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Abstract

We study the behavior of a Kirchhoff rod with intrinsic bend and twist immersed in a viscous,
incompressible fluid at zero Reynolds number. Using a regularized Stokes formulation, we investigate
the effect of different material moduli and prescribed configurations on the helical equilibria of a free
and tethered rod. A model developed by Sookkyung Lim was first analyzed and then extended to
study the instability of a tethered rod with a straight and helical configuration in various conditions.
Then we explore the behavior of the rod in a loaded and unloaded condition prescribed with a time
and spatially dependent curvature and twist along the rod. To study the instability of the rod in each
case, we analyze its energy profile, configuration change and movement along each axis. Numerical
simulations are presented to show some interesting results and insights gained into the instability of a
Kirchhoff rod in Stokes flow. Results are discussed in connection with motion of filamentous structures
such as flagella and cilia in biological contexts.



Executive Summary

Filamentous structures that twist and bend are seen in various biological structures such as proteins,
flagella and cilia. Many micro-organisms swim via flagella. A eukaryotic flagellum is a cylindrical
shaped appendage that protrudes from the cell body of a microorganism and is driven by a rotary
engine. The rotation of these motors determines the form of micro-organism motion such as bundling,
twirling and tumbling. For example, E.coli is a rod-shaped bacterium whose strains possess flagella
to propel the bacterium when rotated by the motor through the hook. Immersed in high viscosity
fluids, elastic filaments and flagella exhibit instabilities when undergoing deformation and movement.
Previous modeling studies have represented the filament as a Kirchhoff rod, coupling its movement
to the fluid using an immersed boundary approach. A rotating straight rod, immersed in a viscous
fluid, was shown to exhibit buckling or large bending when the rotation was above a given frequency.
Additionally, a rod initialized as straight and given increasing value of twist caused the rod to become
unstable and buckle above a critical twist.

The goal of this project is to further explore various instabilities of a Kirchhoff rod in high viscosity
flow under different conditions. To solve the coupled fluid-structure interaction, we use a regularized
Stokes formulation by introducing a regularized force and torque from the unconstrained Kirchhoff rod
model. First, we explore the instability of helical equilibria of a tethered rod initialized as straight
with nonzero curvature and twist in Stokes flow. This corresponds to a rod that has a preferred
shape corresponding to a helix. To quantify the degree of instability and analyze the effect of different
material moduli on the instability, we analyze the energy profile of the rod in each case. We found that
bending and twist energy of the rod is monotonically decreasing as the rod achieves its prescribed helical
configuration. As the preferred twist is increased (corresponding to more turns along the helix), the
rod is unable to achieve its prescribed configuration, exhibiting buckling and loops. In such cases, the
rod has a higher energy, corresponding to a higher instability in the system. A tethered rod initialized
as a helix also exhibits similar instabilities as the preferred twist is increased. Compared to the case
where the rod is initialized as a straight rod, the rod initialized as a helix has a lower bending energy
initially. As the rod bends further to achieve its prescribed configuration, the bending energy plays a
more dominant role relative to the rod initialized as straight.

We also extend our study to the instability of a Kichhoff rod propagating a helical bending wave.
We explore the instability of both free and tethered Kirchhoff rods. We investigate the effect of the
surrounding fluid viscosity and the form of helical wave including amplitude, frequency and direction
of propagation on instability of the rod. In the case of a free rod, we calculate the swimming speed of
the rod associated with each helical bending wave and analyze the energy profile of the rod along with
its oscillation about different axes. We found that when the rod is unable to achieve its prescribed
waveform, excessively high beat frequency only results in excessive energy consumption, decreased
achieved amplitude and slower swimming speed. Increasing fluid viscosity reduces the ability of the
rod to achieve its prescribed amplitude and swim faster. Through our simulations, we found that in a
fluid of given viscosity, the rod may increase its swimming speed and decrease its energy by choosing
to propagate a wave of appropriate form (helical parameters) and frequency. We also observed an
asymmetric behavior of the rod with respect to the direction in which the wave propagates. This
asymmetry leads to different instabilities of a tethered rod propagating a helical bending wave. At
the end of the project, we discuss the biological implications of our study in the context of aquatic
micro-organisms.

1



Acknowledgements

I would like to thank my advisor Professor Sarah Olson for her continued support, guidance and
encouragement throughout this project. Her passion and vision are invaluable assets to my future
career in mathematics.

2



Contents

1 Introduction and Motivation 6
1.1 Micro-organisms in Marine Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Navier Stokes Equation and Low Reynolds Number . . . . . . . . . . . . . . . . . . . . 7

2 Methods 9
2.1 Stokes Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Material Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Kirchhoff Rod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Mathematical Formulation 17
3.1 Dynamical Rod Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Stokeslet and Rotlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Analysis 24
4.1 Material Properties and Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Helical Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Rod Initialized as Straight and Tethered . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Rod Initialized as Helical and Tethered . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Helical Bending Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.1 Helical Wave Propagating on a Free Rod . . . . . . . . . . . . . . . . . . . . . . 38
4.3.2 Helical Wave Propagating on a Tethered Rod . . . . . . . . . . . . . . . . . . . 51

5 Conclusions 58

A MATLAB Code 61

3



List of Figures

1.1 Motility of acquatic micro-organisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Blob in Eq. (2.8) with different regularization parameter ε. . . . . . . . . . . . . . . . . 11
2.2 Illustration of blobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Regularized Green’s function in Eq. (2.19) and Biharmonic function in Eq. (2.20). . . . 13
2.4 Illustration of orthonormal triad on a helix. . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Helical Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Energy profiile of the rod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Dominant of the total energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Different energy profiles with different moduli . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Helical Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6 Energy profile of helical equilibria achieved from a straight rod . . . . . . . . . . . . . . 34
4.7 Position dependent curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.8 Helical equilibria from a helix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.9 Energy profile of helical equilibria achieved from a helix . . . . . . . . . . . . . . . . . . 37
4.10 Helical equilibria of a longer rod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.11 Curvature along the rod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.12 Helical equilibria of a rod prescribed with zero twist and different curvature . . . . . . . 39
4.13 Energy profile a rod prescribed with zero twist . . . . . . . . . . . . . . . . . . . . . . . 39
4.14 Simulation 1 - Free rod, helical bending wave of σ = 20000 . . . . . . . . . . . . . . . . 42
4.15 Simulation 2 - Free rod, helical bending wave of σ = 50000 . . . . . . . . . . . . . . . . 43
4.16 Simulation 3 and Simulation 4 - free rod, helical bending wave of large σ . . . . . . . . 44
4.17 Simulation 5 - Free rod with large material moduli, helical bending wave . . . . . . . . 45
4.18 Simulation 6 - Free rod, helical bending wave in fluid viscosity µ = 8.9× 10−5 . . . . . 47
4.19 Simulation 7 - Free rod, helical bending wave in fluid viscosity µ = 8.9× 10−8 . . . . . 48
4.20 Simulation 8 - Free rod, helical bending wave with different helical parameter . . . . . . 50
4.21 Simulation 9 and Simulation 10 - Free rod, helical bending wave in a different direction 51
4.22 Simulation 11 - Tethered rod, helical bending wave, σ = 50000 and (r, p) = (1, 3) . . . . 52
4.23 Simulation 12 - Tethered rod, helical bending wave, σ = 100000 and (r, p) = (1, 3) . . . 53
4.24 Simulation 13 - Tethered rod, helical bending wave, σ = 20000 and (r, p) = (0.5, 2.5) . . 54
4.25 Simulation 14 - Tethered rod, helical bending wave, σ = 10000 and (r, p) = (0.5, 2.5) . . 55
4.26 Simulation 15 and Simulation 16 - Tethered rod, helical bending wave of different frequency 57

4



List of Tables

4.1 Basic parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Standard parameter set for rod initialized as a straight rod and given preferred strain

twist vector corresponding to a helix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Effect of bending modulus on time to reach equilibrium for free rod initialized as straight

with preferred helical shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Effect of twist modulus on time to reach stability for free rod initialized as straight with

preferred helical shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 Effect of shear modulus on time to reach stability for free rod initialized as straight with

preferred helical shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6 Effect of stretch modulus on time to reach stability for free rod initialized as straight

with preferred helical shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.7 Parameter values for tethered rod initialized as straight . . . . . . . . . . . . . . . . . . 33
4.8 Helix parameters for rod initialized as a tethered helix . . . . . . . . . . . . . . . . . . 36
4.9 Free straight rod propagating a helical bending wave . . . . . . . . . . . . . . . . . . . 40
4.10 Free rod propagating a helical bending wave (Sim. 1 - Sim. 4 ) where σ is increasing

from Sim. 1 to Sim. 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.11 Free rod propagating a helical bending wave (Sim. 5 - Sim. 8) . . . . . . . . . . . . . . 44
4.12 Free rod propagating a helical bending wave in high viscosity fluid . . . . . . . . . . . . 45
4.13 Free rod propagating a helical bending wave upward (Sim. 9 - Sim. 10) . . . . . . . . . 50
4.14 Tethered rod propagating a helical bending wave downward (Sim. 11 - Sim. 14) . . . . 56
4.15 Tethered rod propagating a helical bending wave upward (Sim. 15 - Sim. 16) . . . . . . 56

5



Chapter 1

Introduction and Motivation

1.1 Micro-organisms in Marine Environment

Micro-organisms are among the most important life forms on Earth, due to their diversity, ubiquity
and critical role in nutrient recycling of ecosystems. The ocean is known to provide one of the largest
reservoirs of micro-organisms. Fluid mechanics govern a wide range of functions for aquatic micro-
organisms such as bacteria, sperm and alga, regulating their biological behavior ranging from motility
to nutrient uptake to reproduction [11]. Understanding the interaction of acquatic micro-organisms
with their ambient fluid environment plays a key role in understanding the biological functions of these
microorganisms and their importance to marine ecology.

Micro-organisms move for different purposes. Some swim to forage for food or escape from predators;
others move for external fertilization or other biological functions, often guided by the gradient of
temperature, salinity or light. Moving micro-organisms can be classified as motile and non-motile. Sea
urchin spermatozoon, for example, is a motile sperm cell capable of propelling themselves spontaneously
and actively via flagella. Some algae and marine eggs are non-motile organisms which can only move
passively as a result of ocean waves. In both cases, fluid environment is critical to the locomotion
strategies of these microorganisms [13].

(a) (b)

Figure 1.1: (a) E.coli with cell body and several flagella move via flagella (taken from [16]) (b) The base
of the flagellum drives the rotation of the hook and filament (taken from [17]).

Many micro-organisms swim via flagella. A eukaryotic flagellum is a cylindrical shaped appendage
that protrudes from the cell body of a microorganism and is driven by a rotary engine [15]. The
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rotation of these motors determines the form of micro-organism motion such as bundling, twirling and
tumbling. For example, E.coli is a rod-shaped bacterium whose strains possess flagella to propel the
bacterium when rotated by the motor through the hook. Figure 1.1 (a) shows a group of motile E.coli
with flagella. Figure 1.1 (b) shows how the bacterial flagellum is driven by a rotary engine located
between cell body and flagellum. Twirling and whirling instabilities of micro-organism are critical to
their movement and relocation strategy [10, 21].

1.2 Navier Stokes Equation and Low Reynolds Number

The Navier-Stokes equations describe the velocity field of fluid substances. These equations arise
from applying Newtons second law to fluid motion in combination with a fluid stress due to viscosity
and pressure. We consider an infinitesimal fluid element. Applying Newton’s second law to this material
element gives Eq. (1.1) where F is a sum of forces (kg m s−2) acting on the fluid element, including
body forces and surface forces. m is the mass (kg) and u is the velocity (m s−1) of the element. Du

Dt
is

the material derivative of velocity, representing acceleration.

m
Du

Dt
= F (1.1)

The forces acting on the surface of the element are described by a stress tensor τ (kg m−1 s−2). The
stress tensor τ consists of pressure p and deviatoric stress tensors T , i.e. τ = −pI + T where I is the
Identity tensor. Rewriting the equation by breaking up the force component, we obtain the Cauchy
momentum equation. Note that m = ρdx where ρ (kg m−3) is the density of the element. If we let f
represent the body force per unit volume, i.e. fdx = F , Eq. (1.1) can be rewritten as Eq. (1.2) given
below [1].

ρ
Du

Dt
= −∇p+∇T + f (1.2)

Applying Newton’s law of viscosity which relates the stress tensor to the first dynamic viscosity µ (kg
m−1 s−1) and second coefficient of viscosity λ (kg m−1 s−1) which becomes essential when the fluid is
compressible, we obtain Eq. (1.3) where d is the rate of strain (s−1) [1].

τ = 2µd+

(
λ− 2

3
µ

)
(∇u)I (1.3)

If we impose an incompressibility condition to the fluid, i.e. ∇ · u = 0, we have τ = 2µd =
µ
[
∇u+ (∇u)T

]
. Hence, ∇τ = µ∆u. Substituting this expression into the Navier Stokes Equation,

we obtain Eq. (1.4).

ρ
Du

Dt
= −∇p+ µ∆u+ f (1.4)

To simplify the Navier Stokes equation in physical applications and gain a better understanding of
the relative size of various parameters, we non-dimensionalize the Navier Stokes Equation Eq. (1.4).

If we let L and U be the characteristic length and velocity scale respectively and choose p =
µU

L
p∗

to be the characteristic scale for p, then the time t has scale t =
L

U
t∗ and the force density f has
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scale f =
µU

L2
f ∗. The non-dimensionalized equation using the above scale is given by Eq. (1.5) where

Re =
ρUL

µ
is called the Reynolds number.

Re

(
∂u∗

∂t
+ u∗ · ∇u∗

)
= −∇p∗ + ∆u∗ + f ∗ (1.5)

The Reynolds number is a dimensionless quantity that measures the ratio of inertial forces to viscous
forces. When the Reynolds number is small, the viscous forces dominate, in which case, fluid velocities
are typically slow and acceleration can be neglected. Most micro-organisms live in a world dominated
by viscous forces, i.e. very low Reynolds number. We refer to this special dynamical regime where
Re�0 as Stokes flow. In this regime, if an organism stops actively moving its flagellum, it stops moving
instantaneously. In contrast, at high Reynolds number when a swimming person stops moving, the
person will continue to glide due to non-vanishing acceleration.
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Chapter 2

Methods

2.1 Stokes Flow

Stokes flow is a type of fluid flow where the relative length scale of the flow is small or the fluid
is extremely viscous. In Stokes flow, Re → 0 and as a result of this vanishing Reynolds number, the
inertial terms can be neglected. In such a case, if we envision a micro-organism swimming in a fluid,
it would immediately stop moving or wiggling once it stops generating forces. Neglecting the inertial

terms, i.e. the acceleration by setting
Du

Dt
= 0 in Eq. (1.2), we obtain the Stokes equation for an

incompressible fluid. Eq. (2.1) is the Stokes equation and Eq. (2.2) is the incompressibility condition,
also known as mass conservation.

0 = −∇p+ µ∆u+ f (2.1)

0 = ∇ · u (2.2)

Stokes flow is independent of time. Given any boundary conditions and external force at a given time,
the flow can be solved at that time instant without any knowledge of the flow at any other time.
However, if the force changes, fluid flow and pressure will change instaneously. A fundamental solution
of these equations is called a Stokeslet, which represents the velocity due to an external force acting at
a single point in Stokes flow. Assuming an infinite domain, the Green’s function is given by Eq. (2.3)
where ‖·‖ denotes Euclidean norm.

G(x) = − 1

4π‖x− x0‖
(2.3)

The Green’s function is introduced to study the Dirichlet problem. The Green’s function G(x) for the
domain D at the point x0 ∈ D is a function defined for x ∈ D such that it satisfies the following three
conditions [23].

1. G(x) possesses continuous second derivaties and ∆G = 0 in D, except at the point x = x0.

2. G(x) = 0 for x ∈ ∂D.

3. The function G(x)+
1

4π‖x− x0‖
is finite at x0 and has continuous second derivatives everywhere

and is harmonic at x0.

The singularity of the solution in Eq. (2.3) introduces difficulty in solving for the point force at x0.
To ease the challenge of numerical computation and be able to solve for the velocity at each point in a
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fluid domain, we employ regularized Stokeslets [5]. To desingularize the solution at x0, we smooth the
force function by considering the forces to be spread over a small sphere centered at x0 where the force
achieves a maximum value at the center and decays to zero on the surface of the sphere. The radius of
the sphere is a small numerical parameter that can be controlled independently.

To desingularize the force function, we introduce a radially symmetric smooth function φε satisfying∫ ∞
−∞

φε(x − x0)dx = 1 in R3 [5]. If we consider a smooth function f(x) in 1-D and the convolution

function given by Eq. (2.4), we know that when the regularization parameter ε is small, the blob
approaches h(x) near y = x [4].

(h ∗ φε) =

∫ ∞
−∞

h(y)φε(x− y)dy (2.4)

If we let Mk(φ) =

∫ ∞
−∞

zkφ(z)dz be the k-th moment of the function φ, using a Taylor expansion, we

can write the convolution function in R as Eq. (2.5).

(h ∗ φε)(x) =
∞∑
k=0

εk
h(k)

k!
Mk(φε) (2.5)

To ensure that we have an accuracy of fluid velocity evaluated in the region near point force up to
order O(εp), we require a blob in 1-D satisfy M0(φ) = 1, and Mk(φ) = 0 for k = 1, 2, ..., p− 1. A blob

function in R3 is scaled by volume where φε(x) =
1

ε3
φε

(x
ε

)
. To ensure an accuracy of order O(εp), the

same requirement applies to blob functions in 3-D. For a radially symmetric blob function in R3, the

k-th moment of a function φ is given by Mk(φ) = C(k)

∫ ∞
0

rk+2φ(r)dr where r = ‖x − x0‖ for some

scaling function C(k). Following the introduction of φε, the regularized Green’s function, Gε is defined
by Eq. (2.6) and the regularized biharmonic function Bε is defined by Eq. (2.7) in infinite space [5, 4].

∆Gε = φε(x) (2.6)

∆Bε = Gε(x) (2.7)

In this project, we use a blob function with infinite support given by Eq. (2.8) where r = ‖x−x0‖.

φε =
15ε4

8π(ε2 + r2)
7
2

(2.8)

Figure 2.1 is a plot of this blob function with different regularization parameter ε. As ε increases,
the width of the blob increases and the peak value decreases. Figure 2.2 demonstrates a comparison
between forces on a helix in 3-D without and with blobs. Peskin et al. employed a blob function with
compact support [20] given by Eq. (2.9).

φε =


3−2|r|+

√
1+4|r|−4|r2|
8

|r| ≤ 1
5−2|r|−

√
−7+12|r|−4r2
8

1 ≥ |r| ≤ 2
0 |r| ≥ 2

(2.9)
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Figure 2.1: Blob in Eq. (2.8) with different regularization parameter ε.
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Figure 2.2: Singular forces on structure (left) and regularized forces to spherical support via Eq. (2.8)
(right).

Compared to compact support, an infinite support blob makes it easier to compute the singular value
numerically. With an infinite support, we are able to choose a blob function such that 95% of the
force is concentrated within a critical radius rc, defined in [6], which generally suffices in engineering
applications. Furthermore, in the context of an elastic rod model, the radially symmetric nature of the
blob makes it more physically accurate as it spreads the force radially around the centerline of the rod,
corresponding to the circular cross-section of the rod.
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To derive the Stokeslet, we first take the divergence of both sides of Eq. (2.1) where f = f0φε is
regarded as the regularized point force. Then we obtain Eq. (2.10).

∇ · (∇p) = µ∇ · (∆u) +∇ · f0φε (2.10)

Since ∇ · u = 0 due to incompressibility, we have ∆u = 0. This gives Eq. (2.11).

∆p = ∇ · fφε (2.11)

Applying the vector identity ∇ · (φF ) = (∇φ) · F + φ(∇ · F ), we obtain Eq. (2.12).

∇ · (φεf0) = ∇φε · f0 + φε(∇ · f0) (2.12)

At every time instant when we are solving for the velocity with a given force f0, f0 can be viewed as
constant at each time step, yielding ∇f0 = 0. The equation then simplifies to Eq. (2.13).

∆p = ∇φε · f0 (2.13)

Substituting Eq. (2.6) into Eq. (2.13), we obtain Eq. (2.14), which implies Eq. (2.15), a new pressure
expression.

∆p = ∇φε · f0 = ∇ · (∆Gε) · f0 = (f0 · ∇) ·∆Gε = ∆ · (f0 · ∇Gε) (2.14)

p = f0 · ∇Gε (2.15)

Substituting the new pressure expression into Eq. (2.1), we have µ∆u = (f0 · ∇)∇Gε − f0 · φε, which
yields a particular solution for the Stokes equation, given by Eq. (2.16).

µu = (f0 · ∇)∇Bε(x− x0)− f0Gε(x− x0) (2.16)

In R3, Eq. (2.6) expressed in spherical coordinates is given by Eq. (2.17).

G′′ε(r) +
2

r
G′ε(r) =

1

r2
[r2G′ε(r)]

′ = φε (2.17)

A solution for Gε(r) follows from Eq. (2.17) where Gε(r) can be obtained by taking the integral given
in Eq. (2.18). Note that A(r) =

∫
r2φεdr.

Gε(r) =

∫
A(r)

r2
dr (2.18)

A similar approach can be applied to find Bε(r). Using the chosen blob function Eq. (2.8), we find
that Gε(r) and Bε(r) can be expressed in the forms given by Eq. (2.19) and Eq. (2.20). Figure 2.3
shows the graph of regularized Green’s function and regularized Biharmonic function with different
regularization parameters. Gε(r) agrees well with G(r) from r > 1.

Gε(r) =
−3ε2 − 2r2

8π(ε2 + r2)
3
2

(2.19)

Bε(r) =
ε−
√
ε2 + r2

8π
(2.20)
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Figure 2.3: Regularized Green’s function in Eq. (2.19) and Biharmonic function in Eq. (2.20).

2.2 Material Frame

To describe the movement of an elastic rod immersed in an incompressible Stokes flow, we wish to
develop a representation of the rod using its centerline. The centerline of the space curve X(s, t) is
parametrized by arc length s and time t. The Frenet frame (n, b, t) is intrinsic to the curve itself and
captures the curve irrespective of any motion, where t is the unit tangent vector of the curve, n is the
normal unit vector, i.e. the derivative of t with respect to the arc length s, and b is the binormal unit
vector, chosen to be b = t × n. In a Frenet frame, these three unit vectors are related by Eq. (2.21)
where κ represents curvature, τ represents torsion and ′ denotes derivative with respect to arclength,
s. bn

t

′ =
0 −τ 0
τ 0 −κ
0 κ 0

bn
t

 (2.21)

While the Frenet frame arises as a natural frame choice for an orthonormal triad, for a physical filament,
we wish to develop an orthonormal basis that corresponds to or captures certain material properties
of the rod. Here we consider a rotation of the Frenet frame. Specifically, we choose a frame with an
orthonormal triad (D1,D2,D3) in such a way that D3 is aligned with tangent vector t, D1 is aligned
with binormal vector b and D2 has the opposite direction of the normal vector, i.e. D2 = −n. As a
result of this new definition, we have D1 = D2 ×D3. This new frame is effectively a rotation of the

normal and binormal vector in the Frenet frame by
π

2
. The rotation can be described by a Darboux

vector. Adopting the Darboux frame (D1,D2,D3) as described above, the Darboux vector is given
by Ω = κ1D

1 + κ2D
2 + κ3D

3. In this newly established frame, the relation between each pair of
orthonormal vectors is given by Eq. (2.22).D1

D2

D3

′ =
 0 κ3 −κ2
−κ3 0 κ1
κ2 −κ1 0

D1

D2

D3

 (2.22)

In this new material frame, κ1 is the geodesic curvature, κ2 is the normal curvature, and τ is the
relative torsion. The intrinsic curvature of the rod can be calculated by κ =

√
κ21 + κ22 and the torsion

is simply measured by κ3. Note that the Frenet frame can be viewed as a special case of the new
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reference frame where κ1 = κ, κ2 = 0 and τ = κ3. The Darboux vector has the following symmetric
properties, given by Eq. (2.23a) - Eq. (2.23c). Note that we will employ the Darboux frame as the
frame for the Kirchhoff frame.

D1′ = Ω×D1 (2.23a)

D2′ = Ω×D2 (2.23b)

D3′ = Ω×D3 (2.23c)

As stated earlier, this new reference frame is essentially a rotation of the Frenet frame by a certain
angle. If we let this angle be ζ, then the two reference frames can be related by Eq. (2.24). It has
been verified by the implementation of the above reference frames that when applying a rotation to
the rod, it is more preferable to use the Darboux frame with ζ 6= 0. In absence of any rotation, κ2 can
be chosen to be 0, adopting a Frenet frame for simplicity. With this rotation angle ζ, we are also able
to relate the curvature and twist in two frame representations together by Eq. (2.25).D1

D2

D3

 =

 cos(ζ) sin(ζ) 0
−sin(ζ) cos(ζ) 0

0 0 1

nb
t

 (2.24)

(κ1, κ2, κ3) =

(
κsinζ, κcosζ, τ +

dζ

ds

)
(2.25)

We would like to emphasize that there is a subtle difference between twist and torsion, although the
two terms have been used interchangably in many contexts. Twist is torsion, but not all torsion is
twist. Using the notation above, κ3 is torsion and τ is twist. When curvature and twist are specified as

a vector, namely Ω, if τ = 0, then torsion κ3 =
dζ

ds
. In this case, torsion is the rate of rotation of Ω in

the x-y plane with respect to arc length s. If τ 6= 0, an additional rotation of Ω needs to be accounted
for. This additional rotation results from τ 6= 0, which measures the rate of change of twist angle along
the length of the rod. Generally, in the case where bending of a rod is significant, it is more preferable
to use twist versus torsion. For example, in a helical bending wave, torsion does not equal twist. In a
solid rotation, torsion does equal twist. The distinction between these two cases will be discussed in
Chapter 4.

A particularly simple example of a curve defined by κ and τ is the circular helix where κ and τ are
constants. The standard parameters of such a helix, the radius r and the axial distance of one turn of
a helix h are given by Eq. (2.26) and Eq. (2.27) respectively. The arc length of one turn of the helix,
S is given by Eq. (2.28) [3].

r =
κ

κ2 + τ 2
(2.26)

h =
2πτ

κ2 + τ 2
(2.27)

S =
√

(2πr)2 + h2 (2.28)
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Figure 2.4: Illustration of orthonormal triad on a helix.

A right handed helix starting at the origin with its axis and Darboux vector aligned with z-axis can be
produced by (x(s), y(s), z(s)) where

x(s) =− rsin
(

2πs

S

)
(2.29)

y(s) =r − rcos

(
2πs

S

)
(2.30)

z(s) =
hs

S
. (2.31)

Figure 2.4 shows the orthonormal triad defined at a given point on a helix using a Frenet frame. In this

example, D3, the unit tangent vector can be given by D3 =
r′(s)

‖r′(s)‖
. Note that employing a Frenet

frame, we set κ2 = 0. Accordingly, D2 is given by the derivative of D3 with respect to arc length s
and D1 is given by the cross product of D3 and D2. The expression of Di for i = 1, 2, 3 is given by
Eq. (2.32a), Eq. (2.32b), and Eq. (2.32c).

D3 =
S√

4π2r2 + h2

(
−2πr

S
cos

(
2πs

S

)
,
2πr

S
sin

(
2πs

S

)
,

h

S

)
(2.32a)

D2 =
∂D3

∂s
=

(
sin

(
2πs

S

)
, cos

(
2πs

S

)
, 0

)
(2.32b)

D1 =D3 ×D2 (2.32c)

An orthonormal triad in the Darboux frame, defined based on the material properties of the rod, can
be obtained by simply applying a rotation of this orthonormal triad in Frenet frame.

2.3 Kirchhoff Rod

Rod theories have been applied to understand satellite tethers and biological filaments. Classic
Kirchhoff rod theory employs a linear elastic constitutive law for bending and torsion. Constrained
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Kirchhoff rod theory imposes two constraints to the rod. First, the Kirchhoff rod is unshearable and
inextensible, requiring that ∥∥∥∥∂X∂s

∥∥∥∥ = 1,

whereX is the position of the centerline of the rod. The second constraint is that one of the orthonormal
triad vectors at each point should be kept aligned with the tangent vector of the rod. The rod is required
to satisfy the following equation.

D3 · ∂X
∂s

= 1

In this paper, we do not impose these constraints exactly. Instead, we provide forces to keep the value

of

∥∥∥∥∂X∂s
∥∥∥∥ close to 1 and align D3 with the tangent vector at each point. In addition, a Kirchhoff rod

satisfies the linear momentum and angular momentum balance equations in the fluid. The force and
torque balance are captured by Eq. (2.33) and Eq. (2.34). Note that F and N are the total force and

torque on the rod; f and n refer to the force and torque density of the rod. F has a unit of
m∗L∗

t∗2

where m∗, L∗ and t∗ are the characteristic mass, length and time respectively. N has a unit of
m∗L∗2

t∗2
.

Correspondingly, f has a unit of
m∗

t∗2
and n has a unit of

m∗L∗

t∗2
.

0 = f +
∂F

∂s
(2.33)

0 = n+
∂N

∂s
+

(
∂X

∂s
× F

)
(2.34)
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Chapter 3

Mathematical Formulation

3.1 Dynamical Rod Model

Normally, the force would be expressed in the basis of {i, j,k} where i, j and k are the unit vectors
in the direction of x-, y- and z-axis. Since we wish to capture certain material properties of the rod as
mentioned earlier in Section 2.2, we express the internal force F and the moment N of the rod in the
basis of the orthonormal triad associated with each point along the length of the rod, i.e. {D1,D2,D3},
given by Eq. (3.1) and Eq. (3.2) respectively.

F = F 1D1 + F 2D2 + F 3D3 (3.1)

N = N1D1 +N2D2 +N3D3 (3.2)

The constitutive relations of the Kirchhoff rod are given by Eq. (3.3a) - Eq. (3.3c) and Eq. (3.4a) - Eq.
(3.4c) where a1 and a2 are bending moduli about D1 and D2 and where a3 is the twisting modulus.

N1 = a1
∂D2

∂s
·D3 (3.3a)

N2 = a2
∂D3

∂s
·D1 (3.3b)

N3 = a3
∂D1

∂s
·D2 (3.3c)

F 1 = b1D
1 · ∂X

∂s
(3.4a)

F 2 = b2D
2 · ∂X

∂s
(3.4b)

F 3 = b3

(
D3 · ∂X

∂s
− 1

)
(3.4c)

In the case where the rod has a circular cross-section and homogeneous material properites, we let
a1 = a2. The constitutive equations are means by which we enforce the constraints that the rod is
inextensible and that D3 is aligned with the tangent vector. Note that orthonormal triads are unitless;

curvature and torsion have units of
1

L∗
where L∗ is the characteristic length, as introduced in the

previous section. The bending and twist moduli a1, a2 and a3 all have units of
m∗L∗3

t∗2
where m∗ and
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t∗ are the characteristic mass and time; the shear and stretch moduli b1, b2 and b3 all have units of
m∗L∗

t∗2
.

This unconstrained version of Kirchhoff rod model can be derived from an elastic energy of the form
given by Eq. (3.5) where Ω is the intrinsic twist vector of the rod, defined by Ω = (κ1, κ2, κ3). κ1 and
κ2 are intrinsic curvature and κ3 is intrinsic twist.

E =
1

2

∫ L

0

[
a1

(
∂D2

∂s
·D3 − κ1

)2

+ a2

(
∂D3

∂s
·D1 − κ2

)2

+ a3

(
∂D1

∂s
·D2 − κ3

)2

(3.5)

+ b1

(
D1 · ∂X

∂s

)2

+ b2

(
D2 · ∂X

∂s

)2

+ b3

(
D3 · ∂X

∂s
− 1

)2]
ds

Note that Eq. (3.5) is formulated based on Eq. (3.6a) - Eq. (3.6c). Since Eq. (3.6a) and Eq. (3.6b)
yield parameters of curvature and Eq. (3.6c) gives parameter of twist, the energy will be minimized
when the rod achieves its intrinsic twist configuration defined by Ω. Eq. (3.6a) - Eq. (3.6c) are specific
to the Darboux frame and are simplified using the property Di ·Dj = δij.

∂D2

∂s
·D3 = (−κ3D1 + κ1D

3) ·D3 = κ1 (3.6a)

∂D3

∂s
·D1 = (κ2D

1 − κ1D2) ·D1 = κ2 (3.6b)

∂D1

∂s
·D2 = (κ3D

2 − κ2D3) ·D2 = κ3 (3.6c)

3.2 Stokeslet and Rotlet

In this model, we wish to couple the motion of the rod to its fluid environment. This is done by
assuming a no-slip condition where the rod is moving at a velocity equal to the fluid velocity at that
point. Each point in the fluid is acted upon by both a point force and a point torque. As a result of
this torque, a given point in the fluid possesses not only a linear velocity, but also an angular velocity.
The angular velocity at a given point contributes to the rotation of the orthonormal triad at that point.
Therefore, the no-slip condition in our model applies for both linear velocity u and angular velocity ω
given by Eq. (3.7) and Eq. (3.8) respectively [19].

∂X(s, t)

∂t
= u(X(s, t), t) (3.7)

∂Di(s, t)

∂t
= ω(X(s, t), t)×Di(s, t), i = 1, 2, 3 (3.8)

The linear velocity and angular velocity at any point in the fluid domain are solved using the constitutive
relation for a given force at each time step. In this model, considering the presence of torque, we let
the force function at each point be defined by Eq. (3.9) [19].

f = g0φε(x−X0) +
1

2
∇×m0φε(x−X0) (3.9)

We let Gε represent the regularized Green’s function and Bε represent the regularized biharmonic
function, as defined by Eq. (2.6) and Eq. (2.7) in Section 2.1. Let both Gε and Bε be functions of
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r where r = ‖x −X0‖ and X0 is a given point on the rod. Substituting Eq. (3.9) into Eq. (2.1)
and taking the divergence of both sides of the Stokes equation with the substitution of the force gives
Eq. (3.10). Similar to the derivation from Eq. (2.11) to Eq. (2.13), we obtain the same pressure
representation given by Eq. (2.15) derived in Section 2.1 for the case in which only force is applied at
a point.

∇ · (∇p) = µ∆ · (∆u) +∇ · (f0φε +
1

2
× n0φε) (3.10)

Now substitute the pressure representation Eq. (2.15) into Eq. (2.1). We obtain a particular solution
to the Stokes equation with both applied force and torque.

µ∆u = ∇p− f0φε −
1

2
∇× n0φε

µ∆u = ∇(f0 · ∇Gε)− f0φε −
1

2
∇× (n0φε).

Using the vector identity∇×(φA) = φ∇×A−A×∇φ, we now have∇×(n0φ) = φε∇×n0−n0×∇φε.
We treat n0 as a constant at each time step, similar to f0, and substitute Eq. (2.6) and Eq. (2.7) in
the particular solution above. We obtain

µ∆u = ∇(f0 · ∇(∆Bε))− f0∆Gε −
1

2
∇(∆Gε)× n0.

By definition,

−1

2
∇(∆Gε)× n0 = −1

2
∇ · (∇ · ∇Gε)× n0 = −1

2
(∇ · ∇) · ∇Gε × n0 = −1

2
∆(∇Gε)× n0.

This gives

µ∆u = ∇(f0 · ∇(∆Bε))− f0∆Gε −
1

2
∆(∇Gε)× n0.

A simplified particular solution for linear velocity and pressure is thus obtained, given by Eq. (3.11a)
and Eq. (3.11d) respectively. The linear velocity u provides knowledge about the motion of the
centerline of the rod as well as any other points in the fluid domain. We call uS[f ] in Eq. (3.11b)
the regularized Stokeslet from point force and uR[n] in Eq. (3.11b) the regularized Rotlet from point
torque. Adding them together gives the linear velocity [19].

u = uS[f ] + uR[n] (3.11a)

uS[f ] =
1

µ
(f0 · ∇) · ∇Bε(x−X0)− f0Gε(x−X0) (3.11b)

uR[n] =
1

2µ
n0 ×∇Gε (3.11c)

p = f0 · ∇Gε(x−X0) (3.11d)

We now derive the solution for angular velocity at each point. The angular velocity and linear
velocity at each point are related by Eq. (3.12).

µω =
1

2
∇× (µu) (3.12)
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Since we have already obtained a particular solution for u, we substitute this particular solution, i.e.
Eq. (3.11a) into Eq. (3.12), obtaining

µω =
1

2
∇×

[
(f0 · ∇) · ∇Bε(x−X0)− f0Gε(x−X0) +

1

2
n0 ×∇Gε)

]
.

Since curl of any gradient is zero, we have

1

2
∇× [(f0 · ∇) · ∇Bε(x−X0)] = 0.

By definition,

−1

2
∇× [f0 ·Gε(x−X0)] = −1

2
[Gε(x−X0) · (∇× f0)− f0 ×∇Gε(x−X0)] .

Substitution of these two new expressions into the angular velocity representation gives

µω = −1

2
[Gε(x−X0) · (∇× f0)− f0 ×∇Gε(x−X0)]− 1

4
∇× (∇Gε × n0) .

Since f0 is regarded as a constant, ∇×f0 = 0. Using the vector identity A× (B×C) = (A ·C) ·B−
(A×B)×C, we rewrite the last term of the above equation with further simplification, obtaining

µω =
1

2
f0 ×∇Gε(x−X0) +

1

4
n0 ·∆Gε −

1

4
(n0 · ∇)∇Gε.

Finally, we substitute the definition of regularized Green’s function given by Eq. (2.6) into the above
equation. The angular velocity at a given point is given by Eq. (3.13a). We call uR[f ] in Eq. (3.13b)
the regularized Rotlet from point force and uS[n] in Eq. (3.13c) the regularized Dipole from point
torque [19].

ω = uR[f ] + uS[n] (3.13a)

uR[f ] =
1

2µ
f0 ×∇Gε(x−X0) (3.13b)

uS[n] =
1

4
n0 · φε −

1

4
(n0 · ∇)∇Gε (3.13c)

As stated in Section 2.1, we choose a blob function with infinite support, given by Eq. (2.8). This

equation satisfies 4π

∫ ∞
0

r2φε(r)dr = 1 and M2(k) = 4π

∫ ∞
0

r4φε(r)dr =
3

2
ε2 which represents the

second moment of φε, ensuring that as ε → 0, the blob function approaches an accuracy of δ(ε2)
[18]. The explicit form of regularized p, u and ω using the chosen blob function can be obtained by
substituting the blob into the particular solution of velocity. Note that substituting φε(r) into Eq.
(3.11a) requires a change of variable from r to x−X0 with r = ‖x−X0‖ through differentiation given
in Eq. (3.14)

dr =
x−X0

r
dx (3.14)
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Using Eq. (3.14), we apply chain rule to Eq. (3.11a), obtaining

(f0 · ∇) · ∇Bε(x−X0) = (f0 · ∇) ·
[

(x−X0)

r
B′ε(r)

]
= f0 · ∇

[
(x−X0)

r
B′ε(r)

]
= f0 ·

[
(x−X0) · (x−X0)

rB′′ε −B′ε
r3

+
B′ε
r

]
.

Also, we have
d

dx

(
B′ε
r

)
=

(x−X0)

r

(rB′′ε −B′ε)
r2

= (x−X0)
rB′′ε −B′ε

r3
.

Combining and further simplifying the expressions above yield a regularized linear velocity, given by
Eq. (3.15).

µu = f0 ·
[
(x−X0) · (x−X0)

rB′′ε −B′ε
r3

+
B′ε
r

]
− f0Gε +

1

2
n0 × (x−X0)

G′ε
r

(3.15)

= f0

(
B′ε
r
−Gε

)
+ f0 ·

[
(x−X0) · (x−X0)

rB′′ε −B′ε
r3

]
+

1

2
n0 × (x−X0)

G′ε
r

Through a similar approach, we can obtain the explicit form of angular velocity given by Eq. (3.16).

µω =
1

2
[f0 × (x−X0)]

G′ε
r

+
1

4
n0

(
−G

′
ε

r
+ φε

)
+

1

4
[n0 · (x−X0)] · (x−X0)

(
rG′′ε −G′ε

r3

)
(3.16)

3.3 Numerical Scheme

To solve the motion of a Kirchhoff rod in Stokes flow, we need to choose a numerical scheme. First,
we discretize the centerline of the rod into M points, with a constant length of interval between each

pair of points, represented by ∆s. If the rod has a length of L, then ∆s =
L

M − 1
. Let sk denote the

k-th point on the rod for k = 1, 2, ...,M , with sk = k∆s. As a result of this discretization, the integral
in the energy formulation is calculated by Eq. (3.17).

E =
1

2

M−1∑
i=1

[
a1

(
∂D2

∂s
·D3 − κ1

)2

+ a2

(
∂D3

∂s
·D1 − κ2

)2

+ a3

(
∂D1

∂s
·D2 − κ3

)2

(3.17)

+ b1

(
D1 · ∂X

∂s

)2

+ b2

(
D2 · ∂X

∂s

)2

+ b3

(
D3 · ∂X

∂s
− 1

)2]
∆s

The variables X, D1, D2, D3, F , N , f and n will be defined at points sk for integer values of k.
Besides the integer-value boundary points, the variables X, D1, D2, D3, F and N will also be defined
at sk+ 1

2
for half-integer values, i.e. the mid-point between sk and sk+1. The force F is computed using

Eq. (3.18) where F i for i = 1, 2, 3 is computed via Eq. (3.19). Moment N is computed using Eq.
(3.20) where N1, N2 and N3 are computed via Eq. (3.21a) - Eq. (3.21c).

Fk+ 1
2

=
3∑
i=1

F j

k+ 1
2

Dj

k+ 1
2

(3.18)
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F j

k+ 1
2

= bi

(
Dj

k+1
2

· Xk+1 −Xk

∆s
− δ3i

)
(3.19)

Nk+ 1
2

=
3∑
i=1

N
k+ 1

2

jDj

k+ 1
2

(3.20)

N1
k+ 1

2
= a1

(
D2

k+1 −D2
k

∆s
·Dk+ 1

2
− κ1

)
(3.21a)

N2
k+ 1

2
= a2

(
D3

k+1 −D3
k

∆s
·Dk+ 1

2
− κ2

)
(3.21b)

N3
k+ 1

2
= a3

(
D1

k+1 −D1
k

∆s
·Dk+ 1

2
− κ3

)
(3.21c)

Since F and N need to be evaluated at half-integer boundary points in our discretization scheme,
a rotation matrix is needed to produce the orthonormal triad at half-integer boundary points from
the orthonormal triad at integer boundary points. We wish to find a rotation matrix A such that
Di

k+1 = ADi
k where Di

k is the orthonormal triad for i = 1, 2, 3 at a given point sk along the rod.
The matrix A functions to rotate Di

k to yield Di
k+1. To find A, we first have the relation between a

consecutive pair of boundary points.

Di
k+1 = Di

k+1I

= Di
k+1

(
(Di

k)
TDi

k

)
= (Di

k+1(D
i
k)
T )Di

k

This implies that A could be given by Eq. (3.22). If we wish to obtain the orthonormal triad at
half-integer boundary points, we only need to require that the rotation angle be half of those of
integer-value boundary points. Let this half-angle rotation matrix be represented by A′. Then A and
A′ satisfy A′A′ = A where A′ =

√
A is the principal square root of A. Hence, the orthonormal triad at

a half-integer boundary point between sk and sk+1 can be given by Eq. (3.23).

A = Di
k+1(D

i
k)T (3.22)

Di
k+ 1

2
=
√
ADi

k (3.23)

As we discretize the rod into M points, the body force of the rod is computed using a summation
given by Eq. (3.24) where fk and nk are discretized via Eq. (3.25a) and Eq. (3.25b).

f(x) =
M∑
k=1

−fkφε(x−Xk)∆s+
1

2
∇×

M∑
k=1

−nkφε(x−Xk)∆s (3.24)

−fk =
Fk+ 1

2
− Fk− 1

2

∆s
(3.25a)

−nk =
Nk+ 1

2
−Nk− 1

2

∆s
+

1

2

(
Xk+1 −Xk

∆s
× Fk+ 1

2
+
Xk −Xk−1

∆s
× Fk− 1

2

)
(3.25b)
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Given the discretized force, we compute the linear and angular velocity solution of the Stokes equation
using Eq. (3.26) and Eq. (3.27) respectively. Note that uS[−fk∆s] and uR[−nk∆s] are the regularized
Stokeslet and Rotlet from the point force and torque; uR[−fk∆s] and uD[−nk∆s] are the regularized
Rotlet and Dipole from the point force and torque.

u(x) =
1

µ

M∑
k=1

uS[−fk∆s] +
1

µ

M∑
k=1

uR[−nk∆s] (3.26)

ω(x) =
1

µ

M∑
k=1

uR[−fk∆s] +
1

µ

M∑
k=1

uD[−nk∆s] (3.27)

Xn+1
k = Xn

k + u(Xn
k )∆t (3.28)

vrot = R(k, θ)v (3.29)

= vcosθ + (v × v)sinθ + k(k · v)(1− cosθ)

= (Icosθ)v + (sinθk×)v + (1− cosθ)kkTv

(Di
k) = R

(
ωXn

k

‖ωXn
k ‖
, ‖ωXn

k ‖∆t
)

(Di
k)
n (3.30)

The linear velocity at each point in the fluid domain is updated using Euler’s method, given by Eq.
(3.28). The angular velocity is updated based on the updated linear velocity via its definition, given by
Eq. (3.12) in Section 3.2. Changes in angular velocity at an immersed boundary point contribute to
changes in its corresponding orthonormal triads. To update the orthonormal triad at a given boundary
point, we apply Rodrigues’ rotation formula, represented by R(k, θ) where k points in the direction of
the rotation axis and θ is the rotation angle. Rodrigues’ rotation formula is an efficient algorithm for
rotating a vector in space given an axis of rotation and a rotation angle. If we let vrot represent the
vector obtained after rotation and I be the 3×3 Identity matrix, then the updated vector is calculated
by Eq. (3.29). The update of the orthonormal triad at the immersed boundary points is given by Eq.
(3.30) using Rodrigues’ formula.
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Chapter 4

Analysis

4.1 Material Properties and Energy

The ability of the rod to bend, twist and stretch affects the movement of the rod in a given fluid
flow. To analyze the effect of material properties, i.e. ai and bi in Eq. (3.3) and Eq. (3.4) on the
movement of the rod, parameters including bending, twisting, shearing and stretching modulus were
varied to determine their influence on the energy profile and equilibrium state of the rod. We initialize
the rod as straight with two free ends and enforce a preferred curvature κ and twist τ . Eq. (4.1a)
- Eq. (4.1d) show the initial condition of the rod and the orthonormal triad at each point in our
simulation where ∆s is the distance between each consecutive pair of immersed boundary points and
k = {0, 1, 2, ...,M − 1} for M immersed boundary points. Table 4.1 shows the set of basic parameters
used in our simulations.

X(s) = (0, 0, k∆s) (4.1a)

D1 = (1, 0, 0) (4.1b)

D2 = (0, 1, 0) (4.1c)

D3 = (0, 0, 1) (4.1d)

Note that in all the simulations in this section, we prescribe the rod with an intrinsic twist vector that

Table 4.1: Basic parameters

Parameter Value Unit
Time step ∆t 1× 10−7 s
IB spacing ∆s 0.1 µm

Number of IB points M 100 —
Regularization parameter ε 0.5 µm

Fluid viscosity µ 8.9×10−7 dagµm−1s−1

defines a helix. From Eq. (4.2) and Eq. (4.3), we can compute the radius r and the axial distance h of
the helix using the prescribed curvature κ and twist τ . Initialized as straight, the rod will attempt to
achieve its assigned configuration driven by the minimizing energy. Note that in the energy formulation
given in Eq. (3.5), the magnitude of force and moment that drive the configuration change of the rod
is set up to minimize the difference between the preferred and actual curvature and twist.

r =
κ

κ2 + τ 2
(4.2)
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h =
2πτ

κ2 + τ 2
(4.3)

In the following simulations, we vary each modulus one at a time and examine the effect of changing
each modulus on time for the rod to reach an equilibrium state and its energy profile. Table 4.2 is
a set of standard parameters [19], which will be used as a reference to compare with in the following
simulations. First, we explore the impact of changing different moduli on the time process for a free
rod to reach an equilibrium configuration, given a preferred intrinsic twist vector corresponding to a
helix as described above. Figure 4.1 (a) shows the configuration of the rod at t = 4× 10−5 s, which is
initialized as a straight and free. Using the standard parameter set in Table 4.2, a rod is initialized as
straight rod and κ1, κ2 and τ are set corresponding to a helix. Figure 4.1 (b) shows the configuration of
the rod when the energy of the rod falls below 10−4 fJ. Figure 4.1 (c) shows the prescribed configuration
of the rod. Comparing Figure 4.1 (b) with Figure 4.1 (c), we see that the achieved configuration agrees
with the prescribed configuration, showing that the equilibrium is stable. Note that Figure 4.1 (b)
is the configuration achieved by the rod at t = 0.0062s. The energy will continue to be minimized if
the simulations are run for a longer time period in which case, the rod will assume a configuration
that agrees better with Figure 4.1 (c). The black arrows on the rod are the velocity vectors at each
immersed boundary point.

Table 4.3 shows a series of times it takes a free rod to reach a new equilibrium with an increasing
bending modulus. The rod is given a preferred strain twist vector and other modulus values from
Table 4.2 (the standard parameter set). We set the stop criterion of our simulations to be E ≤ 10−2 fJ
(femtojoule where 1 fJ = 1×10−15 J). Note that for mass, we use decagram where 1dag = 10g. Despite
the fact that the rod might not achieve 100% equilibrium, assuming an exactly identical shape with
the prescribed configuration, the energy is monotonically decreasing throughout the process. We use
the time to reach E = 10−2 fJ in each case as a metric of time it takes for a rod to reach equilibrium.
In other simulations where the energy of the rod is comparably higher, we consider equilibrium to be
achieved when the rod becomes relatively static. As we can see from Table 4.3, as bending modulus
increases, the time to reach equilibrium increases. This can be explained by the fact that as the
material of the rod becomes increasingly resistant to bending, it is more difficult for the rod to bend
and therefore takes longer for the rod to reach its equilibrium configuration.

Table 4.4 shows the the time it takes for a free rod to reach an equilibrium with an increasing twist
modulus, given the same preferred strain twist vector from the standard parameter set. Shown in the
table, as the twist modulus of the rod increases, the time to reach equilibrium decreases. This is due to
the fact that the twist value implemented falls within the regime where increasing the twist modulus
increases the rod’s ability to achieve its prescribed configuration. Note that when the twist modulus is
below a certain value, the rod could be too flexible to bend to its prescribed configuration. To illustrate
the existence of different regimes, we run this simulation with an additional set of twist moduli. Note
that when the twist modulus is increased from 25.5 to 27.5, the time to reach equilibrium increases,
implying that the rod is within a regime where increasing twist modulus restrains the rod from reaching
equilibrium. When the twist modulus is increased from 35.5 to 37.5, the time to reach equilibrium again
decreases within this modulus interval. However, we note that time to reach equilibrium increases
compared to the a3 ∈(35.5,37.5) regime. Hence, we conclude that there exist different regimes in which
twist modulus has different effects on the rod’s ability to reach equilibiurm. We note that compared
to twist modulus, the effect of bending modulus on time to reach equilibrium varies less in the regime
of our test as bending modulus changes. Over the range of bending modulus we implement in our
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Figure 4.1: A rod achieves a helical equilibrium given a preferred curvature and twist. The black arrows
are velocity vectors at each immersed boundary point.

simulation, we observe a positive correlation between bending modulus and time to reach equilibrium,
suggesting that with our current parameter set, we are in a regime where bending modulus is more
critical to the ability of the rod to achieve its prescribed configuration. In fact, this agrees with the
finding in [14] where it is found that when the rod is compact and bent the equilibrium configuration is
dominated by the bending energy over the twisting energy. In contrast, Table 4.5 and 4.6 demonstrate
less of a change in time to reach equilibrium within a relatively large range of shear and stretch modulus
values. We see from the tables that neither of the two parameter values plays a critical role in affecting
time to reach a new equilibrium. Comparing Table 4.5 and Table 4.6 with Table 4.3 and Table 4.4, we
conclude that bending and twist play a major role in affecting time it takes for a rod to reach a new
equilibrium configuration. The effect of shear and stretch is negligible in this respect.

Table 4.2: Standard parameter set for rod initialized as a straight rod and given preferred strain twist
vector corresponding to a helix

Parameter Value Unit
Bending modulus a1 = a2 3.5× 10−3 dagµm3s−2

Twist modulus a3 3.5× 10−3 dagµm3s−2

Shear modulus b1 = b2 8.0× 10−1 dagµms−2

Stretch modulus b3 8.0× 10−1 dagµms−2

Strain twist vector (κ1, κ2, τ) (1, 0, π
2
) µm−1

Table 4.3: Effect of bending modulus on time to reach equilibrium for free rod initialized as straight with
preferred helical shape

Bending modulus a1 = a2 (10−3dagµm3s−2) 1.5 3.5 5.5 9.5 11.5
Time (10−7s) 4597 5406 5684 5912 6246

We then explore the effect of changing different modulus of the rod on its energy profile. We break
up the energy into four parts, namely bending energy, twisting energy, shearing energy and stretching
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Table 4.4: Effect of twist modulus on time to reach stability for free rod initialized as straight with
preferred helical shape

Twist modulus a3 (10−3dagµm3s−2) 1.5 3.5 5.5 25.5 27.5 35.5 37.5
Time (10−7s) 8217 5406 4214 1836 1878 2214 2071

Table 4.5: Effect of shear modulus on time to reach stability for free rod initialized as straight with
preferred helical shape

Shear modulus b1 = b2 (10−1dagµm3s−2) 4 8 12
Time (10−7s) 5398 5406 5410

Table 4.6: Effect of stretch modulus on time to reach stability for free rod initialized as straight with
preferred helical shape

Stretch modulus b3 (10−1dagµm3s−2) 4 8 12
Time (10−7s) 5414 5406 5403

energy. Total energy of the rod is calculated using Eq. (3.17) by taking the sum of the energy at
each immersed boundary point. Each type of energy corresponds to its respective material modulus.
Each energy component can be calculated by decomposing the total energy formulation through Eq.
(4.4a) - Eq. (4.4d) respectively. Similar to the analysis on time above, we compare the energy profile
of the rod with a changed material modulus each time to the energy profile of the rod generated by
the standard parameter set. Figure 4.2 (a) shows the energy change of the rod from its initialized
state where it is free and straight to its new equilibrium configuration given the strain twist vector and
material parameters from the standard parameters from Table 4.2. From Figure 4.2 (a), we see that
the total energy, bending energy and twisting energy are all decreasing as time increases. The shearing
energy and stretching energy are approximating zero, indicating a negligible effect, similar to its effect
on time in our previous analysis. Note that the curve of total enegy, bending energy, and twisting
energy all decrease more steeply at the beginning and slow down as time elapses, eventually reaching
an equilibrium state as each of them approaches zero.

Ebending =
1

2

M−1∑
i=1

[
a1

(
∂D2

∂s
·D3 − κ1

)2

+ a2

(
∂D3

∂s
·D1 − κ2

)2]
∆s (4.4a)

Etwist =
1

2

M−1∑
i=1

a3

(
∂D1

∂s
·D2 − κ3

)2

∆s (4.4b)

Eshear =
1

2

M−1∑
i=1

[
b1

(
D1 · ∂X

∂s

)2

+ b2

(
D2 · ∂X

∂s

)2]
∆s (4.4c)

Estretch =
1

2

M−1∑
i=1

[
b3

(
D3 · ∂X

∂s
− 1

)2]
∆s (4.4d)

Figure 4.2 (b) shows the total energy of the rod in different regions of the rod. We partition the rod
into three different regions with an equal length of interval. Region 1 corresponds to the first one-third
of the rod length close to the bottom; Region 2 corresponds to the second one-third of the rod length,
i.e. the region in the middle of the rod; Region 3 corresponds to the last one-third of the rod length,
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i.e. the region close to the top of the rod. In our simulations, we set the number of immersed boundary
points M = 99 so that each region contains 33 immersed boundary points. From Figure 4.2 (b), we
see that Region 1 and Region 3 have identical energy profile and that the energy of these two regions
is lower than the energy of Region 2. The symmetry agrees with the fact that the rod is free with no
force applied at either end of the rod. We also notice that the energy of Region 2 is not only higher
in value but also has a slightly different decrease pattern from that of Region 1 and Region 3. While
the energy curve of Region 1 and Region 3 seems to be concave up, the curve of Region 2 appears to
be concave down. Figure 4.2 (c) and Figure 4.2 (d) are the bending energy and twisting energy plots
of the three partitioned regions respectively. In Figure 4.2 (c), we see that the symmetry of Region 1
and Region 3 is preserved. However, in contrast to the total energy, the bending energy of the rod in
Region 2 first goes through a slight increase and then decreases towards zero. In Figure 4.2 (d), we see
an energy profile similar to total energy where Region 1 and Region 3 have a lower energy compared
to Region 2.

To explore the contribution of energy from different positions on the rod, we also plot the ratio of
the energy at the two free ends of the rod to its total energy. Figure 4.3 (a) and Figure 4.3 (b) show the
time-dependent proportion of bending energy and twisting energy at the two endpoints respectively.
From Figure 4.3 (a), we see that the proportion of bending energy at the two ends decreases steeply
at the beginning and increases slowly after t = 3 × 10−4 s. The maximum proportion reached is 12%
for each end, which occurs at time t = 0. From Figure 4.3 (b), we can observe that the proportion
of twisting energy at the two endpoints is decreasing monotonically and more slowly as it approaches
zero. Similar to bending energy, the proportion of twisting energy at each end does not exceed 16%,
which indicates that the energy at the two ends does not play a dominant role in the total energy of
the rod. As the rod moves away from its initialized state, the proportion of both bending energy and
twisting energy at the two ends decreases, implying that the middle region of the rod has a greater and
increasing role in the total energy of the rod in the time process to reach an equilibrium state.

To explore the effect of material properties on the energy profile of the rod, we wish to examine the
effect of changing different moduli on different energies of the rod. Similar to our previous analysis on
time, we change one of the material parameters at a time in each simulation and compare the energy
profile obtained with that produced by the standard parameter set in Table 4.2. Figure 4.4 (a) and
Figure 4.4 (b) show the different energy profiles generated by implementing different bending modulus.
As can be observed from the two figures, as bending modulus increases, bending energy and total energy
of the rod both increase. We see in Figure 4.4 (a) that as the value of bending modulus increases, the
decrease in bending energy also becomes more drastic and steeper within a given time period. Figure
4.4 (c) and Figure 4.4 (d) are the energy profiles produced by changing twist modulus. The twisting
energy and total energy are both increased as twist modulus is increased. It is particularly worth
mentioning that in Figure 4.4 (d), a greater twist modulus results in a higher total energy initially
and that the energy curve of the rod with a greater twist modulus also has a more rapid decrease and
thus less time to reach an equilibrium configuration. This agrees with our results in time to reach
equilibrium in 4.4. Figure 4.4 (e) and Figure 4.4 (f) are the shearing energy and stretching energy of
the rod corresponding to a changing shear modulus and stretch modulus. The numerical value of the
energy curves in these two graphs indicate that shear modulus and stretch modulus play a relatively
minor role in both time to reach an equilibrium and total energy of the rod. This implies that shear
energy and stretch energy are a lower order of magnitude relative to other moduli for this test case.
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Figure 4.2: Region 1-3 are partitions of the rod from bottom to top. In this case, the rod is initialized
as a free straight rod and prescribed with a helical configuration. Note that in (b)-(d), the energy curve
of Region 1 and Region 3 overlap.

4.2 Helical Equilibria

4.2.1 Rod Initialized as Straight and Tethered

Section 4.1 showcases an example of helical equilibrium where given a set of preferred curvature
and twist, a free rod achieves a preferred helical configuration when energy is minimized. One of the
interesting questions in helices is whether a helix is a stable configuration. Lim studied the stability of
this configuration by keeping the rod straight and inputting a varying intrinsic twist [14]. The numerical
results computed using a sequence of increasing intrinsic twist shows that there exists a critical twist
τc above which a twisted straight rod becomes unstable and demonstrates buckling. Lim shows that
buckling behavior can occur at many different locations on the rod, depending on the given twist and
length of the rod. In Lim’s study in [14], buckling is observed in the middle of the rod because there is
no force or moment at either end of the rod. Inspired by this result, we wish to look at the behavior
of a straight and tethered rod, i.e. a rod with applied force at one end. Under the loaded condition,
we still prescribe the rod with both non-zero curvature and non-zero twist, as opposed to the free and
straight rod with zero curvature studied in [14]. We are interested in the effect of adding a force to one
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Figure 4.3: In this case, the rod is initialized as a free straight rod prescribed with a helical configuration.
(a) Proportion of the bending energy at the two ends with respect to the total bending energy of the rod
(b) Proportion of the twisting energy at the two ends with respect to the total twisting energy of the rod.

end of the rod on the buckling position and stability of the rod.

We tether the rod by applying an additional force to the bottom of the rod. We envision the
bottom of the rod is tethered by a linear elastic spring. This Hookean type force keeps the first
immersed boundary point of the rod, i.e. the bottom of the rod at its initialized position. If the
bottom of the rod tends to move away from its initialized position, this tether force pulls the rod in an
opposite direction so that it stays at its original location. For simplicity, we let the first point on the
rod be initialized at the origin. We add a spring force to the first immersed boundary point of the rod.
This force is additional to the internal force F at the first point described by Eq. (3.4) in Section 3.1
and functions to prevent the first point from moving away from the origin. Fauci et al. used a spring
force between a pair of immersed boundary points given by Eq. (4.5) in [8] where S is the stiffness
coefficient, Xi and Xj are the two immersed boundary points and di is resting length between them.
We employ the same force function. In our case, Xj is the origin and the bottom point X1 is Xj. X1

is located at the origin when the rod is in a resting state, yielding di=0. Hence, the total force at the
first point of the rod is now given by Eq. (4.6) where F ∗1 is the new force, S is the stiffness coefficient

(spring constant with a unit of
m∗

L∗
where m∗ and L∗ are the characteristic mass and length), X1 is the

position of the first point and F1 is the internal force at X1.

f(Xi) = S

(
1− di
‖Xi −Xj‖

)
(Xi −Xj) (4.5)

F ∗1 = S(−X1) + F1 (4.6)

To explore the stability of obtained helical equilibria, we run simulations for three cases, each with a
different preferred intrinsic twist vector. The three cases and parameters can be found in Table ??. To
obtain better knowledge about the configuration of our prescribed helix, we set the preferred intrinsic
twist and curvature by setting r, the radius of the helix and h, the axial distance of one turn of the
helix. The corresponding twist and curvature of the helix can be calculated via Eq. (4.7) and Eq.

30



0 1 2 3 4

x 10
−4

0

0.005

0.01

0.015

0.02

0.025

Time

B
en

di
ng

 e
ne

rg
y

Bending energy of the rod

 

 

Bending = 1.5
Bending = 3.5
Bending = 5.5

(a)

0 1 2 3 4

x 10
−4

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Time

T
ot

al
 e

ne
rg

y

Total energy of the rod

 

 

Bending = 1.5
Bending = 3.5
Bending = 5.5

(b)

0 1 2 3 4

x 10
−4

0

0.01

0.02

0.03

0.04

0.05

0.06

Time

T
w

is
tin

g 
en

er
gy

Twisting energy of the rod

 

 

Twisting = 1.5
Twisting = 3.5
Twisting = 5.5

(c)

0 1 2 3 4

x 10
−4

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time

T
ot

al
 e

ne
rg

y

Total energy of the rod

 

 

Twisting = 1.5
Twisting = 3.5
Twisting = 5.5

(d)

0 1 2 3 4 5

x 10
−4

1

1.5

2

2.5

3

3.5
x 10

−5

Time

S
he

ar
in

g 
en

er
gy

Shearing energy of the rod

 

 
Shearing = 4
Shearing = 8
Shearing = 12

(e)

0 1 2 3 4 5

x 10
−4

0

0.5

1

1.5

2

2.5
x 10

−5

Time

S
tr

et
ch

in
g 

en
er

gy

Stretching energy of the rod

 

 

Stretching = 4
Stretching = 8
Stretching = 12

(f)

Figure 4.4: (a) Bending energy (b) Total energy (c) Twist energy (d) Total energy (e) Shear energy (f)
Stretch energy of the rod with different bending modulus.

(4.8). For curvature, we set κ1 = κ and κ2 = 0. Table 4.7 shows the set of parameter values used in
our computation. Note that the number of turns of a helix with a given length can be computed by
Eq. (4.9) where κ3 is the twist and L is length of the rod. The expected number of turns of a helix q
can be computed by Eq. (4.9). Comparing the expected number of turns provides us insights into why
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the instability develops as the helix we prescribe becomes increasingly twisted.

κ =
4π2r

4π2r2 + h2
(4.7)

κ3 =
2πh

4π2r2 + h2
(4.8)

q =
κ3L

2π
(4.9)

Figure 4.5 (a) is the preferred target helix in Case 1. Figure 4.5 (b) - (d) show results for three
cases. Figure 4.5 (b) shows that the rod achieves a stable helical configuration evolved from a straight,
tethered rod. This corresponds to the parameter set Case 1 in Table 4.7. Figure 4.6 (a) shows the time
evolution of total energy of the rod, which is decreasing as the rod deforms into its prescribed structure.
We see that the energy curve shares the same concavity with that observed in Figure 4.2 (a), i.e the
energy curve of a free, straight rod with a prescribed intrinsic twist. In both figures, energy of the
rod decreases rapidly once the rod starts evolving towards its prescribed configuration; as the energy
approaches zero, the rate of change also decreases, eventually reaching a plateau. Figure 4.5 (c) shows
the simulation result of Case 2. We see that the rod tries to achieve its prescribed helical configuration
but fails to do so due to the increased preferred twist. As can be seen, the rod at equilibrium is
almost helical except for the buckling close to the bottom of the rod. Figure 4.6 (b) shows the time
evolution of the energy profile of the rod in Case 2. Similar to Figure 4.6 (a), the total energy of the
rod is decreasing and is minimized when the rod achieves its final configuration. In constrast to Case
1, the energy of the rod in Case 2 is somewhat concave down initially. Energy decreases more slowly
at the beginning and more rapidly near t = 0.005s. This may be explained by the fact that the rod
attempts to achieve its prescribed curvature and twist, but immediately experiences difficulty under
the contraints of its own material properties. Due to its own material property, the rod is unable to
minimize its energy further once it reaches a threshold, so it maintains a steady energy value around
that threshold from t = 0.005s onward. Notice that the final energy of the rod is higher than that of
Case 1 up to one order of magnitude, implying that it is a more unstable helical equilibrium compared
to Case 1. Figure 4.5 (d) shows the simulation result of Case 3 in which we give the rod a much shorter
preferred helical radius and axial distance, as can be seen from Table 4.7. A decreased amplitude r
leads to an increased twist, followed from Eq. (4.8). With a larger preferred twist, we see that the
rod immediately demonstrates a greater instability, showing more complicated geometry like loops or
what is called plectonemes in [14]. Figure 4.6 (c) shows the energy profile of the rod in Case 3. We
notice that the rod starts off with an energy that is one order of magnitude higher than the rod in
Case 1 and Case 2. The total energy of the rod decreases rapidly as the rod starts to deform towards
its prescribed configuration, reaching and leveling off at approximately 0.15 fJ in 0.002s. Compared to
Case 2, it takes less time for the rod to reach a steady energy level and the final energy level of the rod
is one order of magnitude greater, corresponding to a greater instability of its helical equilibrium. The
buckling and loops we obtain in our simulations agree well with the instability studied in [14], except
for the position of the buckling and loop observed in [14]. In Lim’s simulation, buckling occurs at the
middle of the rod; loops also occur in such a way that the rod shows some form of symmetry. In our
simulations, in the presence of force at one end, buckling and loops occur closer to the tethered end to
balance force and moment.
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Table 4.7: Parameter values for tethered rod initialized as straight

Parameter Value
Number of IB points M 150
Distance between IB points ∆s (µm) 0.1
Time step ∆t (s) 1×10−7

Fluid viscosity µ (gµm−1s−1) 8.9×10−7

Stiffness coefficient S (gµm s−2) 50
Prescribed (Radius, Axial Distance) (r, h) (µm) Case 1: (0.5,5)

Case 2: (0.5, 2.5)
Case 3: (0.05, 1)

Expected number of turns q Case 1: 2.1509
Case 2: 2.3264
Case 3: 13.6525

Twist κ3 Case 1: 0.9010
Case 2: 0.9745
Case 3: 5.7188

−2
0

2
−2

0
2
0

2

4

6

8

10

12

14

(a) Preferred helix

−10 1 2 3
−202

0

5

10

15

X

Velocity Field, t=0.04

Y

Z

(b) Case 1: Stable

−10 1 2 3
−202

0

5

10

15

X

Velocity Field, t=0.04

Y

Z

(c) Case 2: Buckling

−1
0

1
2

3

−2
0

2
0

1

2

3

4

X

Velocity Field, t=0.04

Y

Z

(d) Case 3: Loop

Figure 4.5: The rod is initialized as a tethered straight rod prescribed with a helical configuration. The
parameter values used for Case 1 - Case 3 can be found in Table 4.7. Arrows refer to the velocity field of
the rod at immersed boundary points.

4.2.2 Rod Initialized as Helical and Tethered

Besides the behavior of the rod initialized as a straight rod, we are also interested in the helical
equilibria of a rod initialized as a helix. To explore the behavior of a tethered helical rod, we first
initialize the rod as a circular helix and then prescribe the rod with a different helical radius and
axial distance. We then analyze the different energy change of the rod associated with each type of
instability. Similar to the above simulations for a straight, tethered rod, we run three cases for this test,
each with a different preferred helical configuration. In each case, we initialize the rod as a tethered
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Figure 4.6: Energy profile of helical equilibria achieved from a tethered straight rod in Case 1 through
Case 3. Parameter values for each case can be found in Table 4.7.

helical rod with r = 0.5 (µm) and h = 2.5 (µm). When we initialize the rod as a helix, we also
initialize the orthonormal triad by computing the tangent vector of the helix using the forward finite
difference so that the D3 vector is aligned with the tangent vector of the rod at each point. In each
case, we prescribe this helical configuration with an unchanged curvature and a changed twist. Given
a preferred curvature and twist, we can compute the corresponding radius r and axial distance h by
Eq. (4.2) and Eq. (4.3) respectively. Table 4.8 shows the helix parameters implemented in the three
cases of our simulations; we distinguish between the helix parameter sets used in different cases by
calling them Case 4, Case 5 and Case 6. Note that we construct the initial helix using a discretized
version of Eq. (2.29) - Eq. (2.31) presented earlier [3]. The discretized helix construction is given by
Eq. (4.10) where k denotes the k-th immersed boundary point of the rod and xk(s), yk(s) and zk(s)
represent the x, y and z coordinate of the k-th point repectively. In Eq. (4.10), we set the number
of immersed boundary points to be M = 150. Note that we set ∆s = 0.1 which does not equal the
length of the segment between each consecutive pair of immersed boundary points. Due to the nonzero
curvature and twist, the total arclength of the rod is calculated to be L = 14.8907, which is close to
but not exactly 15 as in Case 1 through Case 3. We would like to emphasize that this initial helix has
a different curvature and twist from what it is prescribed with.

xk(s) =− rsin
(

2πk∆s

S

)
(4.10a)

yk(s) =r − rcos

(
2πk∆s

S

)
(4.10b)

zk(s) =
hk∆s

S
. (4.10c)

Figure 4.8 (a) - (d) show the simulation results of all our cases. Figure 4.8 (a) is our initialized helical
configuration. Figure 4.8 (b) shows the final configuration the rod achieves in Case 4. Comparing with
the initialized helical configuration, we see that the helical rod is eventually able to deform into the
prescribed helix with a higher twist and more turns. The initial rod configuration has four full turns.
However, we observe 4.5 turns after a new equilibria is achieved. Figure 4.9 (a) shows the energy profile
of the rod in Case 4. As we can observe from the plot, in the initial time period, the bending energy
of the rod increases temporarily as the rod tries to deform into a structure with a higher twist. The
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total energy and twist energy decreases throughout the deformation process. Notice that the radius of
the prescribed helix in Case 4 is smaller than that of the initial helix, which corresponds to a greater
curvature and therefore a greater bending energy. The increase in bending energy can be interpreted
as a short adaptation of the rod to a more twisted helical structure. We can see from the figure that
despite the slight increase at the beginning, the bending energy starts decreasing at t = 2× 10−3 s and
eventually decreases to approach zero as the rod achieves its prescribed configuration.
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Figure 4.7: Curvature along the length of the rod for the buckling case and looping case. Buckling is
Case 2 and Case 5 where we initialize the rod as straight and a helix respectiely. Loop is Case 3 and Case
6 where we initialize the rod as straight and helix respectively.

Figure 4.8 (c) shows the simulation result of Case 5, in which we set the preferred twist κ3 = π. As
a result of this increased twist, instead of achieving its prescribed helix, the rod shows buckling closer
to the bottom of the rod compared to Case 2. Figure 4.7 (a) shows the position dependent curvature
along the length of the rod. We calculate the curvature of the rod by computing the norm of the
tangent vector based on Frenet’s formula. We see that Case 5 in which we initialize the rod as a helix
shows more fluctuations of curvature along the length of the rod. The greatest peak seen in the plot
corresponds to the buckling observed. We see that in Case 5, buckling occurs closer to the bottom of
the rod with a greater curvature. Figure 4.9 (b) shows the energy profile of the rod in this case. Notice
that given a greater preferred twist, the rod also starts off with a higher energy value. The total energy
of the rod in Case 5 has an initial energy that is one order of magnitude higher than that in Case 4.
In Figure 4.9 (b), the twisting energy and total energy decrease monotonically throughout the process.
The twisting energy and bending energy change remarkably at the beginning of the transformation,
showing that the rod immediately tends to deform itself towards the prescribed curvature and twist.
However, subject to the constraints of its own bending modulus and twist modulus, once the rod is
unable to achieve its prescribed configuration, the bending energy and twisting energy both slow down
its rate of decrease and eventually level off at a certain value. This explains the plateau we observe from
t = 2 × 10−3 s onward in Figure 4.9 (b). Compared to Case 4, we see a higher energy at equilibrium
in the case of buckling. Figure 4.8 (d) shows the simulation result of Case 6 in which we set κ3 = 2π.
This higher twist results in a greater instability of the helical equilibrium with loops and knots as we
have seen in previous simulations. Figure 4.7 (b) shows the curvature long the rod for Case 3 and
Case 6. Case 3 has four major loops and Case 6 has three major loops. Figure 4.9 (c) is the energy
profile of the rod in this case. Compared to Case 5, the bending energy of the rod goes through a
much smaller increase at the initial time period; the bending energy and twisting energy also reach
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a constant, however, much higher level more quickly. This may be explained by the fact that the
gap between the prescribed configuration and the ability of the rod to deform is so large that the rod
immediately reaches its limit to bend and twist and therefore stays at a steady energy level.

Table 4.8: Helix parameters for rod initialized as a tethered helix

Parameter Value
Initialized (Radius, Axial Distance) (r, h) (0.5,2.5)
Intrinsic twist vector of initialized helix (κ1, κ2, κ3) (1.22,0,0.97)

Prescribed intrinsic twist vector (κ∗1, κ
∗
2, κ
∗
3) Case 4: (1.22, 0,

π

2
)

Case 5: (1.22,0,π)
Case 6: (1.22,0,2π)

Prescribed (Radius, Axial Distance) (r, h) Case 4: (0.38,2.50)
Case 5: (0.73,1.74)
Case 6: (0.04,0.96)
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Figure 4.8: Helical equilibria from a rod initialized as a tethered helix. The parameter values for Case
4 through Case 6 can be found in Table 4.8. Note that from (b) to (d), we increase the prescribed twist
of the rod, which gives rise to instability.

Lim discussed the relation between prescribed intrinsic twist and instability of helical equilibria
in detail in [14]. Inspired by this study, we wish to explore whether the length of the rod and the
prescribed curvature of the rod has any effect on the instability of helical equilibria achieved. First, we
test the effect of rod length on instability. We run simulations for a straight, tethered rod with a longer
rod length. We prescribe the rod the same configuration as we did previously in Case 1 to Case 3. In
this simulation, we employ the same immersed boundary points spacing ∆s and change the number of
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Figure 4.9: Energy profile of helical equilibria achieved from a rod initialized as a tethered helix. The
parameter values are found in Table 4.8.

immersed boundary points M from 150 to 250. Figure 4.10 (a) - (c) show the results of the simulation
implemented with the configuration prescribed in Case 1, Case 2 and Case 3 respectively. In Figure
4.10 (a), we obtain a stable helical equilibrium as we did in Case 1. In Figure 4.10 (b), we still observe
buckling like in Case 2. This can also be observed from Figure 4.11 (a) which indicates that buckling
occurs at around the 100th immersed boudary point, which is approximately 2

5
of the length of the rod.

In Figure 4.10 (c), we observe loops again. Figure 4.11 (b) shows the curvature along the rod in this
case. We observe five major loops. Compared to the loop in Figure 4.5 (d), the loops of a longer rod
look more twisted and dense. The geometry also becomes more complicated.

To explore the effect of curvature alone on instability, we also run simulations for a straight, tethered
rod prescribed with a zero twist and a sequence of nonzero, increasing curvature. We implement the
standard parameter set and prescribe the rod with an intrinsic twist vector of (κ1, κ2, κ3) = (κ, 0, 0)
where we vary κ in each simulation. Figure 4.12 (a) - (d) shows the simulation result for (κ1, κ2, κ3)
where κ1 = 5, κ1 = 10, κ1 = 15, κ1 = 30 and κ1 = 45 respectively. The prescribed configuration has
twist κ3 = 0 and therefore is a circle with radius 1. Comparing Figure 4.12 (a) - (d), we see that the
configuration achieved by the rod at equilibrium becomes increasingly curled. We observe in Figure 4.12
(c) - (d), the rod has points of self-contact. Adding a repulsive force as a function of distance among
each pair of immersed boundary points might prevent this from happening, which will be discussed in
Chapter 5. Figure 4.13 (a) - (d) shows the energy curve of the rod associated with each case. Despite
the occurence of self-contact, we notice that as we increase the curvature by κ1, the total energy of
the rod increases remarkably. The energy of the rod at equilibrium in three cases differs by up to one
order of magnitude. The increase in energy corresponds to an increasing instability associated with
each helical equilibrium achieved, which has been previously observed in [14] as well in the study of
instability of a free straight rod with nonzero twist. The energy results in [14] indicate that a greater
intrinsic twist is associated with a greater instability and a higher total energy. Our simulation results
indicate that increasing curvature alone also contributes the instability of helical equilibria achieved by
a straight, tethered rod.
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Figure 4.10: Helical equilibria of a rod initialized as tethered straight rod with prescribed helical param-
eters same as Case 1, Case 2 and Case 3 respectively. Parameter values can be found in Table 4.7. Note
that in this case, we increase the length of the rod by increasing the number of immersed boundary points
from M = 150 to M = 250 compared to Case 1 through Case 3 shown previously.
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Figure 4.11: Curvature along the length of the rod in the case of buckling and looping. In this case, we
increase M = 150 to M = 250. Increased rod length for Case 2 in (a), Case 3 in (b).

4.3 Helical Bending Wave

4.3.1 Helical Wave Propagating on a Free Rod

We study the behavior of the rod propagating a helical bending wave along its length. The helical
bending wave is distinct from a rigid rotation of a helix. The rod is prescribed with a time dependent
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Figure 4.12: In each case, the rod is initialized as a straight and free rod and prescribed with a zero
twist and nonzero curvature. The black arrows are the velocity vectors at each immersed boundary point.
Parameters used can be found in Table 4.2.

0 0.005 0.01 0.015 0.02 0.025 0.03
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Time

E
ne

rg
y

(a) κ1 = 5

0 0.005 0.01 0.015 0.02 0.025 0.03
4.2

4.4

4.6

4.8

5

5.2

Time

E
ne

rg
y

(b) κ1 = 15

0 0.01 0.02 0.03
20

20.2

20.4

20.6

20.8

21

21.2

21.4

Time

E
ne

rg
y

(c) κ1 = 30

0 0.01 0.02 0.03
47

48

49

50

51

52

53

Time

E
ne

rg
y

(d) κ1 = 45

Figure 4.13: The energy profile of the rod prescribed with zero twist and nonzero curvature in each case
described in Figure 4.12.

curvature with zero twist and each point on the helix is bending. We prescribe the rod with a time-
dependent intrinsic twist vector Ω(s, t) for a helical bending wave given by Eq. (4.11). Note that τ is

the torsion (
1

L∗
), σ is the frequency of the propagating helical wave with a unit of

L∗

t∗
where L∗ is the

characteristic length and t∗ is the characteristic time; Ω1 and Ω2 together determine the curvature of
the rod κ by Eq. (4.12).

Ω(s, t) = {Ω1,Ω2,Ω3} = {κ1cos(τ(s+ σt)),−κ2sin(τ(s+ σt)), 0} (4.11)

κ =
√

Ω2
1 + Ω2

2 (4.12)

In the prescribed intrinsic twist vector, we set the twist to be zero by setting the third component
Ω3 = 0. As is mentioned previously in Section 2.2, in the context of non-rigid rotation, torsion does
not equal twist. As a result of the non-zero torsion, the rod will be rotating in the x-y plane. The
frequency of the traveling wave is described by σ where a higher σ corresponds to a faster traveling
wave, not considering the restraints of the material properties of the rod. In the following discussion,
we also present simulation results showing that subject to the constraints of the stiffness of the rod, a
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higher σ does not necessarily lead to a faster propagation of the wave on the rod. Note that the sign
of σt in both the first and second component of Ω(s, t) determine the direction of the swimming rod.

The helical waveform can also be represented by r and p where r is amplitude, p is pitch and h
is the handedness. h can be either 1 or -1. We choose h = 1 for simplicity. Note that h = 2πp is
the wavelength of the helical wave and also referred to as the axial distance of one turn of the helix
first mentioned in Eq. (2.27). Depending on the material moduli and prescribed helical waveform,
the helical bending wave might be propagating at different speeds along the length of the rod. In
this project, we explore the behavior of the rod propagating a helical bending wave in both free and
tethered conditions. First, we present results for the case of a free rod. We first show the effect of
σ on the speed at which the rod propagates the helical bending wave with a given set of material
moduli. Details of the parameters used can be found in Table 4.9 where the standard parameter set is
regarded as a reference parameter set for us to compare all our simulations with. In each simulation we
present in this section, one or two parameters will be varied based on the standard parameter set; we
compare each simulation result with that obtained by the standard parameter set. Figure 4.14 shows
the result of our Simulation 1 where we use all the parameter values from the standard parameter
set. We prescribe the rod with a helical bending wave with r = 1 and p = 3, based on which, the
corresponding curvature κ1, κ2 and torsion τ can be calculated through Eq. (4.13a) and Eq. (4.13b)
which are equivalent to Eq. (4.7) and Eq. (4.8). Note that if we set κ1 = κ2, then κ1 = κ2 = κ which
can be derived from Eq. (4.12).

κ =
r

p2 + r2
(4.13a)

τ = h · p

p2 + r2
(4.13b)

In this simulation, we set κ1 = κ2 and set the frequency of the traveling wave to be σ = 2 × 104

µms−1.

Table 4.9: Free straight rod propagating a helical bending wave

Parameter Standard
Number of IB points M 100
Fluid viscosity µ (dagµm−1s−1) 8.9×10−7

Bending modulus a1 = a2 (dagµm3s−2) 3.5× 10−3

Twist modulus a3 (dagµm3s−2) 3.5× 10−3

Shear modulus b1 = b2 (dagµms−2) 8.0× 10−1

Stretch modulus b3 (dagµms−2) 8.0× 10−1

Prescribed (r, p) (µm) (1,3)
Prescribed (κ, τ) (µm) (0.1,0.3)
Frequency σ (µms−1) 2×104

We see from Figure 4.14 (a) that while the rod is propagating a helical bending wave, it generates
primarily self-rotation in the x-y plane with slow movement along the positive z-axis, which can be seen
from Figure 4.14 (d) which we will discuss shortly. Figure 4.14 (b) shows the wave that is propagating
along the length of the rod at different time points. The angular frequency of oscillation at each point

of the rod is τσ; therefore the period of oscillation at each point can be calculated by T =
2π

τσ
. In

this simulation, the period of oscillation is calculated to be 0.001 s. In Figure 4.14 (b), we plot the
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x-coordinate vs. the z-coordinate of the immersed boundary points on the rod at different times within
one period of the rod motion. We notice that the waveforms observed at t = 0.0002 s and t = 0.001
s look somewhat symmetric about the z-axis and both have a smaller amplitude compared to the
waveform observed at t = 0.0006 s. This agrees with the physical phenomenon that it takes time for a
straight rod to start propagating a helical wave and that at the end of a period, the rod tends to return
to its initial state. We also notice that the maximum amplitude that the rod achieves is approximately
0.04, which occurs around a half of the period. As the prescribed intrinsic twist vector Ω is a function
of both time t and arclength s, the oscillation at different points along the length of the rod have
different phases.

Figure 4.14 (c) shows the motion of the x-coordinate of different chosen points on the rod. k = 1
refers to the first point at the bottom of the rod, which is initialized at the origin; k = 50 refers to
the 50th point counting from the bottom, which is also the mid-point of the rod; k = 100 refers to
the 100th point on the rod. We see from this figure that the top and bottom of the rod are oscillating
at approximately the same amplitude 0.04 and at a remarkably higher amplitude than that of the
mid-point. We note that this observation corresponds to the energy distribution along the length of
the rod seen earlier in Figure 4.2 (c) from Section 4.1 where the middle region of a free rod with a
prescribed intrinsic twist plays a dominant role in the total bending energy of the rod. Due to the
fact that a higher bending energy is stored within the middle region of the rod, this bending energy
restrains the rod from releasing it and thus from generating movements. We also note that we prescribe
the rod with a curvature κ = 0.1, which is the amplitude of the sinusoidal oscillation that the rod is
expected to achieve. The difference between the achieved amplitude 0.04 and the prescribed amplitude
0.1 suggests that the rod is unable to achieve its prescribed configuration subject to its own material
moduli. Figure 4.14 (d) shows the motion of the z-coordinate of the first and second points of the
rod. Although we see that z-coordinate of each of the two points increase slowly and slightly as time
elapses, the increment indicates that the rod is moving in the direction of positive z-axis. The average
swimming speed can be calculated by the increment of z-coordinate at each point and the time elapsed.
We calculate the swimming speed based on the displacement of the first point of the rod. The result
of this calculation is shown in Table 4.10. Lastly, Figure 4.14 (e) shows the energy profile of the rod in
this case. The twist energy is zero, corresponding to the zero twist we prescribe the rod. We see that
the energy oscillates in the intial time period. As time evolves, the amplitude of oscillation decays.
At time t = 0.01 s, the energy curve reaches a nearly constant level. Notice that the energy oscillates
around 1×10−4 fJ, a relatively low value, throughout the time process. This indicates that the rod is
staying in a relatively stable state.

To explore the effect of changing σ on the behavior of the rod propagating a helical bending wave, we
increase the value of σ = 2×104 in Simulation 1 to σ = 5×104 in Simulation 2 while keeping the rest of
the parameters unchanged from Simulation 1. The parameter values can be found in Table 4.9. Figure
4.15 (a) shows the wave that is propagating along the rod at different time points. The calculated
period for Simulation 2 can be found in Table 4.10. The increased σ, i.e. a higher frequency of the
traveling wave results in a shorter period of oscillation at each point. In Figure 4.15 (a), the waveforms
at t = 0.0002 s and t = 0.0004 s look somewhat symmetric with respect to the z-axis, showing that
the rod is oscillating about the z-axis periodically. Figure 4.15 (b) shows the time evolution of the
oscillating trajectory of the x-coordinate of three different chosen immersed boundary points, namely
the first point, the mid-point and the last point on the rod. We will use the same color scheme for
the rest of the simulations as Simulation 1 where the blue line represents the bottom point, the red
line represents the mid-point and the black dashed line represents the top point. We observe that in
this simulation, each chosen point oscillates with a time-dependent amplitude which also undergoes a
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Figure 4.14: Simulation 1 - Free rod propagating a helical bending wave of frequency σ = 2 × 104.
Parameter values can be found in Table 4.9 and Table 4.10.

periodic change. Compared to Figure 4.14 (c) in Simulation 1, the maximum amplitude achieved at
the two endpoints of the rod decreases from 0.04 to 0.02 despite the fact that we prescribe the rod with
exactly the same intrinsic twist Ω(s, t), which implies the same κ and therefore, the same amplitude.
Comparing the achieved amplitude among the three chosen points along the rod, we still see that
the mid-point has the least movement among the three with the smallest amplitude. The amplitude
achieved at the two endpoints are approximately equal. The waveform at the two endpoints differ only
in phase of the motion. Note that the frequency of the oscillation also increases due to the increased
input σ.

Figure 4.15 (c) shows the time evolution of the energy. In this figure, we observe a more frequent
oscillation of the energy in the initial stage compared to Simulation 1; this can be explained by the
increased frequency of the traveling wave and decreased period of the overall oscillation. Notice that
similar to Simulation 1, the energy eventually tends towards a constant value as time elapses. To
summarize, with the same material moduli, an increase in σ decreases the amplitude achieved by the
rod. As the wave propagates faster along the rod, the rod is required to bend faster to keep up with
the wave propagation. However, due to the constraints of the bending modulus of the rod itself, the
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rod is unable to keep up its motion with the traveling speed and the prescribed amplitude of the
wave. The inability of the rod to achieve the prescribed amplitude is seen more remarkably through
the inconsistent amplitude of the oscillation at a given point. Notice that in Table 4.10, the increased
σ also results in a smaller swimming speed along the z-axis; we see that when a rod is incapable of
achieving its prescribed amplitude, it also loses the ability to swim faster along the z-axis. This agrees
with the results presented in [24] where swimming speed is found to scale quadratically with amplitude.
Thus, a smaller achieved amplitude gives a decreased swimming speed.
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Figure 4.15: Simulation 2 - Free straight rod propagating a helical bending wave and σ = 5× 104 which
has been increased compared to Simulation 1. Parameter values can be found in Table 4.9 and Table 4.10.

Table 4.10: Free rod propagating a helical bending wave (Sim. 1 - Sim. 4 ) where σ is increasing from
Sim. 1 to Sim. 4

Parameter Sim. 1 Sim. 2 Sim. 3 Sim. 4
Period T (s) 0.001 4.19×10−4 2.0944×10−4 1.0472× 10−4

Swimming speed v (µms−1) 0.8 0.273 0.1426 0.0106

To explore the behavior of the rod with a helical bending wave with an increasing frequency,
we continue to increase σ. In Simulation 3 and Simulation 4, we set σ = 100000 and σ = 200000
respectively. Figure 4.16 (a) shows the wave propagating along the length of the rod at t = 0.0002
s, approximately the end of one period of the rod oscillation. From this figure, the rod achieves
a maximum amplitude of 0.01, which is even smaller than the amplitude achieved in Simulation 2.
Figure 4.16 (b) shows the movement of the x-coordinate of the same three chosen points. Compared
to Figure 4.15 (b), the increased σ does not lead to a higher frequency wave along the x-axis at each
endpoint. The amplitude achieved by the rod at each point, though small, is constant with respect to
time at each chosen point. In fact, at each chosen point, the oscillation becomes slower than Simulation
1 and Simulation 2. Figure 4.16 (c) shows the time evolution of the energy of the curve. The total
energy of the rod is comparable to that in Simulation 1 and Simulation 2. However, in contrast to the
previous two simulations, we observe almost no oscillations due to the high frequency. Figure 4.16 (d)
shows the propagation of the wave along the rod at t = 0.0002 s, approximatley after two periods of
its oscillation. The form of the wave is similar to (a), however with a much smaller amplitude. The
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achieved amplitude has a scale that is one order of magnitude less than (a). Figure 4.16 (e) is the
Simulation 4 counterpart of movement of the x-coordinate at different positions along the rod. We
notice the oscillation of the rod along the x-axis is similar to that of Simulation 3 shown in (b), but the
amplitude is significantly decreased and the period of the oscillation is longer. Figure 4.16 (f) is the
energy of the rod of Simulation 4, from which we see that the energy shares approximately the same
value and pattern with that of Simulation 3.
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Figure 4.16: (a) - (c) show the helical wave in Simulation 3 (Free rod and σ = 100000); (d) - (f) show
the helical wave in Simulation 4 (Free rod and σ = 200000)

Table 4.11: Free rod propagating a helical bending wave (Sim. 5 - Sim. 8)

Parameter Sim. 5 Sim. 6 Sim. 7 Sim. 8
Changed Parameter a1 = a2 = 5.5× 10−3 µ = 8.9× 10−5 µ = 8.9× 10−8 (r, p) = (0.5, 2.5)
Period T (s) 0.001 0.001 0.001 3.2239×10−4

Swimming speed v (µms−1) 1.8456 1×10−4 22.7572 1442.2

To verify that the waveform achieved by the rod is indeed affected by the material moduli of the
rod, we increase the bending modulus in the following simulation. In Simulation 5, we change the
bending modulus a1 = a2 from 3.5×10−3 in the standard parameter set to 5.5×10−3 and keep the rest
of the parameters unchanged. Eq. (4.4a) shows the equation for bending energy. Increases in bending
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Table 4.12: Free rod propagating a helical bending wave in high viscosity fluid

Frequency σ 20000 -100 -100
Helical parameter (r, p) (1,3) (0.5,2.5) (0.1,1.5)
Swimming speed v 1×10−4 0.0936 0.0302
Maximum energy E 1.7×10−4 1.7×10−4 3.3×10−5

modulus will increase this energy. To minimize the energy, the rod will adjust itself to a different
configuration. Figure 4.17 (a) shows the propagating wave along the length of the rod at different time
points. Since we keep σ unchanged compared to Simulation 1, the period of the oscillation remains
unchanged. From Figure 4.17 (a), we see a similar phase of the motion of the rod. Compared to Figure
4.14 (b), the wave looks smoother and also shows a slightly higher amplitude. Figure 4.17 (b) shows
the oscillation of the x-coordinate of the two endpoints and the mid-point along the rod. The frequency
of the oscillation remains the same with that observed in Simulation 1 due to the unchanged σ value.
However, the achieved amplitude increases from 0.04 to 0.06 for the two endpoints; for the mid-point,
the achieved amplitude also increases to above 0.02 as opposed to below 0.02 in Simulation 1. Figure
4.17 (c) shows the time evolution of energy of the rod. While the frequency of the energy oscillation
looks identical to that in Figure 4.14 (e), the energy level is higher in Simulation 1. Notice that the
average swimming speed of the rod in Simulation 5, which can be found in Table 4.11, is significantly
higher than the value calculated in Simulation 1 and Simulation 2. We conclude that a greater bending
modulus enables the rod to achieve a greater amplitude and swimming speed under the same condition.
Due to a greater bending energy and a faster movement, the rod demonstrates a greater total energy.
Simulation 5 verifies our previous assumption that given a prescribed helical wave, the greater the
bending modulus, the more likely it is for the rod to achieve its prescribed waveform. Note that if the
bending modulus is too large, the rod might be too stiff to bend to achieve its prescribed configuration
in which case, it might be unable to achieve its prescribed configuration.
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Figure 4.17: Simulation 5 - Straight free rod propagating a helical bending wave with bending moduli
a1 = a2 = 5.5× 10−3. Parameters can be found in Table 4.9.

Fluid viscosity µ is a measure of resistance to flow. We infer that changes in fluid viscosity will
also result in changes in the motion of a rod propagating a helical bending wave. In Simulation 6
and Simulation 7, we alter the value of fluid viscosity in each simulation while keeping the rest of
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the parameters unchanged and explore the behavior of the rod under each condition. In previous
simulations, we use µ = 8.9 × 10−7gµm−1s−1, which is the viscosity value of water. In Simulation 6,
we increase the fluid viscosity by scaling µ by 100. We set µ = 8.9 × 10−5gµm−1s−1 and apply the
same helical bending wave to the rod. Figure 4.18 (a) shows the wave along the length of the rod at
different time points throughout the evolution. Note that we keep the frequency σ unchanged from the
standard parameter set and thus the rod has the same period of oscillation. Noticeably, the achieved
amplitude of the rod is significantly less than that observed in all our previous simulations, with an
order of magnitude of only 10−3. We can also see from the figure that along the length of the rod,
only points towards the end of the rod demonstrate remarkable movement. The middle of the rod
remains almost motionless about the x-axis. This can be explained by the increased fluid viscosity
which corresponds to an increased resistance to motion. Figure 4.18 (b) shows the oscillation of the
x-coordinate of the endpoints and the mid-point of the rod. In this figure, we see that the mid-point is
oscillating with the smallest amplitude. The oscillations at the two endpoints look unsymmetric with
the bottom point oscillating in the negative x-axis and the top point in the positive x-axis. The point
at the top oscillates at an amplitude of approximately 7× 10−4 while the point at the bottom has an
oscillating amplitude of approximately 5× 10−4. Figure 4.18 (c) shows the time evolution of energy of
the rod. The energy level of the rod is about the same as that in Simulation 1.

Due to the increased fluid viscosity, we observe an oscillation of smaller amplitude. This verifies
that an increase in fluid viscosity indeed leads to a more damped oscillation of the rod. In Table 4.11,
we calculate the average swimming speed of the rod. For most points along the length of the rod,
the movement along the z-axis is nearly zero. The small deviation from zero can be interpreted by
the oscillation about its original location. Simulation 6 shows that for a given rod propagating the
same wave, it is more difficult to generate swimming speed in a high viscosity fluid than when it is
immersed in a low viscosity fluid. However, we show that it is possible for the rod to improve its
swimming speed by adjusting its swimming strategy, i.e. the wave it propagates to achieve movement.
Table 4.12 shows the result of three simulations of a free rod propagating a helical bending wave in
a fluid with relatively higher viscosity. In all of the three simulations, µ = 8.9 × 10−5. The first
column represents the simulation result of Simulation 6. The second and third column represents two
additional simulations we run to study the effect of swimming strategy on swimming speed. In the first
additional simulation, we change the helical waveform by decreasing σ to -100 and changing (r,p) to
(r, p) = (0.5, 2.5). Note that −100 represents the propagation of wave in an opposite direction as does in
Simulation 6. In the second additional simulation, we change the helical waveform to (r, p) = (0.1, 1.5)
and set σ = −100. Note that immersed in the fluid of same viscosity, the rod is able to achieve a
greater average swimming speed by decreasing the traveling wave frequency σ. Comparing the second
and third column, we see that for a rod propagating a wave of same frequency σ, the swimming speed
is also determined by helical wave parameter (r, p) of the wave it propagates. Moreover, propagating
a wave of different helical radius and pitch, the rod also has a different energy profile. We see from
the table that when the rod propagates a wave with (r, p) = (0.5, 2.5), while it is able to achieve a
higher swimming speed, it also consumes a higher energy than when (r, p) = (0.1, 1.5). Depending on
the biological context, there might exist an optimal swimming strategy of swimming speed and energy
consumption for a micro-organism trying to swim in a highly viscous fluid. However, by comparing the
second and third column to the first column, i.e. Simulation 6, we conclude that in a high viscosity
environment, decreasing σ is not only conducive to increasing the swimming speed but also decreasing
energy consumption and improving energy efficiency.

In Simulation 7, we decrease the fluid viscosity by scaling the original µ by
1

10
. We set µ =
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Figure 4.18: Simulation 6 - Free straight rod propagating a helical bending wave in a fluid with viscosity
µ = 8.9× 10−5. Parameters can be found in Table 4.9.

8.9 × 10−8gµm−1s−1. Figure 4.19 (a) shows the configuration of the rod at t = 0.01 s. From the
configuration of the rod, we see that the rod seems to oscillate more homogeneously along the length
of the rod. Figure 4.19 (b) shows the waveform propagating along the length of the rod. Compared to
Simulation 6, the achieved amplitude of the rod is significantly higher. The curve looks smoother and
the rod seems to be bending less than the previous simulations. Figure 4.19 (c) shows the movement of
the x-coordinate of the same three chosen points on the rod. The rod achieves a much greater amplitude
compared to Simulation 6, but still a smaller amplitude compared to Simulation 1. Comparing the
oscillation of the same three chosen points on the rod, we see a smaller gap between the amplitude
at different positions along the length of the rod. The point at the top of the rod shown by the
black dashed line oscillates at about the same amplitude as the mid-point, in contrast to the previous
simulations where the amplitudes at the two endpoints of the rod are much higher. Figure 4.19 (d)
shows the movement of the z-coordinate of the first and second point close to the bottom of the rod.
The much greater slope of the lines compared to Simulation 1 shows that the rod is swimming at a
much higher speed than Simulation 1. In Table 4.11, we calculate the swimming speed of the rod in
this simulation to be 22.7572, which is approximately one order of magnitude greater than that of
Simulation 1. Figure 4.19 (e) shows the time evolution of the energy of the rod. Compared to previous
simulations, the energy of the rod is a lot lower with no significant oscillation, which agrees with the
relatively small amplitude observed in Part (c) of Figure 4.19. The results of Simulation 7 with a
decreased fluid viscosity indicate that for a given rod propagating a given helical bending wave, a lower
viscosity leads to a higher swimming speed and is more beneficial for a rod to achieve its prescribed
waveform. Lim also studies the relationship between fluid viscosity and instability of a straight rod
with nonzero intrinsic twist in [14]. The study in [14] shows that for a rod with given intrinsic twist,
increases in fluid viscosity result in equilibrium configurations with increasing instability and increasing
total energy. This agrees with our result that the total energy of the rod in Simulation 6 is higher than
that in Simulation 7.

Based on our analysis, given a prescribed helical wave, bending moduli, fluid viscosity and traveling
wave frequency all play a critical role in affecting the behavior of the rod. In turn, we are also interested
in the behavior of the rod prescribed with a different helical bending wave, namely a different curvature
and torsion, given a set of certain bending moduli, fluid viscosity and wave frequency. In Simulation 8,
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Figure 4.19: Simulation 7 - Free straight rod propagating a helical bending wave in a fluid with viscosity
µ = 8.9× 10−8. Parameters can be found in Table 4.9.

we set r = 0.5 and p = 2.5 as opposed to r = 1 and p = 3 in the standard parameter set and keep the
remaining parameters unchanged from the standard parameter set. Note that compared to the helix
with (r, p) = (1, 3), (r, p) = (0.5, 2.5) means a less compressed and twisted helix. Using Eq. (4.13a)
and Eq. (4.13b), we have κ = 0.0769 and τ = 0.3846. Figure 4.20 (a) shows the prescribed helix, i.e.
a helix defined by (r, p) = (0.5, 2.5). Figure 4.20 (b) - (c) show the rod configuration and position at
the initial time evolution and at the end of the evolution respectively. From (b) to (c), the rod evolves
from a straight configuration to its helical configuration defined by prescribed helical parameters. More
noticeably, the displacement of the rod along the z-axis is much greater than any of the simulations
observed previously. The calculated average of the rod’s swimming speed is given in Table 4.11, which
differs from the swimming speed of the rod in Simulation 1 by up to two orders of magnitude. Figure
4.20 (d) shows the wave that propagates along the length of the rod at different time points. We see
that in this figure, the maximum amplitude achieved by the rod reaches 0.6, which is higher than that
observed in Simulation 1.

Figure 4.20 (e) shows the oscillation of the rod at the bottom, middle and top of the rod as time
elapses. We see that as time evolves, the amplitude of oscillation at each point is decreasing remarkably
for the two endpoints while the decrease is not obvious for the mid-point represented by the blue line.
This decrease in oscillation indicates the decreased movement of the rod overall, implying that the rod
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is approaching some form of equilibrium, which can also be seen from the plateau in Figure 4.20 (g)
which will be discussed shortly. Figure 4.20 (f) shows the displacement of the first two points from
the bottom of the rod along the z-axis. A positive displacement indicates movement in the direction of
positive z-axis. From this figure, we see that the rod moves along the positive z-axis at the initial stage
of the evolution and does not start moving down until it reaches z = 2µm. Figure 4.20 (g) shows the
energy of the rod, from which we see that the total energy and bending energy of the rod is decreasing
since the beginning of the time evolution. The total energy and bending energy reach an equilibrium
roughly after t = 2× 10−3 s. In contrast to all our previous simulations, the twisting energy of the rod
in this simulation is not zero. The twisting energy increases after the rod starts moving and remains at
a relatively constant level as the rod approaches an equilibrium. Compared to the previous simulations,
the order of magnitude of the energy of the rod in this case is significantly higher. Note that the energy
is of order 10−4 fJ in Simulation 1 through Simulation 7. In this simulation, the rod starts with an
energy of 0.013 fJ and approaches approximately 0.008 fJ at the end of the simulation. This increased
energy can be explained by the increased kinetic energy of the rod as it moves along the z-axis. Note

that kinetic energy is the energy possessed by an object in motion, computed by Ek =
1

2
mv2 where

m is the mass and v is the velocity. Hence, with a greater speed, the rod possesses a greater kinetic
energy.

Note that for all the simulations mentioned previously, we set the frequency σ to be positive. As
mentioned previously, the sign of σ determines the direction in which the wave propagates along the
rod. From Simulation 8, we see that a positive σ leads to a major movement in the direction of negative
z-axis despite the fact that the rod starts moving in the direction of positive z-axis initially. Note that
the movement along the positive z-axis is temporary. The rod starts to move in the negative z-axis
immediately after the rod deforms into a helical shape. In the following simulations, we change the sign
of σ by setting σ to be negative. We set σ = −1000 in Simulation 9 and set σ = −20000 in Simulation
10. We keep the rest of the parameters identical to the standard parameter set. Figure 4.21 (a) - (e)
show the simulation results of Simulation 8. Figure 4.21 (a) shows the configuration and position of
the rod at t = 0.2 s. As expected, the rod moves in a direction opposite to Simulation 8 where we
implement a positive σ. Figure 4.21 (b) shows the wave propagating along the length of the rod at
three different time points. We notice that the rod achieves a maximum amplitude of approximately
0.8, which is higher than any of the simulations run before. Figure 4.21 (c) shows the oscillation of
the rod along the x-axis where the smaller σ applied results in a less frequent oscillation and greater
wavelength. Similar to Simulation 8, the mid-point of the rod continues to have the greatest amplitude
in oscillations among all of the three points. Figure 4.21 (d) shows the displacement of the rod along
the z-axis. Notice that the rod is moving along the positive z-axis throughout time evolution. The
swimming speed, which is calculated by taking the ratio of displacement over time, is shown in Table
4.13. Figure 4.21 (e) shows the energy profile of the rod. The energy of the rod decreases rapidly after
the rod starts moving. Note that we also have a nonzero twisting energy in this case. Figure 4.21 (f) -
(i) show the simulation results of Simulation 10. Figure 4.21 (f) shows the wave propagating along the
length of the rod. The maximum amplitude of the wave achieved is 0.5. Figure 4.21 (g) and (h) show
the oscillation of the rod about the x-axis and z-axis respectively. We note that this is different from
our previous results with a positive σ in that when σ is positive, a greater σ value leads to a smaller
swimming speed. However, in the situation where σ is negative, an increase in the magnitude of σ
leads to a greater swimming speed, which is shown in Table 4.13. Figure 4.21 (i) shows the energy of
the rod which is higher compared to (e) and similar to Figure 4.20 (h).
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Figure 4.20: Simulation 8 - Free straight rod propagating a helical bending wave with helical parameter
(r, p) = (0.5, 2.5). Parameter values can be found in Table 4.9.

Table 4.13: Free rod propagating a helical bending wave upward (Sim. 9 - Sim. 10)

Parameter Sim. 9 Sim. 10
Period T (s) 0.0064 3.2239×10−4

Swimming speed v (µms−1) 217.3348 1437.4
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(a) Rod figuration at t = 0.2 s
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(b) Wave propagating along the rod
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(c) Wave of x-coordinate at different
positions along the length of the rod
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(d) Wave of z-coordinate at different
positions along the length of the rod
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(f) Wave propagating along the rod
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(g) Wave of x-coordinate at different
positions along the length of the rod
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(h) Wave of z-coordinate at different
positions along the length of the rod
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Figure 4.21: Simulation 9 - Free Rod propagating a helical bending wave with frequency σ = −1000;
Simulation 10 - Free rod propagating a helical bending wave with frequency σ = −20000.

4.3.2 Helical Wave Propagating on a Tethered Rod

The distinctive behaviors of a free rod propagating a helical bending wave under different conditions
imply that a rod, if tethered, might demonstrate instabilities under certain conditions. We now wish
to explore the stability of a tethered rod propagating a helical bending wave. From the previous
simulations of a free rod, we find that the frequency of the traveling wave σ and the prescribed helical
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wave determined by helical radius r and axial distance of one turn of the helix h could both affect
the motion of the rod. In the following simulations, we tether the rod at the bottom using the same
Hookean type force as described in Section 4.2 with a stiffness coefficient of S = 50 gµm−1s−1. We vary
frequency σ and helical parameters (r, p) in each simulation and compare the simulation results. First,
in Simulation 11, we tether the rod and apply a helical bending wave with frequency σ = 50000 and a
helical radius and axial distance (r, p) = (1, 3). This gives the calculated period T , which is shown in
Table 4.14. Figure 4.22 (a) shows the rod configuration as it propagates the helical bending wave, from
which we see that the untethered end of the rod undergoes a rotation. Figure 4.22 (b) shows the wave
that is propagating along the length of the tethered rod. With one end tethered, major oscillations
are observed at the open end of the rod. Figure 4.22 (c) shows the oscillation of the rod about the
x-axis at different points. Due to the high frequency of the propagating wave, both the mid-point and
the endpoint show high frequency oscillation; it is also due to this high frequency that the achieved
amplitude at the endpoint is relatively low. Figure 4.22 (d) shows the energy of the rod. Despite the
oscillations, the energy of the rod remains at a relatively constant level, showing a relatively steady
and periodic motion of the rod. Note that in this simulation, we are applying the same parameter set
used in Simulation 1 through Simulation 4 except for frequency σ. From Table 4.10, we know that
the swimming speed of the rod decreases with increasing σ. In an untethered condition, the swimming
speed of the rod with σ = 50000 will lie between 0.1426 and 0.273, which is relatively small. This
explains the steady motion, energy level and oscillation exhibited by the rod.
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(a) Rod configuration

0 2 4 6 8 10
−0.03

−0.02

−0.01

0

0.01

0.02

−Z−

−
X

−

 

 

t=0.0001
t=0.0002
t=0.0003
t=0.0004

(b) Wave propagating along the rod
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(c) Oscillation of the x-coordinate at
different points on the rod
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Figure 4.22: Simulation 11 - Tethered rod propagating a helical bending wave with frequency σ = 50000
and helical parameter (r, p) = (1, 3).
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In Simulation 12, we increase σ to 100000 with the rest of parameters unchanged from Simulation
9. Table 4.14 shows the calculated period associated with this frequency. Figure 4.23 (a) shows the
wave propagating along the rod. With an increased frequency σ, the wave has a smaller amplitude.
Figure 4.23 (b) shows the oscillation of the rod at the same three chosen points. We see that the
oscillation exhibits similar patterns with that of Simulation 2 shown in Figure 4.15 (b), in which case,
the wave is propagating so fast that the rotation at the untethered end is incapable of keeping up with
the frequency. Figure 4.23 (c) shows the energy of the rod. Despite the high frequency, the rod has a
constant energy corresponding to a steady periodic rotation of the rod.
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Figure 4.23: Simulation 12 - Tethered rod propagating a helical bending wave of σ = 100000 and helical
parameter (r, p) = (1, 3)

In Simulation 8, we change the helix parameters associated with the helical bending wave on a
free rod and observe a much faster swimming speed of the rod along the negative z-axis. In the case
of a tethered rod, we infer that if we apply the same helical bending wave used in Simulation 8 to
a tethered rod, the greater swimming speed observed in an unloaded condition will transform to an
instability of the rod. As mentioned previously, the sign of σ determines the direction in which the
wave propagates and therefore the displacement of the rod along the z-axis. A positive σ leads to
a propagation in the negative z-axis and a negative σ corresponds to a propagation in the positive
z-axis. We run simulations for a tethered rod using two different signs for σ and explore its effect on
the stability of the rod. In Simulation 13, we prescribe the tethered rod with a helical bending wave
defined by (r, p) = (0.5, 2.5) and σ = 20000 which corresponds to a major movement along the negative
z-axis as is seen in Simulation 8. Note that this is the same parameter set we previously applied to a
free rod in Simulation 8. Table 4.14 shows the calculated period associated with this parameter set.
Figure 4.24 (a) shows the rod at t = 0.01 s. The rod appears to be undergoing a steady rotation similar
to Simulation 11 and Simulation 12. Figure 4.24 (b) shows the wave propagating along the length of
the rod at different points within one period of oscillation. Comparing this figure with Figure 4.20 (e),
the waveform does not seem to be changed much by applying the tether force with the same amplitude
and frequency.

Figure 4.24 (c) shows the oscillation of the x-coordinate at the two endpoints and mid-point of the
rod. The mid-point of the rod represented by the red line starts off with a large amplitude oscillation
about the origin. However, the amplitude decreases immediately and the axis of rotation starts to
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deviate from the z-axis as well. The unloaded endpoint at the top of the rod, which is represented by
the black line has a relatively larger amplitude compared to the mid-point. Similarly, after the rod
starts moving, the oscillation perturbs from the z-axis. At the end of the time evolution, the oscillation
returns to the z-axis. Compared to Figure 4.20 (f) where the rod oscillates symmetrically about the
z-axis, this is a sign that the propagating helical wave defined by (r, p) and σ is competing with the
tether force at the bottom of the rod. The deviation of oscillation from the z-axis demonstrates the
presence of an emerging instability. Figure 4.24 (d) is the energy profile of the rod. Compared to its
counterpart in Simulation 8 shown in Figure 4.20 (h), the rod has an energy that is approximately
twice as much as the free rod in Simulation 8. In contrast to the energy of the free rod in Simulation
8, the three types of energy (total energy, bending energy and twist energy) of the tethered rod in
Simulation 13 all start with an immediate increase. After about the same amount of time, the energy
also reaches a constant with small oscillations. Despite the fact that the rod is tethered and therefore
exhibits no actual movement along the z-axis, the energy of the rod is higher than that observed in
Simulation 8, which is another indicator of instability.
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Figure 4.24: Simulation 13 - Tethered rod propagating a bending wave with freqeuncy σ = 20000 and
helical parameter (r, p) = (0.5, 2.5)

We have seen in simulations of a free rod with a positive σ that a smaller frequency contributes to
a faster swimming speed. We have also seen some form of instability of the tethered rod in Simulation
13. We claim that if we decrease the frequency of the traveling wave, σ used in Simulation 13, then
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we should expect a greater instability of the rod. To verify this claim, we implement a frequency of
σ = 10000 in Simulation 14 with the rest of the parameters unchanged from Simulation 13. Figure 4.25
(a) - (c) show the rod configuration at t = 0.002 s, t = 0.1 s and t = 0.2 s respectively. We see that
as time evolves, the rod starts to demonstrate greater instability with compression and deformation
not observed in Simulation 13. Figure 4.25 (d) shows the wave propagating along the length of the
rod at t = 0.0001 s, t = 0.005 s and t = 0.01 s, corresponding to the rod configuration presented in
(a), (b) and (c). Figure 4.25 (e) shows the oscillation of the three chosen points along the x-axis. The
mid-point of the rod represented by the red line oscillates with an increasing amplitude as time elapses.
The untethered open end of the rod represented by the black dashed line exhibits the same behavior
although with a smaller amplitude compared to the mid-point. Note that the amplitude of the rod
achieved by the mid-point reaches 1.5 at maximum, which triples the maximum amplitude achieved
in Simulation 13. Figure 4.25 (f) is the energy profile of the rod from which we see approximately the
same energy value as compared to Simulation 13. However, the rod has a more remarkable oscillation
amplitude compared to Simulation 13. All of the signs shown by the results in Figure 4.25 indicate a
greater instability of the rod.
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(c) Rod at the end of time evolution
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Figure 4.25: Simulation 14 - Tethered rod propagating a bending wave of frequency σ = 10000 and
helical parameter (r, p) = (0.5, 2.5)

In Simulation 15 and Simulation 16, we apply the same parameter set used for Simulation 8 and
Simulation 9 to a tethered rod and explore the stability of the rod in each case. Associated parameters
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Table 4.14: Tethered rod propagating a helical bending wave downward (Sim. 11 - Sim. 14)

Parameter Sim. 11 Sim. 12 Sim. 13 Sim. 14
Frequency σ 50000 100000 20000 10000
Prescribed (r, p) (1,3) (1,3) (0.5,2.5) (0.5,2.5)
Prescribed (κ, τ) (0.1,0.3) (0.1,0.3) (0.0769,0.3846) (0.0769,0.3846)
Period T (s) 4.1888× 10−4 2.0944× 10−4 3.2239× 10−4 6.4478×10−4

can be found in Table 4.15. Figure 4.26 (a) shows the rod configuration at t = 0.1 s. In this simulation,
the rod is undergoing a steady rotation as observed in Simulation 13 although there seems to be a
deformation point at the bottom of the helix. Figure 4.26 (b) shows the wave propagating along the
length of the rod. Figure 4.26 (c) shows the oscillation of the rod about the x-axis. The mid-point
of the rod oscillates at a larger amplitude than the point at the top of the rod. The energy profile of
the rod is shown in Figure 4.26 (d) where the total energy is relatively low compared to Simulation 13
and Simulation 14. After t = 0.02 s, the energy stays at a relatively constant level with some small
oscillations.

Figure 4.26 (e) and (f) show the configuration of the rod at t = 0.001 s and t = 0.002 s respectively.
We see that at t = 0.002 s, the rod has already shown instability with the buckling at the bottom of the
rod. Figure 4.26 (g) shows the wave that is propagating along the rod at t = 0.002 s, t = 0.004 s and
t = 0.006 s where we see that the rod starts to move drastically in the initial stage of time evolution.
Figure 4.26 (h) shows the energy profile of the rod. The energy of the rod oscillates drastically as does
Simulation 14 shown in Figure 4.25 (f). However, compared to Simulation 14, the energy of the rod
is much higher in our current simulation. Note that in Simulation 14, the rod has a total energy of
approximately 0.035 fJ whereas in Simulation 16, the rod has a total energy of approximately 0.14 fJ.
This shows that with an increased traveling frequency in the direction of positive z-axis, we observe an
instability of a tethered rod much more quickly than the case of a positive σ.

Table 4.15: Tethered rod propagating a helical bending wave upward (Sim. 15 - Sim. 16)

Parameter Sim. 15 Sim. 16
Frequency σ -1000 -20000
Prescribed (r, p) (0.5,2.5) (0.5,2.5)
Prescribed (κ, τ) (0.0769,0.3846) (0.0769,0.3846)
Period T (s) 0.0065 3.2239× 10−4
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(a) Rod at t = 0.1 s
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(e) Rod at t = 0.002 s
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(f) Rod at t = 0.004 s
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(g) Wave propagating along the rod
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Figure 4.26: Simulation 15 - Tethered rod propagating a bending wave similar to Simulation 8 where
σ = −1000; Simulation 16 - Tethered rod propagating a bending wave similar to Simulation 9 where
σ = −20000.
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Chapter 5

Conclusions

To summarize, we explored the effect of different material moduli and prescribed configurations on
the helical equilibrium of a free and tethered rod. For a rod initialized as free and straight, depending
on the helical configuration we prescribe relative to the bending and twist moduli of the rod, the rod
may or may not achieve its prescribed configuration. In the presence of such a gap between achieved
and prescribed configuration, the equilibrium achieved by the rod demonstrate an instability. We have
found through our simulations that in the case where a rod initialized as straight and free, the rod
achieves a stable helical equilibrium. The energy of the rod, including bending energy, twist energy
and total energy is monotonically decreasing throughout the process. For a free rod, the energy at
the two endpoints of the rod is symmetric and the energy at each free end occupies more than 10% of
the energy of the entire rod. We conclude that for a free straight rod, the two free endpoints of the
rod is dominating the energy profile of the entire rod compared to the rest of the immersed boundary
points of the rod. In the process of achieving its equilibrium, all of the rod’s energy components are
minimized.

As an extension of Lim’s study in [14] where the instabilities of helical equilibria of an open free
elastic rod with zero curvature and nonzero twist are studied, we explore the instabilities of helical
equilibrium of a tethered rod with nonzero curvature and nonzero twist. Depending on the prescribed
helical radius and axial distance, the rod demonstrates stable equilibrium, buckling and loops. For a
rod initialized as straight and tethered with a given rod length, as we increase the expected number of
turns, we observe an increasing instability as the rod attempts to achieve a greater twist. We find that
in all of the cases (stable equilibrium, buckling and loops), the total energy of the rod is decreasing;
moreover, as the number of turns increases therefore leading to an increasing instability, the total
energy of the rod also increases. This agrees with the results presented by Lim’s earlier study in the
case of free rod [14]. We observe that in comparison to the achieved helical configuration of an open
elastic free rod, the position of buckling and loops of a tethered rod is shifted along the rod in such
a way that the rod is no longer symmetric in order to balance the additional tether force added to
the bottom of the rod. To balance the internal force and moment, the position of buckling and loops
on a tethered rod is affected by both the prescribed configuration (expected number of turns) and the
length of the rod.

In addition to the helical equilibria achieved by a rod that is initialized as straight and tethered, we
extend our study to the instability of a tethered rod which is initialized as a helix. As the twist and
therefore the expected number of turns of a helix increases, the rod shows similar forms of instability
with buckling and loops. We find that while the total energy and twisting energy of the rod is minimized
during the evolution of the rod, the bending energy of the rod is increased. As the prescribed twist
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and instability increase, the role of bending energy increases, implying that an increasing proportion
of the total energy of the rod is converted to bending energy as the rod deforms to achieve more turns.
This could be explained by the fact that the bending modulus of the rod is dominating over the rest
of the material moduli and that it is this dominating role that constrains the rod from achieving a
configuration that is increasingly bent and twisted. It has been pointed out in [9, 12] that a buckling
instability of sperm has been observed in high-viscosity migration experiments of sperm. This buckling
instability has led to assymmetric flagellar beating and circling motility. Relating with the buckling
instability observed with our simulations, we may infer that this buckling instability may be a result of
a sperm trying to deform into a shape it is incapable of achieving due to its own material properties.

Lim studied the instability of a free rod with zero curvature and nonzero twist. As an extension,
we also explore the instability of a free rod with zero twist and an increasing curvature, which is
virtually a circle of a certain radius. In our simulations, as the rod curls itself to achieve its prescribed
configuration with an increasing twist, self-contacts occur. Inaccuracy of our simulation may result
due to the occurence of these points of self-contact. However, the order of magnitude of the energy
profile obtained in each case could more or less reflect the approximate energy level of the rod to some
degree. We see that as the prescribed curvature increases, it becomes increasingly difficult for the
rod to achieve its prescribed configuration and that the total energy of the rod is increasing rapidly
suggesting an increasing level of instability. To further verify this claim, repulsive forces may be added
to avoid self-contacts, which provides an interesting future work topic.

As mentioned in Chapter 1, the inertia is miniscule in zero Reynolds number flow. At a micro-
scopic scale, the tendency of the surrounding fluid to continue moving is minimal when the object
stops moving. Therefore, simple flapping motions are not able to produce motility on a microscopic
length scale [12]. Micro-organisms like sperm solve this problem by producing a bending wave, which
propagates along the flagellum [12]. Motivated by this mechanism, we also study the propagation of
a helical bending wave on a rod and the instability associated with this wave. In our study of helical
bending wave propagating on a free rod, we discover the different effects of traveling wave frequency σ
on the behavior of the rod in two different regimes. For a free rod propagating a helical bending wave
of handedness h = 1 and a given helical shape (r, p) = (1, 3), we have found that increasing traveling
wave frequency σ decreases the ability of the rod to achieve its prescribed bending waveform as well as
its swimming speed within a traveling frequency range of (20000, 200000). Note that within this range
of σ value for this given helical waveform, the rod is never able to achieve its prescribed amplitude. We
therefore conclude that within the regime where the rod is unable to achieve its prescribed amplitude,
an increase in the traveling frequency σ leads to a decreasing achieved amplitue and an increasing
total energy of the rod. When the same free rod propagates a bending wave of the same handedness
(h = 1) and a waveform of (r, p) = (0.5, 2.5), we have found that the rod is able to achieve its pre-
scribed amplitude. In such a case, as we increase the traveling frequency σ, the wave propagates faster.
This faster propagation leads to an increased swimming speed and a higher total energy of the rod.
The result obtained through our simulation suggests that when a micro-organism like sperm attempts
to propagate a bending wave in a regime where it is unable to achieve its prescribed amplitude, an
increase in propagation speed is no longer beneficial to its movement in the fluid, which in addition
brings increased energy consumption. This simulation result in part explains the relatively low fre-
quency observed in many motile micro-organisms, such as sea urchin sperm with a flagellar beating
frequency of 30-80 Hz and E. Coli with a rate of rotation of its rotary motor within the range of 90-290
Hz [2, 7].

In our study of a helical bending wave propagating on a free straight rod, we have also found an
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asymmetric behavior of the rod with respect to the direction in which the wave propagates along the
rod for a given handedness of the helical bending wave. In our mathematical formulation, the direction
in which the wave propagates is determined by the sign of σ. Through our simulations, a positive
σ corresponds to a wave propagation in the negative z-axis and a negative σ corresponds to a wave
propagation in the positive z-axis. For a free rod propagating a helical bending wave in a regime where
it is able to achieve its prescribed amplitude and swims with a remarkable swimming speed, a negative
σ results in a rod movement in the positive z-axis throughout the movement of the rod. However, for
the same rod propagating exactly the same wave in an opposite direction (positive σ), we have found
that the rod starts off by moving along the positive z-axis for a short period of time in the initial stage
of its movement and then starts to move in the negative z-axis. We observe that in this case, the rod
is trying to first deform into its prescribed helical shape before generating substantial movement along
the z-axis. This phenomenon shows the asymmetry of the rod movement with respect to the direction
of wave propagation. This asymmetry also results in a different level of instability of a tethered rod
propagating a helical bending wave. We infer that this asymmetry may be related to the handedness
of the helical wave.

Sperm usually traverse a high-viscosity fluid enviroment before feritilization. Studies have revealed
that fluid viscosity is a key factor determining the fertilization success of sperm and that fluid viscosity
significantly alters rolling rate, planarity, and waveform of sperm [12, 22]. Studies have shown that
in high viscosity fluids, sperm have a lower beat frequency, wavespeed and wavelength than in low
viscosity fluids. However, the progressive velocity of sperm remains relatively constant in both fluid
environments. In our simulations, we have found that for a rod propagating a given helical bending
wave, increasing fluid viscosity has reduced the ability of the rod to achieve its prescribed amplitude.
In a higher viscosity environment, the rod has a much lower achieved amplitude than when it is trying
to propagate the same helical bending wave in a low viscosity environment. As is stated above, when
the rod is unable to achieve its prescribed waveform, excessively high beat frequency only results in
excessive energy consumption and decreased achieved amplitude. Hence, it is unlikely that sperm
achieves an equal progressive velocity in high viscosity fluids as in low viscosity through increasing
traveling wave frequency. We have found in our simulations, the ability of a rod to achieve its prescribed
waveform depends on the waveform it is trying to propagate as well as its traveling wave frequency.
Our simulations results show that in a high viscosity fluid, decreasing the traveling wave frequency
and changing the waveform propagating along the rod both contribute to a greater swimming speed
of the rod. This agrees with the discussion made previously in [22] based on the relationship between
wavespeed and frequency. It is pointed out in [22] that if a sperm reduces its beat frequency, i.e.
number of beats performed per second, it will consequently encounter the disadvantage of resistance
from the highly viscous fluids less frequently, enabling it to achieve a relatively greater swimming speed.
Through our simulations, we also observe that a greater swimming speed is also associated with a higher
total energy of the rod. This implies that there may exist an optimized strategy for a swimming sperm
in a viscous fluid, minimizing its energy consumption while maximizing its swimming speed. Sperm
may do this by adjusting the bending wave frequency and/or the waveform including amplitude and
pitch it propagates.
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Appendix A

MATLAB Code

Main file

1 Parameters ;
%I n i t i a l i z e the t e t h e r po int

3 t e t h e r =0;
D1=ze ro s (3 , nPt ) ;

5 D2=ze ro s (3 , nPt ) ;
D3=ze ro s (3 , nPt ) ;

7

%I n i t i a l i z e the p o s i t i o n o f IB po in t s
9 Lx=ze ro s (3 , nPt ) ;

Lx ( 1 , : ) =0;
11 Lx ( 2 , : ) =0;

s s=ze ro s (1 , nPt ) ;
13 f o r i =1:nPt

Lx (3 , i )=(1+ e p s i l ) ∗( i −1)∗ds ;
15 end

LH=ze ro s (3 , nPt−1) ;
17 f o r i =1:nPt−1;

LH(1 , i ) =1/2∗(Lx (1 , i +1)−Lx (1 , i ) )+Lx (1 , i ) ;
19 LH(2 , i ) =1/2∗(Lx (2 , i +1)−Lx (2 , i ) )+Lx (2 , i ) ;

LH(3 , i ) =1/2∗(Lx (3 , i +1)−Lx (3 , i ) )+Lx (3 , i ) ;
21 end

23 %I n i t i a l i z e orthonormal t r i a d s
D1( 1 , 1 : nPt ) =1;

25 D1( 2 , 1 : nPt ) =0;
D1( 3 , 1 : nPt ) =0;

27

D2( 1 , 1 : nPt ) =0;
29 D2( 2 , 1 : nPt )=cos ( e p s i l ) ;

D2( 3 , 1 : nPt )=−s i n ( e p s i l ) ;
31

D3 ( 1 , : ) =0;
33 D3 ( 2 , : )=s i n ( e p s i l ) ;

D3 ( 3 , : )=cos ( e p s i l ) ;
35

%I n i t i a l i z e the po in t s around the c e n t e r l i n e
37 xC=ze ro s (m+1,nPt ) ;

yC=ze ro s (m+1,nPt ) ;
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39 zC=ze ro s (m+1,nPt ) ;
fidEF=fopen ( ’EF. txt ’ , ’w ’ ) ;

41 fidENB=fopen ( ’ENB. txt ’ , ’w ’ ) ;
fidENT=fopen ( ’ENT. txt ’ , ’w ’ ) ;

43 f idUx=fopen ( ’Ux . txt ’ , ’w ’ ) ; f idUy=fopen ( ’Uy . txt ’ , ’w ’ ) ; f idUz=fopen ( ’Uz . txt ’ , ’w ’ ) ;
f i d x=fopen ( ’PosX . txt ’ , ’w ’ ) ; f i d y=fopen ( ’PosY . txt ’ , ’w ’ ) ; f i d z=fopen ( ’ PosZ . txt ’ , ’w ’ ) ;

45

f o r iS tep =1: i t e r
47 %Compute tangent vec to r o f g iven IB p o s i t i o n s

TC = TangentVec (Lx) ;
49

%Compute t r i a d s at h a l f boundary po in t s g iven t r i a d s at boundary po in t s
51 [DHn] = TriadHalfPt (D1 , D2 , D3) ;

DH1 = DHn( : , : , 1 ) ;
53 DH2 = DHn( : , : , 2 ) ;

DH3 = DHn( : , : , 3 ) ;
55

%Compute i n t e r n a l f o r c e vec to r at h a l f boundary po int
57 [FH E F ] = Inte rna lForceHa l fPt (DH1,DH2,DH3,TC, te ther , iS t ep ) ;

59 %Compute i n t e r n a l moment at h a l f boundary po int
[NH E NB E NT]= InternalMomentHalfPt (DH1,DH2,DH3, D1 , D2 , D3 , te ther , iS t ep ) ;

61

%Compute f o r c e and moment at boundary po int
63 MF = MomentnForce (NH,FH,TC, Lx) ;

moment Pt = MF( : , : , 1 ) ;
65 f o r c e P t = MF( : , : , 2 ) ;

67 %Check the sum of f o r c e s and torques to ensure s t a b i l i t y
nx=sum( moment Pt ( 1 , : ) )

69 ny=sum( moment Pt ( 2 , : ) )
nz=sum( moment Pt ( 3 , : ) )

71 fx=sum( f o r c e P t ( 1 , : ) )
fy=sum( f o r c e P t ( 2 , : ) )

73 f z=sum( f o r c e P t ( 3 , : ) )
Lx ( : , 1 )

75

%Enforce t e t h e r f o r c e i f the rod i s t e the r ed
77 i f ( t e t h e r == 1)

f o r c e P t (1 , 1 )=f o r c e P t (1 , 1 )+S∗(−Lx (1 , 1 ) ) ;
79 f o r c e P t (2 , 1 )=f o r c e P t (2 , 1 )+S∗(−Lx (2 , 1 ) ) ;

f o r c e P t (3 , 1 )=f o r c e P t (3 , 1 )+S∗(−Lx (3 , 1 ) ) ;
81 end

83 %Solve f o r l i n e a r v e l o c i t y and pre s su r e at IB po in t s
Up = RegStk (Lx , moment Pt , f o r c e P t ) ;

85 IB ve l = Up ( 1 : 3 , : ) ;
IB p = Up( 4 , : ) ;

87

%Solve f o r angular v e l o c i t y at IB po in t s
89 IB ang = AngSolve (Lx , moment Pt , f o r c e P t ) ;

91 %Update orthonormal t r i a d
Dn = updateTriadMot (D1 , D2 , D3 , IB ang , iS tep ) ;

93 D1 = Dn ( : , : , 1 ) ;
D2 = Dn ( : , : , 2 ) ;
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95 D3 = Dn ( : , : , 3 ) ;

97 %Update p o s i t i o n s
Lx = updatePoints ( IB vel , Lx , nPt ) ;

99

i f (mod( iStep , 2000 )==0)
101

%Write energy to f i l e
103 f p r i n t f ( fidEF , ’%f \n ’ ,E F) ; %Write energy

f p r i n t f ( fidENB , ’%f \n ’ ,E NB) ; f p r i n t f ( fidENT , ’%f \n ’ ,E NT) ;
105

f p r i n t f ( f idx , ’%f \n ’ ,Lx ( 1 , : ) ) ; f p r i n t f ( f idy , ’%f \n ’ ,Lx ( 2 , : ) ) ; f p r i n t f ( f i d z , ’%f \n ’ ,
Lx ( 3 , : ) ) ;

107 f p r i n t f ( fidUx , ’%f \n ’ , IB ve l ( 1 , : ) ) ; f p r i n t f ( fidUy , ’%f \n ’ , IB ve l ( 2 , : ) ) ; f p r i n t f (
f idUz , ’%f \n ’ , IB ve l ( 3 , : ) ) ;

109 end

111 end
f c l o s e ( fidEF ) ; f c l o s e ( fidENB ) ; f c l o s e ( fidENT ) ;

113 f c l o s e ( f i d x ) ; f c l o s e ( f i d y ) ; f c l o s e ( f i d z ) ;
f c l o s e (Ux) ; f c l o s e (Uy) ; f c l o s e (Uz) ;
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