
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

July 2006

Flight Data System
Russell A. Pead
Worcester Polytechnic Institute

Tri Lai
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Pead, R. A., & Lai, T. (2006). Flight Data System. Retrieved from https://digitalcommons.wpi.edu/mqp-all/2120

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/2120?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2120&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

������������������������			���			���


���������


������

Date:  July 26, 2006 

A Major Qualifying Project Report: submitted to the Faculty of  
WORCESTER POLYTECHNIC INSTITUTE  
in partial fulfillment of the requirements for the  

Degree of Bachelor of Science  
by�

Project Number: FJL-AVON 

100 Institute Road  Worcester, MA  01609 

This document represents the work of WPI students. The opinions expressed in 
this report are not necessarily those of Worcester Polytechnic Institute. 

Fred Looft        
fjlooft@ece.wpi.edu      

 
Tri Lai 
trilai@wpi.edu _________________________ 
 
Russell Pead 
rustyp@wpi.edu _________________________ 
 



  FJL - AVON 

 2 

Abstract 
 
The goal of this capstone design project was to design a fully portable sailplane Lift/Drag (L/D) 
calculator. The system utilizes NMEA format GPS data strings for software data analysis executed by 
software. Calculated effective L/D results are stored on a removable data storage media (e.g. 
CompactFlash card) for later data analysis.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  FJL - AVON 

 3 

Table of Contents 
 
Abstract ........................................................................................................................................... 2 
1 Introduction............................................................................................................................. 6 

1.1 Introduction........................................................................................................................... 6 
1.2 Problem Statement ................................................................................................................ 6 
1.3 Summary............................................................................................................................... 6 

2 Background ............................................................................................................................. 8 
2.1 Soaring .................................................................................................................................. 8 

2.1.1 Thermal Soaring............................................................................................................. 9 
2.1.2 Ridge and Slope Soaring.............................................................................................. 11 
2.1.3 Wave Soaring............................................................................................................... 12 

2.2 Speed-to-Fly........................................................................................................................ 13 
2.2.1 Lift................................................................................................................................ 14 
2.2.2 Drag.............................................................................................................................. 14 
2.2.3 Effective L/D ............................................................................................................... 16 

2.3 Soaring Weather.................................................................................................................. 16 
2.4 Global Positioning System (GPS)....................................................................................... 19 

2.4.1 History of GPS............................................................................................................. 19 
2.4.2 Wide Area Augmentation System (WAAS) ................................................................ 20 
2.4.3 World Geodetic System 1984 (WGS84)...................................................................... 22 
2.4.4 How it works................................................................................................................ 22 

2.5 Summary............................................................................................................................. 24 
3 Problem Statement ................................................................................................................ 25 

3.1 Introduction......................................................................................................................... 25 
3.2 Problem Statement .............................................................................................................. 25 
3.3 Objective Statements .......................................................................................................... 25 
3.4 Tasks ................................................................................................................................... 25 
3.5 Measurement Objectives..................................................................................................... 27 
3.6 Summary............................................................................................................................. 27 

4 System Design ...................................................................................................................... 28 
4.1 Introduction......................................................................................................................... 28 
4.2 Overall System Design ....................................................................................................... 28 

4.2.1 Enclosure...................................................................................................................... 29 
4.2.2 GPS Module................................................................................................................. 29 
4.2.3 LCD Module ................................................................................................................ 30 
4.2.4 Removable Data Storage Media .................................................................................. 30 
4.2.5 User Interface............................................................................................................... 31 
4.2.6 System Controller ........................................................................................................ 31 

4.3 Component Selection .......................................................................................................... 32 
4.3.1 GPS Receiver ............................................................................................................... 32 
4.3.2 LCD.............................................................................................................................. 34 
4.3.3 Microcontroller Module............................................................................................... 35 
4.3.4 DC/DC Converter ........................................................................................................ 36 

4.4 Software .............................................................................................................................. 37 
4.5 Summary............................................................................................................................. 38 

5 Results................................................................................................................................... 39 
5.1 Introduction......................................................................................................................... 39 



  FJL - AVON 

 4 

5.2 Hardware Implementation .................................................................................................. 39 
5.2.1 FlashCore-B(FB) and CompactFlash........................................................................... 39 
5.2.2 Crystalfontz LCD 8 x 2................................................................................................ 41 
5.2.3 Garmin 15L GPS Receiver .......................................................................................... 42 
5.2.4 Power Distribution Requirements and Implementation............................................... 42 
5.2.5 Module Interfacing....................................................................................................... 44 
5.2.6 System Board ............................................................................................................... 45 

5.3 Software Implementation.................................................................................................... 46 
5.3.1 GPS serial in ................................................................................................................ 46 
5.3.2 LCD control ................................................................................................................. 48 
5.3.3 CompactFlash Transfer................................................................................................ 51 
5.3.4 Calculations (L/D) ....................................................................................................... 51 

5.4 System Test ......................................................................................................................... 52 
5.4.1 Routine Flight Data Analysis....................................................................................... 54 

5.5 Summary............................................................................................................................. 56 
6 Summary and Conclusions ................................................................................................... 57 

6.1 Introduction......................................................................................................................... 57 
6.2 Completed Work................................................................................................................. 57 
6.3 Future Work ........................................................................................................................ 57 
6.4 Summary............................................................................................................................. 58 

7 Works Cited .......................................................................................................................... 59 
Appendix A: Executive Summary ................................................................................................ 61 

Introduction............................................................................................................................... 61 
Appendix B – Trade Study ........................................................................................................... 69 
Appendix C – LCD Test Board Schematic................................................................................... 71 
Appendix D – Data Logger Documents........................................................................................ 72 
Appendix E – System Board Schematic ....................................................................................... 73 
Appendix F – Enclosure Drawings ............................................................................................... 74 
Appendix G – PCB Layouts ......................................................................................................... 77 
Appendix H – Flight Data System Program Code........................................................................ 81 
Appendix I – Used GPS Strings.................................................................................................... 93 
 
 



  FJL - AVON 

 5 

Table of Figures 
 
Figure 1 - Leonardo da Vinci's Aerial Screw ................................................................................. 8 
Figure 2 - Plume Thermal vs. Bubble Thermal .............................................................................. 9 
Figure 3 - General Illustration of Thermal Soaring ........................................................................ 9 
Figure 4 - Formation of a Cumulus Cloud.................................................................................... 10 
Figure 5 - Thermalling: Result of Not Centering.......................................................................... 11 
Figure 6 - Combination of Slope Soaring and Thermalling ......................................................... 12 
Figure 7 - Lee Wave System......................................................................................................... 12 
Figure 8 - Forces on a Glider ........................................................................................................ 14 
Figure 9 - Reduction of Form Drag Using Streamlined Wing...................................................... 15 
Figure 10 - Total Drag .................................................................................................................. 15 
Figure 11 - Standard Atmosphere ................................................................................................. 18 
Figure 12 - Slope Soaring ............................................................................................................. 18 
Figure 13 - "Convergence examples. (A) Wind from different directions. (B) Wind slows and 
'piles up.'" ...................................................................................................................................... 19 
Figure 14 - GPS Satellite Constellation........................................................................................ 20 
Figure 15 - Precision GPS System Coverage Map ....................................................................... 21 
Figure 16 - GPS Accuracy Comparison........................................................................................ 21 
Figure 17 - The Four Steps of the WAAS .................................................................................... 22 
Figure 18 - Trilateration with only 3 Satellites............................................................................. 23 
Figure 19 - System Block Diagram .............................................................................................. 28 
Figure 20 - Sailplane Cockpit ....................................................................................................... 29 
Figure 21 - GPS Module Block Diagram ..................................................................................... 30 
Figure 22 - LCD Module Block Diagram..................................................................................... 30 
Figure 23 - User Interface Block Diagram ................................................................................... 31 
Figure 24 - Microcontroller Block Diagram................................................................................. 32 
Figure 25 - Garmin 15L GPS Receiver with Antenna.................................................................. 33 
Figure 26 - Crystalfontz CFAH0802A-GYH-JP .......................................................................... 35 
Figure 27 - System Controller Block Diagram............................................................................. 35 
Figure 28 - TERN FlashCore-B(FB) System Controller Board ................................................... 36 
Figure 29 - 5V Input Efficiency Curve ......................................................................................... 37 
Figure 30 - Software Flow ............................................................................................................ 38 
Figure 31 - TTL Test Board.......................................................................................................... 40 
Figure 32 - LED Test Board (Top View)...................................................................................... 41 
Figure 33 - LED Test Board (Bottom View) ................................................................................ 41 
Figure 34 – Garmin GPS Receiver Test Block Diagram.............................................................. 45 
Figure 35 - System Module........................................................................................................... 45 
Figure 36 - Detailed Software Flow.............................................................................................. 46 
Figure 37 - LCD Screen Flow....................................................................................................... 50 
Figure 38 - L/D Calculation.......................................................................................................... 52 
Figure 39 - Elevation Comparisons .............................................................................................. 53 
Figure 40 - Recorded Flight Data ................................................................................................. 54 
Figure 41 - Original Flight Data ................................................................................................... 55 
Figure 42 - Flight Data with Three Outliers Omitted ................................................................... 56 
 
 



  FJL - AVON 

 6 

1 Introduction 
 

1.1 Introduction 
 
One of the least known sports is high performance gliding, commonly referred to as soaring. Sailplanes 
make use of thermals, rising columns of air, and other forms of lift to achieve high altitudes. A pilot can 
fly for hours depending on their skill level, granted conditions are ideal. Some of these conditions include 
weather, the number of thermals in the area, and the strength of the area. These will be explained in more 
detail later. 
 
In order to successfully fly long distances and increase flight time, two critical characteristics of a 
sailplane should be optimized. The two most critical performance characteristics of a sailplane are the 
Lift/Drag (L/D) ratio and Minimum Sink Rate. Both performance characteristics rely heavily on the 
physical characteristics of the plane such as weight, wing shape, and the actual aerodynamic design of the 
plane. Because the pilot has no control over physical aspects of the plane, the pilot must control different 
flight variables, such as velocity and angle of attack.  
 
Since the actual L/D ratio of a plane relies on the physical characteristics of the plane, it is not possible to 
design a portable L/D calculator without having to program the system with such information. However, 
using GPS data, it is possible to calculate an effective L/D, also known as best glide ratio.  
 

1.2 Problem Statement 
 
The purpose of the Flight Data System project was to design, implement, and test a fully independent 
portable instrument capable of calculating the effective L/D ratio of a sailplane using GPS data and 
storing data onto removable media for analysis.  
 

1.3 Summary   
 
This chapter introduced a problem, which sailplane pilots frequently find themselves confronted 
with. In order to help solve this problem, we have developed a problem statement, which in turn 
will lead to the development of a portable Flight Data System that can calculate the effective L/D 
of any given sailplane. Although there are currently instruments on the market capable of 
calculating the effective L/D ratio, we hope to develop a system that has the capability to store 
data onto removable media, is lightweight, and portable.  
 
The proceeding is a list of chapters following this section and a quick overview of each chapter’s 
contents: 



  FJL - AVON 

 7 

• Background – Contains an explanation regarding some basic knowledge of 
soaring. This chapter also provides an explanation of how the Global Positioning 
System works. 

• Problem Statement – Defines the purpose of this project and the requirements of 
the Flight Data System. 

• System Design – Detailed explanation of the individual modules required to 
implement the Flight Data System. It also contains the trade studies conducted to 
validate the component selections used in the individual modules. 

• Results – Contains an explanation of how the hardware and software were 
implemented once each module was tested individually. This chapter also 
contains the data obtained from our tests and also an analysis of the data. 

• Summary and Conclusions – Compares our final results to the objectives stated in 
the Problem Statement chapter. It also lists any future works that should be 
considered and recognizes parts of the project in which we would have done 
differently. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  FJL - AVON 

 8 

2 Background 
 
In order to understand the approximation method used in this project, the fundamental theory behind how 
the Lift/Drag ratio is calculated must be understood. In order to understand why the L/D ratio is important 
during flight, a basic knowledge of soaring must be acquired. A working knowledge of the Global 
Positioning System (GPS) is also necessary to understand the approximation method implemented in our 
design.  
 

2.1 Soaring 
Throughout time, mankind has always dreamed of the ability to fly in the sky amongst the birds. In Greek 
mythology, Daedalus and his son, Icarus, were imprisoned by King Minos. In order to escape, Daedalus 
fabricated wings made of wax and feathers so that they may fly off the island. Prior to the escape, the 
father had warned Icarus not to fly too close to the sun or the wax would melt the wings. Although 
forewarned, Icarus became ecstatic with the ability to fly and kept flying higher closer to the sun. The 
wings eventually melted and Icarus fell to his death.  
 
During the fifteenth century, Leonard da Vinci made sketches of machines capable of flying, one of 
which almost resembles the modern day helicopters. Figure 1 is a copy of da Vinci’s sketch of an aerial 
screw, “classified as the helicopters ancestor” (AIAA 2006).  
 

 
Figure 1 - Leonardo da Vinci's Aerial Screw1 

 
During the late 1700’s and early 1800's, a man by the name George Cayley designed a series of gliders 
which were controlled by body movements. In the late 1800’s, Otto Lilienthal, a German engineer, 
designed a glider and was the first person able to fly long distances (UEET NASA).  Most known in 
history for flight are the Wright Brothers. They were the first to make powered flight possible, which 
occurred in 1903. 
 

                                                 
1 http://www.aiaa.org/content.cfm?pageid=425 



  FJL - AVON 

 9 

During the 1920’s soaring became a sport of its own caused in part, by the World War I treaty of 
Versailles because it banned Germany from any type of powered flight (USST 2004). Soaring flight is 
defined as the ability to “maintain or gain altitude rather than slowly gliding downward” (FAA 2003). In 
the early 1920’s, pilots found lift in the updraft caused by wind deflected off a hillside. Soon after in the 
late 1920’s, Robert Kronfeld discovered the ability to use rising warm air, known as thermals, as a form 
of lift for his glider. Then in the early 1933, Wolf Hirth discovered wave lift or air blowing over mountain 
ranges forming waves (USST 2004), which lead to the first high altitude flights (FAA 2003).  
 

2.1.1 Thermal Soaring 
From the different types of soaring, thermal soaring is the most common. The thermalling process 
consists of four main steps: locating a thermal, entering the thermal, centering, and finally exiting. A 
thermal is defined by the Merriam-Webster Dictionary as “a rising body of warm air” and according to 
the FAA it is “a buoyant plume or bubble of rising air”. Figure 2 is an illustration of thermals in the 
plume form (left) and the bubble form (right). Figure 3 illustrates a general path of glider while thermal 
soaring, in which the upward pointing arrows depict thermals and the downward pointing arrows depict 
cooler sinking air. 
 

 
Figure 2 - Plume Thermal vs. Bubble Thermal2 

 

 
Figure 3 - General Illustration of Thermal Soaring3 

 
                                                 
2 https://ntc.cap.af.mil/ops/DOT/school/NCPSC/GliderNCPSC/CAPF_5_glider/soaringtechniques.htm 
 
3 https://ntc.cap.af.mil/ops/DOT/school/NCPSC/GliderNCPSC/CAPF_5_glider/soaringtechniques.htm 
 



  FJL - AVON 

 10 

Since air is invisible, locating thermals can be difficult. Cumulus clouds, also known as Cu (pronounced 
like the letter ‘q’), are common indicators of thermals because when there is enough moisture in the air 
and the air is warm enough to carry it high enough, the moisture begins to condense and form clouds. 
Figure 4 illustrates the formation of a cumulus cloud. Deeper clouds, indicated by darker bases, typically 
have stronger thermals. Clouds that have a fuzzy or stringy appearance typically mean that the clouds are 
at the end of their lifetimes and there is little lift or possibly even sink.  
 

 
Figure 4 - Formation of a Cumulus Cloud4 

 
A cloudless sky does not necessarily mean that there are not any thermals around. Blue thermals, or dry 
thermals, will form when the air is cool enough and the surface temperatures warm up sufficiently and are 
just as strong as typical thermals marked by clouds (FAA 2003). The lack of moisture in the air is the 
reason why cumulus clouds are not formed and why they are called dry thermals. These thermals are 
typically found by accident but to locate dry thermals, there are several indicators. Some common 
indicators are: 
 

• Another glider circling 
• Circling birds 
• Haze domes created by aerosols transported and deposited by thermals 

 
Typically the first indicator of a nearby thermal is increased sink, in which flight speed should be 
increased in order to penetrate the sink. After the sink, a positive G-Force is felt and is this force 
increases, speed should be reduced to between the best L/D speed and minimum sink speed. Then, at the 
right moment, begin turning into the thermal and if all goes well, “the glider will roll into a coordinated 
turn, at just the right bank angle, at just the right speed, and be perfectly centered” (FAA 2003).  
 

                                                 
4 http://www.flyaboveall.com/mountainpilot/thermalclinic.htm 
 



  FJL - AVON 

 11 

Centering is important because gliders have a natural tendency to drift away from thermals. In the center 
of a thermal is where the stronger lift occurs, and as a glider flies into a thermal not centered, the stronger 
lift will cause the glider to bank in the opposing direction. Figure 5 shows a glider entering a thermal, not 
centered, to its left. The stronger lift in the center causes the glider to bank right into another thermal, but 
again is not centered and the new thermal causes the glider to bank left away from either thermal. In other 
words, the thermal rejects the glider if it is not centered. Inside the thermal, use the smallest possible bank 
angle at minimum sink speed. The reason for this is the higher the bank angle, the greater the sink and 
flying below minimum sink speed increases the chance of a stall.  
 

 
Figure 5 - Thermalling: Result of Not Centering5 

 
Nearing completion of thermalling, the pilots must continually check the sky so that they may see if there 
is any nearby air traffic and also determine where to go for the next thermal. This is important to avoid 
any collisions with other gliders and because it may result in an unexpected landing. It is also important to 
increase speed prior to exiting to penetrate back through the strong sink found on the edge of a thermal. 
 

2.1.2 Ridge and Slope Soaring 
When wind is deflected over hillsides or ridges, an updraft is created which can be used as a form of lift. 
This is known as ridge soaring, or slope soaring. In “Gliding – A Handbook on Soaring”, Derek Piggott 
states the best lift in slope soaring is “found over or in front of the steepest slope”. Thermals tend to be 
found nearby so a combination of thermalling and slope soaring can be utilized. Figure 6 is an example 
of using a combination of slope soaring and thermalling. If the thermal is at the end of its cycle, the slope 
can be used to continue soaring. It is important to fly above minimum sink speed while slope soaring 
because minimum sink speed is close to stall speed and also it may be harder to control the glider around 
the terrain. (FAA 2003) 
 

                                                 
5 Figure 10-7 from FAA’s “Glider Flying Handbook” 



  FJL - AVON 

 12 

 
Figure 6 - Combination of Slope Soaring and Thermalling6 

 

2.1.3 Wave Soaring 
Similar to slope soaring, wave soaring utilizes air waves coming from mountains, known as lee waves. 
The big difference between slope soaring and wave soaring is that the updraft from a hill occurs on the 
upwind side, where as the lee waves are formed on the downwind side. As wind flows along the upwind 
side of a mountain, air parcels are displaced upward. The parcels have a natural tendency to stay at an 
equilibrium level, so when the wind stops pushing the parcel upwards, the parcel begins to fall to try to 
regain the equilibrium level. Upon reaching its equilibrium level, it had accelerated to a speed too fast for 
it to stop and overshoots the equilibrium. Closer to the ground the parcel warms up and begins to float 
upwards. This process repeats, diminishing in amplitude with each cycle, forming the lee waves. Figure 7 
illustrates a lee wave system. Under the crest, there is a turbulent area, called rotors, which can be mild to 
severe. 
 

 
Figure 7 - Lee Wave System7 

 

                                                 
6 Figure 10-18 from FAA’s “Glider Flying Handbook” 
7 http://www.ssa.org/sport/whatissoaring3.asp 
 



  FJL - AVON 

 13 

There are two main ways to enter the wave system. The first way is to soar into it, which provides three 
options: 

• Thermalling 
• Being towed to the upside of the rotor and climbing up to the wave 
• Transitioning into the wave from slope soaring 

The other option is to be towed directly through the rotor and releasing into the wave. It is possible to ask 
the tow pilot to fly around the rotor, but this usually takes more time and is less ideal for the tow pilot. 
 
Once inside the wave, the best lift of the wave will be found on the upwind side of the rotor and the most 
efficient speed to fly will be close to the gliders minimum sink speed. If the winds are stronger on a 
particular day, it will be necessary to fly faster than the minimum sink speed so that the glider does not 
drift backwards into a sink region. Once inside the sink region, it will be hard to penetrate the wind to get 
back to the area of best lift. Wave soaring has been known for providing the longest and highest flights 
because the waves can go well above the mountain top. 
 
If the pilot desires to descend, the pilot may utilize the sink region downwind. The sink region itself “can 
easily be twice as strong as lift encountered upwind”. It is very likely and almost unavoidable that a 
decent into the turbulent rotor zone will occur. Going through the rotor is always unpleasant and in the 
worse case scenario be extremely dangerous if done too fast. (FAA 2003) 

2.2 Speed-to-Fly 
According to the FAA’s “Glider Flying Handbook”, Speed-to-Fly is explained as follows: 
 
“Speed-to-fly refers to the optimum airspeed for proceeding from one source of lift to another. Speed-to-
fly depends on the following: 

1. The rate-of-climb the pilot expects to achieve in the next thermal or updraft 
2. The rate of ascent or descent of the air mass through which the glider is flying 
3. The glider’s inherent sink rate at all airspeeds between minimum sink airspeed and never exceed 

airspeed 
4. Headwind or tailwind 

 
The object of speed-to-fly is to minimize the time and/or altitude required to fly from the current position 
to the next thermal. Speed-to-fly information is presented to the pilot in one or more of the following 
ways: 

• By placing a speed-to-fly ring (MacCready ring) around the variometer dial 
• By using a table or chart 
• By using an electronic flight computer that displays the current optimum speed-to-fly 

 
The pilot determines the speed-to-fly during initial planning and than constantly updates this information 
in flight. The pilot must be aware of changes in the flying conditions in order to be successful in 
conducting cross-country flights or during competitions.” (FAA 2003) 
 



  FJL - AVON 

 14 

2.2.1 Lift 
On any aircraft, there are three main forces acting upon the system. These three forces are lift, drag, and 
weight. Figure 8 illustrates how these forces acted on a glider. If the aircraft is powered, then there is an 
additional force called thrust, which will not be discussed for the purposes of this paper. Lift is the most 
important of the forces and is required for flight. It is a force produced by “the dynamic effects of the 
airstream acting on the wing, opposing the downward force of weight” (FAA 2003).  
 

 
Figure 8 - Forces on a Glider8 

 

Lift is defined as SVCL L 2
2 ρ=  where L denotes lift, CL is the coefficient of lift, V is velocity, � is air 

density, and S is the wing’s surface area. The coefficient of lift itself is the ratio of lift pressure to 
dynamic pressure and area. Looking at the equation, it is seen that if any of these factors were to increase, 
so would lift.  
 
As a wing cuts through the air, some of the air travels above the wing and some travels beneath the wing. 
The air flowing over the top of the wing accelerates, resulting in a decrease in pressure which is explained 
using Bernoulli’s principle. The air flowing beneath the wing causes a build up of pressure. The air 
traveling underneath the wing is deflected at a slight angle, the wind is forced downward, and according 
to Newton’s Third Law of Motion, “for every action there is an equal and opposite reaction”, and the 
downward wind causes an upward reaction, resulting in lift.  
 

2.2.2 Drag 
Like everything else in the world, there is an opposing force that acts on the glider. Similar to friction 
opposing movement of objects across solid surfaces, the force that opposes movement of a glider through 
air is known as drag. Total drag is the sum of two types of drag; parasite drag and induced drag. Parasite 

                                                 
8 Adapted from Figure 3-2 from FAA’s “Glider Flying Handbook” 



  FJL - AVON 

 15 

drag is defined as “drag caused by any aircraft surface, which deflects or interferes with the smooth 
airflow around the glider” (FAA 2003). Parasite drag is then broken up into three forms: 

• Form drag 
• Interference drag 
• Skin friction drag. 

Form drag is caused when the airstream makes contact with plane and is separated to flow either above or 
below the plane, resulting in some turbulence. Figure 9 shows how the streamline design of the wing 
reduces form drag. When different currents of air interact over the body of the plane and cause 
turbulence, this is known as interference drag. The last form of parasite drag known as skin friction drag 
is caused when thin layers of air adheres to the microscopically rough surface of the plane, creating small 
currents and turbulence (FAA 2003).  
  

 
Figure 9 - Reduction of Form Drag Using Streamlined Wing9 

 
Induced drag is a byproduct of the lift created by the air moving around the wings. As the airstreams 
move across the wings, and the low pressure air meets the high pressure air at the trailing edge, a vortex is 
formed. The vortex itself deflects the airstream downward, in this case an average relative wind in which 
the wing is flying through. Since lift acts perpendicular to the relative wind, a portion of the lift is directed 
toward a rearward direction. This rearward lift is known is induced drag (FAA 2003). Figure 10 illustrates 
the summation of parasite drag and induced drag to form total drag with respect to velocity. The best 
speed-to-fly to achieve maximum L/D is found where total drag is at a minimum.  
 

 
Figure 10 - Total Drag10 

                                                 
9 Figure 3-9 from FAA’s “Glider Flying Handbook” 
10 http://www.pilotsweb.com/principle/liftdrag.htm 



  FJL - AVON 

 16 

2.2.3 Effective L/D 
Effective L/D, previously mentioned as max glide ratio, is the unit of distance traveled divided by the unit 
loss in altitude. Since effective L/D is a ratio, any distance unit can be used without the necessity for 
using a particular measuring system. The effective L/D is as significant, if not more, than the 
manufacturer specified L/D since the glider will not always achieve the specified L/D. The effective L/D 
approximation used for this project represents the effect of all factors from the pilot’s flying style to 
various temperatures experienced at different altitudes, and the movement of the air through which the 
glider is flying, and the movement of the air through which the glider is flying. Table 1 is comprised of 
some typical sailplane data, such as minimum sink rates, best glide rations, and speeds at which they are 
achieved. As seen in the table, values vary with change in weight and wingspan, but these are not the 
deciding factors. Other factors such as airfoil shape, wing area, and any additional weight added by 
having an additional pilot or filling the water ballasts will have an effect on these values.    
 

Sailplane 
Type 

Empty 
Weight 

Wingspan Min. Sink 
and Speed 
Achieved 

Best L/D and 
Speed 
Achieved 

Va (Max 
Rough Air 
Speed) 

304C 235 kg 15.0 m 112.2 ft/min 
@ 41.6 kt 

42.5 @ 62.6 kt 108.0 kt 

DG-300 245 kg 15.0 m 116.1 ft/min 
@ 42.0 kt 

41.0 @ 54.0 kt 108.0 kt 

LS-4 245 kg 15.0 m 120.1 ft/min 
@ 43.2 kt 

40.2 @ 54.0 kt 112.0 kt 

1-26 E 172 kg 12.0 m 155.5 ft/min 
@ 33.0 kt 

23.0 @ 39.0 kt unavailable 

PW-5 190 kg 13.4 m 128.0 ft/min 
@ 40.0 kt 

32.0 @ 44.0 kt 79.0 kt 

2-33 272 kg 15.5 m 185.0 ft/min 
@ 36.5 kt 

23.0 @ 43.4 kt unavailable 

L23 
2-Seater 

310 kg 16.2 m 159.4 ft/min 
@ 37.0 kt 

28.0 @ 49 kt 
(2 pilots), 43 
kt (1 pilot) 

81.0 kt 

Duo Discus 
2-Seater 

410 kg 20.0 m 114.2 ft/min 
@ 45.9 kt 

45.0 (speed 
unavailable) 

97.2 kt 

Table 1 – Typical Sailplane Data 
 

2.3 Soaring Weather 
All glider pilots, regardless of experience, have to decide if the weather is safe enough to fly. Even if the 
weather does not pose a hazard to the safety of the pilots, a pilot may decide not to fly on certain days 
since the weather may not be favorable to producing thermals worth the expense of a tow. In order for the 

                                                                                                                                                             
 



  FJL - AVON 

 17 

pilot to make a well-educated decision concerning the safety risk of the weather, a few factors of weather 
must be considered.  
 
The fundamental factors of weather are temperature, density, and pressure yet humidity should be 
considered as well since water vapor can easily make for a rough flight with cold temperatures. The 
definitions for the three fundamental factors plus humidity are as follows. 

1) temperature - the average kinetic energy of molecules 
2) density – mass of molecules per unit volume 
3) pressure – “force per unit area (FAA 2003)” 
4) humidity – concentration of water vapor in the atmosphere 

 
Ignoring humidity for a moment, dry air behaves close enough to an “ideal” gas that the extra effect of 
water is considered negligible yielding the equation P/DT=R.  

• P is Pressure 
• D is Density 
• T is Temperature 
• R is a constant 

 
Density is usually calculated from the temperature and pressure readings. The pilot can then determine the 
performance of the aircraft and make flight adjustments as necessary. The most important part of density 
is the affect it has on the performance of the aircraft when ascending and descending to different altitudes. 
The air temperature drops 2ºC for every 1000 feet rise in altitude. Figure 11 shows the temperature based 
on a given altitude for the standard atmosphere of the Earth. An important note: altitudes above 10000 
feet have such a low density of oxygen that breathing may become difficult or even cease function. 
Commercial jets have pressurized cabins to avoid this problem but glider pilots must be prepared with 
oxygen if intending to fly at such high altitudes.  
 
In order to get a nice day of soaring weather, the atmosphere needs to be unstable but not as in a tornado, 
hurricane, or thunderstorm. The air needs to be dry enough to allow the sun to heat the surface and have 
cool air masses above; otherwise the thermals will be weak at best.  
 



  FJL - AVON 

 18 

 
Figure 11 - Standard Atmosphere11 

 
Slope soaring requires two simple conditions for a good flight: elevated terrain and wind. When wind 
encounters topography, the wind is deflected in some direction(s). Many pieces of terrain do not provide 
enough wind in one direction to allow for slope soaring since the wind can deflect around the terrain 
instead of over it. Figure 12 shows the prime location to find the best lift when slope soaring.  
 

 
Figure 12 - Slope Soaring12 

 
An intriguing phenomenon with wind is lift due to convergence. As seen in Figure 13, convergence 
occurs when two winds meet and produce an upward stream of air. Convergence can happen for several 
miles (e.g. two storms collide). Convergence also happens when wind slows down in front of more wind 
with the excess forced in the upward direction.  
                                                 
11 Figure 9-3 from FAA’s “Glider Flying Handbook” 
12 Figure 9-22 from FAA’s “Glider Flying Handbook” 



  FJL - AVON 

 19 

 

 
Figure 13 - "Convergence examples. (A) Wind from different directions. (B) Wind slows and 'piles up.'"13 

2.4 Global Positioning System (GPS) 
Through the course of time, there has been a strong desire for the ability to accurately navigate the world. 
At the beginning of time, travelers were forced to either memorize their way around or mark trails for 
themselves so that they find their way back. Eventually, people were able to follow maps, but these maps 
were hand drawn and inaccurate. One of the earliest forms of traveling great distance was by sea, in 
which sailors used the stars to chart their paths but this was a problem because the stars were only visible 
at night. From there, different devices such as the compass and the sextant were developed to help with 
navigation. With each device, there was an associated map which would tell the navigator information 
relative to the devices reading. For example, as we all know the compass always points to Magnetic 
North, which tells the user their heading or the direction they are traveling in. These users carried along 
maps which contained data in which heading they should follow to arrive at a desired location. Eventually 
radio based navigation centers were developed but this allowed for the following two possibilities: 

1. Highly accurate navigation that did not cover a wide area (GPS Primer 3). 
2. Navigation that covered a wide area but was not accurate. Radio based navigation centers in 

turn lead to the development of the Global Positioning System (GPS Primer 3).  

2.4.1 History of GPS 
The development of the Global Positioning System (GPS) began in the 1960’s and the first set of GPS 
satellites were launched between 1978 and 1985. This first set of satellites was known as Block I and 
consisted of 11 satellites, one of which was lost due to launch failure. Starting in 1989, launching of the 
second generation of satellites began. This second generation of satellites is known as Block II and 
consists of 24 satellites. The constellation of satellites was completed in 1997, and beginning in 1997 
NASA began launching more satellites into space to replace the older satellites (GPS Primer 2). Figure 14 
illustrates the constellation of the 24 satellites. 
 

                                                 
13 Figure 9-30 from FAA’s “Glider Flying Handbook” 



  FJL - AVON 

 20 

 
Figure 14 - GPS Satellite Constellation14 

 
The satellites are located approximately 12,000 miles above the Earth’s surface and make two complete 
obits every 24 hours. The constellation of satellites is setup such that at any given point, at least four 
satellites are “visible” to a GPS receiver (HowStuffWorks). The higher the number of satellites the 
receiver is able to lock onto, the more accurate it is at determining its position. On the GPS receiver, 
almanac data containing the approximate locations of the satellites is stored and constantly updated with 
information received from the satellites. 

2.4.2 Wide Area Augmentation System (WAAS) 
Wide Area Augmentation System (WAAS) is being developed by the Federal Aviation Administration 
(FAA) and the Department of Transportation (DOT) for approved “use in precision flight approaches.” 
WAAS consists of an estimated 25 US ground stations used to monitor GPS satellite data. Currently, 
WAAS ground stations only exist in the US but several WAAS capable GPS receivers exist in other 
countries. 
 
To this effect, other governments are developing their own analogous system. The Japanese Multi-
Functional Satellite Augmentation System (MSAS) is used in Asia whereas the Euro Geostationary 
Navigation Overlay Service (EGNOS) is used in Europe. Figure 15 shows a map of the areas covered by 
each system while also showing the areas not yet covered by a precision GPS system.  
 

                                                 
14 http://www.garmin.com/aboutGPS/ 



  FJL - AVON 

 21 

 
Figure 15 - Precision GPS System Coverage Map15 

 
The main purpose of WAAS is to increase GPS accuracy drastically. Figure 16 shows the different 
position accuracies of the various Global Positioning Systems. 
 

• Original GPS with Selective Availability (SA) enabled position accuracy: 100 meters 
• Typical GPS with SA disabled position accuracy: 15 meters 
• Typical differential GPS (DGPS) position accuracy: 3-5 meters 
• Typical WAAS position accuracy: <3 meters 

 

 
Figure 16 - GPS Accuracy Comparison16 

 
In order to achieve an accuracy of less than 3 meters, WAAS uses the 25 ground stations to send 
correction messages from two master stations with one located on the east coast of the US and the other 
on the west coast of the US. The two master stations send a correction message which “accounts for GPS 

                                                 
15 http://www.easydevices.co.uk/sitepage/WAAS.html 
 
16 http://www.garmin.com/aboutGPS/waas.html 
 



  FJL - AVON 

 22 

satellite orbit and clock drift plus signal delays caused by the atmosphere and ionosphere.” Figure 17 
shows how the system works while including the following steps. 

1) Ground stations acquire satellite velocity and position 
2) Ground stations transmit data to master station 
3) Master stations transmit GPS correction message to geostationary satellites or satellites with a 

fixed position over the equator 
4) Geostationary satellites send GPS data to vehicles 

 

 
Figure 17 - The Four Steps of the WAAS17 

 

2.4.3 World Geodetic System 1984 (WGS84) 
World Geodetic System 1984 (WGS84) is the current system used today for land, air, and sea navigation. 
WGS84 allows us to use GPS since everyone around the world uses the same geodetic, three-dimension 
coordinate, system. Web sites including http://en.wikipedia.org/wiki/WGS84 explain the details of 
WGS84.  
 
Knowing GPS uses a three-dimensional coordinate system with the only main difference between our 
current system and WGS84 is accuracy while used around the world is sufficient.  

2.4.4 How it works 
The GPS determines the location of a user through a process called trilateration. In order for trilateration 
calculations to be accurate, at least four satellites must be visible to the receiver. By locking on to a 
satellite, a GPS receiver is able to determine its distance away from the actual satellite. At midnight 
(HowStuffWorks), a satellite and the GPS receiver will simultaneously begin transmitting the same signal 
called a pseudo-random code. When the GPS receiver receives the signal from the satellite, the time offset 
of the signal is used to determine the distance the receiver is away from the satellite. Using this distance, 
an imaginary sphere with a radius equal to the distance of the receiver is created around the receiver. 
According to this sphere, a user can be located anywhere along the edge. By overlapping another similar 
sphere from another satellite, the user’s location is now somewhere along the edge of a perfect circle. By 

                                                 
17 http://www.garmin.com/aboutGPS/waas.html 



  FJL - AVON 

 23 

adding another satellite connection, all possible locations have been eliminated except for two. Then a 
fourth satellite is used to eliminate the remaining possibility. In essence, the Earth can be used as a fourth 
sphere to eliminate the remaining possibility lying in space, but with information from an actual fourth 
satellite, the results will be more accurate. Figure 18 depicts the results of trilateration when data from 
only three satellites are used. 
 

 
Figure 18 - Trilateration with only 3 Satellites18 

 
In GPS applications, there are two signal carriers and two types of pseudo-random code, the first of which 
is called C/A code (course acquisition). The first carrier is called L1 and has a frequency of 1575.42 MHz 
which is modulated by the C/A code. Each of the satellites has its on C/A code so receivers can 
distinguish which satellite is which. Civilian receivers use the C/A code, whereas the military uses the 
second type of code, called P (Precise) code. The P code modulates both the L1 carrier and the L2 carrier, 
which as a frequency of 1227.60 MHz, at 10 MHz. For extremely accurate applications, such as missile 
guidance, the P code can be encrypted, which is called Y code (GPS Signals). As a matter of national 
security, only receivers with authorization keys and special decoders can receive Y code signals. 
 
In order for trilateration to work, timing must be highly accurate. This poses a problem on the receivers 
behalf, because all the satellites have atomic clocks installed but would be too expensive and impractical 
for a receiver to also have an atomic clock. Instead, GPS receivers contains a quartz clock which is 
updated constantly using the information from received from the GPS satellites (HowStuffWorks). 
 

                                                 
18 Garmin Part Num. 190-00224-00 Rev. A – GPS Guide For Beginners 



  FJL - AVON 

 24 

There are many factors that can cause GPS information to be inaccurate, such as timing. As the signals 
travel through the atmosphere, they are slowed down which causes an inaccurate calculation of the 
distance between the receiver and the satellite. Another timing issue is caused by obstacles in the path of 
the GPS signal. If there are buildings and trees in the way, the signal is bounced around and takes longer 
to arrive at the receiver. Probably the most common error in GPS data is caused when the true orbit of the 
satellites do not match up to the almanac data stored in the GPS receiver. This will result in errors that 
offset the receivers’ longitude and latitude coordinates relative to the satellites actual location (GPS Guide 
8-9). 
 
By using a Differential GPS (DGPS) equipped receiver, accuracy is greatly increased. Normal GPS 
receivers are accurate to within fifteen meters, whereas DGPS equipped receivers are accurate to within 
three to five meters (Garmin – What is GPS?). There are stations with known locations which monitor the 
locations of the satellites and compare it to the data specified in the almanac. The stations then determine 
the errors in the satellites’ signals and then send out corrective information to DGPS equipped receivers. 
Accuracy of DGPS systems improves horizontal accuracy to within 1-6 meters as opposed to the 3-5 
meter accuracy of WAAS (GPS Guide 11). GPS Control states as a general rule of thumb “to expect your 
vertical accuracy to be somewhere near half the horizontal accuracy”. For example, if the horizontal 
accuracy is 1 meter, expect the vertical accuracy to be 2 meters. 
 

2.5 Summary 
This chapter presents the most pertinent background information necessary to understand the remainder 
of the Flight Data System project. Without a basic understand of the Global Position System and the 
meaning of the L/D ratio, this project would seem very confusing. Contrarily, this project is simple in the 
concept.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  FJL - AVON 

 25 

3 Problem Statement 
 

3.1 Introduction 
 
The goal of our project was to design, implement and test a portable sailplane flight performance 
instrument. The purpose of this chapter is to specifically state the project goal, identify the objectives 
necessary to achieve the goal, and list the tasks necessary to accomplish the objectives and the overall 
goal.  
 

3.2 Problem Statement 
 
The goal of the Flight Data System project was to design, implement, and test a fully independent 
portable instrument capable of calculating the effective L/D ratio of a sailplane using only GPS data and 
storing pertinent data onto removable media for analysis.  
 

3.3 Objective Statements 
 
After considering our overall goal, we came up with the following objectives: 
 

• Develop a detailed working knowledge of the Global Positioning System (GPS). 
 

• Develop a detailed working knowledge of sailplane aviation and flight performance factors. 
 

• Understand the incoming GPS string data format, content, and configuration options. 
 

• Design, implement, and test the system hardware. 
 

• Design, program, and test software used to interconnect all necessary system components. 
 

3.4 Tasks 
 
In order to complete the objectives listed above, we divided each objective into a list of tasks needed to 
reach the object: 
 

• Develop a detailed working knowledge of the Global Positioning System (GPS) 
 

o Define Global Positioning System and all necessary subsystems 
 



  FJL - AVON 

 26 

o Research how the Global Positioning System works 
 

o Research the means of communication within the system including standards and 
methods 

 
o Research commercially available receivers 

 
• Develop a detailed working knowledge of sailplane aviation and performance factors 

 
o Research performance glider (sailplane) aviation 

 
o Research the most crucial characteristics concerning sailplanes 

 
o Research required flight instruments 

 
o Observe modern racing sailplane concerning cockpit layout and proper placement of 

Flight Data System device 
 

• Understand the incoming data format and content and configuration options 
 

o Research GPS data transmission syntax and content along with configuration options 
 

o Research the National Marine Electronics Association (NMEA) 0183 Standard 
 

• Design, implement, and test the system hardware 
 

o Research and contrast commercially available microprocessor and field-programmable 
gate array (FPGA) boards based on communication standard requirements 

 
o Research and contrast liquid crystal display (LCD) implementation options (e.g. serial 

versus parallel)  
 

o Research and contrast commercially available receivers 
 

o Research various types of removable media formats 
 

o Research and contrast commercially available removable media 
 

o Research common portable device independent power sources 
 

o Research and contrast power distribution topographies based on the various common 
portable device independent power sources for simplicity of design and constrained space 
requirements. 

 



  FJL - AVON 

 27 

o Prove all chosen system components can physically fit onto a printed circuit board (PCB) 
which falls within the space constraints of the enclosure.  

 
• Design, program, and test software used to interconnect all crucial system components 

 
o Research necessary programming language for microprocessor or FPGA 

 
o Create a software flow chart for clarity of organization before programming 

 
o Simulate test flight and verify the L/D ratio results 

 

3.5 Measurement Objectives 
 
After researching the characteristics and capabilities of racing sailplanes, we created a list of measurable 
objectives needed for our instrument to work over a broad range of performance racing sailplanes: 
 

• Air Speed: 30 – 150 knots 
 

• Altitude: sea level to 9,999' 
 

• L/D ratio: 2:1 – 100:1 
 

• Total system runtime of no less than 1 hour but 3 or more hours is preferred. 
 

3.6 Summary 
 
The goal of the Flight Data System project was to design, implement, and test a fully independent 
portable instrument capable of calculating the L/D ratio of a sailplane. In order to successfully complete 
this goal, we specified a set of objectives our project would have to satisfy in order to be considered 
complete. The set of measurable requirements is given in the following chapter –Methods– since we had 
to research several areas before determining which measurable requirements are necessary for the 
successful completion of the Flight Data System project.  
 
 
 
 
 
 
 
 
 



  FJL - AVON 

 28 

4 System Design 
 

4.1 Introduction 
 
The overall system design of the Flight Data System is presented in this chapter. All inputs, outputs, and 
processing needs are defined and explained within the context of the system design. Where appropriate, 
the rationale for the design chosen is also presented.   
 

4.2 Overall System Design 
 
Before we could move onto implementation and choosing various system components, we had to define 
the critical components necessary to meet our design goals and objectives. As seen in Figure 19, several 
key modules were apparent when we referred to the Problem Statement and Measurement Objectives 
chapters including the following: 
 

• GPS Module 
• Liquid Crystal Display (LCD) 
• Removable data storage media (prefer onboard) 
• User Interface (push-button switches) 
• System Controller (a microprocessor or FPGA) 
• Portable Power Source 

 

 
Figure 19 - System Block Diagram 

 
 
 



  FJL - AVON 

 29 

4.2.1 Enclosure 
 
One of the most critical goals we needed to satisfy, to be able to use the Flight Data System during a 
flight, is to meet the necessary size requirement of the enclosure as to not impair the pilot’s view. Figure 
20 illustrates the need for the small size requirements since the only place to attach the device to the 
sailplane is in place of the clock due to the limited space available. Because the clock is being replaced, a 
clock will be implemented as one of the displays in our system. At the start of our project, Professor Looft 
provided us with an enclosure he felt adequate to implement the system, yet small enough to fit the space 
constraint in the cockpit. The enclosure measured 3.125 inches by 6.5 inches.  
 

 
Figure 20 - Sailplane Cockpit 

 

4.2.2 GPS Module 
 
The GPS module consists of the GPS antenna, GPS receiver, regulated power, and a true RS232 data line 
from the GPS receiver to the microcontroller board as seen in Figure 21. The GPS receiver receives the 
NMEA strings though the GPS antenna and transmits the strings to the serial port of the microcontroller 
via a true RS232 serial data line. The GPS data includes altitude, speed, time, etc. and provides the only 
vital data input to the system controller.  
 



  FJL - AVON 

 30 

 
Figure 21 - GPS Module Block Diagram 

 

4.2.3 LCD Module 
 
The LCD can be interfaced to the microcontroller either via a serial or parallel connection. We decided to 
use the parallel interface since serial only transfers one bit at a time as opposed to the 10 bits 
simultaneously with the parallel interface. As seen in the LCD module block diagram in Figure 22 , the 
LCD module consists of a parallel LCD which connects to the microcontroller via 8 data lines, chip 
enable (E), read/write (R/D), and register select (RS). The LCD module provides the only available user 
feedback concerning the current state of the system.  
 

 
Figure 22 - LCD Module Block Diagram 

 

4.2.4 Removable Data Storage Media 
 
The purpose of the removable data storage media is to transfer the calculated data to another system for 
analysis (e.g. MS Excel on a computer). Therefore, the only two requirements are a device with a format 
any computer can read, with the appropriate hardware, and ample storage capability to hold the calculated 
data for the duration of at least one flight.  
 
The size requirement of the removable data storage media relies heavily on the implementation of the 
software. In our design, we only have the data recorded after the user presses a switch to activate the 



  FJL - AVON 

 31 

effective L/D calculation. After five seconds to prepare and ten seconds to take measurements, the final 
effective L/D is calculated and stored onto the removable data storage media along with the date, time, 
average velocity, initial altitude, and final altitude. We chose not to have the calculation run continuously 
in order to optimize available space on the removable data storage media. Having a calculation based on 
the input of the user allows readings only when the pilot has readied the plane for a calculation and has 
noted the weather conditions and other sources of error.  
 
Based on our initial research, one microcontroller included an onboard CompactFlash card device. There 
may be other microcontroller boards available with a similar onboard feature, but we were not able to find 
any. At that point in our research, the FlashCore-B(FB) was highly favorable.  
 

4.2.5 User Interface 
 
Based on our overall design, we would need an ON/OFF switch for power and momentary pushbutton 
switches. The momentary pushbutton switches contain the inherent problem of what’s known as bounce. 
Bounce happens when you close a mechanical switch. After the initial close, vibrations in the switch 
cause it to open and close several times. Bounce can be minimized either by a software delay or a 
hardware delay. We chose to use the hardware delay since hardware is more straightforward to debug 
than software and would be simpler to design. Figure 23 shows how the user interface is connected 
through a debouncing circuit to the microcontroller.  
 

 
Figure 23 - User Interface Block Diagram 

 

4.2.6 System Controller 
 
The system controller provides the processing power of the system, performs all of the calculations, 
outputs calculated and received data to the LCD, and stores calculated data onto the removable data 
storage media. Figure 24 illustrates the connections between the microcontroller board and the other 
modules in the system. Note that the GPS receiver, Regulated power, and User Interface provide inputs 
only to them system and the removable media storage device and LCD provide outputs only. Based on 
the modules of the other necessary components in the system, we need 10 TTL inputs for LCD, 3 TTL 
inputs for the user interface, and one true RS232 serial port for the GPS receiver.  
 
 
 



  FJL - AVON 

 32 

 
Figure 24 - Microcontroller Block Diagram 

 

4.3 Component Selection 
 
Now that the functionality requirement of each module has been defined, we can present our component 
selection. For any system, the most important system component is the microcontroller module. The 
microcontroller module determines what programming language the design will require, if any extra 
modules are required (e.g. external true RS232 transceiver), and the interface to the removable storage 
media as well as its type.  
 

4.3.1 GPS Receiver 
 
The first component that we had to find was the GPS receiver because it provided all of the vital data 
necessary for our system. From our searches, we found that the only manufacturer that provided  GPS 
receivers intended for development and integration is Garmin, a world leader in providing GPS 
equipment including GPS receivers. Other world leaders in providing GPS equipment including Magellan 
and TomTom only provide consumer products with the GPS receivers already developed into some sort 
of mapping system, rather than a standalone GPS engine required by our system.  
 
Garmin currently has three models available; the GPS 15, GPS 15H, and GPS 15L. We then gathered 
information regarding size, accuracy,  power requirements, and some other additional information such as 



  FJL - AVON 

 33 

number of channels (maximum number of satellites the unit can track at once) and acquisition times (time 
it takes to find satellites). Table 2 was generated using the information found on each of the units. 
 
The most important characteristic of a GPS receiver for our project is dimensions. Seen in Figure 25 is 
the Garmin GPS 15L receiver, which measures a mere 1.400” x 1.805” x 0.327”, just slightly larger than 
the GPS 15. Although larger, it can achieve an accuracy of 3-5 meters when WAAS enabled and the 
DGPS information is available, otherwise it is just as accurate as the GPS 15. The receiver runs off of a 
5V regulated input voltage whereas the 15H runs off of an 8-40V unregulated input voltage, which is out 
of our voltage range. For our system, we decided to go with the GPS 15L over the GPS 15 because of the 
better accuracy, even though there are slightly larger space power requirements.   
 
Model Size Position 

Accuracy 
Velocity 
Accuracy 

Channels Min 
Acquisition 
Time 

Max 
Acquisition 
Time 

Voltage Current Price19 

GPS 
1520 

0.94” 
x 
1.69” 
x 
0.30” 

Standard 
< 15m 
DGPS 
N/A 

0.1 kt 12 2 sec 5 min 3.3V 75mA $47.99 

GPS 
15H/L21 

1.40” 
x 
1.80” 
x 
0.33” 

Standard 
<15m 
DGPS 
< 3 
(WAAS) 

0.1 kt 12 2 sec 5 min  15H 
8V-
40V 
15L 
3.3V – 
5.4V 

15H 
60mA 
@ 8V 
15L 
100mA 

$51.99 

Table 2 - GPS Receiver Comparison 
 

 
Figure 25 - Garmin 15L GPS Receiver with Antenna 

                                                 
19 http://www.megagps.com/index.asp?PageAction=VIEWCATS&Category=19 
20 http://www.garmin.com/manuals/GPS15_TechnicalSpecification.pdf 
21 http://www.garmin.com/manuals/237_TechnicalSpecifications.pdf 



  FJL - AVON 

 34 

 

4.3.2 LCD 
 
When choosing an LCD module, there were a few factors that have to be considered. The LCD should be 
chosen based on the balance between cost and display capability including size, power requirements, and 
data interface (parallel versus serial). As mentioned earlier, we had decided to go with a parallel LCD 
since the parallel connection would be faster. Upon searching for LCD modules, we found that LCD’s 
capable of displaying 8-characters by 2-lines and 16-characters by 2-lines were most common. From 
there, we drafted an LCD screen-flow diagram to illustrate the different displays that we felt were 
necessary. We based our drafts based on the 8x2 display capability and found that it was sufficient for our 
purposes.  
 
Once we decided that we were going to use an 8x2 character LCD, we had to compare the different 
options based on the other factors previously mentioned. Table 3 was generated from the data we used to 
compare various LCD’s available to us. As seen from the table, the LCD’s manufactured by Maxim 
Orbital and Orient Display are pretty much the exact same except for price. Although the model from 
Crystalfontz requires slightly more current when using a backlight and is relatively much more expensive, 
we decided to go with the CFAH0802A-GYH-JP based on past experiences with Crystalfontz products. 
Seen in Figure 26 is model CFAH0802A-GYH-JP made by Crystalfontz. 
 
 
LCD 
Manufacturer 

Model Dimensions Character 
Size 

Voltage Current Price 

Crystalfontz22 CFAH0802A-
GYH-JP 

58mm x 32mm 
x 13.5mm 

2.96mm x 
5.56mm 

4.75V - 
5.25V 

1.2mA + 
70mA for 
backlight 

$17.99 

Maxim 
Orbital23 

MOP-AL082B-
BYFY 

58mm x 32mm 
x 14mm 

2.96mm x 
5.56mm 

4.5V - 
5.5V 

1.5mA + 
60mA for 
backlight 

$9.95 

Orient 
Display24 

AMC0802B-B-
Y6WFDY 

58mm x 32mm 
x 14mm 

2.96mm x 
5.56mm 

4.5V - 
5.5V 

1.5mA + 
60mA for 
backlight 

$8.00 

Table 3 - LCD Comparison 
 
 
 

                                                 
22 http://www.crystalfontz.com/products/0802a/CFAH0802AGYHJP.pdf 
23 http://www.matrixorbital.ca/manuals/MOP_series/MOP-AL082B/MOP-AL082B.pdf 
24 http://character-lcd-lcds.shopeio.com/inventory/pdf/AMC0802B.pdf 



  FJL - AVON 

 35 

 
Figure 26 - Crystalfontz CFAH0802A-GYH-JP25 

 

4.3.3 Microcontroller Module 
 
Figure 27 shows the system controller block diagram adapted from the TERN manual. Due to the 
complexity of the calculations utilizing the GPS data, a high-level programming language such as C or 
C++ is preferred when compared to a machine code or basic-level language such as assembly. 
 

 
Figure 27 - System Controller Block Diagram26 

 
The microcontroller module was the most important component selection since the embedded features, or 
lack thereof, determined the complexity of the design of the system. For our microcontroller module, we 
had three primary options. First of all, the FlashCore-B(FB) (seen in Figure 28) was being used 
concurrently by another team in the same lab and included several important features necessary for our 
system already on the module.  Second of all, the ICOP6015 was over $300 cheaper, as seen in the trade 
study in Appendix B, but did not include an embedded CompactFlash card reader. Third of all, a 
                                                 
25 http://www.crystalfontz.com/products/0802a/index.html#CFAH0802AGYHJP 
26  http://www.tern.com/docs/fb.pdf 



  FJL - AVON 

 36 

Microchip PIC processor provided the necessary I/O but the whole design would have been programmed 
in PIC assembly. However, programming our design entirely in PIC assembly would have been extremely 
difficult when compared to the Paradigm C/C++ software included with the FlashCore-B(FB) since a 
library of functions for the CompactFlash such as read/write and other necessary functions had already 
been written. Yet, the ICOP1605 used DOS software to program, which isn’t as high-level as the 
Paradigm C/C++, but would still be easier to program than PIC assembly. Also, the latter two options also 
would require an additional module for the removable media storage device.  
 
Processor speed does not account for the most important aspects of the CPU selection but more so the 
peripherals the CPU can interface to including a RS232 serial port and over 20 TTL programmable logic 
inputs/outputs (IO). The RS232 serial port is a necessity for interfacing to the GPS receiver, and the TTL 
logic outputs make interfacing to the LCD possible due to a parallel connection to the LCD. Parallel LCD 
displays provide better solutions to embedded systems, such as this one, due to faster display speeds and 
ease of use due to the lack of a need for a clock to run the LCD serial line. 
 

 

 
Figure 28 - TERN FlashCore-B(FB) System Controller Board27 

 
We chose the TERN FlashCore-B(FB) due to its small dimensions when compared to the dimensions of 
our enclosure (and its competitors as well), the low power requirements, and the embedded CompactFlash 
card reader which the included software library contained the necessary read/write functions. Please refer 
to the trade study in Appendix B for further details.  
 

4.3.4 DC/DC Converter 
 
Our current topology boosts the voltage from the batteries (approximately 4.5V-6V for four AA batteries) 
to a +12V rail that is distributed to point-of-load (POL) regulators on the system board. This topology 
provides an added feature of allowing DC power source voltages from 2.3V to 12V for input to the 

                                                 
27  Adapted from the TERN FlashCore-B(FB) Manual  



  FJL - AVON 

 37 

system. Even though the system is designed not to require any external power sources or data, a 9V or 
12V battery would be able to be used with only a few modifications to the input connector. 
 
When choosing a DC/DC converter, Linear Technology provides the most reliable and efficient solutions 
(with efficiencies on most DC/DC converters over 85%). After deciding on the boost then point-of-load 
buck topology, we researched +12V output boost converters. The Linear Technology site led us to the 
LT1935 which has a 2.3V to 16V input range converted up to a 38V maximum output voltage with an 
efficiency over 85% using our input voltage (approximately 5V) which is illustrated in Figure 29.  
 

 
Figure 29 - 5V Input Efficiency Curve28 

 

4.4 Software 
 
Figure 30 shows the software flow diagram utilized in our design. One vital element necessary to achieve 
optimum accuracy and performance is a minimum of four satellites. Whenever less than four satellites are 
detected, the L/D ratio calculations are no longer valid, and then the system must wait until a sufficient 
number of satellites have been detected again.  
 
In order to ensure the system has not crashed, an incrementing timer has been included to show continued 
system activity, which is displayed in the lower right corner.  
 
Incoming GPS data is transmitted via strings, which contain multiple pieces of information. The software 
looks for the strings containing the pertinent data needed for the calculations. All pertinent data is 
displayed on the corresponding menus while the L/D calculation results are stored on the CompactFlash 
card.  
 

                                                 
28 http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C1003,C1042,C1031,C1061,P2507,D2339 



  FJL - AVON 

 38 

The user interface consists of two parts: three switches and the LCD. Button 1 is used for a confirmation 
or enter button (i.e. “Press When Ready”). Button 2 is used to scroll through the various menus. Button 3 
is used to jump to the L/D calculator menu.  
 
On power up, the user must acknowledge he/she is ready by pressing button 1. Once acknowledged, the 
software will search for the number of satellites while simultaneously displaying the current number of 
satellites and the incrementing timer on the menu. This portion of software does not permit any user input 
because data is not valid yet. Once connections with at least four satellites have been established, all data 
is then valid. At any point in time, if the number of connected satellites drops below the minimum 
number required (four), all data is deemed invalid and the system waits until the minimum number of 
satellite connections is achieved.  
 
The user is able to scroll through different menus, by using button 2, including velocity, altitude, L/D, 
current number of satellites, etc.  
 

 
Figure 30 - Software Flow 

 

4.5 Summary 
 
This chapter presented the overall system design of the Flight Data System project by including a 
functional diagram. First of all, the functional block diagram defined the inputs and outputs of the entire 
system. Second, the top-level system design diagram outlined the hardware necessary to harness the 
previously mentioned inputs to obtain the desired outputs. Lastly, the software flow outlined the 
interaction of software with the various inputs to obtain the desired outputs.  



  FJL - AVON 

 39 

5 Results 
 

5.1 Introduction 
 
This chapter presents the design options available and the components we incorporated into our design. 
The hardware and software implementations and final test results of the system are included in this 
chapter as well.  
 

5.2 Hardware Implementation 
 
In order to design a complete system that worked as intended, each module had to be tested individually 
to ensure hardware functionality alone before interfacing with another component to deter a chain of 
problems occurring at the same time, thereby avoiding a tedious task of debugging. The module testing 
and compatibility schedule proceeded as follows: 
 

• FlashCore-B(FB) Hardware Verified 
• CompactFlash Write Capability on FlashCore-B(FB) Verified 
• LCD Hardware Verified (using hardware method) 
• Garmin GPS Receiver Hardware Verified 

 

5.2.1 FlashCore-B(FB) and CompactFlash 
 
In order to test the FlashCore-B(FB) board, we powered it on and waited for the red light-emitting diode 
(LED) to indicate power is on. We then programmed the board via COM1 on a PC after successfully 
compiling a Paradigm C/C++ template with no functional code. The next step to verify the FlashCore-
B(FB) board was functional was to test the programmable input/output (PIO) pins29.  
 
In order to test the functionality of the PIO pins, the TTL test board seen in Figure 32 and Figure 33 
were built to indicate the state (logic “high” or “low”) of all the pins on the jumper used in our design 
(J2)30. Figure 31 shows the schematic of the TTL test board used to test the PIO functionality which 
corresponds to the pictures in Figure 32 and Figure 33. The software test set all pins to logic “high,” 
defined as 5V, to toggle the active high LEDs on and off. All LEDs were toggled several times with a 
time delay in between changing states to be able to observe the change.  
 
A 3kOhm resistor was used to limit the current to under the 2mA maximum source limit of the 
FlashCore-B(FB) PIO pins. The LED drop was approximately 2V with a supply voltage of 5V. A simple 

                                                 
29 Page 16 in http://www.tern.com/docs/fb.pdf 
30 Page 50 in http://www.tern.com/docs/fb.pdf 



  FJL - AVON 

 40 

Ohm’s Law (V=IR) calculation yielded a current of 1mA for a 3kOhm resistor, which was exactly 50% of 
our limit. The tests proved the PIO worked as expected.  
 

 
Figure 31 - TTL Test Board 



  FJL - AVON 

 41 

 

 
Figure 32 - LED Test Board (Top View) 

 

 
Figure 33 - LED Test Board (Bottom View) 

 
TERN had a library of functions available for the Paradigm C/C++ software including functions that read 
from or wrote to different specified PIO pins to simplify programming of the available PIO pins.  
 
The CompactFlash card write capability was tested next, since writing to the CompactFlash was a 
requirement of the project.  This task was relatively simple due to the fact that functions for working with 
the onboard CompactFlash unit were included in the FlashCore-B(FB) package and also the fact that 
another group in our lab, the Pot Hole Detection project team, was using the same unit. Jose Brache, the 
key programmer in their group, sat down with us and explained what functions were required to initialize 
the compact flash and the key functions to reading and writing. From there, we went on to implement 
these functions in a simple program that created a text file onto the CompactFlash card and then write 
simple strings into the file.  

5.2.2 Crystalfontz LCD 8 x 2 
 
To test our LCD unit, we built a circuit from the schematic found in Appendix C Using dip-switches to 
control the LCD’s inputs, we ran the initialization sequence found in the unit’s datasheet. After running 
the initialization sequence, we then tried displaying characters onto the LCD. Located inside the 
datasheet, is also a chart containing the characters and what input value to the eight data lines 



  FJL - AVON 

 42 

corresponded to the respective character. It was eventually noticed that a character’s input value was the 
character’s ASCII value converted to binary. To control what value, high or low, was being sent to each 
line, we used dip switches. In the on state, the data line was sent a high and in the off state it was sent a 
low. Once the dip switches were set, another switch controlled the LCD’s “enable” line. The data set on 
the eight data lines latches on the falling edge of the “enable”. Since there was no maximum setup time 
for the data, timing was not an issue since minimum setup times were in the milliseconds, or smaller.  
 

5.2.3 Garmin 15L GPS Receiver 
 
To ensure that our GPS receiver was working properly, Professor Looft provided us with a serial data 
logger. After making the necessary connections, GPS receiver’s transfer line to the receive line of the data 
logger and ground to ground, and powered both units before taking them outside. The receiver’s manual 
states that if the receiver has no initial data of its whereabouts, approximately five minutes is required to 
acquire the necessary satellite connections. Knowing this, we waited for about ten minutes before 
powering them down and going back inside. To see if there was any data recorded, we then connected the 
serial data logger to a computer, using a cable created based on the schematic provided to us by a supplier 
of the logger31, and used HyperTerminal to see the recorded data. The schematic of the cable and the 
HyperTerminal instructions can be found in Appendix D. Using the correct HyperTerminal instruction, all 
data recorded onto the logger was downloaded to the HyperTerminal window and it was seen that the 
GPS receiver was indeed receiving GPS NMEA sentences.  
 

5.2.4 Power Distribution Requirements and Implementation 
 
Power distribution plays a key role in any design with portability as a requirement due to the need for 
batteries and a limited amount of power available to the system. The primary component of the power 
distribution is the power source. Table 4 shows the power analysis for the portable power source between 
one 9V NiMH rechargeable battery and four 1.2V AA NiMH rechargeable batteries. As seen in the power 
analysis, even though the 9V battery has a higher voltage than the nominal voltage of 4.8V for the four 
AA batteries in series, the maximum power of 1.35W available from the 9V battery is extremely low 
compared to the 9.6W available from the four AA batteries. The four AA batteries only cost $2 more than 
the one 9V battery yielding a significant cost savings while gaining more total power available to the 
system.  
 

Battery Size 9V NiMH Rechargeable Four AA NiMH Rechargeable 
Nominal Voltage 9 Volts 4.8 Volts (1.2V nominal each) 

mAh Rating 150 milliamp-hours 2000 milliamp-hours 
Total Power 1.35 Watts 9.60 Watts 
Battery Price $12.99 for one 9-volt $14.99 for four AA 

Price Per Watt $9.62 $1.56 
Table 4 - 9V Battery Power Versus the power of four AA Batteries 

                                                 
31 http://homepages.tig.com.au/~robk/datalogger.html  



  FJL - AVON 

 43 

 
Before the method of power distribution can be chosen, an analysis of how much power the system can 
consume during maximum power consumption must be calculated to ensure the system lasts long enough 
to endure the duration of a flight to record the necessary data calculated during the flight. Table 3 shows 
the system power analysis and identifies all devices in the system that consumes power.  
 
The total system power consumption calculated in Table 5 assumes no losses in any of the conversion 
circuitry. Efficiency of all converters in the system must be accounted for in order to ensure an accurate 
runtime calculation.  
 

Device Maximum Current Operating Voltage Max. Power Dissipation 
LCD Display 1.2mA 5V 6mW 
LCD Backlight 140mA 4.2V 588mW 
FlashCore-B(FB) 140mA (with CF) 5V 700mW 
GPS Receiver 100mA 5V 500mW 
    
Total Power Consumption ----------------------- ----------------------- 1.794W 

Table 5 - Maximum System Power Usage 
 
Now that the power source has been chosen and the total system power has been calculated, the topology 
of the power distribution can now be chosen. The power source is one of the key factors when 
determining which method of distribution to choose since a power supply can have multiple output rails 
available whereas a battery would need DC/DC converters to boost, raise the output voltage when 
compared to the input voltage, or buck, lower the output voltage when compared to the input voltage, the 
power source voltage. The total amount of power distributed in a system was another key factor 
considered when we determined the topology of power distribution since the total power emphasizes the 
need for a higher efficiency power distribution design.  
 
A couple of different methods of power distribution exist. The point-of-load topology utilizes one higher 
voltage rail (usually 12 volts and requires the placement of DC/DC regulators near components with 
larger loads in order to prevent pulling down a rail below a critical voltage due to the sudden current 
draw. Our distribution scheme uses the concept of the point-of-load topology but uses it more for 
simplicity than necessity. The FlashCore-B(FB) board comes with an AC power supply with a 12V 
output. At first, we decided to keep the current regulator on the FlashCore-B(FB) board and just boost to 
12V to power the CPU board to make testing easier. However, after researching various boost converters 
to fit our design and comparing them to the buck-boost converters available, the boost converters 
provided application notes specifically for our application. Even with designing in the boost circuit before 
the 5V regulator, we still achieved at least 70% efficiency and were able to run the system for a minimum 
of 4 hours. We currently use the LT1935 1.2MHz Boost DC/DC Converter to boost from between 2.5V 
and 12V to 12V and then regulate the 12V back down to 5V for the FlashCore-B(FB) and another for the 
LCD display, GPS receiver, and debouncing circuitry.  
 
Instead of using the previous boost then point-of-load buck topology for power distribution, a more 
efficient method combining both buck and boost together into the buck-boost topology would increase 



  FJL - AVON 

 44 

efficiency by at least 10% since each stage is 90% efficient at maximum efficiency. However, designing a 
new buck-boost topology would take a great deal of research and work to implement due to the buck-
boost converters not being made for this particular application currently. We would have had to 
completely design and implement the circuit to handle the full voltage range possible for 4 AA batteries 
(2.5V-6.5V).  
 
Another important part of choosing a power source is the type of battery used. Table 4 compares the size 
of the battery such as AA and 9V which chooses the nominal output voltage, power capacity, and 
physical size and weight of the battery. The type classifies the chemical mixture used to create the voltage 
including non-rechargeable Alkaline and rechargeable Nickel Cadmium (NiCad), Nickel Metal Hydride 
(NiMH), or Lithium Ion (Li-Ion).  
 
NiCad batteries have been the mainstay of rechargeable batteries due to being the original rechargeable 
batteries. Even though NiCads are rechargeable for possibly up to 1000 cycles, NiMH and others are 
replacing them due to many faults including being toxic (cadmium) and having far less energy density per 
unit volume than NiMH. For example, NiCad size AA cells have a nominal voltage of 1.2V and a 
capacity of 700mAh. However, AA size NiMH batteries have a 1.2V nominal voltage and over 2000mAh 
capacity. The 2000mAh capacity means when run at 2000mA, the battery will last an hour. When buying 
new rechargeable batteries, NiMH will increase the runtime of the system, provide nontoxic rechargeable 
power, and save money from buying batteries over and over again. The main reason for using AA size 
batteries as opposed to the 9V, besides the total power, is the ability to use the AA batteries in many other 
devices including a digital camera, palm pilot, etc. to make the purchase more worthwhile.  
 

5.2.5 Module Interfacing 
 
Now that each module had been tested on its own, we then had to test if the modules could work with 
each other. The first test conducted was to see if we could control the LCD with the FlashCore-B(FB). 
We decided to do this first because we felt it was harder to test if we could interface the FlashCore-B(FB) 
with the GPS receiver. We felt that it was harder because it entailed using the CompactFlash unit at the 
same time, to actually see if the two units were communicating properly as opposed to displaying 
immediate results on the LCD. In Appendix E, the connection between the LCD and FlashCore-B(FB) is 
shown. Once connected properly, a test program had to be written which initialized the LCD and wrote 
characters to the screen. This task was extremely tedious because we had to set each pin on the 
FlashCore-B(FB) manually in the program, which meant a maximum eight lines of code for each of the 
data lines, two additional lines for the “enable” line, and an additional line for the “register select” line to 
switch between instructions and data. It was not until later on where we figured out a function which 
could take in a string, break it up, and send the correct TTL value to the correct pin. 
 
In order to test the Garmin GPS receiver, we needed to read each incoming character, assemble the GPS 
string one character at a time, and print the strings to the CompactFlash card to prove the GPS receiver 
could communicate to the FlashCore-B(FB). Figure 34 illustrates the steps needed to prove the Garmin 
GPS receiver and FlashCore-B(FB) could communicate together.  
 



  FJL - AVON 

 45 

 
Figure 34 – Garmin GPS Receiver Test Block Diagram 

 

5.2.6 System Board 
 
After we selected all of the components and verified that each module could be interfaced to the other 
modules, we drafted some drawings seen in Appendix F. The drawings gave us detailed measurements 
concerning modifications to the enclosure and the orientation of all the components to ensure all 
components fit on one board and all signals had enough room to get to other modules since we decided to 
use a two-layer board. After the drawings were completed, we then moved onto designing our PCB. The 
first thing we did in our design was lay out where all the modules were supposed to be placed and from 
there we made the necessary connections. Seen in Figure 35 is the fully implemented system module. 
Appendix G contains our actual PCB layout, including the silkscreen, top layer, and bottom layer as 
separate illustrations.  
 

 
Figure 35 - System Module 

 



  FJL - AVON 

 46 

5.3 Software Implementation 
 
The implementation of the software was a crucial part in the completion of this project. The 
FlashCoreB(FB) includes the Paradigm C/C++ software development kit which we used to program the 
microprocessor and to debug the code. Inside the code, after the initialization of the microprocessor board 
and LCD is the main loop. Inside the main loop is where all the GPS data is processed and the control of 
the LCD occurs. Also within the main loop is another subsection, in the form of a loop, which performs 
the L/D calculations, described later. Figure 36 is the software flow chart which gives the details on how 
our program operates.  
 

 
Figure 36 - Detailed Software Flow 

 

5.3.1 GPS serial in 
 
The GPS data is transmitted one character at a time in sentences through the serial port located on the 
FlashCoreB(FB) microprocessor board. From there, the software makes a call to a function, 
“GetString()”, which reads in the GPS strings and stores them into an array, “gpsStr”. Once the sentence 
is read, it is important to find out which GPS sentence it is, so that we can parse for any necessary data, 
relevant to that string. Because the GPS sentence structure is standardized, it is easy to parse for the 



  FJL - AVON 

 47 

sentence type first. Each GPS sentence begins with a “$” and is then followed by five letters which 
represent its type. Since the GPS string is stored in an array buffer, the software directly copies the 
characters in elements gpsStr[1] through gpsStr[5] into a smaller temporary array. This temporary array is 
then compared to other strings using a series of “if” statements to find out which string has just been read 
in. Once the software knows which string it is, calls to the proper “Find” functions are made to extract the 
needed data. There are a total of three “Find” functions which find the number of satellites, velocity, and 
altitude. The number of satellites is always a two digit number, velocity is a four digit number in the form 
of “###.#”, both with leading zeros transmitted, and altitude can be anywhere in the range of -9999.9m to 
9999.9m, without leading zeros transmitted. The “Find” functions all work in a similar fashion as to 
extracting the string type from the sentence. Because the GPS strings are all transmitted in the NMEA 
standard, the locations of the information is always the same. The following is an example of the GPS 
string type “GPGGA”, where the number of satellites and altitude are bolded: 
 

$GPGGA,214844,4214.3599,N,07145.2118,W,1,06,1.7,127.5,M,-33.3,M,,*78 
 
If this string were to be stored in an array, each character would be a separate index, where the first index 
is 0. From this string, we see that the number of satellites starts at index 41 and ends at index 42. It is also 
seen that the altitude begins at index 48, but where it ends is tricky because leading zero’s are not 
transmitted. To solve this problem, after each number was copied into the new string array, the program 
would compare the character in the next location to a comma. If it was not a comma, the function would 
continue to copy the entire value, with the decimal included.  
 
The difference between the “find” functions and the “GetString” function is that the find functions return 
numerical data types integer and double, as opposed to a string. To do this, the functions first extract the 
data as strings and store them into a temporary array and then use the C++ function “atof” which converts 
a string to a floating point number. The function that finds the number of satellites works in a slightly 
different manner. The software subtracts 30 from the characters ASCII value which converts the character 
into a numerical value. The first number is then multiplied by 10, so that it is placed in the ten’s digit 
location, and added to the second number.  
 
For this project, there are two GPS sentences that contain the necessary data for the approximation of 
L/D. The first sentence is “$GPGGA”, Global Positioning System Fix Data(NMEA Sentence), which 
contains the number of satellites, time, and altitude. The second sentence we needed is “GPRMC”, 
Recommended Minimum Specific GPS/TRANSIT Data(NMEA Sentence), which contains the velocity 
and the date. Unlike the other GPS data, the time and the date are parsed for in the exact same method as 
the GPS sentence type, except the date is handled differently. The date is transmitted in the format 
“DDMMYY”, so when extracting, it is stored in the “MM/DD/YY” format. One key portion of the 
program is a located at a label designated “NES” which stands for “Not Enough Satellites”. After all the 
necessary data from the “GPGGA” sentence has been parsed, the software checks to see if there are at 
least four satellites. If there are not enough satellites, the software will jump to the “NES” label, which 
forces the user to wait until there is enough. 
 



  FJL - AVON 

 48 

5.3.2 LCD control 
 
Controlling the LCD required the most functions. Because the LCD we are using for the project is a 
parallel device, the most important function in controlling the LCD would have to be the “set_pio()” 
function, which takes in an integer as an input. The input is then copied over to a temporary local variable 
and all the bits are masked except the least significant bit. This is then divided by a 01H to extract its 
actual value and sent to the correct pin on the FlashCore-B(FB), corresponding pins between the LCD and 
FlashCoreB(FB) can be found in the schematic. The input value is then recopied into the temporary local 
value and then all bits are masked except the second least significant bit. This is then divided by a 02H to 
extract its actual value and also sent to the corresponding pin on the FlashCore-B(FB). This process is 
repeated until all eight pins have been set, dividing by 01H, 02H, 04H, 08H, 10H, 20H, 40H, and 80H 
respectively. This function simplifies the code because the decimal or hexadecimal value of the internal 
LCD 8-bit instructions can be passed into the set_pio() function instead of having the programmer 
manually set each pin every time. This is very important for the initialization of the LCD because there 
are seven instructions that need to be sent to the LCD and also eases the creation of the other functions 
created for the control of the LCD. The other functions that really on this function are the clr_scr(), 
char_pos(), and str_wr() which clear the screen, set the cursor position, and writes out the inputted string 
respectively. For the clr_scr() and the char_pos() functions, the set_pio() function is passed the 
appropriate instruction code, but the char_pos() is a little more difficult. The instruction for setting the 
cursor position is “1XXXXXXX”, where the X’s in the last seven bits correspond to the DDRAM address 
of the desired location. For the top row of the LCD the addresses are 00H-07H and for the bottom row the 
addresses are 40H-47H. The char_pos() function takes in either a 1 or 2, for the row, and a number 
between 0 through 7 for the desired column. If row 1 is chosen, the column value is passed directly to the 
set_pio(), but if row 2 was chosen, then 40 is added to the column value before being sent to set_pio(). 
After the pins have been set by set_pio(), the function manually overrides the most significant bit to 
account for the “1” in the instruction code. The str_wr() function is a while loop which repeats the 
set_pio() function eight times or until the end of the string. The string passed into the function is an array 
and within the function a local variable “r” is initialized to 0 for the beginning of the string. The function 
then passes string[r] into set_pio() for processing and then increments “r”. The function then checks the 
next character to make sure the end of the string has not been reached. If it is the end, the function sets  
“r” to a value which will cause the conditional of the while loop to return false, exiting out of the 
function.  
 
Another important aspect of the LCD control, was the ability to scroll through different screens. The 
different screens that a user is able to scroll through are number of satellites, velocity, altitude, the last 
L/D calculated, the average of all the L/D’s calculated, and a date/time screen. To make this all possible, 
two global integer variables initialized to 0. One variable controls which screen to display, “disp_type”, 
and the other variable controls whether or not the screen needs to be cleared, “clear”. The software goes 
through a series of “if” statements which checks which screen to be displayed. Once the screen type is 
found, there is another “if” statement. If it is the first time displaying the chosen screen, the “if” statement 
will be true, and the old screen will be cleared to remove unnecessary data. The “clear variable is then 
incremented so that the screen will not clear until the next screen is displayed. To change screens, the 
software checks to see if the user has pressed button 2. If the button is pressed, the “disp_type” variable 
will be incremented, causing the current true “if” statement to become false and the next statement to be 



  FJL - AVON 

 49 

true. Once on the last screen, if the button is pressed again, both variables are reset back to 0 which allows 
the user to loop around through the screens. The only screen that requires a little more additional coding 
is the last screen which displays the date on the top line and the time on the bottom line in standard format 
(HH:MM:SS). The date is displayed as is, but the time needs to be altered. Upon extraction of the time, it 
is stored as a string in the format “HHMMSS” and it is the official coordinated universal time (UTC), 
which is four hours ahead of the local time. Although it is four hours ahead, we simply cannot merely 
subtract four hours, because of the cases when the time is between midnight (00:00:00) and 04:59:59. If 
four hours was subtracted, the result would be either negative or zero hours. The program first checks to 
see if it is 5:00 AM or later and if it is four hours are subtracted. If it is earlier than 5:00 AM then the 
program will add eight hours which converts UTC time to Eastern Time. After these steps, the program 
then checks to see if it is 1:00 PM or later, and if it is the program will subtract 12 hours to convert it from 
military time to standard time. This gives us the appropriate time conversion for the local time zone, but 
in the even the device is taken elsewhere, the program will need to be altered. Since leading zeros are 
omitted from numerical data types, the program will add an additional 10 hours as a place holder, because 
if it is earlier than 10 o’clock the value stored will be in the format “HMMSS”. The time is then converted 
back to a string, the extra 10 hours is subtracted by subtracting 1 from the first position of the array, and 
the colons are added in between. Figure 37 is a copy of the actual screen flow. 



  FJL - AVON 

 50 

 
Figure 37 - LCD Screen Flow 

 



  FJL - AVON 

 51 

 

5.3.3 CompactFlash Transfer 
 
One main goal of this project was the ability to store data to removable memory. The FlashCore-B(FB) 
microprocessor that we chose for this project comes with a CompactFlash drive and all the necessary 
functions to use it. At the beginning of the main loop, the program checks to see if there is a file, of the 
given name, and makes sure the file is not corrupt. If the file does not exist, then the file is created and 
program continues, checking to make sure the file is not corrupt upon reiteration of the loop and if the file 
is corrupt, the program loses the ability to write to the file until the file is deleted so that a new file may be 
created. The only time in the program that the file is written to, is after the L/D calculations have been 
completed. The data that is stored are the date, L/D, the average velocity, initial altitude, and final altitude 
using the function fs_fprintf() which sends the data to a buffer and the function fs_fflush which sends the 
data from the buffer to the file. The data is now ready to be exported to another source for analysis.  
 

5.3.4 Calculations (L/D) 
 
The calculation of L/D starts when button 3 is pressed. When button 3 is pressed, the program will enter a 
“while” loop, located in the main loop. The conditional for this “while” loop is a Boolean variable which 
is set to false up until the moment the button was pressed. This means when the button is pressed, the 
variable is set to true, allowing the program to enter the L/D calculation loop. Seen in Figure 38 is the 
flow chart followed for the calculations. The user is asked to hold their velocity for 10 seconds, during 
which the velocity for each second is stored into an array. At the beginning and end of the 10 seconds, an 
altitude reading is stored into “alt_init” and “alt_final” respectively. At the end of the data extraction, the 
Boolean variable is then reset to false so that the L/D “while” loop is executed only once. The final 
altitude is subtracted from the initial altitude and the change in altitude is then multiplied by 6 to account 
for a minute duration of flying. The program then takes an average of the velocities stored from the 10 
seconds and is then converted to meters/minute by multiplying the average velocity by 30.8667. The 
average velocity is then divided by the change in altitude, which yields the L/D result. The L/D is then 
added to another variable which stores the total of all the L/D’s calculated. This allows for an average 
L/D of the day to be taken. The key factor in any calculation is to be consistent with units. In our case, we 
converted anything regarding time to minutes and anything regarding length to meters.  
 



  FJL - AVON 

 52 

 
Figure 38 - L/D Calculation 

 

5.4 System Test 
 
One important step necessary in the development of our system was testing the accuracy of our GPS 
receiver, Garmin’s 15H. According to the receiver’s manual, it has an accuracy of up 3-5 meters with the 
Differential GPS activated. In our system, we have this feature set to automatic to receive DGPS 
information whenever it is available. In order to test its accuracy, we first had to find some known 
locations and their altitudes. To do this, we went to the Worcester Public Library and asked for 
topographic maps. As seen in Figure 39 and Table 6, the locations we found off of the topographic maps 
were Worcester Polytechnic Institute, Grafton Plaza, and Heywood Street. Since topographic maps do not 
give exact values, the values listed in the chart are rough readings based on the maps scales and lines of 
contour. The librarian also directed us to the library’s homepage which listed a few additional locations. 
The ones we decided to use were City Hall and Union Station. Figure 39 is a graphical representation of 
the data found in Table 6. Once this information was found, we then had to take the GPS receiver and our 
system to test these values. The values read from our test were then compared to the information we 
found at the library. The actual values achieved from our system were relatively close to the indicated 
accuracy of 3-5 meters as advertised by Garmin. Any discrepancies found in the values may have been 
the result of various reasons. The first reason that comes to mind is the fact that the values read from the 
topographic maps were estimates as opposed to accurate values. Other reasons could be errors in the GPS 
timing as described earlier. When the skies are not clear or the area is surrounded by high buildings and 



  FJL - AVON 

 53 

other structures, such as the case of City Hall, there is an added delay in receiving the GPS information 
from the satellites.  
 

Location Topography Elevation (Approximate) GPS Elevation Difference 
WPI 167 m 169.9 m 2.9 m 

Grafton Plaza 150 m 154 m 4 m 
Heywood St 182.9 m 191 m 8.1 m 

City Hall 146.6 m 140 m 6.6 m 
Union Station 144 m 138 m 6 m 

Table 6 - Elevation Comparisons 
 

0

25

50

75

100

125

150

175

200

WPI Grafton Plaza Heywood St City Hall Union Station
Location

Al
tit

ud
e 

(m
)

Given
Measured
Difference

 
Figure 39 - Elevation Comparisons 

 
After testing the altitude accuracy of the GPS receiver, we then moved onto testing the accuracy of the 
velocity. In order to test the velocity, we drove around with the unit in our cars. We drove along long 
roads with minimal stops at constant speeds, such as 30 mph and 45 mph, depending on the local speed 
limit. Knowing that we were traveling at the speed limit, we took note of the velocity readings given by 
our system. We then converted our speeds from miles per hour to knots and compared them. Table 7 is a 
sample of our comparison.  
 

Actual Velocity (car - mph) Expected Velocity (kts) GPS Velocity (kts) Percent Error (%) 
30 24.5 26.1 6.1 
45 37.2 39.1 4.9 
65 54.9 56.5 2.8 

Table 7 - Velocity Comparison 
 



  FJL - AVON 

 54 

5.4.1 Routine Flight Data Analysis 
 
Our routine flight took place in an L23 Super Blanik sailplane with a maximum specified L/D of 28:1 at 
49 knots with 2 pilots32. Figure 40 is a screenshot of the actual file recorded during our flight, which we 
then adapted into Table 8 for analysis seen below. Comparing the calculated effective L/D data 
measurements to the maximum specified L/D of 28, we find a large discrepancy since our effective L/D 
measurements were recorded as much higher than the maximum specified L/D. Table 8 and Table 9, as 
well as Figure 41 and Figure 42, only differ with three outliers omitted from the first set of data. When 
the three points farthest from the consistent grouping are omitted, an average flight effective L/D of 20.82 
is attained as compared to 48.53 initially.  
 
The main source of error during this flight was the weather conditions. Our device is design to record 
accurate effective L/D during calm air. Since the flight took place after 10am on a hot, sunny day, the air 
had plenty of time to become unstable due to the heating effects on the ground. When flying, 300 ft/min 
ascending columns of air were not uncommon. Furthermore, descending columns of air of around the 
same rate sometimes immediately followed the ascending columns of air. Regardless, when the three least 
consistent points are omitted, the average effective L/D seems reasonable for the velocities measured.  
 

 
Figure 40 - Recorded Flight Data 

 
                                                 
32 http://www.nwi.net/~blanikam/ba/prod01.htm 



  FJL - AVON 

 55 

 
L/D Average Velocity Initial Altitude Final Altitude 

104.946663 36.72 1020.9 1019.1 
25.008860 36.46 1018.4 1010.9 
16.662981 39.84 1005.3 993.0 
25.477419 71.81 977.4 962.9 
9.500073 69.25 914.3 876.8 
46.601807 67.94 830.9 823.4 
14.613935 55.11 800.0 780.6 
98.723549 59.49 772.9 769.8 
35.753887 58.38 765.9 757.5 
156.526489 57.81 751.1 749.2 
46.316330 56.72 709.9 703.6 
17.923496 56.79 687.0 670.7 
32.782856 69.46 454.2 443.3 

    
Average L/D 48.526027   

Table 8 - Original Flight Data 
 
 
 

L23 Super Blanik

0.000000

20.000000

40.000000

60.000000

80.000000

100.000000

120.000000

140.000000

160.000000

180.000000

30.00 35.00 40.00 45.00 50.00 55.00 60.00 65.00 70.00 75.00
Velocity (Knots)

L/
D

 
Figure 41 - Original Flight Data 

 
 
 
 
 



  FJL - AVON 

 56 

L/D Average Velocity Initial Altitude Final Altitude 
25.008860 36.46 1018.4 1010.9 
16.662981 39.84 1005.3 993.0 
25.477419 71.81 977.4 962.9 
9.500073 69.25 914.3 876.8 
46.601807 67.94 830.9 823.4 
14.613935 55.11 800.0 780.6 
35.753887 58.38 765.9 757.5 
46.316330 56.72 709.9 703.6 
17.923496 56.79 687.0 670.7 
32.782856 69.46 454.2 443.3 

    
Average L/D 20.818588   

Table 9 - Flight Data with Three Outliers Omitted 
 

L23 Super Blanik

0.000000

5.000000

10.000000

15.000000

20.000000

25.000000

30.000000

35.000000

40.000000

45.000000

50.000000

30.00 35.00 40.00 45.00 50.00 55.00 60.00 65.00 70.00 75.00
Velocity (Knots)

L/
D

 
Figure 42 - Flight Data with Three Outliers Omitted 

 

5.5 Summary 
 
This chapter covered the most important parts of the Flight Data System project including hardware 
implementation, software implementation, and the results from our road test simulations. Most of the 
hardware implementation was simplified due to having a few parts lying around that included all of the 
necessary hardware features needed to include in the project.  
 
 



  FJL - AVON 

 57 

6 Summary and Conclusions 
 

6.1 Introduction  
 
The project works and provides data reliable enough to give accurate readings when in calm air only. 
Flying after the sun has been able to heat the surface for more than a couple of minutes, the unstable air 
creates turbulence when flying which yields excessive variations in the data measurements due to the 
unstable atmosphere.  
 
The project works and reports readings within the specified accuracy range of the Garmin GPS receiver 
when compared to the one-foot accuracy topographic map data. The enclosure has physical dimensions 
small enough to fit in the sailplane space available for this instrument. The CompactFlash Card allows for 
easy portability of pertinent data to the computer for data analysis.  
 
Some expected future work includes designing a true buck-boost power distribution topology in place of 
the current boost to 12V then a point-of-load buck converter placed near high power loads. A more 
accurate L/D calculation should be researched and verified.  
 

6.2 Completed Work 
 
The project works and provides data reliable enough to give accurate readings when in calm air. Flying 
after the sun has been able to heat the surface for more than a couple of minutes, the unstable air creates 
turbulence when flying that makes readings jump due to the inconsistency.  
 

6.3 Future Work 
 
Future teams should research the possibility of including any physical factors of a sailplane to achieve a 
greater accuracy in the calculation of the L/D ratio. Currently, the GPS receiver reports data every second. 
The one Hertz data rate provides a major point of error since conditions change quite frequently in 
conditions where the air is even slightly unstable.  
 
Future teams should implement a buck-boost power distribution topology to have an efficient version of 
the Flight Data System. The new topology would increase the efficiency from approximately 71% 
currently to 80-90% overall system efficiency. 
 
The use of field-programmable gate arrays (FPGAs) should be researched to find out the feasibility of a 
successful design as opposed to using the FlashCore-B(FB) microprocessor board. We chose not to 
pursue a FPGA solution since the FlashCore-B(FB) was already in design for a concurrent project.  
 
 



  FJL - AVON 

 58 

6.4 Summary 
 
This chapter presented the work completed for this project and mentioned suggested work for future 
teams to help create a better project. Further trials are necessary for a proper conclusion since testing the 
system anywhere but in a sailplane defeats its intended purpose and does not account for the same 
weather factors experienced in the air as opposed to land.  



  FJL - AVON 

 59 

7 Works Cited 
 
What is GPS?. 1996-2006. Garmin. 8 Nov 2005 <http://www.garmin.com/aboutGPS/> 
 
GPS Guide for Beginners. December 2000. Garmin. 8 Nov 2005
 <http://www.garmin.com/manuals/GPSGuideforBeginners_Manual.pdf> 
 
Brain, Marshall and Tom Harris. How GPS Receivers Work. 1998 – 2006. 
 How Stuff Works. 8 Nov 2005 < http://electronics.howstuffworks.com/gps.htm > 
 
Ganssle, Jack G. A Guide To Debouncing. August 2004. 8 Nov 2005  
 < http://www.ganssle.com/debouncing.pdf> 
 
Burch, Jim D. Performance Airspeeds for the Soaring Challenged. 2000. 5 April 2006.  
 <http://home.att.net/~jdburch/polar.htm> 
 
Brandon, John. Knowing the Aircraft. 2004. 10 April 2006. 
 <http://www.auf.asn.au/emergencies/aircraft.html> 
 
Piggott, Derek. Gliding: A Handbook on Soaring Flight. Adam & Charles Black: London, 1977.  
 
United States. Dept. of Transportation. Federal Aviation Administration. Glider Flying 
Handbook. Washington: GPO, 2003.  
 
Worcester Public Library. 25 July 2006.  
http://www.worcpublib.org/resources/faqworcester.html#WORCESTER%20ALTITUDE/ELEV
ATION 
 
United States Air Force, CAP National Technology Center: “CAPF 5G Online-Course”. July 26, 
2006 
https://ntc.cap.af.mil/ops/DOT/school/NCPSC/GliderNCPSC/CAPF_5_glider/soaringtechniques.
htm  
 
Soaring Society of America: “What is Soaring?”. July 26, 2006 
http://www.ssa.org/sport/whatissoaring3.asp 
 
“Thermal Soaring”. July 26, 2006 
http://myweb.tiscali.co.uk/miskin/gliding/gliding/x_thermalling.htm 
 
UEET NASA. “History of Flight”. July 26, 2006 
http://www.ueet.nasa.gov/StudentSite/historyofflight.html 



  FJL - AVON 

 60 

 
Soaring Society of America. USA Soaring Team. “History of Gliding and Soaring”. July 26, 
2006 
http://www.ssa.org/UsTeam/adobe%20pdf/pr%20pdf/BR%20Soaring%20History%20V5%2004.
pdf 
 
American Institute of Aeronautics and Astronautics. “Leonardo Di Vinci”. 2006. July 26, 2006. 
http://www.aiaa.org/content.cfm?pageid=425 
 
Wings and Wheels. Fred J Looft. “New Glider Deliveries – 304C ‘FL’”. July 26, 2006 
http://www.wingsandwheels.com/Glasflugel304C.htm 
 
Glasflugel 304C Handbook. July 26, 2006 
http://alvsbyflygklubb.se/dokument/flyghandbok304c.pdf 
 
Wikipedia. “Glaser-Dirks DG-300”. July 26, 2006 
http://en.wikipedia.org/wiki/Glaser-Dirks_DG-300 
 
Wikipedia. “Rolladen-Schneider LS4”. July 26, 2006 
http://en.wikipedia.org/wiki/Rolladen-Schneider_LS4 
 
Wikipedia. “Politechniki Warszawskiej PW-5”. July 26, 2006 
http://en.wikipedia.org/wiki/Politechniki_Warszawskiej_PW-5 
 
Wikipedia. “Schempp-Hirth Duo Discus”. July 26, 2006 
http://en.wikipedia.org/wiki/Schempp-Hirth_Duo_Discus 
 
Geelong Gliding Club. “Rolladen-Schneider LS4a”. July 26, 2006 
http://www.gliding-in-melbourne.org/ls4a.htm 
 
Greater Boston Soaring Club. July 26, 2006 
http://soargbsc.com/fleet.php 
 
Associated Glider Clubs of Southern California. “SGS 2-33”. July 26, 2006 
http://www.agcsc.org/sgs_2_33_info.html 
 
Blanik America. “LET L23 Super Blanik”. July 26, 2006 
http://www.nwi.net/~blanikam/ba/prod01.htm 
 
 
 
 
 
 
 
 
 
 



  FJL - AVON 

 61 

Appendix A: Executive Summary 
 

Introduction 
 

This appendix presents the executive summary of our report to serve as a brief overview and 
summary of the Flight Data System project. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  FJL - AVON 

 62 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

������������������������			���			���


���������


������

Date:  July 26, 2006 

A Major Qualifying Project Report: submitted to the Faculty of  
WORCESTER POLYTECHNIC INSTITUTE  
in partial fulfillment of the requirements for the  

Degree of Bachelor of Science  
by�

Project Number: FJL-AVON 

100 Institute Road  Worcester, MA  01609 

This document represents the work of WPI students. The opinions expressed in 
this report are not necessarily those of Worcester Polytechnic Institute. 

Fred Looft        
fjlooft@ece.wpi.edu      

 
Tri Lai 
trilai@wpi.edu _________________________ 
 
Russell Pead 
rustyp@wpi.edu _________________________ 
 

Abstract  
 
The goal of this capstone design project was to design a fully portable sailplane 
Lift/Drag (L/D) calculator. The system utilizes NMEA format GPS data strings for 
software data analysis executed by software. Calculated effective L/D results are stored 
on a removable data storage media (e.g. CompactFlash card) for later data analysis.  
 



  FJL - AVON 

 63 

Introduction 
One of the least known sports is high performance gliding, commonly referred to as soaring. Sailplanes 
make use of thermals, rising columns of air, and other forms of lift to achieve high altitudes. A pilot can 
fly for hours depending on their skill level, granted conditions are ideal. Some of these conditions include 
weather, the number of thermals in the area, and the strength of the area. These will be explained in more 
detail later. 
 
In order to successfully fly long distances and increase flight time, two critical characteristics of a 
sailplane should be optimized. The two most critical performance characteristics of a sailplane are the 
Lift/Drag (L/D) ratio and Minimum Sink Rate. Both performance characteristics rely heavily on the 
physical characteristics of the plane such as weight, wing shape, and the actual aerodynamic design of the 
plane. Because the pilot has no control over physical aspects of the plane, the pilot must control different 
flight variables, such as velocity and angle of attack.  
 
The purpose of the Flight Data System project was to design, implement, and test a fully independent 
portable instrument capable of calculating the effective L/D ratio of a sailplane using GPS data and 
storing data onto removable media for analysis.  
 
This chapter introduced a problem, which sailplane pilots frequently find themselves confronted 
with. In order to help solve this problem, we have developed a problem statement, which in turn 
will lead to the development of a portable Flight Data System that can calculate the effective L/D 
of any given sailplane. Although there are currently instruments on the market capable of 
calculating the effective L/D ratio, we hope to develop a system that has the capability to store 
data onto removable media, is lightweight, and portable. 
 
Background 
Effective L/D, commonly referred to as max glide ratio, is the unit of distance traveled divided by the unit 
loss in altitude. Since effective L/D is a ratio, any distance unit can be used without the necessity for 
using a particular measuring system. The effective L/D is as significant, if not more, than the 
manufacturer specified L/D since the glider will not always achieve the specified L/D. The effective L/D 
approximation used for this project represents the effect of all factors from the pilot’s flying style to 
various temperatures experienced at different altitudes, and the movement of the air through which the 
glider is flying, and the movement of the air through which the glider is flying.  
 
Global Positioning System (GPS) data is transferred using the National Marine Electronic Association 
(NMEA) 0183 standard for GPS strings. The NMEA 0183 standard provides defined strings each 
containing a specific set of data. The Global Positioning System network consists of 24 active satellites 
constantly orbiting the Earth at an altitude of 11000 nautical miles. In order for GPS measurements to be 
accurate, at least 4 satellites must be detectable by the receiver, which is ensured by the orbit 
configuration of the 24 satellites.  
 
The Global Positioning System uses a process called trilateration to determine the location of a receiver. 
With the bare minimum of 3 satellites, the location given by the data is accurate within 100 meters. With 



  FJL - AVON 

 64 

4 or more satellites, accuracy is significantly improved to less than 10 meters, depending on the receiver. 
In essence, each satellite connection generates imaginary spheres with a radius equal to the distance 
between the satellite itself and the GPS receiver. The overlapping areas between the spheres are 
equivalent to the possibilities of where the GPS receiver could be located. With one satellite connection, 
the receiver can be anywhere on the outer edge of the sphere. Two satellites will yield a possibility of 
points along the radius of a circle. Further, with three satellite connections, there are only two possibilities 
of where the GPS receiver can be located. Of the two locations, one on Earth and the other is in space. By 
using the Earth as a fourth sphere, the possibility of being located in space is eliminated, but a fourth 
satellite connection is needed to attain accuracy within 10 meters.  
 
Problem Statement 
 
The goal of our project was to design, implement and test a portable sailplane flight performance 
instrument. The purpose of this chapter is to specifically state the project goal, identify the objectives 
necessary to achieve the goal, and list the tasks necessary to accomplish the objectives and the overall 
goal.  
 
Measurable Objectives 
After researching the characteristics and capabilities of racing sailplanes, we created a list of measurable 
objectives needed for our instrument to work over a broad range of performance racing sailplanes: 
 

• Air Speed: 30 – 150 knots 
 

• Altitude: sea level to 9,999' 
 

• L/D ratio: 2:1 – 100:1 
 

• Total system runtime of no less than 1 hour but 3 or more hours is preferred. 
 
System Design 
 
Before we could move onto implementation and choosing various system components, we had to define 
the critical components necessary to meet our design goals and objectives. As seen in Figure 19, several 
key modules were apparent when we referred to the Problem Statement and Measurement Objectives 
chapters including the following: 
 

• GPS Module 
• Liquid Crystal Display (LCD) 
• Removable data storage media (prefer onboard) 
• User Interface (push-button switches) 
• System Controller (a microprocessor or FPGA) 
• Portable Power Source 

 



  FJL - AVON 

 65 

 
Figure 1: Top-level System Design 

 
In order implement the system, we first began by conducting a trade study to select the different 
components to satisfy the requirements of each module. After the components were chosen, we had to test 
them individually to verify the hardware works and learn proper usage. Once that was completed, we then 
went on to test the interfacing of the modules. We began by interfacing the LCD with the FlashCoreB-
(FB) microprocessor. We then interfaced the GPS receiver with the microprocessor and conducted a test 
separate of the LCD.  When we found that it was possible to interface to the LCD and the GPS receiver 
separately, it was time to implement a full working system with both units working in unison. 
 
Results 
 
Figure 2 shows software flow diagram utilized in our design. One vital element necessary to achieve 
optimum accuracy and performance is a minimum of four satellites. Whenever less than four satellites are 
detected, the L/D calculations are no longer valid, and then the system must wait until a sufficient number 
of satellites have been detected again.  
 
In order to ensure the system has not crashed, an incrementing timer has been included to show continued 
system activity, which is displayed in the lower right corner.  
 
Incoming GPS data is transmitted via strings, which contain multiple pieces of information. The software 
looks for the strings containing the pertinent data needed for the calculations. All pertinent data is 
displayed on the corresponding screens while the L/D calculation results are stored on the CompactFlash 
card.  
 
The user interface consists of two parts: three switches and the LCD. Button 2 is used to scroll through 
the various screens. Button 3 is used to jump to the L/D calculator screen. Button 1 is used for a 
confirmation or enter button (i.e. “Press When Ready”).  
 
On power up, the software will search for the number of satellites while simultaneously displaying the 
current number of satellites and the incrementing timer on the screen. This portion of software does not 
permit any user input. Once connections with at least four satellites have been established, the user must 



  FJL - AVON 

 66 

acknowledge he/she is ready by pressing Button 1. The system waits until the acknowledgement button is 
pressed while still displaying the incrementing timer.  
 
The user is able to scroll through different screens including velocity, altitude, L/D, current number of 
satellites, etc.  
 

 
Figure 2: Software Flow 

 
The calculation of L/D starts when button 3 is pressed. The calculation of L/D requires the extraction of 
velocity and altitude from the GPS strings. The user is asked to hold their velocity for 10 seconds, during 
which the velocity for each second is stored into an array. At the beginning and end of the 10 seconds, the 
initial altitude and final altitude are extracted to determine the change in altitude. The change in altitude is 
then multiplied by 6 to account for a minute duration of flying. The program then takes an average of the 
velocities stored from the 10 seconds and is then converted to meters/minute by multiplying the average 
velocity by 30.8667. The average velocity is then divided by the change in altitude, which yields the L/D 
result. The L/D is then added to another variable which stores the total of all the L/D’s calculated. This 
allows for an average L/D of the day to be taken. The L/D calculation, velocity, and altitude are stored in 
the CompactFlash for future analysis.  
 
One important step necessary in the development of our system was testing the accuracy of our GPS 
receiver, Garmin’s 15H. According to the receiver’s manual, it has an accuracy of up 3-5 meters with the 



  FJL - AVON 

 67 

Differential GPS activated. In our system, we have this feature set to automatic to receive DGPS 
information whenever it is available. In order to test its accuracy, we first had to find some known 
locations and their altitudes. To do this, we went to the Worcester Public Library and asked for 
topographic maps. As seen in Table 1, the locations we found off of the topographic maps were 
Worcester Polytechnic Institute, Grafton Plaza, and Heywood Street. Since topographic maps do not give 
exact values, the values listed in the chart are rough readings based on the maps scales and lines of 
contour. The librarian also directed us to the library’s homepage which listed a few additional locations. 
The ones we decided to use were City Hall and Union Station. Once this information was found, we then 
had to take the GPS receiver and our system to test these values. The values read from our test were then 
compared to the information we found at the library. The actual values achieved from our system were 
relatively close to the indicated accuracy of 3-5 meters as advertised by Garmin. Any discrepancies found 
in the values may have been the result of various reasons. The first reason that comes to mind is the fact 
that the values read from the topographic maps were estimates as opposed to accurate values. Other 
reasons could be errors in the GPS timing as described earlier. When the skies are not clear or the area is 
surrounded by high buildings and other structures, such as the case of City Hall, there is an added delay in 
receiving the GPS information from the satellites.  
 

Location Topography Elevation (Approximate) GPS Elevation Difference 
WPI 167 m 169.9 m 2.9 m 

Grafton Plaza 150 m 154 m 4 m 
Heywood St 182.9 m 191 m 8.1 m 

City Hall 146.6 m 140 m 6.6 m 
Union Station 144 m 138 m 6 m 

Table 1 - Elevation Comparisons 
 
 
Summary and Conclusions 
 
The project works and provides data reliable enough to give accurate readings when in calm air only. 
Flying after the sun has been able to heat the surface for more than a couple of minutes, the unstable air 
creates turbulence when flying which yields excessive variations in the data measurements due to the 
unstable atmosphere.  
 
The project works and reports readings within the specified accuracy range of the Garmin GPS receiver 
when compared to the one-foot accuracy topographic map data. The enclosure has physical dimensions 
small enough to fit in the sailplane space available for this instrument. The CompactFlash Card allows for 
easy portability of pertinent data to the computer for data analysis.  
 
Some expected future work includes designing a true buck-boost power distribution topology in place of 
the current boost to 12V then a point-of-load buck converter placed near high power loads. A more 
accurate L/D calculation should be researched and verified.  
 
 



  FJL - AVON 

 68 

Future teams should research the possibility of including any physical factors of a sailplane to achieve a 
greater accuracy in the calculation of the L/D ratio. Currently, the GPS receiver reports data every second. 
The one Hertz data rate provides a major point of error since conditions change quite frequently in 
conditions where the air is even slightly unstable.  
 
Future teams should implement a buck-boost power distribution topology to have an efficient version of 
the Flight Data System. The new topology would increase the efficiency from approximately 71% 
currently to 80-90% overall system efficiency. 
 
  
 



  FJL - AVON 

 69 

Appendix B – Trade Study 
 
One of the most important components in the design of our system was the microcontroller 
board. In order to choose a microcontroller board to use in our design, we researched 
commercially available microcontroller boards while keeping in mind how the microcontroller 
boards could interface to a computer. After conducting our research, the TERN FlashCore-B(FB) 
and IPOC1615 were the two best options after excluding those with excessive power 
consumption (more than three watts), dimension requirements (3.125” tall by 6.5” wide), or were 
too expensive (over $1000). In order to determine which board would be used in the design, we 
conducted a trade study to compare the important features of the different devices as listed 
below. 
 

• Dimensions 
• Input Voltage 
• Power Consumption 
• Operating Temperature Range 
• Programmable I/O 
• RS232 
• Parallel/IDE 
• Hardware/Software/Overall Cost 

 
The comparison was organized into three sections including hardware, software, and cost as seen 
in Table 8. The bolded features were the key features used in our component selection.  



  FJL - AVON 

 70 

 
 
Hardware  TERN33  ICOP34  PIC35 
  FlashCore-B(FB)  6015  PIC24FJ128GA 
Dimensions  2.1" x 2.35" x 0.7"  3.94" x 2.60"  100-lead TQFP max 
Input Voltage  9-12V unregulated  5V regulated  2.0-3.6V regulated 
Power Consumption  700mW maximum  2.0W maximum  2.1W maximum 
Operating Temp. Range  -40 to +85  -20 to +60  -40 to +85 
       
Programmable I/O  20+ TTL lines  16-bit Digital I/O  84 TTL lines 

RS232  2 ports  2 ports  
2 UARTs support 

RS232 
Parallel/IDE  0/0    0/0 
       
Software  Paradigm C/C++  DOS  MPLAB 
    TASM Compiler   
       
Cost       

       
Hardware  $99 for board  $186 for board  $5.66/chip 
Programmer  Included  Included  $86 PICStart Plus 

Software  
$249 Evaluation Kit 

$699 Development Kit  Free X-DOS  Free MPLAB 
Overall  $351 or $798  $186  $92 

Table 8 - System Controller Trade Study 

                                                 
33 http://tern.com/fc_b.htm 
34 http://www.icop.com.tw/products_detail.asp?ProductID=8 
35 http://ww1.microchip.com/downloads/en/DeviceDoc/39768a.pdf 



  FJL - AVON 

 71 

Appendix C – LCD Test Board Schematic 
 

 
LCD Test Board Schematic 

 
 



  FJL - AVON 

 72 

Appendix D – Data Logger Documents 
 

 
Data Logger Cable Pinout 

 

Terminal Commands: 
The following command set may be used with a terminal program, or as a guide for writing your own data 
logger 
communications software. 
Note: 
Commands are accepted ONLY when pin 1 of the Data logger connector is connected to Ground. 
 
Download: 
Lowercase ‘d’. The Data Logger will instantly download all stored data at the baudrate selected by DIP 
switch 1. 
Datalogger will send ‘ok’ when the download is complete. 
Download can be cancelled by pressing the Escape key. 
Download can be cancelled by pressing pushbutton S2 (inside the battery compartment). 
 
Info: 
Lowercase ‘i’: The Data Logger will instantly return version and model number data. 
 
Zero (Clear) 
Uppercase ‘Z’ (Shift-Z). All data will be instantly cleared from memory. 
Datalogger will reply with ‘ok’ 

 
 



  FJL - AVON 

 73 

Appendix E – System Board Schematic 
 

 



  FJL - AVON 

 74 

Appendix F – Enclosure Drawings 
 

 
 

Enclosure – Front View 



  FJL - AVON 

 75 

 
 

Enclosure – Rear View 



  FJL - AVON 

 76 

 
 

Enclosure – Side View 



  FJL - AVON 

 77 

Appendix G – PCB Layouts 
 

 
Complete PCB Layout 



  FJL - AVON 

 78 

 
Silkscreen 



  FJL - AVON 

 79 

 
Top Layer 



  FJL - AVON 

 80 

 
Bottom Layer 



  FJL - AVON 

 81 

Appendix H – Flight Data System Program Code 
 
extern "C" 
 
{ 
 #include  "ae.h"      // AE88 initialization 
 #include  "ser1.h" 
 #include "fileio.h" 
 #include "string.h" 
 #include "stdio.h" 
} 
 
#include <dos.h> 
#include <string> 
#include <stdlib.h> 
#include "gpsstringreader.h" 
 
#define BUFFSIZE 1024 
 
#ifndef NULL 
#define NULL 0 
#endif 
 
#define MIN_SATS 4 
 
unsigned char inBuff[BUFFSIZE]; 
unsigned char outBuff[BUFFSIZE]; 
extern COM ser1_com; 
COM* com1 = &ser1_com; 
 
int FindNumSats(const char* gpsStr) 
 { 
    const char* curTok = gpsStr+41; 

   int retVal = ((curTok[0]-0x30)*10)+(curTok[1]-0x30);  
                        // returns number of satellites 

  return retVal;   // in decimal form 
 } 
 
double FindVelocity(const char* gpsStr) 
 { 
    char strVel[5]=""; 
    double velocity; 
    for(int a=0; a<5; a++) 
     {strVel[a] = gpsStr[a+41];} 
             // Extracts velocity from GPS string 
    velocity = atof(strVel);        // convert string to double 
    return velocity; 
   } 
 
 
 
 
 
 



  FJL - AVON 

 82 

double FindAltitude(const char* gpsStr) 
 { 
   char strAlt[10]=""; 
   double altitude; 
   for(int a=0; a<10; a++) 
    { 
     strAlt[a] = gpsStr[a+48]; // extract altitude from GPS string 
     if(gpsStr[a+49]==',')  // Finds where altitude value ends 
      {a = 11;} 
    } 
   altitude = atof(strAlt);         // Convert string to a float 
   return altitude; 
   } 
 
void initports(void) 
 { 
  ae_init();    // AE initialization 
        // Initialize all PIO 
                   // Outputs 
        // pio_init(x,y) 
        // x = port number 
        // if y = 1, port is input 
                        // if y = 2, port is output  
  pio_init(0,2);    // DB5 
  pio_init(3,2);    // Register Select (RS) 
  pio_init(10,2);   // DB6 
  pio_init(13,2);   // DB7 
  pio_init(17,2);   // DB2 
  pio_init(18,2);   // DB1 
  pio_init(19,2);   // DB0 
  pio_init(24,2);   // DB3 
  pio_init(25,2);   // DB4 
  pio_init(30,2);   // Enable 
        // Input with Pull Up/Down 
  pio_init(15,1);   // Switch 1 
  pio_init(5,1);    // Switch 2 
  pio_init(6,1);    // Switch 3 
 } 
 
void set_pio(int num_data) 
 { 
    int datatmp = num_data & 0x01; 
  datatmp = datatmp/0x01; 
  pio_wr(19,datatmp);    // Set DB0 
 
    datatmp = num_data & 0x02; 
  datatmp = datatmp/0x02; 
  pio_wr(18,datatmp);    // Set DB1 
 
  datatmp = num_data & 0x04; 
  datatmp = datatmp/0x04; 
  pio_wr(17,datatmp);    // Set DB2 
 
  datatmp = num_data & 0x08; 
  datatmp = datatmp/0x08; 
  pio_wr(24,datatmp);    // Set DB3 
  datatmp = num_data & 0x10; 
  datatmp = datatmp/0x10; 
  pio_wr(25,datatmp);    // Set DB4 



  FJL - AVON 

 83 

  datatmp = num_data & 0x20; 
  datatmp = datatmp/0x20; 
  pio_wr(0,datatmp);    // Set DB5 
 
  datatmp = num_data & 0x40; 
  datatmp = datatmp/0x40; 
  pio_wr(10,datatmp);    // Set DB6 
 
      datatmp = num_data & 0x80; 
  datatmp = datatmp/0x80; 
  pio_wr(13,datatmp);    // Set DB7 
   } 
 
void initLCD(void) 
 { 
 delay_ms(15);   // Allow Vcc to rise to 4.5V 
   pio_wr(3,0);       // Set RS to Instruction 
 pio_wr(30,1); 
    set_pio(0x30);  // Function Set 
    pio_wr(30,0); 
 delay_ms(5); 
 pio_wr(30,1); 
      set_pio(0x30);  // Function Set 
      pio_wr(30,0); 
 delay_ms(1); 
 pio_wr(30,1); 
    set_pio(0x30);  // Function Set 
      pio_wr(30,0); 
 delay_ms(1); 
   pio_wr(30,1); 
      set_pio(0x38);  // Set interface data length(8 bits) 
                        // and # of lines(2) 
      pio_wr(30,0);     // font size(5x8 dots) 
 delay_ms(1); 
   pio_wr(30,1); 
      set_pio(0x08);  // Display off 
      pio_wr(30,0); 
 delay_ms(1); 
 pio_wr(30,1); 
      set_pio(0x01);  // Clear display 
      pio_wr(30,0); 
 delay_ms(2); 
 pio_wr(30,1); 
      set_pio(0x06);  // Assign cursor moving direction (right) 
      pio_wr(30,0); 
 delay_ms(1); 
 pio_wr(30,1); 
      set_pio(0x0E);  // Set display, set cursor, blinking 
cursor(off) 
      pio_wr(30,0); 
 delay_ms(1); 
 } 
void clr_scr(void) 
 { 
  pio_wr(30,1); 
    pio_wr(3,0); 
   set_pio(0x01);  //clears screen 
    pio_wr(30,0); 
      delay_ms(5); 



  FJL - AVON 

 84 

 } 
 
void char_pos(int row,int col)  // row 1-2, col 0-7 
 { 
  pio_wr(3,0);   // RS=0 ==> Instruction 
    pio_wr(30,1); 
 
  if(row==2) 
     {col = col+0x40;} // Adjusts DDRAM address to be written 
                           // DDRAM address of LCD 
                           // controls cursor position 
      set_pio(col);        // Write DDRAM address to LCD 
  pio_wr(13,1); 
    pio_wr(30,0); //places cursor 
      delay_ms(2); 
   } 
 
void str_wr(char* string) 
 { 
      int r=0; 
  while(r<8) 
   { 
     pio_wr(3,1);  // RS = data 
          // string[r] extracts a single character 
          // character is then set to the LCD using set_pio() 
       set_pio(string[r]); 
         pio_wr(30,1); 
         pio_wr(30,0); //displays character 
         r++;    // Next character 
 
         if(string[r]==0x00) // Checks end of the string 
       {r=8;} 
       } 
 } 
 
int btn_rd(int btn_num)   //reads btn status 
{ 
 int btntemp; 
 int btn_loc;     // determines how many bits 
to shift btn 
 
 if(btn_num == 1)           //  Checks the proper button 
  btn_loc = 15; 
 if(btn_num == 2) 
  btn_loc = 5; 
 if(btn_num == 3) 
    btn_loc = 6; 
 
   btntemp = pio_rd(0); 
   btntemp = (btntemp >> btn_loc); 
   btntemp = (btntemp & 0x01); 
   return btntemp; 
} 
 
// ******************* End Functions *************************** 
 
 
 
 



  FJL - AVON 

 85 

void main(void) 
{ 
 
// ******************* Initializations ************************* 
   initports(); 
   initLCD(); 
   unsigned char baud = 7;  //intialize the serial port  @ 4800 baud 
   s1_init(baud, inBuff, BUFFSIZE,  outBuff, BUFFSIZE, com1); 
 
   fs_descrip* file = NULL; //initialize flash 
   if(fs_initPCFlash()!=0)  // Checks for compact flash card 
   {                          // User must power down and 
                              // insert card if not found 
    clr_scr(); 
      str_wr("Insert"); 
      char_pos(2,0); 
      str_wr("CF Card"); 
    while(true) 
    { 
     delay_ms(999); 
    } 
   } 
// ******************* Variable Declarations ************************* 
   int  btn1=0x00;                 // Holds button status 
   int  btn2=0x00;                 // 
   int  btn3=0x00;                 // 
   int disp_type = 0x00;    // Determines what to display 
   int clear = 0x00;              // Holds clear status 
                                    // Determines if screen needs to be                  
                                    //  cleared for new display 
 
 float LD = 0.00;      // Stores L/D Value 
   long double LD_total =0;   // Stores total of LD values 
                                    // to be averaged 
   unsigned int LD_num =0;          // Stores how many LD values have 
                                    // been calculated 
   float LD_avg = 0;     // Average of all the 
calculated LD's 
   char  strLD[5]="";            // String format of LD to be displayed 
   bool  calcLD = false;   // Used to determine whether or 
                                 // not to calculate LD 
   char  strType[6] = {0,};  // Stores NMEA GPS String type 
   char  strnewTime[7] = "";  // Stores new time 
   char  strTime[7] = "";        // Stores previous time 
   char strVel[5]="";    // Stores Velocity -- string 
format 
   double  Vel = 0;             // Stores velocity in knots 
   char strAlt[10]="";    // Stores Altitude -- string 
format 
   double Alt = 0;     // Stores Altitude in meters 
 GPSStringReader sr(com1);  // Object to read GPS strings 
   char* gpsStr = NULL;    // The string being read in from 
GPS 
   char  curGPS[100] = "";   // The last gps string we care 
about 
   int  numSats = 0;    // The current number of 
satellites 
                                 // in view 
   char strSats[2]="";    // Sats in string 



  FJL - AVON 

 86 

   char strDate[9]=""; 
//************************End Variables******************************** 
   char_pos(1,0);       // Reset cursor to Row 
1, Col 0 
   str_wr("Begin?");      // Ask user if ready 
   char_pos(2,0); 
   str_wr("Yes 1");                 // If ready, press button 1 
 
   bool not_ready = true; 
   while(not_ready) 
   { 
    btn1 = btn_rd(1); 
      if(btn1 == 0x01)              // Check to see if button1 
                                    // has been pressed 
      { 
       while(btn1 == 0x01) 
         { 
         btn1 = btn_rd(1);          // Check to see if button1 
                                    // has been released 
          if(btn1 == 0x00) 
          {not_ready = false;} 
       } 
       clr_scr(); 
      } 
   } 
 
   NES:       // NES = Not Enough 
Satellites 
      char_pos(1,0);       // If there aren't enough satellites, 
                           // program will jump here 
    str_wr("Sats= ");    // and not allow anything to happen 
                           // until there is enough 
      str_wr(strSats); 
 
      char_pos(2,0); 
    str_wr("Wait"); 
      disp_type = 0x00;  // In the event there is a jump to NES 
                           // during main loop 
      clear = 0x00;   // The display is reset back to 
                           // satellite display 
   while(true) 
   { 
   MAIN: 
   /*****FILE Create / Open****************************/ 
       if(!file) 
         { 
          file = fs_fopen("avionics.txt", O_WRITE|O_APPEND); 
          if(file&&(file->ff_status!=fOK)) 
          {//Make sure it opened ok 
           fs_fclose(file); 
               file = NULL; 
            } 
         } 
   
 
 
 
 
 



  FJL - AVON 

 87 

 /******GPS STRING HANDLING***********************/ 
 
   if(gpsStr = sr.GetString()) 
   { 
      for(int i=0;i<5;i++) 
      strType[i] = gpsStr[i+1];   // Figure out which GPS 
                                       // string is being looked at 
    
      if(!strcmp(strType, "GPGGA")) 
    { 
       for(int c=0;c<6;c++)      // For 
extracting Time 
         strnewTime[c]= gpsStr[c+7]; 
    
         numSats = FindNumSats(gpsStr); // Get number of 
                                         // satellites 
         itoa(numSats,strSats,10); 
         Alt = FindAltitude(gpsStr); 
         strcpy(curGPS, gpsStr); 
    
         if(strcmp(strnewTime, strTime))  // Need to record 
         { 
      strcpy(strTime, strnewTime); 
            char_pos(2,7); 
            char temp[1] = ""; 
            temp[0] = strTime[5]; 
            str_wr(temp); 
         } 
      } 
   else if(!strcmp(strType, "GPRMC")) 
   { 
      Vel = FindVelocity(gpsStr);    // Get Velocity 
    
      strDate[0]= gpsStr[55];       // Gets the date 
      strDate[1]= gpsStr[56];     // Convert from DDMMYY format 
      strDate[2]= '/';              // To MM/DD/YY format 
      strDate[3]= gpsStr[53]; 
      strDate[4]= gpsStr[54]; 
      strDate[5]= '/'; 
      strDate[6]= gpsStr[57]; 
      strDate[7]= gpsStr[58]; 
      strDate[8]= '\0'; 
   } 
} 
      if(numSats < MIN_SATS) 
      {goto NES;} 
/*****Screen Scrolling***************************/ 
      btn2 = btn_rd(2); 
      if(btn2 == 0x01)    // Checks to see if button 2 
                                 // has been pressed 
      { 
       while(btn2 == 0x01) 
         { 
   btn2 = btn_rd(2);   // Checks to see if button 2 
                                 // has been released 
         } 
      disp_type++;     // Scrolls to next screen 
       if(disp_type > 0x05)  // If on final screen, 
                                 // go back to first one 



  FJL - AVON 

 88 

         {disp_type = 0x00;} 
      } 
 
  btn3 = btn_rd(3);    // Checks to see if button 3 
                                 // has been pressed 
      if(btn3 == 0x01) 
      { 
       while(btn3 == 0x01)  // Checks to see if button 3 
                                 // has been released 
         { 
   btn3 = btn_rd(3); 
         } 
         calcLD = true;    // If button 3 has been pressed, 
                                 // go to calculated L/D mode 
         goto LD; 
      } 
 
  if(disp_type == 0x00)  // Screen 1 - Number of satellites 
      { 
       if(clear == 0x00) 
         { 
         clr_scr();           // Refresh screen 
         clear=0x01; 
       str_wr("Sats= "); 
         } 
      char_pos(2,0); 
      str_wr(strSats); 
      str_wr(" ");   // In the event new value is less 
                           // than the previous value 
                           // by at least a significant digit 
                           // i.e - old value = 10, new value = 9 
                           // --> the zero will still be displayed 
                           // by adding the spaces, 
                           // the excess digits are "erased" 
      } 
if(disp_type == 0x01)   // Screen 2 - Velocity 
      { 
       if(clear == 0x01) 
         { 
         clr_scr(); 
         clear=0x02; 
         str_wr("Vel="); 
         } 
      char_pos(2,0); 
      gcvt(Vel,4,strVel); 
      str_wr(strVel); 
      str_wr(" "); 
      } 
 
      if(disp_type == 0x02)  // Screen 3 - ALtitude 
      { 
       if(clear == 0x02) 
         { 
         clr_scr(); 
         clear=0x03; 
         str_wr("Altitude"); 
         } 
      char_pos(2,0); 
      gcvt(Alt,6,strAlt); 



  FJL - AVON 

 89 

      str_wr(strAlt); 
      } 
 
      if(disp_type == 0x03)  // Screen 4 - Last L/D Calculated 
      { 
       if(clear == 0x03) 
         { 
         clr_scr(); 
         clear = 0x04; 
         str_wr("Last L/D"); 
         } 
      char_pos(2,0); 
      gcvt(LD,5,strLD); 
      str_wr(strLD); 
      } 
 
      if(disp_type == 0x04)  // Screen 5 - Average of all L/D’s 
      { 
       if(clear == 0x04) 
         { 
         clr_scr(); 
         clear = 0x05; 
         str_wr("Avg L/D"); 
         } 
      char_pos(2,0); 
      gcvt(LD_avg,5,strLD); 
      str_wr(strLD); 
      } 
if(disp_type == 0x05)  // Screen 6 - Date and Time 
      { 
       if(clear == 0x05) 
         { 
         clr_scr(); 
         clear = 0x00; 
         } 
      str_wr(strDate); 
 
      long temp_time = atol(strnewTime); 
  if(temp_time >= 50000) 
       temp_time = temp_time - 40000;       
            // Convert UTC to Eastern Time (UTC from 5am - 11:59pm) 
      if(temp_time <= 40000) 
       temp_time = temp_time + 80000;       
            // Convert UTC to Eastern Time (UTC from 12am to 4:59am) 
      if(temp_time >= 130000) 
       temp_time = temp_time - 120000;   
            // Convert from military time to standard time 
    temp_time = temp_time + 100000;    
            // Place holder for conversion from int to string 
      ltoa(temp_time,strTime,10); 
      char_pos(2,0); 
      char temp[8]; 
      temp[0] = strTime[0] - 1;    
            // Handles hour correction from place holder 
      temp[1] = strTime[1];   // Convert time format from HHMMSS format 
      temp[2] = ':';          // To HH:MM:SS format 
      temp[3] = strTime[2];   // Also converts to standard time 
      temp[4] = strTime[3];   // Instead of military time 
      temp[5] = ':'; 



  FJL - AVON 

 90 

      temp[6] = strTime[4]; 
      temp[7] = strTime[5]; 
      str_wr(temp); 
      temp_time = 0;    // reset temp_time 
      } 
/************************************************/ 
LD: 
 while(calcLD == true) 
   { 
   char cnt_dwn[2]=""; 
   char strCnt5[1]=""; 
   int cnt = 30;      // Time remaining 
   int cnt5 = 5;      // 5 second setup time 
   int  count=0;       // counter 
   double  secVel[10]={0};         // Stores Velocity of every second 
   double alt_init=0;             // Stores Initial Altitude 
 double  alt_final=0;            // Stores Final Altitude 
 
    clr_scr(); 
      str_wr("Hold Vel"); 
 
while(count <= 15) 
       { 
         if(gpsStr = sr.GetString()) 
    { 
    for(int i=0;i<5;i++) 
    strType[i] = gpsStr[i+1];    // 
Get string type 
 
    if(!strcmp(strType, "GPGGA")) 
    { 
     for(int c=0;c<6;c++)    
 // For extracting Time 
              strnewTime[c]= gpsStr[c+7]; 
 
           numSats = FindNumSats(gpsStr); 
           strcpy(curGPS, gpsStr); 
 
               if(count == 5)      //extract initial 
altitude 
               {alt_init = FindAltitude(gpsStr);} 
 
             if(count == 15)     //extract initial 
altitude 
               {alt_final = FindAltitude(gpsStr);} 
 
             if(strcmp(strnewTime, strTime)) 
             { 
                strcpy(strTime, strnewTime); 
                char_pos(2,6); 
                  if(cnt5 >= 0)  // 5 second setup delay 
                  { 
                  char_pos(2,0); 
                  str_wr("StartIn"); 
                  itoa(cnt5,strCnt5,10); 
                  str_wr(strCnt5); 
                  cnt5--; 
                  } 
                  if(count >= 5)  // 10 second data record 



  FJL - AVON 

 91 

                  { 
                   clr_scr(); 
                     str_wr("Hold Vel"); 
                     char_pos(2,6); 
                   itoa(cnt,cnt_dwn,10); 
                   if(cnt < 10) 
                    str_wr("0"); 
                   str_wr(cnt_dwn); 
                     cnt--; 
                  } 
                 count++; 
             } 
          } 
 
          else if(numSats < MIN_SATS) 
           {calcLD = false; 
               disp_type = 0x00; 
               clear = 0x00; 
               goto NES;} 
 
          else if(!strcmp(strType, "GPRMC") && count >= 5) 
          { 
              Vel = FindVelocity(gpsStr); 
               secVel[count-5] = Vel;         
// Records Velocity over 10 seconds to find average 
            } 
   } 
       } 
 
    calcLD = false;   
            // Done with extraction, time for calculations. 
 
     double avg_vel = 0; 
     double temp_vel = 0; 
 
     double delta_alt = alt_init - alt_final;   
            // change in altitude over 10 sec 
      delta_alt = 6 * delta_alt;        
            // approximation of change in altitude over 1 min 
 
      if(delta_alt <= 0) 
      goto MAIN;           
    
            // If there was no change in altitude, result is invalid 
 
     for(int vel_t = 1; vel_t<=10; vel_t++) 
   {temp_vel = temp_vel + secVel[vel_t];}     
            // Average velocity over 10 seconds 
     avg_vel = temp_vel/10; 
 
     float vel_mpm = avg_vel * 30.8666667;    
            // Convert knots to meters per min 
                  
    
            // (1 knot = 30.8667 meters per minute) 
    LD = vel_mpm/delta_alt; 
            // L/D Approximated using Distance / Sink Rate 
      LD_num++; 
      LD_total = LD_total + LD; 



  FJL - AVON 

 92 

      LD_avg = LD_total/LD_num;         
            // Calculates the average of all the L/D's calculated 
 
      clr_scr(); 
      disp_type = 0x03; 
      clear = 0x03; 
      fs_fprintf(file,"%s \r\n",strDate); 
       
      fs_fprintf(file,"L/D = %lf; Average Velocity = %lf; Initial   
   Altitude = %lf; Final Altitude = %lf \r\n\r\n",   
      LD,avg_vel,alt_init,alt_final); 
       
      fs_fflush(file); 
   } 
   goto MAIN; 
 }        // end the main loop 
}     // end main procedure 



  FJL - AVON 

 93 

Appendix I – Used GPS Strings36 
 

GPGGA - essential fix data which provide 3D location and accuracy data.  

 $GPGGA,123519,4807.038,N,01131.000,E,1,08,0.9,545.4,M,46.9,M,,*47 
 
Where: 
     GGA          Global Positioning System Fix Data 
     123519       Fix taken at 12:35:19 UTC 
     4807.038,N   Latitude 48 deg 07.038' N 
     01131.000,E  Longitude 11 deg 31.000' E 
     1            Fix quality: 0 = invalid 
                               1 = GPS fix (SPS) 
                               2 = DGPS fix 
                               3 = PPS fix 
          4 = Real Time Kinematic 
          5 = Float RTK 
                               6 = estimated (dead reckoning) (2.3 
feature) 
          7 = Manual input mode 
          8 = Simulation mode 
     08           Number of satellites being tracked 
     0.9          Horizontal dilution of position 
     545.4,M      Altitude, Meters, above mean sea level 
     46.9,M       Height of geoid (mean sea level) above WGS84 
                      ellipsoid 
     (empty field) time in seconds since last DGPS update 
     (empty field) DGPS station ID number 
     *47          the checksum data, always begins with * 
 

                                                 
36 The following have been taken from 
http://www.gpsinformation.org/dale/nmea.htm#GGA 
 



  FJL - AVON 

 94 

GPRMC - NMEA has its own version of essential gps pvt (position, velocity, time) 
data. It is called RMC, The Recommended Minimum, which will look similar to:  

$GPRMC,123519,A,4807.038,N,01131.000,E,022.4,084.4,230394,003.1,W*6A 
 
Where: 
     RMC          Recommended Minimum sentence C 
     123519       Fix taken at 12:35:19 UTC 
     A            Status A=active or V=Void. 
     4807.038,N   Latitude 48 deg 07.038' N 
     01131.000,E  Longitude 11 deg 31.000' E 
     022.4        Speed over the ground in knots 
     084.4        Track angle in degrees True 
     230394       Date - 23rd of March 1994 
     003.1,W      Magnetic Variation 
     *6A          The checksum data, always begins with * 
 
 
 


	Worcester Polytechnic Institute
	Digital WPI
	July 2006

	Flight Data System
	Russell A. Pead
	Tri Lai
	Repository Citation


	tmp.1535548689.pdf.j2MWH

