
Worcester Polytechnic Institute
Digital WPI

Interactive Qualifying Projects (All Years) Interactive Qualifying Projects

April 2015

Voice Controlled Music Sequencer
Victoria Jade Valcour
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/iqp-all

This Unrestricted is brought to you for free and open access by the Interactive Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Interactive Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Valcour, V. J. (2015). Voice Controlled Music Sequencer. Retrieved from https://digitalcommons.wpi.edu/iqp-all/2753

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/212981387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F2753&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/iqp-all?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F2753&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/iqp?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F2753&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/iqp-all?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F2753&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/iqp-all/2753?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F2753&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

1

VOICE CONTROLLED MUSIC SEQUENCER

Interactive Qualifying Project Report completed in partial fulfillment

of the Bachelor of Science degree at

Worcester Polytechnic Institute, Worcester, MA

Submitted to: Professor Bianchi

Ma’at Ford __________________________

Victoria Valcour __________________________

(date of submission)

2

Abstract

 This project served as a proof-of-concept to determine the validity of a voice-controlled

music sequencer. Working with Digital Performer and Dragon Dictate software, the project

explored the history of voice-recognition technology, and the feasibility of this technology

within a music sequencing environment.

3

Table of Contents

Executive Summary ……………………………………………………………………………... 4

Introduction ………………………………………………………………………………...……. 6

Methodology …………………………………………………………………………………….. 8

Results ………………………………………………………………………………………….. 12

Appendix A …………………………………………………………………………………….. 14

Works Cited ……………………………………………………………………………………. 17

4

Executive Summary

 The objective of this IQP was to develop a voice-controlled music sequencer prototype

that would serve as a proof-of-concept to determine the validity of developing a more

sophisticated model. A voice-controlled sequencer would allow the user to initiate and realize a

number of editing and data manipulation procedures through voice commands. Execution of

these commands will help facilitate the preparation of large and involved music sequences that

have traditionally required time intensive editing strategies. The speech-recognition technology

would allow users to easily alter properties of songs without having to use keystrokes associated

with their desired command. Voice-activated music sequencers are also necessary for increasing

accessibility for disabled users, who experience difficulties utilizing traditional sequencers due to

visual or other physical impairments. Ultimately, a voice controlled music sequencer will make

the editing procedures more representative of the interaction that occurs between a conductor and

a live acoustic orchestra. This technology is necessary to increase versatility in terms of music

production, as it provides more ways in which producers may create and implement innovative

musical ideas and concepts. In order to meet the primary objective, the project team created a

crude blueprint for a voice activated interface by linking voice software and macros (recorded

actions that perform an automated computer action).

 At the onset of this IQP, the project team was provided and presented with specific

software to use by advisor Professor Bianchi: AppleScript, Digital Performer 7.22, and Mac

speakable items. However, only certain items in AppleScript are fully compatible with the

commands in Mac speakable items. Thus, the project team decided to make use of different

software to meet the objective, specifically, Dragon Dictate. Dragon Dictate is a speech

5

recognition software that allows the user to perform tasks on the computer with custom voice

commands.

The project team experimented with different types of software to fulfill the automation

portion of the prototype. Mouse recording software recognizes movements that the user performs

with the computer mouse and compiles them into a file that is executable. By linking this

software and Dragon Dictate, the user is able to easily modify musical compositions by simply

saying the name of a file that contains the respective command to be performed.

6

Introduction

 In computer science, speech recognition is the conversion of speech to a computer

command or on-screen text. In order to complete this conversion, a computer must complete a

series of complex steps:

1. When a user speaks, their voice creates vibrations in the air. A computer samples these

by taking precise measurements at frequent intervals of the vibrations’ waves.

2. The computer filters the sampled sound to remove unwanted noise, and adjusts it to a

constant volume and speed that will match the template sound sample stored in the

system’s memory.

3. The sound is divided into small segments that are matched with known phoneme,

representations of sounds that humans make to form meaningful expression.

4. The software examines the phonemes in the context of others around them, running them

through a complex statistical model and comparing them to a large library of words,

phrases, and sentences. Thus, the software is able to determine what the user was saying,

and as a result, executes a command (Grabianowski).

Throughout the last sixty years, speech recognition software has evolved and emerged

with applications in various industries that include healthcare, military, and telephony. In the

1950s, the first speech recognition systems were only able to process digits. In 1952, Bell

Laboratories designed the “Audrey” system, which recognized digits spoken by a single user.

Ten years later at the World Fair, IBM revealed its “Shoebox” system, which was able to

understand sixteen spoken English words.

7

In the 1970s, interest from the United States Department of Defense allowed speech

recognition technology to make major strides -- perhaps most notably in the funding of Carnegie

Mellon’s “Harpy” system. Harpy was able to process approximately 1,011 words, the vocabulary

of an average three year old. Additionally, Bell Laboratories was able to introduce the first

system that was able to interpret the voices of multiple users.

In the 1980s, the hidden Markov model was developed. This was a new statistical method

that considered the probability of unknown sounds being words, rather than simply looking for

sound patterns. With this model, speech recognition began to emerge in commercial applications

and business settings.

In the 1990s, speech recognition software became viable for ordinary users with the aid

of more efficient computer processors. The first consumer speech recognition product, Dragon

Dictate, was launched in 1990. This software was able to recognize a user’s continuous speech

after forty-five minutes of training. In 1996, BellSouth produced the first dial-in interactive

speech recognition system, “Val”, which gave users information based on what they said into a

telephone.

In the 2000s, speech recognition emerged into the mobile phone industry with the arrival

of Google Voice Search app for the iPhone. This was particularly significant for the development

of speech recognition, as the tiny size of mobile devices provided incentive to develop more

advanced and alternative user-input methods (Pinola).

8

Methodology

The project team began by experimenting with an application that detects keystrokes,

“Keyboard and Mouse Recorder” (KAMR), developed by AlphaOmega Software. The project

team recorded basic keystroke commands (i.e. start, stop, play), all of which were executed

properly when played back in Digital Performer. The project team tried to further this method by

naming these executable files to their respective commands (i.e. a recording that clicks the play

button or activates the play keystroke is named “play”) and by voicing the name of the file by

using Speakable Items. However, this method was crude and tedious to perform for several

reasons. Whenever the keystroke was pressed to begin recording, the operator had to

immediately perform the keystroke or the mouse command. No matter how swiftly the action

was performed during the recording, there was a significant delay. Additionally, the version of

KAMR that the project team obtained was a trial version, so actions could only be recorded for a

certain length in time. The project team’s advisor, Professor Bianchi, was willing to purchase the

full version of the software, but eventually it was deduced that this method was inadequate for an

eventual voice-activated music sequencer.

While the project team initially began utilizing AppleScript and Speakable Items

software, it was ultimately decided to make use of other software applications. This decision was

made primarily due to AppleScript being a somewhat complex programming language that takes

significant time to learn. With little knowledge in AppleScript software, the project team felt that

time would be better spent generating results as opposed to learning a new programming

language. Furthermore, AppleScript and OS X’s built in Speakable Items worked much more

9

cooperatively with proprietary Apple Applications (Automator, iMovie, Safari, Finder,

iMessage, etc.).

In further research on an unaffiliated Digital Performer (DP) forum concerning

scriptability, the project team learned that DP is indeed scriptable in AppleScript. However, DP

is not a very “well-behaved” application. In the AppleScript editor, a dictionary of commands

will be published for each scriptable application. While DP does have a command dictionary, it

contains only one command titled “doscript”, with no script syntax. The project team examined a

1998 MQP in which a team created an actual voice-activated music sequencer. In doing so, the

project team noted that the team used a voice speaking software titled “Dragon Naturally

Speaking” developed by Nuance Communications for Windows. Because this project is

performed completely on Mac OS X, the project team decided to use the Macintosh alternative to

Dragon Naturally Speaking, Dragon Dictate.

The project team obtained a copy of Dragon Dictate and installed it on one of the Apple

computers in WPI’s Riley Lab. Dragon Dictate is a speech-to-text software that transcribes what

is verbally dictated to the computer by the user. Dragon Dictate contains a tutorial for new users

on how to use the software. Users create their own voice profiles when Dragon is turned on. In

order to obtain optimal performance out of Dragon Dictate, our team read through all of the

passages so the software could get acclimated to our voices.

The project team tested Dragon Dictate with other applications (TextEdit, Finder, and

Safari) in order to see the feasibility of using it eventually with Digital Performer. The project

team articulated simple commands (“delete”, “go forward”, “go back”, “open”, and “close”) at

reasonable, intelligible speeds to ensure that the software understood the input clearly. Dragon

10

Dictate understood read commands with an approximate 90% success rate. If there is any error,

the user may state “scratch that” and Dragon will provide the user with a list of possible phrases

that may match what was spoken. The user would simply select one of these phrases and the

information from the selected phrase would be sent to the user’s Dragon Profile for the software

to “learn” from the user’s voice. The project team verbalized other commands (i.e. file, edit,

format, etc.) to see if Dragon would execute them. There were some commands that Dragon

would not execute, due to Dragon misinterpreting a command for another word. Ultimately,

Dragon performed sufficiently with the commands that were provided off of the Dragon Dictate

website for all three applications that the project team worked with.

After a few weeks of experimenting with Dragon’s interface and using its commands, the

project team began to integrate Dragon Dictate with Digital Performer. The initial plan of our

proof of concept was to use KAMR software to record an action, save the file, and execute the

command via user voice. This proved to be a very tedious process. Additionally, Dragon Dictate

was only able to open applications, and not files. Each time the project team attempted to open a

file with Dragon, another window with information about that file would open. Another problem

that the project team encountered using KAMR was that even when mouse recording files were

executed, Digital Performer needed to be the current application running over all others. These

setbacks ultimately proved that the project team’s developed concept, at that point, was not

feasible.

While Dragon would not work with the recorded files for Keyboard and Mouse Recorder

(KAMR), Speakable Items would. After placing some command files in the KAMR folder and

resetting the Speakable Items application, the commands were successfully executed. Since the

voice-to-interface engine in Speakable Items is not as complex as Dragon, commands needed to

11

be enunciated loudly and clearly. While this was significant progress, the project team continued

to look for software that allowed the user to exert their voice less.

After researching ways to integrate Dragon with other applications, the project team

found that Dragon came with its own scripting software. In Dragon Dictate, there is a list of

applications with custom commands (accessible through the “commands” option) and a list of

parameters for any command that is created. If a user wanted to create a command that opened

the DP Effects Window, the user would create a new application context for Dragon Dictate to

receive, and then adjust the command parameters. This command script editor offers an

extensive amount of options in how the user chooses to execute the command.

12

Results

In the command list for Dragon, the project team selected Digital Performer and created a

new command titled “drum roll”. The project team selected the respective keystroke that opened

the drum roll command, voiced “drum roll” to the software, and the drum roll window

successfully opened. This simple test serves as proof-of-concept for a voice-activated music

sequencer. Provided with the versatility and simplicity of Dragon Dictate’s scripting program,

the team found it much easier to communicate with the interface for Digital Performer.

To further test the capabilities of Dragon’s scripting with Digital Performer, the project

team began to use the list of Digital Performer commands that were executable by keystroke and

integrating them into Dragon Dictate. The new voice commands that the project team created

worked seamlessly in Digital Performer.

The next step was to script the menu bar for Digital Performer. Dragon also has an option

in the command scripting window for the user to activate items on the menu bar. When testing

the menu items in Dragon Dictate, there were some interesting points to note. When the user

voices one menu item, the menu item needs to be repeated in order to close it. The user cannot

vocally switch from one menu item to another while one is currently open. If the user continues

to switch while one menu is open, a glitch will occur in which Dragon will open the recited

menu for a split second.

Another note from the project team’s developed method is the manner in which a user

may modify music files. The project team was provided with a sample of “Adagio for Strings”,

composed by Samuel Parker. When examining the music overlay for Adagio for Strings, the

project team wanted to test how well the voice activation features would work with the song

13

itself, specifically with a command the project team created called “retrograde” (For a full list of

commands that the project team created, see Appendix A). Retrograde reverses the order of

musical notes, so that when played, the notes are read and played the same backwards as they are

naturally played forwards. The project team selected a piece of notes from the song and voiced

the command “retrograde”. As expected, the selected piece in the composition reversed the

notes.

14

Appendix A

15

16

17

Works Cited

"DP AppleScript Documentation." Motunation. N.p., 21 Nov. 2004. Web. 23 Aug. 2013.

"Dragon Dictate for Mac Command Cheat Sheet." Dragon Dictate. Nuance, n.d. Web. 23 Aug.

 2013.

Grabianowski, Ed. "How Speech Recognition Works." HowStuffWorks. N.p., n.d. Web. 23 Aug.

 2013.

Pinola, Melanie. "Speech Recognition Through the Decades: How We Ended Up With

 Siri."ComputerWorld. IDG Magazines Norge, 11 Mar. 2011. Web. 23 Aug. 2013.

	Worcester Polytechnic Institute
	Digital WPI
	April 2015

	Voice Controlled Music Sequencer
	Victoria Jade Valcour
	Repository Citation

	tmp.1535739129.pdf.0EagV

