
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2012

Thin to Win? Network Performance Analysis of the
OnLive Thin Client Game System
Alexander William Grant
Worcester Polytechnic Institute

Michael E. Solano
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Grant, A. W., & Solano, M. E. (2012). Thin to Win? Network Performance Analysis of the OnLive Thin Client Game System. Retrieved
from https://digitalcommons.wpi.edu/mqp-all/1468

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1468&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1468&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1468&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1468&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/1468?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1468&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Thin to Win? Network Performance Analysis of the OnLive Thin Client Game System

A Major Qualifying Project Report:

submitted to the Faculty

of the

Worcester Polytechnic Institute

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Alexander Grant

Michael Solano

Date: April 26th, 2012

Approved:

Professor Mark Claypool

Professor David Finkel

ii

Abstract	

OnLive was one of the first companies to make use of cloud computing technology to

allow users to stream games. The goal of our project was to analyze OnLive’s network

performance and compare these results to two popular video streaming services, YouTube and

Skype. Through careful measurements, we found that OnLive handles variations in a network

differently than the other two services. These results indicate that OnLive has tailored their

service to adapt to many different network conditions.

iii

Table	
 of	
 Contents	

Abstract ... ii	

List of Figures ... v	

List of Tables ... vi	

1	
 Introduction ... 1	

2 	
 Background ... 4	

2.1	
 Cloud Computing ... 4	

2.2	
 OnLive .. 4	

2.3	
 GAME GENRES ... 6	

2.4	
 Skype .. 6	

2.5	
 YouTube ... 7	

3 	
 Related Work .. 9	

3.1	
 Cloud Gaming Services .. 9	

3.2	
 Latency and Gaming Research ... 10	

4	
 Methodology ... 12	

4.1 	
 Initial OnLive Investigation ... 12	

4.1.1 	
 Preliminary Testing and Data ... 12	

4.1.2 	
 Game Selection ... 12	

4.2 	
 Experiment Configuration .. 17	

4.2.1	
 Experiment Requirements ... 17	

4.2.2 	
 Traffic Shaper ... 19	

4.2.3	
 Desktop Computer .. 20	

4.3 	
 Testing .. 21	

4.3.1	
 TCPDump Commands .. 21	

4.3.2	
 Timing ... 21	

4.3.3 	
 Gameplay to Test .. 22	

4.3.4 	
 YouTube Tests .. 24	

4.3.5 	
 Skype Tests ... 24	

4.3.6 	
 DummyNet Tests .. 24	

4.3.7 	
 FRAPS Tests ... 25	

5 	
 Results ... 26	

iv

5.1	
 Initial OnLive Packet Captures .. 26	

5.1.2	
 Downstream Packet Captures ... 26	

5.1.3	
 Upstream Packet Captures .. 28	

5.2	
 OnLive Versus Video Streaming Services ... 28	

5.2.1	
 Downstream Packet Captures ... 29	

5.2.2	
 Upstream Packet Captures .. 30	

5.3 OnLive and Network Variation .. 32

5.3.1 Bandwidth Restriction and OnLive .. 32

5.3.2 Packet Loss and OnLive ... 34

5.3.3 Latency and OnLive .. 37

5.4 Video Streaming Services and Network Variation ... 40

5.4.1 Bandwidth Restriction and YouTube .. 40

5.4.2 Packet Loss and YouTube .. 42

5.4.3 Latency and YouTube ... 43

5.4.4 Bandwidth Restriction and Skype ... 45

5.4.5 Packet Loss and Skype .. 46

5.4.6 Latency and Skype .. 47

5.5 Overall Results .. 49	

5.5.1 OnLive Individual Game Bandwidth ... 49	

5.5.2 Frame Rate Measurements During Network Variations ... 50	

6 	
 Conclusion .. 51	

6.1 Basic Network Characteristics of OnLive .. 51	

6.2 OnLive and Other Video Streaming Services ... 52	

6.3 OnLive and Network Variation .. 53	

6.4 Overall ... 53	

7 	
 Future Work .. 54	

Works Cited .. 56	

Appendix ... 58	

v

List	
 of	
 Figures	

Figure 1: Network Topology of Experiment[18] .. 10	

Figure 2: A Screenshot of Unreal Tournament III's Start Screen ... 14	

Figure 3: A Screenshot of Unreal Tournament III Gameplay .. 14	

Figure 4: A Screenshot of Grand Ages: Rome's Start Screen ... 15	

Figure 5: A Screenshot of Grand Ages: Rome Gameplay .. 15	

Figure 6: A Screenshot of Batman: Arkham Asylum's Start Screen .. 16	

Figure 7: A Screenshot of Batman: Arkham Asylum Gameplay ... 16	

Figure 8: Network Map of Experiment Setup ... 19	

Figure 9: Batman, Unreal, and Rome Downstream: Kilobytes vs. Time 27	

Figure 10: Batman, Unreal, and Rome Upstream: Kilobytes vs. Time .. 28	

Figure 11: Unreal, Batman, Rome, Skype, and YouTube Downstream: Kilobytes vs. Time 29	

Figure 12: Unreal, Batman, Rome, Skype, and YouTube Upstream: Kilobytes vs. Time 31
Figure 13: Vary Bandwidth-Unreal Tournament Downstream KiloBytes Versus Time 33
Figure 14: Vary Bandwidth- CDF Packet Size: Unreal Tournament ... 34
Figure 15: Vary Bandwidth- CDF Interpacket Time: Unreal Tournament 34
Figure 16: Vary Packet Loss- Unreal Tournament Downstream Kilobytes versus Time 35
Figure 17: Vary Packet Loss- CDF Packet Size: Unreal Tournament .. 36
Figure 18: Vary Packet Loss- CDF Interpacket Time: Unreal Tournament 37
Figure 19: Vary Latency- Unreal Tournament Downstream Kilobytes Versus Time 38
Figure 20: Vary Latency- CDF Packet Size: Unreal Tournament .. 39
Figure 21: Vary Latency- CDF Packet Size: Unreal Tournament .. 40
Figure 22: Vary Bandwidth- YouTube Downstream Kilobytes versus Time 41
Figure 23: Vary Packet Loss- YouTube Downstream Kilobytes versus Time 42
Figure 24: Vary Latency- YouTube Downstream Kilobytes versus Time 44
Figure 25: Vary Bandwidth- Skype Downstream Kilobytes versus Time 45
Figure 26: Vary Packet Loss Rates- Skype Downstream Kilobytes versus Time 47
Figure 27: Vary Latency- Skype Downstream Kilobytes versus Time .. 48
Figure 28: 3 OnLive Games Upstream and Downstream: Megabits vs Time 49	

Figure 29: Network Restrictions in Unreal Tournament 3: Frames per Second 50	

vi

List	
 of	
 Tables	

Table 1: Games Chosen for Experiments ... 13	

Table 2: Recommended System Requirements .. 17	

Table 3: Downstream Packet Captures of Each Game ... 26	

Table 4: All 5 Applications Downstream Packet Capture .. 29	

Table 5: All 5 Applications Upstream Packet Capture ... 30	

Table 6: Vary Bandwidth- Unreal Tournament Downstream ... 32
Table 7: Vary Bandwidth- Unreal Tournament Upstream ... 35
Table 8: Vary Latency- Unreal Tournament Downstream ... 38
Table 9: Vary Bandwidth- YouTube Downstream ... 41
Table 10: Vary Packet Loss- YouTube Downstream ... 42
Table 12: Vary Bandwidth Skype Downstream ... 45
Table 13: Vary Packet Loss Rates Skype Downstream .. 46
Table 14: Vary Latency- Skype Downstream ... 47	

1

1	
 Introduction	

As personal desktop computers become more popular and easier to obtain, the cost of

owning and maintaining them can be unmanageable at times. Thin clients hope to solve this

problem by depending on other computers or servers to help with computation and resource

management. “The goal of the thin-client model is to centralize computing resources, with all the

attendant benefits of easier maintenance and cheaper upgrades, while maintaining the same

quality of service that could be provided by a dedicated workstation[1].” Although thin clients

are more common in corporate and academic settings, recently there has been interest in using

them for entertainment, such as for video games. There are a few different companies

approaching video games with the thin client model in mind. The major developers thus far are:

• OnLive1

• Gaikai2

• GameString3

• StreamMyGame4

Each one of the aforementioned companies is relatively new and their technology is still being

developed; GameString, for example, is still just a beta. There is almost no public information on

these technologies or how these companies are trying to achieve their goals.

This project focused on a cloud gaming service called OnLive. OnLive provides a thin

client that connects to the OnLive service. The OnLive service uses the cloud computing model

by housing servers which contain the game and user data. Thin clients depend on other

computers or servers, so OnLive combines the thin client model and the concepts of cloud

computing to bring their service to users. The project explored the network and graphical

information OnLive produces when run in various environments. It compared and contrasted

OnLive to video streaming services such as YouTube and Skype.5,6 A multitude of tests were be

conducted on OnLive, YouTube, and Skype to measure their performance throughout this

project.

1 http://www.onlive.com/
2 http://www.gaikai.com/ 2 http://www.gaikai.com/
3 http://www.gamestring.com/
4 http://www.streammygame.com/smg/index.php
5 http://www.youtube.com/
6 http://www.skype.com/intl/en-us/home

2

OnLive allows users to have access to a multitude of games and play them. The

difference between traditional gaming and what OnLive is achieving is that OnLive uses the

ideas and concepts of cloud computing to make popular video games more accessible. Players

use the OnLive service to play games on OnLive’s computers while OnLive streams a live video

feed of the game screen back to the user. This makes using OnLive’s service easy because the

game data is stored on OnLive’s servers, and not on the user’s personal machine. All that is

needed is [2]:

• An OnLive account

• 2 Mbps (wired or Wi-Fi) connection

• Windows 7 or Vista (32 or 64-bit) or XP SP3 (32-bit) or Mac OS X 10.5.8 or later

• Most PCs and netbooks, all Intel-based Macs

• Screen Resolution: 1024x576

• Sound (but not necessary)

• Keyboard and Mouse OR OnLive Controller

These minimum requirements, coupled with the fact that user’s saved game and profile data are

stored on OnLive’s server, make OnLive accessible to users not only in their home, but also

wherever the user has access to a computer.

 We decided to compare OnLive to YouTube and Skype to compare streaming

technologies designed for games to YouTube and Skype, technologies designed for video. The

results of this project provide insight about the quality of OnLive’s service to potential and

current customers of OnLive.

Our hypotheses for this project were:

• The downstream packet captures, in terms of packet size and the numbers of packets for

all OnLive games are similar. This is because the player is viewing a video, so as long as

the video quality is similar, the downstream packet captures are similar.

• The upstream packet captures, in terms of packet size and the number of packets are

noticeably different for each game. The information being sent to OnLive is different for

a slow paced game as opposed to an action packed, fast game. For example, there are

more actions being used by the player in a First Person Shooter than there are in a Real

Time Strategy game, so the upstream packet captures should vary depending on the game

and game genre.

3

• Altering the bandwidth, packet loss, and delay of the network changes the quality of the

experience of OnLive.

o Adding delay affects OnLive the most and creates an environment where OnLive

is nearly unplayable. With added delay, the user’s actions are reflected on

OnLive’s service at a later time than the player originally anticipated. For

example, the player may shoot at a target, but because of the delay, OnLive will

recognize the shot as later, and thus the player will miss the target because the

target has already moved.

o Restricting the bandwidth and adding packet loss degrades the visual quality of of

OnLive as a higher bandwidth and fewer packets lost should allow for OnLive to

deliver more frames per second and a higher quality picture.

Initially, we did the background research needed to form our hypotheses. After our

research had been completed, we proceeded to establish hypotheses and formulate an experiment

plan for the information we intended to gather and to test the hypotheses. After obtaining

resources and setting up the equipment needed for our experiments, we collected data about

OnLive. When all the data was collected, we analyzed and organized the data and compared the

results to our initial hypotheses.

The results in Chapter 5 highlight the following conclusions about the OnLive service.

Downstream packet captures changed greatly depending on what game was played, while the

upstream packet captures looked more similar than originally anticipated. OnLive also was

affected differently than YouTube and Skype when the network was altered. OnLive was

playable throughout every scenario (albeit with lower quality than an unrestricted network),

while YouTube and Skype would sometimes skip or stop video playback altogether.

 	

4

2	
 	
 Background	

 This section provides the details on concepts that we built upon to help design our

experiments and form hypotheses.

2.1	
 Cloud	
 Computing	

Since computers became a mainstream appliance, they have been the go-to tool for data

storage and modification. Since the utilization of the Internet, being able to access one’s data

from anywhere with an Internet connection has been a desire for many. Cloud computing makes

it possible to “access all of your personal data at any given moment[3].” The central idea behind

cloud computing is that users can store data or programs in data centers that can then be accessed

via an Internet connection[4]. This process makes it easier to synchronize and streamline

information so that from any location, data can be shared, modified, deleted, or even created.

 Cloud computing is only just now starting to become more commonplace, and the

computer game industry is a sector that looks to use it to its full potential. Games and their

associated information can be stored in the cloud, which can provide gamers with the ability to

continue where they left off even if they are nowhere near their personal PC. Cloud computing

can give low-end computers the ability to play games that they normally would not be able to

play.

2.2	
 OnLive	

 OnLive is a company that saw the potential of cloud computing and developed a cloud-

based gaming service. Using data centers that house powerful high-end computers, OnLive is

able to give users across the United States (and soon to be other parts of the world) the ability to

play a variety of games as long as they have an Internet connection.

 OnLive is different from many cloud computing companies in today’s market because of

how it utilized cloud computing technologies. Unlike many companies, OnLive does not offer

virtual machines to host websites or run data processing applications. Instead, OnLive uses the

cloud systems to allow users to play video games.

After much anticipation, OnLive launched its video game service in the United States on

June 17th, 2010[6]. According to Steve Perlman, OnLive’s CEO, one of the largest problems that

they faced since launch day was the unexpected number of users that signed up for the service.

Within the first few weeks of service, the number of subscribers had already matched the

5

projected Fall numbers. This forced OnLive to ramp up server deployment and develop some

regions quicker than others[6].

In an interview with CNET, Perlman was asked about the scalability of OnLive and how

a user’s experience would be affected by a large number of users on the service at the same

time[6]. According to Perlman, one major issue with many online services is contention, where

many users share the same connection. This is a key issue when dealing with service overloads

and service interruptions. Perlman stated that OnLive has been designed from the start to

eliminate contention routing and essentially provide each individual connection with its own

private route. Another aspect of OnLive’s scalability is that to increase capacity, OnLive only

has to deploy more servers. The servers are configured in such a way to reduce the sharing of

resources. This allows the servers to run independently of each other[6].

OnLive subscription service initially started out as a paid yearly subscription but in the

fall of 2010, this subscription fee was removed. Currently, it is free for someone to join OnLive.

With this free account, users can play free trials of games that they may want to buy and they can

also add and chat with friends who also use OnLive. The OnLive service allows users to

purchase individual games at retail prices, purchase monthly subscriptions to a game, and

purchase monthly play pack bundles that contain anywhere from 10 – 50 games.

Currently OnLive offers two options that allow users to play across a variety of devices.

OnLive gives users the option to use their personal computers, with either a Windows or Mac

operating system. Perhaps the biggest selling point for OnLive’s desktop app is its minimal

hardware requirements. Many users are able to use an entry-level laptop or desktop to a netbook

or another extremely portable computer like a MacBook Air. Another advantage is the desktop

application’s operating system independence. Because the application is available for both

Windows and Mac, users are able to play many games that may not even be available to run

locally on a Mac computer.

Users also have the option to purchase an OnLive Micro Console for $99. This Micro

Console is about the size of a hard drive and allows users to play OnLive on a TV or anything

with an HDMI or component input. This can be a substitute for expensive gaming computers or

systems like Microsoft’s Xbox or Sony’s PlayStation. The user gets a wireless controller, the

Micro Console and all of the cables required to hook the system up to the TV and Internet.

6

OnLive is currently developing apps for Apple’s iPad and Android tablets. There are apps

that allow users to watch live streams of their friend’s games in progress, but these new apps will

allow users to actually play the games from these tablet devices. This will allow tablet users to

play games that typically require a powerful CPU and GPU.

2.3	
 GAME	
 GENRES	

 For this project, we investigate three different genres:

• First Person Shooters

• Real Time Strategy

• Third Person

 A First Person Shooter game is a video game in which the game world is viewed through

the perspective of the main character, or shooter[7]. It is as if the user was actually in the game

looking at the events of the game through their own eyes.

 A Third Person game is a video game in which the perspective of the game world is

viewed above the main character[7]. The user is able to see the whole main character and

controls him/her while being able to see all round him/her as if the user was an observer to the

world.

A Real Time Strategy video game is a subset of the strategy video game[8]. The strategy

video game employs skillful thinking and tactics to achieve victory, as oppose to precision

aiming and quick reactions. A Real Time Strategy video game incorporates both of these

attributes into one genre of games where speed and intellect is required to obtain success.

2.4	
 Skype	
 	

Another popular internet program that makes use of powerful video streaming is Skype.

Skype is a voice over IP (VoIP) system that allows users to video conference and voice call each

other. Overall, Skype is a very popular application with 663 million registered users as of the end

of 2010[9]. 65 million people sign into Skype daily and 700,000,000 minutes daily are spent

talking for free with Skype to Skype calls[9].

 Skype uses a proprietary Internet telephony network with limited public information

available on the network protocol used. Skype is a Peer-to-Peer application as opposed to most

VoIP applications that are client-server[10]. Skype uses an overlay peer-to-peer network with

two different types of nodes in the network. Ordinary hosts, one of the types of nodes, allows for

7

voice calls and text messages to be made. A super node, the other type of node in the overlay

peer-to-peer network, is an ordinary host’s end-point on the Skype network. This means that any

node that has sufficient computing power and a public IP address has the ability to become a

super node. Ordinary hosts use the super nodes to connect to other super nodes which then

connect to other ordinary hosts, thus allowing for the voice calls and text messaging to happen.

This is very intriguing because as technology gets better and becomes more accessible, there will

be more super nodes, thus increasing the quality of the voice calls made through Skype.

 Skype’s most updated version uses VP8 for all their video encoding[11]. “VP8 is a highly

efficient video compression technology that was developed by On2 Technologies[12].” This

includes the group video sessions as well as the one-on-one video chats. Skype allows users to

make 720p HD quality video chats, but unfortunately a 1080p video chat is not available[11].

2.5	
 YouTube	
 	

 Another extremely popular Web streaming service is YouTube. YouTube is known for its

streaming of pre-recorded videos created by anyone from a corporation to an individual in their

bedroom. YouTube is a video-sharing Website that allows users from all over the planet watch

videos from the comfort of their computer or mobile devices. YouTube users can post their own

movies or video clips and share them with the world or select individuals.

YouTube is easily the most popular video streaming service on the Internet with over 3

billion videos being viewed daily[13]. Aside from its popularity, YouTube has the technical

capabilities to allow videos to be uploaded and viewed at an astounding 1080p resolution.

 There have been many studies on the technical aspect of YouTube. By reading papers

such as “Vivisecting YouTube: An Active Measurement Study” where members of the

Computer Science and Engineering Department at the University of Minnesota studied YouTube

in depth, it is possible to obtain information about YouTube’s technological characteristics[14].

YouTube uses the Adobe Flash video player to stream all the videos. They use two different

servers to deliver HTML webpages and video to users. One server is for the webpage that the

video is located, while the other server is dedicated to holding the actual Flash video. YouTube

uses both DNS resolution and HTTP redirection, for the delivery of the Flash video, to choose

appropriate video servers that are best suited for the users. There are many factors that go into

choosing the server. YouTube determines which servers are closest to the user, how busy a

server is, and the availability of videos at various servers.

8

 YouTube also allows users to upload their videos at many different resolutions by using

different encoding techniques for a wide range of resolutions. YouTube uses Sorenson H.263

encoding for videos with 240p resolution. For videos with 360p, 480p, 720p, and 1080p, the

MPEG-4 AVC (H.264) encoding is used. YouTube also supports the VP8 encoding for WebM

videos[15]. The wide range of resolutions that users have access to has led to an enormous

number of videos posted on YouTube.

9

3 Related Work
 This section provides information on related research conducted on OnLive, and other

relevant aspects of this project.

3.1	
 Cloud	
 Gaming	
 Services	

In the paper “OnLive Cloud Gaming Service”, the researchers focused on how cloud

gaming services, particularly OnLive, have been severely limited by available Internet

bandwidth and the time it takes to compress and decompress digital images[16]. They point out

that the main problem seems to stem from the video streaming and compression it requires. After

explaining how video compression works and the different encoding techniques that can be used,

the authors proposed two possible substitutes to OnLive’s current compression technique.

The authors begin by examining three compression techniques: H.264, VC-1(WMV-9),

and MJPEG. Through their background research they determined that H.264 is unnecessarily

CPU intensive whereas MJPEG is not. In order to test this hypothesis they encoded various 30

second video clips into each format. Once encoded, they did a visual analysis of each video. Four

trials were ran, each trial had the same video encoded using the H.264, WMV 9, and MJPEG

compression techniques. The four trials ran consisted if videos that were: a still image, moving

object in stationary background, stationary object in moving background, and moving object and

moving background. The researchers then watched each video and determined the quality of the

video (Poor, Acceptable, Good)[16].

Overall the authors demonstrated both the advantages and disadvantages for each

encoding format, but they reach the conclusion that OnLive should use the MJPEG encoding

format. However, they offer no support or possible implementations for their conclusion.

Researchers from National Taiwan University studied the performance of OnLive by

comparing it to another cloud gaming platform called StreamMyGame[17]. In their article,

“Measuring The Latency of Cloud Gaming Systems”, the researchers explain the motivation and

design of their experiment. After doing a thorough investigation of the cloud-computing services

available at the time, the researchers decided to compare the performance of OnLive and

StreamMyGame. Unlike OnLive which has a service provided by OnLive Inc, StreamMyGame

is a software solution that is managed and operated by the researchers themselves[17].

10

The researchers also posted information about this experiment in another article titled

“Cloud Gaming Latency Analysis: OnLive and StreamMyGame Delay Measurement”[18]. In

this article the authors go much more in-depth about the actual design of their testing network.

The image in Figure 1 below shows how the researchers utilized a router running FreeBSD 7

with DummyNet in conjunction with two windows computers, one acting as the client for both

OnLive and StreamMyGame and one acting as the server for StreamMyGame.

Figure	
 1:	
 Network	
 Topology	
 of	
 Experiment[18]	

 The researchers focused on the latency of commands being sent and received between the

client and server. They wrote software to help measure these delays. Overall, the researchers

concluded that “OnLive's overall streaming delay (i.e., the processing delay at the server plus the

playout delay at the client) for the three games is between 135 and 240 ms, which is acceptable if

the network delay is not significant. StreamMyGame however had streaming delays as long as

400-500 ms.” The researchers pointed out that they were unsure whether or not this was a

software limitation or a hardware limitation.

 Overall, this research is important to us because it provides some useful techniques on

how to design our own experimental network and what to expect from OnLive’s gaming service

in terms of latency and delay.

3.2	
 Latency	
 and	
 Gaming	
 Research	

The article, “The Effects of Loss and Latency on User Performance in Unreal

Tournament 2003”, is part of a larger study conducted by students at WPI for their Major

Qualifying Project in May 2004[19]. The authors’ main goal was to research how online

multiplayer games are affected by varying network conditions, particularly network latency and

11

packet loss. In order to study the effects of these varying conditions, the authors set up an

experiment that would measure game performance through two different layers of the game

system, the application layer and the network layer.

The first thing the authors did was categorize user interactions in First Person Shooter

games and design Unreal Tournament 2003 game maps for each type of interaction. Overall they

determined that FPS games have two types of user interactions: movement and shooting. They

further divided these categories based on complexity. From this they had the following

categories: simple movement, complex movement, and precision shooting (High, Medium, and

Low). Once they defined these user interactions and the sub-categories, the authors created

custom game maps that focused on each particular interaction.

They then constructed a test environment to induce latency and loss while simultaneously

measuring the effects of it. They did this by using a number of network tools including NIST,

Ethereal, and All Seeing Eye.7,8,9

After conducting a few pilot studies, the authors began user testing and eventually

collected data for over 200 experiments. Each user in the experiment had some previous

experience with Unreal Tournament, but users were still allowed to familiarize themselves with

the game before the actual experiment.

From their experiments, the authors determined that the following statements are

supported by their analysis:

1. Packet loss does not have any measureable effect on user performance.

2. Latency affected precision shooting the most.

3. Latency has no measurable effect on simple or complex movements.

4. Based on user comments, packet loss was barely noticeable whereas even small amounts

of latency (100ms) quickly became annoying.

Overall, the authors thoroughly tested the two major interactions of First Person Shooters and

their relation to network variation. This study highlights the importance of setting up a clearly

defined and concrete study. It also provides information about which software to use for network

monitoring and variation.

7 http://snad.ncsl.nist.gov/nistnet/
8 http://www.ethereal.com/
9 http://www.udpsoft.com/eye/

12

4	
 Methodology	

 This project went through four different phases: initial investigation, designing

experiments, conducting the experiments, and analyzing the results. The following chapter

discusses how each phase proceeded.

4.1	
 	
 Initial	
 OnLive	
 Investigation	

 The initial OnLive investigation consisted of playing different demos that OnLive had

available and coming up with three games that would be used to test our hypotheses.

4.1.1	
 	
 Preliminary	
 Testing	
 and	
 Data	

After playing the demos of many different games it was apparent that OnLive’s service

was stable enough to handle 14 weeks of testing without giving us trouble. Using Wireshark10,

packet captures as long as 15 minutes were taken during these demos so that preliminary

information on OnLive and its network behavior could be analyzed. Although OnLive is only

now approaching its two year anniversary, we encountered very few bugs in the system.

 OnLive’s recent arrival to the gaming industry meant that it is mostly unexplored.

Finding technical data about OnLive was difficult at best. Wireshark gave information regarding

protocol (UDP, TCP) as well as the servers and ports used. Wireshark allowed us to look at the

number of packets, packet sizes, and bytes per second among other network data. The initial

graphs of the downstream and upstream data being recorded helped form our initial hypotheses

and experiments about OnLive.

 We purchased an OnLive micro-console to make sure that it was OnLive’s system that

was the limiting factor to the experiments. The console is optimized for OnLive gaming, created

for the sole purpose using OnLive’s system. Using the micro console eliminates any issues that

may have been brought up by a computer’s specifications or any background, non-OnLive-

essential process.

4.1.2	
 	
 Game	
 Selection	

While designing the experiments for this project, careful consideration went into which

of OnLive’s many games would be used. It was decided that games of different styles would best

test our hypotheses and allow for unique perspectives into how OnLive delivers the gaming

10 http://www.wireshark.org/

13

experience of multiple genres. Each genre chosen was picked because each selection has a

distinctive graphical perspective, and therefore might have a different network footprint. The

three genres chosen were First Person Shooter, Real Time Strategy, and Third Person. More

information on the genres chosen can be found in Section 2.3 Game Genres.

 We needed to select a game from each genre that was available on the OnLive system. It

was determined that there were adequate games to choose from in the Playpack Bundle.11 With

unlimited play of over 140 games, the Playpack bundle was an excellent decision for the

experiments planned. For $9.99 a month, access to every game in the Playpack bundle is given.

Due to the fact that we would only need to use OnLive from the months of December to March,

the most inexpensive choice was to purchase the Playpack bundle for four months.

 After searching through the games in the Playpack bundle we selected the games shown

in Table 1: Games Chosen for Experiments

Table	
 1:	
 Games	
 Chosen	
 for	
 Experiments	

11 http://www.onlive.com/games/playpack#&tab=top_games

Game Genre Menu	
 Screenshot Gameplay	
 Screenshot
Unreal	
 Tournament	
 III First	
 Person	
 Shooter Figure	
 1 Figure	
 2
Grand	
 Ages:	
 Rome Real	
 Time	
 Strategy Figure	
 3 Figure	
 4
Batman:	
 Arkham	
 Asylum Third	
 Person Figure	
 5 Figure	
 6

Games	
 Chosen

14

Figure	
 2:	
 A	
 Screenshot	
 of	
 Unreal	
 Tournament	
 III's	
 Start	
 Screen	

Figure	
 3:	
 A	
 Screenshot	
 of	
 Unreal	
 Tournament	
 III	
 Gameplay	

15

	

Figure	
 4:	
 A	
 Screenshot	
 of	
 Grand	
 Ages:	
 Rome's	
 Start	
 Screen	

	

Figure	
 5:	
 A	
 Screenshot	
 of	
 Grand	
 Ages:	
 Rome	
 Gameplay	

16

Figure	
 6:	
 A	
 Screenshot	
 of	
 Batman:	
 Arkham	
 Asylum's	
 Start	
 Screen

	

Figure	
 7:	
 A	
 Screenshot	
 of	
 Batman:	
 Arkham	
 Asylum	
 Gameplay	

17

As shown in Table 2: Recommended System Requirements, the system requirements for

the game to be played on the PC were all very similar. Although we were playing on the OnLive

system, and not on our PC, the game requirements provided a gauge of how much computer

power each game required from OnLive’s systems.12, 13, 14

Table	
 2:	
 Recommended	
 System	
 Requirements	

Another reason for choosing these games is that they were all released within the same

relative time period, from 2007 to 2009. This is important because games designed and released

during the same time period will require similar technology (e.g. in terms of computer power, as

seen in Table 2: Recommended System Requirements) which will help keep the experiments

consistent for testing our hypotheses.

4.2	
 	
 Experiment	
 Configuration	

 The following section explains the details of how our experiments were designed.

4.2.1	
 Experiment	
 Requirements	

 The first step in our experiment setup was to determine what hardware and software was

needed to test our hypothesis laid out in the introduction. In order to conduct experiments on

OnLive, YouTube, and Skype, we determined that at the very minimum we would need the

following:

• A traffic shaper.

o The traffic shaper needed to perform the following functions:

12 http://www.game-debate.com/games/index.php?g_id=697&game=Unreal%20Tournament%20III
13 http://www.game-debate.com/games/index.php?g_id=461&game=Batman:%20Arkham%20Asylum
14 http://www.game-debate.com/games/index.php?g_id=493&game=Grand%20Ages:%20Rome

Game UT	
 33 Batman4 Rome5

Intel	
 CPU Pentium	
 D	
 2.66GHz Pentium	
 D	
 3.0GHz Core	
 2	
 Duo	
 E4500	
 2.2GHz
AMD	
 CPU Athlon	
 64	
 4000+ Athlon	
 64	
 X2	
 Dual	
 Core	
 3800+ Athlon	
 64	
 X2	
 Dual	
 Core	
 3600+
Nvidia	
 GPU GeForce	
 8800	
 GS GeForce	
 7900	
 GT GeForce	
 7800	
 GS
AMD	
 GPU Radeon	
 X800	
 XT	
 Platinum Radeon	
 X800	
 XL Radeon	
 X850	
 Series
RAM 1	
 GB 2	
 GB 1	
 GB
Direct	
 X DX	
 9 DX	
 9 DX	
 9
HDD	
 Space 8	
 GB 9	
 GB 4	
 GB

Recommended	
 System	
 Requirements

18

 Modify network traffic by inducing latency, creating packet loss, and

limiting bandwidth.

 Capture network traffic.

 Hand out DHCP leases and perform NAT for machines located behind the

internal network interface.

• Two Switches.

o We decided that we needed at least one switch between the traffic shaper and the

rest of the WPI network. We used this switch to connect other devices directly

into WPI’s network.

o Due to our requirements, we needed to add another switch between all of the

devices behind our traffic shaper. This allowed us to connect multiple devices to

the one internal network port on the traffic shaper.

• A TV.

o A television for the OnLive MicroConsole. The television needed to support

1080p resolutions and have an HDMI port available.

• A Desktop Computer.

o A computer to run Skype and YouTube tests. The computer would have to

perform the following functions:

 Run Skype in full screen mode.

 Run FRAPS15 game capture software.

 Run YouTube Videos at 1080p resolution.

 Run OnLive’s desktop application to conduct the FRAPS portion of the

experiment.

• A Computer with the Ability to run Skype.

o A MacBook laptop was used during the Skype experiments so that we knew the

path of the network traffic when the aforementioned desktop computer and

MacBook were connected during the Skype calls.

Based on the equipment we used and how we set it up, we created a picture of our lab

network. The picture in Figure 8, shows each device and its location in the network. The devices

behind the traffic shaper include the OnLive MicroConsole and the desktop computer. The

15 http://www.fraps.com/

19

devices on the main WPI network include the MacBook laptop and the traffic shaper running on

the box labeled router. The switch between these two devices is necessary because there was

only one WPI network port available in our lab.

Figure	
 8:	
 Network	
 Map	
 of	
 Experiment	
 Setup	

4.2.2	
 	
 Traffic	
 Shaper	

In order to accomplish each of the necessary traffic shaper functions, we used a custom

configured traffic shaper running FreeBSD, an open source UNIX operating system. 16 FreeBSD

was chosen because of its built in network functionality. We also found FreeBSD software that

allowed us to modify network traffic, capture network traffic, and perform NAT, described

below.

16 http://www.freebsd.org/about.html

20

The first problem that we had to address was the DHCP leasing problem. To solve this

problem we used a native BSD program called DHCPD[20]. This software was already built and

compiled into our initial FreeBSD installation and only required some basic configuration for

interface and IP specification.

We had to figure out how to perform NAT between the two network interfaces, the

internal and external network links. After some online research, we initially chose to use firewall

software that would allow us to implement NAT quickly and easily. This software, PF(personal

firewall) 17 was easy to setup and ran well, but during the next step of our traffic shaper setup we

realized that PF would not suit our needs. For our network traffic modification we wanted to use

a very powerful and popular tool, DummyNet18, but after reading about the mechanics of

DummyNet, we realized that making it run in conjunction with PF could prove to be

problematic. Essentially, DummyNet is built off of another FreeBSD firewall program

(IPFW)[21]. After some more research we decided to remove PF and configure IPFW as our

NAT and Firewall program.

In order to address the network modification functionality we chose DummyNet. As

previously mentioned, DummyNet is a powerful and popular tool that is used to modify network

traffic. For example, someone can use DummyNet to limit the bandwidth of a particular device

on his or her network. This would be useful if someone was trying to run a home server but did

not want to use their entire residential connection for that server. DummyNet can also be used to

induce a wide variety of network conditions like packet loss and latency, two network metrics

that we wanted to address.

4.2.3	
 Desktop	
 Computer	

 The first part of our desktop configuration was to determine what operating system to

use. For the desktop system we chose to run Windows 7. Windows has a wide variety of

software available and the video services it supports particularly Skype and YouTube.

 We needed a program that could gather statistics on the games we were testing that could

not be obtained through packet captures. FRAPS19 is a program that not only displays frame rate

information about games, but also allows for the recording of Frames Per Second and inter-frame

times directly into excel files for graphing and analyzing.

17 http://www.openbsd.org/faq/pf/
18 http://info.iet.unipi.it/~luigi/dummynet/
19 http://www.fraps.com/

21

4.3	
 	
 Testing	
 	

 The following section discusses the methods in which we tested OnLive, YouTube, and
Skype.

4.3.1	
 TCPDump	
 Commands	

 To capture the network data for OnLive and other streaming services, the TCPDump20

command on the Unix system was used. TCPDump is a command-line packet analyzer able to

create pcap files of our data. A pcap file is a packet capture data file that is used in Wireshark and

contains network packet data created during the live network capture[22].

4.3.2	
 Timing	

 During preliminary tests we used packet captures of fifteen minutes and five minutes.

After analyzing both lengths of packet captures, it was determined that a two minute and thirty

second packet capture was sufficient to observe the network characteristics of OnLive, YouTube,

and Skype.

 For each test, the application was run up to the point that we determined was good for

testing, and then the packet capture was started. For the games needed to be at a point that

represented the core gameplay. We also ensured, for each game, that the loading of the level or

mode had been completed and there was a short time period for the game to stabilize before data

was collected.

 A similar setup was done for the Skype testing. After making sure that all non-essential

background processes were turned off, the Skype video call was made. With both computers

having the Skype video call on full screen, the call was given a short time period to stabilize and

then on a synchronized countdown, both the FRAPs and the packet capture were started.

 Capturing the network data for YouTube was a bit more complicated due to the

infrastructure of YouTube’s Website. Unfortunately, it is impossible to have YouTube

automatically start the videos in 1080p. For this reason, the process used was:

1. The browsing history of the browser, Google Chrome, was cleared.

2. The YouTube link was pasted into the URL bar.

3. The packet capture and URL link were started simultaneously.

4. As the YouTube video came up the video was changed to full screen and then to 1080p.

20 http://www.tcpdump.org/

22

4.3.3	
 	
 Gameplay	
 to	
 Test	

Each game has a wide variety of phases, from cut scenes to boss fights to the menu to

mini-games. For our purpose, we needed to test gameplay that was easy to replicate and was an

accurate representation of what a majority of the core gameplay was like.

Unreal	
 Tournament	
 III	

To make each trial of Unreal Tournament III as consistent as possible, a game was set up

on the same map, using the same settings for every experiment.

• A free-for-all match containing only Non-Playable-Characters (NPCs or Bots) was

started.

• The map was set to Rising Sun.

• The number of Bots was set to 10.

• The Time and Score Limit were set to Infinity.

• No mutators (additional options such as one hit kills, low gravity, etc.) were selected.

• Forced Respawns were also chosen.

It was impossible for the player to perform the same actions every time due to the nature

of the opposing AI and a free-for-all match, but the gameplay and actions taken during each trial

were done to achieve the same goal each time. Each trial consisted of gathering the weapons,

armor, and health laid out throughout the level and using them to the advantage of the player to

defeat the Bots in game.

Batman:	
 Arkham	
 Asylum	

 Keeping the trials of Batman: Arkham Asylum similar each time proved to be more

difficult than originally anticipated. There are a lot of cut scenes and differing gameplay within

this game, so playing throughout the levels would lead to being interrupted by gameplay that was

inconsistent with what we wanted to test. It was also complicated to replicate trials because the

saving system was progress based and could not be controlled. This meant that once the player

were successful in an area, it auto saved and could not go back. This made it impossible to test

the same part of gameplay over and over again.

 After progressing through the game, several modes were unlocked. One of the game

modes was a challenge to stay alive as long as possibly while fighting off an infinite number of

23

enemies. This challenge mode provided non-stop action without cut scenes, but it ensured that

each trial was relatively similar to the others in terms of actions taken.

 Each time the challenge mode was started, the player would start in a small square room

with 3 enemies. As the player started to fight the Bots, more would appear. It became

increasingly difficult to dispose of the incoming Bots because the player could never focus their

attention on one enemy for too long. If an enemy was focused on for too long, the other enemies

would interrupt any action being taken, and damage would be taken by the main character. For

this reason, it was simple enough to merely wound or injure the enemies, but never fully get rid

of them due to the overwhelming amount of Bots that would continually show up. Although the

actions taken each trial were different, like Unreal Tournament III, each trial consisted of using

attack combos to incapacitate as many enemies as possible until the number of Bots was

overwhelming.

Grand	
 Ages:	
 Rome	

 Grand Ages: Rome was the easiest game to keep consistent. The same level was picked

each time and the same actions were taken for every trial following a consistent pattern of what

to build next and where to build it. During the gameplay, no enemies were encountered so it was

easier to keep everything consistent because the player was the only one able to change the

outcome of the game. We had full control of what actions the player could take. The buildings

were all placed in the same place. Because of the small number of resources given to us in the

beginning of the game, it is easy to build the same objects over and over again in the same

pattern and around the same time due to the low income that our society obtains during the early

phase of the game. The actions taken were:

1. Build 3 insulas.

2. Build a pig farm.

3. Build a wheat farm.

4. Build an aqueduct.

5. Build a large water fountain.

6. Build a logging shed.

7. Build 2 more insulas.

8. Build a butcher shop.

9. Build a farmer’s market.

24

10. Build a grape farm.

11. Build 2 logging sheds.

It was after the 11th step that the two and a half minute mark was surpassed and the packet

capture ended.

4.3.4	
 	
 YouTube	
 Tests	

 A video of a Real Time Strategy game, StarCraft 2, was chosen for the YouTube tests.

The video can be found at the following link:

http://www.youtube.com/watch?v=0NTeyF6wQUs.

 The video consists of a game between two opponents, only showing the gameplay of

StarCraft 2. For the YouTube tests, the Google Chrome21 browser was used and the actions taken

were:

1. Clear the browsing history of Google Chrome.

2. YouTube video link was pasted into the URL bar and enter was hit.

3. The packet capture was started simultaneously with step 2 as the enter button was hit.

4. As quick as possible the video quality settings were set to 1080p.

5. As quick as possible the video was set to full screen.

6. The packet capture was stopped after two and a half minutes.

4.3.5	
 	
 Skype	
 Tests	

 A Skype video call was set up between the desktop computer and the MacBook. Each

camera was pointed at the individual operating the specific computer (Alexander with the

MacBook, Michael with the desktop computer). After the video call was set up and both

computers were on full screen, the packet capture began. After two and a half minutes the packet

capture was stopped.

4.3.6	
 	
 DummyNet	
 Tests	

 Once the baseline data was taken with simple packet captures, DummyNet was utilized to

further analyze the applications being tested. DummyNet was used to mimic different network

situations. With DummyNet we were able to restrict the bandwidth, add random packet loss, and

add latency when capturing data with TCPDump. This allowed us to test the boundaries of each

21 https://www.google.com/chrome

25

application and how they react to network instability. We tested the following conditions

independently of each other:

• Downstream bandwidth restricted to 10 Mbps, upstream bandwidth restricted to 2 Mbps.

• Downstream bandwidth restricted to 5 Mbps, upstream bandwidth restricted to 1 Mbps.

• Downstream random packet loss of 1%, upstream random packet loss of 1%.

• Downstream random packet loss of 1.5%, upstream random packet loss of 1.5%.

• Downstream added delay of 20ms, upstream added delay of 20ms.

• Downstream added delay of 35ms, upstream added delay of 35ms.

4.3.7	
 	
 FRAPS	
 Tests	

FRAPS22 allowed us to measure the frames per second, the frame times, and the

minimum, maximum, and average frames per second of the games being tested. FRAPS was

used when the network was not affected, but also when the aforementioned conditions mentioned

in Section 4.3.6 DummyNet Testswere altered through the use of DummyNet. To capture

the data with FRAPS only a few settings had to be changed. The length of the capture was set by

inputting, the number of seconds (150), the folder in which the files should be created, which

statistics to capture, and what button starts the capture.

22 http://www.fraps.com/

26

5	
 	
 Results	

 The results section contains much of the relevant data that we collected and helps explain

in detail the information collected through packet captures of OnLive, YouTube, and Skype.

5.1	
 Initial	
 OnLive	
 Packet	
 Captures	

 The following data was collected through the use of TCPDump commands and analyzed

in Excel. Packet captures that lasted two and a half minutes were organized into tables and

graphs so as to analyze the different applications. Only the OnLive games, Grand Ages: Rome,

Unreal Tournament III, and Batman: Arkham Asylum were analyzed.

5.1.1	
 Downstream	
 Packet	
 Captures	

 The data from the packet captures from each game was organized into Table 3, depicting

different statistics. These statistics included the standard deviation, minimum, maximum, and

average number of packets as well as the size of each packet. From this table we were able to

quickly see the differences across each game.

Table	
 3:	
 Downstream	
 Packet	
 Captures	
 of	
 Each	
 Game	

Our initial hypothesis stated that because OnLive is comparable to a video streaming

service, the packet captures of each game should be very similar. Both Batman: Arkham Asylum

and Unreal Tournament III have similar downstream packet capture statistics, but even these two

games differ more than we originally suspected. It was not until looking at the Grand Ages:

Rome results that we realized the packet captures of different games do vary.

 The results from Grand Ages: Rome were surprising and completely contradicted our

initial hypothesis. Every single one of Grand Ages: Rome’s data was significantly smaller than

both Unreal Tournament III and Batman: Arkham Asylum except for the standard deviation. It

Trial Packet	
 Min Packet	
 Max Packet	
 Average Packet	
 STDEV Kilobytes	
 Min	
 (kb) Kilobytes	
 Max	
 (kb) Kilobytes	
 Average	
 (kb) Kilobytes	
 STDEV	
 (kb)
1 687 775 736.3 18.1 730.257 850.061 786.8 26.6
2 674 784 733.9 18.8 711.337 844.795 780.8 23.6
3 671 777 731.0 19.2 701.891 848.983 779.5 26.0

Trial Packet	
 Min Packet	
 Max Packet	
 Average Packet	
 STDEV Kilobytes	
 Min	
 (kb) Kilobytes	
 Max	
 (kb) Kilobytes	
 Average	
 (kb) Kilobytes	
 STDEV	
 (kb)
1 727 806 761.5 14.2 755.3 819.6 795.6 11.5
2 729 794 759.2 15.0 766.2 817.8 791.6 10.6
3 717 797 757.4 14.8 759.5 818.5 794.6 11.6

Trial Packet	
 Min Packet	
 Max Packet	
 Average Packet	
 STDEV Kilobytes	
 Min	
 (kb) Kilobytes	
 Max	
 (kb) Kilobytes	
 Average	
 (kb) Kilobytes	
 STDEV	
 (kb)
1 311 661 506.5 62.6 140.5 707.1 482.5 94.8
2 389 737 500.5 51.1 316.3 816.7 477.1 74.9
3 379 680 509.3 50.9 308.0 710.8 486.8 67.4

Grand	
 Ages:	
 Rome

Batman:	
 Arkham	
 Asylum

Unreal	
 Tournament	
 III

27

was these results that prompted us to reconsider our hypothesis and how OnLive was working to

deliver its products to users.

 To grasp the differences of each game more easily, the data collected from all three

games were plotted on the same graph. For each game the second trial was chosen and plotted on

the same graph to clearly compare and contrast the packet captures of each game.

Figure	
 9:	
 Batman,	
 Unreal,	
 and	
 Rome	
 Downstream:	
 Kilobytes	
 vs.	
 Time	

 Figure 9 shows a clear visual difference between Grand Ages: Rome and the other two

games. At the same time, it is possible to see the subtle differences between Unreal Tournament

III and Batman: Arkham Asylum. This graph shows the consistency of Unreal Tournament III

and Batman: Arkham Asylum while also showing the large standard deviation of Grand Ages:

Rome. A graph similar to this was also plotted for packet size. It is visually similar to Figure 9

and can be found in the appendix.

28

5.1.2	
 Upstream	
 Packet	
 Captures	

 Interestingly the upstream packet capture data contradicted our hypothesis as well. We

assumed that because each game was from a different genre, and the speed at which you play

each game is different, the upstream would vary greatly across all three games.

Figure	
 10:	
 Batman,	
 Unreal,	
 and	
 Rome	
 Upstream:	
 Kilobytes	
 vs.	
 Time	

 As evident from Figure 10, the data collected for the upstream information of each game

is similar. All three games have a similar range of Kilobytes per second. Similar to the

downstream packet captures, the Number of Packets vs. Time graphs for the upstream are

visually similar and can be found in the appendix.

5.2	
 OnLive	
 Versus	
 Video	
 Streaming	
 Services	

 The following section contains information from experiments in the previous section and

the information collected from the trials for Skype and YouTube.

29

5.2.1	
 Downstream	
 Packet	
 Captures	

 Overall when compared with the results of the OnLive trials were much different than the

results of the Skype and YouTube trials. Table 4 shows statistics for the two video applications

and the three OnLive games.

Table	
 4:	
 All	
 5	
 Applications	
 Downstream	
 Packet	
 Capture	

 Looking at Table 4, YouTube had the greatest lower and upper bounds and was the most

erratic in terms of the number of packets per second and packet size.

Figure	
 11:	
 Unreal,	
 Batman,	
 Rome,	
 Skype,	
 and	
 YouTube	
 Downstream:	
 Kilobytes	
 vs.	
 Time	

30

 From Figure 11 it is possible to see the differences in network traffic for each system.

YouTube’s packets are much larger than any of the other applications tested. Similar to our other

tests, the Number of Packets vs. Time graph looks very similar to Figure 11 and can be found in

the appendix.

5.2.2	
 Upstream	
 Packet	
 Captures	

 When looking at the upstream packet captures of each application, Skype produced

results that were unexpected. All four other applications data looks similar to what we expected

and what we saw before, but the Kilobytes vs. Time graph shows Skype with the largest average

upstream.

Table	
 5:	
 All	
 5	
 Applications	
 Upstream	
 Packet	
 Capture	

Unlike the OnLive games, Skype’s Kilobytes per second manages to stay on par with what is

being displayed by YouTube. As seen in Figure 12, Skype’s upstream bandwidth shows that

Skype uploads much more data per second than the OnLive games. This difference is most likely

because of the two-way video functionality of Skype.

31

Figure	
 12:	
 Unreal,	
 Batman,	
 Rome,	
 Skype,	
 and	
 YouTube	
 Upstream:	
 Kilobytes	
 vs.	
 Time	

 	

32

5.3	
 OnLive	
 and	
 Network	
 Variation	

 All of the packet captures collected thus were with an unrestricted network and no

changes to the traffic shaper had been made. The following results will display how a restricted

network can affect the data captured for the OnLive games, YouTube, and Skype. For this part of

our investigation DummyNet was used on our FreeBSD router to modify the network and cause

disruptions of service. For the OnLive portion of our investigation we used Unreal Tournament

III.

5.3.1	
 Bandwidth	
 Restriction	
 and	
 OnLive	

 The first network characteristic we changed was the bandwidth of the network

connection. The OnLive game was played under the following bandwidth restrictions:

Unrestricted Upstream and Downstream, 10Mbit/s Downstream and 2Mbit/s Upstream, and

5Mbit/s Downstream and 2Mbit/s Upstream. These bandwidth restrictions were chosen because

they are similar to a many consumer Internet connections available today.

 The downstream bandwidth measurements of OnLive are shown in Table 6. These

measurements indicate that OnLive is consistent over different Internet bandwidths. The standard

deviations of both the packets per second and the kilobytes per second both decrease as the

bandwidth decreases. Overall this table indicates that as the bandwidth decreases, the packets per

second and kilobytes per second proportionally decrease.

Table	
 6:	
 Vary	
 Bandwidth-­‐	
 Unreal	
 Tournament	
 Downstream	

	
 	
 Packet	

Min	

Packet	

Max	

Packet	

Average	

Packet	

STDEV	

	
 Min	

(kB)	

	
 Max	

(kB)	

Average	

(kB)	

	
 STDEV	

(kB)	

Unrestricted	
 687	
 797	
 751.9	
 19.1	
 691.4	
 839.1	
 773.1	
 25.7	

10	
 Mbps	
 482	
 564	
 537.4	
 13.9	
 480.3	
 579.2	
 546.2	
 17.4	

5	
 Mbps	
 297	
 353	
 328.1	
 9.9	
 222.1	
 275.2	
 257.0	
 10.1	

33

Figure	
 13:	
 Vary	
 Bandwidth-­‐Unreal	
 Tournament	
 Downstream	
 KiloBytes	
 Versus	
 Time	

The graph in Figure 13 shows the measured downstream bandwidth in Kilobytes versus

Seconds. The lowest line (5 Mbps) averages around 250 kBps, which is equivalent to 2 megabits

per second, which also matches OnLive’s network requirements of at least 2 megabits per second

of Internet bandwidth. This graph supports the conclusion drawn from Table 6 that OnLive

makes use of whatever bandwidth is available.

The CDF in Figure 14 shows the packet sizes for OnLive across varying bandwidths.

This CDF shows that nearly 40% of the packets in the 5Mbps test were either 200 bytes or 1400

bytes in size while 60% of the packets from the 10Mbps and unrestricted tests were 1400 bytes

in size. This indicates that as the available bandwidth changes, so do the sizes of the packets sent.

Ki
lo
by

te
s	
 p

er
	
 S
ec
on

d	

(k
Bp

s)

34

The CDF in Figure 15 shows the interpacket times for OnLive across varying

bandwidths. This CDF shows that almost 60% of the packets are less than 2ms apart for all of the

trials. Overall, this CDF indicates that the interpacket times for the 5Mbps and 10Mbps

bandwidths are slightly larger than the interpacket times for the unrestricted bandwidth.

Figure	
 14:	
 Vary	
 Bandwidth-­‐	
 CDF	
 Packet	
 Size:	
 Unreal	
 Tournament	

Figure	
 15:	
 Vary	
 Bandwidth-­‐	
 CDF	
 Interpacket	
 Time:	
 Unreal	
 Tournament	

35

5.3.2	
 Packet	
 Loss	
 and	
 OnLive	

 The next network characteristic modified was the packet loss rate of the Internet

connection. For these tests, 0%, 1%, and 1.5% packet loss were used.

Table	
 7:	
 Vary	
 Bandwidth-­‐	
 Unreal	
 Tournament	
 Upstream

The downstream bandwidth measurements with varying packet loss for OnLive are

shown in Table 7 below. The measurements indicate that OnLive downstream bandwidth is

consistent even with varying packet loss rates. The standard deviations of both the packets per

second and the kilobytes per second increased as the packet loss increased, but overall the

averages were similar.

	
 	

Packet	

Min	

Packet	

Max	

Packet	

Average	

Packet	

STDEV	

	
 Min	

(kB)	

	
 Max	

(kB)	

	
 Average	

(kB)	

	
 STDEV	

(kB)	

0%	
 PL	
 687.0	
 797.0	
 751.9	
 19.1	
 691.5	
 839.1	
 773.1	
 25.7	

1%	
 PL	
 521.0	
 788.0	
 692.3	
 37.5	
 536.5	
 846.1	
 762.3	
 44.1	

1.5%	
 PL	
 547.0	
 727.0	
 674.1	
 33.4	
 572.6	
 812.2	
 746.9	
 47.8	

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	
 110	
 120	
 130	
 140	

K
ilo
by
te
s	

pe
r	

Se
co
nd
	
 (k
Bp
s)
	

Time	
 (seconds)	

Unrestricted	

1%	
 Packet	
 Loss	

1.5%	
 Packet	
 Loss	

Figure	
 16:	
 Vary	
 Packet	
 Loss-­‐	
 Unreal	
 Tournament	
 Downstream	
 Kilobytes	
 versus	
 Time	

36

 The graph in Figure 16 shows the kilobytes per second downstream for Unreal

Tournament across varying packet loss rates. The graph supports the conclusion drawn from

Table 7 that OnLive is consistent even with packet loss.

 The CDF in Figure 17 shows the packet sizes for OnLive across varying packet loss rates.

This CDF shows that the packet sizes for 1% and 1.5% packet loss are nearly identical. Overall,

this CDF indicates that the higher the packet loss rate, the larger the percentage of the largest

packets sent, in this case packets with a size of around 1400 bytes.

 The CDF in Figure 18 shows the interpacket times for OnLive across varying packet loss

rates. This CDF shows that the interpacket times for both packet loss rates are again nearly

identical, but overall they vary from the trial with no packet loss.

Figure	
 17:	
 Vary	
 Packet	
 Loss-­‐	
 CDF	
 Packet	
 Size:	
 Unreal	
 Tournament	

37

 Overall, this data indicates that OnLive maintains a consistent bandwidth even though

some of the underlying network characteristics like packet size and interpacket time are slightly

different.

5.3.3	
 Latency	
 and	
 OnLive	

The last network characteristic that was modified was the latency that was induced in the

system. For these tests, 0ms, 20ms, and 35ms were used.

The downstream bandwidth measurements with varying latencies for OnLive are shown

in Table 8. The measurements again indicate that OnLive downstream bandwidth is consistent

even across varying latencies.

Figure	
 18:	
 Vary	
 Packet	
 Loss-­‐	
 CDF	
 Interpacket	
 Time:	
 Unreal	
 Tournament	

38

The graph in Figure 19 shows the kilobytes per second downstream for Unreal

Tournament across varying latencies. The graph supports the conclusion drawn from Table 8 that

OnLive is consistent even with additional latency.

The CDF in Figure 20 shows packet sizes for OnLive across varying latencies. This CDF

shows that latency has little to no effect on the packet sizes of the OnLive service. The CDF in

Figure 21 shows the interpacket times for OnLive across varying latencies. The distinct steps

	
 	

Packet	

Min	

Packet	

Max	

Packet	

Average	

Packet	

STDEV	

	
 Min	

(kB)	

	
 Max	

(kB)	

	
 Average	

(kB)	

	
 STDEV	

(kB)	

0	
 ms	
 687	
 797	
 751.9	
 19.1	
 691.4	
 839.1	
 773.1	
 25.7	

20	
 ms	
 456	
 790	
 747.7	
 33.5	
 343.4	
 826.2	
 766.2	
 46.7	

35	
 ms	
 699	
 795	
 758.4	
 15.0	
 710.2	
 836.4	
 780.1	
 20.8	

Table	
 8:	
 Vary	
 Latency-­‐	
 Unreal	
 Tournament	
 Downstream	

Figure	
 19:	
 Vary	
 Latency-­‐	
 Unreal	
 Tournament	
 Downstream	
 Kilobytes	
 Versus	
 Time	

Ki
lo
by

te
s	
 p

er
	
 S
ec
on

d	

(k
Bp

s)

39

seen in the two latency lines in the CDF reveal that the interpacket times are much more rigidly

defined. The difference between these two lines and the unrestricted line indicates that OnLive

specifically modifies its service to handle particular latencies.

Overall these results indicate that OnLive tailors its service to specifically handle varying

latencies.

	
 	

Figure	
 20:	
 Vary	
 Latency-­‐	
 CDF	
 Packet	
 Size:	
 Unreal	
 Tournament	

40

5.4	
 Video	
 Streaming	
 Services	
 and	
 Network	
 Variation	

 The next step in our experiment was to use the DummyNet settings for YouTube and

Skype.

5.4.1	
 Bandwidth	
 Restriction	
 and	
 YouTube	

 The downstream bandwidth measurements of YouTube are shown in Table 9 below. The

Table demonstrates that YouTube makes use of whatever bandwidth it can. The max kilobyte per

second measurement for the unrestricted bandwidth is much higher than any other bandwidth

measurements for OnLive and Skype.

Figure	
 21:	
 Vary	
 Latency-­‐	
 CDF	
 Interpacket	
 Time:	
 Unreal	
 Tournament	

41

Table	
 9:	
 Vary	
 Bandwidth-­‐	
 YouTube	
 Downstream	

 The graph located in Figure 22 shows the downstream bandwidths for YouTube at

varying bandwidth restrictions. The graph also supports the conclusion drawn from Table 9 that

YouTube will use whatever bandwidth is available. The line representing the unrestricted

bandwidth is much higher than the other two bandwidth restrictions.

	
 	
 Packet	

Min	

Packet	

Max	

Packet	

Average	

Packet	

STDEV	

	
 Min	

(kB)	

	
 Max	

(kB)	

	
 Average	

(kB)	

	
 STDEV	

(kB)	

Unrestricted	
 0	
 3512	
 1670.1	
 1557.8	
 0.0	
 5317.2	
 2526.2	
 2359.3	

10	
 Mbps	
 183	
 436	
 413.1	
 28.3	
 216.0	
 642.0	
 623.0	
 49.6	

5	
 Mbps	
 38	
 228	
 205.6	
 21.4	
 44.6	
 332.0	
 308.8	
 35.6	

0	

1000	

2000	

3000	

4000	

5000	

6000	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	
 110	
 120	
 130	
 140	

K
ilo
by
te
s	

pe
r	

Se
co
nd
	
 (k
Bp
s)
	

Time	
 (seconds)	

Unrestricted	

10	
 Mbps	

5	
 Mbps	

Figure	
 22:	
 Vary	
 Bandwidth-­‐	
 YouTube	
 Downstream	
 Kilobytes	
 versus	
 Time

42

5.4.2	
 Packet	
 Loss	
 and	
 YouTube	

 The downstream bandwidth measurements for varying packet loss with YouTube are

shown in Table 10. This table demonstrates that YouTube’s use of bandwidth is extremely

dependent on packet loss. In fact during the YouTube tests where there was packet loss, the

video actually stopped playing about 90 seconds in.

	

Packet	

Min	

Packet	

Max	

Packet	

Average	

Packet	

STDEV	

	
 Min	

(kB)	

	
 Max	

(kB)	

	
 Average	

(kB)	

	
 STDEV	

(kB)	

0%	
 PL	
 0	
 3512	
 1670.1	
 1557.8	
 0.0	
 5317.2	
 2526.2	
 2359.3	

1%	
 PL	
 95	
 798	
 494.9	
 125.1	
 110.4	
 1208.2	
 747.3	
 191.8	

1.5%	
 PL	
 18	
 589	
 315.1	
 138.2	
 26.8	
 891.7	
 474.9	
 210.2	

Table	
 10:	
 Vary	
 Packet	
 Loss-­‐	
 YouTube	
 Downstream	

0	

1000	

2000	

3000	

4000	

5000	

6000	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	
 110	
 120	
 130	
 140	

K
ilo
by
te
s	

pe
r	

Se
co
nd
	
 (k
Bp
s)
	

Time	
 (seconds)	

Unrestricted	
 	

1%	
 Packet	
 Loss	
 	

1.5%	
 Packet	
 Loss	

Figure	
 23:	
 Vary	
 Packet	
 Loss-­‐	
 YouTube	
 Downstream	
 Kilobytes	
 versus	
 Time	

43

The graph in Figure 23 shows the bandwidth of YouTube in kilobytes per second. The

graph also supports the conclusion drawn from Table 10 that YouTube is extremely sensitive to

packet loss.

5.4.3	
 Latency	
 and	
 YouTube	

 The downstream bandwidth measurements for varying latencies with YouTube are shown

in Table 11. This table demonstrates that YouTube’s use of bandwidth changes extensively

depending on the latency in the system. As the latency increases the max kilobytes per second

also increases but the average still remains similar.

	
 	
 Packet	

Min	

Packet	

Max	

Packet	

Average	

Packet	

STDEV	
 	
 Min	
 (kB)	
 	
 Max	

(kB)	

	
 Average	

(kB)	

	
 STDEV	

(kB)	

0	
 ms	
 0	
 3512	
 1670.1	
 1557.8	
 0.0	
 5317.2	
 2526.2	
 2359.3	

20	
 ms	
 0	
 7619	
 1694.7	
 2400.3	
 0.0	
 11534.1	
 2563.3	
 3634.6	

35	
 ms	
 0	
 8136	
 1672.0	
 2017.9	
 0.0	
 12280.9	
 2528.0	
 3052.9	

Table	
 11:	
 Vary	
 Latency-­‐	
 YouTube	
 Downstream

44

The graph in Figure 24 shows the YouTube downstream for varying latencies in

Kilobytes per second. The graph supports the conclusion drawn from table 11 that YouTube’s

bandwidth changes extensively as the latency increases. The two lines representing the two

tested latencies vary between 0 and up to 12000 kilobytes per second. The graph also indicates

that YouTube has some sort of latency compensation in place to deal with varying network

conditions.

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	
 110	
 120	
 130	
 140	

K
ilo
by
te
s	

pe
r	

Se
co
nd
	
 (k
Bp
s)
	

	

Time	
 (seconds)	

Unrestricted	
 	

20ms	
 	

35ms	
 	

Figure	
 24:	
 Vary	
 Latency-­‐	
 YouTube	
 Downstream	
 Kilobytes	
 versus	
 Time	

45

0	

50	

100	

150	

200	

250	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	
 110	
 120	
 130	
 140	

K
ilo
by
te
s	

pe
r	

Se
co
nd
	
 (k
Bp
s)
	

Time	
 (seconds)	

Unrestricted	

10	
 Mbps	

5	
 Mbps	

5.4.4	
 Bandwidth	
 Restriction	
 and	
 Skype	

 The downstream bandwidth measurements with Skype are shown in Table 12. This table

demonstrates that Skype is able to operate at many different bandwidths.

	
 	
 Packet	

Min	

Packet	

Max	

Packet	

Average	

Packet	

STDEV	

	
 Min	

(kB)	

	
 Max	

(kB)	

	
 Average	

(kB)	

	
 STDEV	

(kB)	

Unrestricted	
 105	
 199	
 156.1	
 15.2	
 91.2	
 196.5	
 135.0	
 19.7	

10	
 Mbps	
 126	
 202	
 156.5	
 12.2	
 97.8	
 195.9	
 135.0	
 16.5	

5	
 Mbps	
 107	
 193	
 156.7	
 14.1	
 69.7	
 186.0	
 138.7	
 19.3	

Table	
 12:	
 Vary	
 Bandwidth	
 Skype	
 Downstream	

Figure	
 25:	
 Vary	
 Bandwidth-­‐	
 Skype	
 Downstream	
 Kilobytes	
 versus	
 Time	

46

The graph in Figure 25 shows the Skype downstream in Kilobytes per second. It also

supports the conclusion drawn from Table 12 that Skype is able to operate at many different

bandwidths and that it is consistent across all of the bandwidths.

5.4.5	
 Packet	
 Loss	
 and	
 Skype	

 The downstream bandwidth measurements for Skype with varying packet loss rates are

shown in Table 13. The table shows that as the packet loss rate increases so does the bandwidth

used by Skype.

The graph in Figure 26 shows the Skype downstream measurements across varying

packet loss rates in kilobytes per second. The graph supports the conclusion drawn from Table

13 that, as the packet loss rate increases the bandwidth also increases.

	
 	
 Packet	

Min	

Packet	

Max	

Packet	

Average	

Packet	

STDEV	

	
 Min	

(kB)	

	
 Max	

(kB)	

	
 Average	

(kB)	

	
 STDEV	

(kB)	

0%	
 PL	
 114	
 198	
 159.3	
 14.0	
 97.8	
 189.8	
 133.1	
 17.3	

1%	
 PL	
 149	
 236	
 187.3	
 17.1	
 131.8	
 249.1	
 182.8	
 23.3	

1.5%	
 PL	
 143	
 273	
 192.5	
 26.5	
 121.7	
 299.6	
 190.2	
 36.5	

Table	
 13:	
 Vary	
 Packet	
 Loss	
 Rates	
 Skype	
 Downstream	

47

Figure	
 26:	
 Vary	
 Packet	
 Loss	
 Rates-­‐	
 Skype	
 Downstream	
 Kilobytes	
 versus	
 Time	

5.4.6	
 Latency	
 and	
 Skype	

 The downstream bandwidth measurements for Skype across varying latencies are

represented in Table 14. The average packets per second and kilobytes per second indicate that

Skype is extremely resistant to latency.

0	

50	

100	

150	

200	

250	

300	

350	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	
 110	
 120	
 130	
 140	

Ki
lo
by
te
s	
 p

er
	
 S
ec
on

d	

(k
Bp

s)
	

Time	
 (seconds)	

Unrestricted	

1%	
 PL	

1.5%	
 PL	

Table	
 14:	
 Vary	
 Latency-­‐	
 Skype	
 Downstream	

	
 	
 Packet	

Min	

Packet	

Max	

Packet	

Average	

Packet	

STDEV	

	
 Min	

(kB)	

	
 Max	

(kB)	

	
 Average	

(kB)	

	
 STDEV	

(kB)	

0	
 ms	
 105	
 199	
 156.1	
 15.2	
 91.2	
 196.5	
 135.0	
 19.7	

20	
 ms	
 116	
 208	
 154.4	
 15.3	
 84.1	
 209.6	
 133.1	
 20.7	

35	
 ms	
 116	
 196	
 157.2	
 15.1	
 78.2	
 188.5	
 134.4	
 20.8	

48

0	

50	

100	

150	

200	

250	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	
 110	
 120	
 130	
 140	

K
ilo
by
te
s	

pe
r	

Se
co
nd
	
 (k
Bp
s)
	

Time	
 (seconds)	

Unrestricted	

20	
 ms	

35	
 ms	

 The graph in Figure 27 shows the downstream bandwidth for Skype across varying

latencies in kilobytes per second. This graph also demonstrates that Skype is extremely resistant

to latency variation.

 	

Figure	
 27:	
 Vary	
 Latency-­‐	
 Skype	
 Downstream	
 Kilobytes	
 versus	
 Time	

49

0	

1	

2	

3	

4	

5	

6	

7	

8	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	
 110	
 120	
 130	
 140	

M
eg
ab

its
	
 p
er
	
 se

co
nd

	
 (M
bp

s)
	

Time	
 (seconds)	

Unreal	
 Downstream	

Batman	
 Downstream	

Rome	
 Downstream	

Unreal	
 Upstream	

Batman	
 Upstream	

Rome	
 Upstream	

5.5	
 Overall	
 Results	

5.5.1	
 OnLive	
 Individual	
 Game	
 Bandwidth	

 One of the major results from our experiments is that the downstream bandwidth of

OnLive varies depending on the game being played while the upstream bandwidth remains

constant. The graph in Figure 28 shows the overall downstream and upstream bandwidths used

by the 3 OnLive games tested. This graph reveals that the Grand Ages: Rome used considerably

less bandwidth than the other two games, Unreal Tournament and Batman.

Figure	
 28:	
 3	
 OnLive	
 Games	
 Upstream	
 and	
 Downstream:	
 Megabits	
 vs	
 Time

50

0	

10	

20	

30	

40	

50	

60	

70	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	
 80	
 90	
 100	
 110	
 120	
 130	
 140	

N
um

be
r	
 o

f	
 F
ra
m
es
	

Time	
 (seconds)	

Unrestricted	
 10	
 Mbps	

5	
 Mbps	
 20	
 ms	

35	
 ms	
 1%	
 Packet	
 Loss	

1.5%	
 Packet	
 Loss	

5.5.2	
 Frame	
 Rate	
 Measurements	
 	
 During	
 Network	
 Variations	

 During the DummyNet tests for OnLive FRAPS data was collected that allowed us to

measure the frame rates of the OnLive session being played. The graph in Figure 29 show the

variations in frame rate across the varying network conditions. This graph indicates that the

frame rates of the OnLive game will change depending on the condition of the network. This is

important because it reveals that OnLive must do some network analysis of its own in order to

modify the frame rates of the game.

Figure	
 29:	
 Network	
 Restrictions	
 in	
 Unreal	
 Tournament	
 3:	
 Frames	
 per	
 Second

51

6	
 	
 Conclusion	

Throughout the world today, cloud computing is changing the way people use their home

Internet connection. With new technologies like OnLive utilizing and depending on higher

quality Internet connections, it is imperative that both companies and their customers understand

the basics of how these technologies work and what resources they require. As stated in Chapter

1 our goal for this project was to analyze the underlying network characteristics and performance

of the OnLive gaming service. By reaching this goal, the project also hopes to provide potential

and current customers of OnLive with a basic understanding of how the system utilizes the

Internet Connection that they are paying for.

To meet this goal we decided to initially study the basic network performance metrics of

OnLive. After this initial investigation, we realized that a majority of the bandwidth used by

OnLive is for audio and video data. This revealed to us that OnLive is essentially a video

streaming service that shares characteristics with other video streaming services like Skype and

YouTube. Upon coming to this realization we furthered our analysis by comparing our initial

results with results from a basic network study of Skype and YouTube.

 Based on our results and comparisons we have reached the following conclusions about

OnLive:

• The network footprint of the OnLive gaming service varies depending on the game being

played.

• OnLive as a video streaming service is fundamentally different than Skype and YouTube.

• OnLive modifies properties of the game depending on the type of Internet service

available.

6.1 Basic Network Characteristics of OnLive
 The first part of our testing began with a basic investigation of the network behind the

OnLive gaming service. One of the major conclusions that we have drawn from these initial tests

is that OnLive downstream bandwidth varies depending on the type of game being played while

OnLive upstream bandwidth is consistent across all three types of games.

 The first part of that conclusion is clearly demonstrated by the graph in Figure 28.

Overall the data seems to suggest that first person shooter games require many frame updates per

second and therefore need more bandwidth to perform. Conversely real-time strategy games like

52

Grand Ages: Rome, do not require the same kinds of frame updates and therefore do not need as

much bandwidth.

 In contrast, the upstream bandwidth measurements across all three games were extremely

similar. This seems suggests that OnLive is designed to send client responses independently of

the game. In other words, regardless of the game being played, OnLive will always send constant

client commands to the server.

6.2 OnLive and Other Video Streaming Services

The next part of our testing investigated the basic network characteristics of two other

popular video services, Skype and YouTube. When compared with the results from the initial

OnLive tests, these tests indicate that OnLive is drastically different from Skype and YouTube.

Overall, YouTube and Skype had the highest upstream bandwidths and YouTube had the largest

downstream bandwidths (Figures 11 &12).

Skype’s large upstream bandwidth is most likely due to the fact that Skype was tested as

a two-way video service. In other words, video was not only being received but also sent. This

idea is also supported by the fact that Skype’s up and down streams were nearly symmetrical at

102KBps and 140KBps (Tables 4 & 5).

Additionally, YouTube’s large downstream is most likely due to the design of its

infrastructure. In other words, YouTube’s popularity has allowed the service to utilize some of

the most cutting edge technologies available. As stated in our background section, YouTube

streams over 3 Billion videos per day. In order to maintain such a service, YouTube has to

ensure that its content is available in many locations for optimized speed. With WPI’s large

Internet connection and peering with other providers, it is no surprise that YouTube’s

downstream was able to reach the level that it did.

 Lastly, the content provided by YouTube differs from OnLive because it is prerecorded

content. Unlike Skype and OnLive, YouTube provides content that has already been optimized

for their particular service. Overall this allows YouTube to have much more control over the

characteristics of the video being streamed. Additionally, once the video is downloaded to the

browser cache, the bandwidth drops drastically. OnLive’s bandwidth doesn’t drop because the

content is being created and streamed almost instantaneously. This is similar to Skype’s video

streaming, but OnLive uses much more downstream bandwidth (Figure 11).

53

6.3 OnLive and Network Variation
 After our initial network investigation of OnLive, we investigated how OnLive handles

variations in the network. In summary, OnLive was able to provide a consistent and playable

gaming experience across many network conditions.

 One of the first network characteristics to indicate this conclusion was bandwidth. Across

the United States today, there are many different types of Internet connections available. In order

for OnLive to become such a popular service, it must be able to deal with these varying

connections and bandwidth speeds. Our results in Figure 13 support this conclusion.

 Packet loss is another network characteristic that varies greatly depending on the Internet

connection available. Our results from Section 5.3.2 demonstrate that OnLive is also able to deal

with variations in packet loss.

 Lastly, OnLive must also handle variations in the latency of an Internet connection. Our

results from Section 5.3.3 demonstrate that OnLive is able to again provide a consistent and

playable gaming experience even across these varying latencies.

6.4 Overall
In summary, OnLive is not a typical video streaming service. Our results indicate that

OnLive network conditions differently, but at least as effectively as Skype and YouTube. The

results from our FRAPS data demonstrate that while OnLive’s network metrics such as packet

size and interpacket time may vary, the frame rates are either similar or at the minimum high

enough to provide a user with a playable game.

54

7	
 	
 Future	
 Work	

 OnLive pushes the boundaries of cloud computing and gaming. At the end of 2011,

OnLive released an OnLive application for iOS and Android systems but unfortunately our

project only focused on the console and PC applications of OnLive[25]. As unexplored as

OnLive is, the iOS and Android versions of OnLive are even more enigmatic. Comparing

OnLive with a 3G or 4G connection versus a Wi-Fi connection would be an interesting concept

to explore.

 Comparing and contrasting the tablet, phone, MicroConsole, and PC versions of OnLive

may yield very interesting results. This would be helpful for potential customers to decide which

OnLive system would best suit their needs. Skype and YouTube also have applications for each

of the platforms mentioned. This project could be extended easily to include the tablet and phone

applications of OnLive, Skype and YouTube.

 Another aspect of OnLive is the OnLive Desktop application. Released in early 2012,

OnLive Desktop lets users access a powerful PC from an iOS or Android tablet. 23 Instead of

using OnLive’s system to access popular video games, OnLive Desktop gives users the ability to

access a PC with Microsoft Office on a Windows 7 environment. Users can even browse the

Internet and use the Adobe Flash player, an uncommon feature on most tablets. This application

is completely unexplored and the performance testing of an application like this versus a PC or

laptop with Microsoft would most definitely produce interesting results. OnLive Desktop could

prove to be faster and more powerful than some laptops or netbooks. This would have a great

effect on the consumer, because it would be cheaper and more portable to buy a tablet and use

OnLive Desktop than to buy a laptop or netbook.

 An idea originating from the results of our experiments and our original hypotheses

would be the testing of other games on OnLive. There are many different genres of games and

OnLive has a multitude of games to choose from, ranging from old to new. A larger study could

build off of our original games and capture a vast amount of data from a much larger array of

games. The limitation of the single player experience can be researched as well because some

games on OnLive have a multiplayer aspect. The comparison between all the games would be an

intriguing research venture. There are many different categories to explore – Onlive offers games

from many different genres including[24]:

23 http://desktop.onlive.com/

55

• Action

• Adventure

• Casual

• Classic

• Family

• Fighting

• Horror

• Indie

• Platform

• Puzzle

• RPG

• Racing

• Shooter

• Simulation

• Sports

• Strategy

With 261 games, a comprehensive study on all the downstream and upstream packet captures of

each game would prove useful to OnLive. OnLive would be able to view which games are the

most taxing on their systems or which games are affected the most by network instability.

 Although many of the future work ideas have been technical, there is a user-level aspect

to OnLive that has yet to be explored. Focus groups and user studies could be used to determine

the quality of experience of OnLive versus other gaming consoles. Playing the same games on

the OnLive console compared to the same game played on an XBOX 360, Playstation 3,

Nintendo Wii, or PC would give valuable information on a typical consumer’s attitude towards

OnLive against more popular gaming consoles/mediums.

	
 	

56

Works	
 Cited	

[1] Jason Nieh, Naomi Novik, S. Jae Yang, A Comparison of Thin-Client Computing

Architectures: Columbia University, November 2000.
Online at: http://www.nomachine.com/documentation/pdf/cucs-022-00.pdf

[2] OnLive Technical FAQ, OnLive, http://www.onlive.com/support/performance,

Retrieved: January 2012.

[3] Rivka Tadjer. What is Cloud Computing?, PC Magazine,

http://www.pcmag.com/article2/0,2817,2372163,00.asp, November 18, 2010.

[4] Dave Perry. Taking Gaming into the ‘Cloud’, BBC,

http://news.bbc.co.uk/2/hi/programmes/click_online/8085937.stm, June 9, 2009.

[5] Chris Roper. GDC 09: OnLive Introduces The Future of Gaming. Next-Generation

“Cloud” Technology Could Change Videogames Forever, IGN,
http://pc.ign.com/articles/965/965535p1.html, March 23, 2009.

[6] Rich Brown. Interview: OnLive CEO Steve Perlman gives us his post-launch perspective,

CNET, http://news.cnet.com/8301-17938_105-20010687-1.html, July 15, 2010.

[7] Ernest Adams, Andrew Rollings. Andrew Rollings and Ernest Adams on Game Design,

Pearson, 1st Edition, May 11, 2003.

[8] Bruce Geryk. A History of Real-Time Strategy Games, GameSpot, March 31, 2008.

[9] Skype Grows FY Revenues 20%, Reaches 663 Min Users, TelecomPaper,

http://www.telecompaper.com/news/skype-grows-fy-revenues-20-reaches-663-mln-users,
March 8, 2011.

[9] Jennifer Caukin. A Day In The Life of Skype #Infographic, Skype: The Big Blog,

http://blogs.skype.com/en/2011/09/a_day_in_the_life_of_skype_inf.html, September 6,
2011.

[10] Salman A. Baset and Henning G. Schulzrinne. An Analysis of the Skype Peer-to-Peer

Internet Telephony Protocol, Columbia University,
http://www.cs.columbia.edu/~salman/publications/skype1_4.pdf, September 15, 2004.

[11] Skype Moves to VP8 for All Video Calls, The H, http://www.h-

online.com/open/news/item/Skype-moves-to-VP8-for-all-video-calls-1318315.html,
August 4, 2011.

[12] General Questions, The WebM Project, http://www.webmproject.org/about/faq/,

Retrieved: April 4, 2012.

57

[13] Statistics, YouTube, http://www.youtube.com/t/press_statistics, Retrieved December 14,
2011.

[14] Vijay Kumar Adhikari, Sourabh Jain, Yinyin Chen, and Shi-li Zhang, Vivisecting

YouTube: An Active Measurement Study, University of Minnesota, July 11, 2011.
 Online at: http://www.cs.umn.edu/tech_reports_upload/tr2011/11-012.pdf

[15] YouTube HTML5 Video Player, YouTube, http://www.youtube.com/html5, Retrieved:

April 9, 2012.

[16] Talhah Asharaf, Kelvin Leung, Xiang Liu. OnLive Cloud Gaming Service, May 2011.

Online at:
http://www.sjsu.edu/people/rakesh.ranjan/courses/cmpe272/s1/Team%20WS%20OnLive
%20Cloud%20Gaming%20Service.pdf

[17] Kuan-Ta Chen, Yu-Chun Chang, Po-Han Tseng, Chun-Ying Huang, and Chin-Laung

Lei, "Measuring The Latency of Cloud Gaming Systems," In Proceedings of ACM
Multimedia 2011, Nov 2011.

[18] Sheng-Wei (Kuan-Ta) Chen, Yu-Chun Chang, Po-Han Tseng, Chun-Ying Huang, Chin-

Laung Lei. Cloud Gaming Latency Analysis: OnLive and StreamMyGame Delay
Measurement, http://www.iis.sinica.edu.tw/~swc/onlive/onlive.html, April 4, 2012.

[19] Tom Beigbeder, Rory Coughlan, Corey Lusher, John Plunkett, Emmanuel Agu, and

Mark Claypool. The Effects of Loss and Latency on User Performance in Unreal
Tournament 2003, In Proceedings of ACM Network and System Support for Games
Workshop (NetGames), Portland, OR, USA, September 2004.

 Online at: http://www.cs.wpi.edu/~claypool/papers/ut2003/

[20] Ted Lemon. dhcpd.conf, linuxmanpages.com,

http://linuxmanpages.com/man5/dhcpd.conf.5.php, Date Accessed: December 11th, 2011.

[21] FreeBSD Handbook: Chapter 31 Firewalls, freebsd.org,

http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/firewalls-ipfw.html,
Date Accessed: December 11th, 2011.

[22] .PCAP File Extension, fileinfo.com, http://www.fileinfo.com/extension/pcap, July 5th,

2011.

[23] Mike Schramm. OnLive releases iOS and Android apps, custom touch controls, and a

wireless controller, joysitq.com, http://www.joystiq.com/2011/12/07/onlive-releases-ios-
and-android-apps-custom-touch-controls-and/, December 7, 2011.

[24] OnLive. Games, OnLive,

http://www.onlive.com/games/featuredgames#&tab=all_games&per_page=252,
Retrieved April 10, 2012.

58

Appendix	

59

	

60

61

	Worcester Polytechnic Institute
	Digital WPI
	April 2012

	Thin to Win? Network Performance Analysis of the OnLive Thin Client Game System
	Alexander William Grant
	Michael E. Solano
	Repository Citation

	Microsoft Word - AGMS_MQP.docx

