
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2017

Hospital Lobby Assistant Robot
Emily Mengyue Yu
Worcester Polytechnic Institute

Erin Marie Leger
Worcester Polytechnic Institute

Jacob Ryan Hackett
Worcester Polytechnic Institute

Joseph Richard Fainer
Worcester Polytechnic Institute

Thomas William Farro
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Yu, E. M., Leger, E. M., Hackett, J. R., Fainer, J. R., & Farro, T. W. (2017). Hospital Lobby Assistant Robot. Retrieved from
https://digitalcommons.wpi.edu/mqp-all/2725

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2725&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2725&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2725&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2725&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/2725?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2725&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Hospital Lobby Assistant Robot Built on
a Segway Robotic Mobility Platform

A Major Qualifying Project
Submitted to the Faculty of

Worcester Polytechnic Institute
In partial fulfillment of the requirements for the

Degree in Bachelor of Science
In

Robotics Engineering, Mechanical Engineering, and Computer Science
By

Joe Fainer (RBE)

Tom Farro (RBE)

Jacob Hackett (RBE/CS)

Erin Leger (RBE)

Emily Yu (ME)

Project Advisors:

Professor Gregory Fischer

Professor Candace Sidner

Date: 04/26/2017

1 Abstract 5

2 Executive Summary 6

3 Introduction 9

4 Literature Review 13

5 Project Strategy 16
5.1 Initial Problem Statement 16
5.2 Objectives and Constraints 16

5.2.1 Mandatory Goals 16
5.2.1.1 Teleoperation 16
5.2.1.2 Safety 17
5.2.1.3 Navigation and Mapping 17
5.2.1.4 Arm 17
5.2.1.5 Simple Touchscreen Interface 18

5.2.2 Reasonable Goals 18
5.2.2.1 Obstacle Avoidance 18
5.2.2.2 Improved End User Interface 18
5.2.2.3 Patient Information Database 19
5.2.2.4 Able to Open Door or Curtain 19
5.2.2.5 Aesthetic Chassis Design 19

5.2.3 Reach Goals 20
5.2.3.1 Facial Recognition and Identification 20
5.2.3.2 Able to Help Fill Out Patient Paperwork 20
5.2.3.3 Intelligently Plan Patient Room Assignments 20
5.2.3.4 Smarter Obstacle Avoidance 21
5.2.3.5 Voice Recognition and Natural Language Processing 21

5.2.4 Constraints 21
5.3 Project Approach 22

6 Design Process 22
6.1 Needs Analysis 22

6.1.1 Segway Robot 22
6.1.1.1 Control Computer 23

6.1.2 System Architecture 23
6.1.3 End User Interface 26
6.1.4 Arm 26

6.1.4.1 Arm Control 27
6.2 Prototyping/Modeling 28

6.2.1 Segway Robot 28

1

6.2.2 System Architecture 29
6.2.3 End User Interface 30
6.2.4 Arm 35

6.3 Alternative Designs 37
6.3.1 Segway RMP 37
6.3.2 System Architecture 37
6.3.3 End User Interface 38
6.3.4 Arm 39

6.4 Final Design Selection 44
6.4.1 Segway Robot 44

6.4.1.1 Control Computer 46
6.4.2 System Architecture 47
6.4.3 End User Interface 47
6.4.4 Arm 48
6.4.5 Arm Control 54

7 Final Design Verifications 57
7.1 Segway Robot 57

7.1.1 Batteries 57
7.1.2 Electronics 58
7.1.3 Driving 59

7.2 System Architecture 59
7.2.1 Communications Node 61
7.2.2 Eyes Controller 62
7.2.3 Directions Node 62
7.2.4 Open Door Controller 62
7.2.5 Operate Elevator Controller 62
7.2.6 Pan Tilt Node 63
7.2.7 Driving Controller 63
7.2.8 Driving Node 63
7.2.9 Arm Controller 63
7.2.10 Arm Driving Node 64
7.2.11 Touchscreen Interface 64
7.2.12 Node Server 64
7.2.13 Patient Database 64
7.2.14 Eyes Interface 65

7.3 End User Interface 65
7.4 Arm 66

7.4.1 Machining the Links 66

2

7.4.2 First Joint Gearbox 67
7.4.3 Second Link Belt System and Gearbox 68
7.4.4 Center Mast and Slider Mechanism 69
7.4.5 Potentiometer and Mounts 70

8 Final Design Validation 72
8.1 Mandatory Goals 72

8.1.1 Teleoperation 72
8.1.2 Safety 72
8.1.3 Navigation and Mapping 73
8.1.4 Arm 73
8.1.5 Simple Touchscreen Interface 73

8.2 Reasonable Goals 74
8.2.1 Obstacle Avoidance 74
8.2.2 Improved End User Interface 74
8.2.3 Patient Information Database 74
8.2.4 Able to Open Door or Curtain 75
8.2.5 Aesthetic Chassis Design 75

8.3 Reach Goals 75
8.3.1 Facial Recognition and Identification 75
8.3.2 Able to Help Fill Out Patient Paperwork 75
8.3.3 Intelligently Plan Patient Room Assignments 76
8.3.4 Smarter Obstacle Avoidance 76
8.3.5 Voice Recognition and Natural Language Processing 76

9 Discussion 76
9.1 Segway Robot 76
9.2 System Architecture 77
9.3 End User Interface 78
9.4 Arm 78
9.5 Challenges 79

9.5.1 Segway RMP 79
9.5.2 Software 82
9.5.3 Hardware 83

10 Conclusions and Recommendations 84
10.1 Segway RMP 84
10.2 Software 85
10.3 Hardware 86

11 References 88

3

12 Appendices 89
12.1 Appendix A: Arm Calculations 89
12.2 Appendix B: Electrical System 92
12.3 Appendix C: Resources and Components 96
12.4 Appendix D: Authorship and Contributions 99

4

1 Abstract

The primary goal of this MQP is to produce a user friendly robot that assists

users in navigating a given area. Specifically, this group chose to focus on a hospital

setting. In order to achieve this goal, the group designed a robot that was capable of

navigation, possessed an arm with which to open doors, and that could be commanded

by users from an intuitive on-board UI. A secondary goal of this MQP was to create an

extensible platform for future groups. To achieve this goal, the team designed a modular

backend system so that new modules could be added to the robot in the future with

minimal time spent by future groups on integration.

5

2 Executive Summary

This report details a Major Qualifying Project done during the 2016-2017 school

year that focused on improving the state of a Segway Robotic Mobility Platform (RMP)

that was in possession of the AIM Lab. The main goal of the project was to create a

robotic platform that could improve visitor experience while in doctor offices or hospitals.

The platform had to be user friendly and able to navigate its environment. A secondary

goal of the project was to bring the RMP to a state where it was extensible by future

groups. This paper looks at the design process and implementation while assessing the

results of the project. Below is a picture of the final product of the project.

Figure 2A: The final product for this project: A Segway RMP equipped with a
touchscreen interface, planar arm, user interface, and new electronics

6

An arm is designed from bottom up based on the goals of opening doors by

turning lever handles and pressing elevator buttons. It consists of the main body of the

arm, which is able to follow the path of door openings, and the end effector that’s able to

grasp, rotate and pull the door handles to complete the initial step of unlatching.

Although the end effector is not currently on the robot, it is ready to be added so future

teams can move on to manipulation. Mathematical analysis such as Jacobian matrices,

forward kinematics, inverse kinematics was utilized to find out the required torque all

motors need, as well as relating them to positioning. The frames of the arm are

machined and most attachment parts of the arm are 3D printed.

In terms of software, a new backend architecture was devised and implemented,

alongside a new User Interface. The backend follows a Single-Responsibility-Principle

pattern so as to be easily accessible and extensible by future groups. The User

Interface is run in a web browser on the onboard computer, and communicates with the

backend over WebSocket using JSON messages. Additionally, a survey was conducted

to inform the design direction of the User Interface.

More details can be found in these chapters. In Chapter 3, the team introduces

the project in a succinct manner. Chapter 4 discusses previous work in this area such

as the Pepper robot or other human robot interactions. Chapter 5 details this project’s

goals and approach. Chapter 6 looks at the needs analysis for each category of the

project while also discussing prototypes and models. The team details final design

choices in Chapter 6 as well. Chapter 7 shows the results of implementing the final

designs. Chapter 8 ties in the results with the original goals of the project in an effort to

7

assess the success of the project. In Chapters 9 and 10, the team discusses the

different parts of the project and makes recommendations for future groups.

8

3 Introduction

Figure 3A: A render of the final robot

This project focused on improving the existing Segway based robot by updating

software, firmware, and hardware. The project organized the software architecture,

upgrading onboard computing, and added a redesigned arm to the platform. The overall

goal of the project was to create a more reliable and capable platform to be used in

future projects for a number of different applications.

The Segway Robotic Mobile Platform (RMP) was used in previous projects at

WPI. The first Major Qualifying Project (MQP) team set out to create an outdoor tour

guide robot which was intended to give short tours of the main campus while explaining

the history and use of a few key locations.

9

The result of the first project was a robot equipped with custom stereo-vision,

GPS, an accelerometer, and an array of ultrasonic sensors. These ultrasonic sensors

were intended to work together to localize the robot based on an existing map. The

team accomplished XBox 360 controller integration for manual control, stereovision,

limited obstacle avoidance, limited autonomous navigation, and push button controlled

dialogue. The team did not accomplish fully autonomous navigation and GPS reliability.

(LeBlanc, Patel & Rashid, 2012)
The second MQP team focused on indoor navigation and replaced all of the

sensors. They tried to tailor the robot to a known indoor environment. They added a

Kinect camera at the top of the mast to recognize the shapes of elevator buttons, door

knobs, and numbers. They also replaced the stereo-vision with a LIDAR unit. Instead of

using GPS for localization on a large scale, they uploaded maps of individual floors of a

building allowing the robot to reliably locate itself using only LIDAR. The second team

achieved its goal of autonomous navigation among rooms in the same building but

failed to successfully incorporate the arm. (Fischer & LeBlanc, 2012)
In this iteration of the project, the team built a foundation for this robotic platform

so that the system can easily be improved upon for years to come. The main objective

is to create a more robust and permanent solution for interaction and mobility which can

be applied to many different situations and locations and then to further develop the

platform for a medical setting as an intake and guide robot for busy emergency room

and/or doctors’ offices. The robot should be able to check a patient into the office, save

10

patient information, and assign the patient to a room, then guide them to that room. In

order to achieve this, the team prioritized the goals listed below.

The goals of this project can be categorized into three sections:

mandatory, reasonable, and reach. In order to consider this project a success, the robot

must satisfy six mandatory constraints as follows:

● The robot must be able to drive through tethered teleoperation.

● The robot must be able to navigate autonomously through a known map

● The robot must have a safer chassis design as to encourage use in high traffic

areas such as hospitals.

● The robot must be able to plan navigation paths on given maps. It must also be

able to update these maps as it travels.

● The robot requires a functioning arm and must be able to use an elevator.

● Finally, the robot must have a simple touchscreen UI that communicates with the

rest of the system.

There are also five reasonable goals that are equally important for the project,

but have lower priorities than the mandatory goals, which are as follows:

● The robot should be able to perform obstacle avoidance so no unnecessary

injuries occur to people moving in the vicinity of the robot during operation..

● Investigate adding HRI Interface to improve the user experiences for the patients.

● Build a patient information database to store the information that is being

entered, and therefore, shorten the patients check in time on future visits.

● Improve the motion of the arm in order to open doors, pull curtains and gesture.

11

● Last, but not least, the design division of the team would like to perfect the

exterior look of the robot by making a more aesthetic and appealing chassis.

As for reach goals, we have a number of quality-of-life improvements on previous

goals that would enhance the utility of the robot a bit more. Reach goals are things we

would like to do but we don’t consider to be necessarily within the scope of an MQP.

These goals are as follows:

● Implement facial recognition and identification

● Create a system that assists patients in filling out paperwork

● Help staff plan room assignments for incoming patients

● Perform smarter obstacle avoidance by planning new paths around obstacles

● Use natural language processing and voice recognition to parse user commands

Over the course of this project, the team was able to accomplish several of these

goals including most of the mandatory goals and some of the reasonable goals. The

rest of this paper will discuss the project strategy, implementation, and results of this

work.

12

4 Literature Review

In research conducted by the Computer Science Department at Stanford

University, algorithms were explored to help robot manipulation open doors with many

variables. It discusses using 2D cameras to help establish key characteristics like

location of door handle, kind of doorknob, and axis of rotation required to open door.

This study provides knowledge of all the conditions that are necessary when planning

and designing a mechanism to open doors, as well as an approach to the problem.

(Klingbeil, Saxena & Ng, 2010)
The same team at the University of Stanford also applied their algorithms in an

attempt to further advance mobile robot navigation. Like door, elevators have many

factors that, without previous knowledge, make robot manipulation difficult and limited to

single floors. Elevator panels vary in terms of button size, button orientation, and button

location. The team used a combination of cameras to help their algorithm detect those

button variables. Like the previous study, this one provides the knowledge of all

conditions necessary in operating an elevator, as well as give an idea to approach the

problem. (Klingbeil, Carpenter Russakovsky & Ng, 2010)
The University of Pennsylvania performed research on robots opening doors

(both push and pull) without collision of objects in the workspace. Most mobile platform

robots do not have robot arm manipulation that can open a door successfully without

moving the base. Opening a door requires a combination of robotic arm manipulation

and base navigation. This study presents a problem the team will have to deal with

13

designing the arm and when planning door operations. (Chitta, Cohen & Likachev,

2010)
Pepper, a robot created by Softbank, is being deployed inside Belgian hospitals

to help greet and intake visitors as they arrive. Pepper currently is designed to receive a

card from an incoming patient, identify corresponding information such as room

assignment or patient information, and direct the patient appropriately through the use

of a video as guidance. Its next phase will be personal guidance to rooms. Pepper

uses a built in screen to help communicate as well as give user interface when

applicable. Pepper offers real world results of a project the team is very closely

following. (Sayer, 2016)
The quest to make robots not only user friendly but user familiar has been going

on for years. Some people approach by adapting a specifically functional robot to a

social environment, while others start by studying what makes a robot relatable. Ryan

Wistort, previously of the MIT Media Lab, focused on discovering what would draw

someone to a robot. Heavily influenced by a classic book of design used by Disney

animators called “The Illusion of Life,” he created a number of caricature robots

including Tofu and Miso which both resembled fluffy baby penguins and were equipped

with animated OLED display eyes. (Wistort, 2010)
A major problem many teams run into when attempting to implement an

interactive robot into the workforce is how to gauge people’s response to not only the

personality of the robot but to the decisions it makes or suggestions it offers. A group of

students and researchers attempted to solve exactly that problem by having nurses

14

filling multiple roles as well as doctors in a working labor and delivery ward. They

studied the responses to various actions by the test devices in controlled situations in

order to learn ways in which they can make their robots more helpful rather than

cumbersome. This particular study is especially influential in our own work because it

deals directly with robots intended to take some pressure off of nurses in the

coordination of patient care and general office organization. (Gombolay et al, 2016)

15

5 Project Strategy

5.1 Initial Problem Statement

This team was asked to design and start developing a system that could be used

in a medical environment as a robotic secretary. The design of the project was heavily

influenced by the fact that this project would be extended in future years.

5.2 Objectives and Constraints

This section details the goals of this project. The goals are organized into three

categories based on priorities. Mandatory goals describe the goals that must be present

in this project to consider it a success. Reasonable goals are goals that are potentially

obtainable. Reach goals are ambitious goals that are of the lowest priority but would

make nice additions to the project.

5.2.1 Mandatory Goals

5.2.1.1 Teleoperation

The first and possibly simplest goal the team needed to achieve is to prepare the

Segway Robotics Mobility Platform for teleoperation. Each RMP is sold with a collection

of software which allows limited control of the base. Therefore, to achieve teleoperation,

the base simply needed to receive externally-controlled input that matches what it would

16

expect to get from the aforementioned software library, and act on those inputs as

expected.

5.2.1.2 Safety

One of the primary goals of this project is to increase the safety of the RMP and

the arm. There are several different kinds of safety features needed to accomplish this

goal. First, it is important that the physical structure of the robot is devoid of sharp

protrusions and open wires. Second, the robot must not drive into structures or people

while operating. Third, the robot must have a reliable system for emergency stop. This

means that an easily accessible button is apparent and available to stop operation of

the RMP and arm without shutting down the onboard computer.

5.2.1.3 Navigation and Mapping

The second mandatory goal for this project was autonomous navigation. The

robot must be able to calculate a path to a point on a known map from its current

position and it must be able to drive there. In ROS, many tools which achieve this goal

exist for a variety of platforms. As such, one needs to be used and adapted for the

Segway RMP if no such tool already exists.

5.2.1.4 Arm

The purpose of the arm is to provide the segway robot expanded reach to other

parts of the map. The arm is expected to be able to assist the robot in opening doors.

This operation aids the goal of being able to lead patients to their appropriate room

17

within the hospital/doctor’s office. Another purpose of the arm is operation of an

elevator to increase the mobility even further. The overall design of the arm should be

be able to perform or assist in both actions.

5.2.1.5 Simple Touchscreen Interface

The purpose of the UI is to provide a simple, intuitive experience for the user to

communicate with the robot. The UI is expected to have workflows for checking in a

patient, giving directions to rooms or bathrooms, finding someone’s loved one,

contacting staff, and alerting staff of an emergency. The UI will interface directly with

ROS and allow the user to select commands to give the robot.

5.2.2 Reasonable Goals

5.2.2.1 Obstacle Avoidance

This goal is part of our safety functionality. The robot should not hit structures or

people while driving around an environment. In order to accomplish this goal, the robot

should be able to stop when an obstacle is in its path and wait for it to leave its path to

continue driving. This is really only a suitable solution if the obstacle is a mobile person

or object. A better solution, that is part of our reach goals for this project, is to plan a

new path when something blocks the current path.

5.2.2.2 Improved End User Interface

It is important to continue to iterate on the design of the end user interface,

especially after receiving feedback from users. This goal describes the effort to adapt

18

the UI according to feedback so it is easier to use. It also includes adapting the user

interface so it is more aesthetic, following common design practices such as material

design.

5.2.2.3 Patient Information Database

Adding a patient database to our system adds several possible improvements. It

opens opportunities to allow users to register for services at the doctor’s office or

hospital. Adding a database allows the team to effectively organize data and expand the

functionality of the system.

5.2.2.4 Able to Open Door or Curtain

In order for the robot to effectively navigate a hospital or office setting, it must be

able to open doors. Integrating door opening capabilities will increase the mobility and

the application of the robot. For the scope of this project, the arm functionality is likely

be tuned to a singular door due to the difficulty opening doors presents in robotics.

5.2.2.5 Aesthetic Chassis Design

In an effort to make the robot approachable, the team would like to change the

chassis of the robot to be more aesthetic while not limiting functionality. A robot like

Pepper is much easier to approach as an end user than a Segway RMP in its default

state.

19

5.2.3 Reach Goals

5.2.3.1 Facial Recognition and Identification

In order to improve the user experience when using the robot, it would be nice to

have facial recognition. Being able to move the robot so it is facing, or looking at, the

current user would make it a much more enjoyable experience. Facial identification

would further improve the user experience because the robot would be able to know

who was operating it and cater the experience for that person.

5.2.3.2 Able to Help Fill Out Patient Paperwork

One of the least enjoyable parts of going to the doctor’s office is filling out

paperwork. It would be easier to fill out paperwork with some help from word prediction

and other well designed tools that help efficiently and effectively fill out forms on the

web. This information could easily be part of the patient information database.

5.2.3.3 Intelligently Plan Patient Room Assignments

In order to increase the efficiency at which patients leave and enter the doctor’s

office, the robot could plan where patients will go and help them go to that location. This

may be faster than having a secretary or assistant plan the room assignments

themselves.

20

5.2.3.4 Smarter Obstacle Avoidance

This smarter obstacle avoidance was mentioned earlier while discussing basic

obstacle avoidance. This goal describes the functionality for planning a new path when

an obstacle enters the current path of the robot. This would prevent the robot from

hitting obstacles such as objects and people but would require SLAM algorithms.

5.2.3.5 Voice Recognition and Natural Language Processing

Another feature that could potentially increase the user experience of the robot is

voice recognition and natural language processing. It is often more intuitive to use voice

commands than clicking on a screen and typing commands. This goal requires near

field voice recognition and natural language processing.

5.2.4 Constraints

The most surface-level constraint to this project was the budget. Initially, the

project was granted $1000 for expenses, granting each student $200. However, shortly

into the duration of the project, the team was granted an additional $50 per member,

bringing the total project budget to $1250. Additional constraints include the weight, size

and capacity of the Segway RMP base; the additions made to the RMP needed to be

light enough to not over-encumber the driving motors. Additionally, we needed to

approach the problem of door-opening in such a way so as to not apply more torque on

the RMP than it was capable of overcoming.

21

5.3 Project Approach

Since this project has many different facets and addresses each of the three

main disciplines of robotics, the team decided to split this project into four categories:

Segway RMP and electronics, user interface, system architecture, and the new arm.

The team started to approach the project by enumerating and analyzing the needs that

would have to be met in each of these categories, so as to achieve the outlined goals of

the project. In the coming chapters, this process will be detailed and tied in with the

goals to assess the results of the project.

6 Design Process

6.1 Needs Analysis

This section of the paper details the needs of each part of the process. It looks at

what the team must have in order to complete the project goals.

6.1.1 Segway Robot

In the interest of creating a modular and extensible platform, this year’s project

put a good deal of focus on upgrading and improving the physical system as a whole.

The existing platform had not been upgraded since 2013 and the computer, for the most

part, was original to the 2011 project. In order for the platform to execute the goals of

this project a new computer was necessary and it was a perfect opportunity to scale

22

down the control system to save space and weight. The RMP, on the other hand, was

not only out of date but had been sitting idle resulting in critical battery drain as well as

other issues. This also became an opportunity as Segway offered to fix and upgrade the

platform.

6.1.1.1 Control Computer

This version of the project required that the computer built for it be compact and

powerful; unfortunately, available pre-assembled compact systems are expensive and

do not offer the performance we needed. According to Stanley Innovation, who maintain

ROS packages for newer Segway Robotics products, a control computer should have at

minimum 8G RAM. We also knew we would want to use a solid state hard drive

because it would be jarred and shaken quite a lot while the robot is moving.

6.1.2 System Architecture

Because the team inherited the Segway RMP from a previous project team, and

the teams suspected that a future team would be inheriting the project from them,

flexibility of infrastructure was determined to be the the preeminent requirement for the

back-end system. The system would need to be able to accommodate new

functionalities and arbitrary implementations of these functionalities with minimal

refactoring on the part of future developers.

As evidenced by the architecture, the entire system design was driven by the

idea of modularity. Every piece of the system should work independently of one another

and be easily testable. This falls in line with the ROS philosophy and allows future

23

groups to expand or edit functionality easily. It is also easier for new programmers to

understand the system if nodes only have one purpose.

For the front end of the system, the team decided to use a web based interface.

There are a couple reasons for this. First, web is platform agnostic. This system can talk

to any website hosted on any server. Second, the team had a lot of prior experience in

web development and could easily implement even the most complicated of user

interfaces.

In addition to the front end web interface, the team created a Node.js server to

facilitate any requests that the user made that did not require the robot’s knowledge.

This was useful in querying the patient database or requesting assistance from a staff

member. Both of these tasks can be done without sending any commands to the robot

base so we decided to abstract out that behavior to a web server.

This server also provides several useful tools for developing the web side of the

project. The team was able to use a JavaScript templating library, called Handlebars.js

to make creating new webpages easy and quick. The server also made connecting to a

database seamless. The team connected to a Mongo database hosted on MongoLab

through a JavaScript library called Mongoose. This library also provided tools to define

table schema and default values.

For the back end of the system, the team decided to use ROS, primarily because

we had prior experience with it throughout the undergraduate curriculum. For

communication between the front and back ends of the system, the team utilized

websockets to send JSON messages back and forth between the JavaScript-based

24

front end and the Python-based system back end. Because JSON is essentially a

structured piece of plaintext, it makes for a reliable way to communicate data between

disparate programming languages and architectures.

In particular, JSON communication is used to emulate the state-machine

architecture that would be inherent in something like a dedicated Java application.

Because the UI is browser-based and functions asynchronously with respect to the

Python server, the two systems presented a potential risk of desynchronizing from one

another. However, by using JSON, we were able to require that the front end sends a

request to the back end when it needs to advance through pages. The back end could

then either approve the request and allow the browser to load a new page, or deny the

request and keep the browser where it was. In this way, we prevented instances where

the UI could navigate to a page that it should not be navigating towards for the current

step of operation, or to a page that would deliver information to the back end without

proper context. We essentially created a TCP-like networking protocol between the front

end and the back end of the robot.

Additionally, JSON messages are used to used to process user-given

commands. Because the front end pipes all communication to the the back end through

the single communication node, that node is, in turn, responsible for interpreting the

message and dispatching the command to one of its relevant child nodes. This

functionality is accomplished by building a robust callback function that examines the

incoming JSON to determine what type of command it is, and then delegates the

command and its associated information to the relevant child node.

25

6.1.3 End User Interface

The only thing that the project needed in order to implement an end user

interface was a touchscreen interface. The old touchscreen interface is an all-in-one

computer that complicated the integration of the systems. Buying a new touchscreen

interface streamlines the development process and simplifies communications between

different parts of the robot.

6.1.4 Arm

After conducting research on existing robots, the team decided the next step was

the preliminary considerations for the arm design. The arm was determined to need a

pulling motion towards the robot, as well as a slight translation up and down in order to

accomplish the tasks. The pulling motion towards the door is based on the human

mechanics of opening a door. When a person walks to the door, they reach out with

their hand/arm, grab the door, and pull it open towards them. While a human arm has

many degrees of freedom, a translational motion towards the robot can be derived from

the process. Due to time and budget restraints, the team wouldn’t be able to design and

build a arm similar to a human's arm that would make motion planning as exact as

desired. The relative speed of the arm does not have to be fast. In fact having a slower

controlled arm would keep the potential safety risk low if a malfunction ever occurred.

The arm would have to be strong enough to operate a spring loaded door.

Thus, for this project, the arm designs are under the assumption of opening

doors in a commercial setting with level shape handles that are about 42 inches above

26

the ground. To rotate the door handles, it requires F1=5 lb of force, with a distance of

4.5 inches from the center of rotation, the arm has to esert 22.5 lb.in of torque to turn

the handle in order to successfully unlatch the door. The team also measured the

amount of force it takes, which is 9 lb, to pull a typical spring-loaded door open. The

figure below is a sketch of the front view of a door handle with the interested variables

labeled.

Figure 6A: Sketch of door handle with variable labels

6.1.4.1 Arm Control

In order to control the arm we would need to be able to send joint commands to

an Arduino which would handle the control loop to run each of two brushed DC motors

and two servos. It required a ROS node which allows communication between the

Arduino and a python script running on the main computer which takes care of the

kinematics of the arm.

Routing power to the motors was also an involved process since both motors

needed 12 volts and could each draw over 15 amps. We needed to design a system

which would keep the motor drivers from overheating and allow power to be cut off

quickly.

27

6.2 Prototyping/Modeling

6.2.1 Segway Robot

Several parts involved in the electronics and arm control were made from scratch

using both laser cutting and 3D printing. The acrylic panels for mounting hardware and

the potentiometer brackets were both modeled in Solidworks.

In order to determine how to lay out the panels finished electronic components

were laid out on a table in a way that they could be reached and used easily and the

locations of all the mounting points were mapped.

Figure 6B: Rendering of potentiometer mount

28

Figure 6C: Rendering of acrylic panels for mounting electronics

Circuits involved in the arm control system were first constructed on breadboards

in order to verify that all connections worked as expected. It was important to decide

ahead of time which operation modes we were to use with each of the DC motor drivers

as each one used different pins in different ways. We chose to use the drive/coast

method for the larger motor which requires the use of both PWM pins, we also decided

to use current sensing on both motor drivers.

6.2.2 System Architecture

Because the primary driving and navigation functionality of the robot was similar

to a turtlebot, the team turned towards its previous experience with turtlebots when

deciding how to build the robot system. In prior work, we had used ROS to connect all

the turtlebot functions together. ROS inherently lends itself to a distributed type of

29

system, and so the system architecture connecting the User Interface to the

functionality was also constructed in a distributed manner.

When deciding on what type of protocol to use to communicate between the User

Interface and the system, the team was faced with a couple of options. One option was

to do what the previous group had done: have an entire separate computer running the

touchscreen, which would connect over serial to the main computer. This approach

seemed convoluted and needlessly complicated. The idea of using a browser-based UI

and connection to a backend system via WebSocket was proposed by a team member

who had used a similar implementation during a video game development project.

Because of its ease of implementation and because of its flexibility, we opted to follow

this approach.

6.2.3 End User Interface

The team started the user interface design period by sketching out several

possible interfaces These interfaces were designed to be simple and intuitive. As such,

the primary design considerations taken were to create large, single-color buttons and

to put clear iconography on them. The team hoped that these considerations would help

anyone, regardless of their English-language comprehension skills, to use the interface.

Initial prototype designs for the User Interface also featured a pair of eyes, similar to

Baxter and other social robots. These eyes were planned to be used with user tracking,

should the project reached a point where that reach goal would become achievable.

30

Figure 6D: Preliminary UI designs featuring eyes and large buttons

From initial sketches, the team develop several prototypes in HTML5 and CSS3.

These tools allowed for very fast iteration and prototyping. Below are several designs

that the team developed during this process.

Figure 6E: Initial designs had the eyes and interactions on the same display

31

Figure 6F: Later iterations removed the eyes for a streamlined interactions
display

Figure 6G: The team further simplified the interactions display for clarity

32

Once the team settled on the above design for the interactions display, it was

necessary to assess how clear the UI was for its intended audience. The team

conducted a user survey on 48 individuals. The survey gave a brief overview of the

robot’s design and functionality, and then presented three types of questions in three

respective sections. The first section was a free-response, which presented an image of

a UI button, asking participants to write what the expected might happen if they were to

select the button. The second section was a numeric rating system, where we provided

an image of a UI button along with a description of what it would actually do, and asked

participants to rank how clear they thought that was in retrospect. The third and final

section asked participants to fill out some demographic information, such as age, their

primary language, and level of education.

Figure 6H: An example of the first type of question

33

Figure 6I: An example of the second type of question

Figure 6J: An example of the third type of question

 It was found that the vast majority of participants (>85%) found that the buttons

had clear functionality and that the function mimicked their expectations (Figure 6J).

However, these results are likely to be heavily biased, as a similar percentage of

participants also reported that English was their native language. As such, the interface

may not be as clear as it could be to non-English speakers, but data for that

demographic was not able to be generated. Still, these results helped influence the

team towards designing the final interface.

34

Figure 6K: Example Survey Results

6.2.4 Arm

In order for the team to conceptually prove the concept of the arm design, the

team created a inexpensive prototype. The prototype consisted of laser cut wood pieces

that were cut to scale of what the arm would actually be. (Figure 6K) The links were

connected via a vex shaft to give enough rigidity as the prototype needed. The team

then walked through the motion phases of the arm providing evidence that with the

design in hand the task of opening a door is possible.

35

Figure 6L: Picture of the initial arm prototype

The team created various prototype end of arm tooling to gage what level of

complexity a necessary tooling would be. Using a 3D printer, a simple rigid “hand” was

created so that it could be tested on a door. (Figure 6L) Through this model, we realized

that there needed to be some changes. The end of arm tooling needed to be able to

have some lateral movement ability in order to complete the motion path of the

doorknob. Future design iterations are discussed in upcoming chapters.

Figure 6M: Picture of 1st end effector prototype

36

6.3 Alternative Designs

6.3.1 Segway RMP

When our project began the Segway RMP had a much larger top plate set on

solid side panels. The side panels were made of the same heavy material as the top

plate and had several threaded holes like the top plate. Because of this the original plan

to mount the computer and electrical components was to build horizontal shelves like

the previous groups, even to reinstall the shelves which we had removed for cleaning.

Originally the plan for operating the arm involved directly providing power to the

motors and relying on the main emergency stop button if the arm needed to be shut

down. This would have been easier than what was settled on and would have worked.

However, even though the control computer is not powered off the base batteries the

Arduino was. Thus cutting power to it would mean restarting the control program and

re-establishing a serial connection.

6.3.2 System Architecture

The primary alternative to the modular, Single-Responsibility-Principle pattern

would be to tightly couple our code, which is something of an antipattern. While putting

everything in one place works for small systems, once systems grow, they rapidly

become impossible to untangle. As a result, extracting functionalities from systems built

in this way becomes a tedious task, and these systems are severely limited in terms of

37

flexibility. Because this project was intended to be handed off to future groups and

expanded upon, a tightly-coupled system is not an ideal alternative.

6.3.3 End User Interface

Since the team designed the end user interface in an iterative manner, there

were many different versions of the interface but each version improved on the prior in

some way. The team prioritized clarity and aesthetics when designing the interface and

tried to improve on both of those with each iteration. These different designs can be

seen in the Prototyping/Modeling section as part of the methodology behind designing

the interface.

An obvious alternative to our browser-based approach would be to create a

standalone application using Java or Python. While these methods have merit, they

were less suited for our needs. Because we already had a backend Python server, we

did not need the User Interface to do any computational work, and instead just needed it

to provide a good User Experience. The primary advantage of standalone applications

is that they can also be responsible for being both the frontend and the backend

simultaneously, but because of that are more tightly coupled. As a result, these

implementations would become harder to add new functionalities for, and would take

more time to prototype, because they would require compiling on each small adjustment

to the UI layout. The browser-based UI, on the other hand, can be modified rapidly

through CSS, and allows for easy extension of the backend with minimal changes, as

there is minimal coupling.

38

6.3.4 Arm

The team collaborated as many ideas as they thought applied to the scope of the

project, while not considering ideas that would over complicate the imagined motion

path. The team came up with the following 8 designs.

Figure 6N: Design 1 and 2 of the arm were very similar

The first design that the team came up with was a basic 2 DOF planar arm that

consisted of 2 revolute joints. It was modeled after the human arm with the first joint,

the one closest to the base, being the shoulder. The second joint therefore resembling

the elbow, and the end of the arm being the beginning of the hand. Design 1 and 2

differ in the way they are oriented with respect to the wheelbase. Design 1’s orientation

has the arm moving as if the arm was parallel to the wheelbase, while the other

orientation has it perpendicular to the wheelbase. Design 1 has the benefits of being

able to have motion up and down as well as in and out, but therefore has no capable

motion left and right. Design 2 trades motion capabilities, allowing motion left and right

39

as well as in and out, but doesn’t allow motion up and down. Outside of opening a

door, Design 2 holds the potential for more functions.

Figure 6O: Design 3 of the arm

Design 3 was an idea that aimed to create the simplest possible arm. The arm is

1 DOF with linear motion. This design keeps kinematics simple and allows for motion

inward and outward from the robot. This motion allows the necessary pulling to open a

door, but doesn’t allow any leeway for other functions other than opening a door. Even

opening a door would likely require a complex end of arm tooling to create more degree

of freedom capabilities. This design did allow sturdiness and strength.

Figure 6P: Design 4 of the arm

40

The fourth design the team created took the model of design 1, but tried to make

it slightly different. The design is a 2 DOF arm with one joint being planar and the other

being rotation. This design allows for motion up and down as well as inward and

outward rotation, but is lacking the ability to move left and right. This design has simpler

calculations compared to Design 1, but lacks diversity in regard to other applicable

functions and adaptivity.

Figure 6Q: Design 5 of the arm

Design 5 plays off the idea of Design 4, but creates the 2 DOF system another

way. This design is also similar in motion to Design 1, but allows the arm to be placed

at the center of the robot. This design also allows for variation in door handle heights

due to its ability to translate up and down. The cons of this design, like Design 1, are

that the motion of the arm is purely up and down, making side to side motion, something

involved in opening a door, very difficult.

41

Figure 6R: Design 6 of the arm

Design 6 formulates from a gantry system. This idea would be a 3 DOF system

with the ability to translate up and down, left and right, as well as into and out of the

robot. Benefits of this design include easy, pinpoint location of the door handle, as well

as motion in all three directions. However, this design unless built extremely bulky,

would likely lack the strength in order to pull the door as the robot extends an arm into

and out of the robot.

Figure 6S: Design 7 of the arm

42

Design 7 starts the first of two more complex designs for the robot. This arm is a

3 DOF, 3 revolute arm, similar to Design 2 but with an additional revolute joint. Adding

the third revolute joint gives the arm more motion capabilities which could prove useful

when opening a door or completing another task. Computations of forward and inverse

kinematics would rise as a result and therefore is considered a negative attribute. This

design also has more joints that need to be controlled, and therefore is putting more

weight out on the arm, making construction of this design more difficult.

Figure 6T: Design 8 of the arm

Design 8 is another 3 DOF arm design. This design however, takes Design 2,

but adds another translational DOF at the base of the arm, allowing the arm to move left

and right on the robot. This could be useful in moving the robot in relation to the door

when opening it, as well as allow the arm to have a “left” and “right” arm. While the

forward and inverse kinematics for this 3 DOF arm would not be as bad as Design 7, it

would require more complex calculations than the original few designs.

43

6.4 Final Design Selection

6.4.1 Segway Robot

We were given a chance to make a few changes when the platform went in for

repairs in December 2016. We decided that a lighter frame and a second caster wheel

would go a long way in improving stability. Aside from those changes, we decided to run

the base on one battery which required changing the firmware. Other than those small

changes it is the same platform that we began with: a Frankenstein build. The upgraded

firmware of an RMP 210 adds features to the CCU and user interface while still being

unable to balance. On the other hand, it has the payload features of the balancing

version which includes a lightweight frame and top plate designed to enable the base to

be loaded and still balance.

The frame and top plate are very useful when building onto the RMP because it

provides mounting points for the onboard control computer, battery and other

electronics required to run the system. The top plate also provides a platform to mount

the mast which holds the interface monitor and the arm. For this project we elected to

build a small computer and mount it and the other electronics vertically to the frame in

order to keep everything accessible. To allow the control computer to be mounted inside

the frame of the robot in such a way that it was accessible and out of the way a pair of

acrylic plates were designed and cut with mounting points for each individual

component.

44

Figure 6U: Frame with computer and acrylic plates.

Figure 6V: Power distribution board

45

6.4.1.1 Control Computer

Due to the specific needs of our project we decided to select components and

build our own computer. The system was built on an MSI AMD Mini ITX motherboard

which provided what we needed in a small package. In order to allow the robot to

perform the sensing, path planning and interface for our project as well as vision

processing that could be added later we chose a quad-core AMD processor and 8G of

RAM which was the minimum recommended by Stanley Innovation, a company which

works closely with Segway to maintain ROS packages for the RMP. Fortunately the new

system was able to be powered off of the supply used previously: a MiniBox DC/DC

supply intended for automotive applications.

Figure 6W: Control computer mounted within the robot

46

6.4.2 System Architecture

The final design selection for the system architecture possesses all of the

characteristics we needed. It allows our code to be modular and allows for easy

extension. Nodes are self containing and self sufficient and can be used by other nodes

through ROS messages.

6.4.3 End User Interface

The end user interface went through several iterations before arriving at the final

design. This final design is built on the idea that the interface should be simple and easy

to understand. It should also be easy to use with the touch screen monitor. In order to

accomplish these things, the team used simple language, large touch targets, and

contrasting yet appealing colors and icons.

Figure 6X: The final design of the interaction display for the user interface.

47

To get feedback about the quality and clarity of the chosen interface design, the

team sent out a survey to groups outside the team, that had never seen the interface

and had not seen or heard of the project before. This survey consisted of a small

preface about the goals of the project, as well as a diagram of where this interface

would be mounted on the robot, as well as inquiries about the expected functions of the

various buttons.The survey concluded with various inquiries about user demographic,

with the intention of helping the team determine of the interface was effective even

among people with limited exposure to technology or robots in general.

6.4.4 Arm

Once the collection of designs were created, the team collaborated a method to

evaluate various aspects of each design. The team decided that workspace, payload

capabilities, materials, computational difficulty, size of the arm, cost/manufacturing

estimate, adaptability, functionality, and robustness were important things to consider

for the final design. The workspace considered both the size of the workspace, as well

as the overall shape in a 3D world. Payload considers the necessary strength the

design would need to complete the project tasks. Materials considers the amount of

material needed to build the arm. Computation difficulty took into account the kinematic

equation difficulty for the complexity of the various designs. Adaptability, functionality,

and robustness all take into account the future and present capabilities of each design

and what they can offer to future projects and tasks the robot can complete. The 8

designs received the following scores.

48

Prototype 1 2 3 4 5 6 7 8

Workspace 3 4 1 3 3 5 4 4

Payload 3 3 5 3 3 1 2 3

Material 4 4 5 3 4 1 2 3

Computational Difficulty 3 3 5 3 3 3 2 2

Cost Estimate/ Manufacturing 4 4 2 3 4 1 2 3

Adaptability 4 3 1 3 4 2 4 4

Functionality 3 2 1 2 3 3 4 4

Robustness 3 3 4 3 3 2 3 4

Total 27 26 23 23 27 18 23 27

The top 3 designs were design 1, 5, and 8. Based on these three designs the

team decided to combine positive aspects of each idea, and looked to formalize a final

design. After much collaboration and consultation, the team decided upon a final design

for the arm. The collaboration included a preliminary design review presentation with

members of the robotics department. The presentation raised concerns and voiced

opinions on the decision making the team had done so far.

49

The final arm design consisted of a 2 revolute arm that would be placed at the

center of the robot, and therefore operate on the plane parallel to the segway top plate.

The arm is attached to the plate on a rotating table. Atop the rotating disk, is a mounted

shaft that the arm will be attached to through a clamping mechanism. This allows the

arm to be attached at varying heights. Therefore, if the robot is implemented in different

environments with different door handle heights, the robot can be adjusted. The rotating

table is driven by a CIM motor geared up to be able to handle the load of the arm. The

load capabilities for each joint were calculated using the following equation. (Robot

Kinematics and Dynamics) The work is shown in Figure 1 of the appendix.

Based on the decision for a 2 degree of freedom, two revolute planar arm, the

forward and inverse kinematics for the style arm were calculated with the coordinate

system shown below (Figure 6W). The work for the forward and inverse kinematics can

be found in Figure 2 and 3 of the appendix. The team calculated the kinematics for the

design to have the necessary equations in order to be needed for manipulation of the

arm. The forward and inverse kinematics equations are shown below.

50

The second joint of the arm is driven by a mini CIM motor. The motor is located

more towards the center of the arm, so that the weight of the motor is least affecting the

payload of the arm. In order to still drive the second joint, the motor is geared up and is

attached to the second joint via a belt system. The belt creates a gear reduction of 1:2.

The team needed to combine the gear reduction of the belt with another reduction. The

team decided to use a premade gearbox, with a gear reduction of 1:10 to allow the

correct joint torque output. Attached to each joint are potentiometers allowing the team

to be able to read position values of the joints.

Figure 6Z: Picture of Final Design of the Arm

52

Figure 6AA: Rendering of Final Design of the arm with end effector

The end effector is designed to model a two finger pinching tool. Using a rack

and pinion system, the end effector can control how wide the gripper is open and closed

throughout functions the robot performs. The end effector is made using a 3D printer,

creating the two separate pieces that are combined through the rack and pinion system.

The pinion is driven using a Vex servo motor. Which allows the team to use more

precise position control of the end of arm tooling. Attached to the sliding piece is a linear

potentiometer giving another tool of precision for the manipulation of the end of arm

tooling. (Note: all the parts and components purchased and mentioned above are listed

in Appendix C with complete names and links to more details.) Below are some

sketches of the end effector design.

53

Figure AB: Sketches of the end effector design

6.4.5 Arm Control

Control of the arm is handled via an Arduino Mega 2560 which takes an

end-point location from the control computer via ROS, translates it into joint angles, and

sends the required signals to the joint actuators. In order to keep the wiring neat and to

avoid loose connections a custom shield board was constructed. An Arduino shield sits

directly on top of the board and breaks out the connections which are used in the

applications as well as any peripheral power sources or features necessary. For the

control of the arm, our shield needed to support PWM signals at both 5 and 9 volts,

analog inputs to read potentiometers, available digital pins, power for the fan which

cools the larger CIM’s motor driver, and an accessible reset button. The shield was

constructed using a proto-board and through-hole components. While a printed circuit

54

board would have been prefered time did not allow it. Also necessary to bring the

required power to the arm was a Mini-Box DC/DC converter which takes 12 volts from

the large gel-cell battery and outputs 9 volts for the servo and two-wire motor.

To increase safety of the arm and prevent it from swinging too far to either side a

small bump switch was attached to the back of the monitor mast which would contact

the corners of the turn-table at 45 degrees off center. The button would trigger an

interrupt on the Arduino to stop the movement of the arm.

Figure 6AC: Arduino motor control shield. Diagrams can be found in Appendix B

55

Figure 6AD: The motor drivers are on the right with the larger one inside an enclosure
with a fan. On the left are the relays which separate power to the arm from the rest of

the robot.

Figure AE: The emergency bump switch for the turn-table.

56

7 Final Design Verifications

7.1 Segway Robot

This Segway RMP is a juxtaposition of parts from the RMP210 and RMP220 that

was donated to WPI’s AIM lab in 2011. Since then, the robot has been used in a

number of projects but had not been used for several years prior to this project.

7.1.1 Batteries

The platform currently utilizes three different batteries; two 74 volt batteries are

mounted to the base itself - one for powering the wheels and the other providing

auxiliary power - and one 12 volt gel-cell battery which sits on the platform. The original

design which was provided used four batteries but when getting the platform refurbished

we needed to consider cost and cut a second drive battery; both existing batteries are

refurbished and were provided by Segway in December 2016.

The gel-cell battery does most of the heavy lifting for the project, providing power

for both the computer and the arm. This is mainly because we need the peripherals to

be powered while the base is switched off or charging. Eventually, though, several

things can be moved to the auxiliary platform battery because the robot will be powered

on all together or not at all when deployed.

57

7.1.3 Driving

The Segway RMP communicates to the robot’s base computer through USB or

Ethernet by default. However, the USB drivers for Linux have not been updated for

newer versions of Ubuntu. In order to communicate with the platform, the team had to

connect over Ethernet. This is accomplished by leveraging a network switch and relying

on the RMP’s static IP.

Once connected, the base computer can send messages over Ethernet to the

RMP. These messages are sent using an RMP python node. This node is slightly

configured from the default node supplied by Segway. One such message conveys

linear and angular velocities to the wheel base. By sending different combinations of

linear and angular velocities, the team could successfully configure the robot to drive

any place they wanted.

7.2 System Architecture

The system architecture is built with the future in mind. The code is organized

into separate nodes or modules that perform one task and communicate through ROS

messages. This is a common design in ROS and object oriented programming in

general. By satisfying the single responsibility principle, the team was able to guarantee

that nodes should only have one reason to change. This should make it fairly easy to

maintain existing code while implementing new functionality.

59

Figure 7B: The current system architecture

Above is the current system architecture. Each box denotes a different node.

Each line denotes that a node is communicating with another node through ROS

messages. Some of these lines are two way communication but some of them only

require one way communication. In an effort to provide as much reasoning for each

node, the functionality for each node will be documented here.

As this project functions mostly as a foundation for future projects, the system

architecture must be easy to understand and extensible. The team designed a system

architecture thus that every node obeys the Single Responsibility Principle (SRP). The

node that controls the motion of the Segway wheels does not also calculate the path to

drive. Instead, another node is responsible for calculating the path of the robot and

sends proper linear and angular velocities to the driving node. The path planning node

60

acts as a controller for the driving node. This pattern is seen in several places

throughout the system seen below.

The aforementioned pattern is seen for driving, arm motion, opening a door,

operating an elevator, and controller the pan tilt system. Because of the high degree of

granularity and low degree of coupling that the SRP pattern provides, new

functionalities can easily be introduced into the system simply by launching new ROS

nodes, and having them subscribe to the main Communication node.

Setting up new features is simple and intuitive. If another project group wanted to

introduce another feature for other manipulation tasks, such as pouring a drink, they

could easily create a controller for that and send messages to the arm and driving

controllers. The low level driving and arm driving nodes should not need any changing

unless tuning is required. This is a key reason why we chose to separate out the system

architecture into many different ROS nodes.

7.2.1 Communications Node

The communications node parses commands sent by the user, through the

touchscreen interface, and sends commands to the appropriate controllers and nodes. It

facilitates all communication between the system and the end user interfaces but only

acts as an intermediate message parser and sender. Although this makes sending

commands simple, it becomes, in a way, a god class. God classes are often not

desirable but often make short term goals easier to achieve.

61

7.2.2 Eyes Controller

The eyes controller tells the pan tilt node when and to where to move the eyes

interface. In the future, it would be nice to be able to change the expression of the eyes,

like Baxter robots, depending on the user’s mood. This node could be extended to

include functionality for this while sending commands to update the eyes interfaces

through the communications node.

7.2.3 Directions Node

The directions node is designed to generate a map that shows a path from the

current position of the robot to another location within the environment. Right now, these

locations are manually added to the system.

7.2.4 Open Door Controller

The open door controller facilitates the coordination between the driving and arm

operation in order to open a door. This includes any sort of timing. Commands are sent

to the driving controller and arm driving controller at appropriate times to coordinate this

complex motion planning task.

7.2.5 Operate Elevator Controller

The open door controller facilitates the coordination between the driving and arm

operation in order to operate an elevator. This includes any sort of timing. Commands

are sent to the driving controller and arm driving controller at appropriate times to

62

coordinate this complex motion planning task. This node is similar to the open door

controller and commonality may be abstracted in the future.

7.2.6 Pan Tilt Node

The pan tilt node controls the servos that operate the pan tilt. This pan tilt moves

the eye interface. This node only takes in commands from the pan tilt controller and

executes those motions. There is no motion planning here.

7.2.7 Driving Controller

The driving controller sends commands to the driving node that are made up of

linear and angular velocities. The driving controller using path planning to figure out

which velocities to send to the driving node to arrive at a destination point from the

current position of the robot.

7.2.8 Driving Node

The driving node receives commands from the driving controller in the form of

angular and linear velocities. These velocities are sent to the Segway base so the base

will drive. There is not path planning done here.

7.2.9 Arm Controller

The arm controller sends messages to the arm driving node to move the arm.

The signals sent to the arm are calculated using inverse and forward kinematics.

63

7.2.10 Arm Driving Node

The arm driving node receives commands from the arm driving controller. These

velocities are sent to the Segway base so the base will drive. There is not path planning

done here.

7.2.11 Touchscreen Interface

The touchscreen interface is implemented as a localhost web page. It uses

HTML, CSS, and JavaScript to show the end user possible interactions. It uses onclick

events and server requests to send commands to the node server and the

communications node.

7.2.12 Node Server

The node server is used to host the local web server and serve the content for

the end user interface. It gives the team several tools for templating and easily

developing the user interface and is built using modern technologies.

7.2.13 Patient Database

The patient database is a cloud hosted database based on MongoDB. We

connect to this database through the Node.js server and a framework called Mongoose.

These tools make it very easy to connect, update, query, and delete database tables

and columns.

64

7.2.14 Eyes Interface

The eyes interface is another web based interface. The monitor for that interface

is attached to a mobile pan tilt system.

7.3 End User Interface

The end user interface is built on top of modern web technologies such as

HTML5, CSS3, JavaScript, and Node.js. The team chose to implement a web based

interface because then the end user interface is platform agnostic so long as there is

internet and a web browser. Several members of the team also had extensive web

development experience from past projects.

The team used Node.js and several other frameworks to hook into a database

and to make creating markup easier. Node.js is a modern web development framework

that helps in creating scaling applications and quick prototypes. It is much easier to

write templates than to repeat code that has already been written. However, this is not a

default capability in basic web development. By leveraging a framework called

Handlebars, the team could easily write new templates and web pages with little effort.

65

7.4 Arm

7.4.1 Machining the Links

In order to complete the design for the links of the arm, the team decided to

purchase a 48” by 4” sheet of aluminum with ⅜” thickness and machine the sheet to

fulfill the design specifications. With some consultation with the machine shop advisor,

the team came up with an appropriate plan for machining the parts. The link lengths

were 17 inches and 16 inches respectively for the 2 links in the arm. The 48 inch sheet

was therefore cut in half and prepared to be shaped and drilled for the link design. The

first link was drilled with a determined undersize hole for the press fit bearing. The

bearing would allow the vex shaft to fit inside. The first link was also cut round giving the

link a more appealing look. After testing out the links, it was determined that the weight

of the links might be a concern. The links were then machined to contain only necessary

structure and therefore the weight of the over links were reduced. The design of the

material reduction was based on a truss shape. The reduction of the material also gave

the arm an aesthetically appealing look, rather than just a solid block look. The links

were initially designed to be held together with standoffs, but aluminum extrudes were

used instead at the end because they are thicker and offer more structural stability.

66

Figure 7C: The final truss shaped aluminum links

7.4.2 First Joint Gearbox

The first link’s gearbox was designed and created, not premade. The team

calculated that the the necessary gear reduction required for the first link was about

1:20. The team designed a two stage gear box that used 4 gears with a 12, 48, 18, and

84 tooth gear, in that order. Using some spare acrylic, two supporting walls were made.

The walls were connected via 4 standoffs and the gears were installed using shafts

supported by bearings. The shafts within the gear box and used throughout the arm

design were VEX hex shafts. The team bought a three foot shaft and cut down to size

necessary shafts. The shafts and contact points inside of the gearbox used washers in

order to reduce friction when pieces were in motion. The gearbox was then mounted to

the underside of the segway base plate. The motor was mounted to one acrylic wall.

67

Figure 7D: Gearbox rendering of the first joint

7.4.3 Second Link Belt System and Gearbox

The belt system was something the team had to work through a couple of times.

Using a driven pulley belt calculator the team had found a belt length that matched the

arm designs and was sold with the two pulley gears sold by VEX. However, when the

base plate for the segway got smaller after its visit with Segway, the arm was

redesigned to have shorter link lengths. When that happened, the earlier calculated belt

length became wrong. Using the belt calculator again, the belt size needed was not

available through VEX. The team then found a suitable vendor with belts that would still

comply with the VEX pulley gears. The purchased belt was then fit onto the arm and

proven to be the correct and functional. Using this size belt allowed the team to not

need a tensioner. Not needing a tensioner inside the belt system was extremely

important because of the limited space within the 4 inch width of the second link. Adding

68

a necessary tensioner would have required more machining and careful design inside

the second link area.

The gearbox used for the second joint was planned to be made, but due to space

limitations, the team had to find an alternative option. The second joint needed a 1:10

gear reduction between the mini CIM motor that was to be used, and the 1:2 gear

reduction belt system that was going to be used to help drive the joint. The team found

a planetary gearbox sold by VEX that not only had the correct gear reduction, but was

also compatible with the mini CIM motor. The gearbox also fit within the space limitation

the arm offered.

7.4.4 Center Mast and Slider Mechanism

The arm was mounted onto a mast located at the center of the Segway base

plate. The mast was made of 4, 20 inch aluminum extrudes connected via brackets. The

extrudes were mounted to a rounded square aluminum plate, with a hex hub located at

the center of the plate. The aluminum plate sat on top of a lazy susan and allowed the

mast to rotate when driven by the first motor. The arm was connected to the mast via

sliders which allowed controlled placement of the height of the arm. By turning the

levers on the slider, the arm would lock into a permanent position. The slider design

allows teams to modify the robot's future purpose because the arm is so easily

removable. Other tools can be added to the arm with relative ease.

69

Figure 7E: The slider mast system

7.4.5 Potentiometer and Mounts

In order to get useful position data for the joints of the arm, the team decided to

use potentiometers on each joint. The first potentiometer is mounted underneath the

gearbox as shown in Figure zzz. The second potentiometer is attached to the “elbow” of

the arm, which is at the connection of the two links (Figure abc).

It was necessary to create an intermediate piece between the potentiometers

which normally handle much smaller shafts, and the larger hex shafts that the arm

contained. There were 2 different designs for different shafts. For each piece the

mount had two sockets. One socket connected to the shaft of the potentiometer and

the other connected to the joint shaft on the arm. The pieces were 3D printed as shown

below.

70

Figure 7F: 1st joint gearbox with potentiometer mounted

Figure 7G: Picture of potentiometer mount on second joint

71

8 Final Design Validation

8.1 Mandatory Goals

8.1.1 Teleoperation

The Segway RMP effectively drives around the environment through

teleoperation. The team was able to adapt code used in the default Turtlebot packages

to work with the Segway RMP such that a user can drive the robot through arrow keys

on a keyboard. This keyboard can either be connected directly to the robot’s computer

or can be on a computer that has remotely connected to the onboard computer through

SSH or some equivalent.

8.1.2 Safety

The Segway RMP has been cleaned up and organized such that there are no

loose parts or exposed wires. The inside of the platform has been simplified and

hollowed out to allow easy access to control board, power boards, and the onboard

computer. The old arm has been replaced. The RMP is much safer than at the

beginning of this project.

72

8.1.3 Navigation and Mapping

The Segway RMP can effectively map its environment through the use of a

LIDAR and a ROS package called Hector. This package takes laser scan data and

generates a map, without needing odometry data. The Segway RMP can perform

simple autonomous driving if given a goal destination on the map.

8.1.4 Arm

The Segway RMP is now equipped with a new arm specifically designed to open

the doors in the HDI. It is a much stronger and more robust arm than previous iterations.

It is controlled through a closed loop algorithm running on an Arduino. The arm has not

been used to open doors or operate elevators. It has been tested to ensure that it

moves properly with this controller.

8.1.5 Simple Touchscreen Interface

The platform has a new touchscreen interface and a new UI used for interacting

with the robot. Users can touch tap targets on the screen and use the on screen

keyboard to interact and issue commands. The UI is simple, intuitive, has simple

language and has large touch targets. This user interface has been evaluated in the

form of a user survey and has been subject to quality assurance testing along the way.

The interface proved to be clear based on the survey results and has no known bugs

that break functionality.

73

8.2 Reasonable Goals

8.2.1 Obstacle Avoidance

The team was unable to implement obstacle avoidance. The autonomous driving

functionality of the robot is very simple as it stands and simply proceeds from one point

to another with little regards for what occupies space between those points. In the

future, the team recommends that this functionality be implemented using standard

SLAM practices.

8.2.2 Improved End User Interface

In a survey, the team was able to find which parts of the UI were confusing and

which parts were more understandable. The team altered the design based on feedback

from these surveys. The team also expanded check in functionality and simplified the

overall design in an effort to improve user experience.

8.2.3 Patient Information Database

The team was able to connect the web server to a cloud database hosted on

MongoLab. It is MongoDB and hold information about patients such as their name,

gender, and their current check in status. Connecting and running queries to the

database is simple through modern frameworks such as NodeJS and Mongoose.

74

8.2.4 Able to Open Door or Curtain

The team was unable to accomplish this goal. This maneuver is extremely

complicated and, although the team was able to implement basic arm control, the

platform cannot currently open a door by itself.

8.2.5 Aesthetic Chassis Design

Although the Segway RMP is in a much more aesthetically pleasing place than it

was at the start of this project, the team suggest that future teams continue to improve

the appearance of the robot so that users are not intimidated by the robot and are

comfortable approaching the platform.

8.3 Reach Goals

8.3.1 Facial Recognition and Identification

The team was unable to accomplish this goal.

8.3.2 Able to Help Fill Out Patient Paperwork

The team was able to implement a simple version of this functionality. A patient

who has not yet been registered in the system can enter their first name, last name, and

gender to be added to the system. They can then check in as normal for future visits. In

the future, the team recommends that this functionality be explored and expanded to

include more detailed information typically on a registration form. However, the team

75

warns about the potential security issues of hosting this information on a MongoDB

instance on a cloud database system.

8.3.3 Intelligently Plan Patient Room Assignments

The team was unable to accomplish this goal.

8.3.4 Smarter Obstacle Avoidance

The team was unable to accomplish this goal.

8.3.5 Voice Recognition and Natural Language Processing

The team was unable to accomplish this goal.

9 Discussion

9.1 Segway Robot

As was stated before, the Segway RMP had fallen into disrepair over the years

and we were faced with a difficult situation; we had a project, but nothing on which to

build it. It was our original plan to build on existing hardware to perform specific tasks,

but the troubles with the platform focused our intention differently. Because the RMP

was in need of repair we began to focus on preventing the same difficulties for the

previous team. We realized that it was important that we left behind us a usable, clean,

documented platform which could be used for a variety of future projects.

76

Because we had to start from scratch with the electronics we were able to

carefully plan and document everything that was done. In contrast to the previous team,

we avoided the use of breadboards which often result in disconnected wires with no

way to tell how to reconnect them. Instead of breadboards to make connections

between the control components (those being the computer and the Arduino) and the

motor drivers and other peripherals we used through-hole proto-boards so that the

components can be removed and rewired easily. We were also able to build a computer

with future applications in mind. We researched the minimum recommended system

requirements for our various reach goals to ensure that the computer would be useful to

future teams. In the end we had built a platform which not only works but is easily

extensible.

9.2 System Architecture

The robot now has a documented backend system that requires minimal

modification of existing code to add or change functionality. Because the system

architecture has been designed in a modular way, following the Single Responsibility

Principle, the robot is now in a place where only a few lines need to be added to the

main system server in order to hook up new functionality nodes. The robot is in a much

better place than we left it in with respect to the coupling of the code. As a result, less

time will need to be spent by future groups to get the basics going, and more time can

be spent by them towards achieving more advanced and functions.

77

9.3 End User Interface

The system now has a functional end user interface built user modern technology

in web development. The interface is connected to ROS and the rest of the robot over

websockets. As stated before, these choices mean that the interface is not only platform

agnostic but also very easy to improve. Web development allows for very quick and

simple changes to have a drastic effect on the look and feel of the application. This

amount of power gives the developer a lot of freedom in what to implement and how to

do it.

Looking forward, the robot’s new interactions, such as issuing directions to a

user, should be fairly easy to add and improve iteratively. Future projects can easily edit

the interface and its functionalities if they find the use cases that this team predicted

were not important or were not applicable for their project.

Finally, the largest implication of the end user interface is that users can now

interact with the robot and change its behavior based on their input. This is incredibly

important if this robot is going to be useful in any applications.

9.4 Arm

The Segway RMP platform now has a robust robotic arm capable of many

functions. The current design for the arm keeps both the segway platform and the arm

versatile and capable of relative easy modifications. If the robot needs to change

environments, where door handle heights are different from the previous, the slider

78

mechanism on the mast allows for an easy adjustment. The slider mechanism also

allows the arm to be easily removed. This gives the robot the ability for easier

transportation due to the reduction of weight, and protection of the arm during transit.

The easy removal also allows future teams the capability to remove the arm and attach

another designed tool. While that ability is possible, there should be no need for the arm

to be detached. The current condition of the arm leaves an abundance of possibilities of

function and applications. Immediate applications include opening doors and operating

elevators, both tasks that the arm was designed to complete. With the completion of

these task, the robot gains an increased level of mobility throughout the global map.

Other possible functions include making gestures, transporting food or medicine, and

moving small objects like carts.

The arm also has the convenience of a simple design. The math and

calculations of the arm are relatively simple, yet as mentioned maintains a high potential

purpose. The arm can also be modified to increase the number of degrees of freedom

or the end effector on the arm can be changed. The current arm balances functionality

with simplicity.

9.5 Challenges

9.5.1 Segway RMP

 When our group inherited the RMP, it had been allowed to sit without being

charged or powered on for more than a year resulting in battery damage. We did not

79

know about it until the project was well underway and had to spend several weeks trying

to find a solution. At first we assumed that the problem was with the batteries

themselves so we rotated them, trying different batteries in different positions as well as

batteries borrowed from another lab’s RMP. Once it was established that the batteries

were well below the 50V point where the CCU begins to have trouble charging them, we

looked into options to replace or revive them. The price for one new battery from

Segway came in at around $900 while used and refurbished ones were anywhere from

$500-$800. There were also companies that would refurbish or rebuild the batteries we

had for a lower price, but shipping the batteries as hazardous material would have

added to the cost. Given our allotted MQP budget, acquiring a new battery was not a

possibility.

The same company which would have rebuilt the batteries also had available a

custom battery charger which is designed to plug directly into the battery allowing it to

be trickle charged (charged at a slow rate) to the point where the CCU would be able to

take over. An important caveat with this tool is that it came with a limited number of

uses, after which it would no longer operate. The initial cost of the tool was $500 for

three uses, but it also featured a rebate which brought the actual cost down to a much

more affordable $150. The battery reconditioner was ordered and used as directed on

the three batteries but did not have the desired effect. When we were finally out of

options, our contact at Segway, Chris Crimmins, offered to take a look at the RMP over

winter break. He discovered an issue with the charging circuitry for one of the batteries

and confirmed that the batteries we had were beyond saving. He upgraded the

80

firmware, fixed the charging circuitry, installed a second caster wheel, the new frame

and top plate, and replaced two of the batteries. Finally, at the start of our third of three

terms on the project, we had hardware which was operable.

The RMP came wired with two I/O methods for the computer to communicate

with it over: USB and Ethernet. Because a driver did not exist for Ubuntu 16.04 to allow

the RMP to connect over USB, we instead went for the OS-agnostic Ethernet-connected

option. To achieve this connection, we plugged the RMP ethernet cable into a router,

which was then plugged into the back of the robot computer. This method worked rather

well for some time. However, When we registered the computer for the wireless

network, the router suddenly became unable to locate the RMP on its LAN network. A

week was spent debugging what went wrong; a plethora of network diagnostic and

device manager tools were used to try and locate the RMP on the network. We also

brought in a peer who specializes in networking to help us diagnose the issue.

Unfortunately, all of our best efforts were for naught. Because the RMP was still able to

connect to our laptops which were running Windows, we decided that the issue must be

some deep system setting within our Ubuntu OS. We ultimately did a fresh install of

Ubuntu 16.04 to reset all network settings, which resolved the issue.

Further debugging eventually revealed that the RMP was flushing its

configuration files on every power cycle, and required that new config file be uploaded

on each boot. Because this configuration file is what allows the RMP to connect over

ethernet, and because the RMP USB driver for Ubuntu is outdated, the only way to get

a new configuration file onto the RMP seems to be by uploading it via USB from a

81

Windows machine. Once this is done, the RMP can connect over ethernet to the Ubuntu

machine without any difficulty.

9.5.2 Software

While the software headaches paled in comparison to the one presented by the

RMP, there were still a few snags along the way. Most notably, the way we integrated

our front and back ends revealed an interesting bug in the way ROS does garbage

collection. Firstly, garbage collection in ROS seemed to be handled by comparison,

merely looking to see if a resources had the same handle as the resource that was set

to be cleared from memory. Secondly, garbage collection seemed to take a non-trivial

amount of time. This quirk manifested itself when the system architecture closed and

opened a websocket of the same name to the same address, such as during a page

refresh or loading between pages. When this happened, both the old and new socket

connections would be cleared, resulting in a severing of the connection between the

front and back ends. To solve this, a minor tweak was made to the ROSlib source code

to simply prevent it from clearing out closed connections during runtime. In doing so, the

socket connection never gets flagged for deletion, even during its momentary lapse in

activity.

Constructing a map using LIDAR also proved to be more difficult than initially

anticipated. To generate a map of our surroundings to use for autonomous navigation,

we opted to use a package called Hector SLAM in conjunction with our Hokuyo LIDAR

module. Hector was chosen because it would, in theory, allow us to generate a map

82

using only LIDAR data, without need for odometry. Connecting the LIDAR proved

simple enough. However, when Hector tried to generate a map, it would only do so

using the first sweep of LIDAR data, and would not update the map to reflect new

batches of LIDAR data coming in. As it turned out, what was happening was that the

ROS launch file we had constructed was not properly importing all the resources it

needed, and the map was, in fact, parsing new LIDAR data, just in an unexpected way.

Instead, the pieced-together configuration was only updating the map for unexplored

areas, while also not performing odometry. This resulted in basic tests making it seem

as though new data was not being processed, while in fact the new data was just

appeared to be the same as the old data to the robot. Through some heavy

trial-and-error, we were able to piece together a far more complete launch file and

generate a functional map of our lab space.

9.5.3 Hardware

One of the major problems encountered while completing the manufacturing of

the arm was the time needed during machining. Consultation of how to machine the

raw sheets of aluminum took a week's time. Then due to the lab’s availability the

completion of the manufacturing took a considerable longer time than the team has

planned for.

While building the first link’s gearbox there was an interference problem between

one of the hex shafts and the CIM motor. Whenever the gearbox was being turned the

shaft would collide with the motor and stop rotation. In order to solve the problem, the

83

shaft was rounded down to rid the corners and create clearance. This solution was was

acceptable because this part of the shaft was outside the functioning gearbox and

therefore did not affect the gear reduction process.

10 Conclusions and Recommendations

10.1 Segway RMP

To avoid future complications with the Segway RMP base, it is recommended to

make sure that the battery is well maintained and charged at least once a month, even

when not in use. Failure to do this was what is suspected to have caused the decrepit

state of the RMP when our team inherited it, so it bears repeating: make sure the

battery is well maintained.

As far as developmental recommendations for future groups, one aspect of the

design that could use improvement is the chassis layout. Currently, the wires are

managed well enough, but are still largely exposed, as are the power supply units.

Furthermore, the robot itself is rather heavy and, being made of metal, yields a large

force of impact even when operating at low speeds. This produces a somewhat unsafe

and unsightly environment for public uses. As such, future teams may wish to look into

making a chassis cover or case that conceals these features while also cushioning

bystanders from potential impacts. These design considerations would result in a safer

and more aesthetic robot overall.

84

A third recommendation, as far as the Segway RMP goes, is to investigate how

to get odometry data out of it. Unfortunately, by the time we were able to get the RMP to

power on, we no longer had enough time to learn how to do this with it, and instead

relied on LIDAR to do SLAM. As a result, our ability to navigate autonomously was

severely crippled, as the robot often lost itself without proper odometry data to keep

track of itself with. By learning how to extract more reliable odometry data out of the

RMP, autonomous driving should prove to be much easier in future iterations.

10.2 Software

One of the driving principles behind the software design for this platform was to

impose a high degree of granularity on the system, such that the platform could easily

be repurposed for future unforeseen tasks. The core thing to keep in mind when looking

to expand the backend system is that it exists as an interface between ROS and the

platform-agnostic front-end. As such, the actual implementation of any given

component’s functionality can easily be refactored, and new functionalities can be easily

hooked up. In brief, all a developer would need to do is update the existing event

handler callback to have cases for whatever new events they want to send between

ROS and the front-end UI. For a more in-depth dissection of exactly how to do that,

consult the attached readme markdown file.

85

10.3 Hardware

The mount of the first gear of the arm could be better constructed. Currently

there is a concern with the integrity of gearbox mount strength when the arm is being

operated. A better devised method of fixing the first joint gearbox to the underside of

the segway plate would greatly increase the functional life of the arm.

The central mast where the arm is mounted could also stand to be improved by

future groups, if they find it necessary. Currently, the system of bearings underneath the

mast are sub-optimal, and as a result the mast does not sit completely flush with the

RMP base. Therefore, when equipped with a decently heavy payload such as the arm,

the central mast tends to lean, which in turn puts an undue amount of strain on the

gearbox below.

In the future it would benefit the project to create printed circuit boards based on

the protoboards currently in use. This would allow boards to be easily changed or

reordered in case of damage. Other items could improve the integrity of the wiring

including switching to appropriately sized ribbon cables and headers.

There are also several potential improvements for the arm. The team

recommends improving the current design of the end effector and attaching that onto

the arm. The current end effector is not attached to the robot but is designed to latch

onto door handles and rotate the handle. The team also recommends designing an end

effector capable of pressing elevator buttons effectively. This design can introduce

fingers that help to press buttons that may be at different elevations.

86

Finally, the team strongly recommends taking the foundation built here and using

it to implement functionality for opening doors. Opening doors is an incredibly difficult

endeavor and the team suggests to start with a known environment and work out from

there. The team has come up the following steps (Figure 10A) for the robot to open

doors, and suggest future groups to use similar strategies as the foundation of

completing door opening in this manner has already been laid.

Figure 10A: Sketch of steps taken by the robot to complete door opening

87

11 References
Sayer, P. (2016). Belgian Hospital turns to robots to receive patients. Retrieved from

http://www.cio.com/article/3085211/belgian-hospitals-turn-to-robots-to-receive-patients.html

LeBlanc, N., Patel, K., & Rashid, S. (2012). Guest Orientation Assistance and Telepresence Robot.

Worcester, MA.

Fischer, G., & LeBlanc, N. (2012). Tour Guide Robot Interactions.

Fong, T., Nourbakhsh, I., & Dautenhahn, K. (2003). A survey of socially interactive robots. In Robotics

and Autonomous Systems . http://doi.org/10.1016/S0921-8890(02)00372-X

Wistort, R. (2010, March). “Only Robots on the Inside.” Interactions Magazine , 72–74. Retrieved from

http://robotic.media.mit.edu/wp-content/uploads/sites/14/2015/01/p72-wistort.pdf

Gombolay, M., Yang, X. J., Hayes, B., Seo, N., Liu, Z., Wadhwania, S., … Shah, J. (2016). Robotic

Assistance in Coordination of Patient Care. http://www.roboticsproceedings.org/rss12/p26.pdf

Peterson, L., Austin, D., & Kragic, D. (2000). High-level control of a mobile manipulator for door opening.

Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2000) (Cat. No.00CH37113), 3 (FEBRUARY 2000), 2333–2338.
http://doi.org/10.1109/IROS.2000.895316

Tai, L. J., Rae, W., Nunn, J., & Larochelle, P. (2009). Design and Implementation of Building Navigational

Tools for the PantherBot Mobile Robot. Advances.

Klingbeil, E., Saxena, A., & Ng, a Y. (2010). Learning to open new doors. 2010 IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2751–2757.
http://doi.org/10.1109/IROS.2010.5649847

Kang, J., Hwang, C., Park, G. T., & Robotics, I. (n.d.). A Simple Control Method for Opening a Door with

Mobile Manipulator, (1), 1593–1597.

Chitta, S., Cohen, B., & Likhachev, M. (2010). Planning for autonomous door opening with a mobile

manipulator. Proceedings - IEEE International Conference on Robotics and Automation , 1799–1806.
http://doi.org/10.1109/ROBOT.2010.5509475

Klingbeil, E., Carpenter, B., Russakovsky, O., & Ng, A. Y. (2010). Autonomous operation of novel

elevators for robot navigation. Proceedings - IEEE International Conference on Robotics and
Automation , 751–758. http://doi.org/10.1109/ROBOT.2010.5509466

Troniak, D., Sattar, J., & Gupta, A. (2013). Charlie Rides the Elevator--Integrating Vision, Navigation and

Manipulation towards Multi-floor Robot Locomotion. 2013 International Conference on Computer
and Robot Vision (CRV) , 1–8. Retrieved from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6569177

Robotics Kinematics and Dynamics/Serial Manipulator Statics (2016). WikiBooks.

https://en.wikibooks.org/wiki/Robotics_Kinematics_and_Dynamics/Serial_Manipulator_Statics

88

12 Appendices

12.1 Appendix A: Arm Calculations
The following are sample calculations for two positions where the joint are undergoing

the most torque.

Joint torque calculations

89

Forward Kinematics of Arm

90

Inverse Kinematics of the Arm

91

12.2 Appendix B: Electrical System

Overview of the onboard electrical system

92

An overview of the electrical control system for the arm

93

An overview of the custom arduino shield used for the arm controller. Pin breakout is
listed below.

94

Arduino Pin Number / Mode Connection

PWM 7 Small CIM PWM

Digital 22 Small CIM Direction

Digital 26 / Enable High Small CIM !Sleep

AI 5 Small Current Sense

AI 4 Big CIM Current Sense

PWM 5 Big CIM PWM High

PWM 4 Big CIM PWM Low

Digital 24 Big CIM Direction

95

12.3 Appendix C: Resources and Components

Item Description Link

Computer

RAM PNY Anarchy 8GB kit https://www.amazon.com/dp/B
012DT0IB6/

Case MITXPC Mini ITX https://www.amazon.com/dp/B
01B575EMA/

Motherboard MSI AMD A68H Mini ITX https://www.amazon.com/dp/B
011TX1JF6/

Monitor Asus VT207N Touch Screen https://www.amazon.com/dp/B
00LX7M2RI/

CPU AMD A8-7600 https://www.amazon.com/dp/B
00LUH1N4O/

HDD Kingston 2.5 inch SATAIII SSD https://www.amazon.com/dp/B
01FJ4UL2S/

Motor Drivers
Note: May not be the exact
product but the carrier boards are
the same for the same class of
MOSFET

Large Pololu High-Power Motor
Driver 24v23 CS

https://www.pololu.com/produc
t/1456

Small Pololu G2 High-Power Motor
Driver 24v13

https://www.pololu.com/produc
t/2992

Other

Segway RMP RMP 210 https://drive.google.com/open?
id=0B1dK_aU5gJWQVDJsNU
ZBR2U5MFk

Computer Power Supply Mini-Box M4-ATX http://www.mini-box.com/M4-A
TX

DCDC converter Mini-Box DCDC-USB http://www.mini-box.com/DCD
C-USB

96

Item Description

Arm

Cim motor http://www.vexrobotics.com/217-2000.html

Cim motor gears

http://www.vexrobotics.com/vexpro/motion/vexpro-gears/cim-m

otor-gears.html

48t Gear with 1/2" Hex Bore
& VersaKeys

http://www.vexrobotics.com/vexpro/motion/vexpro-gears/1-2-he
x-bore.html

18t Gear with 1/2" Hex Bore

84t Gear with 1/2" Hex Bore

1/2" Hex Stock (3 feet)

http://www.vexrobotics.com/shaft-stock.html

1/2" ThunderHex Stock (18
inches)

Clamping Shaft Collar - 1/2"
Hex ID

http://www.vexrobotics.com/vexpro/hardware/shaft-collars.html

Timing Pulley (HTD 5mm) -
18T, 9mm Double Flange, 1/2"
Hex

http://www.vexrobotics.com/vexpro/motion/belts-and-pulleys/htd

pulleys.html

Timing Pulley (HTD 5mm) -
36T, for 15mm or (2X) 9mm
Timing Belts, 1/2" Hex

Timing Belt (HTD 5mm) - 225T,
9mm Wide

http://www.vexrobotics.com/vexpro/motion/belts-and-pulleys/htd

belts9.html

8mm to 1/2" Hex Adapter http://www.vexrobotics.com/vexpro/hardware/217-3255.html

97

http://www.vexrobotics.com/vexpro/motion/belts-and-pulleys/htdbelts9.html
http://www.vexrobotics.com/vexpro/motion/vexpro-gears/1-2-hex-bore.html
http://www.vexrobotics.com/vexpro/motion/belts-and-pulleys/htdpulleys.html
http://www.vexrobotics.com/shaft-stock.html
http://www.vexrobotics.com/vexpro/motion/vexpro-gears/1-2-hex-bore.html
http://www.vexrobotics.com/vexpro/motion/belts-and-pulleys/htdpulleys.html
http://www.vexrobotics.com/vexpro/hardware/shaft-collars.html
http://www.vexrobotics.com/217-2000.html
http://www.vexrobotics.com/vexpro/motion/belts-and-pulleys/htdbelts9.html
http://www.vexrobotics.com/vexpro/hardware/217-3255.html
http://www.vexrobotics.com/vexpro/motion/vexpro-gears/cim-motor-gears.html
http://www.vexrobotics.com/vexpro/motion/vexpro-gears/cim-motor-gears.html

Flanged Bearing - 0.500in
(Hex) x 1.125in x 0.313in v2

http://www.vexrobotics.com/bearings.html

Gearbox + mini cim motor http://www.vexrobotics.com/vexpro/motion/gearboxes/versaplan

etary.html

Ultra-Low-Friction
Oil-Embedded Thrust Bearings
with PTFE

https://www.mcmaster.com/#standard-thrust-washers/=161xmb

b

Linear Potentiometer http://www.mouser.com/ProductDetail/ALPS/RS451121400A/?q

s=6EGMNY9ZYDSu0jJHvzfb%2Fg%3D%3D&gclid=CLTPhqK3

29ECFctMDQodCFYCkw

Acetal Spacers http://www.vexrobotics.com/acetalspacers-vexpro.html

Multipurpose 6061 Aluminum https://www.mcmaster.com/#standard-aluminum-plates/=1651ul

q

500 Hex Hub (am-0096a) http://www.andymark.com/Hub-p/am-0096a.htm

Thrust Needle-Roller Bearings https://www.mcmaster.com/#thrust-needle-roller-bearings/=167
2ofp

80/20® 6850 L-Handle Linear
Bearing Brake Kit

http://www.globalindustrial.com/p/storage/struts-and-framing/80
20/6850-lhandle-linear-bearing-brake-kit

80/20® 6850 L-Handle Linear
Bearing Brake Kit

http://www.globalindustrial.com/p/storage/struts-and-framing/80
20/6850-lhandle-linear-bearing-brake-kit

Aluminum extrudes:
25-2525-Black

https://8020.net/25-2525-black.html

Extrude sliders: 25-6416

https://8020.net/shop/25-6416.html

6061 Aluminum Sheets

https://www.mcmaster.com/#standard-aluminum-plates/=169nd
my

Pololu G2 High-Power
Motor Driver 24v13

https://www.pololu.com/product/2992

98

https://www.mcmaster.com/#standard-aluminum-plates/=169ndmy
https://www.mcmaster.com/#thrust-needle-roller-bearings/=1672ofp
http://www.vexrobotics.com/vexpro/motion/gearboxes/versaplanetary.html
https://www.mcmaster.com/#standard-aluminum-plates/=1651ulq
http://www.andymark.com/Hub-p/am-0096a.htm
http://www.vexrobotics.com/vexpro/motion/gearboxes/versaplanetary.html
http://www.globalindustrial.com/p/storage/struts-and-framing/8020/6850-lhandle-linear-bearing-brake-kit
http://www.vexrobotics.com/acetalspacers-vexpro.html
https://8020.net/shop/25-6416.html
https://www.mcmaster.com/#standard-thrust-washers/=161xmbb
http://www.mouser.com/ProductDetail/ALPS/RS451121400A/?qs=6EGMNY9ZYDSu0jJHvzfb%2Fg%3D%3D&gclid=CLTPhqK329ECFctMDQodCFYCkw
https://8020.net/25-2525-black.html
https://www.mcmaster.com/#standard-aluminum-plates/=1651ulq
http://www.globalindustrial.com/p/storage/struts-and-framing/8020/6850-lhandle-linear-bearing-brake-kit
https://www.mcmaster.com/#thrust-needle-roller-bearings/=1672ofp
https://www.mcmaster.com/#standard-aluminum-plates/=169ndmy
https://www.pololu.com/product/2992
http://www.mouser.com/ProductDetail/ALPS/RS451121400A/?qs=6EGMNY9ZYDSu0jJHvzfb%2Fg%3D%3D&gclid=CLTPhqK329ECFctMDQodCFYCkw
http://www.mouser.com/ProductDetail/ALPS/RS451121400A/?qs=6EGMNY9ZYDSu0jJHvzfb%2Fg%3D%3D&gclid=CLTPhqK329ECFctMDQodCFYCkw
http://www.vexrobotics.com/bearings.html
http://www.globalindustrial.com/p/storage/struts-and-framing/8020/6850-lhandle-linear-bearing-brake-kit
http://www.globalindustrial.com/p/storage/struts-and-framing/8020/6850-lhandle-linear-bearing-brake-kit
https://www.mcmaster.com/#standard-thrust-washers/=161xmbb

12.4 Appendix D: Authorship and Contributions

Section Author(s)

1 Abstract Jacob Hackett

2 Executive Summary Jacob Hackett

3 Introduction Jacob Hackett

4 Literature Review Joe Fainer, Erin Leger

5 Project Strategy Jacob Hackett

5.1 Initial Problem Statement Jacob Hackett

5.2 Objectives and Constraints Jacob Hackett

5.3 Project Approach Jacob Hackett, Tom Farro

6.1 Needs Analysis All

6.2 Prototyping/Modeling All

6.3 Alternative Designs All

6.4 Final Design Selection All

7.1 Segway Robot Erin Leger, Tom Farro

7.2 System Architecture Jacob Hackett

7.3 End User Interface Jacob Hackett

7.4 Arm Joe Fainer, Emily Yu

8.1 Mandatory Goals Jacob Hackett

8.2 Reasonable Goals Jacob Hackett

8.3 Reach Goals Jacob Hackett

9.1 Segway Robot Erin Leger, Tom Farro

9.2 System Architecture Jacob Hackett, Tom Farro

9.3 End User Interface Jacob Hackett, Tom Farro

99

9.4 Arm Joe Fainer, Emily Yu

9.5 Challenges Tom Farro

10.1 Segway RMP Erin Leger, Tom Farro, Jacob Hackett

10.2 Software Jacob Hackett, Tom Farro

10.3 Hardware Erin Leger, Tom Farro, Joe Fainer

11 References Joe Fainer

12.1 Appendix A Emily Yu, Joe Fainer

12.2 Appendix B Erin Leger

12.3 Appendix C Erin Leger, Emily Yu

12.4 Appendix D All

Feature Contributor(s)

Electronics Design Erin Leger

Electronics Implementation Erin Leger

User Interface Design Jacob Hackett

User Interface Implementation Jacob Hackett

Alternative Arm Designs Emily Yu, Joe Fainer

Final Arm Design Emily Yu

Arm Manufacturing Emily Yu

Arm Control Erin Leger, Emily Yu

System Architecture Design Jacob Hackett, Tom Farro

System Architecture Implementation Jacob Hackett, Tom Farro

Driving Tom Farro

SLAM Jacob Hackett, Tom Farro

100

	Worcester Polytechnic Institute
	Digital WPI
	April 2017

	Hospital Lobby Assistant Robot
	Emily Mengyue Yu
	Erin Marie Leger
	Jacob Ryan Hackett
	Joseph Richard Fainer
	Thomas William Farro
	Repository Citation

	Untitled

