studies we were able to move on to testing our 

scaffolds ability to support osteoblast growth.   

5.1 Small scale printing 
 Small scale printing testing was conducted on the Replicator 1 printer by modifying printer 

settings and modifying the printer itself.  This allowed us to verify that we could create scaffolds with 

pore sizes in the necessary range for osteoblastic growth (200µm-400µm) and the necessary void 

fraction (a minimum of above 50%). This necessitates that the fiber size must be smaller than the pore 

size in the final model, indicating we needed to decrease the fiber size until it is below (200µm-400µm).   

5.1.1 Initial testing 

 Our first attempt at filament testing involved changing the G language numerical tool path for 

the printer head (GCode), by changing the travel rate of the nozzle and the feed rate. We attempted to 

implement a post extrusion filament stretching technique by modifying the feed-rate and travel-rate 

settings. This was thought to modify the ratio of the nozzle travel speed and the filament feed rates. 

However upon observation and further investigation into the GCode it was established that these 

parameters have no effect on stretching. We therefore determined that a new method for decreasing 

the filament thickness would be necessary. 

5.1.2 Nozzle fabrication 

 When our initial stretching protocol proved ineffective we determined that a new method for 

decreasing filament size was needed. After a short design evaluation we decided to fabricate custom 

nozzles for the printer with smaller bore sizes than the standard Replicator nozzle. We decided to use 
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micro-drills to create the smaller bore size as they were the least expensive alternative and readily 

available. The specialized equipment and experience knowledge-base to manufacture the custom 

nozzles with the purchased micro-drills was lacking within our team and available WPI resources, 

therefore, an outside vendor machine shop, Industrial Motions Engineering of Woburn MA graciously 

agreed to drill the nozzle bores for us at no charge for our academic project use.  

 5.1.2.1 Methodology 

 Our team manufactured the custom nozzles from hexagonal Brass stock; the same material 

standard nozzles are made from. Using Esprit CAD/CAM software the nozzle “blanks” were 

manufactured using an automated lathe. These blanks contained all the features of the final nozzle with 

the exception of the nozzle bore hole. This hole was fabricated using micro-drills of sizes 150µm, 200µm, 

250µm, and 300µm. this type of drilling was outside the scope of our team and the WPI manufacturing 

labs; however Industrial Motions Engineering of Woburn MA offered to donate their time and expertise 

to drilling these holes for us. 16 total blanks were sent to Industrial Motions Engineering, with the 

assumption that 4 blanks would be used for each size nozzle bore (i.e. 4 blanks for the 150µm drill bit, 4 

blanks for the 200µm drill bit etc.) 

 5.1.2.2 Results 

 The nozzle fabrication protocol had a 60% yield on usable nozzles. The initial lathing of the outer 

nozzle form was effective resulting in no defective parts; however the micro-drilling procedure proved 

much more difficult. Of the 16 nozzles 2 nozzles were deemed defective by Industrial Motions 

Engineering and were not returned to us, and upon microscopic evaluation 4 more nozzles were 

deemed defective.  Please see appendix F for detailed information regarding lathing and manufacturing. 

Below you can see the evaluation matrix for the nozzles in table 1. 
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Table 1 – Micro-drilling results:  this shows the qualitative evaluation of the micro-drilled nozzles as viewed under a 
stereoscope. Red indicates Nozzle was deemed unusable, yellow indicates a nozzle that may be usable and green indicates 
the most successful nozzle, and the one that was used in further testing. “Not returned” indicates a nozzle deemed defective 
by Industrial Motions Engineering. Images are provided for the nozzles used in testing.  

   

 The chosen nozzles, 1 of each bore size, were then further evaluated through measuring of the 

actual bore size using ImageJ. It was found for most micro-drilled nozzles that the bore size was actually 

smaller than the intended drill size. The standard nozzle however was slightly larger than the stated 

400µm bore size. For clarity the nozzles will still be referred to by their intended bore size (i.e. 150µm, 

200µm, 250µm, 300µm, 400µm). The results of this analysis are shown in table 2 below. Please see 

appendix G for images detailing how measurements were made. 

 

 

 

No. 150 Micron 200 Micron 250 Micron 300 Micron 400 Micron (Std) 

1 Bore closed good Bad off center  

2 burr-OK Irregular shape burr-off center Good  

3 good(off center) burr burr-off center burr-off center  

4 Not returned Not returned Good Bad  

 

     

 Nozzle 3 Nozzle 1 Nozzle 4 Nozzle 2 Standard Nozzle 
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Table 2 – Actual bore sizes:  this shows the actual bore sizes of the custom and standard nozzles as determined under a 
stereoscope. The title indicates the intended size for the nozzle bore and the average and STD deviation of the actual size of 
the bore are given at the bottom.   

 

5.1.3 New nozzle testing and stretching 

 5.1.3.1 Methodology 

  When the initial stretching protocol proved ineffective we determined that 

modifications to the printer and settings needed to be made.  We decided to implement a new 

stretching protocol by changing the filament size in the GCode (tool path code for Replicator). For a 

detailed image of the settings used please see Appendix B) this indicates to the Replicator to decrease 

the flow rate of PLA through the nozzle, while maintaining the nozzle travel rate. We used a filament 

stretch of only approximately 25% increase in volumetric flow rate, in order to avoid jamming of the 

printer. We printed the test pattern shown below either stretched or un-stretched with each of the 

custom nozzles.  

 5.1.3.2 Results 

 We successfully printed our test pattern with all custom nozzles. Please see appendix E for CAD 

drawings detailing the test patterns used. The stretching protocol proved effective in reducing the 

printed filament size in all nozzles except the 150µm nozzle. Table 3 below shows qualitatively the 

 

150µm 200µm 250µm 300µm 400µm (Std) 

 

119µm 188µm 249µm 274µm 417µm 

 

117µm 180µm 251µm 284µm 419µm 

  

183µm 246µm 274µm 411µm 

     

406µm 

Average 118.00µm 183.67µm 248.67µm 277.33µm 413.25µm 

Standard Dev. 1.41µm 4.04µm 2.52µm 5.77µm 5.91µm 
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effectiveness of the stretching protocol with representative images for each nozzle. Please see appendix 

G for images detailing how measurements were made. 

Table 3 – Filament stretching in custom nozzles:  Standard images correspond to the standard printing conditions, with no 
stretching. The stretched images correspond to the 25% volumetric stretching described above. The scale bars are 100µm 

 

The graph below, in figure 14, shows the measured filament size changes in all custom nozzles.  A T-test 

was done for statistical significance to compare the stretched to the un-stretched, and the stretching 

proved significant with and α=.10 for all nozzles except the 150µm nozzle. There was also evidence of 

die swell, swelling of the filament after extrusion in all nozzles and in both protocols.  

 150 Micron 200 Micron 250 Micron 300 Micron 400 Micron (Std) 

Standard 

     

Stretched 
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Figure 14 – Custom nozzles stretching extruded filament size. Here the blue bars, (un-stretched) represent the standard 
printing protocol, and red bars represent a 25% volumetric stretch. As described above, the actual nozzle bore size is 
different from the nominal bore size, and the green bars represent the actual bore size. Error bars are standard deviation and 
a * indicates statistical significance with an α of .10 

As the 150µm nozzle was able to produce filament 

sizes of 225±30.74µm it was initially used in order to 

maximize porosity. However in longer term printing 

(i.e. printing of scaffolds) the nozzle caused the 

printer to jam. Therefore the 200µm nozzle with the 

25% volumetric stretch (filament size: 

316.25±37.11µm) was used for the remaining tests. 

Figure 15 shows a close up image of the printed 

scaffold created using the 200µm nozzle  

5.2 Culture System Verification 
 In order to test the scaffolds support of osteoblastic cells we used a murine osteoblastic 

precursor cell line from the ATCC, MC 3T3-E1. This cell line has been used previously to evaluate 

osteoblast response to the culture environment (Wang et al, 2008). We first verified the differentiation 

protocol described for these cells in both standard culture conditions and our experimental culture 

Figure 15 – Close up image of scaffold printed with 
200µm nozzle with stretch 
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system. We also used MC 3T3-E1 proliferation during differentiation in standard 2D Cultures to 

determine an effective seeding density. 

5.2.1 MC 3T3 E1 Differentiation 

 5.2.1.1Methodology 

  In order to verify our cell line we tested the differentiation potential of MC3T3 

fibroblasts. Based on the recommendations from the ATCC, to induce differentiation we used Ascorbic 

acid, and β-glycerophosphate. We also briefly studied the cell density per surface area to determine its 

impact on differentiation. We seeded cells at several different densities in a 12-well plate in order to 

determine the amount of confluency that leads to the greatest number of differentiated cells. In order 

to verify differentiation we looked for calcium deposition after 14 days. Calcium deposition is a hallmark 

of osteoblast cells, as it is the main component of the bone matrix they lay down. We also checked for 

cellular proliferation at several time points between 0 and 14 days in differentiation media to determine 

if proliferation was correlated to differentiation. 

 5.2.1.2 Results 

 To stain for the calcium deposits in the 12 well plates we used Alizarin red. Cells were initially 

plated at densities of 10,000 cells/well, 50,000 cells/well, and 80,000 cells/ well (1 well= 1.9cm2 surface 

area). Representative images of each seeding density can be seen below in figure 16. 

   
Figure 16 – Differentiation at different seeding densities in standard tissue culture plastic: alizarin red staining at different 
seeding densities. From left to right: 10,000 cells/well, 50,000 cells/well, and 80,000 cells/well. Black deposits were stained 
strongest, indicating high concentrations of calcium. Images were white balanced, under initial observation calcium deposits 
appeared red. 

 



DGF 111-B  58 

5.2.2 Collagen gel system 

 In order to seed cells onto our scaffold we chose to use a gel to evenly distribute cells 

throughout the scaffold. We chose to use a type I collagen gel as it is the most prominent type of 

collagen in natural bone. For this application we needed a highly viscous gel, almost a solid, with a 

relatively fast gelation time, to prevent significant cell settling. We also needed the pre-gelled solution 

to be able to wick into the pores of the scaffold. We attempted to use two different collagen gels for this 

purpose. 

 5.2.2.1 PureCol 

 We initially planned to use a pure collagen solution and induce gelation with raised 

temperatures as recommended by the manufacturer. The collagen (PureCol 3.47mg/mL) was brought to 

a pH of 7.4 using NaOH and mixed with 10X culture media at a ratio of 8 parts collagen to 1 part media 

as per manufacturer’s instructions. When placed on to a scaffold in a 4 well plate the gel fully wicked 

into the pores of the PLA scaffold. However, after 48 hours the gel had not solidified in either the 

scaffold or the control well. As this gel was deigned to solidify in less than 2 hours it was deemed 

unusable for this purpose. 

 5.2.2.2 PureCol EZ gel 

 We settled on PureCol EZ gel which uses a much simpler procedure and has a faster gelation 

time.  This gel was tested for gelation time and solidity in the same way as the previous purely collagen 

gel, seeding both an empty well (to create a gel slab) and a scaffold (to verify the ability of collagen to 

permeate scaffold). Pelleted cells were re-suspended in a very small amount of culture media (less than 

100µm) and mixed with the PureCol EZ gel. This solution was than seeded into the appropriate well, and 

transferred to and incubator at 37C to induce gelation. After 45 minutes of observation the gel appeared 

fully solidified, and by the 1 hour indicated by the protocol it was certainly fully solidified. The gel also 

wicked into the pores of the scaffold fairly effectively. Initially gel solution pooled on top of the scaffold, 
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after the incubation time there was no longer a pool on top of the scaffold, nor any collagen gel visible 

in the well. This was deemed a suitable gel for our purposes and was used in further testing.  

5.2.3 MC 3T3 E1 in collagen 

 5.2.3.1 Methodology 

 Once the seeding method in the collagen gel had been determined, the cell differentiation in the 

collagen gel also needed to be verified. We seeded MC-3T3-E1 fibroblasts into a pure slab of collagen gel 

the same size as our final scaffold. We determined the seeding density in the based on the most 

successful differentiation density from the 2d testing. The gel was seeded into a containment chamber 

made of PLA that was 10 mm X 10 mm X 3mm, then covered in differentiation media and cultured for 

up to 18 days. The gels and containment chambers were then embedded in paraffin and sectioned on a 

microtome. Sections were stained with alizarin red to identify calcium deposits in the collagen gel, 

indicating differentiation of the fibroblasts. 

 5.2.3.2 Results 

  At 12 days there were positive results 

from alizarin red staining. It was difficult to collect data 

as the containment chambers were difficult to section 

using the microtome, and few sections remained 

attached to the microscope slides even at multiple 

attempts. A representative image of the Alizarin red 

staining at 12 days is shown in Figure 17. 

5.3 Final testing 
After all the verification of pretesting conditions we were able to test our full scaffold seeding protocol. 

All steps were followed as determined by the above results. The scaffolds were seeded with the collagen 

gel and cells numbers determined by the differentiation testing 

Figure 17 – Alizarin red staining of paraffin 
embedded gel: this shows the positive response to 

alizarin red for MC 3T3-E1 cultured in a collagen 
gel. The line at the edge of this image is the edge of 

the collagen gel the concentrated red indicate 
areas of high calcium concentration 
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5.3.1 Methodology 

 The thick wall “sheet solid” Gyroid model described in chapter 4 was used for these tests. This 

model was determined mathematically to have The final size of the scaffold samples was  MC-3T3 cells 

were re-suspended in a PureCol EZ gel as described above and seeded into a PLA scaffold, these 

scaffolds were cultures for either 6, 12, or 19 days. Detailed procedure can be found in appendix C. Data 

collection was then done by paraffin embedding the scaffolds and sectioning on the microtome. These 

sections were stained for cell presence (Hoechst staining) and differentiation potential (Alizarin red 

staining) 

5.3.2 Results 

 Overall we found that cells were successfully seeded and maintained in the scaffold. We also 

established positive differentiation results in the scaffolds. 
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5.3.2.1 Hoechst Staining 

 In order to verify that the cell seeding into our scaffolds was successful we used the Hoechst 

nuclear stain. This staining also allowed us to visualize all the components of our scaffold (collagen, PLA, 

MC-3t3 cells). We found that there were cells visible in the scaffold at all levels indicating a successful 

seeding procedure. We also found that the collagen created a matrix within the PLA pores that appears 

to be supporting the osteoblasts. Representative images of cells seeded in a scaffold are available in 

figure 18. 

 

Figure 18 – Hoechst staining of scaffolds at day 6: these two images summarize the successful seeding of cells into the 
PLA/collagen complex. The image on the left shows one full pore of the PLA scaffold. Here can be seen the point where two 
pore channels come together, with the PLA fibers indicated by the yellow arrow. On the right is an image where all three 
components of the cell seeding system are easily visualized. As in the image on the left the large tube structures absent of 
cells are the PLA fibers. The smaller fibers within the pores are the collagen gel, which clearly is forming some sub pores in 
the structure. In both images the nucleus of cells is indicated by the highly 
fluorescent marks. 

Unfortunately none of the day 12 samples produced successful 

sections on the microtome, and are not reported here. Day 19 

samples were more successful, but the results may indicate cells 

were not seeded fully into the scaffold as they were concentrated on 

the outside edges. This can be seen in figure 19. 

 

 

Figure 19 – Day 19 Hoechst staining. 
This image shows the edge of the 
scaffold in the section concentrated 
with cell 
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5.3.2.2 Alizarin Red 

Once again alizarin red was used to evaluate differentiation 

potential of these cells in this culture system. We found here that 

by day 12 cells had a positive reaction to alizarin red with results 

that appear comparable to culture in collagen slab gel. Figure 20 

is a representative image of alizarin red staining that clearly 

indicates calcium deposits. 

 

  

Figure 20 – Alizarin red staining in full 
scaffold system: note red deposits 
indicating differentiated cells 



DGF 111-B  63 

Chapter 6:  Discussion 
 Overall we found this system to be a highly successful method for 3 dimensional cultures of 

osteoblastic cells. We found that our scaffold system is biocompatible biomorphic, and allows for 

cellular bio-functionality, our osteoblastic cell line, successfully cultured, behaved in the manner 

expected, and the scaffold had biomorphic geometry. Our scaffold fabrication process was also shown 

to be a viable option. The modifications to printer were found to be relatively simple and cost effective 

and the low cost printer was capable of printing at resolutions necessary for creating scaffolds. We 

found that this system fully meets our client statement requiring our system be a biocompatible, 

biomorphic, and customizable for permeability, rapidly manufactured and rapidly manufactured using 

an affordable 3d printer.  

6.1 Biocompatibility: Cyto-toxicity 
We determined that our combination of PLA and Collagen Type I is non cyto-toxic and biocompatible. 

Our PLA is biocompatible material, is therefore non cyto-toxic, as determined by our long term study in 

the scaffold. We were able to establish that cells were differentiated within the scaffold after 12 days 

indicating that they were still metabolically active. This was determined from the positive results of the 

Alizarin red staining indicating that cells were producing calcium, a hallmark of differentiated 

osteoblasts and not undifferentiated fibroblasts. As these cells were metabolically active they are 

therefore still living.  The full biocompatibility of this material needs to be assessed further, but for the 

purposes of this experiment the cyto-toxicity was found to be a non-factor.  

6.2 Biomorphic: Geometric biomorphism to provide functional biomimetic 
There are two major points to the claim that our scaffold system is biomorphic. First, we have 

established a biomorphic geometry that is fully printable, and second we established the entire system 

provides functional biomimetic, meaning the system maintains the cellular functionality they are 

expected to have. 
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6.2.1Biomorphism: Pore size and geometry  

 We established earlier that our scaffold needed a pore size of 200-400µm as this was optimal for 

osteoblastic growth. (Hsu, Y. H., 2007; Teraoka, F., 2010) We manufactured a 200µm bore nozzle to 

print our scaffold inside the 200-400 um pore size, while maintaining porosity above 50%. In order to 

accomplish this we needed to maintain a filament thickness smaller than that of the pores. This nozzle, 

the 200µm bore size with a 25% volumetric stretching procedure enabled created a filament thickness 

316µm allowing us to use pore sizes within our range to maintain cell growth.  As discussed in the 

literature review our choice of the Gyroid based sheet solid model allowed us to ensure that our design 

has similar structure to bone with fully continuous surface. It also maximizes the surface area of the 

structure allowing for the greatest amount of surface for cell adhesion. 

6.2.2 Functional Biomimetics: Calcium production and differentiation 

 We measured the bio-functionality of our cells by measuring the production of calcium by our 

osteoblastic line. The calcium production was validated by the alizarin red stain for calcium at 12 days, 

which came back positive. Since the calcium production was not impeded in our system, we can assume 

that our cells have maintained the differentiated functionality, i.e. they have not remained in the 

proliferative fibroblastic state.  We can also say that our PLA does not appear to affect Bio-functionality, 

as the calcium production of cells in a collagen slab is comparable to the culture of cells in collagen and 

PLA together. In the future this indicated that our PLA/collagen system is effective for the culture of 

osteoblast cells. Though we only measured production of one factor here, with further testing of cell 

morphology and metabolic activity  

6.3 Customizable using a low cost printer 

 The successful modification of this printer and the mathematical model to produce scaffold 

places this system in a position to combine 3d printing technology, tissue engineering, and clinical 

applications. The capability of this low cost printer makes the barrier for researchers to enter this field 
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very low, as the cost is fairly low. Including the cost of the custom manufactured nozzles there is a slight 

increase in price but it is not comparable to most high resolution printing technologies such as stereo-

lithography and laser sintering. The inner design of the pore structure can be easily edited to 

incorporated different cell types for future tissue engineering purposes.  The macro-structure of this 

scaffold is also easily controlled through manipulating the bounding geometry. This could in the far 

future become applicable for creating scaffolds that are customized to a patients wound or defect 

shape. 

6.4 Constraints 
 Along with the objectives we detailed above our design fell well within the constraints we 

established for the system. We determined this must be sterilizable, rapidly manufactured less than 24 

hours, and fall within our time and budget. We successfully sterilized the scaffold by established 

methods (70% ethanol soak and UV exposure) and the full manufacturing process, including sterilization 

and seeding but not including cell culture only required 8hours of total time. Our entire design process 

was conducted within the necessary budget and time constraints. 

Economic impact  
The economic impact of this project as it currently stands clinically are minimal. Clinical applications of 

tissue engineered constructs and this construct in particular are very new, and few products exist on the 

market today. However the impact of this project on tissue engineering research is great. We have 

shown that a low cost 3d printer is capable of creating tissue engineering scaffolds, greatly lowering the 

barrier of entry to future researchers who wish to use this technology. The price of rapid prototyping 

technology has possibly prevented tissue engineers from considering it for their application, but these 

results obtained with a low cost printer with standard low cost PLA make this a much more affordable 

option. 
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Environmental impact  
 Our current scaffold and process will not have a large environmental impact. The material of the 

scaffold is fully biodegradable, and is not intended to be discarded in large quantities. There is little to 

no use of harmful chemicals in the manufacturing or seeding process. Tissue engineering as a whole has 

an environmental impact due to the use of many single use containers (bottles, Tissue culture plates, 

pipettes etc.) however this impact can be mitigated by proper cell culture techniques. In the future 

scaling up and moving away from such single use containers would help limit any environmental impact 

of this project. 

Societal influence 

 This project may contribute to the creation of fully customized bone tissue engineering 

constructs for patients with bone trauma or defects.  However there would need to be many major 

changes to the current mentality surrounding bone treatment before this is a possibility, aside from the 

regulation and verification of such an implant. The safety and affordability of such a product would need 

to be explained thoroughly to ant potential patients as well as the risks and benefits associated with 

implants that contain living tissue. From a research standpoint, this project could have an impact on 

opening the doors to smaller or less well funded labs to participate in exploring rapid prototyping in 

tissue engineering, as the cost of high resolution 3d printers may have impacted research decisions.  

Ethical concerns  
 Any ethical concerns surrounding this project are those concerning tissue engineering and using 

live cells in medical devices. For example, though we do not envision continuing to use cell lines in the 

final product there are several concerns with using non-terminal cells; immortalized cell lines that 

continued to proliferate in the body have the potential to form cancers and teratomas, and widespread 

use of a single cell line in multiple patients could create a situation where the implant unwittingly 

infected many people with a virus that had not previously been identified. These factors are mitigated 
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by use of the patients own cells whenever possible as is done in many of the currently available tissue 

engineering treatments 

Health and safety issues  
 Currently this product has few health and safety risks associated with it as it is in the early stages 

of research, and no part of the manufacturing or testing process is overtly dangerous to laboratory 

professionals. Down the line if this product is to be commercialized, all potential safety risks need to be 

evaluated according to all FDA regulations and ISO standards to ensure a functional and safe product. 

Some potential issues include: PLA interactions with existing tissue both healthy and diseased, the safety 

of using laboratory differentiated cells in an implant (because of the potential for other cell types to 

arise), and the healing time associated with using a product like this. 

Manufacturability  
 This project focused on the manufacturing aspect of this scaffold; it is highly manufacturable 

and could be scaled up fairly easily. MakerBot replicators are readily available and can easily be used to 

create the scaffold. The manufacturability of the custom nozzles has been assessed here and found to 

have a fairly low yield, in the future it may be beneficial to explore a new method for nozzle bore 

creation, i.e. moving away from micro-drilling. The tissue culture portion could become partially 

automated in a manufacturing setting but an experienced tissue culturist would likely need to be 

available for seeding an implant. Overall we believe this project could be scaled up without much issue 

regarding manufacturability. 

Sustainability 
 As discussed in the environmental impact this process is highly sustainable as it used few highly 

limited resources. The largest sustainability issues arise from disposable lab equipment, which can be 

mitigated.   
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Chapter 7:  Final Design & Validation 
Tissue engineering is a rapidly expanding field of medical and clinical research and development 

with promise of delivering much needed solutions to numerous clinical problems without adequate 

treatments.  Tissue engineering traditionally splits into two related disciplines for 3D tissue 

development:  scaffold-based and self-assembly.  While many of the tissue engineering applications 

would be best solved by mimicking the human body’s natural development path (infancy & early 

development) of self-assembly, this solution path is currently not available to create functional 3D 

tissues and numerous hurdles remain for many of the clinical applications of self-assembled tissue 

engineering technology.  A shorter-term solution, scaffold-based tissue engineering, has significant 

promise to solve near-term clinical needs, as well as to solve tissue engineering applications requiring 

structural support, such as the bone tissue application focused on within this project. 

Design projects commonly utilize a task-breakdown approach based on solving a given or developed 

project statement.  This project was given a very broad initial client statement to utilize existing low-cost 

3D printer technology to create 3D tissue engineering scaffolds.  A primary aim of this project statement 

was to determine if the existing low-cost printing technology is capable of delivering functional scaffolds 

for tissue engineering applications, and to assess the advantages and limitations of existing low-cost 3D 

printing technology for tissue engineering purposes.  The initial problem statement was expanded 

through client interviews and initial research into the field scaffold-based tissue engineering to better 

understand the clinical applications and current needs.  The development of a revised problem 

statement led to a tighter scope of this project, providing objectives, functions and constraints to guide 

and evaluate the progress throughout the project. 

Various tools were utilized to prioritize and better define specific project goals, as described within 

Chapter 3 – Project Strategy of this report.  This project strategy led to development and preliminary 

evaluations of several potential design alternatives to achieve the goals of this project, as described 
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within Chapter 4 – Alternative Designs.  Research was performed to identify optimal bone tissue 

properties, with the aim of developing a tissue scaffold design that closely mimics natural bone tissue.  

The team performed a down-select process as outlined within Chapter 4 to select the generalized 

scaffold design to be generated and evaluated as part of this project; a triply-periodic minimal structure 

(TPMS) based scaffold design.  The advantages of this design include having a highly continuous internal 

surface and interconnected pores and having variable pore size and porosity void fraction through 

mathematical manipulations to the formula – both of which allow this design to be customizable in 

order to closely mimic the structure within natural bone tissue, as identified within the performed 

research of this project. 

Next, the project team acquired a MakerBot Industries Replicator 1 3D printer.  This low-cost 

(~$2500) 3D printer was utilized for the remainder of this project.  The Replicator 1 was selected due to 

it having the current best stock printing resolution (0.4mm extrusion nozzle) available for low-cost 3D 

printers, the printer being a very common and customizable 3D printing platform within the industry, 

and due to offering two biocompatible feedstock materials, Poly-lactide (PLA) and polyvinyl alcohol 

(PVA).  Of the two available stock materials, PLA was selected for its longer term degradation time (6-

24+months) which allows time for the bone tissue to integrate into the scaffold while the PLA 

withstands the structural loads, until the integrated bone tissue begins to absorb and handle the 

structural loads (while the PLA slowly degrades and is resorbed). 

The MakerBot Replicator 1 extrusion nozzle (0.4mm bore size) when printed actually prints larger 

filaments, as there is extrusion die swell during the printing process.  As the nozzle printed extrusion size 

exceeded the acceptable maximum pore size to print functional bone tissue scaffold (400 microns), 

various alternatives were considered to reduce the overall printed extrusion size.  Commercial available 

nozzles having significantly smaller bore sizes were not available from MakerBot Industries or other 3D 
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printer manufacturers that could be easily compatible with the Replicator 1 3D printer.  An available QU-

BD company nozzle advertised as being compatible with the MakerBot Replicator 1 printer had an 

extrusion bore size of 0.35mm, and these nozzles were purchased as a small improvement over the 

stock MakerBot nozzle, however, were not selected for the final design as another alternative design 

was more successful in reducing the printed extrusion size.  As there were no available off-the-shelf 

nozzles to significantly reduce the printed extrusion size, custom manufactured nozzles were 

manufactured.  Micro-drills were obtained to create nominal nozzle bore sizes of 0.15mm, 0.20mm, 

0.25mm, and 0.30mm.  MakerBot Industries authorized and distributed their SolidWorks CAD model of 

their existing standard nozzle for our project, allowing our team to modify the CAD file and manufacture 

the custom nozzles to test for smaller printed extrusion sizes.  Each of the custom nozzles were 

manufactured (all features except the final bore hole were manufactured at the WPI Manufacturing Lab, 

with assistance from Torbjorn  Bergstrom and Adam Sears; final nozzle bore holes were drilled by 

Industrial Motions Engineering of Woburn MA, by machinists Mike Mangum and Joe Fustolo) and 

tested, with each nozzle successfully printing the simple filament test pattern having a concentric circle 

and square pattern with the circle intersecting each corner of the square.  The custom nozzle bore sizes 

and the printed test pattern extruded filament sizes were each measured by collecting microscope 

images on the same microscope with the same zoom objective, and then utilizing ImageJ free-ware tool 

to perform the image analysis measurements of the bore size and filament size features from the 

collected microscope images.  The smallest nozzle (0.15mm), while producing the smallest printed 

extrusion size,  proved to be unreliable during long-term print testing, with the next smallest printed 

extrusion size coming from the 0.2mm nozzle, which was functional during all testing with no noticed 

abnormal behavior during printing.  This custom 0.2mm nozzle was selected for all subsequent testing of 

this project. 
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Using the ReplicatorG software that is compatible with the MakerBot Replicator 1 3D printer, the 

settings of the printer were optimized in an attempt to further reduce the extruded filament size as 

much as possible.  After testing and researching the available settings and their purposes within the 

software, the settings were optimized by changing the filament diameter setting of the ReplicatorG 

software user interface.  The default setting of the software for the Replicator 1 printer using 1.75mm 

filament feedstock was 1.8mm.  By changing this default value to a value of 2.0mm, the software 

believes there is ~25% more volumetric material entering the nozzle per extruder step of the feed 

motor, therefore, the printer feeds the material ~25% slower into the extruder nozzle during the 

printing process.  This software setting change resulted in significant reduction in printed extrusion size, 

while no noticed side-effects during printing were identified.   This optimized printer setting was tested 

throughout the project, and was determined to be recommended for the final configuration of this 

project.  Results of the circle-square test prints at standard and optimized printer settings and of the 

custom nozzle bore imaging can be found in Appendix G for reference.  The ReplicatorG software setting 

screenshots utilized for this project are available in Appendix B for reference. 

Existing free-ware, K3DSurf Software, was selected and utilized to visualize the TPMS geometry of 

the bone tissue engineering structure and to export this geometry to a common file type, .obj file, which 

is capable of being imported into design & CAD software.  The final selected mathematical formula 

based on the TPMS structure and optimized to create bone tissue mimetic pore size and porosity void 

fraction capable of being printed with the MakerBot Replicator 1 3D printer selected has the following 

formula:  S(Surface) = - (0.4 - (0.81*cos(2*x) * sin(2*y) + 0.81*cos(2*y) * sin(2*z) + 0.81*cos(2*z) * sin(2*x))^2).   

A free student-edition of the Autodesk 3DS-Max design software was then utilized to import the 

K3DSurf generated .obj file of the final scaffold design, where the model was then converted to a .still 

file compatible with the MakerBot Replicator 1 3D printer utilized for this project.   
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Once in the .stl file format, the software provided by MakerBot to interface with their 3D printer, 

ReplicatorG, was utilized to import and scale the .stl file structure to the final design size selected, 

10mm X 10mm X 3mm, and to align the base of the structure to be printed with the print platform.  The 

ReplicatorG printer settings were optimized for the custom 0.2mm sized nozzle bore and the 2.0mm 

filament size setting to print a reduced filament size within the acceptable 0.2-0.4mm pore size 

determined to be optimal for bone tissue in-growth and proliferation from the performed research.   

Once the ReplicatorG software was used to place the imported .stl model of the scaffold design on 

the center of the 3D printer platform and scaled to produce a scaffold design having the desired pore 

size, the ReplicatorG software was used to generate a G-Code machine programming language output 

file, containing all the printer-specification settings, along with the layer-by-layer path instructions 

needed to construct the structure on the 3D printer.  The ReplicatorG software generated G-Code file 

was then converted to a .s3g file and transferred to a SD card, which could be plugged into the card-

reader port of the Replicator 1 3D printer.  Using the Replicator 1 3D printer user interface, the .s3g file 

to be printed was selected, and the printing process was carried out by the MakerBot Replicator 1 3D 

printer.  The final printed scaffolds were imaged using a microscope and confirmed the final extruded 

print size resulted in acceptable pore size (~0.3-0.4mm) and calculated porosity void fraction (~50%). 

To further evaluate the printed final scaffold design, the scaffolds were prepared for cell culturing.  

The preparation included sterilizing the scaffolds in 70% ethanol for 2+ hours, followed by drying of the 

scaffolds within a bio-safety cabinet (BSC) while utilizing ultraviolet (UV) light for 2+ hours.  The cells 

chosen to evaluate the scaffold design were mouse fibroblast cells, MC3T3-E1, which are osteoblast 

precursor cells that can be differentiated into osteoblast-like cells producing calcium deposits when 

exposed to differentiation factors within the culture medium.  The MC3T3-E1 cells were grown in tissue 

culture flasks to obtain an adequate number of cells to seed the scaffold designs with 4.38x10^6 cells 
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per mL.  To ensure the cells were incorporated into the scaffold structure during the seeding procedure, 

the cells were mixed with a viscous collagen type 1 gel and placed on top of the scaffold and allowed to 

naturally wick into the scaffold structure while scaffold and cells suspended in the collagen gel were 

incubated to cure and solidify the gel.  A brief video was generated to summarize the cell seeding 

procedure onto the scaffolds, and is included within the electronic documentation package submitted 

with this report to the project advisors. 

In addition to seeding cells onto the scaffold design, cells were also seeded into a collagen type 1 

slab having the same overall thickness as the scaffold design.  This was intended as a control to verify 

whether or not cells seeded into a collagen type 1 suspension thick slab are capable of proliferating and 

differentiation into calcium producing osteoblast-like cells.  Additionally, cells were plated onto 2D flat 

PLA plates printed with the MakerBot Replicator 1, to ensure the PLA material printed caused no 

adverse effects to the MC3T3-E1 cells.  These control tests were intended to help isolate potential 

sources of failure should cells not be capable of 3D seeding, proliferating, and differentiation within the 

final testing 3D printed scaffold designs. 

The cell culture testing was conducted with various time-points to monitor cellular activity over the 

tested time-periods.  The cell culture testing and subsequent cell staining with alizarin red resulted in 

verification that the collagen type 1 slab control and the scaffold designs had allowed the cells to 

proliferate and differentiate into osteoblast-like cells, as evident by presence of significant calcium 

deposits present within the microtome sliced sections from the center region of test samples.  .  The cell 

culture testing and subsequent cell staining Hoechst 33342 resulted in verification that the cells seeded 

into the slab and scaffold designs had been well mixed and that cells were present within microtome 

sliced sections from the center region of test samples.   
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The performed evaluations for this project succeeded in verifying the goals set forth within the 

revised client statement had each been met by the final design bone tissue engineering scaffold (having 

bone tissue mimetic pore size and porosity void fraction, and a continuous interconnected internal pore 

structure) printed in the biocompatible PLA material by the low-cost MakerBot Replicator 1 3D printer 

and its custom manufactured 0.2mm bore nozzle.   

A photograph of the final design printed scaffold is below for reference.  The green color filter was 

applied to provide enhanced contrast vs. standard white-light images for visualization purposes only. 

 

Figure 21 – Image of final printed scaffold design surface showing pore size and printed filament size at 5X objective 
magnification of Zeiss Axiovert 40 CFL microscope 
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Chapter 8:  Conclusions & Recommendations 
 

8.1 Conclusions 

 Based on the progress of our MQP, we have followed our initial goal of creating a 3D 

scaffold with all of the original properties that we set out to achieve initially. The result of the 

project is the creation of a scaffold that allows cells to attach and function towards forming 

actual bone, using the kind of printer that is so comparatively cheap that it could be found 

inside a residential house. Our work shows that the chosen scaffold design can be accurately 

printed to size on a cheap printer, seeded with a collagen/cell mixture and after allowing 

differentiation, show live cells attached to the internal structure that are producing calcium 

formations.  

 The major accomplishment of this project is the lack of expensive equipment in the 

creation of this scaffold.  Creating and modifying the design of the scaffold was done using free 

software that anyone would have access to which is relatively easy to use. The printer that 

creates the physical scaffold from the design is many times cheaper than other printers capable 

of accomplishing the same task and though a small alteration in the nozzle size needs to be 

made, it is still inexpensive. The final price range of creating our scaffold would be on the 

magnitude of allowing even small local hospitals to produce this scaffolds when needed. 

 The results of the testing show that at some levels within the scaffold, cells are 

attaching to the walls. This not only allows the cells to differentiate and produce calcium 

formations within the structure but could also prove useful in the formation of channels within 

the potentially formed bone tissue that would provide nutrient flow to the inner layers.  
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 Through the process of trying to print our scaffold to a smaller size than could normally 

be printed, our team manufactured a nozzle half the size of the standard nozzle. This allowed 

the printer, which already has high positioning resolution, to create structures at almost half 

the size that it could normally with the standard nozzle. 

8.2 Recommendations 

 Since this project had a limited amount of time that could be dedicated to it, there are 

several recommendations for future experimentation that could be done to improve upon what 

was accomplished. These recommendations were considered to be valuable yet unrealistic to 

additionally achieve within the time period or outside the desired scope of the project.  

8.2.1 Modifying the overall shape of the scaffold 

 During experimentation scaffolds were printed in 10 mm squares, 3mm tall and 

although these proved to be able to allow testing of its efficiency, this shape is impractical for 

actual implantation within a patient. Developing a way to print the scaffold in a required shape 

for the individual patients needs would allow practical use of the bone scaffold. Potentially 

computer modeling could be used in conjunction with medical imaging to obtain a shape that 

could then be used to print a scaffold to fit in the needed area. 

8.2.2 Improved material 

 The current material that was used to print the scaffold is PLA which is a biocompatible 

material that has proven to work in our testing, yet improvement on its functionality would be 

beneficial. Since it is not medical grade PLA, further testing should be done on how it can be 

treated before or after printing to increase its efficiency regarding cellular attachment and 
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proliferation. (Park et al, 1998, Mainil-Varlet et al, 1997, Itthichaisri et al, 2007, Fisher et al,  

2009) 

 Degradation time of the scaffold after seeding was not fully tested since the estimated 

time for PLA to degrade within a biological environment was much longer than available. A 

study showing the effects that the scaffolds degradation has on the attached cells should be 

done to see what would happen within one that has been inserted into the body. Treatments to 

affect the lifespan of the material should be considered to obtain optimal results. 

8.2.3 Bio flow chamber for better nutrient flow 

 Cell death within the scaffold can occur when there is improper flow throughout the 

pore structure preventing fresh media from reaching deeper cells as well as preventing waste 

from leaving. In order to provide an even distribution of nutrients throughout the scaffold a bio 

flow chamber should be considered. Although we were unable to quantify insufficient nutrient 

perfusion and waste removal, it is suggested that a chamber be used to prevent potential cell 

death especially on larger scaffolds.    

8.2.4  Cancerous testing 

 As with most processes that involve the use of manipulated cells, the danger of 

cancerous masses forming is a major concern. An assessment on the cancer risks should be 

done by monitoring scaffolds with desired cells for a long period of time with the intent of 

observing unwanted and potentially cancerous cell behavior.  To reduce cancer risks within an 

in-vivo environment it would most likely be best to use the patient's own cells, for which testing 

should be done in the more distant future on live test subjects such as lab rats.  
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Appendix A:  Mathematical models used 
These are the mathematical models explored using K3d surf. The ‘if’ statements represent the 

boundaries of the model. 

Gyroid inverse of thickened cube 
if((x^10 + y^10 +z^10 < 9*10^8), 

-(.5-(.81*(cos(x)*sin(y)+cos(y)*sin(z)+cos(z)*sin(x)))^2), 

(x^10 + y^10 +z^10 -9*10^8)) 

Gyroid thickness bounded with cylinder: 
if((((x/10)^2 + (y/10)^2)< 1),  

(1-(.9*cos(x) * .9*sin(y) + .9*cos(y) * .9*sin(z) + .9*cos(z) * .9*sin(x))^2), 

(((x/10)^2 + (y/10)^2 -1))) 

Gyroid filled one pore structure: 
if((x^10 + y^10 +z^10 < 900000000),  

(.9*cos(x) * .9*sin(y) + .9*cos(y) * .9*sin(z) + .9*cos(z) * .9*sin(x)), 

(x^10 + y^10 +z^10 -900000000)) 

Diamond TPMS thickened: 
if((x^10 + y^10 +z^10 < 900000000),  

(1-(1.5*sin(x) *sin(y) *sin(z) +1.5*sin(x) * cos(y) * cos(z) +1.5*cos(x) * sin(y) * cos(z) + 1.5*cos(x) * cos(y) 

* sin(z))^2), 

(x^10 + y^10 +z^10 -900000000)) 

Diamond TPMS filled one pore structure: 
if((x^10 + y^10 +z^10 < 900000000),  

(1.5*sin(x) *sin(y) *sin(z) +1.5*sin(x) * cos(y) * cos(z) +1.5*cos(x) * sin(y) * cos(z) + 1.5*cos(x) * cos(y) * 

sin(z)), 

(x^10 + y^10 +z^10 -900000000)) 

Gyroid thicked cube: 
if((x^10 + y^10 +z^10 < 10^8), 

(1-(cos(x)*sin(y) +cos(y)*sin(z) +cos(z)*sin(x))^2), 

(x^10 + y^10 +z^10 -10^8)) 
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Thin Wall Gyroid: 
if((x^10 + y^10 +z^10 < 10^8), 

-(.1-(.9*cos(x) * .9*sin(y) + .9*cos(y) * .9*sin(z) + .9*cos(z) * .9*sin(x))^2), 

(x^10 + y^10 +z^10 -10^8)) 

High Resolution Thin Wall Gyroid - 10 x 10 x 10 ratio: 
if((x^100 + y^100 + z^100 <10^99), 

-(.2-(.9*cos(2*x) * .9*sin(2*y) + .9*cos(2*y) * .9*sin(2*z) + .9*cos(2*z) * .9*sin(2*x))^2), 

(x^100 + y^100 + z^100-10^99)) 

High Resolution Thin Wall Gyroid - 10 x 10 x 3 ratio: 
if((x^100 + y^100 + z^170 <10^99), 

-(.2-(.9*cos(2*x) * .9*sin(2*y) + .9*cos(2*y) * .9*sin(2*z) + .9*cos(2*z) * .9*sin(2*x))^2), 

(x^100 + y^100 + z^170-10^99)) 

Final Testing - 10x10x3: 
if((x^100 + y^100 + z^200 <10^97), 

-(.4-(.9*cos(2*x) * .9*sin(2*y) + .9*cos(2*y) * .9*sin(2*z) + .9*cos(2*z) * .9*sin(2*x))^2), 

(x^100 + y^100 + z^200-10^97)) 
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Appendix B:  Makerbot ReplicatorG Settings 
Here are screenshots of the settings used to print the final model with the 200µm nozzle and 25% 

stretch.  
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Appendix C:  Cell Seeding Protocol 
1. Place printed scaffolds in 70% ethanol for a minimum of 2 hours 

2. Using sterile forceps move the scaffolds into a sterile tissue culture plate, allow to sit in a biosafety 

hood under UV light for at least 2 hours to complete sterilization and allow ethanol to evaporate. 

3. again using sterile forceps relocate scaffolds from tissue culture plate into the PDMS seeding 

chamber. (this chamber is formed to the outer boundary of the sample scaffold in order to minimize gel 

loss during gelation) 

4. Place EZ col gel on ice in the hood 

5.  trypsinize cells to be seeded and count. pellet in a 15mL conical tube 

6. resuspend pellet in small (less than 200µl) amount of differentiation media 

7. add collagen to resuspended cells to create a concentration of 2.5 *106 cells/mL 

8. pipette 380µm of cell/collagen mixture onto the scaffold (note this number is accurate for the 10mm 

x10mm x3mm sample) 

9. cover the entire PDMS seeding chamber with the sterile aluminum foil from autoclaving and relocate 

to 37C incubator for 1 hour 

10. unwrap chamber in BSC and using sterile forceps move the scaffold into a cell culture plate(12 well 

or 4 well plate recommended). 

11. cover scaffold with appropriate media and culture using standard culture methods. 
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Appendix D:  Determination of Cell Seeding Density 
After alizarin red staining on a 2d plate we determined 50,000 cells/well was the optimum for 

differentiation, using a cell thickness of 60µm as observed in imaging. All our collagen and scaffolds had 

a thickness of 3mm. 

2d plate culture surface =1.9cm2 

60µm thick layers of cells/3mm=50 layers 

50,000 cells/layer *50 layers=2.5 *106 cells/50 layers 

 

50 layers in 24 well plate .3cm tall: 

1.9cm2 * .3cm = .570cm3=.570mL 

 

Final cell concentration 4.38x106 cells/mL 

  Diagram of “50 layers” 

of cells in one well 

.3 cm 

Area of base 

1.9cm2 
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Appendix E:  SolidWorks CAD Drawings 
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Appendix F:  Esprit CAM Software Settings Used to Manufacture Nozzles 
 

 
 

Purchased micro-drills to manufacture custom bore nozzles compatible with the MakerBot Replicator. 
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Purchased 60 degree 3mm spot drill specialty drill bit to drill nozzle filament extrusion melt chamber. 
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WPI Machine Shop Esprit Computer Aided Manufacturing (CAM) Software used to manufacture nozzles. 
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End of SolidTurn Machine Setup for WPI SL10 Lathe Tool in Esprit CAM Software 
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Tool 3 Setup, 3/8” Spot Drill, for WPI SL10 Lathe Tool in Esprit CAM Software 
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End of Tool 3 Setup, 3/8” Spot Drill, for WPI SL10 Lathe Tool in Esprit CAM Software 

 
Tool 4 Setup, #31 Drill, for WPI SL10 Lathe Tool in Esprit CAM Software 
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End of Tool 4 Setup, #31 Drill, for WPI SL10 Lathe Tool in Esprit CAM Software 
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Tool 5 Setup, 3mm 60 Degree Drill, for WPI SL10 Lathe Tool in Esprit CAM Software 
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End of Tool 5 Setup, 3mm 60 Degree Drill, for WPI SL10 Lathe Tool in Esprit CAM Software 

 
Tool 6 Setup, 35 Degree Diamond Cutting Tool, for WPI SL10 Lathe Tool in Esprit CAM Software 
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End of Tool 6 Setup, 35 Degree Diamond Cutting Tool, for WPI SL10 Lathe Tool in Esprit CAM Software 
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Tool 7 Setup, 60 Degree V-Threading Tool, for WPI SL10 Lathe Tool in Esprit CAM Software 
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End of Tool 7 Setup, 60 Degree V-Threading Tool, for WPI SL10 Lathe Tool in Esprit CAM Software 

 
Tool 8 Setup, #5 Drill, for WPI SL10 Lathe Tool in Esprit CAM Software 
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End of Tool 8 Setup, #5 Drill, for WPI SL10 Lathe Tool in Esprit CAM Software 
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Tool 9 Setup, M6x1 Thread Tap Tool, for WPI SL10 Lathe Tool in Esprit CAM Software 
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End of Tool 9 Setup, M6x1 Thread Tap Tool, for WPI SL10 Lathe Tool in Esprit CAM Software 

 
Tool 10 Setup, Grooving Cutoff Tool, for WPI SL10 Lathe Tool in Esprit CAM Software 



DGF 111-B  124 

 
 

 
End of Tool 10 Setup, Grooving Cutoff Tool, for WPI SL10 Lathe Tool in Esprit CAM Software 
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Completed Esprit setup, now begin to program machining operations to manufacture custom nozzles. 

 
Using Brass Hex Stock from WPI Machine Shop Setup Rough Turning Operation For Thread End of Nozzle 
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Completed Rough Turning Operation Settings For Thread End of Nozzle 

 
Setup Thread Cutting Operation For Thread End of Nozzle 
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Completed Thread Cutting Operation Settings For Thread End of Nozzle 
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Setup Centering Spot Drill Operation For Thread End of Nozzle 

 
Completed Centering Spot Drill Operation Settings For Thread End of Nozzle 
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Setup #31 Drill Operation For Thread End of Nozzle 

 
Completed #31 Drill Operation Settings For Thread End of Nozzle 
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Setup Specialty 3mm 60 Degree Drilling Operation For Thread End of Nozzle 

 
Completed Specialty 3mm 60 Degree Drilling Operation Settings For Thread End of Nozzle 
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Setup Grooving Cutoff Tool Operation For Thread End of Nozzle 
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Completed Grooving Cutoff Tool Operation Settings For Thread End of Nozzle 

 
 
 
 
 
 
 
 
 

MQP_DGF-111B_EspritCAM_CustomNozzleMachining_ThreadSide.wmv
 

Embedded Video File of Esprit Simulated Machining of the Above Operational Setup 
(Double-Click Small wmv Icon Above to Play Video in Windows Media Player) 
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Setup #5 Drilling Operation in Stock for Mating Thread Part Holder for Cutoff Nozzle Blanks 

 
Completed #5 Drilling Operation Settings in Stock for Mating Thread Part Holder for Cutoff Nozzle Blanks 
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Setup M6x1 Tap Operation in Stock for Mating Thread Part Holder for Cutoff Nozzle Blanks 

 
Completed M6x1 Tap Operation Settings in Stock for Mating Thread Part Holder for Cutoff Nozzle Blanks 
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MQP_DGF-111B_EspritCAM_CustomNozzleMachining_PartHolderThreadedStock.wmv
 

Embedded Video File of Esprit Simulated Machining of the Above Operational Setup 
(Double-Click Small wmv Icon Above to Play Video in Windows Media Player) 

 
 
 
 
 
 
 
 
 
 

Load Threaded Stock Part Holder into Machine & Thread on the Nozzle Blank Previously Cutoff 
 

 
Setup Facing Operation for Front Nozzle End 
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Completed Facing Operation Settings for Front Nozzle End 
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Setup OD Profile Turning Operation for Front Nozzle End 
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Completed OD Profile Turning Operation Settings for Front Nozzle End 
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MQP_DGF-111B_EspritCAM_CustomNozzleMachining_NozzleSide.wmv
 

Embedded Video File of Esprit Simulated Machining of the Above Operational Setup 
(Double-Click Small wmv Icon Above to Play Video in Windows Media Player) 

 
 
 
 
 
 
 

Completed Custom Nozzle Blank Manufacturing, Quantity 16, at WPI Machine Shop… 
…Thanks to Adam Sears & Torbjorn Bergstrom For Guiding the Nozzle Blank Manufacturing Process. 

 
 

Quantity 16 Nozzle Blanks Shipped to Experienced Machinists at Industrial Motions Engineering in 
Woburn MA for Final Remaining Step to Complete Custom Nozzles, Micro-drilling the Nozzle Bore Holes. 

 
 

Industrial Motions Engineering of Woburn MA Donated Their Time & Machining Efforts for This MQP.  
Thank You to Michael Mangum & Joe Fustolo of Industrial Motions Engineering for Donated Services. 

http://www.industrialmotions.com/index.html 
Industrial Motions Engineering 

49R High Street 
Woburn, MA 01801 
Tel: 781.935.8800 
Fax: 781.935.8849 

 

Quantity 4 Completed Nozzles Each of 300m & 250m Sizes Back from Industrial Motions Engineering. 
 
 

Quantity 3 Completed Nozzles Each of 200m & 150m Sizes Back from Industrial Motions Engineering. 
 
 

Note 1:  Only 1 Nozzle From Each Nozzle Size Passed Inspection Upon Receipt Back from Industrial 
Motions Engineering; Passing Nozzles Had Both Clean Bore Hole & Hole Centered in Nozzle Body. 

 
 

Note2:  Apparent Difficulties Machining with the Microdrills and/or the Machine Setup/Alignment. 
 

http://www.industrialmotions.com/index.html
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Appendix G:  Nozzle & Small Printing Test Measurement Images 

 
Vernier Caliper Microscope Calibration Image – Set to 0.010” (254m) – Raw Image @ 35x 

 

 
Measurements Using ImageJ Software – 176 Pixels = 0.010” – 1.44m/pixel measurement resolution 



DGF 111-B  141 

 
MakerBot Replicator Nozzle 1 – 400m Nominal Bore – Raw Image @ 35x 

 

 
Measurements Using ImageJ Software – MakerBot Replicator Nozzle 1 – 400m Nominal Bore 
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Custom 150m Nominal Bore Nozzle # 1 – Raw Image @ 35x – Bad Nozzle, Not Used 

 

 
Custom 150m Nominal Bore Nozzle # 2 – Raw Image @ 35x – Bad Nozzle, Not Used 
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Custom 150m Nominal Bore Nozzle # 3 – Raw Image @ 35x – Good Nozzle For Testing 

 

 
Measurements Using ImageJ Software – Custom 150m Nominal Bore Nozzle # 3 
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Custom 200m Nominal Bore Nozzle # 1 – Raw Image @ 35x – Good Nozzle For Testing 

 

 
Measurements Using ImageJ Software – Custom 200m Nominal Bore Nozzle # 1 
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Custom 200m Nominal Bore Nozzle # 2 – Raw Image @ 35x – Bad Nozzle, Not Used 

 

 
Custom 200m Nominal Bore Nozzle # 3 – Raw Image @ 35x – Bad Nozzle, Not Used 
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Custom 250m Nominal Bore Nozzle # 1 – Raw Image @ 35x – Bad Nozzle, Not Used 

 

 
Custom 250m Nominal Bore Nozzle # 2 – Raw Image @ 35x – Bad Nozzle, Not Used 
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Custom 250m Nominal Bore Nozzle # 3 – Raw Image @ 35x – Bad Nozzle, Not Used 

 

 
Custom 250m Nominal Bore Nozzle # 4 – Raw Image @ 35x – Good Nozzle For Testing 
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Measurements Using ImageJ Software – Custom 250m Nominal Bore Nozzle # 4 

 

 
Custom 300m Nominal Bore Nozzle # 1 – Raw Image @ 35x – Bad Nozzle, Not Used 
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Custom 300m Nominal Bore Nozzle # 2 – Raw Image @ 35x – Good Nozzle For Testing 

 

 
Measurements Using ImageJ Software – Custom 300m Nominal Bore Nozzle # 2 



DGF 111-B  150 

 
Custom 300m Nominal Bore Nozzle # 3 – Raw Image @ 35x – Bad Nozzle, Not Used 

 

 
Custom 300m Nominal Bore Nozzle # 4 – Raw Image @ 35x – Bad Nozzle, Not Used 
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QU-BD MakerBot Compatible 350m Nominal Bore Nozzle # 1 – Raw Image @ 35x – Not Used 

 

 
QU-BD MakerBot Compatible 350m Nominal Bore Nozzle # 2 – Raw Image @ 35x – Not Used 
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Measurements Using ImageJ Software – QU-BD MakerBot Compatible 350m Nominal Bore Nozzle # 2 

 

 
QU-BD MakerBot Compatible 350m Nominal Bore Nozzle # 3 – Raw Image @ 35x – Not Used 
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QU-BD MakerBot Compatible 350m Nominal Bore Nozzle # 4 – Raw Image @ 35x – Not Used 

 

 
Image of SolidWorks CAD Part – Circle Square Test Pattern – 400m Size Nozzle Test 
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Circle Square Test Print – 150m Nozzle - No Stretch – Raw Image @ 35x 

 

 
Measurements Using ImageJ Software - Circle Square Test Print – 150m Nozzle - No Stretch 
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Circle Square Test Print – 150m Nozzle - Stretched – Raw Image @ 35x 

 

 
Measurements Using ImageJ Software - Circle Square Test Print – 150m Nozzle – Stretched 
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Circle Square Test Print – 200m Nozzle - No Stretch – Raw Image @ 35x 

 

 
Measurements Using ImageJ Software - Circle Square Test Print – 200m Nozzle - No Stretch 
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Circle Square Test Print – 200m Nozzle - Stretched – Raw Image @ 35x 

 

 
Measurements Using ImageJ Software - Circle Square Test Print – 200m Nozzle – Stretched 
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Circle Square Test Print – 250m Nozzle - No Stretch – Raw Image @ 35x 

 

 
Measurements Using ImageJ Software - Circle Square Test Print – 250m Nozzle - No Stretch 
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Circle Square Test Print – 250m Nozzle - Stretched – Raw Image @ 35x 

 

 
Measurements Using ImageJ Software - Circle Square Test Print – 250m Nozzle – Stretched 
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Circle Square Test Print – 300m Nozzle - No Stretch – Raw Image @ 35x 

 

 
Measurements Using ImageJ Software - Circle Square Test Print – 300m Nozzle - No Stretch 
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Circle Square Test Print – 300m Nozzle - Stretched – Raw Image @ 35x 

 

 
Measurements Using ImageJ Software - Circle Square Test Print – 300m Nozzle – Stretched 
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Circle Square Test Print – 400m Nozzle - No Stretch – Raw Image @ 35x 

 

 
Measurements Using ImageJ Software - Circle Square Test Print – 400m Nozzle - No Stretch 
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Circle Square Test Print – 400m Nozzle - Stretched – Raw Image @ 35x 

 

 
Measurements Using ImageJ Software - Circle Square Test Print – 400m Nozzle – Stretched 
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