
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2016

Automatic Contact Surface Detection
John William Pryor
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Pryor, J. W. (2016). Automatic Contact Surface Detection. Retrieved from https://digitalcommons.wpi.edu/mqp-all/1365

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1365&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1365&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1365&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1365&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/1365?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1365&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Automatic Contact Surface Detection

Will Pryor
Worcester Polytechnic Institute

Email: jwpryor@wpi.edu

Abstract—Motion planners for humanoid robots search the
space of all possible contacts the robot can make with its
environment. In order to define this space, it is necessary to
define all available surfaces in the environment with which the
robot may make contact. We introduce a method to automatically
detect these surfaces in real time, enabling humanoid robot
motion planners to operate in any environment without requiring
costly manual pre-processing. The system maintains a set of
known planar surfaces, expressed as two dimensional polygons,
and detects new surfaces and new areas of existing surfaces as
the robot moves through the environment. The only required
inputs are data from commonly available sensors and a small
set parameters which depend only on the characteristics of the
robot and sensor. No advance knowledge of the environment is
necessary. In real-world environments, Surface Detection detects
an initial set of surfaces within 1.5 seconds, and the average time
to detect a newly-visible surface is less than two seconds. The
system is capable of detecting all planar surfaces in a real-world
environment and providing them to a motion planner in real
time.

I. INTRODUCTION

Legged robots, including humanoid robots, move by mak-
ing, maintaining, and breaking contact with the environment.
Traditional planning methods for wheeled or fixed robots do
not account for this need to make and break contacts, and
actively avoid contact with the environment as a part of
collision avoidance. Planners for legged robots use contact-
before-motion planning, which plans a sequence of contacts
before or simultaneous with planning for the motions which
create those contacts.

Contact-before-motion planners operate in the contact
space of the robot. Conceptually, a contact includes an area on
the environment which the robot is making contact with and an
area on the robot which is used to make contact. The former is
referred to as an “environment contact surface” and the latter
as a “robot contact surface”. We refer to environment contact
surfaces simply as “contact surfaces”. Current contact-before-
motion planners vary on how the surfaces are represented.
In [1], [2], and [3], contact surfaces are represented with
a 2D convex polygon and the pose of that polygon in the
3D environment. In [4], each environment contact surface is
represented as a set of overlapping circles, each of which is
represented as a 3D pose and a radius. We chose to represent
each environment contact surface as a non-convex polygon and
its pose in the 3D environment, which can be further processed
into either of the above representations.

This report represents the work of WPI undergraduate students sub-
mitted to faculty as evidence of completion of a degree requirement.
WPI routinely publishes these reports on its website with editorial or
peer review. For more information about the projects program, please see
http://www.wpi.edu/academics/ugradstudies/project-learning.htm

Fig. 1. The result of applying Surface Detection to a complex real-world
environment. The viewpoint shows a hallway with adjacent rooms visible at
the sides.

The environment contact surfaces, in whichever repre-
sentation, may be defined by a human, as in [1] and [2],
or extracted from another representation of the scene, as
in [4]. Requiring human pre-processing of the environment
severely limits the environments in which such planners can
be run, and eliminates applications such as disaster recovery
where the environment is completely unknown. Extracting the
information from a point cloud, a common representation of
3D sensor data, allows these planners to be used without
requiring human pre-processing of the environment. [4] and
[5] use this approach, but both assume the extraction will run
once, at the beginning of planning, with a point cloud that
contains all the necessary information for the plan. In many
applications, including disaster recovery, the only available
sources of data are the sensors mounted on the robot itself. In
order to work in these environments, it is necessary to process
the environment incrementally, as it is seen by the sensor. Our
process aims to perform surface detection in real time, which
requires consideration of the sensor data over time.

The two most common types of 3D sensors used for robot
perception are laser scanners and depth cameras. Both of
these technologies can provide data in point cloud format.
A point cloud contains a (typically unordered) list of three-
dimensional points, each of which may also contain additional
information such as color or intensity. Each point in the
point cloud corresponds to a point on a physical surface in
the environment. Depth cameras produce very dense point
clouds which are typically organized, meaning the 2D pixel
location of the point from the camera sensor is preserved and
can be used to speed up certain algorithms, and have color
information, but are limited to a low field of vision and often

coordinates are the centroid of every point in that cell. This
effectively combines nearly-identical points into a single rep-
resentative point while preserving location information. The
discretization resolution is d, which is chosen to be small
enough that discretization will not introduce holes.

2) Change Detection: Downsampling removes redundancy
in space, but since this is an incremental algorithm we must
also consider redundancy in time. The entire Surface Detection
process is designed to never discard information, so once
a point enters the system it is never lost. Because of this,
adding the same point a second time has no effect other
than increasing processing time. Change Detection uses PCL’s
OctreePointCloudChangeDetector to remove points which are
nearly identical to points which have been perceived before. It
uses the same voxel grid discretization as the downsampling
step to determine which points are nearly identical. After the
first few seconds of input, Change Detection often discards
80% of the input points, greatly reducing the processing time
of the algorithms that follow.

B. Surface Expansion

The second component of the process is Surface Expansion,
which searches incoming point clouds for points which are
members of existing surfaces. This is occurs before Surface
Detection because the sensor will often detect a sufficiently
large additional area within an existing surface for Surface
Detection to report it as a new plane. This would result in
two different planes representing a single real-world contact
surface, which is a less accurate representation of the en-
vironment. Surface Expansion also runs faster than Surface
Detection, so it is beneficial to allow Surface Expansion to
run on every point in a preprocessed input cloud and then
run New Surface Detection on the remaining points. Surface
Expansion involves two steps: adding inliers and expanding
surfaces.

Algorithm 1: Expand Surfaces

input : Existing surfaces surfaces, ordered by size
Point cloud of new points cloud

output: Potentially expanded surfaces surfaces
Uncategorized points cloud

foreach surface ∈ surfaces do
inliers ← surfaceInliers(surface, cloud)
surface ← surface ∪ inliers
cloud ← cloud \ inliers

foreach surface ∈ surfaces do
boundary ← boundary of surface
while boundary has neighbors in cloud do

neighbors ←
pointNeighbors(boundary, cloud)

expansion ←
planeNeighbors(surface, neighbors)

boundary ← boundary ∪ expansion
cloud ← cloud \ expansion

surface ← surface ∪ boundary

1) Add Inliers: Often a sensor will perceive a surface more
than once, and subsequent scans can provide more detail on

the surface. Add Inliers identifies points which are contained
in an existing surface, referred to as “inliers”, and adds them to
the list of inliers belonging to that surface. The updated list of
inliers can then be used to refine the estimate of the polygon’s
pose within the environment, although that is not currently
implemented. Inliers are found by iterating over the current list
of known surfaces, beginning with the surface which contains
the most points. The number of existing inliers serves as a
very simple heuristic to estimate the probability of finding
new inliers. Each newly-discovered inlier reduces the number
of points that have to be checked for the remaining surfaces,
so iterating in order of probability of discovering new inliers
offers a speed benefit.

On each iteration, the point cloud is first filtered to only
those points within a given distance s to the surface’s plane,
then the remaining points are filtered to only those points
within the surface’s polygon using PCL’s CropHull. The dis-
tance s represents the maximum distance between the location
of the real-world surface and the location of the detected point.
This distance is determined by the sum of the expected sensor
noise and the maximum error caused by downsampling, which
is d

√
3. Points which pass both these filters are the inliers, and

are added to the surface’s list of inliers and removed from the
input point cloud. After the last iteration, all points remaining
from the input point cloud are passed on to surface expansion.
When no surface have been detected yet, Add Inliers passes
its input along unmodified.

2) Expand Surfaces: This step handles the common sce-
nario of detecting additional area within an already-detected
surface. Similarly to III-B1, the input is processed by iterating
over surfaces with the largest surfaces first to maximize the
probability of removing points from consideration quickly.
Each surface maintains a list of boundary points, which are
points along the boundary of the surface polygon and are never
more than h distance away. On each iteration, the we attempt
to grow the surface outward by finding all points within h
distance of any boundary point, and filtering the results to only
those points within s distance of the surface’s plane. This two-
step search allows Expand Surfaces to search a larger distance
in the directions parallel to the plane than in the direction
perpendicular to the plane. If any points are found, those points
are added to the list of boundary points and the process is
repeated. This allows large areas of the input cloud to be added
to their surface quickly. Once no new points can be found,
the newly discovered boundary points are added as inliers to
the surface and its polygon and list of boundary points are
recomputed. Points which are not used to expand any surface
are passed on to New Surface Detection. When no surface
have been detected yet, Expand Surfaces passes its input along
unmodified.

C. New Surface Detection

The other important step in the process is the New Surface
Detection step. This step is responsible for the initial iden-
tification of surfaces within the point cloud. This is by far
the most time-consuming step, which is why every step that
could potentially remove points from consideration is placed
before it. New Surface Detection consists of four parts: point
accumulation, surface normal estimation, region segmentation,
and plane segmentation.

Algorithm 2: Detect Surfaces

input : New points
output: New surfaces

Uncategorized points
surfaces ← ∅
cloud ← new points
normals ← estimateNormals(cloud)
regions ← segmentRegions(cloud, normals)
foreach region ∈ regions do

while |region| > n do
model, inliers ← fitModel(region)
region ← region \ inliers
segments ← segmentDistance(inliers)
foreach segment ∈ segments do

if |segment| > n then
add (model, segment) to surfaces

1) Accumulate Points: The first step in New Surface De-
tection exists to account for a scenario which occurs fairly
commonly with a laser scanner, but also may occur when using
a depth camera. Rotating laser scanners, if sampled quickly
enough, will often see a surface one thin strip at a time.
Because strips are close together and points on each strip are
nearly collinear, points from only one or two strips often have
too low of an area for their surface to be detected. If each strip
of a surface occurs in a different scan, and points which are
not detected as planes are discarded, it is possible for a surface
to never be detected. To solve that problem, points for which a
surface is not detected using New Surface Detection return to
the accumulator and are combined with input from the Surface
Expansion step before being output to New Surface Detection
again.

Every time Accumulate Points receives a new set of points
from Surface Expansion, it applies a radius outlier filter to
all accumulated points. The filter, which is implemented using
PCL’s RadiusOutlierRemoval, removes every point which does
not have at least two neighbors within a distance of r.
The number two is significant, because the step that follows
Accumulate Points fits a plane to every point and its neighbors,
and the minimum number of points needed to fit a plane is
three. If, after filtering out the outliers, there are more than n
points remaining, the filtered point cloud is sent to the next
step. The plane’s outliers then form the first points of the next
accumulated cloud, because discarding them would violate the
principle that information does not leave the system.

2) Surface Normal Estimation: This step estimates the
surface normals of each point. Although a point cloud itself is
not a surface, so cannot have a surface normal, the points in
a point cloud represent a real-world surface. Surface Normal
Estimation is the process of estimating the surface normal of
the real-world surface at every point in the point cloud. This
is a common operation on point clouds, and the Moving Least
Squares algorithm [7] is one of the standard surface normal
estimation methods.

Moving Least Squares (MLS) considers every point in a
point cloud separately. It finds each point’s neighbors within
a given radius, then performs a least-squares fit of a 3D

polynomial equation to those neighbors, where each neighbor
is weighted by its distance to the point of interest. The normal
vector to the equation at the projection of the point of interest
onto the equation’s surface is then an estimation of the real-
world surface normal. The radius, polynomial degree, and
weighting factor are defined by the user. MLS is also capable
of using its estimated equation to resample the surrounding
points, using one of a number of strategies, but we do not
make use of this ability.

For our application, we use a first-degree polynomial, i.e. a
plane. We set the search radius to r, and the weighting factor to
the square of the search radius (that is, r2) as recommended by
PCL. PCL’s implementation of MLS also stores the final error
of the least-squares fit as the “curvature” of the point. This
value is correlated to how far the point’s neighbors deviated
from the plane, which can be used to identify points that lie
on the boundary between two surfaces.

3) Region Segmentation: Once the surface normal infor-
mation is available, it is used to segment the input point
cloud into a set of smoothly connected regions. Smoothly
connected regions are groups of neighboring points where the
difference between the surface normals of adjacent points is
low, and none of the points has high curvature. This effectively
separates points which are neighbors, but belong to different
surfaces, by detecting corners and edges. Note that region
segmentation does not guarantee that every region will be
planar. Any surface with a gradual curve will be segmented as a
single region, including cases where multiple planar surfaces
are connected by a curve. This means that an extra step is
required to separate planar surfaces from curves, but it has
the advantage of allowing easy extensibility. Because this step
does not separate curved surfaces, it would also apply to an
expanded version of Surface Detection which considers 3D
primitives other than planes. Cylinders, which are common
in man-made environments as pillars, poles, and railings, are
also extracted as smoothly connected regions, and to add
support for detecting cylinders would not require significant
modification of this step or any prior step.

In order to detect smoothly connected regions, we use
Region Growing Segmentation [8]. This algorithm segments
the environment by repeatedly picking a seed point for a new
cluster from the set of uncategorized points and growing that
cluster to include every point which is smoothly connected
to the seed. It does this by finding the neighbors within a
given radius, comparing their surface normals and curvatures,
adding those with similar surface normals and low curvatures
to the region, and repeating the search with their neighbors.
The radius, surface normal difference threshold, and curvature
threshold are defined by the user.

For this application, the radius is r and we use 30◦

for the surface normal threshold and 0.05 for the curvature
threshold. PCL’s implementation, RegionGrowing, also accepts
a minimum size parameter, which determines the minimum
number of points required in a region, which we set to n.

4) Surface Extraction: Once the environment has been
segmented into smoothly connected regions, it undergoes one
final segmentation to extract planar surfaces. This step also
estimates the plane equation of the planar surface, which is
necessary in order to define the surface polygon. To extract

a plane equation (also called a plane model) and set of
inliers from the region, we use the Random Sample Consensus
(RANSAC) model fitting algorithm, implemented in PCL as
SACSegmentation.

RANSAC robustly fits a model to a set of observations
in the presence of outliers [9]. It achieves this by randomly
choosing the lowest number of points necessary to fit a model
(three, in the case of a plane) and building a candidate model.
The rest of the input points are checked for membership in the
model. If the model contains more inliers than the previous
best model, then it is saved as the best model. After a number
of iterations, the best model is returned. Though RANSAC is
not designed for cases in which more than one instance of the
model appears in the data, its robustness to outliers means it
works well in that scenario. The model, maximum distance to
the model, and number of iterations are defined by the user.

For this application, we currently use a simple plane model;
however, PCL provides an implementation of a normal-aligned
plane, which requires that points must have normals within a
given threshold of the plane’s normal in order to be considered
inliers. As we have surface normal information available, and
aligning the estimated plane’s normal with the surface normal
is desirable in order to preserve the surface normal orientation,
it may be valuable to use this model instead. For the maximum
distance to the model we use s, as in III-B1, and we specify
200 iterations.

An additional advantage of RANSAC is that it is capable of
estimating any model. This allows for the possibility to extend
this algorithm to estimate surfaces along other 3D primitives,
such as cylinders, as discussed in III-C3.

One final segmentation step is necessary because RANSAC
does not consider distance between inliers. It is possible
to have a surface which consists of two coplanar regions
connected by a smooth, but not planar, curve. In this case,
RANSAC will fit a single model to both those planes. In
order to correctly represent them as two separate surfaces, the
inliers reported from RANSAC are passed through Euclidean
Distance clustering to separate the clusters corresponding to
the surfaces. h is used as the distance threshold. Finally, all
planar surfaces with larger than n points are output.

IV. SURFACE REPRESENTATION

The desired output format for the list of surfaces consists
of two pieces of information: the plane equation and surface
polygon. However, we also require every surface to have a
list of inliers and boundary points in order to perform surface
expansion, and we store other information to benefit users of
the system. In total, we store seven pieces of information for
each surface: an identifier, a color, a set of inliers, a plane
equation, a set of boundary points, a polygon, and an extruded
triangle mesh. The identifier and color are both assigned to
a surface to allow programs and humans to identify them.
The set of inliers and plane equation define a surface, and
the remaining items are derived from a surface.

The three derived items are dependent on the set of inliers,
and therefore need to be computed either when a surface is first
discovered by New Surface Detection or when it is expanded
by Surface Expansion. Note that although each step in Surface

Expansion adds to the set of inliers, adding inliers to the
interior of the surface will not change its boundary points,
so the surface does not need to be re-computed in between
Add Inliers and Expand Surfaces. After New Surface Detection
and Surface Expansion, there may be surface which need to
have their derived data re-computed, which uses the following
algorithms.

A. Boundary Points and Polygon

Algorithm 3: Compute Derived Data for Surface

input : Inliers of a single surface inliers
Plane model of the surface model

output: Set of boundary points boundary
Surface polygon polygons
Surface triangle mesh mesh

triangulation ← delaunayTriangulation(inliers)
foreach triangle of triangulation do

if any side of triangle is longer than α then
remove triangle from triangulation

adjacency ← ∅
foreach edge of triangulation do

if edge belongs to exactly one triangle then
add edge to adjacency

boundary ← all vertices of adjacency
polygons ← ∅
while adjacency is not empty do

vertex ← lowest point of adjacency
polygon ← {vertex}
while vertex has at least one adjacent point do

vertex ← point adjacent to vertex
add vertex to polygon

add polygon to polygons

mesh ← polygonTriangulation(polygons)
projection ← direction opposite model’s normal vector
mesh ← mesh ∪ projectV ertices(mesh, projection)
mesh ← mesh∪ triangles connecting the two surfaces

As part of our surface output, we require a polygon which
represents the surface. Specifically, we require every point
inside the surface also be inside the polygon, and that areas of a
certain size which do not contain any points must not be inside
the polygon. These requirements correspond with the definition
of the alpha shape, a generalization of the convex hull which
adds the ability to represent surfaces with holes and concavities
of a specified size [10]. The alpha shape of a set of points
can be computed by finding the points’ closest-point Delaunay
triangulation and removing all triangles which have at least one
side of length greater than the α parameter. α represents the
size of the smallest hole or concavity to include in the output
representation, which corresponds to our h parameter.

For our implementation of the alpha shape, we first trans-
form and project the inliers into the surface’s plane, which
reduces the dimensionality to 2D. We then use Triangle to
compute the Delaunay triangulation of the inliers [11]. We then
remove every triangle with a side length greater than h, then
build an adjacency list over the vertices of the triangulation,
where two vertices are adjacent if there exists an edge between

them which belongs to exactly one triangle (i.e. an edge on
the boundary of the shape). Finally, we build the polygon
representation by traversing each connected component of the
adjacency graph counterclockwise and adding the vertices of
each connected component to an ordered list. Each vertex in
this list is represented as an index into a point cloud which
is stored separately. This yields a representation where each
polygon with holes is represented by one or more polygons
without holes. The first in the list is the outer perimeter.
Subsequent polygons in the list may represent holes, or they
may represent islands within holes. Any point which is inside
an odd number of these simple polygons is inside the surface,
otherwise it is outside.

Because each segment in the polygon is guaranteed, by
the properties of the alpha shape, to have a length of at
most h, the vertices of the alpha shape already represent
the list of boundary points which is required for the Expand
Surfaces step. Because we store the set of vertices of the alpha
shape separately from the polygon, no further computation
is necessary to derive the list of boundary points. This also
allows for a possible optimization. Planar surfaces in human-
designed environments, such as tables, walls, and floors, are
often bounded by long, straight lines. However, the restrictions
of the alpha shape mean that these edges will be represented
by a series of near-collinear line segments. Applying polyline
simplification to combine nearly-collinear boundary segments
has the potential to increase the speed of algorithms, such
as point-in-polygon tests, which scale with the number of
segments in a polygon. Because the boundary list is stored
separately, it is possible to make that optimization without
harming Surface Expansion.

B. Triangle Mesh

The final piece of derived data is a 3D triangle mesh, used
to aid in visualization and in collision checking. This mesh
represents 3D volume created by extruding the polygon a short
distance in the direction opposite its surface normal. It can be
visualized along with other 3D data in the same environment,
such as the input point cloud or the robot model, to allow
observation of the planning process. It can also be used by the
motion planner as part of a collision check, although because
it only represents the planar surfaces in the environment, and
not other objects, it is not suitable to be the only source of
collision information.

To compute the mesh, we use Triangle’s ability to trian-
gulate a Planar Straight Line Graph (a superset of the format
which we use to describe the surface polygon) to generate
a triangulation of the 2D surface [11]. We then project a
duplicate of the resulting triangulation a small distance in the
direction opposite the surface normal, reversing the order of
the vertices of each triangle to conform with the convention
that indices should be ordered counterclockwise from the
perspective of an observer located outside the 3D volume.
Finally, to join the two faces, we add one triangle for each
pair of corresponding vertices in the original and projected
triangulation, alternating the position of the third point in the
triangle in order to create a closed volume.

TABLE I. SURFACE DETECTION PERFORMANCE

Environment d
Points per
Second

Time to First
Detection (s)

Detection
Lag (s)

% of Points
Categorized

Simulated
Simple

0.02 4900 1.02 0.305 96.0%
0.01 8000 0.221 0.468 93.0%

Simulated
Complex

0.02 4100 1.01 0.151 90.4%
0.01 6900 0.512 0.399 91.3%

Real-World
Complex

0.02 12000 1.41 1.59 78.2%
0.01 19000 1.94 3.04 72.3%

V. RESULTS

The algorithm was tested on real-world point cloud data
and in simulation in a variety of complex environments with
simulated sensor noise. Performance was measured on an 8-
core 3.4 GHz Intel Core i7-3770 CPU. Tests were run using
output from a real or simulated laser scanner, and data from
the sensor was processed in increments of one second. The
output of each set of tests is the average over five runs. In
each environment, we ran one set of tests with a discretization
resolution of 2cm (d = 0.02) and another set with a resolution
of 1cm (d = 0.01) in order to compare performance under
different data rates. In the simulated test scenarios we used
a maximum hole size of 8cm (h = 0.08), a search radius of
15cm (r = 0.15), and a minimum surface size of 200 points
(n = 50). The real-world data were collected using a different
sensor, which required different parameters. In the real-world
test scenarios we used a maximum hole size of 8cm (h =
0.08), a search radius of 15cm (r = 0.15), and a minimum
surface size of 500 points (n = 50).

For each test set, we measure the average number of points
per second, the time taken to detect the first set of surfaces,
the average detection lag, and the average percentage of points
which are categorized into a surface. The time to first detection
is measured from when the first input is received to when every
surface detected from the first input cloud is available to the
planner. The detection lag is the average of the delays between
when a point is received to when the surface which contains
that point is available. Points which are not categorized, or
which are categorized only after receiving additional scans,
are not included. Finally, the percentage of points categorized
indicates the average percentage of all received points which
have been accumulated in the Accumulate Points step (see
III-C1). This indicates with the percentage of the scene which
has been detected as a planar surface.

In all cases, the first set of surfaces is available to be-
gin planning within two seconds. Subsequent surfaces are
identified within three seconds of becoming visible. In all
environments, halving the discretization resolution causes an
approximately 1.6× increase in the number of points received
per second. The detection lag reflects the decrease in speed this
creates. This is present in the simulated simple environment,
which is much less prone to requiring multiple scans to
detect a surface because it lacks small surfaces, but has a
larger effect on the complex environments where an increased
number of points can make the difference between detecting a
surface after one scan or two. The time to first detection also
reflects the decrease in performance resulting from a lower
discretization resolution in the real-world complex environ-
ment. In the simulated environments, where the value of n is
significantly lower, the increased number of points allows the
first surfaces to be detected after only one scan, while the real-

world environment still requires two scans when using both of
the tested resolutions.

The percentage of points categorized shows that, in the
real-world environment, Surface Detection categorizes 70% to
80% of the environment. In simulated environments, which
lack interference from small, non-planar objects which exist
in the real-world environment, the percentage categorized is
higher. In the real-world environment the percentage of the
environment which is categorized into a plane is lower with a
lower discretization. Because most of the non-planar objects’
surfaces are irregular, the discretization resolution has a greater
effect on the number of points on those surfaces, increasing
the percentage of points which lie outside any planar surface.

VI. CONCLUSION

We have presented a process for automatically detecting all
planar surfaces in an environment in real-time using only the
sensors that are commonly found on humanoid robots. These
surfaces can be used in a humanoid robot motion planner,
allowing it to operate in completely unknown environments.
The process runs continuously as the sensor moves throughout
the environment, and can report a new surface within seconds
of the surface becoming visible to the sensor. To achieve this
we use a series of segmentation algorithms to detect surfaces
in the environment and a surface expansion process which
efficiently categorizes points which represent new areas of
existing surfaces. The process is designed to allow extension
into other 3D primitives, in addition to planes. It is also
designed to be agnostic to the type of sensor used, and does not
rely on features of a point cloud which are unique to certain
types of sensor.

Our future work will include changes which allow the
system to make use of additional points captured on existing
surfaces to improve the quality of the surface representation.
We will also consider improvements to the surface expansion
process to be more robust to outliers.

REFERENCES

[1] A. Escande, A. Kheddar, and S. Miossec, “Planning contact points for
humanoid robots,” Robotics and Autonomous Systems, vol. 61, no. 5,
pp. 428–442, May 2013.

[2] K. Bouyarmane and A. Kheddar, “Humanoid Robot Locomotion and
Manipulation Step Planning,” Advanced Robotics, vol. 26, no. 10, pp.
1099–1126, Jun. 2012.

[3] S. Brossette, A. Escande, J. Vaillant, F. Keith, T. Moulard, and A. Khed-
dar, “Integration of non-inclusive contacts in posture generation,” in
IROS, Sept 2014, pp. 933–938.

[4] S.-Y. Chung and O. Khatib, “Contact-consistent elastic strips for multi-
contact locomotion planning of humanoid robots,” in ICRA, 2015, pp.
6289–6294.

[5] S. Brossette, J. Vaillant, F. Keith, A. Escande, and A. Kheddar, “Point-
cloud multi-contact planning for humanoids: Preliminary results,” in
IEEE Conference on Robotics, Automation and Mechatronics, Nov
2013, pp. 19–24.

[6] R. B. Rusu and S. Cousins, “3d is here: Point Cloud Library (PCL),”
in ICRA, Shanghai, China, May 2011.

[7] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva,
“Computing and rendering point set surfaces,” IEEE Transactions on
Visualization and Computer Graphics, vol. 9, no. 1, pp. 3–15, 2003.

[8] T. Rabbani, F. Van Den Heuvel, and G. Vosselmann, “Segmentation
of point clouds using smoothness constraint,” International Archives
of Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. 36, no. 5, pp. 248–253, 2006.

[9] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

[10] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel, “On the shape of a
set of points in the plane,” IEEE Transactions on Information Theory,
vol. 29, no. 4, pp. 551–559, 1983.

[11] J. R. Shewchuk, “Triangle: Engineering a 2d Quality Mesh Generator
and Delaunay Triangulator,” in Applied Computational Geometry: To-
wards Geometric Engineering, ser. Lecture Notes in Computer Science,
M. C. Lin and D. Manocha, Eds. Springer-Verlag, Nay 1996, vol. 1148,
pp. 203–222.

	Worcester Polytechnic Institute
	Digital WPI
	April 2016

	Automatic Contact Surface Detection
	John William Pryor
	Repository Citation

	Untitled

