
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

March 2018

Graph-Based Sports Rankings
Daniel Alfred
Worcester Polytechnic Institute

Matthew Beader
Worcester Polytechnic Institute

Matthew Jackman
Worcester Polytechnic Institute

Ryan Patrick Walsh
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Alfred, D., Beader, M., Jackman, M., & Walsh, R. P. (2018). Graph-Based Sports Rankings. Retrieved from
https://digitalcommons.wpi.edu/mqp-all/1812

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1812&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1812&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1812&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1812&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/1812?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1812&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

A Major Qualifying Project Report
ON

Graph-Based Sports Rankings

Submitted to the Faculty of

Worcester Polytechnic Institute

In Partial Fulfillment of the Requirement for the Degree of

Bachelor of Science

By

Daniel Alfred

Matthew Beader

Matthew Jackman

Ryan Walsh

Under the Guidance of

Professor Gábor N. Sárközy

Professor Craig E. Wills

March 23rd, 2018

MQP-CEW-1801

ii

Abstract

 Sports rankings are a widely debated topic among sports fanatics and analysts. Many

techniques for systematically generating sports rankings have been explored, ranging from

simple win-loss systems to various algorithms. In this report, we discuss the application of

graph theory to sports rankings. Using this approach, we were able to outperform existing

sports rankings with our new four algorithms. We also reverse-engineered existing

rankings to understand the factors that influence them.

iii

Acknowledgements

We would first like to thank Worcester Polytechnic Institute for providing us the

opportunity to gain hands-on experience through its project-based curriculum. We would

also like to extend our thanks to our advisors Professor Gábor Sárközy and Professor Craig

Wills for their invaluable guidance, support, and feedback throughout our time working on

this project. Lastly, we would like to thank all of our friends and family who have supported

us and our education over the past four years.

iv

Table of Contents

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Tables viii

List of Figures x

Chapter 1: Introduction 1

Chapter 2: Background 3

2.1: Graph Theory 3

2.1.1: Sports Data Representation With a Graph 6

2.2: The Minimum Feedback Arc Set Problem 6

2.3: Graph Correctness Metrics 7

2.3.1: Total Backedge Weight 7

2.3.2: Rank Differential 8

2.4: Minimum Feedback Arc Set Solution Algorithms 8

2.4.1: Brute Force 8

2.4.2: Berger/Shor New 2-Approximation Algorithm 9

2.4.3: Hill Climb 9

2.5: Traditional Ranking Algorithms 10

2.5.1: Win-Loss Systems 10

2.5.2: Elo 11

2.6: Factors Within a Ranking Algorithm 12

2.6.1: Point Differential 12

2.6.2: Recency of Game 12

2.6.3: Strength of Schedule 12

2.7: Summary 13

Chapter 3: Base Design 14

3.1: Sports Data Format 14

3.2: Sports Data Collection 15

3.3: Basic Program Structure 15

v

3.3.1: Data Retention 16

3.3.2: Edge Weights 17

3.3.3: Edge Weight Customization 17

3.4: Algorithms 18

3.4.1: Brute Force 18

3.4.1.1: Pseudocode 19

3.4.1.2: Runtime Analysis 19

3.4.2: Berger/Shor New 2-Approximation Algorithm 20

3.4.2.1: Proofs 20

3.4.2.2: Pseudocode 21

3.4.2.3: Runtime Analysis 22

3.4.3: Hill Climb 23

3.4.3.1: Pseudocode 23

3.4.3.2: Runtime Analysis 24

3.4.4: Range of Correctness Search 24

3.5: Testing Considerations 25

3.6: Summary 25

Chapter 4: Base Implementation 26

4.1: General Program Considerations 26

4.1.1: Minimum Feedback Arc Set Evaluation Process 26

4.2: Algorithms 27

4.2.1: Brute Force 27

4.2.1.1: Brute Force Modifications and Optimizations 27

4.2.2: Berger/Shor New 2-Approximation and Preprocessors 28

4.2.3: Hill Climb 29

4.3: Data Collection Script 31

4.4: Bash Testing Script 32

4.5: Rank Comparison Testing Module 33

4.5.1: Generating Rank Comparisons 33

4.5.2: Automated Rank Comparison Testing 36

4.6: Summary 36

vi

Chapter 5: Base Results 38

5.1: Correctness Testing 38

5.1.1: Brute Force 39

5.1.2: Berger/Shor New 2-Approximation Algorithm 41

5.1.3: Hill Climb 44

5.2: Performance Testing 47

5.2.1: Brute Force 48

5.2.2: Berger/Shor New 2-Approximation Algorithm 49

5.2.3: Hill Climb 50

5.3: Summary 51

Chapter 6: Edge Weights 52

6.1: Edge Weight Design 52

6.1.1: Linear Decay 52

6.1.2: Score Normalization (Beta Methodology) 52

6.1.3: Quartile of Losing Team (Strength of Schedule) 53

6.1.4: Alpha/Beta Methodology 54

6.2: Edge Weight Implementation 54

6.2.1: Alpha/Beta Heatmaps 55

6.3: Edge Weight Results 56

6.3.1: Discussion on Alpha/Beta Heatmap Testing 62

6.4: Summary 63

Chapter 7: Top-N Truncated Rankings 64

7.1: Top-N Truncated Ranking Design 64

7.1.1: Rank Snipping for Top-N 64

7.1.2: Internal Truncation and the N+1 Node 64

7.1.3: Internal Versus Externally Specified Top-N 65

7.1.4: Conclusions on the Comparison of Truncated Rankings 66

7.2: Top-N Truncated Ranking Implementation/N+1 Node 67

7.2.1: Truncation of the Adjacency Matrix 67

7.2.2: Creating and Maintaining the N+1 Node 68

7.3: Top-N Truncated Ranking Results 69

vii

7.3.1: Rank Snipping Example on 2016-17 NFL Data 69

7.3.2: Internal Truncation Example on 2016-17 NFL Data 71

7.4: Summary 73

Chapter 8: Range of Correctness 74

8.1: Range of Correctness Design 74

8.1.1: Rank Pool 74

8.1.2: Rank Pool Counterexample and Proof 75

8.1.3: Revised Rank Pool 76

8.2: Range of Correctness Implementation 76

8.2.1: Rank Pool Post-Process Implementation 77

8.2.2: ROC Search Algorithm 80

8.3: Range of Correctness Results 81

8.3.1: Rank Pool Results 83

8.4: Summary 85

Chapter 9: Testing with Sports Rankings 86

9.1: Total Backedge Weight Results 86

9.1.1: National Football League (NFL) Ranking Results 87

9.1.2: College Football (CFB) Ranking Results 90

9.1.3: National Hockey League (NHL) Ranking Results 95

9.1.4: Major League Baseball (MLB) Ranking Results 98

9.2: Rank Differential Testing 100

9.3: Summary 105

Chapter 10: Conclusion 106

10.1: Future Work 107

Bibliography 109

Appendix A: Glossary 111

Appendix B: Alpha/Beta Heatmap Testing (cont.) 113

viii

List of Tables

Table 1: Sports Data and Rankings Collected For Each League 32

Table 2: Sample Rank Comparison Output 35

Table 3: Sample Graphs Used For Base Results Testing 38

Table 4: Brute Force Weighted and Unweighted Correctness 39

Table 5: Brute Force Comparison With and Without Strongly Connected Components (SCCs) 40

Table 6: Brute Force Threading Evaluation Times 41

Table 7: Berger/Shor Strongly Connected Components Comparison Results 42

Table 8: Berger/Shor Node Sorting Preprocessor Results 43

Table 9: Berger/Shor Results on 2016-17 NFL Data 44

Table 10: Hill Climb N+1 vs N+2 Correctness 45

Table 11: Hill Climb Random Restart Correctness 45

Table 12: Hill Climb Sideways Moves Correctness 46

Table 13: Hill Climb Results on 2016-17 NFL Data 47

Table 14: Brute Force Threading Execution Times in Seconds 48

Table 15: Estimations of Brute Force Execution Time with 8 Threads (i7-4790K at 4.0 GHz) 49

Table 16: Average Berger/Shor Execution Time on Random Graphs in Seconds 49

Table 17: Average Hill Climb Execution Time on Random Graphs in Seconds with Comparison

 50

Table 18: Beta Interval Points for American Football 53

Table 19: Rank Snip on Hill Climb Ranking on 2016-17 NFL Dataset 70

Table 20: Internal Truncation on Hill Climb Ranking on 2016-17 NFL Dataset 71

Table 21: Ranges of Correctness Between 2016-17 NFL and 2015 MLB 82

Table 22: Rank Pool Post-Process on 2016-17 NFL using the Berger/Shor Algorithm 83

Table 23: Rank Pool Post-Process on 2016-17 NFL External Ranking (ESPN, Quartiles On) 84

Table 24: Rank Pool Post-Process Applied to 2016-17 NFL External Rankings 84

Table 25: Hill Climbing vs. ROC Search on 2017-18 NFL Dataset 85

Table 26: Number of Teams and Graph Density for Sports Test Cases 86

Table 27: Algorithm Comparisons on 2016-17 NFL (Alpha 0, Beta 0) 87

Table 28: Algorithm Comparisons on 2016-17 NFL (Alpha 0, Beta 1) 87

Table 29: Algorithm Comparisons on 2016-17 NFL (Alpha 1, Beta 0) 88

Table 30: Algorithm Comparisons on 2016-17 NFL (Alpha 0.5, Beta 0.5) 88

Table 31: Algorithm Comparisons on 2016-17 CFB (Alpha 0, Beta 0) 90

Table 32: Algorithm Comparisons on 2016-17 CFB (Alpha 0, Beta 1) 91

Table 33: Algorithm Comparisons on 2016-17 CFB (Alpha 1, Beta 0) 92

Table 34: Algorithm Comparisons on 2016-17 CFB (Alpha 0.5, Beta 0.5) 93

Table 35: Algorithm Comparisons on 2014-15 NHL (Alpha 0, Beta 0) 95

Table 36: Algorithm Comparisons on 2014-15 NHL (Alpha 0, Beta 1) 95

Table 37: Algorithm Comparisons on 2014-15 NHL (Alpha 1, Beta 0) 96

ix

Table 38: Algorithm Comparisons on 2014-15 NHL (Alpha 0.5, Beta 0.5) 96

Table 39: Algorithm Comparisons on 2015 MLB (Alpha 0, Beta 0) 98

Table 40: Algorithm Comparisons on 2015 MLB (Alpha 0, Beta 1) 98

Table 41: Algorithm Comparisons on 2015 MLB (Alpha 1, Beta 0) 99

Table 42: Algorithm Comparisons on 2015 MLB (Alpha 0.5, Beta 0.5) 99

Table 43: 2016-17 NFL Rank Comparison Results (Alpha, Beta) 101

Table 44: 2016-17 CFB Rank Comparison Results (Alpha, Beta) 102

Table 45: 2014-15 NHL Rank Comparison Results (Alpha, Beta) 103

Table 46: 2015 MLB Rank Comparison Results (Alpha, Beta) 104

x

List of Figures

Figure 1: A sample directed cyclic graph 4

Figure 2: A basic cyclic graph 4

Figure 3: A basic acyclic graph 5

Figure 4: A strongly connected component with several cycles 5

Figure 5: 2017-18 NFL example data format 15

Figure 6: Initial Hill Climb implementation with N+1 neighbor comparison 31

Figure 7: Revised Hill Climb implementation with N+1 and N+2 comparisons 31

Figure 8: Berger/Shor percent time off fastest density for each node count 50

Figure 9: Hill Climb percent time off fastest density for each node count 51

Figure 10: 2017-18 NFL heatmap (Sports Illustrated, Quartiles Off) 57

Figure 11: 2017-18 NFL heatmap (Sports Illustrated, Quartiles On) 57

Figure 12: 2016-17 NFL heatmap (Sports Illustrated, Quartiles Off, Home-Field Advantage Off)

 58

Figure 13: 2016-17 NFL heatmap (Sports Illustrated, Quartiles Off, Home-Field Advantage On)

 58

Figure 14: 2016-17 NFL heatmap (NFL.com, Quartiles On) 59

Figure 15: 2016-17 CFB heatmap (ESPN, Quartiles On) 60

Figure 16: 2014-15 NHL heatmap (NHL.com, Quartiles On) 61

Figure 17: 2015 MLB heatmap (baseball-reference.com, Quartiles On) 61

Figure 18: 2016-17 NFL truncated to ESPN top-10 testing 72

Figure 19: 2016-17 NFL truncated to Sports Illustrated top-10 testing 73

Figure 20: Initial rank pool counterexample 75

Figure 21: Lower bound determination in Range of Correctness 77

Figure 22: Rank pool node containers 78

Figure 23: Composition of the hybrid ordering for rank pool post-process 79

Figure 24: Structure of rank pool post-process implementation 80

Figure 25: NFL 2016-2017 total backedge weight results 89

Figure 26: CFB 2016-2017 total backedge weight results 94

Figure 27: NHL 2014-2015 total backedge weight results 97

Figure 28: MLB 2015 total backedge weight results 100

Figure 29: NFL.com vs. ROC Search rank differentials Alpha/Beta heatmap 102

Figure 30: ESPN vs. Hill Climb rank differentials Alpha/Beta heatmap 102

Figure 31: Associated Press vs. Berger/Shor (Y3) rank differentials Alpha/Beta heatmap 103

Figure 32: Bleacher Report vs. Berger/Shor (Y4) rank differentials Alpha/Beta heatmap 103

Figure 33: NHL.com vs. Hill Climb rank differentials Alpha/Beta heatmap 104

Figure 34: Baseball Reference vs. Berger/Shor (Y4) rank differentials Alpha/Beta heatmap 105

Figure 35: 2016-17 NFL heatmap (ESPN, Quartiles On) 113

Figure 36: 2016-17 NFL heatmap (Sports Illustrated, Quartiles On) 114

xi

Figure 37: 2016-17 CFB heatmap (Associated Press, Quartiles On) 115

Figure 38: 2016-17 CFB heatmap (Coaches, Quartiles On) 115

Figure 39: 2016-17 CFB heatmap (Bleacher Report, Quartiles On) 116

Figure 40: 2016-17 CFB heatmap (Sonny Moore Top-25, Quartiles On) 117

Figure 41: 2017-18 NFL heatmap (NFL.com, Quartiles Off) 117

Figure 42: 2017-18 NFL heatmap (USA Today, Quartiles Off) 118

Figure 43: 2017-18 NFL heatmap (NFL.com, Quartiles On) 118

Figure 44: 2017-18 NFL heatmap (USA Today, Quartiles On) 119

1

Chapter 1: Introduction

Sports and sports rankings have attracted the interest and attention of people across the

world for decades. For years, people have tuned into sporting events broadcast over radio or

television, or purchased tickets to see them live. In North America alone, the sports industry was

worth $60.5B in 2014, and is expected to continue growing [11]. Recent technological

developments have allowed the spread of sports discussion from talk radio and television to

hobbyist websites. Furthermore, the introduction of online fantasy leagues where users can

assemble teams of their favorite players and track their progress have become common with sports

enthusiasts and their friends and coworkers. In 2015, American Express expected nearly 75 million

Americans to participate in fantasy football, spending almost $4.6B [3].

 In addition to the developing following in sports, particular interest has circulated around

sports rankings. To best understand sports rankings, we need to understand what a ranking

represents in general. For our purposes, a ranking can be defined as a unique ordering of some

collection of entities, with an implied hierarchy of which entities are better than others based upon

a given comparison metric. In the context of sports, a ranking is an ordering of teams or players

based on the metric of their current performance against other teams or players in recent games.

Sports rankings can come from many different sources, from analysts at news stations and sports

networks to hobbyists. General comparison and performance metrics applicable across many

sports include win-loss ratio and points scored within games. The differences in how each person

or system weigh these factors drive much of the speculation that goes into sports ranking analysis

and impact the finalized ranking each person or system produces.

 For this project, we explore sports rankings from a different perspective. Our goal is to

apply graph theory to sports rankings. In computer science, a graph is a data structure which can

represent information in the form of nodes and edges, where nodes signify different entities, and

edges indicate links or associations between nodes. Specifically, we aim to acquire and model

sports data for exploration in graph theory to better understand how sports rankings are formulated.

For our purposes, teams are represented as nodes in a graph, while matchups and games between

these teams are represented as the directed edges between them. When given a ranking, forward

edges within the graph are those that agree with the ordering in the ranking, and backward edges

within the graph are those that disagree with the ordering in the ranking. The crux of our approach

is based upon the Minimum Feedback Arc Set problem [12], [30], a well-known problem in

theoretical computer science. Due to the computational complexity of the Minimum Feedback Arc

Set problem, determining the optimal placement of teams in sports rankings using graphs is not

computationally feasible in a reasonable timeframe without approximations.

 Over the course of this project, we provide several contributions to rank generation in the

context of sports rankings. Specifically, we:

2

1. apply graph theory and the Minimum Feedback Arc Set problem to sports rankings with a

unique approach different from the more common formulaic ranking approach,

2. implement rank generation through a brute force approach and three approximation

algorithms for the Minimum Feedback Arc Set problem,

3. reverse-engineer sports rankings published online utilizing our graph data structures, and

4. outperform existing sports rankings using our own algorithms according to our evaluation

metric.

In this project, we successfully outperformed each existing and external ranking we tested

according to our metrics in 2016-17 National Football League (NFL), 2016-17 NCAA Division I

Football Bowl Subdivision (CFB), 2014-15 National Hockey League (NHL), and 2015 Major

League Baseball (MLB) seasons using our algorithms and graph-based approach. Our algorithms

are successful in these test cases, where most of them consistently outperformed all of our external

rankings. For example, for 2016-17 NFL ranking results, existing rankings from ESPN, NFL.com,

and Sports Illustrated produce out-of-order rankings with roughly 16% discrepancy between

rankings and game results, while the best of our algorithms produce rankings with only 13%

discrepancy. Additionally, we apply this metric and the metric of rank differential to reverse-

engineer external rankings and determine how important they consider certain factors when

developing rankings.

 In this report, we detail the background knowledge necessary for this project as well as the

approaches, applications, and tests we performed to develop our contributions. Chapter 2

introduces the relevant background information to our report, including graph theory, the

Minimum Feedback Arc Set problem, a synopsis of our algorithms, traditional ranking approaches,

and factors for consideration in ranking algorithms. Chapter 3 discusses our design considerations

for the programs and scripts we developed to support these algorithms, as well as methodologies

explored with respect to sports ranking factors. We then transition from our design of these features

to implementation in Chapter 4, noting any modifications encountered during implementation of

the design. Chapter 5 reviews test cases we conducted on our base implementation alongside

analysis of the results. Chapter 6 describes our approach to handling edge weights within the graph,

Chapter 7 explores different methods of generating and handling reduced-size rankings, and

Chapter 8 introduces a new post-processor and ranking algorithm we developed. Our full sports

test cases are analyzed and discussed in Chapter 9, and our project conclusion and suggested future

work are included in Chapter 10. Appendix A contains a glossary for the terminology used in this

report and Appendix B displays additional heatmap evaluation of existing rankings.

3

Chapter 2: Background

 In this chapter, we present the relevant information necessary to understand this project

and our developments. We begin with a brief introduction of graph theory and the definitions and

concepts used throughout this report. We introduce the Minimum Feedback Arc Set problem, the

foundation for this project, and its application towards sports rankings. Different metrics for

evaluating sports rankings when considering the Minimum Feedback Arc Set problem are then

explored. Afterwards, three of our four ranking algorithms are introduced alongside their origins

and applications. We then summarize more traditional, formulaic methods of generating rankings.

Finally, we close the chapter with discussion about potential factors considered within these

ranking formulas.

2.1: Graph Theory

 In this section, we introduce graph theory with the concepts and definitions described in

[22]. A graph is G = (V, E) consisting of V, a nonempty set of vertices (or nodes) and E, a set of

edges. Each edge has either one or two vertices associated with it, called its endpoints. An edge

is said to connect two endpoints. For example, a graph structure can be used to model the location

of cities within a region. Each city is represented as a node, which can contain information such

as the city’s name and its population, while each edge represents the existence of a link between

the two nodes or cities it connects. With this information, search algorithms can be applied on the

graph to determine if a path exists between two given cities.

 One important property of graphs relating to this project is whether a graph is unweighted

or weighted. An unweighted graph does not assign any values to its edges, and uses its edges just

to represent association and connection. A weighted graph contains edges that each have a

numerical value as an “edge weight.” An edge weight has many uses; for instance, edge weights

can be applied to the city example above to denote the distances between cities, allowing for

algorithms to determine which paths should be taken when traveling between cities if several exist.

 Another important property of graphs is whether they are directed or undirected. A

directed graph is defined as G = (V, E) with a nonempty set of vertices V and a set of directed

edges E. Each directed edge, or arc, is associated with an ordered pair of vertices. The directed

edge associated with the ordered pair (u, v) is said to start at u and end at v. The indegree of a

vertex v is the number of edges with v as their ending vertex, and the outdegree of a vertex v is

the number of edges with v as their starting vertex. Figure 1 is an example of a directed graph,

where each directed edge contains an arrowhead pointing towards the ending node from the

starting node. Following Figure 1, we can use the directed edge from node A to get to node C, but

we cannot use the edge pointing to node E to get to node C because the relation is not bi-directional.

Conversely, an undirected graph is bi-directional, where every edge implies that the source and

destination nodes are reachable from each other using only that edge.

4

Figure 1: A sample directed cyclic graph

 Additionally, graphs can be classified on whether or not they contain cycles. To understand

cycles, we must first define a path. A path from vertices A to B for a directed graph is a sequence

of edges (x0, x1), (x1,x2), (x2,x3), … , (xn-1, xn) in G, where n is a nonnegative integer, and x0 = A

and xn = B, that is, a sequence of edges where the terminal vertex of an edge is the same as the

initial vertex in the next edge in the path. A path x0, x1, x2, … , xn is defined to have a length n. A

cycle is a path of length n ≥ 1 that begins and ends at the same vertex.

The concept of cycles within graphs can be used to define cyclic and acyclic graphs. A

cyclic graph contains one or more cycles, while an acyclic graph does not contain any cycles.

Figure 2 depicts a graph with a cycle containing nodes A, B, and C, as there is a path for each node

in the graph which begins and ends at the same node. However, if we were to remove the directed

edge from node C to A in Figure 2, the graph would be acyclic as shown in Figure 3.

Figure 2: A basic cyclic graph

5

Figure 3: A basic acyclic graph

 Using the collection of edges within a directed graph, a ranking of its vertices can be

generated. A ranking of a directed graph can be defined as a unique ordering of some collection

of entities, with an implied hierarchy of which entities are better than others based upon a given

comparison metric. If given a ranking for a directed cyclic graph, the distinction must be made

between forward edges and backward edges. A forward edge is an edge that agrees with the

ranking; its existence indicates that the ordering of one node above another is correct. Conversely,

a backward edge, or backedge, is an edge that disagrees with the ranking; its existence indicates

that the ordering of two nodes may be incorrect.

Following Figure 2, two example rankings can be generated: A>B>C and A>C>B.

Examining the first ranking, A>B>C, shows that two forward edges occur on the graph: (A, B)

and (B, C), because these edges agree with the ranking provided. However, the edge (C, A) is a

backedge, because its existence states that node C should be ranked higher than node A, but it is

not. The second ranking, A>C>B, has only one forward edge on the graph, (A, B). This ranking

has two backedges (C, A) and (B, C). Both of these rankings are valid, but consideration must be

given to the number of backedges for a ranking when applied to a graph to determine how accurate

the ranking is for that graph.

Figure 4: A strongly connected component with several cycles

The final property of graphs relevant for this report is connectedness. A directed graph is

a strongly connected if there is a path from A to B and from B to A whenever A and B are vertices

in the graph. Specifically, for a directed graph to be strongly connected, there must be a sequence

of directed edges from any vertex in the graph to any other vertex. Following this concept, strongly

6

connected components are subgraphs of a directed graph G that are strongly connected but not

contained in larger strongly connected subgraphs, that is, the maximal strongly connected

subgraphs. In sum, a strongly connected component requires that any node in the component be

reachable from any other node in the component by a path between them. Following Figure 4

above, nodes A, B, and C are all reachable from each other, and they are the maximal strongly

connected subgraph, thus they form a strongly connected component. A strongly connected

component contains several cycles, also demonstrated in Figure 4. Two cycles exist in this figure:

a cycle containing nodes A and B, and a cycle containing nodes A and C.

2.1.1: Sports Data Representation With a Graph

When representing sports data with a graph structure, we assigned each sports team, or

player if analyzing a single-person sport, a node, and each game played an edge between the two

nodes to signify the relation between them. These edges were directed, where the winning team

was the source node of the edge and the losing team was the destination node. However, this

presented a problem if a tie occurred and no clear winner was determined. To address this, a tie

was represented with two directed edges pointing between both teams. Although this resulted in

more edges within the graph than total games played, it allowed the graph to maintain information

about the tie, and signified that, based on that tie alone, neither team could be determined as better

than the other.

2.2: The Minimum Feedback Arc Set Problem

 The core of this project relates to the Minimum Feedback Arc Set problem. This problem

is based upon one of Richard Karp’s 21 original NP-Complete problems [12], the Feedback Arc

Set problem. The goal of the Feedback Arc Set problem is to find a set of edges within an input

directed graph that, when removed, results in a directed acyclic graph [30]. Further, a feedback arc

set is minimum if there exist no smaller feedback arc sets for a given graph [30]. By removing the

fewest edges possible, the Minimum Feedback Arc Set removes the cyclic property of the graph

while maintaining more information than other feedback arc sets, as any unnecessarily removed

edges result in information loss of the graph. The Feedback Arc Set problem has applications in

varying fields of computer science, ranging from operating systems and process scheduling to

database systems [7].

 In order to understand NP-Completeness and how it relates to the Minimum Feedback Arc

Set, we must define the P versus NP Problem in theoretical computer science. The class P, which

stands for “polynomial time,” describes a set of problems where solutions can be generated in a

time value related to a polynomial of the size of the input to the problem. The class NP, which

stands for “non-deterministic polynomial time,” describes a set of problems where solutions can

be verified efficiently in polynomial time [8]. If P = NP, we could demonstrate that every problem

where a solution can be verified efficiently can also have a solution generated efficiently. However,

most computer scientists believe that P ≠ NP and that no polynomial time algorithms exist to solve

NP-Complete problems. Thus, the NP-Complete nature of the Minimum Feedback Arc Set

7

problem means that we cannot efficiently generate a solution, so we must utilize approximations

instead.

The descriptions of the Feedback Arc Set and Minimum Feedback Arc Set problems above

apply in the cases where the input graph does not utilize edge weights. However, in the case of

input graphs which contain edge weights, the approach must be adapted. Unweighted graphs can

be considered as weighted in this adaptation, where each edge has a weight of 1. In this context,

when searching for the minimum feedback arc set, we are searching for the set of edges with the

smallest total edge weight that remove all cycles from the graph, effectively maintaining the

greatest amount of edge weight within the graph rather than maintaining the greatest number of

edges.

2.3: Graph Correctness Metrics

 For the purpose of evaluating sports rankings in this project, we needed metrics to

determine how accurate these rankings were. Two options are presented below, both of which were

applied in this project. The first option is total backedge weight, which is centered in the weighted

Minimum Feedback Arc Set problem; the second option is rank differential, a more comparative

approach.

2.3.1: Total Backedge Weight

The first metric we investigate for evaluating sports rankings is total backedge weight. This

metric involves applying a given sports ranking to a graph of sports data, using the node and edge

format described in Section 2.1.1, and summing the weights of backedges for that ranking to get

the total backedge weight. The weighted Minimum Feedback Arc Set problem suggests that if

one ranking has more total backedge weight than another ranking, then the first ranking is less

accurate for this data set. Indeed, rankings which place teams out of order will end up generating

more backedges, thus having a higher total backedge weight. Rankings which rearrange the teams

to remove backedges with as much total backedge weight as possible will be ignoring games with

the smallest possible impact in the sports season and will subsequently be more accurate.

One benefit to the total backedge weight metric is that is an absolute metric. This means

that rankings can be evaluated individually with this metric and are not dependent on other

rankings for comparison. Thus, all rankings for a given graph can be compared against each other

with no modification. The downside to this approach is ambiguity with the total backedge weight.

Unless the total weight of the graph is presented, it cannot be determined whether the total

backedge weight for a ranking is large or small. Otherwise, an additional ranking can be evaluated

simultaneously to determine which ranking results in a better total backedge weight, but this

approach removes the absoluteness of the metric.

8

2.3.2: Rank Differential

 The second metric for evaluating sports rankings we explore is rank differential. Rank

differential, also referred to as rank comparison, is a comparative metric, where its basis depends

on the correctness of a control ranking. This metric is primarily used to establish relative

correctness between two rankings for the same graph. To calculate the rank differential, the

differences in rank number of teams between the control ranking and a test ranking are computed

and averaged over all the teams. The resulting value indicates that, on average, the test ranking can

be expected to place teams the given number of positions out of order when compared to the

control ranking. Rank differential has foundations within the total backedge weight metric as well:

if two rankings have a rank differential of 0, that means that both rankings are identical, so they

must have the same backedges and subsequently the same total backedge weight.

 An advantage to this approach for analyzing sports rankings is its simplicity. At a glance,

it is easier to understand and present rank differential compared to total backedge weight.

Additionally, no information about the graph or the specific ordering of teams in each ranking is

necessary to convey the rank differential metric. The main disadvantage of this approach is its

relative scoring and reliance on a control ranking. If looking to generate the best ranking for a

graph, the rank differential metric is dependent on having the best ranking as the control to

compare against. However, this approach is sufficient if the goal is to better understand what

factors influence the control ranking by testing which approaches bring the test ranking closer to

the control.

2.4: Minimum Feedback Arc Set Solution Algorithms

When considering sports rankings from a graph-based approach, we needed to implement

algorithms to determine or approximate the Minimum Feedback Arc Set to find which edges from

each sports data set could be removed to generate the best ranking. As mentioned in the

Introduction, we implemented four different algorithms for use in our sports data sets: a brute force

approach, the Berger/Shor New 2-Approximation algorithm, a Hill Climbing algorithm, and a

variation of Hill Climb using the iterative metric of variance in rankings.

2.4.1: Brute Force

 Brute force is defined in computer science as the approach of trying all possible solutions

for a problem until the best one is found [5]. Because brute force checks all possible solutions to a

problem, it is guaranteed to find the best solution. Brute force approaches have practical

applications in computer science, such as generating solutions to string matching and comparison

[5]. However, the major drawback to brute force is that, because all possible solutions are checked,

completion of the algorithm often does not occur within reasonable time. In the string comparison

application, if brute force is searching for the occurence of one set of non-contiguous characters

in order within a string, the algorithm will take a factorial amount of time to complete, increasing

very quickly as the size of the problem increases. Thus, larger problems are often not

9

computationally feasible to solve with a brute force solution, unless the problem space can be

reduced.

2.4.2: Berger/Shor New 2-Approximation Algorithm

 The Berger/Shor New 2-Approximation algorithm was developed by Bonnie Berger and

Peter Shor as an approximation to the Maximum Acyclic Subgraph problem [1]. The Maximum

Acyclic Subgraph problem accomplishes the same goal as the Minimum Feedback Arc Set

problem, except rather than returning the minimum feedback arc set, it returns the graph without

those arcs [1]. Given the NP-Complete nature of these problems, there was a need to develop

approximations that could terminate in polynomial time but would yield results close to the actual

solution.

This algorithm guarantees that any cycle that exists in the input graph will be broken in the

output graph: all nodes in the input graph are evaluated once, and during evaluation of each node,

either its incoming or outgoing edges are discarded from the output graph, such that at least one

edge of every cycle will be discarded, and the cycle broken [1]. Additionally, because it removes

the larger of the two sets of edges for each node, the Berger/Shor algorithm always retains at least

half of the edges within the graph. Finally, because each node is only visited once in this

approximation, this algorithm completes in polynomial time, which makes approximating

solutions to the Minimum Feedback Arc Set computationally feasible.

2.4.3: Hill Climb

 Hill climbing is a greedy local search algorithm commonly used in artificial intelligence

and is useful for solving optimization problems. A local search algorithm is an algorithm that looks

at a single state when searching rather than a tree of paths. Changes in local search algorithms are

typically to neighboring states. Greedy algorithms make decisions by choosing the state that is best

in any given instance. The hill climbing search algorithm is a looping procedure which

continuously moves in the direction of an increasing value of some success heuristic. During each

loop, neighboring states of the graph are observed and the best possible neighbor state is chosen.

This process continues until there is no longer any improvement in the heuristic value for any

neighbor state [23].

 Though hill climbing is quick to solve problems, it can get caught in a local maxima or

local minima. A local maxima is a point for which the goal heuristic value reaches the maximum

for neighboring states. The goal for the hill climbing search is to reach the global maxima, but it

is impossible for a hill climbing search to know if a local maxima is also the global maxima. The

local maxima problem can be somewhat mitigated through random restarts. Random restart hill

climbing requires restarting the hill climbing loop multiple times with random initial states in the

hope that one of these states will reach a better local maxima, or even reach the global maxima

[23].

The hill climbing search can also struggle with plateaus in the state space. A plateau is a

scenario where all of the neighboring states have the same heuristic value. Hill climbing can get

10

stuck on a plateau since the neighboring states are not showing improvement for the hill climb

search to choose. Plateaus can be dealt with using sideways moves, which are an allotted amount

of occasions where the hill climbing search will settle for equivalent values of the heuristic in the

hope that there will be improvement further in the state space [23]. Using these improvements, hill

climbing is a suitable approximation approach for optimizing an ordering of nodes.

2.5: Traditional Ranking Algorithms

 Many methodologies have been formulated to develop sports rankings without the use of

graph theory. Some of the rankings produced by these methodologies are earned rankings while

others are predictive. Earned rankings are based on prior feats whereas predictive rankings are

ones that most accurately predict the outcome of a future game [24]. Earned rankings can be used

to verify a given ranking and provide a basis for predictive rankings. A ranking can be both earned

and predictive if, for example, the same ranking that is created after a season ends is then used to

predict a ranking for the next season. The ranking is based upon the team’s record over the most

recent season and therefore earned. Because that ranking is then used to predict the next season’s

ranking, it is also predictive.

Some methodologies, like win-loss systems, have features that lend themselves well to

being an earned ranking while a methodology such as Elo is useful for the purposes of predicting

future game outcomes.

2.5.1: Win-Loss Systems

Win-loss systems are useful when producing a ranking as they do not require much data to

compute. For each team, only two numbers need to be recorded, which correspond to the team’s

number of wins and losses. If needed, a third value can also be kept to represent the number of

matches that ended in a draw, tie, or were otherwise canceled. This is not always needed, however,

as some sports do not allow for a game to end with a tie.

An example of a win-loss system is shown in (1) [24], where the only influence in a ranking

is whether or not a team wins. In (1), R represents the outcome between a home team and an away

team, Sh represents the score of the home team, and Sa represents the score of the away team. If

both teams are playing at a neutral venue, then assigning the variables is arbitrary.

11

Win-loss systems are useful when only a limited amount of data is available, since the system only

considers victories and losses and not other factors in a game like score differential or penalties

accrued by one team. However, because these systems only take into account the winner of the

game, additional information about the match that could be accounted for is lost, as there is no

distinction between a team that won a game by a blowout and a team that won a game by one

score. Given that score differentials can vary widely across sports, a win-loss system can be easy

to apply when looking at a variety of sports.

2.5.2: Elo

 Elo is a particular team’s ranking in relation to other teams using a numerical score [28].

The equation used for calculating Elo for world football teams is shown in (2) [29].

Rn = RO + K • (W - We) (2)

Updating the Elo for world football teams can be computed using the formula, where RO represents

the original rating of the team before the match and Rn represents the updating rating after the

match. K is the weight constant for the tournament being played which varies in value from 60 for

World Cup finals to 20 for friendly matches [29]. W is the result of the game where W is 1 if the

outcome was a victory, 0.5 if the outcome was a draw, or 0 if the outcome was a loss. We represents

the expected result of the game and is calculated using the formula

We = 1/(10(-dr/400) + 1) where dr is the difference in ratings plus 100 points for a team playing at

home [29].

When teams play a match, Elo is gained by the victor and lost by the loser. The amount of

Elo gained or lost by a team is dependent upon the Elo of the competitors. If the difference in Elo

is large between teams, then the lower Elo team has more to win than it has to lose, while the

higher Elo team has more to lose and not as much to win. At the start of a season, teams all begin

with the same amount of Elo, and as the season progresses, teams slowly gravitate towards their

final skill rating, thereby providing a numerical ranking of those teams. This is especially useful

in situations with large numbers of competitors, where trying to compute an ordering would take

significant time. One downside to Elo is that one bad game for a highly ranked team can have a

large, negative impact on their rating. In the case of an upset, where a lower-ranked player beats a

higher ranked player, their Elo is adjusted, allowing for simplistic self-correcting. Because of this

feature, low-ranking teams who score an upset victory over a highly-ranked team will have their

scores increased accordingly. In the future, this may be used to determine the following weeks’

schedules and can add additional pressure to games where there are more points to be won.

The Elo system was adopted by the World Chess Federation in 1970 and in the rising

popularity of e-sports, Elo has also become one of the predominant ranking systems for various

Leagues [9] [17].

12

2.6: Factors Within a Ranking Algorithm

 With the wide variety of ranking methodologies, different factors are considered when each

of those rankings are produced. Two different rankings may be produced from the same dataset

depending on what criteria was analyzed. In the following sections, several key factors that ranking

methodologies consider are addressed and expanded upon.

2.6.1: Point Differential

 Some ranking systems place emphasis on the final score of the game and use the score

differential to assign “points” to a team. If two or more teams end with the same win-loss record,

a score-differential system can be used to determine which team has the overall highest ranking

from their games and thereby produce an ordering of the teams. An example of this is shown in

(3) [24].

Rg
SD(Sh , Sa) = Sh - Sa =∆Sha (3)

In the formula shown in (3), a system like this would reward teams for running up the score. If a

game is a blowout then the winning team can earn more points from a 50-7 end-game score than

a 35-7 end-game score. Since ΔSha is the difference in score between the home team and the away

team, there is no distinction between a 14-7 end-game score and a 7-0 end-game score [24].

Though not always relevant, score differential systems do give a large advantage to the better team

in an unequal skill match-up. If an away team were to blow out the home team, then the result

would be a very large, negative value which may inflate or deflate a team’s overall score, making

tracking of individual game outcomes much more important overall.

A system like this, however, is somewhat limited to sports where scoring is a simple

comparison between two teams. Sports like chess, for example, would have harder times applying

a ranking system such as this due to the lack of “scoring” mechanic.

2.6.2: Recency of Game

 A potential factor taken into consideration by traditional ranking algorithms is how recently

each game was played. Games played near the end of the season should, theoretically, provide

better insight into a team’s current performance than games played at the start of the season, as

many factors can change a team’s performance throughout a season. For the purposes of our

project, we focused on the date of the game. When looking at data across several years, we

determined that more recent data can be used to identify trends in a team’s performance and affect

future predictive rankings.

2.6.3: Strength of Schedule

 Each game played within a sports season represents a skill matchup between two teams.

The skill of the opponents a team will face differs by team and can impact the win-loss ratio of

13

that team over the course of a season. Weekly rankings of teams can be vastly skewed depending

on which teams played each other recently. Low-ranking teams who play against high-ranking

teams will most likely end the week with losses whereas the highly ranked teams should end the

week with victories. In large leagues such as the NCAA Division I Football Bowl Subdivision,

there are over 120 teams and not all teams will play against each until the post-season games [15].

Using divisions to divide up the teams makes it less likely that two teams will face each other until

after the regular season. Predictive outcomes for these games can vary widely depending on what

a team’s schedule looks like throughout the season. If one team consistently plays teams that are

ranked lower, it is natural to assume that the first team will be very highly-ranked. However, this

may be falsely representing their actual skill level when compared to others in the sports league.

With worse opponents, basic win-loss systems begin to show their flaws as which teams are in a

match is sometimes just as important as the outcome of the game.

2.7: Summary

In this chapter, we reviewed graph theory and relevant concepts to the Minimum Feedback

Arc Set problem for this project. We explored metrics to analyze rankings and introduced the

background behind our selected ranking algorithms. We then discussed the theory behind

formulaic ranking algorithms and the potential factors they consider.

14

Chapter 3: Base Design

 In this chapter, we introduce decisions made relating to the overarching design of our

program, data collection, and data representation within the graph structure. We open by

discussing considerations for obtaining and formatting relevant sports data for use with our

algorithms and how to apply this data to our graph as edge weights. We then discuss each of our

algorithms and their applications to graph theory, their runtime complexities, and our contributions

to them. Finally, we plan how to efficiently add testing support to our program for future test cases.

3.1: Sports Data Format

In order to best apply our project and its resources to practical applications, we developed

a common format for all sports input data we wanted to collect. Within a given sport, there are

many metrics that can be considered when generating a ranking, such as offensive or defensive

performance. However, many of these metrics are specific enough that they cannot be applied to

more than a few sports. To keep our program as flexible as possible, we needed to isolate factors

important in determining the rank that are present in the majority of popular sports. Additionally,

we wanted the presentation of our datasets to remain human-readable in case further analysis was

necessary in the future. The resulting format we designed required the following, in order:

● The name of the winning team or player

● The name of the losing team or player

● The winner’s score

● The loser’s score

Additionally, we designed our format to accept the following data, though not require it:

● Whether a tie occurred

● When the game was played

● Where the game was played, whether at one team’s home field, or a neutral venue

This format allowed us to capture a substantial amount of information applicable across all sports

relevant to this project and apply it to the node weights in our graph. Once the format was agreed

upon, sports data could be collected and processed for usage in testing against our rankings. Figure

5 below shows our data format applied to the first week of the 2017-18 NFL season, containing

the two team names, their scores, the tie flag, the date, and the location flag.

15

Figure 5: 2017-18 NFL example data format

In the case of the NFL, where games are measured on a weekly basis, the week number is

substituted in place of the date as shown above; otherwise, the date follows a YYYY/MM/DD

format. The location flag allows for home-field advantage to be applied when assigning edge

weights, where 0 signifies a neutral venue, 1 signifies that the game was played at the winning

team’s venue, and 2 signifies that the game was played at the losing team’s venue.

3.2: Sports Data Collection

In order to acquire various seasons of sports data, we saw the need to design a data

collection tool that could pull the information from web sources. One such website, sports-

reference.com, offered data for essentially every season of several major sports, all in similar

formats. Unfortunately, the data was not offered in a format beyond bare HTML that could be

automatically collected or could be directly downloaded for free. Node.js was chosen for our

collection tool, as npm contains several virtual DOM implementations and the nature of the

language allows the processing of a page to be exactly the same as if processing with JavaScript

in a browser. Speed and efficiency of the collection script was not a concern, due to how small the

data of an individual season is and how the server we collect from ultimately determines how

quickly data can be collected, making Node.js a reasonable choice.

3.3: Basic Program Structure

Development of our rank generation program in this project first began with the

implementation of a graph to maintain our sports data and the framework to store, manipulate, and

output sample graphs. We initially developed a proof of concept for this program in Python, which

read in a graph from a file and used a collection of Node and Edge objects to maintain it. However,

after discussion, we migrated this proof of concept program to C++ and adopted an adjacency

matrix for our graph’s data structure. An adjacency matrix A of graph G is defined as “the n x n

zero-one matrix with 1 as its (i,j)th entry when vi and vj are adjacent, and 0 as its (i,j)th entry when

they are not adjacent” [22]. The migration to C++ offered us greater control over memory

management, while the adjacency matrix greatly reduced memory usage and computation time.

16

Using an adjacency matrix improved the ease of node and edge mutation, and simplified the

generation of adjacency lists, or lists of neighboring nodes from a given node.

We planned for the rank generation program to have two main parts. The first main part of

the program was focused on handling user inputs and storing data that would need to be reused

between algorithm runs. This functioned as a wrapper for the second main part of the program,

which conducted the execution of the algorithms themselves. The general execution flow of the

program is as follows: first, the program parses the input command line arguments and enables or

disables the corresponding features as specified. The only required command line argument is a

text file containing the sports data to be parsed into a directed graph. Second, the program reads

the graph input file and generates an adjacency matrix according to the specified configurations

for weighting edges. Next, the program acts as a wrapper and executes one or multiple ranking

algorithms on the imported sports data. Finally, the program executes any post-processing or

testing on the data before outputting results and exiting.

3.3.1: Data Retention

 One of the first obstacles to working with the Minimum Feedback Arc Set problem was

importing sports data as a graph that can be read and modified. This data needed to be first

translated into nodes and edges, at which time it would be stored until needed by a rank generation

algorithm. One of the main motivations for the switch from the initial Python implementation to

C++ was for greater performance in the face of the NP-Complete nature of the Minimum Feedback

Arc Set problem. The input graph would need to be accessed hundreds of thousands of times in

the rank generation process, so performance of graph access was of great concern. Retention of

graph data was redesigned into an adjacency matrix, rather than node and edge objects. Inside the

adjacency matrix, each cell would hold the weight of the directed edge from the source node

represented in the row to the destination node represented in the column.

 As edges in the input graph were retained in an adjacency matrix, the information for nodes

was retained as integer indices of the associated rows and columns in the adjacency matrix that

each node referred to. The indices in the adjacency matrix could then be referenced in an index in

a vector which contained the names of the nodes in the input graph. In the context of this project,

these node names would refer to all unique team names in the input dataset. The decision to regard

nodes as integers during computation greatly simplified the process of handling nodes in the

program. From arbitrarily sized names of teams, node information was condensed down into a

small, statically sized amount of memory that could be used both to retrieve the node’s name as

well as access relevant edge weights in the adjacency matrix. Looping through a list of nodes was

as simple as looping through an array or a vector of integers. The maximum number of nodes was

also held globally in the program to easily know how many indices to loop through if all nodes

needed to be iterated through. The maximum number of nodes was also used to signify which parts

of the adjacency matrix were valid. Through referencing nodes as integers, the creation and

manipulation of orderings was a simple and consistent process that proved to simplify the more

complex task of generating rankings.

17

3.3.2: Edge Weights

Another important consideration when importing sports data into a graph structure was

how to assign weights to each edge. The first implementations of our program used unweighted

directed edges, where the weights for edges could only be 1’s. Essentially, each edge only signified

a win or loss, similar to how sports data would operate in an unweighted graph. Unweighted graphs

led to greatly simplified data input and computation as only the winning team name and losing

team name were required for input, but this resulted in the loss of crucial information about the

game during rank calculation. Thus, a binary wins and losses system for developing our rankings

was not sufficient.

Discussion on other relevant information to use in our rankings led us to the conclusion

that point differential, strength of schedule, home-field advantage, and recency of game all

impacted the importance of a win of one team over another. All of these factors except strength of

schedule were represented explicitly within our data format and could easily be computed and

applied as needed after being read in from the file. For simple testing in our first few program

revisions, we began weighing each edge as the point differential of the game. Point differential

appeared to be the most reasonable gauge of the magnitude of a victory and became the main basis

of edge weights. In addition to point differential, home-field advantage and recency appeared to

be good modifiers of the significance of a game result. We continued experimenting with different

edge weight factors in the interest of better modeling sports data within a graph throughout this

project, where further development is discussed in Chapter 6.

3.3.3: Edge Weight Customization

 As part of the process of importing the sports data into a directed graph, the weights of the

directed edges needed to be calculated from each game. This warranted the need for a system to

condense sports data into edge weights. We designed a customizable framework for importing

edges from columns within our sports data files. Utilizing a system of interactive prompts, the user

could tell the program how to handle each of the additional data columns on a column-by-column

basis. We designed the customization system in this fashion because some sports have different

relevant data that may be unique to the sport. This configuration was also designed to be output to

a readable text file generated through the program. The weight configuration file could then be

provided as a command line argument and read into the program to skip the interactive prompts

and automatically configure the weights as specified. This configuration file could then be shared

between testers to replicate the weight configurations that produced a ranking. The weight

configuration file also allowed the configuration variables to be edited outside of the program.

Multiple configurations held in easily editable external files allowed comparison of results

between different weight configurations.

 To maintain flexibility for our weight configuration system, we designed several

configurations for the columns of data within an input file. The two most basic kinds of

configurations we created took the value in the column at face value and multiplied it either by

one or by a configurable ratio. Another couple configurations also allowed the user to specify that

18

a column contains the week or date of the match, which is information that could be used in the

recency of game process. Columns could also specify which team was the home team. Finally, we

allowed columns of information to be ignored altogether in the configuration system. This

powerful tool allowed us to filter out irrelevant data from our input files to suit the changing testing

requirements as our project developed. All of these configurations could be specified in any order

and allowed us great flexibility in handling variable amounts of data that could differ between

sports.

 After reading each game from the input sports data file, all of the factors of the edge weights

were consolidated into a single edge weight to indicate the significance of that edge. In the

consolidation process, any post-processing on the edge weights would be applied. Most notably,

this stage of the edge reading process would apply any decay or normalization in a process outlined

in Chapter 6. Once the edge weight calculation had completed, the edge weight would be applied

to the appropriate cell in the adjacency matrix. In the case where two or more edges shared origin

and destination teams, we decided to sum the edge weights with the reasoning that an edge

becomes even more significant if there are more than one games that support it. However, in order

to not lose any information in the process of summing edge weights between the same two nodes,

we maintain a separate list of extra indegrees and extra outdegrees. Finally, in the case of a tie, we

apply the edge weight in both directions of the edges between the nodes in order to preserve the

existence of the matchup.

3.4: Algorithms

Using our program and graph data structure as a platform for implementation, we explored

different algorithms to solve or approximate the Minimum Feedback Arc Set problem. When

selecting algorithms to implement, we had to be mindful of both the computation time and the

accuracy of the output ranking, especially when considering the size of the different sports datasets

we wanted to test with. We decided to implement four algorithms: a Brute Force approach, the

Berger/Shor New 2-Approximation algorithm, an adaptation of the Hill Climbing approach used

in artificial intelligence, and a similar Hill Climbing approach that utilized a comparison metric of

our own design.

3.4.1: Brute Force

The first consideration for a ranking algorithm in our program was a brute force approach.

Based on the notion of backedge weight discussed in Section 2.3.1, we designed an algorithm

using the brute force methodology that iterated through every possible ranking of the nodes in a

given graph and returned a ranking with the lowest total backedge weight. This was not a direct

solution to the Minimum Feedback Arc Set problem because it returned the ranking for the graph

from which the minimum feedback arc set could be determined instead of returning the set itself.

The benefit of this algorithm was that we could find the best ranking for the input graph because

all possible permutations were considered. The downside to this algorithm was its time

complexity: because it evaluated all possible permutations, the computation time was factorial by

19

number of nodes or teams, or O(V!). Therefore, this approach does not scale well to larger graphs

and the rankings of such graphs would not be computable in a reasonable timeframe.

Our contribution to brute force was the exploration of optimizations with our algorithm to

improve its efficiency. The first optimization we considered was to split the brute force evaluation

process over several processor threads. Our brute force algorithm generated permutations in order

to be evaluated, which allowed for this task to be divided among several threads. The second

optimization we considered was to reduce the number of permutations evaluated by considering

strongly connected components within the graph, as the presence of strongly connected

components resulted in permutations that were not valid. For example, if a node within a strongly

connected component had an incoming edge to it from outside the component, then the source

node of that incoming edge should be ranked higher than any of the nodes where the root node is

the source of an edge to.

3.4.1.1: Pseudocode

 Our brute force algorithm, without optimizations, is explained at a high level using the

pseudocode below. The algorithm takes a directed graph G as input, with vertex set V and edge

set E, and outputs the best ranked ordering of vertices S. We iterate through each possible

permutation of vertices in V and maintain the best total backedge weight and best permutation

found so far. If the total backedge weight of the current permutation is less than the best found,

then the current permutation and its total backedge weight are maintained. After all permutations

have been evaluated, the best ranked ordering found is returned.

algorithm brute_force() is

input: graph G = (V, E)

output: best ranked ordering S

 best_weight <- weight(G)

 best_permutation <- {}

for each permutation P of V do

weight <- total_backedge_weight(P)

if weight < best_weight do

 best_weight <- weight

 best_permutation <- P

end if

end for

return best_permutation

end

3.4.1.2: Runtime Analysis

 Because our brute force approach generates and calculates the total backedge weight of

every possible ranking for a given graph, its time complexity is relatively poor. Our initial ranking

is based on the order in which nodes are entered into our adjacency matrix, and is assembled in

O(V) time. Each new permutation is generated in O(1), while the total backedge weight evaluation

20

is completed for each permutation in O(V2). This process is repeated for all V! permutations within

the graph, resulting in a time complexity of O(V! * V2 + V), or O(V!).

3.4.2: Berger/Shor New 2-Approximation Algorithm

As discussed in Section 2.4.2, the Berger/Shor New 2-Approximation algorithm was

selected for this project to provide approximations of solutions for input graphs that brute force

could not because of the input size. In general, approximation algorithms may not produce the best

rankings for a graph, but they can produce acceptable solutions for cyclic graphs in polynomial

time. This algorithm was selected because of its polynomial runtime and its factor of two

correctness, which suggested comparable results to the brute force approach for larger graphs.

Our version of the Berger/Shor New 2-Approximation algorithm utilized the addition of

topological sort to develop a total ordering from the acyclic output graph, and several

preprocessors to improve the correctness of the output. The Berger/Shor algorithm was intended

to solve the Maximum Acyclic Subgraph problem, so by design, it only returned an acyclic

subgraph. Thus, topological sort could be applied to transform the output acyclic graph into a

ranked total ordering, or ordering of all nodes in a graph.

Additionally, we designed our algorithm to preprocess the input for better results. Our first

preprocessor was the strongly connected components preprocessor, which would determine the

sets of nodes that were part of strongly connected components within the graph. These strongly

connected components could then be evaluated by the Berger/Shor approximation, as any edges

not included within a component are not part of cycles, thus they do not need to be removed. Our

second preprocessor involved rearranging the order of nodes to be approximated within each

strongly connected component. This ordering impacts which edges are removed during the

approximation, as the removal of one set of edges earlier in the approximation may change whether

another node has its incoming or outgoing edges removed, potentially resulting in a more accurate

approximation.

3.4.2.1: Proofs

Lemma 1: The resulting graph is acyclic.

Proof: Suppose a cycle exists of vertices (v1, v2, … , vn, v1). After evaluation of vertex vi in this

cycle, where 1 ≤ i ≤ n, either the edge <vi-1, vi> or <vi, vi+1> has been discarded by removing either

the incoming or outgoing edges of vi. Thus, a cycle can no longer be formed from v1 to vn [1].

Lemma 2: The output provided by this algorithm is always within a factor of two of the correct

answer.

Proof: Each node v in graph G is evaluated once. The larger of the two sets of edges for each v is

transferred to the output graph, while the smaller of the two sets is discarded. Therefore, at least

half of all edges in the input edge set A are present in the output edge set A’, meaning that |A’| ≥

(½)|A|. Thus, the output graph is always within a factor of two of the potentially cyclic input, so it

must be within a factor of two for the correct acyclic output [1].

21

Lemma 3: The algorithm terminates with a total ordering.

Proof: Following Lemma 1, the output graph from this algorithm is acyclic [1]. Therefore, a total

ordering can be generated utilizing topological sort without entering an infinite loop.

3.4.2.2: Pseudocode

 The following pseudocode provides a high-level description of how the Berger/Shor New

2-Approximation algorithm works. It begins with an input graph G with vertex set V and edge set

E, and outputs an acyclic graph G’ with vertex set V and modified edge set E’. The algorithm first

determines the edges involved in each strongly connected component in the graph, removing them

from the output graph. The remaining edges do not contribute to cycles and therefore can remain

in the final graph. Then, the algorithm conducts the Berger/Shor approximation process on each

strongly connected component, storing the resulting edges into the output graph.

 Within the Berger/Shor approximation function itself, the strongly connected component

input is received, while the acyclic component with edges removed is output. This function iterates

through each vertex v in the input vertex set V and determines v’s indegree and outdegree. If the

indegree is larger than the outdegree for v, v’s outgoing edges are removed from E, and v’s

incoming edges are copied over to E’ before being removed from E. Otherwise, v’s incoming

edges are removed from E, and v’s outgoing edges are copied to E’ before being removed from E.

Once this completes, it returns the acyclic subgraph, which is then topologically sorted to return

the total ordering T.

22

algorithm berger_shor() is

input: graph G = (V, E)

output: total ordering T

G' <- G

scc <- strong_connect(G)

remove scc edges from G'

for component in sccs do

 new_component <- approximate(component)

 G' <- G' ∪ new_component

end for

return topological_sort(G')

end

algorithm approximate is:

 input: graph G = (V, E)

output: acyclic graph G' = (V, E')

G' <- G

order nodes in G based on preprocessing heuristic

for each v in V do

if v.indegree > v.outdegree do

A <- outgoing edges from v

remove A from E

B <- incoming edges to v

G'.E' <- G'.E' ∪ B

remove B from E

else do

A <- incoming edges to v

remove A from E

B <- outgoing edges from v

G'.E' <- G'.E' ∪ B

remove B from E

end if

end for

return G'

end

3.4.2.3: Runtime Analysis

 The Berger/Shor New 2-Approximation algorithm completes in greatly reduced time

compared to the other algorithms implemented during this project. This algorithm visits every node

within a given graph and determines the indegree and outdegree of that node, both operations

which take O(1) time each. The smaller of the two sets of edges is discarded from the input graph,

then the larger of the two sets of edges is copied to the final graph before being discarded from the

input. Because edges are removed from the input graph in both cases at each iteration of the

23

algorithm, each edge is processed only once in the algorithm, resulting in O(E) for all edge

computations. Thus, our overall runtime is O(2V) + O(E), or O(V + E) [1].

3.4.3: Hill Climb

The third algorithm we implemented for our program was similar to the artificial

intelligence algorithm Hill Climb. The basis for this algorithm originated from the concept that we

may not need to remove cycles from the graph to compute a valid approximation. Our focus had

been on using the total backedge weight metric and minimizing the total backedge weight for a

ranking, a computation we could conduct quickly. Our Hill Climb implementation began with the

nodes sorted by decreasing net edge weight, and evaluated swaps of two nodes in the ranking to

see if the total backedge weight decreased. This process was repeated for all neighboring nodes in

the ranking, and the ranking with the lowest total backedge weight would be chosen for this process

to repeat upon again.

If the algorithm plateaued, where no swaps within a ranking reduced the backedge weight,

we allowed for a set number of “sideways moves.” A sideways move allowed for an equivalently-

weighted ranking to be selected, even though it was no better, to see if Hill Climb could improve

its backedge weight. Additionally, we implemented random restarts to this algorithm. Similar to

its implementation in artificial intelligence, our random restarts began the Hill Climbing process

again with a randomly-generated ranking if evaluation of a prior ranking had plateaued.

3.4.3.1: Pseudocode

The following pseudocode describes our Hill Climbing algorithm. This algorithm takes a

directed graph G as input, with vertex set V and edge set E, and outputs a total ordering T. We

begin with a permutation of all vertices in V, sorted by decreasing net edge weight. We maintain

the best permutation found so far and its total backedge weight, and the current permutation to

make swaps with. After each iteration, the permutation with the lowest total backedge weight is

utilized as the starting permutation for the next iteration. Once hill climb cannot do any better, it

conducts random restarts to repeat the process with a randomly-generated permutation as input.

After all permutations and restarts have been evaluated, the total ordering with the lowest total

backedge weight is returned.

24

algorithm hill_climb() is

input: graph G = (V, E)

output: total ordering T

 best_weight <- weight(G)

 best_permutation <- {}

 base_p <- order vertices by decreasing net edge weight

for v in V do

 base_p <- swap(v, v+1) if in bounds

weight <- total_backedge_weight(base_p)

if weight < best_weight do

 best_weight <- weight

 best_permutation <- base_p

end if

base_p <- swap(v, v+1) to revert

base_p <- swap(v, v+2) if in bounds

weight <- total_backedge_weight(base_p)

if weight < best_weight do

 best_weight <- weight

 best_permutation <- base_p

end if

base_p <- swap(v, v+2) to revert

base_p <- best_permutation to repeat the cycle

end for

best_permutation = random_restarts(G, best_permutation)

return best_permutation

end

3.4.3.2: Runtime Analysis

With regards to time complexity, our Hill Climb implementation was fairly efficient. In its

implementation, we conduct v+1 and v+2 swaps for nodes, resulting in 2V swaps considered per

iteration. Because each swap can be completed in O(1), each iteration of Hill Climb completes in

O(2V). After each swap, the total backedge weight is evaluated, which completes in O(V2) time.

The number of iterations performed within Hill Climb varies by ranking, unrelated to the number

of vertices in the ranking. As discussed in [18], the resulting time complexity for hill climbing

approaches is limited by the number of iterations completed d, expressed as O(d). Thus, our overall

time complexity is O(2V3 • d). However, our execution time limit and maximum number of

iterations constant halts the algorithm far before it reaches a similar runtime to brute force.

3.4.4: Range of Correctness Search

 The fourth algorithm we implemented was an extension of our Hill Climb approach

discussed in the previous section. The basis behind this variation was that, unless given an input

graph with the tournament constraint where every team has played every other team, there exists

flexibility of the rank for some teams within the ranking generated, which we call the Range of

25

Correctness. The flexibility of rankings is accounted for in our evaluation heuristic for this

algorithm, which tries to rearrange the nodes in a given ranking based on their net edge weights

without generating any new backedges. Following hill climbing methodology, this heuristic is

applied until the total backedge weight of the modified ranking cannot be improved.

3.5: Testing Considerations

 In order to improve the efficiency of conducting test cases on our algorithms and rankings,

we saw the need to automate parts of the testing process. We initially designed our program to

support running multiple trials of our algorithms in succession, but this was restricted to one set of

sports data, one configuration file, output only via the terminal console, and did not support

external ranking evaluation. To address these restrictions, we designed a wrapper script that could

run our program in a batch setup, and implemented file output support within the program. The

wrapper script needed an input system to determine how to run the main program: which sports

data to use, which configuration files to apply, and which ranking algorithms to use if generating

a ranking, or which external ranking files to evaluate with. Based on our design, we proceeded

with an input system for the script that read in a text file with the different trial instructions, which

was then forwarded to the main program. Once the trials were completed, the output results could

be read in by the script and organized as needed.

 Alongside the rank generation script, we also wanted to explore rank comparison. Rank

comparison, also known as rank differential, compares the differences in placement of teams

between two rankings. We planned to use rank comparison testing to explore the differences

between rankings generated by our program and rankings from external sources. In order to

condense the comparison of rankings into a single metric, we decided to use the average difference

in the placements of teams as our heuristic. Though the process of comparing rankings was

originally completed by hand, we determined that the process was too time consuming for manual

comparison to be viable for comprehensive rank comparison testing. Therefore, we designed a

testing module in the program to automate the process. We required that this module execute the

comparison of rankings, generate the average difference between team placements in the ranking,

and output into a human-readable format. We could then use this module to explore what factors

in our rankings produced the most similar rankings to external rankings, giving us insight on what

factors were most highly considered in external rankings.

3.6: Summary

This chapter discussed the design decisions we faced during the introductory phase of the

project and how we addressed them. We introduced our considerations for sports data formatting,

storage, and representation within the graph data structure. Our algorithms were discussed in

detail, with our pseudocode and adaptations showing the application of these algorithms to our

project. We concluded this chapter with an introduction on how we planned to handle test cases

and automation within our program.

26

Chapter 4: Base Implementation

After careful consideration about how we would design the base functionality of our

program, we began implementation. This chapter focuses on the transition from the concepts

discussed in our base design in Chapter 3 to functionality within our program. Each major feature,

from our graph structure to our algorithms, is discussed in detail alongside justification for any

design modifications made during implementation.

4.1: General Program Considerations

 An implementation goal for the program was to maintain compatibility between Windows,

Mac OS, and Linux operating systems. Individual Makefile recipes were created for each operating

system configuration, so the user only needed to apply the correct recipe on any compatible

compiler. In order to achieve this goal, the implementation of the program could not use any

operating system specific libraries or functions. The only operating system specific functionality

that was implemented was the use of multithreading using POSIX threads within the brute force

algorithm, discussed in Section 4.2.1.1. Conditional compilation was used to disable the POSIX

threads in Makefile recipes for Windows operating systems. The second issue with

intercompatibility was a discrepancy in the format of program-generated files between Windows

and Linux. Files generated by the program have operating system specific line endings due to how

each operating system writes to the filesystem. Any files generated by one operating system could

not be read by a different operating system if the line endings were different. This issue is most

notable when exchanging the weight configuration files mentioned in Section 3.3.3.

4.1.1: Minimum Feedback Arc Set Evaluation Process

 Once the edge weights were configured in the adjacency matrix, the program could refer

back to the weights in the graph to calculate the total backedge weight. As the main heuristic for

success in the Minimum Feedback Arc Set problem, the total backedge weight of a given ordering

needed to be efficiently calculated using the weights stored in the adjacency matrix. Our evaluation

process takes a ranking and steps through it in two nested loops. The outer loop iterates through

the ranking itself and processes every node in the ranking. The inner loop examines every node

that has been visited by the outer loop so far and checks if there has been an instance where a node

later in the ordering has beaten a node earlier in the ordering, signifying a backedge. After a

backedge has been detected, it is added to a running sum totaling the backedge weight of a given

ordering.

 In addition to the internal evaluation process for total backedge weight, we implemented

the functionality for our program to generate the total backedge weight for an external ranking.

External rank evaluation was implemented as a module separate from our rank generation process

in our program. External rank evaluation allowed us to compare external rankings on the same

basis as our internal rankings, such as with the total backedge weight metric.

27

4.2: Algorithms

 This section details the transition of our four algorithms from the theoretical perspective

described in the base design in Chapter 3 to the technical perspective within our program. The

specific methodologies behind the implementation of each algorithm are explored, along with any

challenges we faced and their resolutions, as well as additional functionality added.

4.2.1: Brute Force

Our initial brute force implementation followed the logic detailed in Section 3.4.1. Brute

force only utilized the global adjacency matrix as input and output a vector of nodes indicating the

best ranking found. Inside the function, a vector of nodes representing the first permutation was

assembled using the number of nodes defined in the matrix. A vector for the best permutation

found and its total backedge weight were initialized and updated throughout the process. Our brute

force function utilized the C++ standard library next_permutation() function, which would return

the next lexicographic permutation of a given input vector if one existed. We used a while loop to

iterate through all available permutations from next_permuation() and evaluate them, updating our

reference variables if better orderings were found. Once all permutations had been evaluated, the

vector with the best ranking was returned.

Testing our brute force algorithm on sample graphs resulted in several cases where more

than one ranking had the same total backedge weight, indicating equivalency in correctness

according to our metric. We expanded upon the brute force algorithm to account for this by

implementing a variation that maintained and returned all rankings with the same lowest backedge

weight. This functionality was also extended to create a feature we called “brute force

authentication,” which was a method hook for other algorithms to pass in their generated rankings

to and determine whether these rankings were equivalent to what brute force would generate as a

solution. Adding brute force authentication was crucial in early testing where the correctness of

other algorithms had not yet been determined.

4.2.1.1: Brute Force Modifications and Optimizations

During the implementation of brute force, we made modifications and optimizations to our

evaluation heuristics in the interest of reducing computation time to make using the brute force

algorithm more feasible. The first optimization we considered was multithreading support.

Because brute force was evaluating all permutations of rankings for a graph, there was no need for

a specific order of evaluation. Thus, the evaluation task could be split into separate threads and

evaluated separately as the processor allowed. To divide the task, each thread would generate

permutations as if the highest-ranked node, or head node, had been removed. The permutation was

evaluated as if the head node was still in place, where each thread would have a list of nodes to

use as the head. For example, using two threads and the nodes A, B, C, and D, Thread 0 would

evaluate all permutations where A and C were the head, while Thread 1 would evaluate where B

and D were the head. This optimization decreased computation time by a linear factor of the

28

number of threads; sufficient for running on slightly larger graphs than before, but not

computationally feasible for full-sized sports season graphs.

The second optimization implemented for brute force was a strongly connected

components preprocessor. Using a strongly connected components preprocessor allowed us to

discard certain permutations; for example, if node A was the only node that had an edge to node

B, then any nodes with an edge to node A should be ranked higher than any edges that node B

points to. However, this optimization would only improve performance in cases where the graph

contained more than one strongly connected component. This strongly connected components

optimization decreased runtime by reducing the number of nodes considered in the original O(V!)

runtime within brute force. Runtime then became the summation of O(V’!) for the set V’ of nodes

in each component. However, runtime would increase by O(2V+E) due to the computation of the

strongly connected components within the graph.

4.2.2: Berger/Shor New 2-Approximation and Preprocessors

As mentioned in Section 3.4.2, we implemented and modified the Berger/Shor New 2-

Approximation algorithm to generate rankings. We followed the general program logic outlined

in [1] to develop our base implementation. To begin, the algorithm required input of the adjacency

matrix representing the input directed graph. This matrix was this copied into an equivalent

adjacency matrix because this algorithm mutates the graph by nature, and we wanted to preserve

the original graph if other algorithm runs needed to be performed afterwards. Once the matrix was

duplicated, a second matrix named “a_hat” was initialized to the number of nodes in the graph, as

this would hold the approximated output matrix. The duplicated matrix was then iterated on by

column, representing the winner, where the indegree and outdegree for that node were summed

and compared. The larger of the two values resulted in copying their adjacency matrix wins or

losses to a_hat before zeroing out all edges connected to that node from the duplicates matrix. This

process was repeated until all nodes had been processed, such that the duplicated matrix was

emptied and a_hat contained the approximated adjacency matrix, which was then returned.

Due to the edge-removing nature of the Berger/Shor New 2-Approximation algorithm to

break cycles, it removed edges that were not involved in any cycles, resulting in a sparser graph

and worse rankings. These rankings were still correct approximations to the Maximum Acyclic

Subgraph problem, but we saw the need to address this issue in the interest of potentially improving

our approximations. As discussed in Section 3.4.2, we decided to use a strongly connected

components preprocessor to address this, so we implemented Tarjan’s Strongly Connected

Components algorithm. Tarjan’s algorithm is based upon Depth First Search and utilizes a stack

to maintain when each node in the graph is first visited and when each is found again by edges

from other nodes. Our implementation of this preprocessor has a time complexity of O(2V+E), as

it visits every edge once to go to every node once when processing cycles, and iterates through all

nodes again to place them in component form [26].

Our implementation of the strongly connected components preprocessor returned a vector

of strongly connected components for the input graph, where each component was represented as

29

a vector of the nodes it contained. Each component was used to construct a new adjacency matrix

with these nodes and the edges between them to simulate a subgraph. The starting adjacency matrix

for each component was subtracted out from the output adjacency matrix and passed into the

Berger/Shor algorithm to be approximated, after which the approximation matrix was added back

into the output adjacency matrix. By implementing the strongly connected components algorithm,

we only applied the Berger/Shor approximation algorithm on collections of nodes that contained

cycles, allowing edges outside of cycles to remain in the graph and improving the results of the

algorithm with minimal overhead.

Additionally, we investigated preprocessing the ordering in which nodes were evaluated

for edge removal in the Berger/Shor algorithm. We implemented this preprocessor to be applied

to each strongly connected component before being processed by the Berger/Shor algorithm. The

algorithm selection for Berger/Shor within the program was split to allow for an integer flag to

indicate which preprocessor ordering to evaluate with. In addition to offering the user no

preprocessing, several sorting options were added to the preprocessor: number of outgoing edges

descending, number of outgoing edges ascending, ratio of outgoing to incoming edges descending,

outgoing edge weight descending, and randomized. Within each option, a vector is maintained to

indicate the ordering of nodes to be evaluated, which is modified depending on the option selected.

4.2.3: Hill Climb

Given the variance in hill climb’s execution time, we implemented our Hill Climbing

algorithm to be configurable in its minimum and maximum runtime. We accomplished this

flexibility by allowing the number of random restarts and sideways moves to be configurable,

where the minimum and maximum number of rankings evaluated could be hard-coded, so that

evaluation time could be capped if needed. As discussed in Section 3.4.3, we decided to expand

the evaluation portion to contain the n+2 neighboring node in order to potentially improve search

results. We found that the runtime was low enough that examining the n+2 neighboring nodes

would not increase computation time greatly, but would allow for consideration of additional

swaps that could result in better rankings.

The basic implementation of the Hill Climbing algorithm for the Minimum Feedback Arc

Set in our program followed the original design outlined in Section 3.4.3. The algorithm first

created a preordering of teams based upon their net edge weights in the input graph. Then, a series

of temporary swaps were performed upon this preordering, and the resulting ranking with the best

swap with the lowest total backedge weight was saved. This continued until no further

improvement in total backedge weight is seen. Sideways moves, as outlined in Section 3.4.3, were

implemented with an easily configurable preprocessor-defined variable. If the best swap in one

round of Hill Climbing resulted in an equivalent score, a sideways move would be expended. This

process would continue until a better solution is found or until there are no more allowable

sideways moves. As mentioned in Section 3.4.3, sideways moves were implemented to reduce the

probability of getting stuck in a “plateau.” The total amount of available sideways moves was set

30

to 500 because they were seen to be relatively inexpensive in their total added computation time

after some testing.

Beyond the implementation of sideways moves, we also implemented random restarts. As

outlined in Section 3.4.3, once Hill Climbing completes evaluation of the initial preordering, the

program will generate multiple randomized preorderings that the Hill Climbing algorithm will

process in the hopes that one of the resulting permutations will result in a reduced total backedge

weight. After the implementation of the random restarts was completed, we noticed that it

substantially increased the computation time of the Hill Climbing process as expected. One

iteration of Hill Climbing was relatively quick to complete on a set of 130 teams or less, as shown

in the base results in Section 5.2.3. The time for execution of one iteration of Hill Climbing also

grew with the number of nodes in a permutation because of the increased number of swaps

necessary to complete per iteration. Due to the large variance in the execution time for Hill

Climbing, dependent on the number of teams in the dataset, we decided that there was not a “one

size fits all” number of restarts that should be allowed.

In order to manage the variable time requirement for Hill Climbing depending on the

number of restarts, we implemented a hybrid system of timing and hardcoded values. The new

system for restarts in Hill Climbing used a hardcoded lower bound and upper bound for the number

of restarts. For our testing, we set the lower bound for the number of restarts to 20 and the upper

bound to 300. We reasoned that an adequate minimum amount of restarts was 20 because the

difference in time required between 1 and 20 restarts did not seem significant enough to sacrifice

the potential for a better random preordering. We also determined that any more than 300 restarts

was unnecessary for the amount of time that would be required. Therefore, the Hill Climbing

process would always run with at least 20 random restarts and at most 300 random restarts. For

the restarts occurring in between these bounds, we implemented a configurable timing system that

would check how long the Hill Climbing process had been executing and would determine if

another random restart was allowed, where the execution time was measured from the start of the

first preordering Hill Climbing evaluates. For example, before allowing restart number 21, the

system would first check if the hill climb process had exceeded its configurable maximum amount

of execution time before proceeding. If Hill Climbing had exceeded its allotted time after restart

number 100, the system would stop computing random restarts. If the system reached the upper

bound of 300 random restarts without surpassing the configured maximum amount of execution

time, the system would still terminate Hill Climbing because the upper bound had been reached.

The maximum execution time could also be configured to the needs of the user with the command

line argument “--hctime”, which allowed testing using the Hill Climbing algorithm to be

configured to the needs of the tester.

The final improvement made in the implementation of Hill Climbing was to extend the

number of nodes checked in each swap to also check the n+2 neighbor as well as the n+1 neighbor.

Essentially, each node would not only check a swap with its nearest neighbor but would also check

the swap with the neighbor 2 positions away.

31

Figure 6: Initial Hill Climb implementation with N+1 neighbor comparison

Figure 7: Revised Hill Climb implementation with N+1 and N+2 comparisons

This process is shown in Figures 6 and 7 above. Note that the arrows on the top of the nodes

delineate the position n+2 swaps and the arrows below the nodes delineate the position n+1 swaps.

As shown in Figure 7, this process results in (n-1) • (n-2) swaps compared to (n-1) swaps as

originally implemented. We decided that the decrease in runtime performance was worth the

possibility of finding a better permutation by exploring more swaps.

4.3: Data Collection Script

 To gather relevant sports data, several scripts were written in Node.js utilizing the jsdom

package from npm. The main collection script can gather and process NBA, NFL, NHL, MLB,

and college football data from sports-reference.com. The data were mostly formatted inside similar

HTML tables which allowed for similar processing. The data pages were pulled through simple

HTTP GET requests and used jsdom so that the data tables could be easily found and processed

row by row. Each row contained information about a single game, with some varying columns,

and was stored inside its own object. The list of game objects could then be written out in our input

file format as well as in JSON. JSON output allowed data to be easy reprocessed, whether to

remove games we did not want or for conversion into a different format, without the need to pull

information from the page again.

 The script featured various options, including: cumulative output into one file, the ability

to include only games through a given week and date in the season, our output format, and JSON

32

output. The cumulative output option was necessary to combine months of NBA data due to the

way sports-reference.com formatted the data. The options to include games through a week or date

were specific to each sport. NFL and college football games are organized by week, but MLB,

NBA and NHL games are only identified by date. Another script was also written to prune college

football games involving at least one team with less than some number of games in the season

dataset. Since Division I teams did not always exclusively play Division I teams, teams that were

not relevant to our ranking inflated node counts of our college football datasets from 128 to 216.

Table 1: Sports Data and Rankings Collected For Each League

League Data collected Rankings collected

College football 2015-17 2015-17

MLB 2011-15, 2017 2011-15

NBA 2016-18 -

NFL 2012-18 2012-18

NHL 2013-18 2013-17

4.4: Bash Testing Script

With all of the aforementioned features implemented over the course of this project, we

had many opportunities to test our data and algorithms to draw conclusions. All of this testing,

however, led to increased burden with conducting test cases. All trials with our program had to be

entered via the command line with an additional input layer to choose the algorithm for processing.

Given the inefficiencies of running test cases from the command line, we saw the need to develop

a script to automate portions of testing. As mentioned in Section 3.5, we turned towards a wrapper

script to aid in testing. We chose to write this script in Bash because it needed to launch our main

program, but we did not want to have to manage process forking and permissions, especially with

the differences in process handling between Linux and Windows. This decision sacrificed some

performance for the ease of development and portability.

At first, the Bash script was implemented to take a file with a predefined set of arguments

as input and forward these inputs to individual launches of the program. This first implementation

was a large improvement as trials could be saved and repeated easily with the input file format,

removing the need to utilize the command line to run the program in batch. One drawback to this

script was that all program trials were only output to the console, so it was harder to analyze output

logs, especially with limited console window space. An additional drawback was that the most

frequent command line arguments and options were hard-coded into the Bash script; although this

provided some simplicity with inputting the trial information into the input file, it required

additional updates anytime a feature or argument was added or changed in the program.

33

To address the first drawback, the program received file logging support so that testers

would no longer need to look for data in the console after running test cases. Further enhancing

this feature, we extended the Bash script to read in log files that were generated during the trials

which allowed us to easily manipulate and view data from the test cases. The script output this

data to CSV files, where different rankings, total backedge weights, computation times, and

comparisons of pre- and post-processors could be compared side-by-side with ease. To address the

second drawback of command line limitations, the Bash script input format was modified to take

the program arguments verbatim, with the algorithm choice separate. This greatly increased the

flexibility of the script, as no changes were necessary internally if any new functionality was added

to the program, as these new arguments could be placed into the input file and run immediately.

4.5: Rank Comparison Testing Module

 The rank comparison testing module was designed to facilitate the comparison of rankings

in an automated module. This module was built as an add-on to the rank generation process of the

program and could be used without generating any rankings at all. The implementation for the

rank comparison module was separated into two parts. The first part of the rank comparison testing

module compared the two rankings and calculated the average difference in placements, and then

generated the output of the comparison process. The second part of the rank comparison script

module automated the generation of comparisons to test the ability for the rankings generated by

our algorithms under different edge weight configurations to match an external ranking. The rank

generation process was separated in this way to service the needs of testing specific rankings while

also automating the large tests of multiple configurations.

4.5.1: Generating Rank Comparisons

 The first part of the rank comparison testing module, designed to generate and output

comparisons, was implemented to compare two ranking files. We reasoned that a rank comparison

is ultimately a calculation on the different positions of teams in two separate rankings. For the

purposes of calculating the comparison, we defined these two rankings as the control ranking and

the test ranking. This process measured the positions of teams in the test ranking compared to their

positions in the control ranking. The difference in position for each team was calculated and used

to determine the overall average difference in position for the ranking. This average difference in

position could then be utilized as the heuristic to determine how similar one ranking was to another,

where a lower average difference would signify greater similarity in the rankings.

To complete the rank comparison calculation, the rank comparison testing module first

imported the control ranking. The required format for the control ranking was implemented as a

list of the teams in their ranked order. The list format was used because it corresponded with the

format of our external rankings and the format of rankings generated by our program. During the

import for the control ordering, the size of the ranking was captured and used as the size for which

to hold all test rankings to. We reasoned that it did not make sense to compare rankings that were

34

not the same size. This value was also useful for allocating the appropriate amount of memory to

contain the one or more test orderings.

 After importing the control ranking, the rank comparison testing module imported the test

ranking. The test ranking input could be one of two types. The first type of input was a list input

which, for the same reasons as using a list input for control ranking, allowed a flexible input of

any external ranking. The second input type for a control ordering was a program-generated results

file. Results files were already in use by the program and the automated test script described in

Section 4.4. Importing these results files allowed us to quickly generate multiple rankings with

different configurations and use the generated rankings in rank comparisons. Furthermore, a results

file allowed us to import more than one ranking as test rankings for the rank comparison testing

module. Since an arbitrary number of rankings could be recorded on a results file, we simply parsed

through each of the rankings on the results file and imported them for testing. This process required

the implementation of a small preprocessor to count the number of rankings on the results file to

allocate the appropriate amount of memory for the test rankings. Regardless of the input type of

the test ranking file, the differences in ordering between the control ranking and each test ranking

was then computed. The computation process for a rank comparison involved iterating through

each team in the control ordering and finding the corresponding position in the test ordering. Using

the two positions, the difference in position was calculated, and ultimately all values in the set of

differences in position were averaged together to result in the final heuristic for a rank comparison.

If a results file was used, the average difference in rank position was computed in this fashion for

all test rankings.

 We implemented the automatic output of the results of a rank comparison into a CSV file

for easy viewing. An example output of the automated process is listed Table 2.

35

Table 2: Sample Rank Comparison Output

Rank 2017nfl_usatoday_top10.txt sample_ordering.txt Net Difference

1 New_England_Patriots New_England_Patriots 0

2 Pittsburgh_Steelers Pittsburgh_Steelers 0

3 Minnesota_Vikings Minnesota_Vikings 0

4 Los_Angeles_Rams Los_Angeles_Rams 0

5 New_Orleans_Saints New_Orleans_Saints 0

6 Kansas_City_Chiefs Jacksonville_Jaguars 1

7 Carolina_Panthers Kansas_City_Chiefs 3

8 Jacksonville_Jaguars Atlanta_Falcons 2

9 Atlanta_Falcons Los_Angeles_Chargers 1

10 Los_Angeles_Chargers Carolina_Panthers 1

 Avg: 0.8

 Score: 1.5625 Score: 2.42188

Minimum Average

Diff: 0.8 in: sample_ordering.txt

Control Score:

1.5625 Min Avg Diff Test's Score: 2.42188

Using Quartile

Evaluation: True

As shown in the output in Table 2, the rank comparison testing put the sample orderings into a

table and displayed the differences in the rankings. The total backedge weight, listed as “score”

above, was also displayed, allowing for an easy comparison between the relative strengths of each

ordering. The edge weights in this test case were normalized, leading to the non-integer values of

the total backedge weight. The rank comparison output was also implemented to display which

test ordering had the smallest average difference in ordering. This was helpful in situations where

there were multiple test rankings being compared.

Though this approach to rank comparison testing was adequate for comparing most

rankings, it was not suitable for truncated rankings. Truncated rankings, explained further in

Chapter 7, are rankings only contain the top-25, top-10, or top-n teams out of a superset of teams.

In order to handle truncated rankings, we adopted the notion of an “N+1” node in each truncated

ranking that would act as a placeholder for the rest of the teams outside the top-n superset. In cases

where a team in a test ranking was not also in the corresponding control ranking, we assumed that

the placement of the team in the control ranking was in the N+1 position in the control ranking.

For example, in two top-10 rankings, if Team A placed in 9th place in the test ranking but was not

present in the control ranking, the testing system would consider Team A’s place in the control

ranking to be at the 10+1 position in the control ranking, rank 11. Therefore, the difference in rank

for Team A between both rankings would be 2.

36

4.5.2: Automated Rank Comparison Testing

 The second part of the rank comparison testing module dealt with the automation of our

rank comparison testing. Using the first part of the rank comparison testing module, we could

efficiently calculate and output the comparison of team positions in rankings. In order to utilize

rank comparisons to determine what configurations of our ranking algorithms led to similar

rankings, we needed to run a large quantity of tests. We wanted to test different configurations of

our edge weight factors in rank generation, which are further explained in Section 6.1.4. The total

number of rank comparisons required extensive time when manually exporting each output

ranking and rerunning the program to generate the rank comparison. It was clear that automation

was necessary in order to cover the breadth of rank comparisons we required, so we needed to

consider to what degree we should devote resources into automating the rank comparison process.

 We considered computing all of the rankings and comparisons internally in its own module.

This solution would have led to the cleanest implementation and most customizable output. The

first of two drawbacks to this idea was that it would require new versions of every ranking

algorithm so that they could return the ranking to the system rather than display the ranking and

exit. The second issue was that the time required to implement this approach to automation would

not have been worth the benefits of this feature.

We decided to implement the automation for the rank comparison testing in a way that

utilized as much of the existing functionality in the program as possible. We recalled that the

existing rank comparison computation and output could already handle an arbitrary number of

rank comparisons, as long as the test orderings were consolidated in a results file. We concluded

that we could automate the testing by automating the generation of one large results file with all

of the testing rankings present and use the existing rank comparison functionality to accomplish

this task.

The ranking algorithms were already programmed to output to results files and the existing

rank comparison system could handle these results files. We simply needed to automate the

generation of a results file with the correct orderings to be used in the rank comparison. At the

time of implementation, we already had the functionality to reset edge weight configurations for

the rank generation at runtime. We designed the process of creating ranking data to utilize a loop

to iterate through the different configurations and trigger the running of the chosen ranking

algorithms. As the different rankings were generated, the results would be recorded in the growing

results file. Once each edge weight configuration had been tested, a rank comparison between a

specified control file and the algorithm ranking results in the results file was automatically

initiated, creating a full rank comparison output for the rankings generated with the different

configurations. This satisfied our need for automated testing of rank comparisons.

4.6: Summary

 In this chapter, we discussed all of the features and functionality created during the base

implementation of this project. We began by explaining decisions made at the program level

regarding changes or complications during implementation. We discussed the implementation of

37

our algorithms and the optimizations utilized. Then, we introduced how our data collection script

and bash testing script were implemented, and how we added functionality for rank comparison

testing to the main program.

38

Chapter 5: Base Results

 Upon implementing the base functionality of our graph structure, ranking algorithms, and

edge weight algorithms, we ran test cases on our algorithms to better understand how they perform.

This chapter demonstrates two types of test cases: correctness testing, which is concerned with

minimizing the total backedge weight within rankings; and performance testing, which is

concerned with minimizing the runtime of our algorithms. All total backedge weight values have

been normalized to the total weight of the graph, and are displayed and analyzed as such. We test

the changes in performance and correctness with our optimizations to our algorithms on sample

graphs and on a sports dataset, and include and discuss the results for each trial.

5.1: Correctness Testing

 In order to generate accurate rankings with our full sports data sets, we first needed to

conduct test cases on smaller sample graphs to determine the correctness of our algorithms in

certain scenarios. We generated several small sample graphs so that our brute force

implementation could complete in reasonable time and serve as a baseline for the correctness of

our Berger/Shor and Hill Climb approximation algorithms. Correctness testing our approximation

algorithms on small graphs would allow us to anticipate how well they would perform on larger

graphs that would not be computationally feasible for brute force.

 In this chapter, we refer to several sample graphs that we generated for testing, which are

listed in Table 3 alongside their properties such as number of nodes, number of edges, whether or

not they are weighted or cyclic, and how many strongly connected components they contain.

Table 3: Sample Graphs Used For Base Results Testing

Graph name Nodes Edges Weighted? Cyclic? SCCs

Input 4 4 No No 4

Input3 6 6 No Yes 4

Input_test3 3 5 No Yes 1

Input_hard 10 18 Yes Yes 3

9nodes 9 15 Yes Yes 1

10nodes 10 13 Yes Yes 7

11nodes 11 18 Yes Yes 6

39

5.1.1: Brute Force

 Running our brute force algorithm on several of our sample graphs allowed us to determine

the rankings with the lowest total backedge weight for each graph, an important point of reference

when testing our other algorithms. The first two tests we ran were to analyze the ranking

correctness and runtime performance of weighted and unweighted graphs as a starting point for

our brute force implementation with no optimizations. Input, Input3, and Input_test3 were used as

the unweighted test graphs in these tests, and 9nodes, 10nodes, 11nodes, and input_hard were used

as the weighted test graphs. The total backedge weights for the best rankings for each graph are

shown in Table 4.

Table 4: Brute Force Weighted and Unweighted Correctness

 Backedge Weight / Graph Weight Runtime

Input_test3 2 / 5 (40%) 0s 56µs

Input 0 / 4 (0%) 0s 227µs

Input3 1 / 6 (16.66%) 0s 1376µs

9nodes 6 / 86 (6.976%) 0s 895467µs

10nodes 4 / 78 (5.128%) 9s 602567µs

Input_hard 5 / 31 (16.12%) 9s 514241µs

11nodes 8 / 96 (8.333%) 113s 726752µs

The runtime for these tests show that our brute force approach was almost instantaneous

for graphs with fewer than nine nodes and set the benchmark for any optimizations we added, but

that the runtime increases greatly when graphs with more nodes were introduced. Because our

brute force approach guaranteed correctness in its rankings for all input graphs, the only

optimizations we could make improved the runtime of brute force.

 The second set of tests we conducted were to determine how significantly our strongly

connected components preprocessor reduced runtime for brute force. We expected that this

preprocessor would greatly reduce runtime in cases where several strongly connected components

were present in the input graph, but would slightly increase runtime if only one strongly connected

component existed due to the additional runtime to determine the strongly connected components.

40

Table 5: Brute Force Comparison With and Without Strongly Connected Components (SCCs)

 Without SCC With SCC

9nodes

Backedge Weight

Total Runtime

6 / 86 (6.976%) 6 / 86 (6.976%)

0s 895467µs 0s 68951µs

10nodes

Backedge Weight

Total Runtime

4 / 78 (5.128%) 4 / 78 (5.128%)

9s 602567µs 0s 289µs

Input_hard

Backedge Weight

Total Runtime

5 / 31 (16.12%) 5 / 31 (16.12%)

9s 514241µs 0s 15443µs

11nodes

Backedge Weight

Total Runtime

8 / 96 (8.333%) 8 / 96 (8.333%)

113s 726752µs 0s 536µs

The tests in Table 5 indicate that the strongly connected components preprocessor substantially

reduces brute force runtime in graphs with several strongly connected components, with

performance gains by a factor of over one million in the case of 11nodes. This optimization

demonstrates that larger graphs, which would have been computationally infeasible before, can

now be processed in reasonable time if they contain several strongly connected components.

However, this places dependence on the strongly connected components of the input graph, rather

than just on the number of nodes. For example, because Input_hard only had three strongly

connected components compared to 10nodes with seven, Input_hard’s runtime could not be

reduced as substantially.

The third set of tests we conducted applied our multithreading optimization to the strongly

connected components variation of our brute force algorithm. We conducted these tests on the

same four graphs as above, where each graph was evaluated with one thread, two threads, and four

threads.

41

Table 6: Brute Force Threading Evaluation Times

 1 Thread 2 Threads 4 Threads

9nodes

Backedge Weight

Total Runtime

6 / 86 (6.976%) 6 / 86 (6.976%) 6 / 86 (6.976%)

0s 58284µs 0s 37683µs 0s 23136µs

10nodes

Backedge Weight

Total Runtime

4 / 78 (5.128%) 4 / 78 (5.128%) 4 / 78 (5.128%)

0s 853µs 0s 840µs 0s 1014µs

Input_hard

Backedge Weight

Total Runtime

5 / 31 (16.12%) 5 / 31 (16.12%) 5 / 31 (16.12%)

0s 8289µs 0s 4415µs 0s 4202µs

11nodes

Backedge Weight

Total Runtime

8 / 96 (8.333%) 8 / 96 (8.333%) 8 / 96 (8.333%)

0s 1056µs 0s 1101µs 0s 1096µs

Our tests with multithreading were not completely as expected: we suspected that there would

always be a linear decrease in runtime if more threads were applied, provided that the CPU could

support them. While 9nodes and Input_hard both saw noticeable improvements in runtime from

one thread to two, 10nodes and 11nodes both saw negligible changes. Further, only 9nodes had

legitimate improvement when running with four threads compared to two. We suspect that this is

because the runtimes for the other graphs were already optimized substantially from the strongly

connected components processor, where the benefit of having additional threads for evaluation

was almost negated by the overhead for each thread. However, we believe that multithreading is a

substantial improvement, especially for input graphs with only one strongly connected component,

which still have room for optimization.

5.1.2: Berger/Shor New 2-Approximation Algorithm

 Using our brute force results as baselines, we conducted tests on our Berger/Shor

approximation algorithm implementation. Because this algorithm is an approximation, we were

expecting performance gains compared to brute force at the expense of correctness. The first set

of tests we conducted compared our initial implementation of the Berger/Shor algorithm to our

variation with Tarjan’s Strongly Connected Components preprocessor. Our expectation was that

this preprocessor would not have any benefit where the graph has one strongly connected

component, but that it could increase correctness when several components are present. We

42

conducted tests on the following four sample graphs: input_test3 and input, both unweighted;

input_hard and 9nodes, both weighted.

Table 7: Berger/Shor Strongly Connected Components Comparison Results

 Backedge Weight / Graph Weight

(Without SCCs)

Backedge Weight / Graph Weight

(With SCCs)

Input_test3 2 / 5 (40%) 2 / 5 (40%)

Input 0 / 4 (0%) 0 / 4 (0%)

Input_hard 12 / 31 (38.70%) 12 / 31 (38.70%)

9nodes 12 / 86 (13.95%) 12 / 86 (13.95%)

In terms of correctness, the baseline Berger/Shor algorithm performed well on Input_test3 and

Input, each generating a ranking equivalent in total backedge weight to brute force. However,

performance on Input_hard and 9nodes was not as good, where Berger/Shor received 38.70% and

13.95% compared to brute force’s 16.12% and and 6.97% respectively. We suspect that this is

because our baseline Berger/Shor implementation was designed for unweighted graphs and only

considered number of edges rather than edge weights.

The results in Table 7 indicate no improvement in total backedge weight for rankings

generated with the strongly connected components preprocessor on our sample graphs. In each test

case, the rankings produced were identical. We expect that maintaining the edges between the

strongly connected components within our sample graphs may not have been significant enough

to impact the output ranking to maintain more edges and develop a ranking with lower backedge

weight. However, we suspect that on larger graphs with more strongly connected components,

improvements would be noticeable.

 The second set of tests we conducted with our Berger/Shor algorithm was with our node-

sorting preprocessor. We implemented several sorting arrangements for this algorithm: number of

outgoing edges descending, number of outgoing edges ascending, ratio of outgoing to incoming

edges descending, outgoing edge weight descending, and randomized. We expected that the

sorting process would add minimal overhead to the Berger/Shor algorithm and potentially improve

the correctness of the resulting rankings. Our tests showing the total backedge weight using our

two sample graphs, input_hard and 9nodes, are shown in Table 8.

43

Table 8: Berger/Shor Node Sorting Preprocessor Results

 Input_hard 9nodes

Y1 (descending number of

outgoing edges)

10 / 31 (32.25%) 8 / 86 (9.30%)

Y2 (ascending number of

outgoing edges)

8 / 31 (25.80%) 12 / 86 (13.95%)

Y3 (descending win-loss

ratio)

11 / 31 (35.48%) 8 / 86 (9.30%)

Y4 (descending outgoing

edge weight)
6 / 31 (19.35%) 8 / 86 (9.30%)

Y5 (no sorting) 12 / 31 (38.70%) 12 / 86 (13.95%)

Y6 (randomized) 7 / 31 (22.58%) 6 / 86 (6.97%)

In both sample graphs, the node sorting preprocessor shows improvements of the total backedge

weight for the ranking generated, depending on which sorting methodology was selected. In both

cases, no sorting (Y5) resulted in rankings that were tied for or had the highest total backedge

weight. Sorting by outgoing edge weight (Y4), or weight of all wins by each team, yielded

consistently positive results. Additionally, randomized sorting (Y6) yielded good results, though

we are skeptical of consistently good rankings in repeated tests. As expected, sorting by number

of outgoing edges (Y1 and Y2) did not yield good results because these tests were conducted on

weighted graphs, and these cases do not consider edge weight when sorting the nodes.

To apply the node sorting preprocessor to practice, we conducted test cases on our 2016-

17 NFL dataset. Each test had the strongly connected components preprocessor enabled and

utilized node sorting methodologies Y1-Y6, similar to the above tests. Only the top-10 teams in

each ranking are displayed, but the total backedge weight is representative of the full ranking.

44

Table 9: Berger/Shor Results on 2016-17 NFL Data

Y1 Y2 Y3 Y4 Y5 Y6

Patriots Cardinals Patriots Patriots Redskins Steelers

Cowboys Buccaneers Cowboys Steelers Steelers Cowboys

Steelers Falcons Steelers Cowboys Patriots Redskins

Giants Texans Seahawks Falcons Colts Giants

Seahawks Titans Falcons Cardinals Cowboys Broncos

Dolphins Dolphins Cardinals Seahawks Giants Colts

Raiders Steelers Chiefs Chiefs Dolphins Titans

Chiefs Chiefs Raiders Bills Seahawks Packers

Falcons Raiders Packers Packers Raiders Buccaneers

Cardinals Packers Giants Eagles Titans Texans

647 / 2623

(24.66%)

714 / 2623

(27.22%)
521 / 2623

(19.86%)

594 / 2623

(22.64%)

758 / 2623

(28.89%)

747 / 2623

(28.47%)

These results demonstrate significant change in rankings generated with and without the node

sorting preprocessor. Our base implementation with no sorting (Y5) generated a ranking with more

than 10% additional backedge weight compared to our best sorted ranking (Y3). Our unweighted

edge weight preprocessors (Y1 and Y2) performed well without considering edge weights, but our

net weight sorting (Y4) produced the second best results.

5.1.3: Hill Climb

 We performed correctness testing on our Hill Climbing algorithm to understand how it

performed in general and to determine if there were any cases where it performed better or worse

overall. In the first set of tests, we wanted to compare the correctness and execution time on two

graphs using our initial n+1 comparison approach and our revised n+2 comparison approach. The

two graphs we used for these tests were Input3 and Input_test3, and we have included the results

in Table 10.

45

Table 10: Hill Climb N+1 vs N+2 Correctness

 Input_test3 Input3

N+1 Comparisons Only

Backedge Weight

Total Runtime

2 / 5 (40%) 1 / 6 (16.66%)

0s 57µs 0s 225µs

N+1 and N+2 Comparisons

Backedge Weight

Total Runtime

2 / 5 (40%) 1 / 6 (16.66%)

0s 194µs 0s 243µs

In terms of correctness, our baseline Hill Climbing algorithm generated rankings with the same

total backedge weight as brute force. However, these tests do not show any difference between

ranking produced and its total backedge weight when using n+1 comparisons versus n+1 and n+2

comparisons. We suspect that this is due to the small size of the sample graphs tested and expect

better results in graphs with more nodes and a higher likelihood of plateauing. In the case of

runtime, a small increase appeared with n+2 comparisons, however we suspect that this change

will not make hill climb computationally infeasible with our larger sports season graphs.

The second set of correctness tests we conducted on our Hill Climbing approach tested our

random restart functionality. For these tests, we limited each trial to 300 random restarts and

utilized the n+2 comparison functionality tested above. The results of our tests are shown in Table

11.

Table 11: Hill Climb Random Restart Correctness

 Input_hard 9nodes

No Random Restarts

Backedge Weight

Total Runtime

6 / 31 (19.35%) 10 / 86 (11.62%)

0s 708µs 0s 432µs

Random Restarts

Backedge Weight

Total Runtime

5 / 31 (16.12%) 6 / 86 (6.97%)

0s 57467µs 0s 47070µs

These tests demonstrate that random restarting offers an improvement in correctness when dealing

with our sample graphs, indicating that even on small graphs, plateauing is possible and can hinder

the correctness of hill climb. We expect that random restarts can greatly improve the correctness

with sports season graphs, where more nodes and edges increase the likelihood for more local

46

minima. However, random restarts did increase computation time for Hill Climb substantially,

even for our sample graphs. We suspect that 300 random restarts may be too many for larger graphs

where each restart is likely to take longer, but that implementing a smaller number of restarts can

still improve correctness without significantly compromising runtime.

The final modification made to Hill Climb was the implementation of “sideways moves.”

This modification was made to combat plateauing when searching for a solution by allowing hill

climb to consider equally-weighted rankings for the next iteration if no improvements in rankings

occurred during the current iteration. The following tests on sample graphs utilize n+2

comparisons and allow for 300 random restarts. In the cases where sideways moves are enabled,

500 sideways moves are allowed before Hill Climbing completes.

Table 12: Hill Climb Sideways Moves Correctness

 Input_hard 9nodes

No Sideways Moves

Backedge Weight

Total Runtime

5 / 31 (16.12%) 6 / 86 (6.97%)

0s 57467µs 0s 47070µs

500 Sideways Moves

Backedge Weight

Total Runtime

5 / 31 (16.12%) 6 / 86 (6.97%)

5s 513326µs 4s 495037µs

In the above test cases, sideways moves appear to make no improvement towards the total

backedge weight of the rankings generated. We hypothesize that this is because the local minima

of our sample graphs are well-defined and are not close to other local minima. In practice, this

means that permutations that result in total backedge weights that are close to a local minima are

not similar to permutations that result in backedge weights close to other local minima. The

addition of sideways moves also reduces the performance of Hill Climb substantially, as each

permutation utilized is allowed 500 moves within 300 random restarts. We suspect that this may

result in a significant increase in runtime if evaluating larger graphs, where the additional time of

random restarts and sideways moves is magnified by the base computation time for each

permutation.

 Finally, to demonstrate the improvements of our Hill Climbing algorithm in practice, we

conducted a comparison test on our 2016-17 regular-season NFL data set. These tests depict the

differences between our initial Hill Climb approach with no modifications and our finalized Hill

Climb approach with n+2 comparisons, 300 random restarts, and 500 sideways moves. Only the

top-10 teams are displayed below, but the total backedge weights for each ranking are indicative

of the full ranking.

47

Table 13: Hill Climb Results on 2016-17 NFL Data

Base Hill Climb Modified Hill Climb

New England Patriots New England Patriots

Atlanta Falcons Atlanta Falcons

Dallas Cowboys Dallas Cowboys

Pittsburgh Steelers Green Bay Packers

Kansas City Chiefs Pittsburgh Steelers

Arizona Cardinals Kansas City Chiefs

Green Bay Packers Arizona Cardinals

Seattle Seahawks Seattle Seahawks

Denver Broncos Denver Broncos

Philadelphia Eagles Philadelphia Eagles

515 / 2623 (19.63%) 509 / 2623 (19.40%)

0s 5799µs 101s 547370µs

The above tests show a small improvement in the correctness of our Hill Climbing approach. We

expect that this small improvement is due to the baseline Hill Climbing algorithm beginning with

a ranking with small enough total backedge weight where there was little room for improvement,

especially considering that the ranking from the baseline Hill Climbing algorithm has less

backedge weight than the best Berger/Shor ranking. Both Hill Climb rankings generated contain

the same ten teams, but have only four teams swapped within their rankings. This indicates that

our data set has well-defined minima and maxima, as our modified Hill Climbing algorithm was

able to find these variations in its ranking. However, this improvement in correctness comes at a

large increase in runtime of the algorithm, which is now several orders of magnitude slower than

our base Hill Climb approach.

5.2: Performance Testing

 To assess the performance of our algorithms, timing tests were completed with each

algorithm. Our approximation algorithms were evaluated using the same set of randomly generated

graphs of varying densities and sizes. Three graphs were generated for each permutation of 10,

100, and 1000 nodes and densities 0.2, 0.4, 0.6, 0.8, and 1. All tests used a single thread on the

same Intel i7-4790K processor running at 4.0 GHz. These tests results may have varying results if

repeated, as the operating system and other background programs could have influenced the

48

execution time of the algorithms. Due to its time complexity, brute force was evaluated as stated

in the following section.

5.2.1: Brute Force

 The performance of brute force was evaluated using graphs where every node was

connected to two other nodes such that a single cycle was formed, e.g. A-B, B-C, C-A. All edges

were given weights such that every possible permutation would be an optimal solution. However,

these sample graph choices would not impact the performance of the algorithm. Brute force

operates independent of graph density, number of edges, and how nodes are connected. The

algorithm only depends on the number of nodes in the graph.

Table 14: Brute Force Threading Execution Times in Seconds

Nodes 1 thread 2 threads 3 threads 4 threads

8 0.064 0.030 0.039 0.034

9 0.674 0.320 0.215 0.205

10 7.375 3.438 2.819 2.153

11 88.527 44.763 30.042 22.487

12 1154.832 534.362 356.373 269.512

For any graph with 8 or fewer nodes, brute force ran instantaneously. As expected, each increase

by one node increased execution time by slightly more than a factor of n!/(n-1)!, or n. Beyond 13

nodes, brute force takes an excessively long time to complete. Multithreading was able to decrease

execution time by a factor of nearly the number of threads created. Unfortunately, this was not

enough of an improvement to make a significant impact. Using the rate of permutations processed

from the 12-node, two-threaded test, a single processor running at max usage on a 16 node graph

would take 68 days to complete. A graph the size of an NFL dataset with 32 nodes would take

2.327*1021 years.

49

Table 15: Estimations of Brute Force Execution Time with 8 Threads (i7-4790K at 4.0 GHz)

Nodes Predicted execution time

12 134 seconds

13 29 minutes

14 7 hours

15 4 days

16 68 days

20 21516 years

32 2.327*1021 years

The expected runtime results in Table 15 were based on the rate of permutations processed per

second from the 12-node, 2-threaded test, 448199.5351 permutations/second.

5.2.2: Berger/Shor New 2-Approximation Algorithm

 As stated above, approximation algorithms were evaluated using 45 random graphs of

different sizes and densities. Based on the averages in Table 16, the algorithm’s performance

appears to closely follow the expected O(V+E) time complexity from 10 to 100 nodes. The times

for the 1000 node graphs, however, were an order of magnitude longer than expected. This could

be due to a large number of memory operations caused by the high node count and maintenance

of several adjacency matrices significantly impacting performance. Overall, the algorithm is quick.

Table 16: Average Berger/Shor Execution Time on Random Graphs in Seconds

 Density

Nodes 0.2 0.4 0.6 0.8 1.0 Average

10 0.000318 0.000153 0.000146 0.000149 0.000164 0.000186

100 0.016147 0.017201 0.016495 0.016187 0.014591 0.016124

1000 11.716751 13.540069 14.652580 14.562917 11.409153 13.176294

 Graph density appears to have an interesting effect on the runtime of the Berger/Shor

algorithm. For both 100 and 1000 nodes, graphs with every possible edge had the shortest

execution time, while graphs with mid-range density took longer. This effect was reversed for 10-

50

node graphs. For unknown reasons, the 10-node graphs of density 0.2 took over twice as long to

execute than those of mid-range densities.

Figure 8: Berger/Shor percent time off fastest density for each node count

5.2.3: Hill Climb

Using the same set of graphs, a single iteration run to completion of the Hill Climbing

approximation algorithm took significantly longer than the Berger/Shor algorithm. For graphs of

1000 nodes, execution took several hours to complete. This was expected, as we had calculated

the time complexity of Hill Climbing as O(V3). The difference between the execution times of the

10 and 1000 node graphs demonstrated this. However, the 100 node graphs ran twice as fast as

expected.

Table 17: Average Hill Climb Execution Time on Random Graphs in Seconds with Comparison

 Density

Nodes 0.2 0.4 0.6 0.8 1.0 Average B/S Avg

10 0.015727 0.016845 0.019644 0.014929 0.015030 0.016435 0.000186

100 6.634456 6.918450 7.073458 7.068419 7.368316 7.012620 0.016124

1000 11296.777 14201.902 15152.427 16458.629 16610.378 14744.023 13.176294

Graph density had a significant effect on execution time. For all three node counts, runs

mostly took longer the denser the graph was. This is due to the fact that more edges mean there

51

are more possible valid swaps Hill Climb could make. The 10-node graphs with densities 0.8 and

1.0 were the only exceptions to this, completing faster than the other 10-node graphs instead.

Figure 9: Hill Climb percent time off fastest density for each node count

5.3: Summary

In this chapter, we discussed the correctness and performance tests we conducted on the

base implementation of our program and algorithms. We demonstrated how the optimizations we

made to our algorithms affected the total backedge weights of their generated rankings and

runtime, and provided explanations as to why different algorithms performed better or worse on

certain graphs. Finally, we explored the relation of input graph properties, such as number of nodes

and density, to the performance of each of our algorithms.

52

Chapter 6: Edge Weights

After initially experimenting with point differential as edge weights within graphs of sports

data, we explored further factors to consider in edge weights to represent more information and

create a more accurate ranking. This chapter details the considerations that we made when utilizing

edge weights to represent sports data. Each element of our design, implementation, and testing

methodology is detailed in following the sections.

6.1: Edge Weight Design

As discussed in previous sections, determining the proper edge weight for each game in

our sports data is paramount to accurately capturing the data and producing correct rankings. Aside

from reading and condensing sports data into edge weights, we also designed three modifiers for

the edge weights that were used to modify the significance of edges based upon multiple factors:

linear decay, score normalization, and strength of schedule. We explore these three modifiers in

the following sections.

6.1.1: Linear Decay

Before we explored how to weigh our edges, our program did not account for any metric

of recency of game when calculating edge weights. We suspected that external rankings applied

the recency of game as some form of decay, where more recent games were given higher value

than older games, so we explored different approaches to incorporate this in our rankings. We

discovered two solutions: linear decay, where each prior game is weighed lower values by a

consistent factor compared to the next most-recent game; and exponential decay, where two

coefficients determine how highly to weigh a prior game. We expect that external rankings utilize

exponential decay, where the graph of the two factors resembles a convex curve, decaying a game

mildly if it was recent but decaying it much more heavily if older. After discussion, we decided to

pursue linear decay because we felt we could develop a suitable approximation without having to

handle the additional complexity of exponential decay.

6.1.2: Score Normalization (Beta Methodology)

Using the point differential as the weight for each edge within our graph presented

drawbacks when modeling our sports data. The first drawback was how to handle equivalent point

differentials. For example, we initially felt that a game with a final score of 3-0 should not be

weighed the same as a game with a final score of 6-3. Even though the point differentials are equal,

the first game resulted in a shutout of the second team. However, after discussion, we concluded

that external rankings likely applied minimal consideration to this, and decided not to apply a base

weight factor. The second drawback was seen in games where a team ran up the score. For

example, a better team could continue scoring points within a game to increase their point

differential, thus resulting in a much larger edge weight for that game.

53

Normalizing the edge weights within the graph proved to be a viable solution to the above

drawbacks, which we completed through a process known as Beta Normalization. Beta

Normalization divides each game’s point differentials into ranges with an interval of one score

for that sport. An example of the Beta normalization process and the points within each interval

for American Football are displayed in Table 18. The first key point of this normalization process

is that the highest Beta range contains no upper bound for score. Our discussion concluded that,

after a four score point differential for our test football graphs, any additional points scored were

likely meaningless in assigning the edge weights. The second key point for this process was the

actual assignment of intervals. For example, we figured that a touchdown, or one score, can be

significant enough to modify which range a game is placed into for football games.

Table 18: Beta Interval Points for American Football

Beta Interval 1 Beta Interval 2 Beta Interval 3 Beta Interval 4 Beta Interval 5

1-7 points 8-14 points 15-21 points 22-28 points 29+ points

6.1.3: Quartile of Losing Team (Strength of Schedule)

Reviewing the factors of ranking algorithms discussed in Section 2.6, we noted that we still

had not introduced an explicit solution to the strength of schedule factor. The weighted Minimum

Feedback Arc set problem implicitly factors in strength of schedule because better teams are more

likely to have more forward edges that should cancel out any backedges from an upset match.

Utilizing a graph-based approach made it more difficult to quantify strength of schedule compared

to a ranking system such as Elo, so we needed to develop our own factor to account for it. The

result of discussion was a quartile factor system, where we considered the relative placement of

the losing team in the ordering of all teams. To apply this, we designed a multiplier for the quartile

of the losing team to be applied to any edge.

To compute the quartile factor, the teams in any given ordering were divided into quartiles

during evaluation, based on what rank each team was placed in. The quartile of the losing team

was used as the basis to choose the quartile multiplier, which ranged from zero to one. This quartile

multiplier was designed to be used in the evaluation process for a given ordering of teams, which

changed depending on the specific ordering used with it. The quartile multiplier would be a

modifier to any edge weights counted as backedges toward the total backedge weight. A value of

zero as a multiplier would multiply the edge weight by zero, essentially removing the significance

of the edge. For that reason, quartile multipliers have an inclusive range from 0.25 to 1. A value

of one as a multiplier would multiply the edge weight by one, not diminishing the significance of

the edge at all. The quartile multiplier was designed to diminish the reward of winning against a

low ranked team and reward victories against strongly ranked teams.

Along with decay and normalization, the quartile multiplier in evaluation became the third

modifier for edge weights.

54

6.1.4: Alpha/Beta Methodology

 Reflection on different approaches to our ranking factors of decay, strength of schedule,

and point differential influenced the redesign of our edge weight algorithm to apply these changes.

The resulting formula is referred to as Alpha/Beta in the remainder of this report. Our algorithm

applied the product of variables Alpha and Beta as each edge weight during processing of the

adjacency matrix, where Alpha and Beta were each values between 0 and 1. Alpha represented

the linear decay factor for the game, where a value of 0 disregarded the oldest games in a graph

altogether and a value of 1 resulted in no decay. Beta represented the edge weights applied to each

interval before decay, where a value of 0 resulted in games in the first interval receiving zero edge

weight, while a value of 1 resulted in equivalent weight factors being applied to the point

differentials, regardless of interval.

 Our implementation of this Alpha/Beta system was designed to be adaptable for future

testing needs. Both Alpha and Beta values were applied from the configuration file where they

could be modified with ease. Additionally, the number of Beta intervals and Beta step size were

also stored in the configuration file. The step size varies by sport where the point value of a score

differs, so this value needed to be flexible. If we wanted to adjust the number of intervals for testing

purposes, that functionality was also present.

6.2: Edge Weight Implementation

 The implementation of edge weight normalization, also known as score normalization, in

the program had some challenges. As described in Section 6.1.2, edge weight normalization is the

process of normalizing the point differential of a game into a small number of categories. The

actual edge weight values calculated from the point differential are fixed by a Beta value and are

decimal values. The first complication presented itself when determining how to store decimal

values for the normalized edge weights alongside the original edge matrix. The original adjacency

matrix was implemented as a two-dimensional array of integers up to a maximum size of 250 by

250. At the time of the implementation of score normalization, all of the functions in the program

expected the edges to be stored as integers; therefore, substantial refactoring would be necessary

to introduce edges as double precision floating point numbers.

We decided to implement the adjacency matrix of normalized edges as a two-dimensional

array of doubles, allocated to the exact number of cells required in order to reduce memory usage.

In order to allocate the necessary amount of memory for the normalized adjacency matrix when

the number of teams in the input file was unknown, we had to develop a workaround. First, the

normalized adjacency matrix was allocated to the maximum size of the non-normalized adjacency

matrix of 250 by 250. The normalized matrix was then filled simultaneously with the non-

normalized adjacency matrix in the reading process of the input file. As each edge was read, the

score differential had the normalized edge weight calculated depending on the Beta value, the size

of Beta steps, and the number of Beta steps. When the reading process concludes, the total number

of nodes and the maximum memory needed for an adjacency matrix is known. Finally, the

55

oversized normalized adjacency matrix is reallocated into a smaller size and the values are copied

over.

The decision to have an optional normalized adjacency matrix required that all ranking

algorithms be duplicated as well to utilize the normalized matrix. This was necessary because there

were so many accesses to the adjacency matrix in each algorithm that it was prohibitively difficult

to implement variable access to the normalized adjacency matrix. Although this made the logic

simpler within functions, this decision greatly increased the time required for code maintenance.

6.2.1: Alpha/Beta Heatmaps

 Upon implementing the Alpha/Beta functionality within our program, we applied it to our

evaluation of external rankings. In our discussion, we saw testing the performance of rankings

with different Alpha and Beta values as a potential way to reverse-engineer external rankings and

better understand what factors influenced them. We could evaluate external rankings several times

with different combinations of Alpha and Beta and compare the resulting total backedge weights,

where lower total backedge weights would indicate a better response to the Alpha and Beta values

used.

 To better compare our resulting total backedge weights, we added functionality to our

program to generate a heatmap. For the purposes of this project, a heatmap is a matrix of total

backedge weight values for a given ranking where the cells are colored in varying gradients based

on their value, with the horizontal axis indicating changes in Alpha and the vertical axis indicating

changes in Beta. Heatmaps allowed us to observe the total backedge weights at a glance to quickly

identify any trends in increases or decreases of backedge weights with changes of Alpha and Beta.

 We began implementation of heatmap functionality by replicating our external rank

evaluation process. Instead of simply evaluating the total backedge weight of the ranking, we

modified the external evaluation to disregard any Alpha and Beta values provided by the

configuration file because the adjacency matrix for normalized edges is regenerated with multiple

permutations of Alpha and Beta values. In the process of generating the new normalized adjacency

matrix, the sports data input file is reread. Since normalized edges compress the information of an

edge into a singular value, it is not possible to extract the lost information from the original sports

data from the edge. Therefore, the entire input file needed to be reused to generate each new batch

of edge weights. The evaluation function was rerun on the ordering with a given Alpha and Beta

to evaluate the total backedge weight for that instance.

We chose to explore permutations of Alpha and Beta values ranging from 0 to 1, inclusive,

in increments of 0.1. We chose such small increments as a way to increase granularity in testing,

given that the external evaluation code had minimal computation time. The total backedge weights

of the given external ranking would change as the values of Alpha and Beta altered how edges in

the input file were weighed. These total backedge weights were all then normalized to their

respective total edge weight in the graph at each instance of a given Alpha and Beta value pair.

For example, if the total backedge weight of the external ranking was evaluated to 20.0 and the

total edge weight in the entire graph, regardless of direction of the edges, was 80.0, the normalized

56

total edge weight would be 0.25 as the backedge weight of the ranking was one fourth of the total

edge weight in the graph.

All of the normalized total backedge weights of each permutation of Alpha and Beta for

the ordering were gathered and displayed in a table that could be converted to a heatmap. Our

heatmap output was chosen to be in CSV (comma separated values) format. CSVs are flexible for

our purposes: they can be viewed in Microsoft Excel and most text editors. Additionally, when

opened in Excel, they were presented in a clean table view, where it was simple to view the values

for individual columns compared to manually printing out an ASCII table. Finally, in order to add

color to the heatmap, we utilized Microsoft Excel’s workbook functionality, as CSVs do not

support formatting.

6.3: Edge Weight Results

 In this section, we apply our Alpha/Beta edge weight and heatmap functionalities towards

our algorithms and external rankings. These tests allow us to better understand the factors that

external rankings account for by adjusting the Alpha and Beta values to give more or less priority

to these factors. From this, we can determine using the total backedge weight from different

Alpha/Beta combinations which rankings favor which values. The first tests we conducted with

our heatmaps were to determine how our quartile and home-field advantage modifiers impact our

rankings and external rankings. For these test cases, the home-field advantage modifier added three

points, or one field goal, to a victory by an away team in football games. Afterwards, we tested

our lowest backedge weight external rankings for the 2016-17 NFL dataset, 2016-17 CFB dataset,

2014-15 NHL dataset, and 2015 MLB dataset to better understand the factors they consider.

Heatmaps from additional rankings for these datasets are included and discussed in Appendix B.

 The first set of tests we conducted were Alpha/Beta heatmap tests comparing total

normalized backedge weight values for different Alpha/Beta values while toggling our quartile

and home-field advantage factors in our edge weight algorithms. As explained in Section 6.2.1,

our heatmaps are adjacency matrices containing the normalized total backedge weights of each

algorithmic or external ranking on a given dataset. Our heatmaps present changes in Alpha on the

vertical axis from 0 to 1 in 0.1 increments and present changes in Beta on the horizontal axis from

0 to 1 in 0.1 increments. These heatmaps are colored on a red to green gradient, where shades of

green represent smaller total backedge weights and shades of red represent larger total backedge

weights.

57

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.206206 0.214998 0.220393 0.224041 0.226673 0.22866 0.230215 0.231464 0.232489 0.233346 0.234073

0.1 0.21071 0.218929 0.223951 0.227337 0.229774 0.231613 0.233049 0.234202 0.235149 0.235939 0.236609

0.2 0.214528 0.222245 0.226942 0.230102 0.232373 0.234084 0.23542 0.236491 0.237369 0.238103 0.238724

0.3 0.217806 0.22508 0.229493 0.232456 0.234582 0.236183 0.237431 0.238432 0.239252 0.239936 0.240516

0.4 0.220651 0.227531 0.231693 0.234483 0.236483 0.237987 0.239159 0.240099 0.240868 0.24151 0.242054

0.5 0.223143 0.229671 0.233611 0.236248 0.238136 0.239555 0.240661 0.241546 0.242271 0.242875 0.243387

0.6 0.225345 0.231556 0.235298 0.237798 0.239587 0.240931 0.241977 0.242814 0.243499 0.244071 0.244555

0.7 0.227303 0.233229 0.236792 0.239171 0.240871 0.242147 0.24314 0.243934 0.244585 0.245127 0.245586

0.8 0.229057 0.234724 0.238126 0.240394 0.242014 0.24323 0.244175 0.244931 0.24555 0.246066 0.246502

0.9 0.230637 0.236068 0.239323 0.241491 0.24304 0.2442 0.245103 0.245824 0.246415 0.246907 0.247323

1 0.232068 0.237283 0.240404 0.242482 0.243964 0.245075 0.245938 0.246629 0.247194 0.247664 0.248062

Figure 10: 2017-18 NFL heatmap (Sports Illustrated, Quartiles Off)

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.090165 0.109563 0.122772 0.132347 0.139606 0.145299 0.149882 0.153653 0.156809 0.159489 0.161793

0.1 0.090861 0.1104 0.123694 0.133323 0.14062 0.146341 0.150946 0.154733 0.157902 0.160593 0.162907

0.2 0.091445 0.111102 0.124465 0.134141 0.14147 0.147214 0.151836 0.155637 0.158817 0.161517 0.163838

0.3 0.091942 0.111699 0.125121 0.134835 0.142191 0.147954 0.152592 0.156404 0.159593 0.162301 0.164628

0.4 0.092370 0.112213 0.125686 0.135433 0.142811 0.148591 0.153241 0.157063 0.16026 0.162974 0.165307

0.5 0.092743 0.11266 0.126177 0.135952 0.143351 0.149145 0.153806 0.157636 0.16084 0.163559 0.165896

0.6 0.093070 0.113052 0.126608 0.136408 0.143823 0.14963 0.154301 0.158138 0.161348 0.164072 0.166413

0.7 0.093360 0.113399 0.126989 0.136811 0.144242 0.150059 0.154738 0.158582 0.161797 0.164525 0.16687

0.8 0.093618 0.113709 0.127328 0.13717 0.144614 0.150442 0.155128 0.158978 0.162197 0.164929 0.167276

0.9 0.093850 0.113986 0.127633 0.137492 0.144948 0.150784 0.155477 0.159332 0.162555 0.16529 0.167641

1 0.094059 0.114236 0.127907 0.137782 0.145249 0.151093 0.155791 0.159651 0.162878 0.165616 0.167969

Figure 11: 2017-18 NFL heatmap (Sports Illustrated, Quartiles On)

 The heatmaps in Figures 10 and 11 show our Sports Illustrated ranking total backedge

weights with and without our quartile factor applied. In Figure 10, where the quartile factor is

disabled, increases in the value of Alpha and increases in the value of Beta contribute roughly

equivalently towards the total backedge weight, which implies that Sports Illustrated applied

equivalent preference towards recency of match and point differential. However, with quartiles

applied as shown in Figure 11, increases in the value of Alpha are far more significant in increasing

the total backedge weight than increases in Beta. We expect that this is because the quartile factor

reduces the edge weight before decay substantially for most edges, such that applying less of a

decay factor increases the total graph weight enough to result in increased total backedge weight.

58

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.222222 0.228702 0.232678 0.235367 0.237306 0.238771 0.239917 0.240837 0.241593 0.242225 0.242761

0.1 0.231285 0.236792 0.240157 0.242426 0.244059 0.245291 0.246254 0.247027 0.24766 0.24819 0.248639

0.2 0.238968 0.243617 0.246446 0.24835 0.249718 0.250749 0.251553 0.252198 0.252728 0.253169 0.253544

0.3 0.245564 0.249451 0.251809 0.253392 0.254528 0.255383 0.25605 0.256585 0.257023 0.257389 0.257699

0.4 0.251289 0.254495 0.256435 0.257735 0.258667 0.259368 0.259914 0.260352 0.260711 0.26101 0.261263

0.5 0.256304 0.2589 0.260467 0.261516 0.262267 0.262831 0.263271 0.263623 0.263911 0.264151 0.264355

0.6 0.260734 0.26278 0.264013 0.264836 0.265426 0.265868 0.266213 0.266489 0.266714 0.266903 0.267062

0.7 0.264675 0.266224 0.267154 0.267776 0.26822 0.268554 0.268813 0.269021 0.269191 0.269332 0.269452

0.8 0.268205 0.2693 0.269958 0.270397 0.27071 0.270945 0.271128 0.271274 0.271394 0.271493 0.271578

0.9 0.271383 0.272066 0.272475 0.272748 0.272942 0.273088 0.273201 0.273292 0.273366 0.273428 0.273481

1 0.274262 0.274566 0.274747 0.274869 0.274955 0.27502 0.27507 0.27511 0.275143 0.275171 0.275194

Figure 12: 2016-17 NFL heatmap (Sports Illustrated, Quartiles Off, Home-Field Advantage Off)

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.206622 0.216686 0.223419 0.228239 0.231861 0.234682 0.236942 0.238792 0.240334 0.24164 0.242761

0.1 0.217273 0.226058 0.231914 0.236096 0.239232 0.241671 0.243622 0.245219 0.246549 0.247674 0.248639

0.2 0.226292 0.233962 0.239058 0.24269 0.245409 0.247522 0.24921 0.25059 0.251739 0.252711 0.253544

0.3 0.234028 0.240718 0.24515 0.248304 0.250662 0.252491 0.253952 0.255146 0.25614 0.256979 0.257699

0.4 0.240736 0.246558 0.250407 0.25314 0.255182 0.256765 0.258028 0.259059 0.259917 0.260642 0.261263

0.5 0.246609 0.251658 0.254989 0.257351 0.259114 0.260479 0.261568 0.262457 0.263196 0.26382 0.264355

0.6 0.251793 0.256149 0.259018 0.26105 0.262564 0.263737 0.264672 0.265434 0.266068 0.266604 0.267062

0.7 0.256403 0.260135 0.262588 0.264324 0.265617 0.266618 0.267415 0.268065 0.268606 0.269062 0.269452

0.8 0.260529 0.263695 0.265774 0.267244 0.268338 0.269184 0.269857 0.270407 0.270863 0.271248 0.271578

0.9 0.264244 0.266896 0.268635 0.269863 0.270777 0.271483 0.272046 0.272504 0.272885 0.273206 0.273481

1 0.267606 0.269788 0.271218 0.272227 0.272977 0.273556 0.274017 0.274393 0.274705 0.274969 0.275194

Figure 13: 2016-17 NFL heatmap (Sports Illustrated, Quartiles Off, Home-Field Advantage On)

 Additionally, as shown in Figures 12 and 13, we tested the impacts of our home-field

advantage modifier on Sports Illustrated’s power ranking for the 2016-17 NFL dataset. Overall,

this modifier does not substantially impact the trends in Alpha and Beta values for the total

backedge weight of the ranking. The best Alpha and Beta values are identical for both at (0,0).

However, the total backedge weight with home-field advantage enabled decreases slightly, which

we expect is because the forward edge weight increases more with the home-field advantage factor

applied than the backedge weight does. Additionally, enabling quartiles reduces the significance

by which increases in Beta values with a large Alpha value increase the total backedge weight,

which we suspect is because considering home-field advantage modifies Beta’s point differential,

potentially making the games in a season closer together. Thus, changing the decay through Alpha

would modify the edge weights more significantly.

59

The second set of tests we conducted with our Alpha/Beta heatmaps demonstrate the trends

in total backedge weight based on differing Alpha and Beta values for each of our rankings in the

2016-17 NFL dataset, 2016-17 CFB dataset, 2014-2015 NHL dataset, and 2015 MLB dataset. The

heatmap in Figure 14 shows how the NFL.com power ranking for the 2016-17 NFL season dataset

responds to changes in Alpha and Beta values. Heatmaps and analysis for additional rankings from

these seasons are included in Appendix B. The heatmaps discussed in this section were chosen

because their best Alpha/Beta combination resulted in the lowest total backedge weights compared

to other two power rankings.

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.151276 0.15178 0.152088 0.152297 0.152448 0.152562 0.152651 0.152722 0.152781 0.15283 0.152872

0.1 0.152303 0.152775 0.153064 0.153259 0.153399 0.153504 0.153587 0.153653 0.153707 0.153753 0.153791

0.2 0.153174 0.153615 0.153884 0.154065 0.154195 0.154293 0.154369 0.154431 0.154481 0.154523 0.154559

0.3 0.153921 0.154334 0.154584 0.154752 0.154872 0.154963 0.155034 0.15509 0.155137 0.155176 0.155209

0.4 0.15457 0.154954 0.155187 0.155343 0.155455 0.155539 0.155605 0.155657 0.1557 0.155736 0.155766

0.5 0.155138 0.155497 0.155713 0.155858 0.155962 0.15604 0.1561 0.156149 0.156189 0.156222 0.15625

0.6 0.15564 0.155974 0.156176 0.15631 0.156406 0.156479 0.156535 0.15658 0.156617 0.156647 0.156674

0.7 0.156087 0.156398 0.156585 0.15671 0.1568 0.156867 0.156919 0.156961 0.156995 0.157023 0.157047

0.8 0.156487 0.156777 0.156951 0.157067 0.15715 0.157212 0.157261 0.1573 0.157331 0.157358 0.15738

0.9 0.156847 0.157117 0.157279 0.157387 0.157464 0.157522 0.157567 0.157603 0.157632 0.157657 0.157678

1.0 0.157173 0.157425 0.157576 0.157676 0.157748 0.157801 0.157843 0.157876 0.157904 0.157927 0.157946

Figure 14: 2016-17 NFL heatmap (NFL.com, Quartiles On)

 From the heatmap in Figure 14, we can infer several factors about NFL.com’s power

ranking. The most apparent trend in this heatmap is how total backedge weight significantly

increases as the value of Alpha increases. The total backedge weight does increase with an increase

in Beta, as expected, but not to the magnitude of changes in Alpha. We suspect that this is because

the ranking from NFL.com has the teams placed such that games or edges which would have less

value with smaller Alpha values were backedges. Specifically, according to the heatmap and our

total backedge weight metric, the NFL.com power ranking considers the recency of game

significant. Additionally, the small increases in total backedge weight from increases in Beta imply

that the NFL.com power ranking does not apply much weight towards the point differential within

a game. Thus, teams with higher point differential recent games are most likely to be ranked

highest in NFL.com power rankings.

60

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.003842 0.005011 0.005936 0.006687 0.007308 0.007830 0.008275 0.008660 0.008994 0.009289 0.009550

0.1 0.004496 0.005531 0.006349 0.007013 0.007563 0.008025 0.008419 0.008759 0.009056 0.009316 0.009548

0.2 0.004999 0.005930 0.006666 0.007264 0.007759 0.008175 0.008530 0.008836 0.009103 0.009338 0.009546

0.3 0.005398 0.006246 0.006918 0.007463 0.007914 0.008293 0.008617 0.008897 0.009140 0.009354 0.009544

0.4 0.005721 0.006503 0.007122 0.007624 0.008040 0.008390 0.008688 0.008946 0.009170 0.009368 0.009543

0.5 0.005988 0.006715 0.007291 0.007758 0.008144 0.008470 0.008747 0.008987 0.009196 0.009379 0.009542

0.6 0.006214 0.006894 0.007433 0.007870 0.008232 0.008537 0.008797 0.009021 0.009217 0.009389 0.009541

0.7 0.006406 0.007047 0.007554 0.007966 0.008307 0.008594 0.008839 0.009051 0.009235 0.009397 0.009541

0.8 0.006572 0.007178 0.007659 0.008049 0.008372 0.008644 0.008876 0.009076 0.009250 0.009404 0.009540

0.9 0.006716 0.007293 0.007750 0.008121 0.008429 0.008687 0.008908 0.009098 0.009264 0.009410 0.009539

1 0.006844 0.007394 0.007831 0.008185 0.008478 0.008725 0.008936 0.009117 0.009276 0.009415 0.009539

Figure 15: 2016-17 CFB heatmap (ESPN, Quartiles On)

 Figure 15 shows the Alpha/Beta heatmap for ESPN’s power ranking for the 2016-17

NCAA College Football (CFB) season with Division I teams. In all NCAA College Football

heatmaps on external rankings, the total backedge weight values are smaller compared to other

sports because these external rankings only consider the top-25 of 128 teams, so many of the edge

weights for lower ranked teams are not considered.

 As shown in the heatmap in Figure 15, small Alpha and Beta values return low total

backedge weights, where the lowest appears with an Alpha/Beta of (0,0). In general, this means

that ESPN’s power ranking favors recent wins and high point differentials when ordering teams.

However, increases in the Beta value result in much greater total backedge weight than increases

in Alpha. We suspect that this is because backedges of the ranking are more likely to be close

games than older games in the season. Additionally, increases in Alpha result in less total backedge

weight increase when Beta is high compared to when Beta is low. We hypothesize that this pattern

occurs because backedges have their edge weights minimized much less with Alpha than Beta, but

with a higher Beta, the total graph weight is much larger, resulting in smaller impacts from

increases in Alpha.

61

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.261899 0.262495 0.262992 0.263412 0.263772 0.264084 0.264356 0.264597 0.264811 0.265002 0.265174

0.1 0.262867 0.263588 0.264188 0.264695 0.265129 0.265505 0.265834 0.266123 0.266381 0.266611 0.266818

0.2 0.26368 0.264505 0.265191 0.265771 0.266266 0.266695 0.26707 0.267401 0.267694 0.267957 0.268193

0.3 0.264373 0.265286 0.266045 0.266685 0.267233 0.267707 0.268121 0.268486 0.26881 0.269099 0.269359

0.4 0.264971 0.265959 0.26678 0.267473 0.268065 0.268577 0.269024 0.269418 0.269768 0.27008 0.270361

0.5 0.265491 0.266545 0.26742 0.268158 0.268788 0.269333 0.269809 0.270229 0.2706 0.270933 0.271231

0.6 0.265949 0.26706 0.267982 0.268759 0.269423 0.269997 0.270498 0.270939 0.27133 0.27168 0.271994

0.7 0.266354 0.267516 0.268479 0.269291 0.269985 0.270584 0.271107 0.271567 0.271976 0.27234 0.272668

0.8 0.266716 0.267923 0.268923 0.269766 0.270485 0.271107 0.271649 0.272127 0.27255 0.272928 0.273268

0.9 0.26704 0.268287 0.269321 0.270191 0.270934 0.271575 0.272135 0.272628 0.273065 0.273455 0.273806

1 0.267333 0.268616 0.269679 0.270574 0.271338 0.271998 0.272573 0.27308 0.273529 0.27393 0.27429

Figure 16: 2014-15 NHL heatmap (NHL.com, Quartiles On)

 Figure 16 shows the heatmap of NHL.com’s standings after the 2014-15 NHL season. In

this heatmap, the lowest total backedge weight occurs when Alpha and Beta are both 0, but still

retain low total backedge weight with small values for both. Increases in Alpha and Beta appear

to increase the total backedge weight similarly, with more weight being added for increases in

Alpha. This may be because backedges for this ranking are more likely to be earlier games in the

season, which have more weight when no decay is applied, than point differential. However,

because of the increases in both, we can state that both recency of game and point differential are

considered within NHL.com’s standings, which appears counterintuitive towards the basis of

standings instead of rankings. This shows that total backedge weight may not be the best metric

for determining the optimal Alpha and Beta configuration for an external ranking.

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.221553 0.227557 0.231426 0.234128 0.23612 0.237651 0.238864 0.239848 0.240663 0.241349 0.241934

0.1 0.221997 0.227673 0.231332 0.233886 0.23577 0.237217 0.238364 0.239295 0.240065 0.240714 0.241267

0.2 0.222368 0.227771 0.231252 0.233683 0.235476 0.236854 0.237945 0.23883 0.239564 0.240181 0.240708

0.3 0.222684 0.227853 0.231185 0.233511 0.235226 0.236544 0.237588 0.238436 0.239138 0.239728 0.240232

0.4 0.222956 0.227925 0.231127 0.233362 0.235011 0.236278 0.237282 0.238096 0.238771 0.239338 0.239823

0.5 0.223192 0.227986 0.231076 0.233233 0.234824 0.236047 0.237015 0.237801 0.238452 0.238999 0.239467

0.6 0.2234 0.228041 0.231032 0.23312 0.23466 0.235843 0.236781 0.237542 0.238172 0.238702 0.239154

0.7 0.223583 0.228089 0.230993 0.23302 0.234515 0.235664 0.236574 0.237312 0.237924 0.238439 0.238878

0.8 0.223747 0.228132 0.230958 0.23293 0.234386 0.235504 0.236389 0.237108 0.237703 0.238204 0.238631

0.9 0.223894 0.22817 0.230926 0.23285 0.23427 0.23536 0.236224 0.236925 0.237505 0.237994 0.238411

1 0.224026 0.228205 0.230898 0.232778 0.234165 0.23523 0.236074 0.236759 0.237327 0.237804 0.238211

Figure 17: 2015 MLB heatmap (baseball-reference.com, Quartiles On)

62

 In Figure 17, the heatmap for baseball-reference.com’s standings of the 2015 MLB season

is displayed. The lowest total backedge weight in this heatmap occurs when Alpha and Beta are

both 0; however, low total backedge weights occur with small Alpha and Beta values, which

indicates that this ordering favors the most recent, highest point differential games. An unusual

trend with this heatmap is the large increase in total backedge weights with a small Alpha value

and a large Beta value when compared to the minimal change in total backedge weight with a large

Alpha value and a small Beta value. We suspect that this may be due to recent games with small

point differentials being backedges for this ordering, where the overall graph weight is small from

discounting early games. With a larger Alpha, when earlier games have more weight, the total

backedge weight is slightly lower, likely because the forward edges for this ranking have more

weight and skew the normalized weight.

6.3.1: Discussion on Alpha/Beta Heatmap Testing

 We notice from these tests that, regardless of sport, the Alpha and Beta values for our

external rankings which frequently yielded the lowest total backedge weight are (0,0). Despite the

frequency of these results, we are concerned that there might be a flaw in the Alpha/Beta

methodology which would favor these values. We suspect that the Alpha/Beta process favors

minimizing the total backedge weight for a ranking rather than identifying the factors which best

match an external ranking.

We reason that 0 for the Alpha value is favored because it allows the entire earliest set of

games to be ignored. As detailed in Section 6.1.1, the oldest edges or games in any set of sports

data are completely removed from the graph when the Alpha value is 0. In a weekly sport such as

NFL football, this results in the removal of the entire first week of games. This is mitigated

somewhat in sports that use dates, such as Baseball, since it would only completely remove games

from the first day. An Alpha value of 0 also removes the most amount of edge weight from a graph

of all Alpha values, as the oldest games have their values for edge weight decayed as much as

possible. Overall, an Alpha value of 0 favors reducing the total normalized backedge weight

because games that could have critical backedges would be weighed low enough that their impact

is reduced on the total backedge weight of an ordering.

We reason that a Beta value of 0 is favored because it causes the highest reduction in weight

of close games. We speculate that many of the upset victories that are added to the total backedge

weight can be attributed to close games, with the point differential usually within one score.

Moreover, a Beta value of 0 is favored over another low value such as 0.1 because a Beta value of

0 completely removes the closest games with a low point differential. Removing controversial or

close games naturally causes the total backedge weight to be reduced, and reduces the weight of

backedges which are not in the highest Beta interval.

Ultimately, our heuristic is measuring the ability for each Alpha/Beta combination to

reduce the total normalized edge weight. As explained above, the properties of a combination of

(0,0) greatly favor our heuristic.

63

6.4: Summary

 This chapter introduced factors and methodologies we considered when determining how

to weigh the edges in our sports graphs. We considered linear decay for recency of game, score

normalization for close games and running up the score, and the quartile of the losing team for

strength of schedule; three factors that were likely important during the development of external

rankings. Each of these factors is explained alongside the rationale of how they were implemented

and represented in our program. Finally, we explored the application of these factors to rankings

our algorithms generated and the possible flaw behind the favored Alpha/Beta values of (0,0).

64

Chapter 7: Top-N Truncated Rankings

 In this chapter, we discuss our methodologies for handling truncated rankings, or rankings

of the “top n” number of teams. We open by exploring the methods of rank snipping, which

maintain the score of the full ranking while returning only the top n teams. We then introduce

formal rank truncation and the N+1 node, alongside the justifications behind truncating internally

or externally. We then discuss how we implemented these forms of truncation alongside

considerations to reduce complications with existing functionality. Finally, we provide examples

of truncation methods, demonstrating their practical applications.

7.1: Top-N Truncated Ranking Design

 The need for some form of truncation arose out of the prevalence of rankings that only

included a subset of the total number of teams in competition. There are a plethora of sports

rankings that only include the top-5, top-10, or top-25 teams. In order to create comparable

rankings generated by our algorithms, we designed a system to truncate rankings. We reasoned

that there is much less interest between the relative rankings of teams ranked 120 and 121

compared to the relative rankings of teams in the top five. There is a much greater focus on the

relative rankings of teams with more importance to the audience of the rankings, teams which are

usually ranked the highest.

7.1.1: Rank Snipping for Top-N

 Rank snipping is the simplest form of truncated rank generation. The general process for

rank snipping has two main parts. The first part of this method of truncation actually did not

involve any truncation at all; rather, the first step was to generate a ranking of the complete set of

input teams as if we were not truncating at all. Then, the complete ranking would be “snipped” so

only the top-n teams would remain. The result of the rank snipping process would be a ranking of

the top-n teams as generated by our project using all of the available information given as sports

data to the program. We figured that this form of truncation was valid because external rankings

that only published top-n rankings likely used the same full season of data that we did when

generating our top-n rankings after snipping.

7.1.2: Internal Truncation and the N+1 Node

 Internal truncation is the process of only working with a subset of the total number of nodes

on the graph. Applied to the domain of sports rankings, there would be fewer teams considered as

eligible to be in the ranking. Internal truncation was designed to reduce the computation necessary

to develop a ranking. With fewer nodes in the graph, the generation of permutations would become

easier for the program. Internal truncation was rationalized with the reasoning that we only care

about computing the ranking of a subset of teams if we only want a subset ordering as an end

result. Internal truncation was also poised as a tool to allow brute force computation of certain

subsets of real data where there were normally a prohibitively large number of teams in the set.

65

However, there was a fundamental problem with not considering all of the nodes in the input data:

there is a loss of information that would occur as teams and games from outside the top-n teams

would be discarded. Furthermore, internal truncation begs the question of how to deal with games

that were played between teams of the top-n subset and teams outside the subset. Dropping the

games between teams within the top-n and teams outside the top-n could result in lost information

of important wins or losses which would have an impact on the final ranking.

 In order to mitigate the loss of information in the truncation process, we developed the

concept of the N+1 node. The N+1 node was another node that acted in place of “all other teams”

in the internal truncation of the complete set. The N+1 node was generated by the program rather

than being parsed from sports data as in the other teams in the input file. To retain the information

in the truncation process, all edges from games played between top-n teams and teams excluded

from the top-n subset would not be removed, but would point instead to the N+1 node. The N+1

node served to preserve forward edges and backedges between the teams in the top-n so that they

would not be lost in the truncation process. Only edges between nodes that were placed within the

N+1 node, which were no longer relevant to the top-n ranking, would be removed. The N+1 node

was named as such because it corresponded to the collection of nodes that would logically be

placed outside of the top-n nodes during the truncation process. The N+1 node workaround

allowed internal truncation to be viable in reducing computation necessary to develop rankings

without a significant loss in information used to rank the teams in the produced ordering.

7.1.3: Internal Versus Externally Specified Top-N

The final point of consideration in internal truncation was how to decide which teams were

eligible to be ranked after truncation. We needed to determine which nodes deserved to be ranked

in the top-n. We developed two different methods for determining the top-n nodes which are

outlined below.

 The first method for determining the top-n subset of teams for internal truncation was to

use the internally calculated edge weights. This strategy involved first sorting all nodes by their

net edge weight. Though this preordering had no bearing on the final ranking, it was used as the

metric for deciding which nodes were eligible and relevant for the top-n nodes.

 The second method for determining the top-n subset of teams was to use an external listing

of teams to specify the subset of teams to be kept after truncation. The complete set of teams was

truncated to match the list of teams present in the external list. This method of truncation was

designed primarily to aid in the comparison with external rankings of subsets of the teams within

a league. For example, if we wanted to compare our internally truncated ranking of teams from the

128-team set of college football data to a top-25 ranking of college football teams, we could use

the external top-n truncation functionality to truncate our set of eligible teams to the exact same

teams as the top-25 external ranking. From that point, we could compare the differences between

the placements of teams in our top-25 ranking versus the placements of top-25 teams from the

external ranking. This method of truncation became particularly useful in creating comparable

66

rankings to external rankings since this system only ordered the exact same teams as the external

one.

7.1.4: Conclusions on the Comparison of Truncated Rankings

 A ranking that is truncated is much different than a ranking of the whole set of inputs. A

complete ranking organizes all entities into an ordering, where teams higher in the ranking are

better than teams lower in the ranking, based upon some heuristic. Though complete rankings are

relatively straightforward in their significance, truncated rankings are notably more complicated.

We concluded that there are two main points of interest and significance that are integral

to top-n truncated rankings: the relative orderings between the top-n teams, and the assertion that

the subset of top-n teams are better than the remainder of the teams in the complete set. In the

process of comparing ranking that were of the top-n variety, such as top-10 and top-25, these two

factors needed be considered. In comparing two rankings of a subset of teams, either of these points

could be used as the metric by which the comparison was conducted. Depending on which of these

two main points of interest was more valuable or of greater importance, the method of truncation

needed to be adapted to suit it.

We decided that using an externally specified top-n was useful for comparison of the first

point of interest: whether the specific ordering of the top-n teams was correct. Since this method

for truncation took an external ranking’s specification for which nodes deserve to be in the top-n,

the rankings generated by our algorithms were solely focused on the relative ordering between the

top-n teams of each truncated ranking. Therefore, if we were to compare two truncated rankings

for the relative differences between the placements of the top-n teams, truncation using the nodes

specified by the external ranking would be most sensible. We found that the drawback of this

approach was that it could not be used to explore the second point above, as the ranking generated

could not be used to assert that the teams shown in the top-n ranking were indeed the top-n of the

whole set.

In order to maintain the comparison of both points above, we decided to use rank snipping

to generate top-n rankings for the purposes of comparing multiple truncated orderings, whether

internal or external. Though rank snipping is not as direct a comparison in regards to the relative

ordering of teams between the two top-n teams from the first point, we determined that rank

snipping for a top-n ranking weighed both of the above points to a satisfactory degree. The use of

rank snipping was supported because it was similar to the methodology for creating a top-n ranking

from a non-truncated source of sports data. We used the rationale that a top-n ranking output by

the program should be created as the top n teams of the best ranking that we could create by not

truncating and leaving all nodes and edges in the graph. The best possible ranking would

necessarily utilize all of the information available to the program, and from that, a top-n could be

extracted. This truncated output ranking could then be read into the program and handled as we

would handle any other external ranking. We reasoned that external top-n rankings were created

and truncated through a methodology that could not be inferred from the outside. We decided to

mimic this “black box” approach. Therefore, using rank snipping to create a ranking as a “black

67

box” ranking seemed to be the most comparable approach when creating truncated rankings. Given

the “black box” approach, we simply needed to create what we thought would be the best ranking

possible, and truncate it afterwards to match via rank snipping. If it was necessary to compare

exclusively on the first point above, we could utilize internal truncation on an external ranking for

the basis of determining which teams were allowed into the top-n ranking. However, permitting

the computation time requirements, it was more accurate of a comparison to use truncated rankings

through rank snipping than through internal truncation.

7.2: Top-N Truncated Ranking Implementation/N+1 Node

 The implementation of the internal top-n truncation design had to handle several difficult

issues. The first major challenge was how to deal with the truncation of the adjacency matrix when

the list of acceptable nodes was not guaranteed to be known until runtime. The second major hurdle

of the internal top-n truncation was how to create and maintain the N+1 node. Finding an efficient

solution would not only require implementation of the designed features, but would also be

standalone enough to not require extensive rewrites of existing functionality. By the time of the

implementation of top-n truncation, there were many features already implemented in the program,

so compatibility with all existing features of the program was the most significant implementation

goal.

7.2.1: Truncation of the Adjacency Matrix

 Truncation of the adjacency matrix was a difficult process to implement because the nodes

allowed in the top-n were not specified before runtime. Whether by external list or parsing of the

net total weights on the nodes in the graph, the nodes to include in the internal top-n subset would

be known only after the adjacency matrix had been initially configured. Without significant

arduous rewrites to the complex input file read process, the truncation had to occur after the

normalized and non-normalized adjacency matrices had already been configured. The

implementation of internal truncation could not simply create another adjacency matrix because it

would involve greater performance overhead, require all new evaluation functions, and all existing

algorithms would need to be adapted to handle the new evaluation functions and pull from the new

matrix. Additionally, all new features added to the program would require additional work to

compensate for use of the additional matrix. Therefore, another option had to be considered.

 The approach for the implementation of internal truncation turned to modification of the

existing adjacency matrices. Despite the implementation challenge it presented, modification of

the existing adjacency matrices would not require extensive rewrites of existing systems including

evaluation functions and ranking algorithms. The functions in the program were already designed

to handle an arbitrarily sized adjacency matrix, so modification of the size and contents of the

existing adjacency matrices seemed to be the most sensible choice because it allowed all other

systems of the program to function with internal truncation without modification.

 The modification of the existing adjacency matrices for the internal truncation was a

challenge to implement because it needed to be done in such a way that it would not impact

68

functionality in the rest of the program. The modification process had to replicate each adjacency

matrix as if it had been input in its truncated state. Once the list of nodes to maintain through the

truncation process had been determined, whether through an external listing or from the top-n

nodes based upon net weight of each node, both the normalized and non-normalized adjacency

matrices could be modified. The first step in the modification process was to create a new version

of the node dictionary, called the NodeDict. The NodeDict held the associations between the team

names for each node and the corresponding index in each adjacency matrix. The modified

NodeDict would contain the associations for just the top-n teams with their new indices. Once the

new NodeDict was fully configured, the values in each adjacency matrix could be modified as

well. A temporary truncation matrix was created to hold the contents of the truncated adjacency

matrix during the process of transferring the existing edge weights from each adjacency matrix to

the truncated version. Once the transfer of the relevant edge weights for the top-n teams between

the main adjacency matrix and the truncated version had completed, then the main adjacency

matrix was overwritten with the new values. The truncated version of the NodeDict was also set

to overwrite the original NodeDict’s values so that the node indices of each adjacency matrix

would be accurate to the truncated version. After this process, the program could continue to utilize

the adjacency matrix and NodeDict without issue.

7.2.2: Creating and Maintaining the N+1 Node

 As explained in Section 7.1.2, the N+1 node was a node that would hold all of the edges

between nodes in the top-n subset and nodes outside the top-n subset. The implementation of the

N+1 node presented a challenge because it was an artificial node created and maintained entirely

by the program. This node was appended to the truncated graph during the adjacency matrix

modification process detailed in Section 7.2.1. Weights were transferred to the N+1 node by

comparing the original adjacency matrix with the truncated version and adding edges to the N+1

node in the truncated adjacency matrix to and from nodes outside the top-n subset. An entry in the

NodeDict was also made for the N+1 node with the proper index in each adjacency matrix. While

using internal truncation, the index of the N+1 node was always the last available index in the

NodeDict. Instead of a special placeholder, the N+1 node was implemented to be treated just like

any other node by using its index, so that it was always known.

 Despite the high compatibility, this implementation of the N+1 node did have several

drawbacks. The main complication caused by this implementation of the N+1 node was that it

needed to be handled in a special way in the testing functionality of the program. Since it was

treated as a normal node, rank generation through the ranking algorithms required no extra work

to get truncated orderings. However, exceptions had to be created for any functionality that

interacted with external orderings. Interfacing with external orderings occurred in the testing

modules of the program, including external rank evaluation from Section 4.1.1, Alpha/Beta

heatmap testing from Section 6.2.1, rank comparisons from Section 4.5, and truncation by an

external list. Since the N+1 node was generated by the program, there was no consistent basis for

the inclusion on the N+1 node in external rankings. There were occasions when the N+1 node was

69

needed by the program but not supplied in the external ranking, and vice versa. This

implementation of the N+1 node, where it is treated as any other normal node in the graph, added

extra programming overhead when dealing with any external rankings. Workarounds and

exceptions for the N+1 node had to be made in all existing and future interactions with external

ranking files. There were a few other minor complications including preventing an input file from

taking the designated name for the N+1 node, but those issues were dealt with relatively easily.

Though this implementation of the N+1 node simplified rank generation for truncated orderings,

it required additional effort when implementing systems interfacing with external ranking files.

7.3: Top-N Truncated Ranking Results

 In this section, we apply rank snipping and internal truncation on our sports data to illustrate

the usage of each. We anticipated that this functionality would be useful in the case of college

football ranking analysis because many of the rankings published only considered the top-25 teams

in the league. Therefore, we decided to first test both rank snipping and internal truncation on our

2016-17 NFL dataset to analyze how the total backedge weight and ranking correctness would

compare in general. The following sections discuss our results alongside analysis and explanation.

7.3.1: Rank Snipping Example on 2016-17 NFL Data

 In application, rank snipping was used to reduce the size of a ranking generated by the

program. In Table 19, we display the results of two tests on the 2016-17 NFL dataset. The

following tests were conducted using rank snipping on the Hill Climbing algorithm. For brevity,

we are only displaying the top-10 of each ranking as our basis for comparison.

70

Table 19: Rank Snip on Hill Climb Ranking on 2016-17 NFL Dataset

Rank Snip Size: 10 Rank Snip Size: 5

New England Patriots New England Patriots

Dallas Cowboys Dallas Cowboys

Atlanta Falcons Atlanta Falcons

Kansas City Chiefs Kansas City Chiefs

Pittsburgh Steelers Pittsburgh Steelers

Oakland Raiders ----

New York Giants ----

Seattle Seahawks ----

Green Bay Packers ----

Miami Dolphins ----

 2.201/119.492 (1.84%) 0.773/119.492 (0.65%)

For reference, the total backedge weight of the non-snipped resulting ranking from the Hill

Climbing algorithm on the dataset is 19.846/119.492 (16.61%). As shown in Table 19, the rank

snipping approach removes all teams beyond the designated maximum amount of teams to retain

in the rank snip. For example, in Table 19, the teams are ranked identically until rank index 6,

where the rank snip of size 5 removes the remaining teams from the output ranking. It is important

to note the different total backedge weights between each level of rank snipping. In the non-

snipped ranking, the total backedge weight is 16.61%. The total backedge weight of the rankings

rank snipped to size 10 and size 5 are 1.84% and 0.65%, respectively. Even though all three

amounts of total backedge weight derived from identical ranking, the rankings with fewer teams

have a smaller amount of backedge weight. This is by design; since there are fewer teams to

consider, there are fewer backedges to be summed as a part of the total backedge weight. Total

backedge weight cannot be calculated from edges to nonexistent teams or teams that are not present

in the ranking. Therefore, it is important to only use rank snipping for comparison between

rankings of the same size.

 As demonstrated in Table 19, rank snipping is useful when we need to conform a ranking

generated by our program to a specified size. Using the rank snip approach, we are able to utilize

all of the available information and conduct the full set of calculations to generate a ranking of all

teams in the dataset before snipping the ranking to the desired size. Since the full set of calculations

are conducted on the full dataset, this process is not useful for reducing the required computation

71

time for generating a ranking. The utility of rank snipping is the ability to appropriately compare

rankings of sizes other than the total amount of teams in the dataset. Since all of our approximation

algorithms executed in a reasonable amount of time for testing, as demonstrated in Section 5.2, the

performance penalty for rank snipping was not a concern for the majority of our testing.

7.3.2: Internal Truncation Example on 2016-17 NFL Data

As discussed in Section 7.1.1, rank snipping was used to reduce the size of the sports data

input by restricting which teams could be allowed in the ranking. In order to preserve the validity

of the ranking, the same set of eligible teams needs to be used in both teams, since all computation

on the part of the program is limited to those eligible teams. In practice, the set of eligible teams

was given by the set of teams in the external ranking that the truncated ranking output from the

program would be compared to. In Table 20, we display the results of input truncation on the NFL

2016-17 dataset. In this simplified test, the input used for the truncation was the ESPN power

ranking for the 2016-17 season, modified to reflect only the top 10 teams in that ranking. The

ranking generated by our program in the following test was created by the Hill Climbing algorithm.

Table 20: Internal Truncation on Hill Climb Ranking on 2016-17 NFL Dataset

ESPN Ranking Hill Climbing

New England Patriots New England Patriots

Dallas Cowboys Dallas Cowboys

Pittsburgh Steelers Pittsburgh Steelers

Kansas City Chiefs Kansas City Chiefs

Green Bay Packers Green Bay Packers

Seattle Seahawks Atlanta Falcons

Atlanta Falcons Oakland Raiders

New York Giants New York Giants

Oakland Raiders Seattle Seahawks

Detroit Lions Detroit Lions

--Other_Teams-- --Other_Teams--

 9.442/65.106 (14.503%) 9.606/65.106 (14.755%)

72

As shown in Table 20, the truncated Hill Climbing ranking uses the exact same teams as the ESPN

ranking. Also shown at the bottom of each ranking is the N+1 node, called “--Other_Teams--”.

The rankings are very similar due to the small number of teams retained after truncation. The total

backedge weight of the ESPN ranking is 14.503% while the total backedge weight of the Hill

Climbing algorithm ranking is 14.755%. This result was surprising since most of our tests showed

that our ranking algorithms usually perform better than external rankings, as demonstrated in

Section 9.1. We reasoned that the cause of the slightly increased total backedge weight was the

small size of the truncated input.

 We investigated the total backedge weights of rankings generated from the same truncated

dataset using several of our ranking algorithms. We performed trials with quartile evaluation

enabled and disabled. The results are displayed in Figures 18 and 19. Note that Y3 refers to the

Berger/Shor approximation algorithm with node sorting by win-loss ratio, and Y4 refers to the

Berger/Shor approximation algorithm with node sorting by outgoing edge weight descending.

Figure 18: 2016-17 NFL truncated to ESPN top-10 testing

73

Figure 19: 2016-17 NFL truncated to Sports Illustrated top-10 testing

The charts in Figures 18 and 19 seem to be inconclusive over the claim that our algorithms do not

perform as well in minimizing backedge weight when the ranking is truncated to a low number of

teams. After performing the aforementioned tests, we concluded that as the input size is truncated

to smaller numbers of teams, the consistency with which we outperform external rankings is

reduced. However, our algorithms still generally outperform external rankings. Better performance

of our algorithms against external rankings seems to be more situational when using smaller input

datasets from internal truncation.

7.4: Summary

In this chapter, we introduced truncation and its applications to our project. We explained

our explorations with rank snipping, internal truncation, and external truncation. The

implementation process and drawbacks we discovered were described and explained. Finally, we

applied our rank truncation functionality to a practical sports ranking application, demonstrating

how it can be utilized in this project.

74

Chapter 8: Range of Correctness

 In this chapter, we discuss the concept of Range of Correctness in relation to our rankings

and how we utilized the Range of Correctness heuristic to design one of our algorithms. We first

introduce the theory behind the Range of Correctness concept and explain how it is calculated. We

discuss how this translated to implementation next. Then we explain our approach in adapting

Range of Correctness into a post-process ranking system that can be run as its own algorithm.

8.1: Range of Correctness Design

Consideration of our total backedge weight methodology and the equivalency of rankings

begged the question of how we could improve our generated rankings. From analysis of our graph-

based approach, we realized that because not every team plays each other in most major sports,

there likely existed some flexibility with regards to the placement of teams in our generated

rankings. In this regard, some of the placement could be due purely because of how our sorting or

preprocessing algorithms were implemented. We refer to this flexibility in rankings as Range of

Correctness.

 When developing a ranking for a graph where not all teams have played each other and the

tournament constraint is not satisfied, we can apply a Range of Correctness to each team. The

Range of Correctness for each team is a set of two bounds, an upper bound and a lower bound. We

define Range of Correctness for any team as an exclusive range where the upper bound index is

of the lowest-ranked team it lost to, and the lower bound index is of the highest-ranked team that

it won against. In this case, bounds for Range of Correctness are the inclusive uppermost or

lowermost position in the ranking whereby any swaps of a team’s ranking within each bound

would result in the same or reduced total backedge weight for a ranking. From a ranking

perspective, the Range of Correctness for a team states, “I can be placed anywhere below the rank

of the worst team I lost to and above the rank of the best team I won against.”

We implemented a function to calculate and output the Range of Correctness alongside

every team when generating a ranking to analyze with our test data. The variances in ranges that

occurred indicated room for improvement with post-processing, and typically indicated the density

of the sports graph. A higher density would result in a smaller Range of Correctness for each team

because there are more games and edges to contradict rankings, resulting in fewer valid rankings.

8.1.1: Rank Pool

 To further improve the correctness of our rankings, we applied the Range of Correctness

heuristic in a post-processor. All three of our algorithms had been evaluated using only total

backedge weight as a metric, but exploration into Range of Correctness demonstrated that there

was still room for improvement by considering forward edges. We designed a pool data structure

based around Range of Correctness, which we define as the rank pool, which maintains the index

for the rank position it is selecting a node for. Nodes are added into the pool once the pool index

reaches the upper bounds of their Ranges of Correctness. The pool then checks if any nodes have

75

a lower bound of the index being evaluated. If one does, that node is selected for the given ranking;

otherwise, the pool sorts its nodes by net edge weight, assigning priority to teams in our graph who

have won more important games. The node with the highest net edge weight is selected for the

given index, then the pool increments its index and repeats the process until all nodes have been

post-processed.

 However, we discovered a counterexample which proved that the Range of Correctness

could not maintained for every team in all cases. In general, this occurs when one or more teams

with larger Ranges of Correctness are placed within the range of one or more teams’ Ranges of

Correctness, resulting in a conflict where at least one team must be displaced. The full

counterexample is provided and discussed in the following section.

8.1.2: Rank Pool Counterexample and Proof

Figure 20: Initial rank pool counterexample

Suppose we have the ranking generated in Figure 20. A has no losses, but has one win over

D, ranked fourth, so A’s Range of Correctness is [1,3]. B has no losses, but has one win over C,

ranked third, so B’s Range of Correctness is [1,2]. C has one loss from B and one win over D, so

C’s Range of Correctness is [3,3]. Similarly, E’s Range of Correctness is [1,5], and F’s is [1,9].

Once the rank pool begins at index 1, nodes A, B, E, and F are added as they all have left bounds

of 1. F is chosen for rank 1 in the final ranking because no nodes in the pool have a right bound of

1 and because F has the highest net edge weight of the nodes in the pool. The rank pool advances

to index 2, where B is chosen because it has a right bound of 2, so it must be ranked at index 2.

However, once the rank pool advances to index 3, we have two nodes A and C which both have

right bounds of 3, meaning one node’s Range of Correctness will be violated if we proceed. The

76

violation of either node’s Range of Correctness means that a new backedge will be introduced and

we can no longer guarantee that this post-processor will produce a better ranking.

8.1.3: Revised Rank Pool

 To address the aforementioned counterexample, we revisited the requirements for the

Range of Correctness. We determined that, after one iteration of reordering with the rank pool, we

were left with a new, unique ranking. This ranking, because it followed just one iteration of the

rank pool process and completed one reordering within the Range of Correctness, creates no new

backedges compared to the original ranking. Then, this new ranking has its Ranges of Correctness

generated, by which the nodes in the rank pool are updated, and the algorithm continues until all

nodes have been post-processed. Furthermore, any conflicts that may occur by selecting one team

for a given rank over another are resolved when the new Range of Correctness is generated, as any

boundaries of the range are shifted as the teams in the ranking get swapped. After this resolution,

we implemented the rank pool post-processor to begin with a ranking and its respective Range of

Correctness, and conduct the removal of teams from pools and re-evaluation of the Range of

Correctness until the new ranking is finalized.

8.2: Range of Correctness Implementation

The implementation for the Range of Correctness was designed to be as compatible as

possible with the existing internal ranking structure. Since Range of Correctness needed to be

applied to internal rankings from multiple different ranking algorithm sources as well as work with

external rankings, generating the Range of Correctness needed to be a standalone process. Range

of Correctness was implemented to be a lightweight and simple module that could take rankings

of different input types and generate the Range of Correctness in a standard and useful format. We

agreed upon a standard input and output to the Range of Correctness calculation function to allow

any functionality that we might build off of Range of Correctness to not have to deal with the many

alternative inputs of the rankings.

The function to calculate the Range of Correctness took a ranking as input and output the

resulting ranges as two lists. We decided to represent the Range of Correctness as two lists of

bounds, one list of upper bounds and one list of lower bounds. Using this system, we were able to

know the upper bound and lower bound at each index in the ranking. Instead of creating and

displaying the Range of Correctness immediately in the function, we reasoned that it was important

to create a format that be held in memory and manipulated for further calculation.

The process to calculate each bound for a team was implemented in a relatively simple

manner. First, the program looked at adjacent teams in the given ranking. Next, the process would

search through the adjacency matrix to determine if there were any relevant edges between the

control team and the test team. We define relevant edges as edges that would become backedges

if the positions of teams were flipped, thus breaking the Range of Correctness. If a relevant edge

was discovered, the search for a bound would terminate. As the process continued, it would look

to each next most adjacent team in the ranking and check for relevant edges. This process is shown

77

below in Figure 21. Once all of the upper and lower bounds were calculated for each team, the

bounds were returned to be manipulated and displayed as needed.

Figure 21: Lower bound determination in Range of Correctness

One drawback of this approach was the high memory overhead associated with retaining

so many values in memory at once. The total memory usage of this process included the pointer

to the array, as well as space for integers for twice the number of teams for each of the bounds. In

combination with the rest of the program overhead, this was a lot of dynamic memory allocated to

the stack. On several occasions, we ran into program crashes when this process caused the stack

memory to run out. Despite the memory challenges, this approach to the implementation of the

Range of Correctness afforded multiple benefits that ultimately outweighed the extra engineering

required to accommodate the overhead. It allowed the Range of Correctness to be displayed,

written to a results file, and used in further calculation. The modular nature of this implementation

allowed the Range of Correctness to be queried in separate functions. The portability of the Range

of Correctness calculation was useful in the implementation for the Rank Pool Post-Process.

8.2.1: Rank Pool Post-Process Implementation

 The rank pool post-process was implemented to take in a ranking of nodes and modify it

through the rank pool algorithm designed in Section 8.1.3. The input for the rank pool post-process

is a reference to a vector ordering of nodes, which represents the ranking. There is no direct return

output from the rank pool post-process as it was implemented to modify the initial ordering in-

place to reduce memory overhead rather than preserve the initial ranking and return an entirely

new ordering in memory. Before any computations can take place, the rank pool post-process first

initializes the containers for the rank pool and generates the Range of Correctness for the input

ranking to be computed upon. The rank pool computation procedure was implemented to use three

main containers of nodes. The sorting process using the containers is illustrated in Figure 22 below.

Team
Ranked

#1

Team
Ranked

#2

Team
Ranked

#3

Check #1

Check #2

78

Figure 22: Rank pool node containers

As shown in Figure 22, nodes from the initial non-post-processed ranking are used to fill the three

containers of nodes, where the entire post-process computation takes place. Emptiness in the

containers was implemented using a special placeholder value that signified the absence of a node.

Using the placeholder for emptiness, the statically sized memory for the containers could hold

varying amounts of nodes.

 The first container for the rank pool post-process is the “Remaining Nodes” container. This

container holds all nodes from the initial ranking that have not been selected into the rank pool

container. This container is initialized with all of the nodes in the initial ranking. The ordering of

nodes in the “Remaining Nodes” container does not matter since nodes are considered unsorted

before being chosen into the rank pool container. The contents of the “Remaining Nodes” container

slowly diminish as the rank pool post-process executes and nodes become sorted. By the end of

the rank pool post-process, this container is empty.

 The second container for the rank pool post-process is the rank pool itself. As designed in

Section 8.1.1 and revised in Section 8.1.3, the rank pool is a collection of nodes that are eligible

and are being considered for sorting. The nodes in this container are unsorted as the process for

choosing a node from the pool is not altered by the ordering of nodes.

The third container for the rank pool post-process is the hybrid ordering. The hybrid

ordering is an ordering of all of the nodes where some of the nodes are sorted and some are not.

The hybrid ordering holds a “work in progress” combination of the sorted-so-far finalized ordering

and the ordering of nodes from the original ranking. The structure of the hybrid ordering is

illustrated in Figure 23 below.

79

Figure 23: Composition of the hybrid ordering for rank pool post-process

As shown in Figure 23, the first part of the hybrid ordering is the growing ordering of nodes that

have been sorted in the rank pool. The second part of the hybrid ordering is the remaining nodes

that have not exited the rank pool, which remain in their ordering from the initial ranking. As the

rank pool post-process iterates, nodes are selected from the rank pool to the finalized post-

processed ordering. However, to retain integrity of the ordering, the Range of Correctness needs

to be applied to the “work in progress” sorted ordering. The hybrid ordering was implemented as

the data container to regenerate the Range of Correctness upon, as described in Section 8.3.1. The

hybrid ordering is initialized as a copy of the initial non-post-processed ranking because none of

the nodes have been sorted by the rank pool at the beginning of the rank pool post-process yet.

Once the post-process has completed, the hybrid ordering will consist entirely of nodes sorted

through the rank pool and therefore be the post-processed ordering.

 The rank pool post-process generates a post-processed ranking by taking the initial ranking

of nodes, sorting nodes in the rank pool, and iteratively generating a sorted list of nodes that

becomes the post-processed result. The main steps of the process are outlined in Figure 24.

80

Figure 24: Structure of rank pool post-process implementation

Figure 24 shows the workflow of the rank pool post-process on a single loop. There are three main

steps to the loop that iteratively build the resulting post-processed ranking. The first main step is

to transfer eligible nodes from the “Remaining Nodes” container to the rank pool. The size of the

rank pool will grow, but the contents of the “Remaining Nodes” container will diminish by the

same amount. The second step is to pick a single node from the rank pool. In this step, the rank

pool diminishes in size by one node. The third step is to add the chosen node to the sorted part of

the hybrid ordering and to regenerate the Range of Correctness from the new hybrid ordering.

Once all of the nodes have been processed in the rank pool, the fully sorted hybrid ordering is

transferred to the post-processed ranking.

8.2.2: ROC Search Algorithm

 The ROC Search algorithm was inspired by the rank pool post-process. The ROC Search

algorithm is the application of the rank pool post-process in a hill climbing fashion. During our

81

implementation of the rank pool post-process, we noted the ability for the rank pool to optimize a

given ranking in total backedge weight. We also recalled that the rank pool would function

properly with any given input ranking. Since the rank pool post-process generated a complete

ranking of a set of teams, we logically concluded that the rank pool could be adapted into a fourth

ranking algorithm.

The ROC Search algorithm was implemented in a similar manner as our implementation

of the Hill Climbing ranking algorithm. The ROC Search begins with a starting ordering based

upon the descending net weight of each node in the ranking and calculates the current total

backedge weight for comparison with the post-processed rankings. The algorithm then enters a

while loop, where it continues to conduct the rank pool post-process algorithm on the current

ordering. The post-processed ranking is then evaluated and its total backedge weight is compared

to the best found so far. If the post-processed ranking is better, the new permutation and backedge

weight are maintained; otherwise, ROC Search terminates and returns the best ranking found.

Unlike our Hill Climbing algorithm, ROC Search does not utilize sideways moves or random

restarts. The pseudocode for our ROC Search algorithm is listed below.

algorithm roc_search() is

input: graph G = (V, E)

output: total ordering T

 best_weight <- weight(G)

 best_permutation <- {}

 permutation <- order vertices by decreasing net edge weight

 continue <- true

while continue is true do

 permutation <- rank_pool(permutation)

weight <- total_backedge_weight(permutation)

if weight < best_weight do

 best_weight <- weight

 best_permutation <- permutation

 else

 continue <- false

end if

end while

return best_permutation

end

8.3: Range of Correctness Results

 Once the Range of Correctness concept was implemented in our program as the rank pool

post-processor and ROC Search algorithm, we conducted test cases on both functionalities to see

how they could be applied to reduce total backedge weights for input rankings. In this section, we

provide two types of tests cases: Range of Correctness demonstrations showcasing the variability

in ranges on our sports datasets, and rank pool post-processor tests, where we demonstrate the

82

improvements in total backedge weight and overall correctness by evaluating rankings generated

by our algorithms and external rankings to see how much they can be improved.

 The first set of test cases we conducted explore the differences in Range of Correctness

between different sports datasets which have different densities. As discussed in Section 8.1, we

expect that denser graphs will result in smaller Ranges of Correctness on average due to less

flexibility in the upper and lower bounds based on more win and loss edges. Our test cases were

conducted on the 2016-17 NFL dataset and the 2015 MLB dataset. These tests utilize our Hill

Climbing algorithm to generate the rankings shown, though only the top-10 teams are shown for

brevity. In our data tables for this section, the Range of Correctness column contains the upper

bound for the range as the left index and the lower bound for the range as the right index.

Table 21: Ranges of Correctness Between 2016-17 NFL and 2015 MLB

NFL 2016-17 Range of Correctness

[upper - lower]

MLB 2015 Range of Correctness

[upper - lower]

Patriots [1-4] Blue Jays [1-1]

Falcons [1-5] Astros [2-3]

Chiefs [1-7] Cubs [1-3]

Cowboys [1-4] Giants [4-4]

Steelers [5-7] Mets [5-6]

Cardinals [3-10] Pirates [5-6]

Packers [5-8] Nationals [7-9]

Colts [6-14] Indians [7-8]

Giants [8-9] Rangers [9-9]

Bengals [10-15] Dodgers [10-11]

Table 21 supports our hypothesis that the density of the input graph greatly impacts the

Ranges of Correctness of our rankings. In graphs that are less dense, where there are relatively few

games played per team, the Ranges of Correctness are larger. There are fewer games played per

team in the NFL season compared to the MLB season, so it was expected that the Ranges of

Correctness would be larger. As shown in Table 21, the Ranges of Correctness for the NFL

rankings are larger than the Ranges of Correctness for the MLB rankings, confirming our

hypothesis. In our testing, we found that rankings for seasons with higher density and greater

connectedness have narrower ranges of correctness. The Ranges of Correctness in the rankings for

college football have the greatest Ranges of Correctness from our datasets. In a tournament graph,

83

where every team has played every other team, we can extend our hypothesis to state that there

will be no Ranges of Correctness because each team has lost to the team ranked above it and won

against the team ranked below it.

8.3.1: Rank Pool Results

The second set of tests we conducted were rank pool post-processor tests on our sports

datasets, where we investigate if our rank pool post-processor is able to improve upon rankings,

and to what degree if so. Our first test in this set was conducted using the Berger/Shor algorithm

with the outgoing edge weight node sorting preprocessor (Y4) on our 2016-17 NFL dataset. The

full rankings were computed for this test, but only the top-10 teams are displayed. Additionally,

the total backedge weights displayed underneath are representative of the full ranking.

Table 22: Rank Pool Post-Process on 2016-17 NFL using the Berger/Shor Algorithm

Berger/Shor Berger/Shor (Post-Processed)

South Florida Clemson

San Diego State Alabama

Air Force Washington

Wisconsin Oklahoma

Western Michigan Western Kentucky

Oklahoma Wisconsin

Oklahoma State Western Michigan

Houston San Diego State

Clemson South Florida

Virginia Tech Stanford

Total backedge weight: 9.25% Total backedge weight: 8.67%

In Table 22, the rank pool post-process is shown to improve the initial ranking generated by the

Berger/Shor algorithm. The rank pool post-processor improves both the total backedge weight and

the listing of teams. The ordering of teams in the top-10 of the initial Berger/Shor ranking does

not align with any external rankings, so we have reason to believe it is not accurate. The included

teams in the post-processed ranking are much closer to the teams one would expect in a top-10

college football teams ranking. In our testing with the rank pool post-processor, we observed total

backedge weights for the post-processed rankings that were equivalent or better than without post-

processing.

84

 The second test case we conducted in this set was with the ESPN power ranking for the

2016-17 NFL dataset to determine if the rank pool post-processor can improve external rankings.

Similar to the prior test, only the top-10 teams are shown, though the total backedge weight are

reflective of the full ranking.

Table 23: Rank Pool Post-Process on 2016-17 NFL External Ranking (ESPN, Quartiles On)

NFL 2016-17 ESPN Ranking NFL 2016-17 ESPN Ranking Post-Processed

New England Patriots New England Patriots

Dallas Cowboys Dallas Cowboys

Pittsburgh Steelers Pittsburgh Steelers

Kansas City Chiefs Kansas City Chiefs

Green Bay Packers Green Bay Packers

Seattle Seahawks Seattle Seahawks

Atlanta Falcons Atlanta Falcons

New York Giants Oakland Raiders

Oakland Raiders New York Giants

Detroit Lions Miami Dolphins

Denver Broncos Tennessee Titans

Miami Dolphins Arizona Cardinals

Tampa Bay Buccaneers Detroit Lions

Baltimore Ravens Denver Broncos

Tennessee Titans Tampa Bay Buccaneers

19.45% 17.38%

Table 24: Rank Pool Post-Process Applied to 2016-17 NFL External Rankings

NFL 2016-17 ESPN NFL.com Sports Illustrated

Original 19.45% 18.65% 20.29%

Post-Processed 17.38% 18.65% 19.33%

85

As shown in Table 23, the rank pool post-process reorganizes the ESPN power ranking and

improves the total backedge weight. We tested the rank pool post-processor on three external

rankings. In each case, the post-processor returned an equivalent ranking or one with a lower total

backedge weight, shown in Table 24. The accuracy of rankings from this post-processor is

improved as a result, encouraging the use of this post-processor. In our testing, the rank pool post-

processor always produced a better ranking by changing the ordering of teams, sometimes

reducing the total backedge weight.

Table 25: Hill Climbing vs. ROC Search on 2017-18 NFL Dataset

Hill Climbing ROC Search

New England Patriots New England Patriots

Philadelphia Eagles Philadelphia Eagles

Minnesota Vikings Minnesota Vikings

Pittsburgh Steelers Pittsburgh Steelers

Los Angeles Rams Los Angeles Rams

13.56% 13.94%

Table 25 demonstrates the top-5 teams from the rankings generated by Hill Climbing and

ROC Search on the 2017-18 NFL dataset. Both top-5 rankings are equivalent, where the only

differences in ordering occurs near the bottom of the full ranking. Although Hill Climbing

generates a ranking with a lower total backedge weight, ROC Search is competitive in the total

backedge weight of its ranking. From this, we can conclude that considering the forward edge

weights of rankings leads to similar improvements in the total backedge weight metric as

minimizing backedges. The similarities in total backedge weights demonstrate that this heuristic

has a suitable basis to generate and improve upon rankings.

8.4: Summary

In this chapter, we introduced the concept behind the Range of Correctness post-processor

that we developed during this project. The theory behind the Range of Correctness was explored,

alongside a counterexample and resolution with logical backing. We then detailed the

implementation of Range of Correctness into our program and its abstraction into an algorithm for

generating rankings. Finally, we provided an example of practical applications of the post-

processor and ranking algorithm with improvements in correctness for given rankings.

86

Chapter 9: Testing with Sports Rankings

With all of the designed functionalities implemented and tested within our program, we

tested our algorithms against the various sports datasets we had collected. Our test cases utilized

one season dataset from several major sports: 2016-17 National Football League (NFL) regular

season, 2016-17 College Football (CFB) full season, 2014-15 National Hockey League (NHL)

regular season, and 2015 Major League Baseball (MLB) regular season. In this chapter, we

evaluate test cases using our total backedge weight metric and our rank differential metric on these

datasets. We review and compare the results and offer possible explanations for why our

algorithms performed the way they did.

Conducting test cases with one season dataset per sport allowed us to understand how our

algorithms performed in each sport and analyze the differences between sports. We expected that

each sport would result in graphs with different characteristics which would impact the

performance and correctness of our algorithms. These characteristics include number of nodes or

teams, and the number of games per team, or density of the graph. Table 26 shows the number of

teams and density of the graphs we tested with.

Table 26: Number of Teams and Graph Density for Sports Test Cases

 2016-17 NFL 2016-17 CFB 2014-15 NHL 2015 MLB

Number of teams 32 128 31 30

Games played

per team

(density)

16 12-13 82 162

9.1: Total Backedge Weight Results

 The first set of full test cases we conducted utilized the total backedge weight metric

discussed in Section 2.3.1. In these test cases, we applied our algorithms with all correctness

optimizations enabled against external rankings and standings for these datasets. Each sports

dataset was tested with four permutations of Alpha and Beta values: (0,0), (0,1), (1,0), and (0.5,0.5)

to see which value pairs gave our rankings and the external rankings the lowest total normalized

backedge weight. All of the rankings produced by our algorithms have been post-processed by the

rank pool post-processor as described in Section 8.2.1.

87

9.1.1: National Football League (NFL) Ranking Results

Table 27: Algorithm Comparisons on 2016-17 NFL (Alpha 0, Beta 0)

ESPN NFL.com Sports

Illustrated

Y3 Y4 Hill

Climbing

ROC

Search

Patriots Patriots Patriots Patriots Patriots Patriots Patriots

Cowboys Cowboys Cowboys Steelers Steelers Falcons Falcons

Steelers Steelers Falcons Falcons Falcons Chiefs Chiefs

Chiefs Chiefs Chiefs Chiefs Chiefs Cardinals Cardinals

Packers Falcons Steelers Cardinals Bengals Cowboys Cowboys

Seahawks Packers Packers Bengals Colts Steelers Bengals

Falcons Giants Raiders Colts Ravens Bengals Steelers

Giants Seahawks Giants Packers Packers Colts Colts

Raiders Dolphins Dolphins Buccaneers Seahawks Packers Saints

Lions Lions Buccaneers Seahawks Eagles Saints Buccaneers

16.40% 15.13% 15.98% 7.37% 7.98% 11.61% 10.41%

Table 28: Algorithm Comparisons on 2016-17 NFL (Alpha 0, Beta 1)

ESPN NFL.com Sports

Illustrated

Y3 Y4 Hill

Climbing

ROC

Search

Patriots Patriots Patriots Patriots Patriots Patriots Patriots

Cowboys Cowboys Cowboys Cowboys Cowboys Chiefs Cowboys

Steelers Steelers Falcons Steelers Steelers Cowboys Steelers

Chiefs Chiefs Chiefs Chiefs Chiefs Steelers Chiefs

Packers Falcons Steelers Falcons Falcons Falcons Falcons

Seahawks Packers Packers Dolphins Dolphins Dolphins Raiders

Falcons Giants Raiders Giants Raiders Raiders Giants

Giants Seahawks Giants Raiders Colts Giants Dolphins

Raiders Dolphins Dolphins Colts Titans Packers Packers

Lions Lions Buccaneers Titans Packers Titans Titans

16.01% 15.29% 15.58% 11.15% 11.05% 15.69% 14.77%

88

Table 29: Algorithm Comparisons on 2016-17 NFL (Alpha 1, Beta 0)

ESPN NFL.com Sports

Illustrated

Y3 Y4 Hill

Climbing

ROC

Search

Patriots Patriots Patriots Patriots Patriots Patriots Patriots

Cowboys Cowboys Cowboys Cowboys Cardinals Falcons Falcons

Steelers Steelers Falcons Eagles Steelers Steelers Steelers

Chiefs Chiefs Chiefs Falcons Chiefs Cardinals Cardinals

Packers Falcons Steelers Steelers Eagles Cowboys Cowboys

Seahawks Packers Packers Cardinals Falcons Chiefs Chiefs

Falcons Giants Raiders Chiefs Cowboys Eagles Seahawks

Giants Seahawks Giants Chargers Broncos Bills Eagles

Raiders Dolphins Dolphins Colts Colts Seahawks Bills

Lions Lions Buccaneers Vikings Bengals Chargers Chargers

15.93% 15.72% 18.99% 5.06% 6.86% 12.24% 9.07%

Table 30: Algorithm Comparisons on 2016-17 NFL (Alpha 0.5, Beta 0.5)

ESPN NFL.com Sports

Illustrated

Y3 Y4 Hill

Climbing

ROC

Search

Patriots Patriots Patriots Patriots Patriots Patriots Patriots

Cowboys Cowboys Cowboys Cowboys Cowboys Cowboys Cowboys

Steelers Steelers Falcons Steelers Steelers Falcons Falcons

Chiefs Chiefs Chiefs Chiefs Seahawks Chiefs Chiefs

Packers Falcons Steelers Giants Falcons Steelers Steelers

Seahawks Packers Packers Seahawks Dolphins Raiders Raiders

Falcons Giants Raiders Falcons Chiefs Giants Giants

Giants Seahawks Giants Dolphins Raiders Seahawks Seahawks

Raiders Dolphins Dolphins Raiders Colts Packers Packers

Lions Lions Buccaneers Colts Titans Dolphins Dolphins

16.28% 15.60% 16.98% 13.64% 13.37% 16.61% 16.33%

89

Tables 27 to 30 show the results from our 2016-17 NFL dataset tests, with differing Alpha

and Beta values. In these tests, we had three power rankings from ESPN, NFL.com, and Sports

Illustrated as comparisons. Additionally, we used our Berger/Shor approximation algorithm with

node sorting by win-loss ratio (Y3) and by outgoing edge weight decreasing (Y4), as well our Hill

Climb and ROC Search algorithms.

 The first point we noticed was that at least one of our algorithms beat all three external

rankings for this dataset in every Alpha/Beta configuration, with improvements ranging from 4-

7% less backedge weight from the graph. Of our algorithms, Y3 and Y4 did the best overall, where

Y3 performed the best with a Beta value of 0, and Y4 performed the best with a Beta value greater

than 0. Additionally, most of the top-10 teams in our rankings were present in the top-10 of the

external rankings, with roughly half of the teams in each ranking being present in the external

rankings. Of our algorithms, ROC Search performed better with all four Alpha/Beta values than

Hill Climb. Additionally, for external rankings, NFL.com performed the best in all Alpha/Beta

combinations, but ESPN performed better than Sports Illustrated with Beta values greater than 0,

while Sports Illustrated performed better than ESPN with Beta values of 0.

 With regards to the total backedge weight, the Alpha/Beta combination of (0.5,0.5) had the

closest values. We suspect that this is because no edges are removed from the graph in this

scenario; if Alpha is 0, the first week of games in the dataset are removed, and if Beta is 0, all

games within one touchdown of the final score are removed. Without these edges removed, more

backedge weight will exist that our algorithms cannot optimize around, so the total backedge

weight of the resulting rankings will be higher. Additionally, the results show trials where the Beta

value was 0 had larger variance in total backedge weights than trials where the Alpha value was

0, indicating that there were likely more edges to be lost in close games than in decay in the dataset.

 A summary of the total backedge weight percentages for the 2016-17 NFL dataset with our

algorithms and existing rankings are shown in Figure 25.

Figure 25: NFL 2016-2017 total backedge weight results

90

9.1.2: College Football (CFB) Ranking Results

Table 31: Algorithm Comparisons on 2016-17 CFB (Alpha 0, Beta 0)

AP Bleacher

Report

ESPN Y3 Y4 Hill

Climbing

ROC

Clemson Clemson Clemson Alabama Alabama Alabama Alabama

Alabama Alabama Alabama
Western

Kentucky

Western

Kentucky

Western

Kentucky

Western

Kentucky

South

Carolina
Washington

South

Carolina
Clemson Clemson Clemson Clemson

Washington
South

Carolina
Washington Temple Washington Washington Washington

Oklahoma Ohio State Penn State
Southern

California
Temple Temple Temple

Ohio State Oklahoma Oklahoma Washington
Southern

California

Appalachian

State

Appalachian

State

Penn State Wisconsin Ohio State Wisconsin
San Diego

State

Arkansas

State

Arkansas

State

Florida State Penn State Florida State
Western

Michigan
Wisconsin

Western

Michigan
Penn State

Wisconsin Florida State Michigan
Louisiana

State

Western

Michigan
Oklahoma Oklahoma

Michigan Michigan Wisconsin Michigan
Louisiana

State
Penn State

Southern

California

0.53% 0.49% 0.38% 0.11% 0.11%1 0.47% 0.34%

1
 Although Y3 and Y4 have the same percentage, Y4 performed better (0.14375/130.95 vs 0.15/130.95); this

difference was lost in the two-decimal precision.

91

Table 32: Algorithm Comparisons on 2016-17 CFB (Alpha 0, Beta 1)

AP Bleacher

Report

ESPN Y3 Y4 Hill

Climbing

ROC

Clemson Clemson Clemson Clemson Clemson Clemson Clemson

Alabama Alabama Alabama Oklahoma Oklahoma Oklahoma Oklahoma

South

Carolina
Washington

South

Carolina

Southern

California
Alabama

Southern

California

Southern

California

Washington
South

Carolina
Washington Alabama

Southern

California
Alabama Alabama

Oklahoma Ohio State Penn State
Western

Kentucky

Western

Kentucky

Western

Kentucky

Western

Kentucky

Ohio State Oklahoma Oklahoma
Western

Michigan

Western

Michigan

Western

Michigan

Old

Dominion

Penn State Wisconsin Ohio State
Old

Dominion

Old

Dominion

Old

Dominion
South Florida

Florida State Penn State Florida State South Florida South Florida South Florida
Appalachian

State

Wisconsin Florida State Michigan Penn State Penn State
Appalachian

State
Stanford

Michigan Michigan Wisconsin Wisconsin Wisconsin Stanford Penn State

1.20% 1.28% 0.96% 0.42% 0.40% 0.55% 0.39%

92

Table 33: Algorithm Comparisons on 2016-17 CFB (Alpha 1, Beta 0)

AP Bleach

Report

ESPN Y3 Y4 Hill

Climbing

ROC

Clemson Clemson Clemson Alabama Alabama Alabama Alabama

Alabama Alabama Alabama Michigan Washington Washington Washington

South

Carolina
Washington

South

Carolina
Temple Michigan Michigan Michigan

Washington
South

Carolina
Washington

Appalachian

State
Temple

Western

Michigan

Western

Michigan

Oklahoma Ohio State Penn State
Western

Kentucky

Western

Kentucky
Louisville Temple

Ohio State Oklahoma Oklahoma Clemson Clemson
Appalachian

State

Appalachian

State

Penn State Wisconsin Ohio State Wisconsin Wisconsin Temple Louisville

Florida State Penn State Florida State
Western

Michigan

Western

Michigan

Western

Kentucky

Western

Kentucky

Wisconsin Florida State Michigan Ohio State Ohio State Clemson Clemson

Michigan Michigan Wisconsin Penn State Penn State Ohio State Ohio State

0.74% 0.63% 0.68% 0.19% 0.04% 0.57% 0.57%

93

Table 34: Algorithm Comparisons on 2016-17 CFB (Alpha 0.5, Beta 0.5)

AP Bleacher

Report

ESPN Y3 Y4 Hill

Climbing

ROC

Clemson Clemson Clemson Clemson Clemson Alabama Alabama

Alabama Alabama Alabama Alabama Alabama Clemson Clemson

South

Carolina
Washington

South

Carolina
Washington

Western

Michigan

Western

Michigan

Western

Michigan

Washington
South

Carolina
Washington Oklahoma Washington Washington Washington

Oklahoma Ohio State Penn State
Western

Kentucky
Oklahoma Oklahoma Oklahoma

Ohio State Oklahoma Oklahoma Wisconsin
Western

Kentucky

Western

Kentucky

Western

Kentucky

Penn State Wisconsin Ohio State
Western

Michigan
Penn State

Appalachian

State

Appalachian

State

Florida State Penn State Florida State
San Diego

State
Wisconsin Penn State Penn State

Wisconsin Florida State Michigan South Florida
Southern

California
Wisconsin Wisconsin

Michigan Michigan Wisconsin Stanford Ohio State
Southern

California

Southern

California

1.02% 0.99% 0.85% 0.08% 0.71% 1.08% 1.08%

In Tables 31-34, the total backedge weight percentages are shown for our rankings and

external rankings on the 2016-17 college football season dataset. In these tests, we use rankings

from Associated Press (AP), Bleacher Report, and ESPN. Our rankings were generated using our

Berger/Shor algorithm implementation with node sorting by win-loss ratio (Y3) and outgoing edge

weight decreasing (Y4), Hill Climbing implementation, and ROC Search algorithm.

Similar to our tests on the 2016-17 NFL dataset, at least one of our rankings outperforms

each external ranking according to the total backedge weight metric. To make evaluation of the

total backedge weight comparable between external rankings with the top-25 teams and our full

rankings, we use rank snipping truncation for the top-25 teams in our rankings. However, because

games between teams outside the top-25 are not considered after truncation, the total backedge

weight values are much smaller as fewer edges and less edge weight are considered.

Overall, Y3 and Y4 perform the best in all Alpha and Beta combinations except (0,1),

where the ranking from ROC Search has the lowest total backedge weight of those we evaluated.

In some cases, Y3 and Y4 receive unusually low scores, such as 0.08% by Y3 with Alpha/Beta

values of (0.5,0.5) and 0.04% by Y4 with Alpha/Beta values of (1,0). We suspect that this is

because the ranking is optimized according to the total backedge weight metric: games between

teams outside the top-25 are not considered, so these teams are placed in ranks which result in the

94

minimum backedge weight from games between teams within the top-25. These low scores did

surprise us, especially with Alpha/Beta values of (0.5,0.5), because no edges are removed from the

decay or point differential modifiers. However, the difference in total backedge weight between

our algorithms and external rankings is much smaller overall with Alpha/Beta values of (0.5,0.5),

which we suspect allows for more accurate rank generation rather than optimization specifically

for total backedge weight.

A summary of the total backedge weight percentages for the 2016-17 CFB dataset with

our algorithms and existing rankings are shown in Figure 26.

Figure 26: CFB 2016-2017 total backedge weight results

95

9.1.3: National Hockey League (NHL) Ranking Results

Table 35: Algorithm Comparisons on 2014-15 NHL (Alpha 0, Beta 0)

NHL.com Y3 Y4 Hill Climbing ROC Search

Rangers Capitals Rangers Rangers Rangers

Canadiens Lightning Canucks Capitals Capitals

Ducks Rangers Blues Lightning Lightning

Blues Senators Capitals Wild Blues

Lightning Wild Lightning Blues Senators

Predators Blues Jets Jets Wild

Blackhawks Jets Stars Canadiens Jets

Canucks Canadiens Canadiens Senators Canadiens

Capitals Kings Senators Kings Islanders

Islanders Islanders Wild Islanders Dallas Stars

22.16% 18.35% 20.09% 19.87% 18.80%

Table 36: Algorithm Comparisons on 2014-15 NHL (Alpha 0, Beta 1)

NHL.com Y3 Y4 Hill Climb ROC Search

Rangers Rangers Rangers Rangers Rangers

Canadiens Blues Blues Blues Blues

Ducks Lightning Wild Ducks Ducks

Blues Ducks Senators Lightning Lightning

Lightning Wild Ducks Wild Senators

Predators Senators Blue Jackets Senators Wild

Blackhawks Canucks Lightning Blue Jackets Capitals

Canucks Canadiens Canucks Canucks Blue Jackets

Capitals Blue Jackets Capitals Canadiens Canadiens

Islanders Capitals Blackhawks Capitals Canucks

24.19% 22.09% 21.73% 23.24% 22.69%

96

Table 37: Algorithm Comparisons on 2014-15 NHL (Alpha 1, Beta 0)

NHL.com Y3 Y4 Hill Climbing ROC Search

Rangers Capitals Lightning Rangers Capitals

Canadiens Lightning Rangers Capitals Rangers

Ducks Rangers Blackhawks Lightning Lightning

Blues Blues Blues Blues Blues

Lightning Blackhawks Canadiens Blackhawks Blackhawks

Predators Senators Canucks Jets Wild

Blackhawks Wild Capitals Wild Jets

Canucks Jets Penguins Senators Senators

Capitals Kings Jets Kings Canadiens

Islanders Flames Kings Canadiens Kings

22.40% 20.05% 20.02% 21.49% 22.00%

Table 38: Algorithm Comparisons on 2014-15 NHL (Alpha 0.5, Beta 0.5)

NHL.com Y3 Y4 Hill Climbing ROC Search

Rangers Lightning Rangers Rangers Rangers

Canadiens Rangers Blues Blues Blues

Ducks Blues Lightning Lightning Lightning

Blues Canadiens Canadiens Canadiens Canadiens

Lightning Capitals Canucks Capitals Capitals

Predators Wild Blackhawks Wild Ducks

Blackhawks Blackhawks Ducks Blackhawks Wild

Canucks Ducks Wild Ducks Blackhawks

Capitals Senators Capitals Canucks Canucks

Islanders Canucks Flames Senators Islanders

23.60% 21.60% 22.42% 23.04% 22.65%

Tables 35 to 38 show the results from our 2014-15 NHL dataset tests with differing Alpha

and Beta values. In these tests, we utilized the NHL.com standings as our external ranking. These

standings are based on win-loss ratio, which we expect may influence our results when compared

to the power rankings utilized in the NFL and CFB tests. Additionally, we used our Berger/Shor

approximation algorithm with node sorting by win-loss ratio (Y3) and by outgoing edge weight

decreasing (Y4), as well our Hill Climb and ROC Search algorithms.

 The tests in Tables 35 to 38 show that the total backedge weights are considerably high on

average, especially when compared to the total backedge weights in the NFL tests. Additionally,

in each Alpha/Beta configuration, all of our algorithms performed better than NHL.com’s ranking,

97

although we suspect this may be because standings were utilized in place of power rankings, so

factors such as point differential were not considered. Either Y3 or Y4 performed the best in all

cases, but we were surprised to see our ROC Search algorithm perform quite well, where it

averaged slightly better than Hill Climb and beat Y4 with Alpha/Beta of (0,0).

 When analyzing the teams in each ranking, we found that the majority of the teams placed

in NHL.com top-10 standings were found in the top-10 rankings from our algorithms, with the

exception of one or two teams. We also found that Alpha and Beta both have roughly equivalent

impacts on the difference in minimum and maximum total backedge weight in our MLB rankings:

Alpha/Beta of (0,0) have a difference of 3.81%, (0,1) have a difference of 2.46%, (1,0) have a

difference of 2.38%, and (0.5,0.5) have a difference of 2%. We expect that this means similar

weights from games are removed if the first set of games is removed with Alpha of 0 as if the set

of games within one score is removed with Beta of 0.

A summary of the total backedge weight percentages for the 2014-15 NHL dataset with

our algorithms and existing rankings are shown in Figure 27.

Figure 27: NHL 2014-2015 total backedge weight results

98

9.1.4: Major League Baseball (MLB) Ranking Results

Table 39: Algorithm Comparisons on 2015 MLB (Alpha 0, Beta 0)

Baseball-

Reference

Y3 Y4 Hill Climbing ROC Search

Cardinals Blue Jays Blue Jays Blue Jays Blue Jays

Pirates Astros Mets Astros Astros

Cubs Cubs Nationals Cubs Cubs

Royals Giants Indians Giants Mets

Blue Jays Mets Royals Mets Giants

Dodgers Pirates Giants Pirates Pirates

Mets Nationals Red Sox Nationals Nationals

Rangers Rangers Astros Indians Indians

Yankees Indians Rangers Rangers Rangers

Astros Dodgers Cubs Dodgers Dodgers

26.19% 25.36% 24.98% 25.06% 25.16%

Table 40: Algorithm Comparisons on 2015 MLB (Alpha 0, Beta 1)

Baseball-

Reference

Y3 Y4 Hill Climbing ROC Search

Cardinals Blue Jays Blue Jays Cubs Pirates

Pirates Cubs Cubs Pirates Cubs

Cubs Pirates Pirates Blue Jays Blue Jays

Royals Cardinals Cardinals Cardinals Cardinals

Blue Jays Rangers Rangers Rangers Rangers

Dodgers Dodgers Dodgers Royals Royals

Mets Royals Royals Dodgers Mets

Rangers Mets Mets Mets Dodgers

Yankees Indians Indians Indians Angels

Astros Angels Angels Angels Indians

26.52% 25.88% 26.08% 26.16% 26.23%

99

Table 41: Algorithm Comparisons on 2015 MLB (Alpha 1, Beta 0)

Baseball-

Reference

Y3 Y4 Hill Climbing ROC Search

Cardinals Blue Jays Blue Jays Blue Jays Blue Jays

Pirates Astros Royals Astros Astros

Cubs Cardinals Giants Cardinals Cardinals

Royals Pirates Mets Giants Giants

Blue Jays Giants Nationals Pirates Pirates

Dodgers Dodgers Indians Dodgers Dodgers

Mets Royals Astros Royals Royals

Rangers Cubs Yankees Mets Mets

Yankees Mets Cardinals Cubs Cubs

Astros Nationals Dodgers Nationals Nationals

26.73% 26.31% 26.62% 26.56% 26.56%

Table 42: Algorithm Comparisons on 2015 MLB (Alpha 0.5, Beta 0.5)

Baseball-

Reference

Y3 Y4 Hill Climb ROC Search

Cardinals Blue Jays Blue Jays Blue Jays Blue Jays

Pirates Pirates Pirates Pirates Pirates

Cubs Cubs Royals Cubs Cubs

Royals Cardinals Cubs Cardinals Cardinals

Blue Jays Dodgers Cardinals Royals Royals

Dodgers Royals Mets Dodgers Dodgers

Mets Mets Dodgers Mets Mets

Rangers Astros Rangers Astros Rangers

Yankees Rangers Indians Rangers Astros

Astros Yankees Yankees Giants Giants

26.93% 27.07% 26.87% 27.28% 26.90%

Tables 39 to 42 above show the results from our 2015 MLB dataset tests with differing

Alpha and Beta values. In these tests, we utilized the baseball-reference.com’s standings as our

external ranking. These standings are based on win-loss ratio, similar to NHL.com’s in our NHL

tests, which we expect may influence our results when compared to power rankings. When testing,

we used our Berger/Shor approximation algorithm with node sorting by win-loss ratio (Y3) and

by outgoing edge weight decreasing (Y4), as well our Hill Climb and ROC Search algorithms.

100

Overall, scores for MLB rankings were much higher than other sports datasets we tested

with, where many rankings contained more than 25% of the total graph weight as backedge weight.

We expect that this is because the MLB graph is the densest graph in our test cases, with many

games played between a small number of teams, such that a large number of backedges and

backedge weight are unavoidable when generating rankings. Despite the high total backedge

weights, at least one of our algorithms always outperformed the external ranking, and except for

when Alpha/Beta was (0.5,0.5), all of our algorithms outperformed the external ranking. In

general, either Y3 or Y4 performed the best, but only with an Alpha/Beta of (0,1) did Hill Climb

or ROC Search not outperform either of the two variations.

Additionally, the total backedge weights of the rankings generated by our algorithms are

much closer when compared to other data sets, which we suspect is also due to the graph density

resulting in fewer opportunities to improve upon rankings. For example, with Alpha/Beta values

of (0.5,0.5), the difference in minimum and maximum total backedge weight from all rankings we

tested was only 0.41% of the total graph weight. We also found that our Hill Climb and ROC

Search algorithms generated the same rankings with Alpha/Beta of (1,0).

A summary of the total backedge weight percentages for the 2015 MLB dataset with our

algorithms and existing rankings are shown in Figure 28.

Figure 28: MLB 2015 total backedge weight results

9.2: Rank Differential Testing

 The second full set of test cases conducted utilize the rank differential metric. Our test cases

from the prior section demonstrate that our algorithms consistently outperform external rankings

by the total backedge weight metric, but we wanted to determine how similar our rankings are to

external rankings, which have consistent analysis and discussion on the ordering of teams before

publication. As discussed in Section 2.3, the total backedge weight metric is rooted in our graph-

based approach, but success with this metric is also dependent on weighing each edge

101

appropriately. Therefore, comparison against external rankings and the factors they consider was

a viable method to approximate our approach to weighing edges.

 Given the nature of the rank differential metric, rank differentials need to be calculated

from each test ranking to the control ranking, where several control rankings are present per sports

dataset. Thus, we are not able to show each of the orderings and rank differentials generated, so

we include a table of which Alpha and Beta values result in the lowest rank differential for our

algorithms to the external rankings. Additionally, we provide heatmaps of the average rank

differential which either align with the average trend of other algorithmically-generated rankings

or are vastly different. Similarly to our external ranking heatmaps in Section 6.3, the heatmaps in

this section show changes in Alpha on the vertical axis and changes in Beta on the horizontal axis.

In each of our test cases, we utilize the normalized graph and enable quartile evaluation.

 The first dataset we tested rank differential with is the 2016-17 NFL dataset. In this dataset,

we compare with the ESPN, NFL.com, and Sports Illustrated power rankings. The best Alpha and

Beta values to minimize our rank differential for each of our algorithms are shown in Table 43.

Table 43: 2016-17 NFL Rank Comparison Results (Alpha, Beta)

2016-17 NFL Hill Climbing Y3 Y4 ROC

ESPN (1.0, 1.0) (1.0, 0.5) (0.5, 1.0) (1.0, 1.0)

NFL.com (0.75, 1.0) (0.75, 1.0) (0.5, 1.0) (0.75, 0.75)

Sports Illustrated (0.0, 0.75) (0.75, 1.0) (0.25, 1.0) (0.25, 1.0)

As shown in Table 43, the best Alpha and Beta values to minimize rank differential for each

external ranking from all of our algorithms are often both greater than 0.5 for ESPN and NFL.com,

signifying that these rankings may not place as much emphasis on the recency of game and high

point differentials as we expected when analyzing each ranking’s heatmap. Sports Illustrated’s

best values were slightly different: it prefers small Alpha values but high Beta values. We suspect

that SportsIllustrated places significant important on recency of game when generating their

rankings as a result.

Two sample heatmaps of average rank differential for different Alpha and Beta values are

shown in Figures 29 and 30. In both heatmaps, a clear trend is visible that medium to high Beta

values are preferred and high Alpha values are preferred. Additionally, average rank differential

increases significantly with small Alpha and Beta values, especially so when Beta is 0. We expect

that this is because our algorithms continue to optimize against the total backedge weight metric,

and that utilizing a Beta value of 0 results in the removal of games where the final point differential

is one score or less, skewing the output ordering.

102

 0 0.25 0.5 0.75 1

0 5.6875 2.9375 2.1875 1.8125 1.875

0.25 6.3125 2.5625 1.6875 1.5625 1.5

0.5 6.625 2.875 1.5625 1.25 1.3125

0.75 6.625 3.375 1.625 1.1875 1.25

1 6.5 3.4375 1.75 1.625 1.5625

Figure 29: NFL.com vs. ROC Search rank differentials Alpha/Beta heatmap

 0 0.25 0.5 0.75 1

0 5.5625 3.375 2.75 2.5625 2.625

0.25 6.0625 3.0625 2.375 2.125 2.0625

0.5 6.5 2.9375 2.0625 1.8125 1.9375

0.75 6.625 3.1875 1.8125 1.6875 1.875

1 6.375 3.25 1.8125 1.6875 1.625

Figure 30: ESPN vs. Hill Climb rank differentials Alpha/Beta heatmap

 The second dataset we tested rank differential with is the 2016-17 NCAA College Football

(CFB) Division I dataset. In this dataset, we compare with the Associated Press (AP) and

Associated Press Coaches polls, Bleacher Report, ESPN, and Sonny Moore power rankings. The

best Alpha and Beta values to minimize our rank differential for each of our algorithms are shown

in Table 44.

Table 44: 2016-17 CFB Rank Comparison Results (Alpha, Beta)

2016-17 CFB Hill Climbing Y3 Y4 ROC

AP (0.75, 1.0) (0.5, 0.5) (0.25, 0.75) (0.5, 0.25)

Bleacher Report (0.75, 1.0) (1.0, 1.0) (0.25, 0.75) (0.5, 0.25)

AP Coaches (0.75, 1.0) (0.5, 0.5) (0.25, 0.75) (0.5, 0.25)

ESPN (0.5, 0.25) (0.5, 0.5) (0.0, 0.25) (0.5, 0.25)

Sonny Moore (0.75, 0.75) (0.5, 0.5) (0.5, 0.5) (0.5, 0.25)

Table 44 shows much more variance in best Alpha and Beta values for the external rankings when

compared to the 2016-17 NFL results in Table 43. Two interesting trends shown are that ROC

Search always has the lowest rank differentials for all external rankings with Alpha/Beta values of

(0.5,0.25), and that Hill Climb almost always has the lowest rank differentials for external rankings

with an Alpha/Beta of (0.75,1.0). Additionally, Y4 appears to favor small Alpha and Beta values

103

while Y3 prefers Alpha/Beta values near 0.5. Overall, both Associated Press polls, Bleacher

Report, and Sonny Moore prefer mid-range Alpha and Beta values, while ESPN prefers lower

values on average. This implies that ESPN’s power ranking favors higher-scoring and recent

games more than the other rankings.

 The heatmaps in Figures 31 and 32 show the two trends that each algorithm tended to

follow during the rank differential tests. Compared to the heatmaps from our 2016-17 NFL dataset,

the lower rank differentials are far more defined in the center of the heatmaps. However, both still

show that low Beta values increase rank differential significantly, and that high Alpha and Beta

values tend to reduce rank differential. Additionally, when compared to the 2016-17 NFL rank

differential heatmaps, the lowest average rank differential for this set is far greater, though the

highest average rank differential is only slightly higher.

 0 0.25 0.5 0.75 1

0 7.76 6.68 6.44 7.16 7.6

0.25 7.84 5.84 6.44 6.6 7.24

0.5 7.76 6.52 5.44 5.92 5.88

0.75 7.84 7 6.24 5.6 5.96

1 7.76 7.36 6.36 5.92 5.72

Figure 31: Associated Press vs. Berger/Shor (Y3) rank differentials Alpha/Beta heatmap

 0 0.25 0.5 0.75 1

0 8.56 6.2 6.36 6.24 6.68

0.25 7.96 6.76 6.76 6.08 6.6

0.5 7.88 7.44 6.68 6.24 6.44

0.75 7.6 7.72 7.4 6.72 6.2

1 7.92 7.96 7.52 7.76 6.4

Figure 32: Bleacher Report vs. Berger/Shor (Y4) rank differentials Alpha/Beta heatmap

 Table 45 shows the third set of rank differential tests, which were conducted on our 2014-

15 NHL dataset. In this test case, we show the Alpha and Beta values for the lowest average rank

differential on the NHL.com standings.

Table 45: 2014-15 NHL Rank Comparison Results (Alpha, Beta)

2014-15 NHL Hill Climbing Y3 Y4 ROC

NHL.com (1.0, 0.75) (1.0, 0.75) (0.75, 0.75) (1.0, 0.75)

104

In Table 45, there is minimal variation between algorithms over which Alpha and Beta values

result in the lowest average rank differential. In all cases except Y4, the best combination is

(1.0,0.75); in the case of Y4, this combination is similar at (0.75,0.75). We can infer from this that

these standings do not assign any value to the recency of game, and tend to not apply much more

weight for a large point differential compared to a small one. This trend manifests itself in the

heatmap in Figure 33, which also suggests that higher Alpha and Beta values result in lower

average rank differentials. From this, we can infer that lower Alpha and Beta values assign more

edge weight to backedges of this ranking, which are more recent and higher-scoring games. We

expect that this is because our ranking was retrieved from NHL.com standings rather than a power

ranking.

 0 0.25 0.5 0.75 1

0 4.46667 4.4 3.93333 3.53333 3.33333

0.25 4.06667 3.26667 2.73333 2.66667 2.46667

0.5 3.6 2.6 2.06667 1.86667 1.73333

0.75 3.46667 2.33333 1.53333 1.4 1.53333

1 3.6 2.2 1.4 1.33333 1.53333

Figure 33: NHL.com vs. Hill Climb rank differentials Alpha/Beta heatmap

 The final rank differential tests we conducted were on the 2015 MLB dataset. The results

from our rank comparison with baseball-reference.com’s standings are shown in Table 46.

Table 46: 2015 MLB Rank Comparison Results (Alpha, Beta)

2015 MLB Hill Climbing Y3 Y4 ROC

Baseball

Reference

(0.75, 1.0) (0.75, 1.0) (0.75, 1.0) (0.75, 1.0)

Table 46 shows that the best Alpha and Beta values for minimizing the average rank differential

for this ranking is (0.75,1.0). An interesting pattern is that this combination of values produces the

lowest average rank differential for all of our algorithms. Additionally, the preference for higher

values of Alpha and Beta aligns with the rank differential tests of all other datasets we examined.

The heatmap in Figure 34 highlights this trend, where the highest Alpha and Beta values result in

the lowest rank differentials. However, unlike the NHL ranking, this ranking appears to perform

better with smaller Alpha values than smaller Beta values, indicating that the removal of all games

within one score reduced much of the overlapping forward edge weight our ranking shared with

the external ranking.

105

 0 0.25 0.5 0.75 1

0 5.06667 3.93333 2.86667 2.33333 2.46667

0.25 5.2 3.06667 2 2.06667 1.8

0.5 4.86667 3.06667 2.06667 1.2 1.66667

0.75 5.2 2.93333 2.2 1.06667 0.73333

1 5.2 3.6 2.66667 0.93333 0.73333

Figure 34: Baseball Reference vs. Berger/Shor (Y4) rank differentials Alpha/Beta heatmap

9.3: Summary

 In this chapter, we discussed all of the test cases conducted on our rankings and external

rankings on four sports seasons datasets: 2016-17 National Football League (NFL) regular season,

2016-17 College Football (CFB) full season, 2014-15 National Hockey League (NHL) regular

season, and 2015 Major League Baseball (MLB) regular season. We introduced our total backedge

weight metric test cases, where we tested each of our algorithms with four different Alpha and

Beta combinations to determine where our algorithms performed the best. In all of these test cases,

at least one of our algorithms outperformed every external ranking tested based on our total

backedge weight metric. However, some of the best performances of our algorithms occurred when

both Alpha and Beta were zero, which resulted in optimization against this metric rather than

accuracy of ranking.

 Additionally, we conducted rank differential test cases in the interest of generating rankings

similar to external rankings to investigate similarities and trends between different Alpha and Beta

values. In these test cases, we analyzed trends across sports and different rankings to determine if

a correlation existed between certain Alpha and Beta values and improved accuracy within a given

sport. In general, we found that, across the sports datasets we tested, Alpha and Beta values of

greater than 0.5 each resulted in the lowest average rank differential.

106

Chapter 10: Conclusion

 With the spread of technology and communication, people around the world are now able

to further share their interests in sports and sports rankings with each other instantaneously. New

forms of analytics, power rankings, and blogs continue to thrive and spark discussion among sports

fanatics and enthusiasts about which teams played well over the past weeks and their speculations

of upcoming games. The field of sports rankings remains a vibrant topic as people and systems

tend to analyze metrics and outcomes of games in different manners, internally weighing factors

uniquely to output an overall ranking of teams within sports leagues.

 In this project, we explored sports rankings using a graph-based approach, in contrast to a

more traditional formulaic approach. This graph-based approach applies a season of sports data to

a graph data structure, where each team is a node, and each game is a directed edge between two

nodes, pointing from the winning node to the losing node. The foundation of the graph-based

approach is to approximate the Minimum Feedback Arc Set for each sports dataset, or the set of

directed edges in our sports graph which remove cycles or upsets from the graph with as little edge

weight as possible. Thus, the most accurate rankings for sports datasets would minimize the total

edge weight of all backedges, or edges of upsets and disagreements with the rankings, which is

found through the minimum feedback arc set. However, since the Minimum Feedback Arc Set

problem is NP-Complete and because most computer scientists believe that P ≠ NP, it is not

computationally feasible to generate these rankings. Therefore, approximations to the solutions are

utilized instead.

 Over the course of this project, we provide several contributions to rank generation in the

context of sports rankings. Specifically, we:

1. apply graph theory and the Minimum Feedback Arc Set problem to sports rankings with a

unique approach different from the more common formulaic ranking approach,

2. implement rank generation through a brute force approach and three approximation

algorithms for the Minimum Feedback Arc Set problem,

3. reverse-engineer sports rankings published online utilizing our graph data structures, and

4. outperform existing sports rankings using our own algorithms according to our evaluation

metric.

We provide each of the above contributions through the different methodologies and test

cases we conducted during this project. Our first contribution of graph theory application to sports

rankings was completed through our program, approximation algorithms, and edge weight

algorithms which convert raw sports season data into a graph data structure internally. We

accomplished our second contribution of algorithm implementation through background research,

design, testing, and optimizing four algorithms to generate and approximate rankings, one of which

was developed using our own evaluation metric of Range of Correctness. The third contribution

of reverse-engineering external rankings for this project was performed by our Alpha/Beta

107

heatmap and rank differential test cases, which allowed us to determine which of our edge weight

factors influenced external rankings the most, and which factors brought our own algorithmically-

generated rankings closest to the external rankings. Our final contribution of outperforming

existing rankings was completed through the correctness testing of our algorithms against external

rankings on datasets from various sports seasons using the total backedge weight concept as our

evaluation metric.

 From the test cases conducted during our project, we came to three conclusions. The first

conclusion we came to was that our algorithms tended to optimize more effectively for the total

backedge weight metric in sparse graphs and small Alpha and Beta values, where significant

amounts of edge weight in the graph could be removed. Secondly, we deduced that, even with

Alpha and Beta values optimized for external rankings, we were still able to outperform them.

Finally, we concluded that overall, external rankings tend to favor Alpha and Beta values of greater

than 0.5, indicating reduced consideration of the recency of games and margin of victory.

10.1: Future Work

 During this project, several topics came up in discussion that we did not have the chance

to explore further. The first of these topics is research into additional factors that can be considered

when weighing edges. Our approach considered point differential, strength of schedule, and

recency of game, which allowed for flexibility across many sports, but by discounting other factors

we sacrificed accuracy. We recommend further investigation into program logic for classification

of sports to account for different factors dynamically depending on which sport is provided as

input, and for different factors such as roster changes and importance of playoff games to be

considered. Furthermore, we suggest research into applying exponential decay with recency of

games, as this could further increase accuracy when analyzing rankings.

 The second topic we did not have time to explore was modeling sports where more than

two players or teams participated in a match, such as swimming or track and field. When modeling

two-team sports, such as football or hockey, the Minimum Feedback Arc Set problem can be

applied by treating each game as a directed edge between two nodes representing the teams.

However, when considering matches with more than two teams, a hypergraph-based approach may

need to be considered, as an edge for one match would need to connect more than two nodes. We

are unsure of how this would be modeled or if the Minimum Feedback Arc Set problem could be

applied to hypergraphs, but we think that investigation into this problem in the interest of analyzing

different sports could yield great benefits.

 Additionally, we did not have time to explore alternative heuristics for evaluating external

rankings outside of total backedge weight and average rank differential. We are skeptical of the

utility of our metrics for use in better understanding external rankings. The Alpha/Beta

optimization for total backedge weight seemed to favor values where as much edge weight could

be minimized as possible, leading to Alpha/Beta values that did not reflect the priorities of the

external ranking. Furthermore, since our algorithms frequently outperformed external rankings on

the heuristic of total backedge weight, we cannot accurately apply this metric even with the optimal

108

Alpha/Beta configuration for external rankings determined by rank differential because the total

backedge weight metric optimizes towards reducing edge weight where possible. We recommend

further exploration into alternative ways of measuring accuracy in rankings to address this.

Finally, we suggest testing with a wider range of sports seasons in the future. Our test cases

consisted mostly of recent NFL, NHL, MLB, and college football datasets. We think that further

data and external ranking collection could allow for deeper analysis into the underlying factors of

these rankings, as trends could be analyzed over several years of rankings. Additionally, collection

of data and rankings for other league sports could provide great insight on how ranking factors

vary across sports.

109

Bibliography

[1] Berger, B., and Shor, P. W. (1990, January). Approximation algorithms for the maximum

acyclic subgraph problem. In Proceedings of the first annual ACM-SIAM symposium on

Discrete algorithms (SODA '90). Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA, 236-243.

[2] Bleacher Report. (n.d.). Retrieved February 17, 2018, from http://bleacherreport.com/

[3] Bresiger, G. (2015, September 5). Nearly 75M people will play fantasy football this year.

Retrieved January 31, 2018, from https://nypost.com/2015/09/05/nearly-75m-people-

will-play-fantasy-football-this-year/

[4] Burke, C., Jacobs, M., and Bedard, G.A. Week 17 Power Rankings: How all 32 teams end

2016, SI.com. (2016). https://www.si.com/nfl/2016/12/28/nfl-power-rankings-week-17-

standings-playoffs

[5] Butterfield, A., and Ngondi, G. (Eds.). (2016). A Dictionary of Computer Science (7th ed.)

[2016]. Retrieved February 2, 2018, from

http://www.oxfordreference.com/view/10.1093/acref/9780199688975.001.0001/acref-

9780199688975-e-6317

[6] Charbit, P., Thomassé, S., and Yeo, A. The Minimum Feedback Arc Set Problem is NP-hard

for Tournaments. Combinatorics, Probability and Computing, Cambridge

University Press (CUP), 2007, 16, pp.01-04. . <10.1017/S0963548306007887>.

Found from: https://hal.inria.fr/file/index/docid/140321/filename/feedback.pdf

[7] Chen, J., Liu, Y., Lu, S., O’Sullivan, B., and Razgon, I. (2008). A fixed-parameter algorithm

for the directed feedback vertex set problem. J. ACM 55, 5, Article 21 (November 2008),

19 pages. DOI=http://dx.doi.org/10.1145/1411509.1411511, accessed February 2nd, 2018

[8] Fortnow, L. (2009, September). The status of the P versus NP problem. Communications

of the ACM, 52(9), 78-86. doi:10.1145/1562164.1562186

[9] Glickman, M. E., "A Comprehensive Guide to Chess Ratings"(1995). A subsequent version

of this paper appeared in the American Chess Journal, 3, pp. 59--102., accessed

2/10/2018, http://glicko.net/research/acjpaper.pdf

[10] Glickman, M. E., and Jones, A. C., "Rating the chess rating system" (1999),

Chance, 12, 2, 21-28, http://glicko.net/research/chance.pdf

[11] Heitner, D. (2015, October 19). Sports Industry To Reach $73.5 Billion By 2019. Retrieved

January 31, 2018, from https://www.forbes.com/sites/darrenheitner/2015/10/19/sports-

industry-to-reach-73-5-billion-by-2019/#6793ab121b4b

[12] Karp, R. M. (1972) Reducibility among Combinatorial Problems. In: Miller R. E., Thatcher

J. W., Bohlinger J. D. (eds) Complexity of Computer Computations. The IBM Research

Symposia Series. Springer, Boston, MA

[13] League Index. (n.d.). Retrieved February 17, 2018, from https://www.hockey-

reference.com/leagues/

http://bleacherreport.com/
http://bleacherreport.com/
http://bleacherreport.com/
http://bleacherreport.com/
https://nypost.com/2015/09/05/nearly-75m-people-will-play-fantasy-football-this-year/
https://nypost.com/2015/09/05/nearly-75m-people-will-play-fantasy-football-this-year/
https://nypost.com/2015/09/05/nearly-75m-people-will-play-fantasy-football-this-year/
https://nypost.com/2015/09/05/nearly-75m-people-will-play-fantasy-football-this-year/
https://nypost.com/2015/09/05/nearly-75m-people-will-play-fantasy-football-this-year/
https://www.si.com/nfl/2016/12/28/nfl-power-rankings-week-17-standings-playoffs
https://www.si.com/nfl/2016/12/28/nfl-power-rankings-week-17-standings-playoffs
http://www.oxfordreference.com/view/10.1093/acref/9780199688975.001.0001/acref-9780199688975-e-6317
http://www.oxfordreference.com/view/10.1093/acref/9780199688975.001.0001/acref-9780199688975-e-6317
http://www.oxfordreference.com/view/10.1093/acref/9780199688975.001.0001/acref-9780199688975-e-6317
http://www.oxfordreference.com/view/10.1093/acref/9780199688975.001.0001/acref-9780199688975-e-6317
https://hal.inria.fr/file/index/docid/140321/filename/feedback.pdf
https://hal.inria.fr/file/index/docid/140321/filename/feedback.pdf
https://hal.inria.fr/file/index/docid/140321/filename/feedback.pdf
https://hal.inria.fr/file/index/docid/140321/filename/feedback.pdf
http://dx.doi.org/10.1145/1411509.1411511
http://glicko.net/research/acjpaper.pdf
http://glicko.net/research/crs.pdf
http://glicko.net/research/crs.pdf
http://glicko.net/research/acjpaper.pdf
http://glicko.net/research/acjpaper.pdf
http://glicko.net/research/acjpaper.pdf
http://glicko.net/research/acjpaper.pdf
http://glicko.net/research/chance.pdf
http://glicko.net/research/chance.pdf
https://www.forbes.com/sites/darrenheitner/2015/10/19/sports-industry-to-reach-73-5-billion-by-2019/#6793ab121b4b
https://www.forbes.com/sites/darrenheitner/2015/10/19/sports-industry-to-reach-73-5-billion-by-2019/#6793ab121b4b
https://www.forbes.com/sites/darrenheitner/2015/10/19/sports-industry-to-reach-73-5-billion-by-2019/#6793ab121b4b
https://www.forbes.com/sites/darrenheitner/2015/10/19/sports-industry-to-reach-73-5-billion-by-2019/#6793ab121b4b
https://www.forbes.com/sites/darrenheitner/2015/10/19/sports-industry-to-reach-73-5-billion-by-2019/#6793ab121b4b
https://www.hockey-reference.com/leagues/
https://www.hockey-reference.com/leagues/

110

[14] MLB Stats, Scores, History, & Records. (n. d.). Baseball-Reference.com, Retrieved October

11, 2017, from www.baseball-reference.com/

[15] Moore, S. (n.d.). Sonny Moore. Retrieved February 17, 2018, from

http://sonnymoorepowerratings.com/archive.htm

[16] NBC Sports. (2018, February 15). Retrieved February 17, 2018, from

http://www.nbcsports.com

[17] Newell, A. What is Elo? An explanation for competitive gaming's hidden rating system. Dot

Esports, Retrieved 27 Jan. 2018, from www.dotesports.com/general/news/elo-ratings-

explained-20565#list-1

[18] Notes on the Complexity of Search [PDF]. (2003, September 23). Massachusetts

Institute of Technology. Retrieved February 29th, 2018 from:

http://www.ai.mit.edu/courses/6.034b/searchcomplex.pdf

[19] Official Site of the National Football League. NFL.com. Retrieved February 17, 2018,

from https://www.nfl.com/

[20] Official Site of the National Hockey League. NHL.com, National Hockey League,

www.nhl.com/

[21] Paine, N. (n.d.). Five Thirty Eight. Retrieved February 17, 2018, from

https://fivethirtyeight.com/sports/

[22] Rosen, K. H. (2012). Discrete Mathematics and Its Applications (7th ed). New York, NY:

McGraw-Hill.

[23] Russell, S and Norvig, P. (2010). Artificial Intelligence: A Modern Approach (3rd ed).

Upper Saddle River, NJ: Pearson.

[24] Sorensen, S. P. “An Overview of Some Methods for Ranking Sports Teams.” pp. 1–14.,

www.phys.utk.edu/sorensen/ranking/Documentation/Sorensen_documentation_v1.pdf .

[25] Sports Illustrated. (n.d.). Retrieved February 17, 2018, from https://www.si.com/

[26] Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM Journal on

Computing, 1(2), 155-159.10.1137/0201010

[27] The Worldwide Leader in Sports. ESPN.com. Retrieved February 17, 2018, from

http://www.espn.com/

[28] “What Is an Elo Rating?” What Is an ELO Rating in Chess, The Chess Piece,

www.thechesspiece.com/what_is_an_elo_rating.asp.

[29] World Football Elo Ratings. Eloratings.net, Retrieved 1 May 2015, from

www.eloratings.net/about.

[30] Younger, D., "Minimum Feedback Arc Sets for a Directed Graph," in IEEE Transactions on

Circuit Theory, vol. 10, no. 2, pp. 238-245, Jun 1963. doi: 10.1109/TCT.1963.1082116

keywords: {Feedback loop;Impedance;Switching circuits;Terminology;Topology;Tree

graphs}, URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1082116&isnumber=23378

http://www.baseball-reference.com/
http://www.baseball-reference.com/
http://sonnymoorepowerratings.com/archive.htm
http://sonnymoorepowerratings.com/archive.htm
http://www.nbcsports.com/
http://www.nbcsports.com/
http://www.dotesports.com/general/news/elo-ratings-explained-20565#list-1
http://www.dotesports.com/general/news/elo-ratings-explained-20565#list-1
http://www.ai.mit.edu/courses/6.034b/searchcomplex.pdf
http://www.ai.mit.edu/courses/6.034b/searchcomplex.pdf
https://www.nfl.com/
https://www.nfl.com/
http://www.nhl.com/
http://www.nhl.com/
https://fivethirtyeight.com/sports/
https://fivethirtyeight.com/sports/
http://www.phys.utk.edu/sorensen/ranking/Documentation/Sorensen_documentation_v1.pdf
http://www.phys.utk.edu/sorensen/ranking/Documentation/Sorensen_documentation_v1.pdf
https://www.si.com/
https://www.si.com/
https://www.si.com/
https://www.si.com/
http://www.espn.com/
http://www.espn.com/
http://www.espn.com/
http://www.espn.com/
http://www.espn.com/
http://www.thechesspiece.com/what_is_an_elo_rating.asp
http://www.thechesspiece.com/what_is_an_elo_rating.asp
http://www.thechesspiece.com/what_is_an_elo_rating.asp
http://www.eloratings.net/about
http://www.eloratings.net/about
http://www.eloratings.net/about
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1082116&isnumber=23378
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1082116&isnumber=23378

111

Appendix A: Glossary
● Graph: A data structure consisting of V, a nonempty set of vertices (or nodes) and E, a

set of edges

● Vertex / Node: An entity or datapoint within a graph

● Edge: An association between one or two vertices

● Endpoint: A vertex associated with an edge

● Unweighted graph: A graph whose edges do not contain edge weights

● Weighted graph: A graph whose edges each have a numerical value as an edge weight

● Directed graph: A graph whose edge set contains directed edges

● Directed edge / Arc: An edge associated with an ordered pair of vertices, where the first

vertex is the starting vertex and the second vertex is the ending vertex

● Indegree: The number of edges with a given vertex as its ending vertex

● Outdegree: The number of edges with a given vertex as its starting vertex

● Path: A sequence of edges (x0, x1), (x1,x2), (x2,x3), … , (xn-1, xn) in G, where n is a

nonnegative integer, and x0 = A and xn = B

● Cycle: A path of length n ≥ 1 that begins and ends at the same vertex

● Cyclic graph: A graph that contains one or more cycles

● Acyclic graph: A graph that does not contain cycles

● Ranking: A unique ordering of some collection of entities, with an implied hierarchy of

which entities are better than others based upon a given comparison metric

● Forward edge: An edge that agrees with a ranking, whose existence indicates that the

ordering of one node above another is correct

● Backward edge / Backedge: An edge that disagrees with the ranking, whose existence

indicates that the ordering of two nodes may be incorrect

● Strongly connected: The property of a graph where there is a sequence of directed edges

from any vertex in the graph to all other vertices in the graph

● Strongly connected component: A subgraph of a directed graph G that is strongly

connected but not contained in larger strongly connected subgraphs

● Total backedge weight: The sum of all backedges for a ranking for a graph

● Rank differential: A comparative metric measuring the average difference in rank of

each team between a control ranking and a test ranking

● Control ranking: The ranking in a rank differential used as the basis for comparison

● Test ranking: The ranking in a rank differential to compare with

● Adjacency matrix: “the n x n zero-one matrix with 1 as its (i, j)th entry when vi and vj

are adjacent, and 0 as its (i, j)th entry when they are not adjacent” [22]

● Alpha: The factor in our edge weight algorithm which represents recency of game and

linear decay

● Beta: The factor in our edge weight algorithm which represents the edge weight before

normalization to total graph weight

112

● Beta Normalization: The process of assigning edge weights based on the beta interval in

which the point differential is contained

● Beta Interval: The number of points assigned to each range in Beta Normalization

● Heatmap: A matrix of total backedge weight values for a given ranking where the cells

are colored in varying gradients based on their value, with the horizontal axis indicating

changes in Alpha and the vertical axis indicating changes in Beta

● Range of Correctness: An exclusive range for a ranking where the lower-bound index is

of the lowest-ranked team it lost to, and the upper-bound index is of the highest-ranked

team that it won against.

● Bounds (Range of Correctness): The inclusive uppermost or lowermost position in the

ranking whereby any swaps of a team’s ranking within each bound would result in the

same or reduced total backedge weight for a ranking

● Rank pool: A pool data structure which rearranges teams in a ranking based on their

Range of Correctness

● Relevant edges (Rank pool): The edges dictating the upper and lower bounds for a

team’s Range of Correctness

● CFB: Abbreviation for “College Football”

113

Appendix B: Alpha/Beta Heatmap Testing (cont.)

In this Appendix, we present all of the Alpha/Beta heatmaps created and analyzed but not

included in our results. The analysis of the heatmaps in our results can be found in Section 6.3.

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.164039 0.1628 0.162039 0.161525 0.161154 0.160874 0.160655 0.160479 0.160334 0.160213 0.160111

0.1 0.163211 0.162493 0.162054 0.161758 0.161545 0.161384 0.161259 0.161158 0.161076 0.161006 0.160948

0.2 0.162508 0.162233 0.162066 0.161954 0.161873 0.161812 0.161764 0.161726 0.161695 0.161668 0.161646

0.3 0.161906 0.162012 0.162077 0.16212 0.162151 0.162174 0.162193 0.162207 0.162219 0.162229 0.162238

0.4 0.161382 0.16182 0.162086 0.162263 0.162391 0.162486 0.162561 0.162621 0.16267 0.162711 0.162745

0.5 0.160924 0.161653 0.162093 0.162388 0.162599 0.162757 0.162881 0.16298 0.163061 0.163128 0.163185

0.6 0.160519 0.161506 0.1621 0.162498 0.162782 0.162995 0.163161 0.163294 0.163403 0.163494 0.163571

0.7 0.160159 0.161375 0.162106 0.162595 0.162944 0.163205 0.163409 0.163572 0.163706 0.163817 0.163911

0.8 0.159836 0.161258 0.162112 0.162681 0.163088 0.163393 0.16363 0.16382 0.163975 0.164104 0.164214

0.9 0.159546 0.161153 0.162117 0.162759 0.163217 0.16356 0.163827 0.164041 0.164216 0.164362 0.164485

1 0.159283 0.161058 0.162121 0.162829 0.163333 0.163712 0.164006 0.164241 0.164433 0.164593 0.164729

Figure 35: 2016-17 NFL heatmap (ESPN, Quartiles On)

 The heatmap shown in Figure 35 represents the total backedge weights with different

Alpha/Beta combinations of ESPN’s power ranking for the 2016-17 NFL dataset. Unlike most

other heatmaps, this heatmap shows two separate combinations which scored well: the lowest total

backedge weight with Alpha/Beta values of (1,0), but also low backedge weight with values of

(0,1). However, if Alpha and Beta were both small, which applies minimal values to the earliest

and closest games in the season, the total backedge weight was quite high; further, if Alpha and

Beta were both large, which treats recency of game and point differential as less important than

the wins and losses themselves, the total backedge weight was nearly equivalent. We suspect that

the favoring of either Alpha or Beta having a small value while the other has a large value is

dependent on season specific data, where ESPN’s power ranking maintains team placement such

that discounting early games or discounting close games resulted in the reduction of “equivalently-

weighted” backedges.

114

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.159785 0.158517 0.15774 0.157214 0.156834 0.156548 0.156324 0.156144 0.155996 0.155872 0.155767

0.1 0.165025 0.163104 0.16193 0.161139 0.160569 0.16014 0.159804 0.159535 0.159313 0.159129 0.158972

0.2 0.169467 0.166973 0.165455 0.164433 0.163699 0.163146 0.162714 0.162368 0.162084 0.161847 0.161646

0.3 0.173281 0.17028 0.168459 0.167237 0.16636 0.165699 0.165184 0.164771 0.164433 0.164151 0.163911

0.4 0.176591 0.17314 0.171052 0.169652 0.168649 0.167895 0.167307 0.166835 0.166449 0.166127 0.165855

0.5 0.179491 0.175637 0.173311 0.171755 0.17064 0.169802 0.16915 0.168627 0.168199 0.167842 0.16754

0.6 0.182052 0.177837 0.175298 0.173601 0.172387 0.171475 0.170766 0.170197 0.169732 0.169345 0.169016

0.7 0.184331 0.179789 0.177058 0.175236 0.173933 0.172955 0.172194 0.171585 0.171086 0.170671 0.170319

0.8 0.186371 0.181533 0.178629 0.176693 0.17531 0.174272 0.173465 0.172819 0.172291 0.171851 0.171478

0.9 0.188209 0.183101 0.18004 0.178 0.176544 0.175453 0.174604 0.173925 0.17337 0.172907 0.172516

1 0.189873 0.184518 0.181313 0.17918 0.177658 0.176517 0.17563 0.174921 0.174341 0.173858 0.17345

Figure 36: 2016-17 NFL heatmap (Sports Illustrated, Quartiles On)

The heatmap shown in Figure 36 represents the total backedge weights with different

Alpha/Beta combinations of Sports Illustrated’s power ranking for the 2016-17 NFL dataset. In

this heatmap, the Alpha/Beta value with the lowest total backedge weight was (0,1). From this data

point, we can infer that this power ranking favors games more based on their recency than on the

point differential of the game, as a Beta value of 1 only considers wins instead of point differential

and an Alpha of 0 allows for the maximum decay of earliest games possible. An interesting trend

from this heatmap is that the total backedge weight increases significantly more if increasing Alpha

when Beta is small. We suspect that this is because some edges which support Sports Illustrated’s

ranking have less weight than backedges with smaller Alpha/Beta values compared to when Beta

is larger.

115

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.005297 0.006666 0.007749 0.008628 0.009354 0.009966 0.010487 0.010937 0.011329 0.011673 0.011979

0.1 0.005759 0.007012 0.008003 0.008808 0.009473 0.010033 0.010510 0.010922 0.011282 0.011597 0.011877

0.2 0.006114 0.007277 0.008199 0.008946 0.009564 0.010085 0.010529 0.010912 0.011245 0.011539 0.011799

0.3 0.006394 0.007488 0.008353 0.009056 0.009637 0.010126 0.010543 0.010903 0.011217 0.011493 0.011738

0.4 0.006622 0.007658 0.008479 0.009145 0.009696 0.010159 0.010555 0.010896 0.011194 0.011455 0.011687

0.5 0.006811 0.007800 0.008583 0.009218 0.009744 0.010187 0.010564 0.010890 0.011174 0.011424 0.011646

0.6 0.006970 0.007919 0.008670 0.009280 0.009785 0.010210 0.010572 0.010885 0.011158 0.011398 0.011611

0.7 0.007105 0.008020 0.008745 0.009333 0.009820 0.010230 0.010579 0.010881 0.011144 0.011376 0.011581

0.8 0.007222 0.008108 0.008809 0.009379 0.009850 0.010247 0.010585 0.010878 0.011132 0.011356 0.011555

0.9 0.007324 0.008184 0.008866 0.009419 0.009877 0.010262 0.010591 0.010874 0.011122 0.01134 0.011533

1 0.007414 0.008252 0.008915 0.009454 0.009900 0.010275 0.010595 0.010872 0.011113 0.011325 0.011513

Figure 37: 2016-17 CFB heatmap (Associated Press, Quartiles On)

 In Figure 37, we show the heatmap of Associated Press’ poll for the 2016-17 NCAA

College Football (CFB) Division I dataset. In general, this heatmap shows that this ranking has

low total backedge weights from small Alpha and Beta values, with the best total backedge weight

occuring with Alpha/Beta of (0,0). Overall, increases in Alpha for this heatmap result in minimal

increases in total backedge weight, while increases in Beta result in substantial increases in total

backedge weight. We can infer from this that point differential of the game has more of an

influence than recency of game, as increases in edge weight for close games result in more

backedge weight. One interesting trend of this heatmap is how, for high Beta values, increases in

Alpha reduce the total backedge weight. We suspect this follows the same reasoning as above,

where earlier games are more likely to be forward edges, so increasing their edge weights through

Alpha increases the total forward edge weight more than the total backedge weight.

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.005297 0.006464 0.007387 0.008135 0.008754 0.009275 0.009719 0.010103 0.010437 0.010730 0.010991

0.1 0.005759 0.006824 0.007667 0.008351 0.008917 0.009393 0.009799 0.010149 0.010455 0.010723 0.010961

0.2 0.006114 0.007101 0.007883 0.008517 0.009042 0.009483 0.009860 0.010185 0.010468 0.010718 0.010938

0.3 0.006394 0.007320 0.008054 0.008649 0.009141 0.009555 0.009908 0.010213 0.010479 0.010713 0.010920

0.4 0.006622 0.007498 0.008192 0.008755 0.009221 0.009613 0.009948 0.010237 0.010488 0.01071 0.010906

0.5 0.006811 0.007646 0.008307 0.008844 0.009288 0.009662 0.009980 0.010256 0.010496 0.010707 0.010894

0.6 0.006970 0.007770 0.008404 0.008918 0.009344 0.009702 0.010008 0.010272 0.010502 0.010704 0.010883

0.7 0.007105 0.007876 0.008486 0.008982 0.009392 0.009737 0.010031 0.010285 0.010507 0.010702 0.010875

0.8 0.007222 0.007967 0.008557 0.009036 0.009433 0.009767 0.010052 0.010297 0.010512 0.010700 0.010867

0.9 0.007324 0.008047 0.008620 0.009084 0.009469 0.009793 0.010069 0.010308 0.010516 0.010698 0.010861

1 0.007414 0.008117 0.008674 0.009126 0.009501 0.009816 0.010085 0.010317 0.010519 0.010697 0.010855

Figure 38: 2016-17 CFB heatmap (Coaches, Quartiles On)

116

In Figure 38, we show the heatmap of Associated Press’ Coaches polls for the 2016-17

NCAA College Football (CFB) Division I dataset. This ranking aligns with the standard

Associated Press poll shown in the heatmap in Figure 37, from favoritism towards small

Alpha/Beta to decreases in total backedge weight when increasing the Alpha value with a high

Beta value. We suspect that the reasoning behind these trends matches that of the standard

Associated Press poll, where backedges are more likely to be close games than earlier games.

Therefore, increasing Beta is more likely to create large amounts of backedge weight, while

increasing Alpha creates backedge weight and forward edge weight, decreasing the total backedge

weight in some combinations.

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.004868 0.006485 0.007764 0.008802 0.009661 0.010383 0.010998 0.011530 0.011993 0.012400 0.012761

0.1 0.005174 0.006657 0.007831 0.008784 0.009571 0.010234 0.010799 0.011287 0.011712 0.012086 0.012418

0.2 0.005410 0.006790 0.007883 0.008769 0.009503 0.010120 0.010647 0.011101 0.011497 0.011845 0.012154

0.3 0.005596 0.006895 0.007924 0.008758 0.009449 0.010030 0.010525 0.010953 0.011326 0.011654 0.011945

0.4 0.005748 0.006980 0.007957 0.008749 0.009405 0.009956 0.010427 0.010833 0.011187 0.011499 0.011775

0.5 0.005873 0.007051 0.007984 0.008741 0.009368 0.009895 0.010345 0.010734 0.011072 0.011370 0.011634

0.6 0.005978 0.007111 0.008007 0.008735 0.009337 0.009844 0.010277 0.010650 0.010975 0.011262 0.011515

0.7 0.006068 0.007161 0.008027 0.00873 0.009311 0.009801 0.010218 0.010579 0.010893 0.011169 0.011414

0.8 0.006146 0.007205 0.008044 0.008725 0.009288 0.009763 0.010168 0.010517 0.010822 0.011089 0.011327

0.9 0.006214 0.007243 0.008059 0.008721 0.009269 0.009730 0.010123 0.010463 0.010759 0.011020 0.011251

1 0.006273 0.007277 0.008072 0.008717 0.009251 0.009701 0.010085 0.010416 0.010705 0.010959 0.011184

Figure 39: 2016-17 CFB heatmap (Bleacher Report, Quartiles On)

 Figure 39 shows Bleacher Report’s ranking of the 2016-17 NCAA College Football (CFB)

Division I dataset. This ranking also produces lower total backedge weights with small Alpha and

Beta values, with the lowest total backedge weight occurring with Alpha/Beta of (0,0). As shown

in the heatmap, this ranking also has much greater increases in total backedge weight with higher

Beta values than Alpha values, which we suspect is due to the favoritism of higher scoring games

over older games. However, this ranking appears to align with many older games, as the total

backedge weight for a high Beta value decreases substantially as Alpha increases.

117

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.004653 0.005597 0.006344 0.006950 0.007452 0.007873 0.008233 0.008543 0.008813 0.009051 0.009262

0.1 0.005421 0.006293 0.006983 0.007543 0.008006 0.008396 0.008728 0.009015 0.009265 0.009485 0.009680

0.2 0.006011 0.006828 0.007474 0.007999 0.008433 0.008798 0.009110 0.009378 0.009613 0.009819 0.010002

0.3 0.006478 0.007251 0.007863 0.008360 0.008771 0.009117 0.009412 0.009666 0.009888 0.010083 0.010256

0.4 0.006857 0.007595 0.008179 0.008653 0.009045 0.009375 0.009657 0.009900 0.010112 0.010298 0.010464

0.5 0.007171 0.007880 0.008441 0.008896 0.009273 0.009590 0.009860 0.010094 0.010297 0.010476 0.010635

0.6 0.007436 0.008119 0.008661 0.009100 0.009464 0.009770 0.010031 0.010257 0.010453 0.010626 0.01078

0.7 0.007661 0.008324 0.008849 0.009275 0.009627 0.009924 0.010177 0.010396 0.010587 0.010754 0.010903

0.8 0.007855 0.008500 0.009011 0.009425 0.009768 0.010057 0.010303 0.010516 0.010702 0.010865 0.011009

0.9 0.008025 0.008654 0.009152 0.009557 0.009891 0.010173 0.010413 0.010621 0.010802 0.010961 0.011102

1 0.008174 0.008789 0.009277 0.009672 0.01 0.010275 0.010510 0.010713 0.010890 0.011046 0.011184

Figure 40: 2016-17 CFB heatmap (Sonny Moore Top-25, Quartiles On)

 The heatmap of Sonny Moore’s top-25 ranking for the 2016-17 NCAA College Football

(CFB) Division I dataset is shown in Figure 40. Similar to the other college football heatmaps from

this season, this ranking also performs best with small Alpha and Beta values, with the lowest total

backedge weight occurring at Alpha/Beta of (0,0). In contrast to the other rankings, this ranking

appears to increase linearly in backedge weight regardless of whether Alpha or Beta are increased,

where large values of Alpha and Beta result in the highest total backedge weights. We expect that

this is because the ordering of teams in the ranking results in roughly equivalent backedge weights

from older games and from close games, as increases in value to either results in similar increases

towards the total backedge weight.

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.228729 0.237419 0.242752 0.246358 0.248959 0.250924 0.25246 0.253695 0.254708 0.255556 0.256274

0.1 0.232984 0.241241 0.246285 0.249686 0.252135 0.253982 0.255425 0.256583 0.257534 0.258328 0.259001

0.2 0.236592 0.244464 0.249256 0.25248 0.254797 0.256542 0.257904 0.258997 0.259894 0.260642 0.261276

0.3 0.239689 0.24722 0.251789 0.254857 0.257059 0.258716 0.260009 0.261045 0.261894 0.262603 0.263203

0.4 0.242377 0.249603 0.253975 0.256905 0.259006 0.260585 0.261817 0.262803 0.263611 0.264285 0.264856

0.5 0.244732 0.251684 0.25588 0.258688 0.260699 0.26221 0.263387 0.264329 0.265101 0.265745 0.26629

0.6 0.246812 0.253517 0.257555 0.260254 0.262185 0.263635 0.264763 0.265667 0.266407 0.267024 0.267546

0.7 0.248663 0.255143 0.259039 0.26164 0.263499 0.264894 0.26598 0.266849 0.26756 0.268153 0.268655

0.8 0.25032 0.256597 0.260364 0.262876 0.26467 0.266016 0.267063 0.267901 0.268586 0.269157 0.269641

0.9 0.251813 0.257903 0.261553 0.263984 0.26572 0.267021 0.268033 0.268843 0.269505 0.270056 0.270523

1 0.253165 0.259084 0.262626 0.264984 0.266667 0.267928 0.268908 0.269691 0.270332 0.270866 0.271318

Figure 41: 2017-18 NFL heatmap (NFL.com, Quartiles Off)

118

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.222222 0.228702 0.232678 0.235367 0.237306 0.238771 0.239917 0.240837 0.241593 0.242225 0.242761

0.1 0.231285 0.236792 0.240157 0.242426 0.244059 0.245291 0.246254 0.247027 0.24766 0.24819 0.248639

0.2 0.238968 0.243617 0.246446 0.24835 0.249718 0.250749 0.251553 0.252198 0.252728 0.253169 0.253544

0.3 0.245564 0.249451 0.251809 0.253392 0.254528 0.255383 0.25605 0.256585 0.257023 0.257389 0.257699

0.4 0.251289 0.254495 0.256435 0.257735 0.258667 0.259368 0.259914 0.260352 0.260711 0.26101 0.261263

0.5 0.256304 0.2589 0.260467 0.261516 0.262267 0.262831 0.263271 0.263623 0.263911 0.264151 0.264355

0.6 0.260734 0.26278 0.264013 0.264836 0.265426 0.265868 0.266213 0.266489 0.266714 0.266903 0.267062

0.7 0.264675 0.266224 0.267154 0.267776 0.26822 0.268554 0.268813 0.269021 0.269191 0.269332 0.269452

0.8 0.268205 0.2693 0.269958 0.270397 0.27071 0.270945 0.271128 0.271274 0.271394 0.271493 0.271578

0.9 0.271383 0.272066 0.272475 0.272748 0.272942 0.273088 0.273201 0.273292 0.273366 0.273428 0.273481

1 0.274262 0.274566 0.274747 0.274869 0.274955 0.27502 0.27507 0.27511 0.275143 0.275171 0.275194

Figure 42: 2017-18 NFL heatmap (USA Today, Quartiles Off)

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.089660 0.10661 0.118152 0.126518 0.132861 0.137835 0.14184 0.145135 0.147892 0.150234 0.152247

0.1 0.090446 0.107594 0.11926 0.127711 0.134115 0.139136 0.143177 0.1465 0.149282 0.151643 0.153673

0.2 0.091106 0.108419 0.120189 0.12871 0.135165 0.140224 0.144296 0.147643 0.150444 0.152822 0.154866

0.3 0.091667 0.109121 0.120978 0.129559 0.136057 0.141149 0.145245 0.148613 0.15143 0.153822 0.155878

0.4 0.092151 0.109725 0.121657 0.130289 0.136824 0.141943 0.146062 0.149446 0.152278 0.154681 0.156747

0.5 0.092572 0.11025 0.122248 0.130924 0.137491 0.142634 0.146771 0.150171 0.153014 0.155428 0.157502

0.6 0.092942 0.110711 0.122766 0.131481 0.138076 0.143239 0.147393 0.150806 0.15366 0.156082 0.158164

0.7 0.093269 0.111119 0.123224 0.131974 0.138593 0.143775 0.147942 0.151367 0.15423 0.156661 0.158749

0.8 0.093561 0.111483 0.123633 0.132412 0.139053 0.144252 0.148432 0.151866 0.154738 0.157175 0.159269

0.9 0.093823 0.111809 0.123999 0.132806 0.139466 0.144679 0.148871 0.152314 0.155193 0.157637 0.159736

1 0.094059 0.112103 0.124329 0.13316 0.139838 0.145064 0.149266 0.152718 0.155604 0.158052 0.160156

Figure 43: 2017-18 NFL heatmap (NFL.com, Quartiles On)

119

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.066841 0.087941 0.10231 0.112725 0.120621 0.126814 0.1318 0.135901 0.139334 0.142249 0.144756

0.1 0.068019 0.089153 0.103533 0.113949 0.121842 0.12803 0.133011 0.137107 0.140535 0.143446 0.145948

0.2 0.069007 0.090169 0.104557 0.114973 0.122864 0.129047 0.134024 0.138116 0.141539 0.144446 0.146945

0.3 0.069848 0.091034 0.105427 0.115844 0.123731 0.129911 0.134884 0.138972 0.142392 0.145295 0.147791

0.4 0.070573 0.091778 0.106176 0.116593 0.124478 0.130654 0.135624 0.139708 0.143125 0.146025 0.148517

0.5 0.071204 0.092425 0.106828 0.117243 0.125126 0.1313 0.136266 0.140347 0.143761 0.146658 0.149148

0.6 0.071758 0.092993 0.107399 0.117814 0.125695 0.131866 0.13683 0.140908 0.144319 0.147214 0.149702

0.7 0.072248 0.093496 0.107905 0.118319 0.126198 0.132367 0.137328 0.141404 0.144812 0.147705 0.150191

0.8 0.072686 0.093944 0.108355 0.118769 0.126646 0.132812 0.137771 0.141845 0.145251 0.148142 0.150626

0.9 0.073078 0.094345 0.108759 0.119172 0.127048 0.133212 0.138168 0.14224 0.145645 0.148534 0.151016

1 0.073432 0.094708 0.109123 0.119536 0.12741 0.133572 0.138526 0.142596 0.145999 0.148886 0.151367

Figure 44: 2017-18 NFL heatmap (USA Today, Quartiles On)

	Worcester Polytechnic Institute
	Digital WPI
	March 2018

	Graph-Based Sports Rankings
	Daniel Alfred
	Matthew Beader
	Matthew Jackman
	Ryan Patrick Walsh
	Repository Citation

	tmp.1535548689.pdf.2sR4m

