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Abstract 

 

 Sports rankings are a widely debated topic among sports fanatics and analysts. Many 

techniques for systematically generating sports rankings have been explored, ranging from 

simple win-loss systems to various algorithms. In this report, we discuss the application of 

graph theory to sports rankings. Using this approach, we were able to outperform existing 

sports rankings with our new four algorithms. We also reverse-engineered existing 

rankings to understand the factors that influence them.  
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Chapter 1: Introduction 
  

Sports and sports rankings have attracted the interest and attention of people across the 

world for decades. For years, people have tuned into sporting events broadcast over radio or 

television, or purchased tickets to see them live. In North America alone, the sports industry was 

worth $60.5B in 2014, and is expected to continue growing [11]. Recent technological 

developments have allowed the spread of sports discussion from talk radio and television to 

hobbyist websites. Furthermore, the introduction of online fantasy leagues where users can 

assemble teams of their favorite players and track their progress have become common with sports 

enthusiasts and their friends and coworkers. In 2015, American Express expected nearly 75 million 

Americans to participate in fantasy football, spending almost $4.6B [3].  

 In addition to the developing following in sports, particular interest has circulated around 

sports rankings. To best understand sports rankings, we need to understand what a ranking 

represents in general. For our purposes, a ranking can be defined as a unique ordering of some 

collection of entities, with an implied hierarchy of which entities are better than others based upon 

a given comparison metric. In the context of sports, a ranking is an ordering of teams or players 

based on the metric of their current performance against other teams or players in recent games. 

Sports rankings can come from many different sources, from analysts at news stations and sports 

networks to hobbyists. General comparison and performance metrics applicable across many 

sports include win-loss ratio and points scored within games. The differences in how each person 

or system weigh these factors drive much of the speculation that goes into sports ranking analysis 

and impact the finalized ranking each person or system produces. 

 For this project, we explore sports rankings from a different perspective. Our goal is to 

apply graph theory to sports rankings. In computer science, a graph is a data structure which can 

represent information in the form of nodes and edges, where nodes signify different entities, and 

edges indicate links or associations between nodes. Specifically, we aim to acquire and model 

sports data for exploration in graph theory to better understand how sports rankings are formulated. 

For our purposes, teams are represented as nodes in a graph, while matchups and games between 

these teams are represented as the directed edges between them. When given a ranking, forward 

edges within the graph are those that agree with the ordering in the ranking, and backward edges 

within the graph are those that disagree with the ordering in the ranking. The crux of our approach 

is based upon the Minimum Feedback Arc Set problem [12], [30], a well-known problem in 

theoretical computer science. Due to the computational complexity of the Minimum Feedback Arc 

Set problem, determining the optimal placement of teams in sports rankings using graphs is not 

computationally feasible in a reasonable timeframe without approximations. 

 Over the course of this project, we provide several contributions to rank generation in the 

context of sports rankings. Specifically, we: 
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1. apply graph theory and the Minimum Feedback Arc Set problem to sports rankings with a 

unique approach different from the more common formulaic ranking approach,  

2. implement rank generation through a brute force approach and three approximation 

algorithms for the Minimum Feedback Arc Set problem,  

3. reverse-engineer sports rankings published online utilizing our graph data structures, and  

4. outperform existing sports rankings using our own algorithms according to our evaluation 

metric. 

 

In this project, we successfully outperformed each existing and external ranking we tested 

according to our metrics in 2016-17 National Football League (NFL), 2016-17 NCAA Division I 

Football Bowl Subdivision (CFB), 2014-15 National Hockey League (NHL), and 2015 Major 

League Baseball (MLB) seasons using our algorithms and graph-based approach. Our algorithms 

are successful in these test cases, where most of them consistently outperformed all of our external 

rankings. For example, for 2016-17 NFL ranking results, existing rankings from ESPN, NFL.com, 

and Sports Illustrated produce out-of-order rankings with roughly 16% discrepancy between 

rankings and game results, while the best of our algorithms produce rankings with only 13% 

discrepancy. Additionally, we apply this metric and the metric of rank differential to reverse-

engineer external rankings and determine how important they consider certain factors when 

developing rankings. 

 In this report, we detail the background knowledge necessary for this project as well as the 

approaches, applications, and tests we performed to develop our contributions. Chapter 2 

introduces the relevant background information to our report, including graph theory, the 

Minimum Feedback Arc Set problem, a synopsis of our algorithms, traditional ranking approaches, 

and factors for consideration in ranking algorithms. Chapter 3 discusses our design considerations 

for the programs and scripts we developed to support these algorithms, as well as methodologies 

explored with respect to sports ranking factors. We then transition from our design of these features 

to implementation in Chapter 4, noting any modifications encountered during implementation of 

the design. Chapter 5 reviews test cases we conducted on our base implementation alongside 

analysis of the results. Chapter 6 describes our approach to handling edge weights within the graph, 

Chapter 7 explores different methods of generating and handling reduced-size rankings, and 

Chapter 8 introduces a new post-processor and ranking algorithm we developed. Our full sports 

test cases are analyzed and discussed in Chapter 9, and our project conclusion and suggested future 

work are included in Chapter 10. Appendix A contains a glossary for the terminology used in this 

report and Appendix B displays additional heatmap evaluation of existing rankings. 
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Chapter 2: Background 
 

 In this chapter, we present the relevant information necessary to understand this project 

and our developments. We begin with a brief introduction of graph theory and the definitions and 

concepts used throughout this report. We introduce the Minimum Feedback Arc Set problem, the 

foundation for this project, and its application towards sports rankings. Different metrics for 

evaluating sports rankings when considering the Minimum Feedback Arc Set problem are then 

explored. Afterwards, three of our four ranking algorithms are introduced alongside their origins 

and applications. We then summarize more traditional, formulaic methods of generating rankings. 

Finally, we close the chapter with discussion about potential factors considered within these 

ranking formulas. 

 

2.1: Graph Theory 

 In this section, we introduce graph theory with the concepts and definitions described in 

[22]. A graph is G = (V, E) consisting of V, a nonempty set of vertices (or nodes) and E, a set of 

edges. Each edge has either one or two vertices associated with it, called its endpoints. An edge 

is said to connect two endpoints. For example, a graph structure can be used to model the location 

of cities within a region. Each city is represented as a node, which can contain information such 

as the city’s name and its population, while each edge represents the existence of a link between 

the two nodes or cities it connects. With this information, search algorithms can be applied on the 

graph to determine if a path exists between two given cities. 

 One important property of graphs relating to this project is whether a graph is unweighted 

or weighted. An unweighted graph does not assign any values to its edges, and uses its edges just 

to represent association and connection. A weighted graph contains edges that each have a 

numerical value as an “edge weight.” An edge weight has many uses; for instance, edge weights 

can be applied to the city example above to denote the distances between cities, allowing for 

algorithms to determine which paths should be taken when traveling between cities if several exist.  

 Another important property of graphs is whether they are directed or undirected. A 

directed graph is defined as G = (V, E) with a nonempty set of vertices V and a set of directed 

edges E. Each directed edge, or arc, is associated with an ordered pair of vertices. The directed 

edge associated with the ordered pair (u, v) is said to start at u and end at v. The indegree of a 

vertex v is the number of edges with v as their ending vertex, and the outdegree of a vertex v is 

the number of edges with v as their starting vertex. Figure 1 is an example of a directed graph, 

where each directed edge contains an arrowhead pointing towards the ending node from the 

starting node. Following Figure 1, we can use the directed edge from node A to get to node C, but 

we cannot use the edge pointing to node E to get to node C because the relation is not bi-directional. 

Conversely, an undirected graph is bi-directional, where every edge implies that the source and 

destination nodes are reachable from each other using only that edge. 
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Figure 1: A sample directed cyclic graph 

 

 Additionally, graphs can be classified on whether or not they contain cycles. To understand 

cycles, we must first define a path. A path from vertices A to B for a directed graph is a sequence 

of edges (x0, x1), (x1,x2), (x2,x3), … , (xn-1, xn) in G, where n is a nonnegative integer, and x0 = A 

and xn = B, that is, a sequence of edges where the terminal vertex of an edge is the same as the 

initial vertex in the next edge in the path. A path x0, x1, x2, … , xn is defined to have a length n. A 

cycle is a path of length n ≥ 1 that begins and ends at the same vertex.  

The concept of cycles within graphs can be used to define cyclic and acyclic graphs. A 

cyclic graph contains one or more cycles, while an acyclic graph does not contain any cycles. 

Figure 2 depicts a graph with a cycle containing nodes A, B, and C, as there is a path for each node 

in the graph which begins and ends at the same node. However, if we were to remove the directed 

edge from node C to A in Figure 2, the graph would be acyclic as shown in Figure 3. 

 
Figure 2: A basic cyclic graph 
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Figure 3: A basic acyclic graph 

 

 Using the collection of edges within a directed graph, a ranking of its vertices can be 

generated. A ranking of a directed graph can be defined as a unique ordering of some collection 

of entities, with an implied hierarchy of which entities are better than others based upon a given 

comparison metric. If given a ranking for a directed cyclic graph, the distinction must be made 

between forward edges and backward edges. A forward edge is an edge that agrees with the 

ranking; its existence indicates that the ordering of one node above another is correct. Conversely, 

a backward edge, or backedge, is an edge that disagrees with the ranking; its existence indicates 

that the ordering of two nodes may be incorrect.  

Following Figure 2, two example rankings can be generated: A>B>C and A>C>B. 

Examining the first ranking, A>B>C, shows that two forward edges occur on the graph: (A, B) 

and (B, C), because these edges agree with the ranking provided. However, the edge (C, A) is a 

backedge, because its existence states that node C should be ranked higher than node A, but it is 

not. The second ranking, A>C>B, has only one forward edge on the graph, (A, B). This ranking 

has two backedges (C, A) and (B, C). Both of these rankings are valid, but consideration must be 

given to the number of backedges for a ranking when applied to a graph to determine how accurate 

the ranking is for that graph.  

 

 
Figure 4: A strongly connected component with several cycles 

 

The final property of graphs relevant for this report is connectedness. A directed graph is 

a strongly connected if there is a path from A to B and from B to A whenever A and B are vertices 

in the graph. Specifically, for a directed graph to be strongly connected, there must be a sequence 

of directed edges from any vertex in the graph to any other vertex. Following this concept, strongly 
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connected components are subgraphs of a directed graph G that are strongly connected but not 

contained in larger strongly connected subgraphs, that is, the maximal strongly connected 

subgraphs. In sum, a strongly connected component requires that any node in the component be 

reachable from any other node in the component by a path between them. Following Figure 4 

above, nodes A, B, and C are all reachable from each other, and they are the maximal strongly 

connected subgraph, thus they form a strongly connected component. A strongly connected 

component contains several cycles, also demonstrated in Figure 4. Two cycles exist in this figure: 

a cycle containing nodes A and B, and a cycle containing nodes A and C.  

  

2.1.1: Sports Data Representation With a Graph 

When representing sports data with a graph structure, we assigned each sports team, or 

player if analyzing a single-person sport, a node, and each game played an edge between the two 

nodes to signify the relation between them. These edges were directed, where the winning team 

was the source node of the edge and the losing team was the destination node. However, this 

presented a problem if a tie occurred and no clear winner was determined. To address this, a tie 

was represented with two directed edges pointing between both teams. Although this resulted in 

more edges within the graph than total games played, it allowed the graph to maintain information 

about the tie, and signified that, based on that tie alone, neither team could be determined as better 

than the other. 

 

2.2: The Minimum Feedback Arc Set Problem 

 The core of this project relates to the Minimum Feedback Arc Set problem. This problem 

is based upon one of Richard Karp’s 21 original NP-Complete problems [12], the Feedback Arc 

Set problem. The goal of the Feedback Arc Set problem is to find a set of edges within an input 

directed graph that, when removed, results in a directed acyclic graph [30]. Further, a feedback arc 

set is minimum if there exist no smaller feedback arc sets for a given graph [30]. By removing the 

fewest edges possible, the Minimum Feedback Arc Set removes the cyclic property of the graph 

while maintaining more information than other feedback arc sets, as any unnecessarily removed 

edges result in information loss of the graph. The Feedback Arc Set problem has applications in 

varying fields of computer science, ranging from operating systems and process scheduling to 

database systems [7].  

 In order to understand NP-Completeness and how it relates to the Minimum Feedback Arc 

Set, we must define the P versus NP Problem in theoretical computer science. The class P, which 

stands for “polynomial time,” describes a set of problems where solutions can be generated in a 

time value related to a polynomial of the size of the input to the problem. The class NP, which 

stands for “non-deterministic polynomial time,” describes a set of problems where solutions can 

be verified efficiently in polynomial time [8]. If P = NP, we could demonstrate that every problem 

where a solution can be verified efficiently can also have a solution generated efficiently. However, 

most computer scientists believe that P ≠ NP and that no polynomial time algorithms exist to solve 

NP-Complete problems. Thus, the NP-Complete nature of the Minimum Feedback Arc Set 
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problem means that we cannot efficiently generate a solution, so we must utilize approximations 

instead. 

The descriptions of the Feedback Arc Set and Minimum Feedback Arc Set problems above 

apply in the cases where the input graph does not utilize edge weights. However, in the case of 

input graphs which contain edge weights, the approach must be adapted. Unweighted graphs can 

be considered as weighted in this adaptation, where each edge has a weight of 1. In this context, 

when searching for the minimum feedback arc set, we are searching for the set of edges with the 

smallest total edge weight that remove all cycles from the graph, effectively maintaining the 

greatest amount of edge weight within the graph rather than maintaining the greatest number of 

edges.  

 

2.3: Graph Correctness Metrics 

 For the purpose of evaluating sports rankings in this project, we needed metrics to 

determine how accurate these rankings were. Two options are presented below, both of which were 

applied in this project. The first option is total backedge weight, which is centered in the weighted 

Minimum Feedback Arc Set problem; the second option is rank differential, a more comparative 

approach. 

 

2.3.1: Total Backedge Weight 

The first metric we investigate for evaluating sports rankings is total backedge weight. This 

metric involves applying a given sports ranking to a graph of sports data, using the node and edge 

format described in Section 2.1.1, and summing the weights of backedges for that ranking to get 

the total backedge weight. The weighted Minimum Feedback Arc Set problem suggests that if 

one ranking has more total backedge weight than another ranking, then the first ranking is less 

accurate for this data set. Indeed, rankings which place teams out of order will end up generating 

more backedges, thus having a higher total backedge weight. Rankings which rearrange the teams 

to remove backedges with as much total backedge weight as possible will be ignoring games with 

the smallest possible impact in the sports season and will subsequently be more accurate. 

One benefit to the total backedge weight metric is that is an absolute metric. This means 

that rankings can be evaluated individually with this metric and are not dependent on other 

rankings for comparison. Thus, all rankings for a given graph can be compared against each other 

with no modification. The downside to this approach is ambiguity with the total backedge weight. 

Unless the total weight of the graph is presented, it cannot be determined whether the total 

backedge weight for a ranking is large or small. Otherwise, an additional ranking can be evaluated 

simultaneously to determine which ranking results in a better total backedge weight, but this 

approach removes the absoluteness of the metric. 
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2.3.2: Rank Differential 

 The second metric for evaluating sports rankings we explore is rank differential. Rank 

differential, also referred to as rank comparison, is a comparative metric, where its basis depends 

on the correctness of a control ranking. This metric is primarily used to establish relative 

correctness between two rankings for the same graph. To calculate the rank differential, the 

differences in rank number of teams between the control ranking and a test ranking are computed 

and averaged over all the teams. The resulting value indicates that, on average, the test ranking can 

be expected to place teams the given number of positions out of order when compared to the 

control ranking. Rank differential has foundations within the total backedge weight metric as well: 

if two rankings have a rank differential of 0, that means that both rankings are identical, so they 

must have the same backedges and subsequently the same total backedge weight.  

 An advantage to this approach for analyzing sports rankings is its simplicity. At a glance, 

it is easier to understand and present rank differential compared to total backedge weight. 

Additionally, no information about the graph or the specific ordering of teams in each ranking is 

necessary to convey the rank differential metric. The main disadvantage of this approach is its 

relative scoring and reliance on a control ranking. If looking to generate the best ranking for a 

graph, the rank differential metric is dependent on having the best ranking as the control to 

compare against. However, this approach is sufficient if the goal is to better understand what 

factors influence the control ranking by testing which approaches bring the test ranking closer to 

the control. 

 

2.4: Minimum Feedback Arc Set Solution Algorithms 

When considering sports rankings from a graph-based approach, we needed to implement 

algorithms to determine or approximate the Minimum Feedback Arc Set to find which edges from 

each sports data set could be removed to generate the best ranking. As mentioned in the 

Introduction, we implemented four different algorithms for use in our sports data sets: a brute force 

approach, the Berger/Shor New 2-Approximation algorithm, a Hill Climbing algorithm, and a 

variation of Hill Climb using the iterative metric of variance in rankings.  

 

2.4.1: Brute Force 

 Brute force is defined in computer science as the approach of trying all possible solutions 

for a problem until the best one is found [5]. Because brute force checks all possible solutions to a 

problem, it is guaranteed to find the best solution. Brute force approaches have practical 

applications in computer science, such as generating solutions to string matching and comparison 

[5]. However, the major drawback to brute force is that, because all possible solutions are checked, 

completion of the algorithm often does not occur within reasonable time. In the string comparison 

application, if brute force is searching for the occurence of one set of non-contiguous characters 

in order within a string, the algorithm will take a factorial amount of time to complete, increasing 

very quickly as the size of the problem increases. Thus, larger problems are often not 
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computationally feasible to solve with a brute force solution, unless the problem space can be 

reduced. 

 

2.4.2: Berger/Shor New 2-Approximation Algorithm 

 The Berger/Shor New 2-Approximation algorithm was developed by Bonnie Berger and 

Peter Shor as an approximation to the Maximum Acyclic Subgraph problem [1]. The Maximum 

Acyclic Subgraph problem accomplishes the same goal as the Minimum Feedback Arc Set 

problem, except rather than returning the minimum feedback arc set, it returns the graph without 

those arcs [1]. Given the NP-Complete nature of these problems, there was a need to develop 

approximations that could terminate in polynomial time but would yield results close to the actual 

solution. 

This algorithm guarantees that any cycle that exists in the input graph will be broken in the 

output graph: all nodes in the input graph are evaluated once, and during evaluation of each node, 

either its incoming or outgoing edges are discarded from the output graph, such that at least one 

edge of every cycle will be discarded, and the cycle broken [1]. Additionally, because it removes 

the larger of the two sets of edges for each node, the Berger/Shor algorithm always retains at least 

half of the edges within the graph. Finally, because each node is only visited once in this 

approximation, this algorithm completes in polynomial time, which makes approximating 

solutions to the Minimum Feedback Arc Set computationally feasible. 

 

2.4.3: Hill Climb 

 Hill climbing is a greedy local search algorithm commonly used in artificial intelligence 

and is useful for solving optimization problems. A local search algorithm is an algorithm that looks 

at a single state when searching rather than a tree of paths. Changes in local search algorithms are 

typically to neighboring states. Greedy algorithms make decisions by choosing the state that is best 

in any given instance. The hill climbing search algorithm is a looping procedure which 

continuously moves in the direction of an increasing value of some success heuristic. During each 

loop, neighboring states of the graph are observed and the best possible neighbor state is chosen. 

This process continues until there is no longer any improvement in the heuristic value for any 

neighbor state [23].  

 Though hill climbing is quick to solve problems, it can get caught in a local maxima or 

local minima. A local maxima is a point for which the goal heuristic value reaches the maximum 

for neighboring states. The goal for the hill climbing search is to reach the global maxima, but it 

is impossible for a hill climbing search to know if a local maxima is also the global maxima. The 

local maxima problem can be somewhat mitigated through random restarts. Random restart hill 

climbing requires restarting the hill climbing loop multiple times with random initial states in the 

hope that one of these states will reach a better local maxima, or even reach the global maxima 

[23].  

The hill climbing search can also struggle with plateaus in the state space. A plateau is a 

scenario where all of the neighboring states have the same heuristic value. Hill climbing can get 
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stuck on a plateau since the neighboring states are not showing improvement for the hill climb 

search to choose. Plateaus can be dealt with using sideways moves, which are an allotted amount 

of occasions where the hill climbing search will settle for equivalent values of the heuristic in the 

hope that there will be improvement further in the state space [23]. Using these improvements, hill 

climbing is a suitable approximation approach for optimizing an ordering of nodes.  

 

2.5: Traditional Ranking Algorithms 

 Many methodologies have been formulated to develop sports rankings without the use of 

graph theory. Some of the rankings produced by these methodologies are earned rankings while 

others are predictive. Earned rankings are based on prior feats whereas predictive rankings are 

ones that most accurately predict the outcome of a future game [24]. Earned rankings can be used 

to verify a given ranking and provide a basis for predictive rankings. A ranking can be both earned 

and predictive if, for example, the same ranking that is created after a season ends is then used to 

predict a ranking for the next season. The ranking is based upon the team’s record over the most 

recent season and therefore earned. Because that ranking is then used to predict the next season’s 

ranking, it is also predictive.  

Some methodologies, like win-loss systems, have features that lend themselves well to 

being an earned ranking while a methodology such as Elo is useful for the purposes of predicting 

future game outcomes.  

 

2.5.1: Win-Loss Systems 

Win-loss systems are useful when producing a ranking as they do not require much data to 

compute. For each team, only two numbers need to be recorded, which correspond to the team’s 

number of wins and losses. If needed, a third value can also be kept to represent the number of 

matches that ended in a draw, tie, or were otherwise canceled. This is not always needed, however, 

as some sports do not allow for a game to end with a tie.   

An example of a win-loss system is shown in (1) [24], where the only influence in a ranking 

is whether or not a team wins. In (1), R represents the outcome between a home team and an away 

team, Sh represents the score of the home team, and Sa represents the score of the away team. If 

both teams are playing at a neutral venue, then assigning the variables is arbitrary. 
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Win-loss systems are useful when only a limited amount of data is available, since the system only 

considers victories and losses and not other factors in a game like score differential or penalties 

accrued by one team. However, because these systems only take into account the winner of the 

game, additional information about the match that could be accounted for is lost, as there is no 

distinction between a team that won a game by a blowout and a team that won a game by one 

score. Given that score differentials can vary widely across sports, a win-loss system can be easy 

to apply when looking at a variety of sports. 

 

2.5.2: Elo 

 Elo is a particular team’s ranking in relation to other teams using a numerical score [28]. 

The equation used for calculating Elo for world football teams is shown in (2) [29]. 

 

 

Rn = RO + K • (W - We)  (2)  

 

Updating the Elo for world football teams can be computed using the formula, where RO represents 

the original rating of the team before the match and Rn represents the updating rating after the 

match. K is the weight constant for the tournament being played which varies in value from 60 for 

World Cup finals to 20 for friendly matches [29]. W is the result of the game where W is 1 if the 

outcome was a victory, 0.5 if the outcome was a draw, or 0 if the outcome was a loss. We represents 

the expected result of the game and is calculated using the formula 

We = 1/(10(-dr/400) + 1)  where dr is the difference in ratings plus 100 points for a team playing at 

home [29].      

When teams play a match, Elo is gained by the victor and lost by the loser. The amount of 

Elo gained or lost by a team is dependent upon the Elo of the competitors. If the difference in Elo 

is large between teams, then the lower Elo team has more to win than it has to lose, while the 

higher Elo team has more to lose and not as much to win. At the start of a season, teams all begin 

with the same amount of Elo, and as the season progresses, teams slowly gravitate towards their 

final skill rating, thereby providing a numerical ranking of those teams. This is especially useful 

in situations with large numbers of competitors, where trying to compute an ordering would take 

significant time. One downside to Elo is that one bad game for a highly ranked team can have a 

large, negative impact on their rating. In the case of an upset, where a lower-ranked player beats a 

higher ranked player, their Elo is adjusted, allowing for simplistic self-correcting. Because of this 

feature, low-ranking teams who score an upset victory over a highly-ranked team will have their 

scores increased accordingly. In the future, this may be used to determine the following weeks’ 

schedules and can add additional pressure to games where there are more points to be won.  

The Elo system was adopted by the World Chess Federation in 1970 and in the rising 

popularity of e-sports, Elo has also become one of the predominant ranking systems for various 

Leagues [9] [17].  
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2.6: Factors Within a Ranking Algorithm 

 With the wide variety of ranking methodologies, different factors are considered when each 

of those rankings are produced. Two different rankings may be produced from the same dataset 

depending on what criteria was analyzed. In the following sections, several key factors that ranking 

methodologies consider are addressed and expanded upon.  

 

2.6.1: Point Differential 

 Some ranking systems place emphasis on the final score of the game and use the score 

differential to assign “points” to a team. If two or more teams end with the same win-loss record, 

a score-differential system can be used to determine which team has the overall highest ranking 

from their games and thereby produce an ordering of the teams. An example of this is shown in 

(3) [24].  

 

Rg
SD(Sh , Sa) = Sh - Sa =∆Sha   (3)  

 
In the formula shown in (3), a system like this would reward teams for running up the score. If a 

game is a blowout then the winning team can earn more points from a 50-7 end-game score than 

a 35-7 end-game score. Since ΔSha is the difference in score between the home team and the away 

team, there is no distinction between a 14-7 end-game score and a 7-0 end-game score [24]. 

Though not always relevant, score differential systems do give a large advantage to the better team 

in an unequal skill match-up. If an away team were to blow out the home team, then the result 

would be a very large, negative value which may inflate or deflate a team’s overall score, making 

tracking of individual game outcomes much more important overall.  

A system like this, however, is somewhat limited to sports where scoring is a simple 

comparison between two teams. Sports like chess, for example, would have harder times applying 

a ranking system such as this due to the lack of “scoring” mechanic. 

   

2.6.2: Recency of Game 

 A potential factor taken into consideration by traditional ranking algorithms is how recently 

each game was played. Games played near the end of the season should, theoretically, provide 

better insight into a team’s current performance than games played at the start of the season, as 

many factors can change a team’s performance throughout a season. For the purposes of our 

project, we focused on the date of the game. When looking at data across several years, we 

determined that more recent data can be used to identify trends in a team’s performance and affect 

future predictive rankings.    

 

2.6.3: Strength of Schedule 

 Each game played within a sports season represents a skill matchup between two teams. 

The skill of the opponents a team will face differs by team and can impact the win-loss ratio of 
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that team over the course of a season. Weekly rankings of teams can be vastly skewed depending 

on which teams played each other recently. Low-ranking teams who play against high-ranking 

teams will most likely end the week with losses whereas the highly ranked teams should end the 

week with victories. In large leagues such as the NCAA Division I Football Bowl Subdivision, 

there are over 120 teams and not all teams will play against each until the post-season games [15]. 

Using divisions to divide up the teams makes it less likely that two teams will face each other until 

after the regular season. Predictive outcomes for these games can vary widely depending on what 

a team’s schedule looks like throughout the season. If one team consistently plays teams that are 

ranked lower, it is natural to assume that the first team will be very highly-ranked. However, this 

may be falsely representing their actual skill level when compared to others in the sports league. 

With worse opponents, basic win-loss systems begin to show their flaws as which teams are in a 

match is sometimes just as important as the outcome of the game.  

 

2.7: Summary 

In this chapter, we reviewed graph theory and relevant concepts to the Minimum Feedback 

Arc Set problem for this project. We explored metrics to analyze rankings and introduced the 

background behind our selected ranking algorithms. We then discussed the theory behind 

formulaic ranking algorithms and the potential factors they consider.  
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Chapter 3: Base Design 
 

 In this chapter, we introduce decisions made relating to the overarching design of our 

program, data collection, and data representation within the graph structure. We open by 

discussing considerations for obtaining and formatting relevant sports data for use with our 

algorithms and how to apply this data to our graph as edge weights. We then discuss each of our 

algorithms and their applications to graph theory, their runtime complexities, and our contributions 

to them. Finally, we plan how to efficiently add testing support to our program for future test cases. 

 

3.1: Sports Data Format 

In order to best apply our project and its resources to practical applications, we developed 

a common format for all sports input data we wanted to collect. Within a given sport, there are 

many metrics that can be considered when generating a ranking, such as offensive or defensive 

performance. However, many of these metrics are specific enough that they cannot be applied to 

more than a few sports. To keep our program as flexible as possible, we needed to isolate factors 

important in determining the rank that are present in the majority of popular sports. Additionally, 

we wanted the presentation of our datasets to remain human-readable in case further analysis was 

necessary in the future. The resulting format we designed required the following, in order: 

 

● The name of the winning team or player 

● The name of the losing team or player 

● The winner’s score 

● The loser’s score 

 

Additionally, we designed our format to accept the following data, though not require it: 

 

● Whether a tie occurred 

● When the game was played 

● Where the game was played, whether at one team’s home field, or a neutral venue 

 

This format allowed us to capture a substantial amount of information applicable across all sports 

relevant to this project and apply it to the node weights in our graph. Once the format was agreed 

upon, sports data could be collected and processed for usage in testing against our rankings. Figure 

5 below shows our data format applied to the first week of the 2017-18 NFL season, containing 

the two team names, their scores, the tie flag, the date, and the location flag. 
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Figure 5: 2017-18 NFL example data format 

 

In the case of the NFL, where games are measured on a weekly basis, the week number is 

substituted in place of the date as shown above; otherwise, the date follows a YYYY/MM/DD 

format. The location flag allows for home-field advantage to be applied when assigning edge 

weights, where 0 signifies a neutral venue, 1 signifies that the game was played at the winning 

team’s venue, and 2 signifies that the game was played at the losing team’s venue.  

 

3.2: Sports Data Collection 

In order to acquire various seasons of sports data, we saw the need to design a data 

collection tool that could pull the information from web sources. One such website, sports-

reference.com, offered data for essentially every season of several major sports, all in similar 

formats. Unfortunately, the data was not offered in a format beyond bare HTML that could be 

automatically collected or could be directly downloaded for free. Node.js was chosen for our 

collection tool, as npm contains several virtual DOM implementations and the nature of the 

language allows the processing of a page to be exactly the same as if processing with JavaScript 

in a browser. Speed and efficiency of the collection script was not a concern, due to how small the 

data of an individual season is and how the server we collect from ultimately determines how 

quickly data can be collected, making Node.js a reasonable choice. 

 

3.3: Basic Program Structure 

Development of our rank generation program in this project first began with the 

implementation of a graph to maintain our sports data and the framework to store, manipulate, and 

output sample graphs. We initially developed a proof of concept for this program in Python, which 

read in a graph from a file and used a collection of Node and Edge objects to maintain it. However, 

after discussion, we migrated this proof of concept program to C++ and adopted an adjacency 

matrix for our graph’s data structure. An adjacency matrix A of graph G is defined as “the n x n 

zero-one matrix with 1 as its (i,j)th entry when vi and vj are adjacent, and 0 as its (i,j)th entry when 

they are not adjacent” [22]. The migration to C++ offered us greater control over memory 

management, while the adjacency matrix greatly reduced memory usage and computation time. 



16 

Using an adjacency matrix improved the ease of node and edge mutation, and simplified the 

generation of adjacency lists, or lists of neighboring nodes from a given node. 

We planned for the rank generation program to have two main parts. The first main part of 

the program was focused on handling user inputs and storing data that would need to be reused 

between algorithm runs. This functioned as a wrapper for the second main part of the program, 

which conducted the execution of the algorithms themselves. The general execution flow of the 

program is as follows: first, the program parses the input command line arguments and enables or 

disables the corresponding features as specified. The only required command line argument is a 

text file containing the sports data to be parsed into a directed graph. Second, the program reads 

the graph input file and generates an adjacency matrix according to the specified configurations 

for weighting edges. Next, the program acts as a wrapper and executes one or multiple ranking 

algorithms on the imported sports data. Finally, the program executes any post-processing or 

testing on the data before outputting results and exiting.  

 

3.3.1: Data Retention 

 One of the first obstacles to working with the Minimum Feedback Arc Set problem was 

importing sports data as a graph that can be read and modified. This data needed to be first 

translated into nodes and edges, at which time it would be stored until needed by a rank generation 

algorithm. One of the main motivations for the switch from the initial Python implementation to 

C++ was for greater performance in the face of the NP-Complete nature of the Minimum Feedback 

Arc Set problem. The input graph would need to be accessed hundreds of thousands of times in 

the rank generation process, so performance of graph access was of great concern. Retention of 

graph data was redesigned into an adjacency matrix, rather than node and edge objects. Inside the 

adjacency matrix, each cell would hold the weight of the directed edge from the source node 

represented in the row to the destination node represented in the column.  

 As edges in the input graph were retained in an adjacency matrix, the information for nodes 

was retained as integer indices of the associated rows and columns in the adjacency matrix that 

each node referred to. The indices in the adjacency matrix could then be referenced in an index in 

a vector which contained the names of the nodes in the input graph. In the context of this project, 

these node names would refer to all unique team names in the input dataset. The decision to regard 

nodes as integers during computation greatly simplified the process of handling nodes in the 

program. From arbitrarily sized names of teams, node information was condensed down into a 

small, statically sized amount of memory that could be used both to retrieve the node’s name as 

well as access relevant edge weights in the adjacency matrix. Looping through a list of nodes was 

as simple as looping through an array or a vector of integers. The maximum number of nodes was 

also held globally in the program to easily know how many indices to loop through if all nodes 

needed to be iterated through. The maximum number of nodes was also used to signify which parts 

of the adjacency matrix were valid. Through referencing nodes as integers, the creation and 

manipulation of orderings was a simple and consistent process that proved to simplify the more 

complex task of generating rankings. 
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3.3.2: Edge Weights 

Another important consideration when importing sports data into a graph structure was 

how to assign weights to each edge. The first implementations of our program used unweighted 

directed edges, where the weights for edges could only be 1’s. Essentially, each edge only signified 

a win or loss, similar to how sports data would operate in an unweighted graph. Unweighted graphs 

led to greatly simplified data input and computation as only the winning team name and losing 

team name were required for input, but this resulted in the loss of crucial information about the 

game during rank calculation. Thus, a binary wins and losses system for developing our rankings 

was not sufficient.    

Discussion on other relevant information to use in our rankings led us to the conclusion 

that point differential, strength of schedule, home-field advantage, and recency of game all 

impacted the importance of a win of one team over another. All of these factors except strength of 

schedule were represented explicitly within our data format and could easily be computed and 

applied as needed after being read in from the file. For simple testing in our first few program 

revisions, we began weighing each edge as the point differential of the game. Point differential 

appeared to be the most reasonable gauge of the magnitude of a victory and became the main basis 

of edge weights. In addition to point differential, home-field advantage and recency appeared to 

be good modifiers of the significance of a game result. We continued experimenting with different 

edge weight factors in the interest of better modeling sports data within a graph throughout this 

project, where further development is discussed in Chapter 6. 

 

3.3.3: Edge Weight Customization 

 As part of the process of importing the sports data into a directed graph, the weights of the 

directed edges needed to be calculated from each game. This warranted the need for a system to 

condense sports data into edge weights. We designed a customizable framework for importing 

edges from columns within our sports data files. Utilizing a system of interactive prompts, the user 

could tell the program how to handle each of the additional data columns on a column-by-column 

basis. We designed the customization system in this fashion because some sports have different 

relevant data that may be unique to the sport. This configuration was also designed to be output to 

a readable text file generated through the program. The weight configuration file could then be 

provided as a command line argument and read into the program to skip the interactive prompts 

and automatically configure the weights as specified. This configuration file could then be shared 

between testers to replicate the weight configurations that produced a ranking. The weight 

configuration file also allowed the configuration variables to be edited outside of the program. 

Multiple configurations held in easily editable external files allowed comparison of results 

between different weight configurations. 

 To maintain flexibility for our weight configuration system, we designed several 

configurations for the columns of data within an input file. The two most basic kinds of 

configurations we created took the value in the column at face value and multiplied it either by 

one or by a configurable ratio. Another couple configurations also allowed the user to specify that 
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a column contains the week or date of the match, which is information that could be used in the 

recency of game process. Columns could also specify which team was the home team. Finally, we 

allowed columns of information to be ignored altogether in the configuration system. This 

powerful tool allowed us to filter out irrelevant data from our input files to suit the changing testing 

requirements as our project developed. All of these configurations could be specified in any order 

and allowed us great flexibility in handling variable amounts of data that could differ between 

sports.  

 After reading each game from the input sports data file, all of the factors of the edge weights 

were consolidated into a single edge weight to indicate the significance of that edge. In the 

consolidation process, any post-processing on the edge weights would be applied. Most notably, 

this stage of the edge reading process would apply any decay or normalization in a process outlined 

in Chapter 6. Once the edge weight calculation had completed, the edge weight would be applied 

to the appropriate cell in the adjacency matrix. In the case where two or more edges shared origin 

and destination teams, we decided to sum the edge weights with the reasoning that an edge 

becomes even more significant if there are more than one games that support it. However, in order 

to not lose any information in the process of summing edge weights between the same two nodes, 

we maintain a separate list of extra indegrees and extra outdegrees. Finally, in the case of a tie, we 

apply the edge weight in both directions of the edges between the nodes in order to preserve the 

existence of the matchup. 

 

3.4: Algorithms 

Using our program and graph data structure as a platform for implementation, we explored 

different algorithms to solve or approximate the Minimum Feedback Arc Set problem. When 

selecting algorithms to implement, we had to be mindful of both the computation time and the 

accuracy of the output ranking, especially when considering the size of the different sports datasets 

we wanted to test with. We decided to implement four algorithms: a Brute Force approach, the 

Berger/Shor New 2-Approximation algorithm, an adaptation of the Hill Climbing approach used 

in artificial intelligence, and a similar Hill Climbing approach that utilized a comparison metric of 

our own design. 

 

3.4.1: Brute Force 

The first consideration for a ranking algorithm in our program was a brute force approach. 

Based on the notion of backedge weight discussed in Section 2.3.1, we designed an algorithm 

using the brute force methodology that iterated through every possible ranking of the nodes in a 

given graph and returned a ranking with the lowest total backedge weight. This was not a direct 

solution to the Minimum Feedback Arc Set problem because it returned the ranking for the graph 

from which the minimum feedback arc set could be determined instead of returning the set itself. 

The benefit of this algorithm was that we could find the best ranking for the input graph because 

all possible permutations were considered. The downside to this algorithm was its time 

complexity: because it evaluated all possible permutations, the computation time was factorial by 
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number of nodes or teams, or O(V!). Therefore, this approach does not scale well to larger graphs 

and the rankings of such graphs would not be computable in a reasonable timeframe. 

Our contribution to brute force was the exploration of optimizations with our algorithm to 

improve its efficiency. The first optimization we considered was to split the brute force evaluation 

process over several processor threads. Our brute force algorithm generated permutations in order 

to be evaluated, which allowed for this task to be divided among several threads. The second 

optimization we considered was to reduce the number of permutations evaluated by considering 

strongly connected components within the graph, as the presence of strongly connected 

components resulted in permutations that were not valid. For example, if a node within a strongly 

connected component had an incoming edge to it from outside the component, then the source 

node of that incoming edge should be ranked higher than any of the nodes where the root node is 

the source of an edge to. 

 

3.4.1.1: Pseudocode 

 Our brute force algorithm, without optimizations, is explained at a high level using the 

pseudocode below. The algorithm takes a directed graph G as input, with vertex set V and edge 

set E, and outputs the best ranked ordering of vertices S. We iterate through each possible 

permutation of vertices in V and maintain the best total backedge weight and best permutation 

found so far. If the total backedge weight of the current permutation is less than the best found, 

then the current permutation and its total backedge weight are maintained. After all permutations 

have been evaluated, the best ranked ordering found is returned. 

 
algorithm brute_force() is 

input: graph G = (V, E) 

output: best ranked ordering S 

 

 best_weight <- weight(G) 

 best_permutation <- {} 

for each permutation P of V do 

weight <- total_backedge_weight(P) 

if weight < best_weight do 

 best_weight <- weight 

   best_permutation <- P 

end if 

end for 

return best_permutation 

end 

 

3.4.1.2: Runtime Analysis 

 Because our brute force approach generates and calculates the total backedge weight of 

every possible ranking for a given graph, its time complexity is relatively poor. Our initial ranking 

is based on the order in which nodes are entered into our adjacency matrix, and is assembled in 

O(V) time. Each new permutation is generated in O(1), while the total backedge weight evaluation 
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is completed for each permutation in O(V2). This process is repeated for all V! permutations within 

the graph, resulting in a time complexity of O(V! * V2 + V), or O(V!). 

 

3.4.2: Berger/Shor New 2-Approximation Algorithm 

As discussed in Section 2.4.2, the Berger/Shor New 2-Approximation algorithm was 

selected for this project to provide approximations of solutions for input graphs that brute force 

could not because of the input size. In general, approximation algorithms may not produce the best 

rankings for a graph, but they can produce acceptable solutions for cyclic graphs in polynomial 

time. This algorithm was selected because of its polynomial runtime and its factor of two 

correctness, which suggested comparable results to the brute force approach for larger graphs. 

Our version of the Berger/Shor New 2-Approximation algorithm utilized the addition of 

topological sort to develop a total ordering from the acyclic output graph, and several 

preprocessors to improve the correctness of the output. The Berger/Shor algorithm was intended 

to solve the Maximum Acyclic Subgraph problem, so by design, it only returned an acyclic 

subgraph. Thus, topological sort could be applied to transform the output acyclic graph into a 

ranked total ordering, or ordering of all nodes in a graph. 

Additionally, we designed our algorithm to preprocess the input for better results. Our first 

preprocessor was the strongly connected components preprocessor, which would determine the 

sets of nodes that were part of strongly connected components within the graph. These strongly 

connected components could then be evaluated by the Berger/Shor approximation, as any edges 

not included within a component are not part of cycles, thus they do not need to be removed. Our 

second preprocessor involved rearranging the order of nodes to be approximated within each 

strongly connected component. This ordering impacts which edges are removed during the 

approximation, as the removal of one set of edges earlier in the approximation may change whether 

another node has its incoming or outgoing edges removed, potentially resulting in a more accurate 

approximation. 

 

3.4.2.1: Proofs 

Lemma 1: The resulting graph is acyclic. 

Proof: Suppose a cycle exists of vertices (v1, v2, … , vn, v1). After evaluation of vertex vi in this 

cycle, where 1 ≤ i ≤ n, either the edge <vi-1, vi> or <vi, vi+1> has been discarded by removing either 

the incoming or outgoing edges of vi. Thus, a cycle can no longer be formed from v1 to vn [1]. 

 

Lemma 2: The output provided by this algorithm is always within a factor of two of the correct 

answer. 

Proof: Each node v in graph G is evaluated once. The larger of the two sets of edges for each v is 

transferred to the output graph, while the smaller of the two sets is discarded. Therefore, at least 

half of all edges in the input edge set A are present in the output edge set A’, meaning that |A’| ≥ 

(½)|A|. Thus, the output graph is always within a factor of two of the potentially cyclic input, so it 

must be within a factor of two for the correct acyclic output [1]. 
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Lemma 3: The algorithm terminates with a total ordering. 

Proof: Following Lemma 1, the output graph from this algorithm is acyclic [1]. Therefore, a total 

ordering can be generated utilizing topological sort without entering an infinite loop. 

 

3.4.2.2: Pseudocode 

 The following pseudocode provides a high-level description of how the Berger/Shor New 

2-Approximation algorithm works. It begins with an input graph G with vertex set V and edge set 

E, and outputs an acyclic graph G’ with vertex set V and modified edge set E’. The algorithm first 

determines the edges involved in each strongly connected component in the graph, removing them 

from the output graph. The remaining edges do not contribute to cycles and therefore can remain 

in the final graph. Then, the algorithm conducts the Berger/Shor approximation process on each 

strongly connected component, storing the resulting edges into the output graph. 

 Within the Berger/Shor approximation function itself, the strongly connected component 

input is received, while the acyclic component with edges removed is output. This function iterates 

through each vertex v in the input vertex set V and determines v’s indegree and outdegree. If the 

indegree is larger than the outdegree for v, v’s outgoing edges are removed from E, and v’s 

incoming edges are copied over to E’ before being removed from E. Otherwise, v’s incoming 

edges are removed from E, and v’s outgoing edges are copied to E’ before being removed from E. 

Once this completes, it returns the acyclic subgraph, which is then topologically sorted to return 

the total ordering T. 
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algorithm berger_shor() is 

input: graph G = (V, E) 

output: total ordering T 

 

G' <- G 

scc <- strong_connect(G) 

remove scc edges from G' 

for component in sccs do 

 new_component <- approximate(component) 

 G' <- G' ∪ new_component 

end for 

return topological_sort(G') 

end 

 

algorithm approximate is: 

 input: graph G = (V, E) 

output: acyclic graph G' = (V, E') 

 

G' <- G 

order nodes in G based on preprocessing heuristic 

for each v in V do 

if v.indegree > v.outdegree do 

A <- outgoing edges from v 

remove A from E 

       

B <- incoming edges to v 

G'.E' <- G'.E' ∪ B 

remove B from E     

else do 

A <- incoming edges to v 

remove A from E 

       

B <- outgoing edges from v 

G'.E' <- G'.E' ∪ B 

remove B from E 

end if 

end for 

return G' 

end  

 

3.4.2.3: Runtime Analysis 

 The Berger/Shor New 2-Approximation algorithm completes in greatly reduced time 

compared to the other algorithms implemented during this project. This algorithm visits every node 

within a given graph and determines the indegree and outdegree of that node, both operations 

which take O(1) time each. The smaller of the two sets of edges is discarded from the input graph, 

then the larger of the two sets of edges is copied to the final graph before being discarded from the 

input. Because edges are removed from the input graph in both cases at each iteration of the 
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algorithm, each edge is processed only once in the algorithm, resulting in O(E) for all edge 

computations. Thus, our overall runtime is O(2V) + O(E), or O(V + E) [1]. 

 

3.4.3: Hill Climb 

The third algorithm we implemented for our program was similar to the artificial 

intelligence algorithm Hill Climb. The basis for this algorithm originated from the concept that we 

may not need to remove cycles from the graph to compute a valid approximation. Our focus had 

been on using the total backedge weight metric and minimizing the total backedge weight for a 

ranking, a computation we could conduct quickly. Our Hill Climb implementation began with the 

nodes sorted by decreasing net edge weight, and evaluated swaps of two nodes in the ranking to 

see if the total backedge weight decreased. This process was repeated for all neighboring nodes in 

the ranking, and the ranking with the lowest total backedge weight would be chosen for this process 

to repeat upon again.  

If the algorithm plateaued, where no swaps within a ranking reduced the backedge weight, 

we allowed for a set number of “sideways moves.” A sideways move allowed for an equivalently-

weighted ranking to be selected, even though it was no better, to see if Hill Climb could improve 

its backedge weight. Additionally, we implemented random restarts to this algorithm. Similar to 

its implementation in artificial intelligence, our random restarts began the Hill Climbing process 

again with a randomly-generated ranking if evaluation of a prior ranking had plateaued.  

 

3.4.3.1: Pseudocode 

The following pseudocode describes our Hill Climbing algorithm. This algorithm takes a 

directed graph G as input, with vertex set V and edge set E, and outputs a total ordering T. We 

begin with a permutation of all vertices in V, sorted by decreasing net edge weight. We maintain 

the best permutation found so far and its total backedge weight, and the current permutation to 

make swaps with. After each iteration, the permutation with the lowest total backedge weight is 

utilized as the starting permutation for the next iteration. Once hill climb cannot do any better, it 

conducts random restarts to repeat the process with a randomly-generated permutation as input. 

After all permutations and restarts have been evaluated, the total ordering with the lowest total 

backedge weight is returned. 
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algorithm hill_climb() is 

input: graph G = (V, E) 

output: total ordering T 

 

 best_weight <- weight(G) 

 best_permutation <- {} 

 base_p <- order vertices by decreasing net edge weight 

for v in V do 

 base_p <- swap(v, v+1) if in bounds 

weight <- total_backedge_weight(base_p) 

if weight < best_weight do 

 best_weight <- weight 

   best_permutation <- base_p 

end if 

base_p <- swap(v, v+1) to revert 

 

base_p <- swap(v, v+2) if in bounds 

weight <- total_backedge_weight(base_p) 

if weight < best_weight do 

 best_weight <- weight 

   best_permutation <- base_p 

end if 

base_p <- swap(v, v+2) to revert 

base_p <- best_permutation to repeat the cycle 

end for 

best_permutation = random_restarts(G, best_permutation) 

return best_permutation 

end 

 

3.4.3.2: Runtime Analysis 

With regards to time complexity, our Hill Climb implementation was fairly efficient. In its 

implementation, we conduct v+1 and v+2 swaps for nodes, resulting in 2V swaps considered per 

iteration. Because each swap can be completed in O(1), each iteration of Hill Climb completes in 

O(2V). After each swap, the total backedge weight is evaluated, which completes in O(V2) time. 

The number of iterations performed within Hill Climb varies by ranking, unrelated to the number 

of vertices in the ranking. As discussed in [18], the resulting time complexity for hill climbing 

approaches is limited by the number of iterations completed d, expressed as O(d). Thus, our overall 

time complexity is O(2V3 • d). However, our execution time limit and maximum number of 

iterations constant halts the algorithm far before it reaches a similar runtime to brute force. 

 

3.4.4: Range of Correctness Search 

 The fourth algorithm we implemented was an extension of our Hill Climb approach 

discussed in the previous section. The basis behind this variation was that, unless given an input 

graph with the tournament constraint where every team has played every other team, there exists 

flexibility of the rank for some teams within the ranking generated, which we call the Range of 
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Correctness. The flexibility of rankings is accounted for in our evaluation heuristic for this 

algorithm, which tries to rearrange the nodes in a given ranking based on their net edge weights 

without generating any new backedges. Following hill climbing methodology, this heuristic is 

applied until the total backedge weight of the modified ranking cannot be improved. 

 

3.5: Testing Considerations 

 In order to improve the efficiency of conducting test cases on our algorithms and rankings, 

we saw the need to automate parts of the testing process. We initially designed our program to 

support running multiple trials of our algorithms in succession, but this was restricted to one set of 

sports data, one configuration file, output only via the terminal console, and did not support 

external ranking evaluation. To address these restrictions, we designed a wrapper script that could 

run our program in a batch setup, and implemented file output support within the program. The 

wrapper script needed an input system to determine how to run the main program: which sports 

data to use, which configuration files to apply, and which ranking algorithms to use if generating 

a ranking, or which external ranking files to evaluate with. Based on our design, we proceeded 

with an input system for the script that read in a text file with the different trial instructions, which 

was then forwarded to the main program. Once the trials were completed, the output results could 

be read in by the script and organized as needed. 

 Alongside the rank generation script, we also wanted to explore rank comparison. Rank 

comparison, also known as rank differential, compares the differences in placement of teams 

between two rankings. We planned to use rank comparison testing to explore the differences 

between rankings generated by our program and rankings from external sources. In order to 

condense the comparison of rankings into a single metric, we decided to use the average difference 

in the placements of teams as our heuristic. Though the process of comparing rankings was 

originally completed by hand, we determined that the process was too time consuming for manual 

comparison to be viable for comprehensive rank comparison testing. Therefore, we designed a 

testing module in the program to automate the process. We required that this module execute the 

comparison of rankings, generate the average difference between team placements in the ranking, 

and output into a human-readable format. We could then use this module to explore what factors 

in our rankings produced the most similar rankings to external rankings, giving us insight on what 

factors were most highly considered in external rankings. 

 

3.6: Summary 

This chapter discussed the design decisions we faced during the introductory phase of the 

project and how we addressed them. We introduced our considerations for sports data formatting, 

storage, and representation within the graph data structure. Our algorithms were discussed in 

detail, with our pseudocode and adaptations showing the application of these algorithms to our 

project. We concluded this chapter with an introduction on how we planned to handle test cases 

and automation within our program.  
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Chapter 4: Base Implementation 
 

After careful consideration about how we would design the base functionality of our 

program, we began implementation. This chapter focuses on the transition from the concepts 

discussed in our base design in Chapter 3 to functionality within our program. Each major feature, 

from our graph structure to our algorithms, is discussed in detail alongside justification for any 

design modifications made during implementation.  

  

4.1: General Program Considerations 

 An implementation goal for the program was to maintain compatibility between Windows, 

Mac OS, and Linux operating systems. Individual Makefile recipes were created for each operating 

system configuration, so the user only needed to apply the correct recipe on any compatible 

compiler. In order to achieve this goal, the implementation of the program could not use any 

operating system specific libraries or functions. The only operating system specific functionality 

that was implemented was the use of multithreading using POSIX threads within the brute force 

algorithm, discussed in Section 4.2.1.1. Conditional compilation was used to disable the POSIX 

threads in Makefile recipes for Windows operating systems. The second issue with 

intercompatibility was a discrepancy in the format of program-generated files between Windows 

and Linux. Files generated by the program have operating system specific line endings due to how 

each operating system writes to the filesystem. Any files generated by one operating system could 

not be read by a different operating system if the line endings were different. This issue is most 

notable when exchanging the weight configuration files mentioned in Section 3.3.3. 

 

4.1.1: Minimum Feedback Arc Set Evaluation Process 

 Once the edge weights were configured in the adjacency matrix, the program could refer 

back to the weights in the graph to calculate the total backedge weight. As the main heuristic for 

success in the Minimum Feedback Arc Set problem, the total backedge weight of a given ordering 

needed to be efficiently calculated using the weights stored in the adjacency matrix. Our evaluation 

process takes a ranking and steps through it in two nested loops. The outer loop iterates through 

the ranking itself and processes every node in the ranking. The inner loop examines every node 

that has been visited by the outer loop so far and checks if there has been an instance where a node 

later in the ordering has beaten a node earlier in the ordering, signifying a backedge. After a 

backedge has been detected, it is added to a running sum totaling the backedge weight of a given 

ordering.  

 In addition to the internal evaluation process for total backedge weight, we implemented 

the functionality for our program to generate the total backedge weight for an external ranking. 

External rank evaluation was implemented as a module separate from our rank generation process 

in our program. External rank evaluation allowed us to compare external rankings on the same 

basis as our internal rankings, such as with the total backedge weight metric. 
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4.2: Algorithms 

 This section details the transition of our four algorithms from the theoretical perspective 

described in the base design in Chapter 3 to the technical perspective within our program. The 

specific methodologies behind the implementation of each algorithm are explored, along with any 

challenges we faced and their resolutions, as well as additional functionality added. 

 

4.2.1: Brute Force 

Our initial brute force implementation followed the logic detailed in Section 3.4.1. Brute 

force only utilized the global adjacency matrix as input and output a vector of nodes indicating the 

best ranking found. Inside the function, a vector of nodes representing the first permutation was 

assembled using the number of nodes defined in the matrix. A vector for the best permutation 

found and its total backedge weight were initialized and updated throughout the process. Our brute 

force function utilized the C++ standard library next_permutation() function, which would return 

the next lexicographic permutation of a given input vector if one existed. We used a while loop to 

iterate through all available permutations from next_permuation() and evaluate them, updating our 

reference variables if better orderings were found. Once all permutations had been evaluated, the 

vector with the best ranking was returned. 

Testing our brute force algorithm on sample graphs resulted in several cases where more 

than one ranking had the same total backedge weight, indicating equivalency in correctness 

according to our metric. We expanded upon the brute force algorithm to account for this by 

implementing a variation that maintained and returned all rankings with the same lowest backedge 

weight. This functionality was also extended to create a feature we called “brute force 

authentication,” which was a method hook for other algorithms to pass in their generated rankings 

to and determine whether these rankings were equivalent to what brute force would generate as a 

solution. Adding brute force authentication was crucial in early testing where the correctness of 

other algorithms had not yet been determined. 

 

4.2.1.1: Brute Force Modifications and Optimizations 

During the implementation of brute force, we made modifications and optimizations to our 

evaluation heuristics in the interest of reducing computation time to make using the brute force 

algorithm more feasible. The first optimization we considered was multithreading support. 

Because brute force was evaluating all permutations of rankings for a graph, there was no need for 

a specific order of evaluation. Thus, the evaluation task could be split into separate threads and 

evaluated separately as the processor allowed. To divide the task, each thread would generate 

permutations as if the highest-ranked node, or head node, had been removed. The permutation was 

evaluated as if the head node was still in place, where each thread would have a list of nodes to 

use as the head. For example, using two threads and the nodes A, B, C, and D, Thread 0 would 

evaluate all permutations where A and C were the head, while Thread 1 would evaluate where B 

and D were the head. This optimization decreased computation time by a linear factor of the 
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number of threads; sufficient for running on slightly larger graphs than before, but not 

computationally feasible for full-sized sports season graphs.  

The second optimization implemented for brute force was a strongly connected 

components preprocessor. Using a strongly connected components preprocessor allowed us to 

discard certain permutations; for example, if node A was the only node that had an edge to node 

B, then any nodes with an edge to node A should be ranked higher than any edges that node B 

points to. However, this optimization would only improve performance in cases where the graph 

contained more than one strongly connected component. This strongly connected components 

optimization decreased runtime by reducing the number of nodes considered in the original O(V!) 

runtime within brute force. Runtime then became the summation of O(V’!) for the set V’ of nodes 

in each component. However, runtime would increase by O(2V+E) due to the computation of the 

strongly connected components within the graph. 

 

4.2.2: Berger/Shor New 2-Approximation and Preprocessors 

As mentioned in Section 3.4.2, we implemented and modified the Berger/Shor New 2-

Approximation algorithm to generate rankings. We followed the general program logic outlined 

in [1] to develop our base implementation. To begin, the algorithm required input of the adjacency 

matrix representing the input directed graph. This matrix was this copied into an equivalent 

adjacency matrix because this algorithm mutates the graph by nature, and we wanted to preserve 

the original graph if other algorithm runs needed to be performed afterwards. Once the matrix was 

duplicated, a second matrix named “a_hat” was initialized to the number of nodes in the graph, as 

this would hold the approximated output matrix. The duplicated matrix was then iterated on by 

column, representing the winner, where the indegree and outdegree for that node were summed 

and compared. The larger of the two values resulted in copying their adjacency matrix wins or 

losses to a_hat before zeroing out all edges connected to that node from the duplicates matrix. This 

process was repeated until all nodes had been processed, such that the duplicated matrix was 

emptied and a_hat contained the approximated adjacency matrix, which was then returned. 

Due to the edge-removing nature of the Berger/Shor New 2-Approximation algorithm to 

break cycles, it removed edges that were not involved in any cycles, resulting in a sparser graph 

and worse rankings. These rankings were still correct approximations to the Maximum Acyclic 

Subgraph problem, but we saw the need to address this issue in the interest of potentially improving 

our approximations. As discussed in Section 3.4.2, we decided to use a strongly connected 

components preprocessor to address this, so we implemented Tarjan’s Strongly Connected 

Components algorithm. Tarjan’s algorithm is based upon Depth First Search and utilizes a stack 

to maintain when each node in the graph is first visited and when each is found again by edges 

from other nodes. Our implementation of this preprocessor has a time complexity of O(2V+E), as 

it visits every edge once to go to every node once when processing cycles, and iterates through all 

nodes again to place them in component form [26].  

Our implementation of the strongly connected components preprocessor returned a vector 

of strongly connected components for the input graph, where each component was represented as 
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a vector of the nodes it contained. Each component was used to construct a new adjacency matrix 

with these nodes and the edges between them to simulate a subgraph. The starting adjacency matrix 

for each component was subtracted out from the output adjacency matrix and passed into the 

Berger/Shor algorithm to be approximated, after which the approximation matrix was added back 

into the output adjacency matrix. By implementing the strongly connected components algorithm, 

we only applied the Berger/Shor approximation algorithm on collections of nodes that contained 

cycles, allowing edges outside of cycles to remain in the graph and improving the results of the 

algorithm with minimal overhead. 

Additionally, we investigated preprocessing the ordering in which nodes were evaluated 

for edge removal in the Berger/Shor algorithm. We implemented this preprocessor to be applied 

to each strongly connected component before being processed by the Berger/Shor algorithm. The 

algorithm selection for Berger/Shor within the program was split to allow for an integer flag to 

indicate which preprocessor ordering to evaluate with. In addition to offering the user no 

preprocessing, several sorting options were added to the preprocessor: number of outgoing edges 

descending, number of outgoing edges ascending, ratio of outgoing to incoming edges descending, 

outgoing edge weight descending, and randomized. Within each option, a vector is maintained to 

indicate the ordering of nodes to be evaluated, which is modified depending on the option selected. 

 

4.2.3: Hill Climb 

Given the variance in hill climb’s execution time, we implemented our Hill Climbing 

algorithm to be configurable in its minimum and maximum runtime. We accomplished this 

flexibility by allowing the number of random restarts and sideways moves to be configurable, 

where the minimum and maximum number of rankings evaluated could be hard-coded, so that 

evaluation time could be capped if needed. As discussed in Section 3.4.3, we decided to expand 

the evaluation portion to contain the n+2 neighboring node in order to potentially improve search 

results. We found that the runtime was low enough that examining the n+2 neighboring nodes 

would not increase computation time greatly, but would allow for consideration of additional 

swaps that could result in better rankings. 

The basic implementation of the Hill Climbing algorithm for the Minimum Feedback Arc 

Set in our program followed the original design outlined in Section 3.4.3. The algorithm first 

created a preordering of teams based upon their net edge weights in the input graph. Then, a series 

of temporary swaps were performed upon this preordering, and the resulting ranking with the best 

swap with the lowest total backedge weight was saved. This continued until no further 

improvement in total backedge weight is seen. Sideways moves, as outlined in Section 3.4.3, were 

implemented with an easily configurable preprocessor-defined variable. If the best swap in one 

round of Hill Climbing resulted in an equivalent score, a sideways move would be expended. This 

process would continue until a better solution is found or until there are no more allowable 

sideways moves. As mentioned in Section 3.4.3, sideways moves were implemented to reduce the 

probability of getting stuck in a “plateau.” The total amount of available sideways moves was set 
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to 500 because they were seen to be relatively inexpensive in their total added computation time 

after some testing. 

Beyond the implementation of sideways moves, we also implemented random restarts. As 

outlined in Section 3.4.3, once Hill Climbing completes evaluation of the initial preordering, the 

program will generate multiple randomized preorderings that the Hill Climbing algorithm will 

process in the hopes that one of the resulting permutations will result in a reduced total backedge 

weight. After the implementation of the random restarts was completed, we noticed that it 

substantially increased the computation time of the Hill Climbing process as expected. One 

iteration of Hill Climbing was relatively quick to complete on a set of 130 teams or less, as shown 

in the base results in Section 5.2.3. The time for execution of one iteration of Hill Climbing also 

grew with the number of nodes in a permutation because of the increased number of swaps 

necessary to complete per iteration. Due to the large variance in the execution time for Hill 

Climbing, dependent on the number of teams in the dataset, we decided that there was not a “one 

size fits all” number of restarts that should be allowed.  

In order to manage the variable time requirement for Hill Climbing depending on the 

number of restarts, we implemented a hybrid system of timing and hardcoded values. The new 

system for restarts in Hill Climbing used a hardcoded lower bound and upper bound for the number 

of restarts. For our testing, we set the lower bound for the number of restarts to 20 and the upper 

bound to 300. We reasoned that an adequate minimum amount of restarts was 20 because the 

difference in time required between 1 and 20 restarts did not seem significant enough to sacrifice 

the potential for a better random preordering. We also determined that any more than 300 restarts 

was unnecessary for the amount of time that would be required. Therefore, the Hill Climbing 

process would always run with at least 20 random restarts and at most 300 random restarts. For 

the restarts occurring in between these bounds, we implemented a configurable timing system that 

would check how long the Hill Climbing process had been executing and would determine if 

another random restart was allowed, where the execution time was measured from the start of the 

first preordering Hill Climbing evaluates. For example, before allowing restart number 21, the 

system would first check if the hill climb process had exceeded its configurable maximum amount 

of execution time before proceeding. If Hill Climbing had exceeded its allotted time after restart 

number 100, the system would stop computing random restarts. If the system reached the upper 

bound of 300 random restarts without surpassing the configured maximum amount of execution 

time, the system would still terminate Hill Climbing because the upper bound had been reached.  

The maximum execution time could also be configured to the needs of the user with the command 

line argument “--hctime”, which allowed testing using the Hill Climbing algorithm to be 

configured to the needs of the tester. 

The final improvement made in the implementation of Hill Climbing was to extend the 

number of nodes checked in each swap to also check the n+2 neighbor as well as the n+1 neighbor. 

Essentially, each node would not only check a swap with its nearest neighbor but would also check 

the swap with the neighbor 2 positions away.  
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Figure 6: Initial Hill Climb implementation with N+1 neighbor comparison 

 

 
Figure 7: Revised Hill Climb implementation with N+1 and N+2 comparisons 

 

This process is shown in Figures 6 and 7 above. Note that the arrows on the top of the nodes 

delineate the position n+2 swaps and the arrows below the nodes delineate the position n+1 swaps. 

As shown in Figure 7, this process results in (n-1) • (n-2) swaps compared to (n-1) swaps as 

originally implemented. We decided that the decrease in runtime performance was worth the 

possibility of finding a better permutation by exploring more swaps.  

 

4.3: Data Collection Script 

 To gather relevant sports data, several scripts were written in Node.js utilizing the jsdom 

package from npm. The main collection script can gather and process NBA, NFL, NHL, MLB, 

and college football data from sports-reference.com. The data were mostly formatted inside similar 

HTML tables which allowed for similar processing. The data pages were pulled through simple 

HTTP GET requests and used jsdom so that the data tables could be easily found and processed 

row by row. Each row contained information about a single game, with some varying columns, 

and was stored inside its own object. The list of game objects could then be written out in our input 

file format as well as in JSON. JSON output allowed data to be easy reprocessed, whether to 

remove games we did not want or for conversion into a different format, without the need to pull 

information from the page again. 

 The script featured various options, including: cumulative output into one file, the ability 

to include only games through a given week and date in the season, our output format, and JSON 
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output. The cumulative output option was necessary to combine months of NBA data due to the 

way sports-reference.com formatted the data. The options to include games through a week or date 

were specific to each sport. NFL and college football games are organized by week, but MLB, 

NBA and NHL games are only identified by date. Another script was also written to prune college 

football games involving at least one team with less than some number of games in the season 

dataset. Since Division I teams did not always exclusively play Division I teams, teams that were 

not relevant to our ranking inflated node counts of our college football datasets from 128 to 216. 

 

Table 1: Sports Data and Rankings Collected For Each League 

League Data collected Rankings collected 

College football 2015-17 2015-17 

MLB 2011-15, 2017 2011-15 

NBA 2016-18 - 

NFL 2012-18 2012-18 

NHL 2013-18 2013-17 

 

4.4: Bash Testing Script 

With all of the aforementioned features implemented over the course of this project, we 

had many opportunities to test our data and algorithms to draw conclusions. All of this testing, 

however, led to increased burden with conducting test cases. All trials with our program had to be 

entered via the command line with an additional input layer to choose the algorithm for processing. 

Given the inefficiencies of running test cases from the command line, we saw the need to develop 

a script to automate portions of testing. As mentioned in Section 3.5, we turned towards a wrapper 

script to aid in testing. We chose to write this script in Bash because it needed to launch our main 

program, but we did not want to have to manage process forking and permissions, especially with 

the differences in process handling between Linux and Windows. This decision sacrificed some 

performance for the ease of development and portability. 

At first, the Bash script was implemented to take a file with a predefined set of arguments 

as input and forward these inputs to individual launches of the program. This first implementation 

was a large improvement as trials could be saved and repeated easily with the input file format, 

removing the need to utilize the command line to run the program in batch. One drawback to this 

script was that all program trials were only output to the console, so it was harder to analyze output 

logs, especially with limited console window space. An additional drawback was that the most 

frequent command line arguments and options were hard-coded into the Bash script; although this 

provided some simplicity with inputting the trial information into the input file, it required 

additional updates anytime a feature or argument was added or changed in the program. 
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To address the first drawback, the program received file logging support so that testers 

would no longer need to look for data in the console after running test cases. Further enhancing 

this feature, we extended the Bash script to read in log files that were generated during the trials 

which allowed us to easily manipulate and view data from the test cases. The script output this 

data to CSV files, where different rankings, total backedge weights, computation times, and 

comparisons of pre- and post-processors could be compared side-by-side with ease. To address the 

second drawback of command line limitations, the Bash script input format was modified to take 

the program arguments verbatim, with the algorithm choice separate. This greatly increased the 

flexibility of the script, as no changes were necessary internally if any new functionality was added 

to the program, as these new arguments could be placed into the input file and run immediately.  

 

4.5: Rank Comparison Testing Module 

 The rank comparison testing module was designed to facilitate the comparison of rankings 

in an automated module. This module was built as an add-on to the rank generation process of the 

program and could be used without generating any rankings at all. The implementation for the 

rank comparison module was separated into two parts. The first part of the rank comparison testing 

module compared the two rankings and calculated the average difference in placements, and then 

generated the output of the comparison process. The second part of the rank comparison script 

module automated the generation of comparisons to test the ability for the rankings generated by 

our algorithms under different edge weight configurations to match an external ranking. The rank 

generation process was separated in this way to service the needs of testing specific rankings while 

also automating the large tests of multiple configurations. 

 

4.5.1: Generating Rank Comparisons 

 The first part of the rank comparison testing module, designed to generate and output 

comparisons, was implemented to compare two ranking files. We reasoned that a rank comparison 

is ultimately a calculation on the different positions of teams in two separate rankings. For the 

purposes of calculating the comparison, we defined these two rankings as the control ranking and 

the test ranking. This process measured the positions of teams in the test ranking compared to their 

positions in the control ranking. The difference in position for each team was calculated and used 

to determine the overall average difference in position for the ranking. This average difference in 

position could then be utilized as the heuristic to determine how similar one ranking was to another, 

where a lower average difference would signify greater similarity in the rankings.  

To complete the rank comparison calculation, the rank comparison testing module first 

imported the control ranking. The required format for the control ranking was implemented as a 

list of the teams in their ranked order. The list format was used because it corresponded with the 

format of our external rankings and the format of rankings generated by our program. During the 

import for the control ordering, the size of the ranking was captured and used as the size for which 

to hold all test rankings to. We reasoned that it did not make sense to compare rankings that were 
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not the same size. This value was also useful for allocating the appropriate amount of memory to 

contain the one or more test orderings.  

 After importing the control ranking, the rank comparison testing module imported the test 

ranking. The test ranking input could be one of two types. The first type of input was a list input 

which, for the same reasons as using a list input for control ranking, allowed a flexible input of 

any external ranking. The second input type for a control ordering was a program-generated results 

file. Results files were already in use by the program and the automated test script described in 

Section 4.4. Importing these results files allowed us to quickly generate multiple rankings with 

different configurations and use the generated rankings in rank comparisons. Furthermore, a results 

file allowed us to import more than one ranking as test rankings for the rank comparison testing 

module. Since an arbitrary number of rankings could be recorded on a results file, we simply parsed 

through each of the rankings on the results file and imported them for testing. This process required 

the implementation of a small preprocessor to count the number of rankings on the results file to 

allocate the appropriate amount of memory for the test rankings. Regardless of the input type of 

the test ranking file, the differences in ordering between the control ranking and each test ranking 

was then computed. The computation process for a rank comparison involved iterating through 

each team in the control ordering and finding the corresponding position in the test ordering. Using 

the two positions, the difference in position was calculated, and ultimately all values in the set of 

differences in position were averaged together to result in the final heuristic for a rank comparison. 

If a results file was used, the average difference in rank position was computed in this fashion for 

all test rankings.  

 We implemented the automatic output of the results of a rank comparison into a CSV file 

for easy viewing. An example output of the automated process is listed Table 2. 
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Table 2: Sample Rank Comparison Output 

Rank 2017nfl_usatoday_top10.txt sample_ordering.txt Net Difference 

1 New_England_Patriots New_England_Patriots 0 

2 Pittsburgh_Steelers Pittsburgh_Steelers 0 

3 Minnesota_Vikings Minnesota_Vikings 0 

4 Los_Angeles_Rams Los_Angeles_Rams 0 

5 New_Orleans_Saints New_Orleans_Saints 0 

6 Kansas_City_Chiefs Jacksonville_Jaguars 1 

7 Carolina_Panthers Kansas_City_Chiefs 3 

8 Jacksonville_Jaguars Atlanta_Falcons 2 

9 Atlanta_Falcons Los_Angeles_Chargers 1 

10 Los_Angeles_Chargers Carolina_Panthers 1 

   Avg: 0.8 

 Score: 1.5625  Score: 2.42188 

Minimum Average 

Diff: 0.8 in: sample_ordering.txt   

Control Score: 

1.5625 Min Avg Diff Test's Score: 2.42188   

Using Quartile 

Evaluation: True    

 

As shown in the output in Table 2, the rank comparison testing put the sample orderings into a 

table and displayed the differences in the rankings. The total backedge weight, listed as “score” 

above, was also displayed, allowing for an easy comparison between the relative strengths of each 

ordering. The edge weights in this test case were normalized, leading to the non-integer values of 

the total backedge weight. The rank comparison output was also implemented to display which 

test ordering had the smallest average difference in ordering. This was helpful in situations where 

there were multiple test rankings being compared. 

Though this approach to rank comparison testing was adequate for comparing most 

rankings, it was not suitable for truncated rankings. Truncated rankings, explained further in 

Chapter 7, are rankings only contain the top-25, top-10, or top-n teams out of a superset of teams. 

In order to handle truncated rankings, we adopted the notion of an “N+1” node in each truncated 

ranking that would act as a placeholder for the rest of the teams outside the top-n superset. In cases 

where a team in a test ranking was not also in the corresponding control ranking, we assumed that 

the placement of the team in the control ranking was in the N+1 position in the control ranking. 

For example, in two top-10 rankings, if Team A placed in 9th place in the test ranking but was not 

present in the control ranking, the testing system would consider Team A’s place in the control 

ranking to be at the 10+1 position in the control ranking, rank 11. Therefore, the difference in rank 

for Team A between both rankings would be 2.  
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4.5.2: Automated Rank Comparison Testing 

 The second part of the rank comparison testing module dealt with the automation of our 

rank comparison testing. Using the first part of the rank comparison testing module, we could 

efficiently calculate and output the comparison of team positions in rankings. In order to utilize 

rank comparisons to determine what configurations of our ranking algorithms led to similar 

rankings, we needed to run a large quantity of tests. We wanted to test different configurations of 

our edge weight factors in rank generation, which are further explained in Section 6.1.4. The total 

number of rank comparisons required extensive time when manually exporting each output 

ranking and rerunning the program to generate the rank comparison. It was clear that automation 

was necessary in order to cover the breadth of rank comparisons we required, so we needed to 

consider to what degree we should devote resources into automating the rank comparison process. 

 We considered computing all of the rankings and comparisons internally in its own module. 

This solution would have led to the cleanest implementation and most customizable output. The 

first of two drawbacks to this idea was that it would require new versions of every ranking 

algorithm so that they could return the ranking to the system rather than display the ranking and 

exit. The second issue was that the time required to implement this approach to automation would 

not have been worth the benefits of this feature. 

We decided to implement the automation for the rank comparison testing in a way that 

utilized as much of the existing functionality in the program as possible. We recalled that the 

existing rank comparison computation and output could already handle an arbitrary number of 

rank comparisons, as long as the test orderings were consolidated in a results file. We concluded 

that we could automate the testing by automating the generation of one large results file with all 

of the testing rankings present and use the existing rank comparison functionality to accomplish 

this task. 

The ranking algorithms were already programmed to output to results files and the existing 

rank comparison system could handle these results files. We simply needed to automate the 

generation of a results file with the correct orderings to be used in the rank comparison. At the 

time of implementation, we already had the functionality to reset edge weight configurations for 

the rank generation at runtime. We designed the process of creating ranking data to utilize a loop 

to iterate through the different configurations and trigger the running of the chosen ranking 

algorithms. As the different rankings were generated, the results would be recorded in the growing 

results file. Once each edge weight configuration had been tested, a rank comparison between a 

specified control file and the algorithm ranking results in the results file was automatically 

initiated, creating a full rank comparison output for the rankings generated with the different 

configurations. This satisfied our need for automated testing of rank comparisons.  

 

4.6: Summary 

 In this chapter, we discussed all of the features and functionality created during the base 

implementation of this project. We began by explaining decisions made at the program level 

regarding changes or complications during implementation. We discussed the implementation of 
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our algorithms and the optimizations utilized. Then, we introduced how our data collection script 

and bash testing script were implemented, and how we added functionality for rank comparison 

testing to the main program.  
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Chapter 5: Base Results 
 

 Upon implementing the base functionality of our graph structure, ranking algorithms, and 

edge weight algorithms, we ran test cases on our algorithms to better understand how they perform. 

This chapter demonstrates two types of test cases: correctness testing, which is concerned with 

minimizing the total backedge weight within rankings; and performance testing, which is 

concerned with minimizing the runtime of our algorithms. All total backedge weight values have 

been normalized to the total weight of the graph, and are displayed and analyzed as such. We test 

the changes in performance and correctness with our optimizations to our algorithms on sample 

graphs and on a sports dataset, and include and discuss the results for each trial. 

 

5.1: Correctness Testing 

 In order to generate accurate rankings with our full sports data sets, we first needed to 

conduct test cases on smaller sample graphs to determine the correctness of our algorithms in 

certain scenarios. We generated several small sample graphs so that our brute force 

implementation could complete in reasonable time and serve as a baseline for the correctness of 

our Berger/Shor and Hill Climb approximation algorithms. Correctness testing our approximation 

algorithms on small graphs would allow us to anticipate how well they would perform on larger 

graphs that would not be computationally feasible for brute force. 

 In this chapter, we refer to several sample graphs that we generated for testing, which are 

listed in Table 3 alongside their properties such as number of nodes, number of edges, whether or 

not they are weighted or cyclic, and how many strongly connected components they contain. 

 

Table 3: Sample Graphs Used For Base Results Testing 

Graph name Nodes Edges Weighted? Cyclic? SCCs 

Input 4 4 No No 4 

Input3 6 6 No Yes 4 

Input_test3 3 5 No Yes 1 

Input_hard 10 18 Yes Yes 3 

9nodes 9 15 Yes Yes 1 

10nodes 10 13 Yes Yes 7 

11nodes 11 18 Yes Yes 6 
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5.1.1: Brute Force 

 Running our brute force algorithm on several of our sample graphs allowed us to determine 

the rankings with the lowest total backedge weight for each graph, an important point of reference 

when testing our other algorithms. The first two tests we ran were to analyze the ranking 

correctness and runtime performance of weighted and unweighted graphs as a starting point for 

our brute force implementation with no optimizations. Input, Input3, and Input_test3 were used as 

the unweighted test graphs in these tests, and 9nodes, 10nodes, 11nodes, and input_hard were used 

as the weighted test graphs. The total backedge weights for the best rankings for each graph are 

shown in Table 4. 

 

Table 4: Brute Force Weighted and Unweighted Correctness 

 Backedge Weight / Graph Weight Runtime 

Input_test3 2 / 5  (40%) 0s 56µs 

Input 0 / 4  (0%) 0s 227µs 

Input3  1 / 6  (16.66%) 0s 1376µs 

9nodes 6 / 86  (6.976%) 0s 895467µs 

10nodes  4 / 78  (5.128%) 9s 602567µs 

Input_hard  5 / 31  (16.12%) 9s 514241µs 

11nodes  8 / 96  (8.333%) 113s 726752µs 

 

The runtime for these tests show that our brute force approach was almost instantaneous 

for graphs with fewer than nine nodes and set the benchmark for any optimizations we added, but 

that the runtime increases greatly when graphs with more nodes were introduced. Because our 

brute force approach guaranteed correctness in its rankings for all input graphs, the only 

optimizations we could make improved the runtime of brute force. 

 The second set of tests we conducted were to determine how significantly our strongly 

connected components preprocessor reduced runtime for brute force. We expected that this 

preprocessor would greatly reduce runtime in cases where several strongly connected components 

were present in the input graph, but would slightly increase runtime if only one strongly connected 

component existed due to the additional runtime to determine the strongly connected components. 

 

 

 

 



40 

Table 5: Brute Force Comparison With and Without Strongly Connected Components (SCCs) 

 Without SCC With SCC 

9nodes 

Backedge Weight 

Total Runtime 

6 / 86  (6.976%) 6 / 86  (6.976%) 

0s 895467µs 0s 68951µs 

10nodes 

Backedge Weight 

Total Runtime 

4 / 78  (5.128%) 4 / 78  (5.128%) 

9s 602567µs 0s 289µs 

Input_hard 

Backedge Weight 

Total Runtime 

5 / 31  (16.12%) 5 / 31  (16.12%) 

9s 514241µs 0s 15443µs 

11nodes 

Backedge Weight 

Total Runtime 

8 / 96  (8.333%) 8 / 96  (8.333%) 

113s 726752µs 0s 536µs 

 

The tests in Table 5 indicate that the strongly connected components preprocessor substantially 

reduces brute force runtime in graphs with several strongly connected components, with 

performance gains by a factor of over one million in the case of 11nodes. This optimization 

demonstrates that larger graphs, which would have been computationally infeasible before, can 

now be processed in reasonable time if they contain several strongly connected components. 

However, this places dependence on the strongly connected components of the input graph, rather 

than just on the number of nodes. For example, because Input_hard only had three strongly 

connected components compared to 10nodes with seven, Input_hard’s runtime could not be 

reduced as substantially. 

The third set of tests we conducted applied our multithreading optimization to the strongly 

connected components variation of our brute force algorithm. We conducted these tests on the 

same four graphs as above, where each graph was evaluated with one thread, two threads, and four 

threads. 
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Table 6: Brute Force Threading Evaluation Times 

 1 Thread 2 Threads 4 Threads 

9nodes 

Backedge Weight 

Total Runtime 

6 / 86  (6.976%) 6 / 86  (6.976%) 6 / 86  (6.976%) 

0s 58284µs 0s 37683µs 0s 23136µs 

10nodes 

Backedge Weight 

Total Runtime 

4 / 78  (5.128%) 4 / 78  (5.128%) 4 / 78  (5.128%) 

0s 853µs 0s 840µs 0s 1014µs 

Input_hard 

Backedge Weight 

Total Runtime 

5 / 31  (16.12%) 5 / 31  (16.12%) 5 / 31  (16.12%) 

0s 8289µs 0s 4415µs 0s 4202µs 

11nodes 

Backedge Weight 

Total Runtime 

8 / 96  (8.333%) 8 / 96  (8.333%) 8 / 96  (8.333%) 

0s 1056µs 0s 1101µs 0s 1096µs 

 

Our tests with multithreading were not completely as expected: we suspected that there would 

always be a linear decrease in runtime if more threads were applied, provided that the CPU could 

support them. While 9nodes and Input_hard both saw noticeable improvements in runtime from 

one thread to two, 10nodes and 11nodes both saw negligible changes. Further, only 9nodes had 

legitimate improvement when running with four threads compared to two. We suspect that this is 

because the runtimes for the other graphs were already optimized substantially from the strongly 

connected components processor, where the benefit of having additional threads for evaluation 

was almost negated by the overhead for each thread. However, we believe that multithreading is a 

substantial improvement, especially for input graphs with only one strongly connected component, 

which still have room for optimization.  

 

5.1.2: Berger/Shor New 2-Approximation Algorithm 

 Using our brute force results as baselines, we conducted tests on our Berger/Shor 

approximation algorithm implementation. Because this algorithm is an approximation, we were 

expecting performance gains compared to brute force at the expense of correctness. The first set 

of tests we conducted compared our initial implementation of the Berger/Shor algorithm to our 

variation with Tarjan’s Strongly Connected Components preprocessor. Our expectation was that 

this preprocessor would not have any benefit where the graph has one strongly connected 

component, but that it could increase correctness when several components are present. We 
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conducted tests on the following four sample graphs: input_test3 and input, both unweighted; 

input_hard and 9nodes, both weighted.  

 

Table 7: Berger/Shor Strongly Connected Components Comparison Results 

 Backedge Weight / Graph Weight 

(Without SCCs) 

Backedge Weight / Graph Weight 

(With SCCs) 

Input_test3 2 / 5  (40%) 2 / 5  (40%) 

Input 0 / 4  (0%) 0 / 4 (0%) 

Input_hard 12 / 31  (38.70%) 12 / 31  (38.70%) 

9nodes 12 / 86  (13.95%) 12 / 86  (13.95%) 

 

In terms of correctness, the baseline Berger/Shor algorithm performed well on Input_test3 and 

Input, each generating a ranking equivalent in total backedge weight to brute force. However, 

performance on Input_hard and 9nodes was not as good, where Berger/Shor received 38.70% and 

13.95% compared to brute force’s 16.12% and and 6.97% respectively. We suspect that this is 

because our baseline Berger/Shor implementation was designed for unweighted graphs and only 

considered number of edges rather than edge weights. 

The results in Table 7 indicate no improvement in total backedge weight for rankings 

generated with the strongly connected components preprocessor on our sample graphs. In each test 

case, the rankings produced were identical. We expect that maintaining the edges between the 

strongly connected components within our sample graphs may not have been significant enough 

to impact the output ranking to maintain more edges and develop a ranking with lower backedge 

weight. However, we suspect that on larger graphs with more strongly connected components, 

improvements would be noticeable. 

 The second set of tests we conducted with our Berger/Shor algorithm was with our node-

sorting preprocessor. We implemented several sorting arrangements for this algorithm: number of 

outgoing edges descending, number of outgoing edges ascending, ratio of outgoing to incoming 

edges descending, outgoing edge weight descending, and randomized. We expected that the 

sorting process would add minimal overhead to the Berger/Shor algorithm and potentially improve 

the correctness of the resulting rankings. Our tests showing the total backedge weight using our 

two sample graphs, input_hard and 9nodes, are shown in Table 8. 
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Table 8: Berger/Shor Node Sorting Preprocessor Results 

 Input_hard 9nodes 

Y1 (descending number of 

outgoing edges) 

10 / 31 (32.25%) 8 / 86 (9.30%) 

Y2 (ascending number of 

outgoing edges) 

8 / 31 (25.80%) 12 / 86 (13.95%) 

Y3 (descending win-loss 

ratio) 

11 / 31 (35.48%) 8 / 86 (9.30%) 

Y4 (descending outgoing 

edge weight) 
6 / 31 (19.35%) 8 / 86 (9.30%) 

Y5 (no sorting) 12 / 31 (38.70%) 12 / 86 (13.95%) 

Y6 (randomized) 7 / 31 (22.58%) 6 / 86 (6.97%) 

 

In both sample graphs, the node sorting preprocessor shows improvements of the total backedge 

weight for the ranking generated, depending on which sorting methodology was selected. In both 

cases, no sorting (Y5) resulted in rankings that were tied for or had the highest total backedge 

weight. Sorting by outgoing edge weight (Y4), or weight of all wins by each team, yielded 

consistently positive results. Additionally, randomized sorting (Y6) yielded good results, though 

we are skeptical of consistently good rankings in repeated tests. As expected, sorting by number 

of outgoing edges (Y1 and Y2) did not yield good results because these tests were conducted on 

weighted graphs, and these cases do not consider edge weight when sorting the nodes. 

To apply the node sorting preprocessor to practice, we conducted test cases on our 2016-

17 NFL dataset. Each test had the strongly connected components preprocessor enabled and 

utilized node sorting methodologies Y1-Y6, similar to the above tests. Only the top-10 teams in 

each ranking are displayed, but the total backedge weight is representative of the full ranking. 
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Table 9: Berger/Shor Results on 2016-17 NFL Data 

Y1 Y2 Y3 Y4 Y5 Y6 

Patriots Cardinals Patriots Patriots Redskins Steelers 

Cowboys Buccaneers Cowboys Steelers Steelers Cowboys 

Steelers Falcons Steelers Cowboys Patriots Redskins 

Giants Texans Seahawks Falcons Colts Giants 

Seahawks Titans Falcons Cardinals Cowboys Broncos 

Dolphins Dolphins Cardinals Seahawks Giants Colts 

Raiders Steelers Chiefs Chiefs Dolphins Titans 

Chiefs Chiefs Raiders Bills Seahawks Packers 

Falcons Raiders Packers Packers Raiders Buccaneers 

Cardinals Packers Giants Eagles Titans Texans 

647 / 2623 

(24.66%) 

714 / 2623 

(27.22%) 
521 / 2623 

(19.86%) 

594 / 2623 

(22.64%) 

758 / 2623 

(28.89%) 

747 / 2623 

(28.47%) 

 

These results demonstrate significant change in rankings generated with and without the node 

sorting preprocessor. Our base implementation with no sorting (Y5) generated a ranking with more 

than 10% additional backedge weight compared to our best sorted ranking (Y3). Our unweighted 

edge weight preprocessors (Y1 and Y2) performed well without considering edge weights, but our 

net weight sorting (Y4) produced the second best results.  

 

5.1.3: Hill Climb 

 We performed correctness testing on our Hill Climbing algorithm to understand how it 

performed in general and to determine if there were any cases where it performed better or worse 

overall. In the first set of tests, we wanted to compare the correctness and execution time on two 

graphs using our initial n+1 comparison approach and our revised n+2 comparison approach. The 

two graphs we used for these tests were Input3 and Input_test3, and we have included the results 

in Table 10. 
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Table 10: Hill Climb N+1 vs N+2 Correctness 

 Input_test3 Input3 

N+1 Comparisons Only 

Backedge Weight 

Total Runtime 

2 / 5  (40%) 1 / 6  (16.66%) 

0s 57µs 0s 225µs 

N+1 and N+2 Comparisons 

Backedge Weight  

Total Runtime 

2 / 5  (40%) 1 / 6  (16.66%) 

0s 194µs 0s 243µs 

 

In terms of correctness, our baseline Hill Climbing algorithm generated rankings with the same 

total backedge weight as brute force. However, these tests do not show any difference between 

ranking produced and its total backedge weight when using n+1 comparisons versus n+1 and n+2 

comparisons. We suspect that this is due to the small size of the sample graphs tested and expect 

better results in graphs with more nodes and a higher likelihood of plateauing. In the case of 

runtime, a small increase appeared with n+2 comparisons, however we suspect that this change 

will not make hill climb computationally infeasible with our larger sports season graphs. 

The second set of correctness tests we conducted on our Hill Climbing approach tested our 

random restart functionality. For these tests, we limited each trial to 300 random restarts and 

utilized the n+2 comparison functionality tested above. The results of our tests are shown in Table 

11. 

 

Table 11: Hill Climb Random Restart Correctness 

 Input_hard 9nodes 

No Random Restarts 

Backedge Weight  

Total Runtime 

6 / 31  (19.35%) 10 / 86  (11.62%) 

0s 708µs 0s 432µs 

Random Restarts 

Backedge Weight 

Total Runtime 

5 / 31  (16.12%) 6 / 86  (6.97%) 

0s 57467µs 0s 47070µs 

 

These tests demonstrate that random restarting offers an improvement in correctness when dealing 

with our sample graphs, indicating that even on small graphs, plateauing is possible and can hinder 

the correctness of hill climb. We expect that random restarts can greatly improve the correctness 

with sports season graphs, where more nodes and edges increase the likelihood for more local 
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minima. However, random restarts did increase computation time for Hill Climb substantially, 

even for our sample graphs. We suspect that 300 random restarts may be too many for larger graphs 

where each restart is likely to take longer, but that implementing a smaller number of restarts can 

still improve correctness without significantly compromising runtime. 

The final modification made to Hill Climb was the implementation of “sideways moves.” 

This modification was made to combat plateauing when searching for a solution by allowing hill 

climb to consider equally-weighted rankings for the next iteration if no improvements in rankings 

occurred during the current iteration. The following tests on sample graphs utilize n+2 

comparisons and allow for 300 random restarts. In the cases where sideways moves are enabled, 

500 sideways moves are allowed before Hill Climbing completes. 

 

Table 12: Hill Climb Sideways Moves Correctness 

 Input_hard 9nodes 

No Sideways Moves 

Backedge Weight 

Total Runtime 

5 / 31  (16.12%) 6 / 86  (6.97%) 

0s 57467µs 0s 47070µs 

500 Sideways Moves 

Backedge Weight  

Total Runtime 

5 / 31  (16.12%) 6 / 86  (6.97%) 

5s 513326µs 4s 495037µs 

  

In the above test cases, sideways moves appear to make no improvement towards the total 

backedge weight of the rankings generated. We hypothesize that this is because the local minima 

of our sample graphs are well-defined and are not close to other local minima. In practice, this 

means that permutations that result in total backedge weights that are close to a local minima are 

not similar to permutations that result in backedge weights close to other local minima. The 

addition of sideways moves also reduces the performance of Hill Climb substantially, as each 

permutation utilized is allowed 500 moves within 300 random restarts. We suspect that this may 

result in a significant increase in runtime if evaluating larger graphs, where the additional time of 

random restarts and sideways moves is magnified by the base computation time for each 

permutation. 

 Finally, to demonstrate the improvements of our Hill Climbing algorithm in practice, we 

conducted a comparison test on our 2016-17 regular-season NFL data set. These tests depict the 

differences between our initial Hill Climb approach with no modifications and our finalized Hill 

Climb approach with n+2 comparisons, 300 random restarts, and 500 sideways moves. Only the 

top-10 teams are displayed below, but the total backedge weights for each ranking are indicative 

of the full ranking. 
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Table 13: Hill Climb Results on 2016-17 NFL Data 

Base Hill Climb Modified Hill Climb 

New England Patriots New England Patriots 

Atlanta Falcons Atlanta Falcons 

Dallas Cowboys Dallas Cowboys 

Pittsburgh Steelers Green Bay Packers 

Kansas City Chiefs Pittsburgh Steelers 

Arizona Cardinals Kansas City Chiefs 

Green Bay Packers Arizona Cardinals 

Seattle Seahawks Seattle Seahawks 

Denver Broncos Denver Broncos 

Philadelphia Eagles Philadelphia Eagles 

515 / 2623  (19.63%) 509 / 2623  (19.40%) 

0s 5799µs 101s 547370µs 

 

The above tests show a small improvement in the correctness of our Hill Climbing approach. We 

expect that this small improvement is due to the baseline Hill Climbing algorithm beginning with 

a ranking with small enough total backedge weight where there was little room for improvement, 

especially considering that the ranking from the baseline Hill Climbing algorithm has less 

backedge weight than the best Berger/Shor ranking. Both Hill Climb rankings generated contain 

the same ten teams, but have only four teams swapped within their rankings. This indicates that 

our data set has well-defined minima and maxima, as our modified Hill Climbing algorithm was 

able to find these variations in its ranking. However, this improvement in correctness comes at a 

large increase in runtime of the algorithm, which is now several orders of magnitude slower than 

our base Hill Climb approach. 

 

5.2: Performance Testing 

 To assess the performance of our algorithms, timing tests were completed with each 

algorithm. Our approximation algorithms were evaluated using the same set of randomly generated 

graphs of varying densities and sizes. Three graphs were generated for each permutation of 10, 

100, and 1000 nodes and densities 0.2, 0.4, 0.6, 0.8, and 1. All tests used a single thread on the 

same Intel i7-4790K processor running at 4.0 GHz. These tests results may have varying results if 

repeated, as the operating system and other background programs could have influenced the 
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execution time of the algorithms. Due to its time complexity, brute force was evaluated as stated 

in the following section. 

 

5.2.1: Brute Force 

 The performance of brute force was evaluated using graphs where every node was 

connected to two other nodes such that a single cycle was formed, e.g. A-B, B-C, C-A. All edges 

were given weights such that every possible permutation would be an optimal solution. However, 

these sample graph choices would not impact the performance of the algorithm. Brute force 

operates independent of graph density, number of edges, and how nodes are connected. The 

algorithm only depends on the number of nodes in the graph. 

 

Table 14: Brute Force Threading Execution Times in Seconds 

Nodes 1 thread 2 threads 3 threads 4 threads 

8 0.064 0.030 0.039 0.034 

9 0.674 0.320 0.215 0.205 

10 7.375 3.438 2.819 2.153 

11 88.527 44.763 30.042 22.487 

12 1154.832 534.362 356.373 269.512 

  

For any graph with 8 or fewer nodes, brute force ran instantaneously. As expected, each increase 

by one node increased execution time by slightly more than a factor of n!/(n-1)!, or n. Beyond 13 

nodes, brute force takes an excessively long time to complete. Multithreading was able to decrease 

execution time by a factor of nearly the number of threads created. Unfortunately, this was not 

enough of an improvement to make a significant impact. Using the rate of permutations processed 

from the 12-node, two-threaded test, a single processor running at max usage on a 16 node graph 

would take 68 days to complete. A graph the size of an NFL dataset with 32 nodes would take 

2.327*1021 years. 
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Table 15: Estimations of Brute Force Execution Time with 8 Threads (i7-4790K at 4.0 GHz) 

Nodes Predicted execution time 

12 134 seconds 

13 29 minutes 

14 7 hours 

15 4 days 

16 68 days 

20 21516 years 

32 2.327*1021 years 

 

The expected runtime results in Table 15 were based on the rate of permutations processed per 

second from the 12-node, 2-threaded test, 448199.5351 permutations/second. 

 

5.2.2: Berger/Shor New 2-Approximation Algorithm 

 As stated above, approximation algorithms were evaluated using 45 random graphs of 

different sizes and densities. Based on the averages in Table 16, the algorithm’s performance 

appears to closely follow the expected O(V+E) time complexity from 10 to 100 nodes. The times 

for the 1000 node graphs, however, were an order of magnitude longer than expected. This could 

be due to a large number of memory operations caused by the high node count and maintenance 

of several adjacency matrices significantly impacting performance. Overall, the algorithm is quick. 

 

Table 16: Average Berger/Shor Execution Time on Random Graphs in Seconds 

 Density  

Nodes 0.2 0.4 0.6 0.8 1.0 Average 

10 0.000318 0.000153 0.000146 0.000149 0.000164 0.000186 

100 0.016147 0.017201 0.016495 0.016187 0.014591 0.016124 

1000 11.716751 13.540069 14.652580 14.562917 11.409153 13.176294 

 

 Graph density appears to have an interesting effect on the runtime of the Berger/Shor 

algorithm. For both 100 and 1000 nodes, graphs with every possible edge had the shortest 

execution time, while graphs with mid-range density took longer. This effect was reversed for 10-
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node graphs. For unknown reasons, the 10-node graphs of density 0.2 took over twice as long to 

execute than those of mid-range densities.  

 

 
Figure 8: Berger/Shor percent time off fastest density for each node count 

 

5.2.3: Hill Climb 

Using the same set of graphs, a single iteration run to completion of the Hill Climbing 

approximation algorithm took significantly longer than the Berger/Shor algorithm. For graphs of 

1000 nodes, execution took several hours to complete. This was expected, as we had calculated 

the time complexity of Hill Climbing as O(V3). The difference between the execution times of the 

10 and 1000 node graphs demonstrated this. However, the 100 node graphs ran twice as fast as 

expected. 

 

Table 17: Average Hill Climb Execution Time on Random Graphs in Seconds with Comparison 

 Density   

Nodes 0.2 0.4 0.6 0.8 1.0 Average B/S Avg 

10 0.015727 0.016845 0.019644 0.014929 0.015030 0.016435 0.000186 

100 6.634456 6.918450 7.073458 7.068419 7.368316 7.012620 0.016124 

1000 11296.777 14201.902 15152.427 16458.629 16610.378 14744.023 13.176294 

 

Graph density had a significant effect on execution time. For all three node counts, runs 

mostly took longer the denser the graph was. This is due to the fact that more edges mean there 
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are more possible valid swaps Hill Climb could make. The 10-node graphs with densities 0.8 and 

1.0 were the only exceptions to this, completing faster than the other 10-node graphs instead. 

 

 
Figure 9: Hill Climb percent time off fastest density for each node count 

 

5.3: Summary 

In this chapter, we discussed the correctness and performance tests we conducted on the 

base implementation of our program and algorithms. We demonstrated how the optimizations we 

made to our algorithms affected the total backedge weights of their generated rankings and 

runtime, and provided explanations as to why different algorithms performed better or worse on 

certain graphs. Finally, we explored the relation of input graph properties, such as number of nodes 

and density, to the performance of each of our algorithms.  
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Chapter 6: Edge Weights 
 

After initially experimenting with point differential as edge weights within graphs of sports 

data, we explored further factors to consider in edge weights to represent more information and 

create a more accurate ranking. This chapter details the considerations that we made when utilizing 

edge weights to represent sports data. Each element of our design, implementation, and testing 

methodology is detailed in following the sections. 

 

6.1: Edge Weight Design 

As discussed in previous sections, determining the proper edge weight for each game in 

our sports data is paramount to accurately capturing the data and producing correct rankings. Aside 

from reading and condensing sports data into edge weights, we also designed three modifiers for 

the edge weights that were used to modify the significance of edges based upon multiple factors: 

linear decay, score normalization, and strength of schedule. We explore these three modifiers in 

the following sections. 

 

6.1.1: Linear Decay 

Before we explored how to weigh our edges, our program did not account for any metric 

of recency of game when calculating edge weights. We suspected that external rankings applied 

the recency of game as some form of decay, where more recent games were given higher value 

than older games, so we explored different approaches to incorporate this in our rankings. We 

discovered two solutions: linear decay, where each prior game is weighed lower values by a 

consistent factor compared to the next most-recent game; and exponential decay, where two 

coefficients determine how highly to weigh a prior game. We expect that external rankings utilize 

exponential decay, where the graph of the two factors resembles a convex curve, decaying a game 

mildly if it was recent but decaying it much more heavily if older. After discussion, we decided to 

pursue linear decay because we felt we could develop a suitable approximation without having to 

handle the additional complexity of exponential decay. 

 

6.1.2: Score Normalization (Beta Methodology) 

Using the point differential as the weight for each edge within our graph presented 

drawbacks when modeling our sports data. The first drawback was how to handle equivalent point 

differentials. For example, we initially felt that a game with a final score of 3-0 should not be 

weighed the same as a game with a final score of 6-3. Even though the point differentials are equal, 

the first game resulted in a shutout of the second team. However, after discussion, we concluded 

that external rankings likely applied minimal consideration to this, and decided not to apply a base 

weight factor. The second drawback was seen in games where a team ran up the score. For 

example, a better team could continue scoring points within a game to increase their point 

differential, thus resulting in a much larger edge weight for that game.  
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Normalizing the edge weights within the graph proved to be a viable solution to the above 

drawbacks, which we completed through a process known as Beta Normalization. Beta 

Normalization divides each game’s point differentials into ranges with an interval of one score 

for that sport. An example of the Beta normalization process and the points within each interval 

for American Football are displayed in Table 18. The first key point of this normalization process 

is that the highest Beta range contains no upper bound for score. Our discussion concluded that, 

after a four score point differential for our test football graphs, any additional points scored were 

likely meaningless in assigning the edge weights. The second key point for this process was the 

actual assignment of intervals. For example, we figured that a touchdown, or one score, can be 

significant enough to modify which range a game is placed into for football games.  

 

Table 18: Beta Interval Points for American Football 

Beta Interval 1 Beta Interval 2 Beta Interval 3 Beta Interval 4 Beta Interval 5 

1-7 points 8-14 points 15-21 points 22-28 points 29+ points 

 

 

6.1.3: Quartile of Losing Team (Strength of Schedule) 

Reviewing the factors of ranking algorithms discussed in Section 2.6, we noted that we still 

had not introduced an explicit solution to the strength of schedule factor. The weighted Minimum 

Feedback Arc set problem implicitly factors in strength of schedule because better teams are more 

likely to have more forward edges that should cancel out any backedges from an upset match. 

Utilizing a graph-based approach made it more difficult to quantify strength of schedule compared 

to a ranking system such as Elo, so we needed to develop our own factor to account for it. The 

result of discussion was a quartile factor system, where we considered the relative placement of 

the losing team in the ordering of all teams. To apply this, we designed a multiplier for the quartile 

of the losing team to be applied to any edge.  

To compute the quartile factor, the teams in any given ordering were divided into quartiles 

during evaluation, based on what rank each team was placed in. The quartile of the losing team 

was used as the basis to choose the quartile multiplier, which ranged from zero to one. This quartile 

multiplier was designed to be used in the evaluation process for a given ordering of teams, which 

changed depending on the specific ordering used with it. The quartile multiplier would be a 

modifier to any edge weights counted as backedges toward the total backedge weight. A value of 

zero as a multiplier would multiply the edge weight by zero, essentially removing the significance 

of the edge. For that reason, quartile multipliers have an inclusive range from 0.25 to 1. A value 

of one as a multiplier would multiply the edge weight by one, not diminishing the significance of 

the edge at all. The quartile multiplier was designed to diminish the reward of winning against a 

low ranked team and reward victories against strongly ranked teams. 

Along with decay and normalization, the quartile multiplier in evaluation became the third 

modifier for edge weights. 
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6.1.4: Alpha/Beta Methodology 

 Reflection on different approaches to our ranking factors of decay, strength of schedule, 

and point differential influenced the redesign of our edge weight algorithm to apply these changes. 

The resulting formula is referred to as Alpha/Beta in the remainder of this report. Our algorithm 

applied the product of variables Alpha and Beta as each edge weight during processing of the 

adjacency matrix, where Alpha and Beta were each values between 0 and 1. Alpha represented 

the linear decay factor for the game, where a value of 0 disregarded the oldest games in a graph 

altogether and a value of 1 resulted in no decay. Beta represented the edge weights applied to each 

interval before decay, where a value of 0 resulted in games in the first interval receiving zero edge 

weight, while a value of 1 resulted in equivalent weight factors being applied to the point 

differentials, regardless of interval. 

 Our implementation of this Alpha/Beta system was designed to be adaptable for future 

testing needs. Both Alpha and Beta values were applied from the configuration file where they 

could be modified with ease. Additionally, the number of Beta intervals and Beta step size were 

also stored in the configuration file. The step size varies by sport where the point value of a score 

differs, so this value needed to be flexible. If we wanted to adjust the number of intervals for testing 

purposes, that functionality was also present. 

 

6.2: Edge Weight Implementation 

 The implementation of edge weight normalization, also known as score normalization, in 

the program had some challenges. As described in Section 6.1.2, edge weight normalization is the 

process of normalizing the point differential of a game into a small number of categories. The 

actual edge weight values calculated from the point differential are fixed by a Beta value and are 

decimal values. The first complication presented itself when determining how to store decimal 

values for the normalized edge weights alongside the original edge matrix. The original adjacency 

matrix was implemented as a two-dimensional array of integers up to a maximum size of 250 by 

250. At the time of the implementation of score normalization, all of the functions in the program 

expected the edges to be stored as integers; therefore, substantial refactoring would be necessary 

to introduce edges as double precision floating point numbers.  

We decided to implement the adjacency matrix of normalized edges as a two-dimensional 

array of doubles, allocated to the exact number of cells required in order to reduce memory usage. 

In order to allocate the necessary amount of memory for the normalized adjacency matrix when 

the number of teams in the input file was unknown, we had to develop a workaround. First, the 

normalized adjacency matrix was allocated to the maximum size of the non-normalized adjacency 

matrix of 250 by 250. The normalized matrix was then filled simultaneously with the non-

normalized adjacency matrix in the reading process of the input file. As each edge was read, the 

score differential had the normalized edge weight calculated depending on the Beta value, the size 

of Beta steps, and the number of Beta steps. When the reading process concludes, the total number 

of nodes and the maximum memory needed for an adjacency matrix is known. Finally, the 



55 

oversized normalized adjacency matrix is reallocated into a smaller size and the values are copied 

over.  

The decision to have an optional normalized adjacency matrix required that all ranking 

algorithms be duplicated as well to utilize the normalized matrix. This was necessary because there 

were so many accesses to the adjacency matrix in each algorithm that it was prohibitively difficult 

to implement variable access to the normalized adjacency matrix. Although this made the logic 

simpler within functions, this decision greatly increased the time required for code maintenance.  

 

6.2.1: Alpha/Beta Heatmaps 

 Upon implementing the Alpha/Beta functionality within our program, we applied it to our 

evaluation of external rankings. In our discussion, we saw testing the performance of rankings 

with different Alpha and Beta values as a potential way to reverse-engineer external rankings and 

better understand what factors influenced them. We could evaluate external rankings several times 

with different combinations of Alpha and Beta and compare the resulting total backedge weights, 

where lower total backedge weights would indicate a better response to the Alpha and Beta values 

used. 

 To better compare our resulting total backedge weights, we added functionality to our 

program to generate a heatmap. For the purposes of this project, a heatmap is a matrix of total 

backedge weight values for a given ranking where the cells are colored in varying gradients based 

on their value, with the horizontal axis indicating changes in Alpha and the vertical axis indicating 

changes in Beta. Heatmaps allowed us to observe the total backedge weights at a glance to quickly 

identify any trends in increases or decreases of backedge weights with changes of Alpha and Beta. 

 We began implementation of heatmap functionality by replicating our external rank 

evaluation process. Instead of simply evaluating the total backedge weight of the ranking, we 

modified the external evaluation to disregard any Alpha and Beta values provided by the 

configuration file because the adjacency matrix for normalized edges is regenerated with multiple 

permutations of Alpha and Beta values. In the process of generating the new normalized adjacency 

matrix, the sports data input file is reread. Since normalized edges compress the information of an 

edge into a singular value, it is not possible to extract the lost information from the original sports 

data from the edge. Therefore, the entire input file needed to be reused to generate each new batch 

of edge weights. The evaluation function was rerun on the ordering with a given Alpha and Beta 

to evaluate the total backedge weight for that instance.  

We chose to explore permutations of Alpha and Beta values ranging from 0 to 1, inclusive, 

in increments of 0.1. We chose such small increments as a way to increase granularity in testing, 

given that the external evaluation code had minimal computation time. The total backedge weights 

of the given external ranking would change as the values of Alpha and Beta altered how edges in 

the input file were weighed. These total backedge weights were all then normalized to their 

respective total edge weight in the graph at each instance of a given Alpha and Beta value pair. 

For example, if the total backedge weight of the external ranking was evaluated to 20.0 and the 

total edge weight in the entire graph, regardless of direction of the edges, was 80.0, the normalized 
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total edge weight would be 0.25 as the backedge weight of the ranking was one fourth of the total 

edge weight in the graph.  

All of the normalized total backedge weights of each permutation of Alpha and Beta for 

the ordering were gathered and displayed in a table that could be converted to a heatmap. Our 

heatmap output was chosen to be in CSV (comma separated values) format. CSVs are flexible for 

our purposes: they can be viewed in Microsoft Excel and most text editors. Additionally, when 

opened in Excel, they were presented in a clean table view, where it was simple to view the values 

for individual columns compared to manually printing out an ASCII table. Finally, in order to add 

color to the heatmap, we utilized Microsoft Excel’s workbook functionality, as CSVs do not 

support formatting.  

 

6.3: Edge Weight Results 

 In this section, we apply our Alpha/Beta edge weight and heatmap functionalities towards 

our algorithms and external rankings. These tests allow us to better understand the factors that 

external rankings account for by adjusting the Alpha and Beta values to give more or less priority 

to these factors. From this, we can determine using the total backedge weight from different 

Alpha/Beta combinations which rankings favor which values. The first tests we conducted with 

our heatmaps were to determine how our quartile and home-field advantage modifiers impact our 

rankings and external rankings. For these test cases, the home-field advantage modifier added three 

points, or one field goal, to a victory by an away team in football games. Afterwards, we tested 

our lowest backedge weight external rankings for the 2016-17 NFL dataset, 2016-17 CFB dataset, 

2014-15 NHL dataset, and 2015 MLB dataset to better understand the factors they consider. 

Heatmaps from additional rankings for these datasets are included and discussed in Appendix B. 

 The first set of tests we conducted were Alpha/Beta heatmap tests comparing total 

normalized backedge weight values for different Alpha/Beta values while toggling our quartile 

and home-field advantage factors in our edge weight algorithms. As explained in Section 6.2.1, 

our heatmaps are adjacency matrices containing the normalized total backedge weights of each 

algorithmic or external ranking on a given dataset. Our heatmaps present changes in Alpha on the 

vertical axis from 0 to 1 in 0.1 increments and present changes in Beta on the horizontal axis from 

0 to 1 in 0.1 increments. These heatmaps are colored on a red to green gradient, where shades of 

green represent smaller total backedge weights and shades of red represent larger total backedge 

weights. 
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 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.206206 0.214998 0.220393 0.224041 0.226673 0.22866 0.230215 0.231464 0.232489 0.233346 0.234073 

0.1 0.21071 0.218929 0.223951 0.227337 0.229774 0.231613 0.233049 0.234202 0.235149 0.235939 0.236609 

0.2 0.214528 0.222245 0.226942 0.230102 0.232373 0.234084 0.23542 0.236491 0.237369 0.238103 0.238724 

0.3 0.217806 0.22508 0.229493 0.232456 0.234582 0.236183 0.237431 0.238432 0.239252 0.239936 0.240516 

0.4 0.220651 0.227531 0.231693 0.234483 0.236483 0.237987 0.239159 0.240099 0.240868 0.24151 0.242054 

0.5 0.223143 0.229671 0.233611 0.236248 0.238136 0.239555 0.240661 0.241546 0.242271 0.242875 0.243387 

0.6 0.225345 0.231556 0.235298 0.237798 0.239587 0.240931 0.241977 0.242814 0.243499 0.244071 0.244555 

0.7 0.227303 0.233229 0.236792 0.239171 0.240871 0.242147 0.24314 0.243934 0.244585 0.245127 0.245586 

0.8 0.229057 0.234724 0.238126 0.240394 0.242014 0.24323 0.244175 0.244931 0.24555 0.246066 0.246502 

0.9 0.230637 0.236068 0.239323 0.241491 0.24304 0.2442 0.245103 0.245824 0.246415 0.246907 0.247323 

1 0.232068 0.237283 0.240404 0.242482 0.243964 0.245075 0.245938 0.246629 0.247194 0.247664 0.248062 

Figure 10: 2017-18 NFL heatmap (Sports Illustrated, Quartiles Off) 

 

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.090165 0.109563 0.122772 0.132347 0.139606 0.145299 0.149882 0.153653 0.156809 0.159489 0.161793 

0.1 0.090861 0.1104 0.123694 0.133323 0.14062 0.146341 0.150946 0.154733 0.157902 0.160593 0.162907 

0.2 0.091445 0.111102 0.124465 0.134141 0.14147 0.147214 0.151836 0.155637 0.158817 0.161517 0.163838 

0.3 0.091942 0.111699 0.125121 0.134835 0.142191 0.147954 0.152592 0.156404 0.159593 0.162301 0.164628 

0.4 0.092370 0.112213 0.125686 0.135433 0.142811 0.148591 0.153241 0.157063 0.16026 0.162974 0.165307 

0.5 0.092743 0.11266 0.126177 0.135952 0.143351 0.149145 0.153806 0.157636 0.16084 0.163559 0.165896 

0.6 0.093070 0.113052 0.126608 0.136408 0.143823 0.14963 0.154301 0.158138 0.161348 0.164072 0.166413 

0.7 0.093360 0.113399 0.126989 0.136811 0.144242 0.150059 0.154738 0.158582 0.161797 0.164525 0.16687 

0.8 0.093618 0.113709 0.127328 0.13717 0.144614 0.150442 0.155128 0.158978 0.162197 0.164929 0.167276 

0.9 0.093850 0.113986 0.127633 0.137492 0.144948 0.150784 0.155477 0.159332 0.162555 0.16529 0.167641 

1 0.094059 0.114236 0.127907 0.137782 0.145249 0.151093 0.155791 0.159651 0.162878 0.165616 0.167969 

Figure 11: 2017-18 NFL heatmap (Sports Illustrated, Quartiles On) 

 

 The heatmaps in Figures 10 and 11 show our Sports Illustrated ranking total backedge 

weights with and without our quartile factor applied. In Figure 10, where the quartile factor is 

disabled, increases in the value of Alpha and increases in the value of Beta contribute roughly 

equivalently towards the total backedge weight, which implies that Sports Illustrated applied 

equivalent preference towards recency of match and point differential. However, with quartiles 

applied as shown in Figure 11, increases in the value of Alpha are far more significant in increasing 

the total backedge weight than increases in Beta. We expect that this is because the quartile factor 

reduces the edge weight before decay substantially for most edges, such that applying less of a 

decay factor increases the total graph weight enough to result in increased total backedge weight. 
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 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.222222 0.228702 0.232678 0.235367 0.237306 0.238771 0.239917 0.240837 0.241593 0.242225 0.242761 

0.1 0.231285 0.236792 0.240157 0.242426 0.244059 0.245291 0.246254 0.247027 0.24766 0.24819 0.248639 

0.2 0.238968 0.243617 0.246446 0.24835 0.249718 0.250749 0.251553 0.252198 0.252728 0.253169 0.253544 

0.3 0.245564 0.249451 0.251809 0.253392 0.254528 0.255383 0.25605 0.256585 0.257023 0.257389 0.257699 

0.4 0.251289 0.254495 0.256435 0.257735 0.258667 0.259368 0.259914 0.260352 0.260711 0.26101 0.261263 

0.5 0.256304 0.2589 0.260467 0.261516 0.262267 0.262831 0.263271 0.263623 0.263911 0.264151 0.264355 

0.6 0.260734 0.26278 0.264013 0.264836 0.265426 0.265868 0.266213 0.266489 0.266714 0.266903 0.267062 

0.7 0.264675 0.266224 0.267154 0.267776 0.26822 0.268554 0.268813 0.269021 0.269191 0.269332 0.269452 

0.8 0.268205 0.2693 0.269958 0.270397 0.27071 0.270945 0.271128 0.271274 0.271394 0.271493 0.271578 

0.9 0.271383 0.272066 0.272475 0.272748 0.272942 0.273088 0.273201 0.273292 0.273366 0.273428 0.273481 

1 0.274262 0.274566 0.274747 0.274869 0.274955 0.27502 0.27507 0.27511 0.275143 0.275171 0.275194 

Figure 12: 2016-17 NFL heatmap (Sports Illustrated, Quartiles Off, Home-Field Advantage Off) 

 

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.206622 0.216686 0.223419 0.228239 0.231861 0.234682 0.236942 0.238792 0.240334 0.24164 0.242761 

0.1 0.217273 0.226058 0.231914 0.236096 0.239232 0.241671 0.243622 0.245219 0.246549 0.247674 0.248639 

0.2 0.226292 0.233962 0.239058 0.24269 0.245409 0.247522 0.24921 0.25059 0.251739 0.252711 0.253544 

0.3 0.234028 0.240718 0.24515 0.248304 0.250662 0.252491 0.253952 0.255146 0.25614 0.256979 0.257699 

0.4 0.240736 0.246558 0.250407 0.25314 0.255182 0.256765 0.258028 0.259059 0.259917 0.260642 0.261263 

0.5 0.246609 0.251658 0.254989 0.257351 0.259114 0.260479 0.261568 0.262457 0.263196 0.26382 0.264355 

0.6 0.251793 0.256149 0.259018 0.26105 0.262564 0.263737 0.264672 0.265434 0.266068 0.266604 0.267062 

0.7 0.256403 0.260135 0.262588 0.264324 0.265617 0.266618 0.267415 0.268065 0.268606 0.269062 0.269452 

0.8 0.260529 0.263695 0.265774 0.267244 0.268338 0.269184 0.269857 0.270407 0.270863 0.271248 0.271578 

0.9 0.264244 0.266896 0.268635 0.269863 0.270777 0.271483 0.272046 0.272504 0.272885 0.273206 0.273481 

1 0.267606 0.269788 0.271218 0.272227 0.272977 0.273556 0.274017 0.274393 0.274705 0.274969 0.275194 

Figure 13: 2016-17 NFL heatmap (Sports Illustrated, Quartiles Off, Home-Field Advantage On) 

 

 Additionally, as shown in Figures 12 and 13, we tested the impacts of our home-field 

advantage modifier on Sports Illustrated’s power ranking for the 2016-17 NFL dataset. Overall, 

this modifier does not substantially impact the trends in Alpha and Beta values for the total 

backedge weight of the ranking. The best Alpha and Beta values are identical for both at (0,0). 

However, the total backedge weight with home-field advantage enabled decreases slightly, which 

we expect is because the forward edge weight increases more with the home-field advantage factor 

applied than the backedge weight does. Additionally, enabling quartiles reduces the significance 

by which increases in Beta values with a large Alpha value increase the total backedge weight, 

which we suspect is because considering home-field advantage modifies Beta’s point differential, 

potentially making the games in a season closer together. Thus, changing the decay through Alpha 

would modify the edge weights more significantly.  
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The second set of tests we conducted with our Alpha/Beta heatmaps demonstrate the trends 

in total backedge weight based on differing Alpha and Beta values for each of our rankings in the 

2016-17 NFL dataset, 2016-17 CFB dataset, 2014-2015 NHL dataset, and 2015 MLB dataset. The 

heatmap in Figure 14 shows how the NFL.com power ranking for the 2016-17 NFL season dataset 

responds to changes in Alpha and Beta values. Heatmaps and analysis for additional rankings from 

these seasons are included in Appendix B. The heatmaps discussed in this section were chosen 

because their best Alpha/Beta combination resulted in the lowest total backedge weights compared 

to other two power rankings. 

 

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0 0.151276 0.15178 0.152088 0.152297 0.152448 0.152562 0.152651 0.152722 0.152781 0.15283 0.152872 

0.1 0.152303 0.152775 0.153064 0.153259 0.153399 0.153504 0.153587 0.153653 0.153707 0.153753 0.153791 

0.2 0.153174 0.153615 0.153884 0.154065 0.154195 0.154293 0.154369 0.154431 0.154481 0.154523 0.154559 

0.3 0.153921 0.154334 0.154584 0.154752 0.154872 0.154963 0.155034 0.15509 0.155137 0.155176 0.155209 

0.4 0.15457 0.154954 0.155187 0.155343 0.155455 0.155539 0.155605 0.155657 0.1557 0.155736 0.155766 

0.5 0.155138 0.155497 0.155713 0.155858 0.155962 0.15604 0.1561 0.156149 0.156189 0.156222 0.15625 

0.6 0.15564 0.155974 0.156176 0.15631 0.156406 0.156479 0.156535 0.15658 0.156617 0.156647 0.156674 

0.7 0.156087 0.156398 0.156585 0.15671 0.1568 0.156867 0.156919 0.156961 0.156995 0.157023 0.157047 

0.8 0.156487 0.156777 0.156951 0.157067 0.15715 0.157212 0.157261 0.1573 0.157331 0.157358 0.15738 

0.9 0.156847 0.157117 0.157279 0.157387 0.157464 0.157522 0.157567 0.157603 0.157632 0.157657 0.157678 

1.0 0.157173 0.157425 0.157576 0.157676 0.157748 0.157801 0.157843 0.157876 0.157904 0.157927 0.157946 

Figure 14: 2016-17 NFL heatmap (NFL.com, Quartiles On) 

 

 From the heatmap in Figure 14, we can infer several factors about NFL.com’s power 

ranking. The most apparent trend in this heatmap is how total backedge weight significantly 

increases as the value of Alpha increases. The total backedge weight does increase with an increase 

in Beta, as expected, but not to the magnitude of changes in Alpha. We suspect that this is because 

the ranking from NFL.com has the teams placed such that games or edges which would have less 

value with smaller Alpha values were backedges. Specifically, according to the heatmap and our 

total backedge weight metric, the NFL.com power ranking considers the recency of game 

significant. Additionally, the small increases in total backedge weight from increases in Beta imply 

that the NFL.com power ranking does not apply much weight towards the point differential within 

a game. Thus, teams with higher point differential recent games are most likely to be ranked 

highest in NFL.com power rankings. 
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 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.003842 0.005011 0.005936 0.006687 0.007308 0.007830 0.008275 0.008660 0.008994 0.009289 0.009550 

0.1 0.004496 0.005531 0.006349 0.007013 0.007563 0.008025 0.008419 0.008759 0.009056 0.009316 0.009548 

0.2 0.004999 0.005930 0.006666 0.007264 0.007759 0.008175 0.008530 0.008836 0.009103 0.009338 0.009546 

0.3 0.005398 0.006246 0.006918 0.007463 0.007914 0.008293 0.008617 0.008897 0.009140 0.009354 0.009544 

0.4 0.005721 0.006503 0.007122 0.007624 0.008040 0.008390 0.008688 0.008946 0.009170 0.009368 0.009543 

0.5 0.005988 0.006715 0.007291 0.007758 0.008144 0.008470 0.008747 0.008987 0.009196 0.009379 0.009542 

0.6 0.006214 0.006894 0.007433 0.007870 0.008232 0.008537 0.008797 0.009021 0.009217 0.009389 0.009541 

0.7 0.006406 0.007047 0.007554 0.007966 0.008307 0.008594 0.008839 0.009051 0.009235 0.009397 0.009541 

0.8 0.006572 0.007178 0.007659 0.008049 0.008372 0.008644 0.008876 0.009076 0.009250 0.009404 0.009540 

0.9 0.006716 0.007293 0.007750 0.008121 0.008429 0.008687 0.008908 0.009098 0.009264 0.009410 0.009539 

1 0.006844 0.007394 0.007831 0.008185 0.008478 0.008725 0.008936 0.009117 0.009276 0.009415 0.009539 

Figure 15: 2016-17 CFB heatmap (ESPN, Quartiles On) 

 

 Figure 15 shows the Alpha/Beta heatmap for ESPN’s power ranking for the 2016-17 

NCAA College Football (CFB) season with Division I teams. In all NCAA College Football 

heatmaps on external rankings, the total backedge weight values are smaller compared to other 

sports because these external rankings only consider the top-25 of 128 teams, so many of the edge 

weights for lower ranked teams are not considered. 

 As shown in the heatmap in Figure 15, small Alpha and Beta values return low total 

backedge weights, where the lowest appears with an Alpha/Beta of (0,0). In general, this means 

that ESPN’s power ranking favors recent wins and high point differentials when ordering teams. 

However, increases in the Beta value result in much greater total backedge weight than increases 

in Alpha. We suspect that this is because backedges of the ranking are more likely to be close 

games than older games in the season. Additionally, increases in Alpha result in less total backedge 

weight increase when Beta is high compared to when Beta is low. We hypothesize that this pattern 

occurs because backedges have their edge weights minimized much less with Alpha than Beta, but 

with a higher Beta, the total graph weight is much larger, resulting in smaller impacts from 

increases in Alpha. 
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 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.261899 0.262495 0.262992 0.263412 0.263772 0.264084 0.264356 0.264597 0.264811 0.265002 0.265174 

0.1 0.262867 0.263588 0.264188 0.264695 0.265129 0.265505 0.265834 0.266123 0.266381 0.266611 0.266818 

0.2 0.26368 0.264505 0.265191 0.265771 0.266266 0.266695 0.26707 0.267401 0.267694 0.267957 0.268193 

0.3 0.264373 0.265286 0.266045 0.266685 0.267233 0.267707 0.268121 0.268486 0.26881 0.269099 0.269359 

0.4 0.264971 0.265959 0.26678 0.267473 0.268065 0.268577 0.269024 0.269418 0.269768 0.27008 0.270361 

0.5 0.265491 0.266545 0.26742 0.268158 0.268788 0.269333 0.269809 0.270229 0.2706 0.270933 0.271231 

0.6 0.265949 0.26706 0.267982 0.268759 0.269423 0.269997 0.270498 0.270939 0.27133 0.27168 0.271994 

0.7 0.266354 0.267516 0.268479 0.269291 0.269985 0.270584 0.271107 0.271567 0.271976 0.27234 0.272668 

0.8 0.266716 0.267923 0.268923 0.269766 0.270485 0.271107 0.271649 0.272127 0.27255 0.272928 0.273268 

0.9 0.26704 0.268287 0.269321 0.270191 0.270934 0.271575 0.272135 0.272628 0.273065 0.273455 0.273806 

1 0.267333 0.268616 0.269679 0.270574 0.271338 0.271998 0.272573 0.27308 0.273529 0.27393 0.27429 

Figure 16: 2014-15 NHL heatmap (NHL.com, Quartiles On) 

 

 Figure 16 shows the heatmap of NHL.com’s standings after the 2014-15 NHL season. In 

this heatmap, the lowest total backedge weight occurs when Alpha and Beta are both 0, but still 

retain low total backedge weight with small values for both. Increases in Alpha and Beta appear 

to increase the total backedge weight similarly, with more weight being added for increases in 

Alpha. This may be because backedges for this ranking are more likely to be earlier games in the 

season, which have more weight when no decay is applied, than point differential. However, 

because of the increases in both, we can state that both recency of game and point differential are 

considered within NHL.com’s standings, which appears counterintuitive towards the basis of 

standings instead of rankings. This shows that total backedge weight may not be the best metric 

for determining the optimal Alpha and Beta configuration for an external ranking. 

 

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.221553 0.227557 0.231426 0.234128 0.23612 0.237651 0.238864 0.239848 0.240663 0.241349 0.241934 

0.1 0.221997 0.227673 0.231332 0.233886 0.23577 0.237217 0.238364 0.239295 0.240065 0.240714 0.241267 

0.2 0.222368 0.227771 0.231252 0.233683 0.235476 0.236854 0.237945 0.23883 0.239564 0.240181 0.240708 

0.3 0.222684 0.227853 0.231185 0.233511 0.235226 0.236544 0.237588 0.238436 0.239138 0.239728 0.240232 

0.4 0.222956 0.227925 0.231127 0.233362 0.235011 0.236278 0.237282 0.238096 0.238771 0.239338 0.239823 

0.5 0.223192 0.227986 0.231076 0.233233 0.234824 0.236047 0.237015 0.237801 0.238452 0.238999 0.239467 

0.6 0.2234 0.228041 0.231032 0.23312 0.23466 0.235843 0.236781 0.237542 0.238172 0.238702 0.239154 

0.7 0.223583 0.228089 0.230993 0.23302 0.234515 0.235664 0.236574 0.237312 0.237924 0.238439 0.238878 

0.8 0.223747 0.228132 0.230958 0.23293 0.234386 0.235504 0.236389 0.237108 0.237703 0.238204 0.238631 

0.9 0.223894 0.22817 0.230926 0.23285 0.23427 0.23536 0.236224 0.236925 0.237505 0.237994 0.238411 

1 0.224026 0.228205 0.230898 0.232778 0.234165 0.23523 0.236074 0.236759 0.237327 0.237804 0.238211 

Figure 17: 2015 MLB heatmap (baseball-reference.com, Quartiles On) 
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 In Figure 17, the heatmap for baseball-reference.com’s standings of the 2015 MLB season 

is displayed. The lowest total backedge weight in this heatmap occurs when Alpha and Beta are 

both 0; however, low total backedge weights occur with small Alpha and Beta values, which 

indicates that this ordering favors the most recent, highest point differential games. An unusual 

trend with this heatmap is the large increase in total backedge weights with a small Alpha value 

and a large Beta value when compared to the minimal change in total backedge weight with a large 

Alpha value and a small Beta value. We suspect that this may be due to recent games with small 

point differentials being backedges for this ordering, where the overall graph weight is small from 

discounting early games. With a larger Alpha, when earlier games have more weight, the total 

backedge weight is slightly lower, likely because the forward edges for this ranking have more 

weight and skew the normalized weight.  

 

6.3.1: Discussion on Alpha/Beta Heatmap Testing 

 We notice from these tests that, regardless of sport, the Alpha and Beta values for our 

external rankings which frequently yielded the lowest total backedge weight are (0,0). Despite the 

frequency of these results, we are concerned that there might be a flaw in the Alpha/Beta 

methodology which would favor these values. We suspect that the Alpha/Beta process favors 

minimizing the total backedge weight for a ranking rather than identifying the factors which best 

match an external ranking. 

We reason that 0 for the Alpha value is favored because it allows the entire earliest set of 

games to be ignored. As detailed in Section 6.1.1, the oldest edges or games in any set of sports 

data are completely removed from the graph when the Alpha value is 0. In a weekly sport such as 

NFL football, this results in the removal of the entire first week of games. This is mitigated 

somewhat in sports that use dates, such as Baseball, since it would only completely remove games 

from the first day. An Alpha value of 0 also removes the most amount of edge weight from a graph 

of all Alpha values, as the oldest games have their values for edge weight decayed as much as 

possible. Overall, an Alpha value of 0 favors reducing the total normalized backedge weight 

because games that could have critical backedges would be weighed low enough that their impact 

is reduced on the total backedge weight of an ordering. 

We reason that a Beta value of 0 is favored because it causes the highest reduction in weight 

of close games. We speculate that many of the upset victories that are added to the total backedge 

weight can be attributed to close games, with the point differential usually within one score. 

Moreover, a Beta value of 0 is favored over another low value such as 0.1 because a Beta value of 

0 completely removes the closest games with a low point differential. Removing controversial or 

close games naturally causes the total backedge weight to be reduced, and reduces the weight of 

backedges which are not in the highest Beta interval.  

Ultimately, our heuristic is measuring the ability for each Alpha/Beta combination to 

reduce the total normalized edge weight. As explained above, the properties of a combination of 

(0,0) greatly favor our heuristic. 
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6.4: Summary 

 This chapter introduced factors and methodologies we considered when determining how 

to weigh the edges in our sports graphs. We considered linear decay for recency of game, score 

normalization for close games and running up the score, and the quartile of the losing team for 

strength of schedule; three factors that were likely important during the development of external 

rankings. Each of these factors is explained alongside the rationale of how they were implemented 

and represented in our program. Finally, we explored the application of these factors to rankings 

our algorithms generated and the possible flaw behind the favored Alpha/Beta values of (0,0). 
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Chapter 7: Top-N Truncated Rankings 
 

 In this chapter, we discuss our methodologies for handling truncated rankings, or rankings 

of the “top n” number of teams. We open by exploring the methods of rank snipping, which 

maintain the score of the full ranking while returning only the top n teams. We then introduce 

formal rank truncation and the N+1 node, alongside the justifications behind truncating internally 

or externally. We then discuss how we implemented these forms of truncation alongside 

considerations to reduce complications with existing functionality. Finally, we provide examples 

of truncation methods, demonstrating their practical applications. 

 

7.1: Top-N Truncated Ranking Design 

 The need for some form of truncation arose out of the prevalence of rankings that only 

included a subset of the total number of teams in competition. There are a plethora of sports 

rankings that only include the top-5, top-10, or top-25 teams. In order to create comparable 

rankings generated by our algorithms, we designed a system to truncate rankings. We reasoned 

that there is much less interest between the relative rankings of teams ranked 120 and 121 

compared to the relative rankings of teams in the top five. There is a much greater focus on the 

relative rankings of teams with more importance to the audience of the rankings, teams which are 

usually ranked the highest.  

 

7.1.1: Rank Snipping for Top-N 

 Rank snipping is the simplest form of truncated rank generation. The general process for 

rank snipping has two main parts. The first part of this method of truncation actually did not 

involve any truncation at all; rather, the first step was to generate a ranking of the complete set of 

input teams as if we were not truncating at all. Then, the complete ranking would be “snipped” so 

only the top-n teams would remain. The result of the rank snipping process would be a ranking of 

the top-n teams as generated by our project using all of the available information given as sports 

data to the program. We figured that this form of truncation was valid because external rankings 

that only published top-n rankings likely used the same full season of data that we did when 

generating our top-n rankings after snipping. 

 

7.1.2: Internal Truncation and the N+1 Node 

 Internal truncation is the process of only working with a subset of the total number of nodes 

on the graph. Applied to the domain of sports rankings, there would be fewer teams considered as 

eligible to be in the ranking. Internal truncation was designed to reduce the computation necessary 

to develop a ranking. With fewer nodes in the graph, the generation of permutations would become 

easier for the program. Internal truncation was rationalized with the reasoning that we only care 

about computing the ranking of a subset of teams if we only want a subset ordering as an end 

result. Internal truncation was also poised as a tool to allow brute force computation of certain 

subsets of real data where there were normally a prohibitively large number of teams in the set. 
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However, there was a fundamental problem with not considering all of the nodes in the input data: 

there is a loss of information that would occur as teams and games from outside the top-n teams 

would be discarded. Furthermore, internal truncation begs the question of how to deal with games 

that were played between teams of the top-n subset and teams outside the subset. Dropping the 

games between teams within the top-n and teams outside the top-n could result in lost information 

of important wins or losses which would have an impact on the final ranking.  

 In order to mitigate the loss of information in the truncation process, we developed the 

concept of the N+1 node. The N+1 node was another node that acted in place of “all other teams” 

in the internal truncation of the complete set. The N+1 node was generated by the program rather 

than being parsed from sports data as in the other teams in the input file. To retain the information 

in the truncation process, all edges from games played between top-n teams and teams excluded 

from the top-n subset would not be removed, but would point instead to the N+1 node. The N+1 

node served to preserve forward edges and backedges between the teams in the top-n so that they 

would not be lost in the truncation process. Only edges between nodes that were placed within the 

N+1 node, which were no longer relevant to the top-n ranking, would be removed. The N+1 node 

was named as such because it corresponded to the collection of nodes that would logically be 

placed outside of the top-n nodes during the truncation process. The N+1 node workaround 

allowed internal truncation to be viable in reducing computation necessary to develop rankings 

without a significant loss in information used to rank the teams in the produced ordering. 

 

7.1.3: Internal Versus Externally Specified Top-N 

The final point of consideration in internal truncation was how to decide which teams were 

eligible to be ranked after truncation. We needed to determine which nodes deserved to be ranked 

in the top-n. We developed two different methods for determining the top-n nodes which are 

outlined below. 

 The first method for determining the top-n subset of teams for internal truncation was to 

use the internally calculated edge weights. This strategy involved first sorting all nodes by their 

net edge weight. Though this preordering had no bearing on the final ranking, it was used as the 

metric for deciding which nodes were eligible and relevant for the top-n nodes.  

 The second method for determining the top-n subset of teams was to use an external listing 

of teams to specify the subset of teams to be kept after truncation. The complete set of teams was 

truncated to match the list of teams present in the external list. This method of truncation was 

designed primarily to aid in the comparison with external rankings of subsets of the teams within 

a league. For example, if we wanted to compare our internally truncated ranking of teams from the 

128-team set of college football data to a top-25 ranking of college football teams, we could use 

the external top-n truncation functionality to truncate our set of eligible teams to the exact same 

teams as the top-25 external ranking. From that point, we could compare the differences between 

the placements of teams in our top-25 ranking versus the placements of top-25 teams from the 

external ranking. This method of truncation became particularly useful in creating comparable 
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rankings to external rankings since this system only ordered the exact same teams as the external 

one. 

 

7.1.4: Conclusions on the Comparison of Truncated Rankings 

 A ranking that is truncated is much different than a ranking of the whole set of inputs. A 

complete ranking organizes all entities into an ordering, where teams higher in the ranking are 

better than teams lower in the ranking, based upon some heuristic. Though complete rankings are 

relatively straightforward in their significance, truncated rankings are notably more complicated.  

We concluded that there are two main points of interest and significance that are integral 

to top-n truncated rankings: the relative orderings between the top-n teams, and the assertion that 

the subset of top-n teams are better than the remainder of the teams in the complete set. In the 

process of comparing ranking that were of the top-n variety, such as top-10 and top-25, these two 

factors needed be considered. In comparing two rankings of a subset of teams, either of these points 

could be used as the metric by which the comparison was conducted. Depending on which of these 

two main points of interest was more valuable or of greater importance, the method of truncation 

needed to be adapted to suit it. 

We decided that using an externally specified top-n was useful for comparison of the first 

point of interest: whether the specific ordering of the top-n teams was correct. Since this method 

for truncation took an external ranking’s specification for which nodes deserve to be in the top-n, 

the rankings generated by our algorithms were solely focused on the relative ordering between the 

top-n teams of each truncated ranking. Therefore, if we were to compare two truncated rankings 

for the relative differences between the placements of the top-n teams, truncation using the nodes 

specified by the external ranking would be most sensible. We found that the drawback of this 

approach was that it could not be used to explore the second point above, as the ranking generated 

could not be used to assert that the teams shown in the top-n ranking were indeed the top-n of the 

whole set.  

In order to maintain the comparison of both points above, we decided to use rank snipping 

to generate top-n rankings for the purposes of comparing multiple truncated orderings, whether 

internal or external. Though rank snipping is not as direct a comparison in regards to the relative 

ordering of teams between the two top-n teams from the first point, we determined that rank 

snipping for a top-n ranking weighed both of the above points to a satisfactory degree. The use of 

rank snipping was supported because it was similar to the methodology for creating a top-n ranking 

from a non-truncated source of sports data. We used the rationale that a top-n ranking output by 

the program should be created as the top n teams of the best ranking that we could create by not 

truncating and leaving all nodes and edges in the graph. The best possible ranking would 

necessarily utilize all of the information available to the program, and from that, a top-n could be 

extracted. This truncated output ranking could then be read into the program and handled as we 

would handle any other external ranking. We reasoned that external top-n rankings were created 

and truncated through a methodology that could not be inferred from the outside. We decided to 

mimic this “black box” approach. Therefore, using rank snipping to create a ranking as a “black 
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box” ranking seemed to be the most comparable approach when creating truncated rankings. Given 

the “black box” approach, we simply needed to create what we thought would be the best ranking 

possible, and truncate it afterwards to match via rank snipping. If it was necessary to compare 

exclusively on the first point above, we could utilize internal truncation on an external ranking for 

the basis of determining which teams were allowed into the top-n ranking. However, permitting 

the computation time requirements, it was more accurate of a comparison to use truncated rankings 

through rank snipping than through internal truncation.  

  

7.2: Top-N Truncated Ranking Implementation/N+1 Node 

 The implementation of the internal top-n truncation design had to handle several difficult 

issues. The first major challenge was how to deal with the truncation of the adjacency matrix when 

the list of acceptable nodes was not guaranteed to be known until runtime. The second major hurdle 

of the internal top-n truncation was how to create and maintain the N+1 node. Finding an efficient 

solution would not only require implementation of the designed features, but would also be 

standalone enough to not require extensive rewrites of existing functionality. By the time of the 

implementation of top-n truncation, there were many features already implemented in the program, 

so compatibility with all existing features of the program was the most significant implementation 

goal. 

 

7.2.1: Truncation of the Adjacency Matrix 

 Truncation of the adjacency matrix was a difficult process to implement because the nodes 

allowed in the top-n were not specified before runtime. Whether by external list or parsing of the 

net total weights on the nodes in the graph, the nodes to include in the internal top-n subset would 

be known only after the adjacency matrix had been initially configured. Without significant 

arduous rewrites to the complex input file read process, the truncation had to occur after the 

normalized and non-normalized adjacency matrices had already been configured. The 

implementation of internal truncation could not simply create another adjacency matrix because it 

would involve greater performance overhead, require all new evaluation functions, and all existing 

algorithms would need to be adapted to handle the new evaluation functions and pull from the new 

matrix. Additionally, all new features added to the program would require additional work to 

compensate for use of the additional matrix. Therefore, another option had to be considered.  

 The approach for the implementation of internal truncation turned to modification of the 

existing adjacency matrices. Despite the implementation challenge it presented, modification of 

the existing adjacency matrices would not require extensive rewrites of existing systems including 

evaluation functions and ranking algorithms. The functions in the program were already designed 

to handle an arbitrarily sized adjacency matrix, so modification of the size and contents of the 

existing adjacency matrices seemed to be the most sensible choice because it allowed all other 

systems of the program to function with internal truncation without modification.  

 The modification of the existing adjacency matrices for the internal truncation was a 

challenge to implement because it needed to be done in such a way that it would not impact 



68 

functionality in the rest of the program. The modification process had to replicate each adjacency 

matrix as if it had been input in its truncated state. Once the list of nodes to maintain through the 

truncation process had been determined, whether through an external listing or from the top-n 

nodes based upon net weight of each node, both the normalized and non-normalized adjacency 

matrices could be modified. The first step in the modification process was to create a new version 

of the node dictionary, called the NodeDict. The NodeDict held the associations between the team 

names for each node and the corresponding index in each adjacency matrix. The modified 

NodeDict would contain the associations for just the top-n teams with their new indices. Once the 

new NodeDict was fully configured, the values in each adjacency matrix could be modified as 

well. A temporary truncation matrix was created to hold the contents of the truncated adjacency 

matrix during the process of transferring the existing edge weights from each adjacency matrix to 

the truncated version. Once the transfer of the relevant edge weights for the top-n teams between 

the main adjacency matrix and the truncated version had completed, then the main adjacency 

matrix was overwritten with the new values. The truncated version of the NodeDict was also set 

to overwrite the original NodeDict’s values so that the node indices of each adjacency matrix 

would be accurate to the truncated version. After this process, the program could continue to utilize 

the adjacency matrix and NodeDict without issue.  

 

7.2.2: Creating and Maintaining the N+1 Node 

 As explained in Section 7.1.2, the N+1 node was a node that would hold all of the edges 

between nodes in the top-n subset and nodes outside the top-n subset. The implementation of the 

N+1 node presented a challenge because it was an artificial node created and maintained entirely 

by the program. This node was appended to the truncated graph during the adjacency matrix 

modification process detailed in Section 7.2.1. Weights were transferred to the N+1 node by 

comparing the original adjacency matrix with the truncated version and adding edges to the N+1 

node in the truncated adjacency matrix to and from nodes outside the top-n subset. An entry in the 

NodeDict was also made for the N+1 node with the proper index in each adjacency matrix. While 

using internal truncation, the index of the N+1 node was always the last available index in the 

NodeDict. Instead of a special placeholder, the N+1 node was implemented to be treated just like 

any other node by using its index, so that it was always known.  

 Despite the high compatibility, this implementation of the N+1 node did have several 

drawbacks. The main complication caused by this implementation of the N+1 node was that it 

needed to be handled in a special way in the testing functionality of the program. Since it was 

treated as a normal node, rank generation through the ranking algorithms required no extra work 

to get truncated orderings. However, exceptions had to be created for any functionality that 

interacted with external orderings. Interfacing with external orderings occurred in the testing 

modules of the program, including external rank evaluation from Section 4.1.1, Alpha/Beta 

heatmap testing from Section 6.2.1, rank comparisons from Section 4.5, and truncation by an 

external list. Since the N+1 node was generated by the program, there was no consistent basis for 

the inclusion on the N+1 node in external rankings. There were occasions when the N+1 node was 
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needed by the program but not supplied in the external ranking, and vice versa. This 

implementation of the N+1 node, where it is treated as any other normal node in the graph, added 

extra programming overhead when dealing with any external rankings. Workarounds and 

exceptions for the N+1 node had to be made in all existing and future interactions with external 

ranking files. There were a few other minor complications including preventing an input file from 

taking the designated name for the N+1 node, but those issues were dealt with relatively easily. 

Though this implementation of the N+1 node simplified rank generation for truncated orderings, 

it required additional effort when implementing systems interfacing with external ranking files.  

 

7.3: Top-N Truncated Ranking Results 

 In this section, we apply rank snipping and internal truncation on our sports data to illustrate 

the usage of each. We anticipated that this functionality would be useful in the case of college 

football ranking analysis because many of the rankings published only considered the top-25 teams 

in the league. Therefore, we decided to first test both rank snipping and internal truncation on our 

2016-17 NFL dataset to analyze how the total backedge weight and ranking correctness would 

compare in general. The following sections discuss our results alongside analysis and explanation.  

 

7.3.1: Rank Snipping Example on 2016-17 NFL Data 

 In application, rank snipping was used to reduce the size of a ranking generated by the 

program. In Table 19, we display the results of two tests on the 2016-17 NFL dataset. The 

following tests were conducted using rank snipping on the Hill Climbing algorithm. For brevity, 

we are only displaying the top-10 of each ranking as our basis for comparison. 
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Table 19: Rank Snip on Hill Climb Ranking on 2016-17 NFL Dataset 

Rank Snip Size: 10 Rank Snip Size: 5 

New England Patriots New England Patriots 

Dallas Cowboys Dallas Cowboys 

Atlanta Falcons Atlanta Falcons 

Kansas City Chiefs Kansas City Chiefs 

Pittsburgh Steelers Pittsburgh Steelers 

Oakland Raiders ---- 

New York Giants ---- 

Seattle Seahawks ---- 

Green Bay Packers ---- 

Miami Dolphins ---- 

 2.201/119.492 (1.84%) 0.773/119.492 (0.65%) 

 

For reference, the total backedge weight of the non-snipped resulting ranking from the Hill 

Climbing algorithm on the dataset is 19.846/119.492 (16.61%). As shown in Table 19, the rank 

snipping approach removes all teams beyond the designated maximum amount of teams to retain 

in the rank snip. For example, in Table 19, the teams are ranked identically until rank index 6, 

where the rank snip of size 5 removes the remaining teams from the output ranking. It is important 

to note the different total backedge weights between each level of rank snipping. In the non-

snipped ranking, the total backedge weight is 16.61%. The total backedge weight of the rankings 

rank snipped to size 10 and size 5 are 1.84% and 0.65%, respectively. Even though all three 

amounts of total backedge weight derived from identical ranking, the rankings with fewer teams 

have a smaller amount of backedge weight. This is by design; since there are fewer teams to 

consider, there are fewer backedges to be summed as a part of the total backedge weight. Total 

backedge weight cannot be calculated from edges to nonexistent teams or teams that are not present 

in the ranking. Therefore, it is important to only use rank snipping for comparison between 

rankings of the same size.  

 As demonstrated in Table 19, rank snipping is useful when we need to conform a ranking 

generated by our program to a specified size. Using the rank snip approach, we are able to utilize 

all of the available information and conduct the full set of calculations to generate a ranking of all 

teams in the dataset before snipping the ranking to the desired size. Since the full set of calculations 

are conducted on the full dataset, this process is not useful for reducing the required computation 
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time for generating a ranking. The utility of rank snipping is the ability to appropriately compare 

rankings of sizes other than the total amount of teams in the dataset. Since all of our approximation 

algorithms executed in a reasonable amount of time for testing, as demonstrated in Section 5.2, the 

performance penalty for rank snipping was not a concern for the majority of our testing. 

 

7.3.2: Internal Truncation Example on 2016-17 NFL Data 

As discussed in Section 7.1.1, rank snipping was used to reduce the size of the sports data 

input by restricting which teams could be allowed in the ranking. In order to preserve the validity 

of the ranking, the same set of eligible teams needs to be used in both teams, since all computation 

on the part of the program is limited to those eligible teams. In practice, the set of eligible teams 

was given by the set of teams in the external ranking that the truncated ranking output from the 

program would be compared to. In Table 20, we display the results of input truncation on the NFL 

2016-17 dataset. In this simplified test, the input used for the truncation was the ESPN power 

ranking for the 2016-17 season, modified to reflect only the top 10 teams in that ranking. The 

ranking generated by our program in the following test was created by the Hill Climbing algorithm. 

 

Table 20: Internal Truncation on Hill Climb Ranking on 2016-17 NFL Dataset 

ESPN Ranking Hill Climbing 

New England Patriots New England Patriots 

Dallas Cowboys Dallas Cowboys 

Pittsburgh Steelers Pittsburgh Steelers 

Kansas City Chiefs Kansas City Chiefs 

Green Bay Packers Green Bay Packers 

Seattle Seahawks Atlanta Falcons 

Atlanta Falcons Oakland Raiders 

New York Giants New York Giants 

Oakland Raiders Seattle Seahawks 

Detroit Lions Detroit Lions 

--Other_Teams-- --Other_Teams-- 

 9.442/65.106 (14.503%)  9.606/65.106 (14.755%) 
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As shown in Table 20, the truncated Hill Climbing ranking uses the exact same teams as the ESPN 

ranking. Also shown at the bottom of each ranking is the N+1 node, called “--Other_Teams--”. 

The rankings are very similar due to the small number of teams retained after truncation. The total 

backedge weight of the ESPN ranking is 14.503% while the total backedge weight of the Hill 

Climbing algorithm ranking is 14.755%. This result was surprising since most of our tests showed 

that our ranking algorithms usually perform better than external rankings, as demonstrated in 

Section 9.1. We reasoned that the cause of the slightly increased total backedge weight was the 

small size of the truncated input. 

 We investigated the total backedge weights of rankings generated from the same truncated 

dataset using several of our ranking algorithms. We performed trials with quartile evaluation 

enabled and disabled. The results are displayed in Figures 18 and 19. Note that Y3 refers to the 

Berger/Shor approximation algorithm with node sorting by win-loss ratio, and Y4 refers to the 

Berger/Shor approximation algorithm with node sorting by outgoing edge weight descending. 

 

 
Figure 18: 2016-17 NFL truncated to ESPN top-10 testing 
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Figure 19: 2016-17 NFL truncated to Sports Illustrated top-10 testing 

 

The charts in Figures 18 and 19 seem to be inconclusive over the claim that our algorithms do not 

perform as well in minimizing backedge weight when the ranking is truncated to a low number of 

teams. After performing the aforementioned tests, we concluded that as the input size is truncated 

to smaller numbers of teams, the consistency with which we outperform external rankings is 

reduced. However, our algorithms still generally outperform external rankings. Better performance 

of our algorithms against external rankings seems to be more situational when using smaller input 

datasets from internal truncation. 

 

7.4: Summary 

In this chapter, we introduced truncation and its applications to our project. We explained 

our explorations with rank snipping, internal truncation, and external truncation. The 

implementation process and drawbacks we discovered were described and explained. Finally, we 

applied our rank truncation functionality to a practical sports ranking application, demonstrating 

how it can be utilized in this project.  
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Chapter 8: Range of Correctness 
 

 In this chapter, we discuss the concept of Range of Correctness in relation to our rankings 

and how we utilized the Range of Correctness heuristic to design one of our algorithms. We first 

introduce the theory behind the Range of Correctness concept and explain how it is calculated. We 

discuss how this translated to implementation next. Then we explain our approach in adapting 

Range of Correctness into a post-process ranking system that can be run as its own algorithm. 

 

8.1: Range of Correctness Design 

Consideration of our total backedge weight methodology and the equivalency of rankings 

begged the question of how we could improve our generated rankings. From analysis of our graph-

based approach, we realized that because not every team plays each other in most major sports, 

there likely existed some flexibility with regards to the placement of teams in our generated 

rankings. In this regard, some of the placement could be due purely because of how our sorting or 

preprocessing algorithms were implemented. We refer to this flexibility in rankings as Range of 

Correctness. 

 When developing a ranking for a graph where not all teams have played each other and the 

tournament constraint is not satisfied, we can apply a Range of Correctness to each team. The 

Range of Correctness for each team is a set of two bounds, an upper bound and a lower bound. We 

define Range of Correctness for any team as an exclusive range where the upper bound index is 

of the lowest-ranked team it lost to, and the lower bound index is of the highest-ranked team that 

it won against. In this case, bounds for Range of Correctness are the inclusive uppermost or 

lowermost position in the ranking whereby any swaps of a team’s ranking within each bound 

would result in the same or reduced total backedge weight for a ranking. From a ranking 

perspective, the Range of Correctness for a team states, “I can be placed anywhere below the rank 

of the worst team I lost to and above the rank of the best team I won against.”  

We implemented a function to calculate and output the Range of Correctness alongside 

every team when generating a ranking to analyze with our test data. The variances in ranges that 

occurred indicated room for improvement with post-processing, and typically indicated the density 

of the sports graph. A higher density would result in a smaller Range of Correctness for each team 

because there are more games and edges to contradict rankings, resulting in fewer valid rankings. 

 

8.1.1: Rank Pool 

 To further improve the correctness of our rankings, we applied the Range of Correctness 

heuristic in a post-processor. All three of our algorithms had been evaluated using only total 

backedge weight as a metric, but exploration into Range of Correctness demonstrated that there 

was still room for improvement by considering forward edges. We designed a pool data structure 

based around Range of Correctness, which we define as the rank pool, which maintains the index 

for the rank position it is selecting a node for. Nodes are added into the pool once the pool index 

reaches the upper bounds of their Ranges of Correctness. The pool then checks if any nodes have 
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a lower bound of the index being evaluated. If one does, that node is selected for the given ranking; 

otherwise, the pool sorts its nodes by net edge weight, assigning priority to teams in our graph who 

have won more important games. The node with the highest net edge weight is selected for the 

given index, then the pool increments its index and repeats the process until all nodes have been 

post-processed.  

 However, we discovered a counterexample which proved that the Range of Correctness 

could not maintained for every team in all cases. In general, this occurs when one or more teams 

with larger Ranges of Correctness are placed within the range of one or more teams’ Ranges of 

Correctness, resulting in a conflict where at least one team must be displaced. The full 

counterexample is provided and discussed in the following section. 

 

8.1.2: Rank Pool Counterexample and Proof 

 
Figure 20: Initial rank pool counterexample 

 

Suppose we have the ranking generated in Figure 20. A has no losses, but has one win over 

D, ranked fourth, so A’s Range of Correctness is [1,3]. B has no losses, but has one win over C, 

ranked third, so B’s Range of Correctness is [1,2]. C has one loss from B and one win over D, so 

C’s Range of Correctness is [3,3]. Similarly, E’s Range of Correctness is [1,5], and F’s is [1,9]. 

Once the rank pool begins at index 1, nodes A, B, E, and F are added as they all have left bounds 

of 1. F is chosen for rank 1 in the final ranking because no nodes in the pool have a right bound of 

1 and because F has the highest net edge weight of the nodes in the pool. The rank pool advances 

to index 2, where B is chosen because it has a right bound of 2, so it must be ranked at index 2. 

However, once the rank pool advances to index 3, we have two nodes A and C which both have 

right bounds of 3, meaning one node’s Range of Correctness will be violated if we proceed. The 
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violation of either node’s Range of Correctness means that a new backedge will be introduced and 

we can no longer guarantee that this post-processor will produce a better ranking. 

 

8.1.3: Revised Rank Pool 

 To address the aforementioned counterexample, we revisited the requirements for the 

Range of Correctness. We determined that, after one iteration of reordering with the rank pool, we 

were left with a new, unique ranking. This ranking, because it followed just one iteration of the 

rank pool process and completed one reordering within the Range of Correctness, creates no new 

backedges compared to the original ranking. Then, this new ranking has its Ranges of Correctness 

generated, by which the nodes in the rank pool are updated, and the algorithm continues until all 

nodes have been post-processed. Furthermore, any conflicts that may occur by selecting one team 

for a given rank over another are resolved when the new Range of Correctness is generated, as any 

boundaries of the range are shifted as the teams in the ranking get swapped. After this resolution, 

we implemented the rank pool post-processor to begin with a ranking and its respective Range of 

Correctness, and conduct the removal of teams from pools and re-evaluation of the Range of 

Correctness until the new ranking is finalized. 

 

8.2: Range of Correctness Implementation 

The implementation for the Range of Correctness was designed to be as compatible as 

possible with the existing internal ranking structure. Since Range of Correctness needed to be 

applied to internal rankings from multiple different ranking algorithm sources as well as work with 

external rankings, generating the Range of Correctness needed to be a standalone process. Range 

of Correctness was implemented to be a lightweight and simple module that could take rankings 

of different input types and generate the Range of Correctness in a standard and useful format. We 

agreed upon a standard input and output to the Range of Correctness calculation function to allow 

any functionality that we might build off of Range of Correctness to not have to deal with the many 

alternative inputs of the rankings.  

The function to calculate the Range of Correctness took a ranking as input and output the 

resulting ranges as two lists. We decided to represent the Range of Correctness as two lists of 

bounds, one list of upper bounds and one list of lower bounds. Using this system, we were able to 

know the upper bound and lower bound at each index in the ranking. Instead of creating and 

displaying the Range of Correctness immediately in the function, we reasoned that it was important 

to create a format that be held in memory and manipulated for further calculation.  

The process to calculate each bound for a team was implemented in a relatively simple 

manner. First, the program looked at adjacent teams in the given ranking. Next, the process would 

search through the adjacency matrix to determine if there were any relevant edges between the 

control team and the test team. We define relevant edges as edges that would become backedges 

if the positions of teams were flipped, thus breaking the Range of Correctness. If a relevant edge 

was discovered, the search for a bound would terminate.  As the process continued, it would look 

to each next most adjacent team in the ranking and check for relevant edges. This process is shown 



77 

below in Figure 21. Once all of the upper and lower bounds were calculated for each team, the 

bounds were returned to be manipulated and displayed as needed.  

 

 
Figure 21: Lower bound determination in Range of Correctness 

 

One drawback of this approach was the high memory overhead associated with retaining 

so many values in memory at once. The total memory usage of this process included the pointer 

to the array, as well as space for integers for twice the number of teams for each of the bounds. In 

combination with the rest of the program overhead, this was a lot of dynamic memory allocated to 

the stack. On several occasions, we ran into program crashes when this process caused the stack 

memory to run out. Despite the memory challenges, this approach to the implementation of the 

Range of Correctness afforded multiple benefits that ultimately outweighed the extra engineering 

required to accommodate the overhead. It allowed the Range of Correctness to be displayed, 

written to a results file, and used in further calculation. The modular nature of this implementation 

allowed the Range of Correctness to be queried in separate functions. The portability of the Range 

of Correctness calculation was useful in the implementation for the Rank Pool Post-Process.  

 

8.2.1: Rank Pool Post-Process Implementation 

 The rank pool post-process was implemented to take in a ranking of nodes and modify it 

through the rank pool algorithm designed in Section 8.1.3. The input for the rank pool post-process 

is a reference to a vector ordering of nodes, which represents the ranking. There is no direct return 

output from the rank pool post-process as it was implemented to modify the initial ordering in-

place to reduce memory overhead rather than preserve the initial ranking and return an entirely 

new ordering in memory. Before any computations can take place, the rank pool post-process first 

initializes the containers for the rank pool and generates the Range of Correctness for the input 

ranking to be computed upon. The rank pool computation procedure was implemented to use three 

main containers of nodes. The sorting process using the containers is illustrated in Figure 22 below. 

Team 
Ranked 

#1 

Team 
Ranked 

#2 

Team 
Ranked 

#3 

 

 

Check #1 

Check #2 
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Figure 22: Rank pool node containers 

 

As shown in Figure 22, nodes from the initial non-post-processed ranking are used to fill the three 

containers of nodes, where the entire post-process computation takes place. Emptiness in the 

containers was implemented using a special placeholder value that signified the absence of a node. 

Using the placeholder for emptiness, the statically sized memory for the containers could hold 

varying amounts of nodes.  

 The first container for the rank pool post-process is the “Remaining Nodes” container. This 

container holds all nodes from the initial ranking that have not been selected into the rank pool 

container. This container is initialized with all of the nodes in the initial ranking. The ordering of 

nodes in the “Remaining Nodes” container does not matter since nodes are considered unsorted 

before being chosen into the rank pool container. The contents of the “Remaining Nodes” container 

slowly diminish as the rank pool post-process executes and nodes become sorted. By the end of 

the rank pool post-process, this container is empty.  

 The second container for the rank pool post-process is the rank pool itself. As designed in 

Section 8.1.1 and revised in Section 8.1.3, the rank pool is a collection of nodes that are eligible 

and are being considered for sorting. The nodes in this container are unsorted as the process for 

choosing a node from the pool is not altered by the ordering of nodes.  

The third container for the rank pool post-process is the hybrid ordering. The hybrid 

ordering is an ordering of all of the nodes where some of the nodes are sorted and some are not. 

The hybrid ordering holds a “work in progress” combination of the sorted-so-far finalized ordering 

and the ordering of nodes from the original ranking. The structure of the hybrid ordering is 

illustrated in Figure 23 below.  

 



79 

 
Figure 23: Composition of the hybrid ordering for rank pool post-process 

 

As shown in Figure 23, the first part of the hybrid ordering is the growing ordering of nodes that 

have been sorted in the rank pool. The second part of the hybrid ordering is the remaining nodes 

that have not exited the rank pool, which remain in their ordering from the initial ranking. As the 

rank pool post-process iterates, nodes are selected from the rank pool to the finalized post-

processed ordering. However, to retain integrity of the ordering, the Range of Correctness needs 

to be applied to the “work in progress” sorted ordering. The hybrid ordering was implemented as 

the data container to regenerate the Range of Correctness upon, as described in Section 8.3.1. The 

hybrid ordering is initialized as a copy of the initial non-post-processed ranking because none of 

the nodes have been sorted by the rank pool at the beginning of the rank pool post-process yet. 

Once the post-process has completed, the hybrid ordering will consist entirely of nodes sorted 

through the rank pool and therefore be the post-processed ordering.  

 The rank pool post-process generates a post-processed ranking by taking the initial ranking 

of nodes, sorting nodes in the rank pool, and iteratively generating a sorted list of nodes that 

becomes the post-processed result. The main steps of the process are outlined in Figure 24.  
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Figure 24: Structure of rank pool post-process implementation 

 

Figure 24 shows the workflow of the rank pool post-process on a single loop. There are three main 

steps to the loop that iteratively build the resulting post-processed ranking. The first main step is 

to transfer eligible nodes from the “Remaining Nodes” container to the rank pool. The size of the 

rank pool will grow, but the contents of the “Remaining Nodes” container will diminish by the 

same amount. The second step is to pick a single node from the rank pool. In this step, the rank 

pool diminishes in size by one node. The third step is to add the chosen node to the sorted part of 

the hybrid ordering and to regenerate the Range of Correctness from the new hybrid ordering. 

Once all of the nodes have been processed in the rank pool, the fully sorted hybrid ordering is 

transferred to the post-processed ranking. 

 

8.2.2: ROC Search Algorithm 

 The ROC Search algorithm was inspired by the rank pool post-process. The ROC Search 

algorithm is the application of the rank pool post-process in a hill climbing fashion. During our 
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implementation of the rank pool post-process, we noted the ability for the rank pool to optimize a 

given ranking in total backedge weight. We also recalled that the rank pool would function 

properly with any given input ranking. Since the rank pool post-process generated a complete 

ranking of a set of teams, we logically concluded that the rank pool could be adapted into a fourth 

ranking algorithm.  

The ROC Search algorithm was implemented in a similar manner as our implementation 

of the Hill Climbing ranking algorithm. The ROC Search begins with a starting ordering based 

upon the descending net weight of each node in the ranking and calculates the current total 

backedge weight for comparison with the post-processed rankings. The algorithm then enters a 

while loop, where it continues to conduct the rank pool post-process algorithm on the current 

ordering. The post-processed ranking is then evaluated and its total backedge weight is compared 

to the best found so far. If the post-processed ranking is better, the new permutation and backedge 

weight are maintained; otherwise, ROC Search terminates and returns the best ranking found. 

Unlike our Hill Climbing algorithm, ROC Search does not utilize sideways moves or random 

restarts. The pseudocode for our ROC Search algorithm is listed below. 

  
algorithm roc_search() is 

input: graph G = (V, E) 

output: total ordering T 

 

 best_weight <- weight(G) 

 best_permutation <- {} 

 permutation <- order vertices by decreasing net edge weight 

 continue <- true 

while continue is true do 

 permutation <- rank_pool(permutation) 

weight <- total_backedge_weight(permutation) 

if weight < best_weight do 

 best_weight <- weight 

   best_permutation <- permutation 

  else 

   continue <- false 

end if 

end while 

return best_permutation 

end 

 

8.3: Range of Correctness Results 

 Once the Range of Correctness concept was implemented in our program as the rank pool 

post-processor and ROC Search algorithm, we conducted test cases on both functionalities to see 

how they could be applied to reduce total backedge weights for input rankings. In this section, we 

provide two types of tests cases: Range of Correctness demonstrations showcasing the variability 

in ranges on our sports datasets, and rank pool post-processor tests, where we demonstrate the 
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improvements in total backedge weight and overall correctness by evaluating rankings generated 

by our algorithms and external rankings to see how much they can be improved. 

 The first set of test cases we conducted explore the differences in Range of Correctness 

between different sports datasets which have different densities. As discussed in Section 8.1, we 

expect that denser graphs will result in smaller Ranges of Correctness on average due to less 

flexibility in the upper and lower bounds based on more win and loss edges. Our test cases were 

conducted on the 2016-17 NFL dataset and the 2015 MLB dataset. These tests utilize our Hill 

Climbing algorithm to generate the rankings shown, though only the top-10 teams are shown for 

brevity. In our data tables for this section, the Range of Correctness column contains the upper 

bound for the range as the left index and the lower bound for the range as the right index. 

 

Table 21: Ranges of Correctness Between 2016-17 NFL and 2015 MLB 

NFL 2016-17 Range of Correctness 

[upper - lower] 

MLB 2015 Range of Correctness 

[upper - lower] 

Patriots [1-4] Blue Jays [1-1] 

Falcons [1-5] Astros [2-3] 

Chiefs [1-7] Cubs [1-3] 

Cowboys [1-4] Giants [4-4] 

Steelers [5-7] Mets [5-6] 

Cardinals [3-10] Pirates [5-6] 

Packers [5-8] Nationals [7-9] 

Colts [6-14] Indians [7-8] 

Giants [8-9] Rangers [9-9] 

Bengals [10-15] Dodgers [10-11] 

 

Table 21 supports our hypothesis that the density of the input graph greatly impacts the 

Ranges of Correctness of our rankings. In graphs that are less dense, where there are relatively few 

games played per team, the Ranges of Correctness are larger. There are fewer games played per 

team in the NFL season compared to the MLB season, so it was expected that the Ranges of 

Correctness would be larger. As shown in Table 21, the Ranges of Correctness for the NFL 

rankings are larger than the Ranges of Correctness for the MLB rankings, confirming our 

hypothesis. In our testing, we found that rankings for seasons with higher density and greater 

connectedness have narrower ranges of correctness. The Ranges of Correctness in the rankings for 

college football have the greatest Ranges of Correctness from our datasets. In a tournament graph, 
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where every team has played every other team, we can extend our hypothesis to state that there 

will be no Ranges of Correctness because each team has lost to the team ranked above it and won 

against the team ranked below it. 

 

8.3.1: Rank Pool Results 

The second set of tests we conducted were rank pool post-processor tests on our sports 

datasets, where we investigate if our rank pool post-processor is able to improve upon rankings, 

and to what degree if so. Our first test in this set was conducted using the Berger/Shor algorithm 

with the outgoing edge weight node sorting preprocessor (Y4) on our 2016-17 NFL dataset. The 

full rankings were computed for this test, but only the top-10 teams are displayed. Additionally, 

the total backedge weights displayed underneath are representative of the full ranking. 

 

Table 22: Rank Pool Post-Process on 2016-17 NFL using the Berger/Shor Algorithm 

Berger/Shor Berger/Shor (Post-Processed) 

South Florida Clemson 

San Diego State Alabama 

Air Force Washington 

Wisconsin Oklahoma 

Western Michigan Western Kentucky 

Oklahoma Wisconsin 

Oklahoma State Western Michigan 

Houston San Diego State 

Clemson South Florida 

Virginia Tech Stanford 

Total backedge weight: 9.25% Total backedge weight: 8.67% 

 

In Table 22, the rank pool post-process is shown to improve the initial ranking generated by the 

Berger/Shor algorithm. The rank pool post-processor improves both the total backedge weight and 

the listing of teams. The ordering of teams in the top-10 of the initial Berger/Shor ranking does 

not align with any external rankings, so we have reason to believe it is not accurate. The included 

teams in the post-processed ranking are much closer to the teams one would expect in a top-10 

college football teams ranking. In our testing with the rank pool post-processor, we observed total 

backedge weights for the post-processed rankings that were equivalent or better than without post-

processing. 
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 The second test case we conducted in this set was with the ESPN power ranking for the 

2016-17 NFL dataset to determine if the rank pool post-processor can improve external rankings. 

Similar to the prior test, only the top-10 teams are shown, though the total backedge weight are 

reflective of the full ranking. 

 

Table 23: Rank Pool Post-Process on 2016-17 NFL External Ranking (ESPN, Quartiles On) 

NFL 2016-17 ESPN Ranking NFL 2016-17 ESPN Ranking Post-Processed 

New England Patriots New England Patriots 

Dallas Cowboys Dallas Cowboys 

Pittsburgh Steelers Pittsburgh Steelers 

Kansas City Chiefs Kansas City Chiefs 

Green Bay Packers Green Bay Packers 

Seattle Seahawks Seattle Seahawks 

Atlanta Falcons Atlanta Falcons 

New York Giants Oakland Raiders 

Oakland Raiders New York Giants 

Detroit Lions Miami Dolphins 

Denver Broncos Tennessee Titans 

Miami Dolphins Arizona Cardinals 

Tampa Bay Buccaneers Detroit Lions 

Baltimore Ravens Denver Broncos 

Tennessee Titans Tampa Bay Buccaneers 

19.45% 17.38% 

 

 

Table 24: Rank Pool Post-Process Applied to 2016-17 NFL External Rankings 

NFL 2016-17 ESPN NFL.com Sports Illustrated 

Original 19.45% 18.65% 20.29% 

Post-Processed 17.38% 18.65% 19.33% 
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As shown in Table 23, the rank pool post-process reorganizes the ESPN power ranking and 

improves the total backedge weight. We tested the rank pool post-processor on three external 

rankings. In each case, the post-processor returned an equivalent ranking or one with a lower total 

backedge weight, shown in Table 24. The accuracy of rankings from this post-processor is 

improved as a result, encouraging the use of this post-processor. In our testing, the rank pool post-

processor always produced a better ranking by changing the ordering of teams, sometimes 

reducing the total backedge weight. 

 

Table 25: Hill Climbing vs. ROC Search on 2017-18 NFL Dataset 

Hill Climbing ROC Search 

New England Patriots New England Patriots 

Philadelphia Eagles Philadelphia Eagles 

Minnesota Vikings Minnesota Vikings 

Pittsburgh Steelers Pittsburgh Steelers 

Los Angeles Rams Los Angeles Rams 

13.56% 13.94% 

 

Table 25 demonstrates the top-5 teams from the rankings generated by Hill Climbing and 

ROC Search on the 2017-18 NFL dataset. Both top-5 rankings are equivalent, where the only 

differences in ordering occurs near the bottom of the full ranking. Although Hill Climbing 

generates a ranking with a lower total backedge weight, ROC Search is competitive in the total 

backedge weight of its ranking. From this, we can conclude that considering the forward edge 

weights of rankings leads to similar improvements in the total backedge weight metric as 

minimizing backedges. The similarities in total backedge weights demonstrate that this heuristic 

has a suitable basis to generate and improve upon rankings. 

 

8.4: Summary 

In this chapter, we introduced the concept behind the Range of Correctness post-processor 

that we developed during this project. The theory behind the Range of Correctness was explored, 

alongside a counterexample and resolution with logical backing. We then detailed the 

implementation of Range of Correctness into our program and its abstraction into an algorithm for 

generating rankings. Finally, we provided an example of practical applications of the post-

processor and ranking algorithm with improvements in correctness for given rankings.  
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Chapter 9: Testing with Sports Rankings 
 

With all of the designed functionalities implemented and tested within our program, we 

tested our algorithms against the various sports datasets we had collected. Our test cases utilized 

one season dataset from several major sports: 2016-17 National Football League (NFL) regular 

season, 2016-17 College Football (CFB) full season, 2014-15 National Hockey League (NHL) 

regular season, and 2015 Major League Baseball (MLB) regular season. In this chapter, we 

evaluate test cases using our total backedge weight metric and our rank differential metric on these 

datasets. We review and compare the results and offer possible explanations for why our 

algorithms performed the way they did.  

Conducting test cases with one season dataset per sport allowed us to understand how our 

algorithms performed in each sport and analyze the differences between sports. We expected that 

each sport would result in graphs with different characteristics which would impact the 

performance and correctness of our algorithms. These characteristics include number of nodes or 

teams, and the number of games per team, or density of the graph. Table 26 shows the number of 

teams and density of the graphs we tested with. 

 

Table 26: Number of Teams and Graph Density for Sports Test Cases 

 2016-17 NFL 2016-17 CFB 2014-15 NHL 2015 MLB 

Number of teams 32 128 31 30 

Games played 

per team 

(density) 

16 12-13 82 162 

  

9.1: Total Backedge Weight Results 

 The first set of full test cases we conducted utilized the total backedge weight metric 

discussed in Section 2.3.1. In these test cases, we applied our algorithms with all correctness 

optimizations enabled against external rankings and standings for these datasets. Each sports 

dataset was tested with four permutations of Alpha and Beta values: (0,0), (0,1), (1,0), and (0.5,0.5) 

to see which value pairs gave our rankings and the external rankings the lowest total normalized 

backedge weight. All of the rankings produced by our algorithms have been post-processed by the 

rank pool post-processor as described in Section 8.2.1. 
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9.1.1: National Football League (NFL) Ranking Results 

 

Table 27: Algorithm Comparisons on 2016-17 NFL (Alpha 0, Beta 0) 

ESPN NFL.com Sports 

Illustrated 

Y3 Y4 Hill 

Climbing 

ROC 

Search 

Patriots Patriots Patriots Patriots Patriots Patriots Patriots 

Cowboys Cowboys Cowboys Steelers Steelers Falcons Falcons 

Steelers Steelers Falcons Falcons Falcons Chiefs Chiefs 

Chiefs Chiefs Chiefs Chiefs Chiefs Cardinals Cardinals 

Packers Falcons Steelers Cardinals Bengals Cowboys Cowboys 

Seahawks Packers Packers Bengals Colts Steelers Bengals 

Falcons Giants Raiders Colts Ravens Bengals Steelers 

Giants Seahawks Giants Packers Packers Colts Colts 

Raiders Dolphins Dolphins Buccaneers Seahawks Packers Saints 

Lions Lions Buccaneers Seahawks Eagles Saints Buccaneers 

16.40% 15.13% 15.98% 7.37% 7.98% 11.61% 10.41% 

 

 

Table 28: Algorithm Comparisons on 2016-17 NFL (Alpha 0, Beta 1) 

ESPN NFL.com Sports 

Illustrated 

Y3 Y4 Hill 

Climbing 

ROC 

Search 

Patriots Patriots Patriots Patriots Patriots Patriots Patriots 

Cowboys Cowboys Cowboys Cowboys Cowboys Chiefs Cowboys 

Steelers Steelers Falcons Steelers Steelers Cowboys Steelers 

Chiefs Chiefs Chiefs Chiefs Chiefs Steelers Chiefs 

Packers Falcons Steelers Falcons Falcons Falcons Falcons 

Seahawks Packers Packers Dolphins Dolphins Dolphins Raiders 

Falcons Giants Raiders Giants Raiders Raiders Giants 

Giants Seahawks Giants Raiders Colts Giants Dolphins 

Raiders Dolphins Dolphins Colts Titans Packers Packers 

Lions Lions Buccaneers Titans Packers Titans Titans 

16.01% 15.29% 15.58% 11.15% 11.05% 15.69% 14.77% 
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Table 29: Algorithm Comparisons on 2016-17 NFL (Alpha 1, Beta 0) 

ESPN NFL.com Sports 

Illustrated 

Y3 Y4 Hill 

Climbing 

ROC 

Search 

Patriots Patriots Patriots Patriots Patriots Patriots Patriots 

Cowboys Cowboys Cowboys Cowboys Cardinals Falcons Falcons 

Steelers Steelers Falcons Eagles Steelers Steelers Steelers 

Chiefs Chiefs Chiefs Falcons Chiefs Cardinals Cardinals 

Packers Falcons Steelers Steelers Eagles Cowboys Cowboys 

Seahawks Packers Packers Cardinals Falcons Chiefs Chiefs 

Falcons Giants Raiders Chiefs Cowboys Eagles Seahawks 

Giants Seahawks Giants Chargers Broncos Bills Eagles 

Raiders Dolphins Dolphins Colts Colts Seahawks Bills 

Lions Lions Buccaneers Vikings Bengals Chargers Chargers 

15.93% 15.72% 18.99% 5.06% 6.86% 12.24% 9.07% 

 

 

 

 

Table 30: Algorithm Comparisons on 2016-17 NFL (Alpha 0.5, Beta 0.5) 

ESPN NFL.com Sports 

Illustrated 

Y3 Y4 Hill 

Climbing 

ROC 

Search 

Patriots Patriots Patriots Patriots Patriots Patriots Patriots 

Cowboys Cowboys Cowboys Cowboys Cowboys Cowboys Cowboys 

Steelers Steelers Falcons Steelers Steelers Falcons Falcons 

Chiefs Chiefs Chiefs Chiefs Seahawks Chiefs Chiefs 

Packers Falcons Steelers Giants Falcons Steelers Steelers 

Seahawks Packers Packers Seahawks Dolphins Raiders Raiders 

Falcons Giants Raiders Falcons Chiefs Giants Giants 

Giants Seahawks Giants Dolphins Raiders Seahawks Seahawks 

Raiders Dolphins Dolphins Raiders Colts Packers Packers 

Lions Lions Buccaneers Colts Titans Dolphins Dolphins 

16.28% 15.60% 16.98% 13.64% 13.37% 16.61% 16.33% 
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Tables 27 to 30 show the results from our 2016-17 NFL dataset tests, with differing Alpha 

and Beta values. In these tests, we had three power rankings from ESPN, NFL.com, and Sports 

Illustrated as comparisons. Additionally, we used our Berger/Shor approximation algorithm with 

node sorting by win-loss ratio (Y3) and by outgoing edge weight decreasing (Y4), as well our Hill 

Climb and ROC Search algorithms. 

 The first point we noticed was that at least one of our algorithms beat all three external 

rankings for this dataset in every Alpha/Beta configuration, with improvements ranging from 4-

7% less backedge weight from the graph. Of our algorithms, Y3 and Y4 did the best overall, where 

Y3 performed the best with a Beta value of 0, and Y4 performed the best with a Beta value greater 

than 0. Additionally, most of the top-10 teams in our rankings were present in the top-10 of the 

external rankings, with roughly half of the teams in each ranking being present in the external 

rankings. Of our algorithms, ROC Search performed better with all four Alpha/Beta values than 

Hill Climb. Additionally, for external rankings, NFL.com performed the best in all Alpha/Beta 

combinations, but ESPN performed better than Sports Illustrated with Beta values greater than 0, 

while Sports Illustrated performed better than ESPN with Beta values of 0. 

 With regards to the total backedge weight, the Alpha/Beta combination of (0.5,0.5) had the 

closest values. We suspect that this is because no edges are removed from the graph in this 

scenario; if Alpha is 0, the first week of games in the dataset are removed, and if Beta is 0, all 

games within one touchdown of the final score are removed. Without these edges removed, more 

backedge weight will exist that our algorithms cannot optimize around, so the total backedge 

weight of the resulting rankings will be higher. Additionally, the results show trials where the Beta 

value was 0 had larger variance in total backedge weights than trials where the Alpha value was 

0, indicating that there were likely more edges to be lost in close games than in decay in the dataset. 

 A summary of the total backedge weight percentages for the 2016-17 NFL dataset with our 

algorithms and existing rankings are shown in Figure 25. 

 
Figure 25: NFL 2016-2017 total backedge weight results 
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9.1.2: College Football (CFB) Ranking Results 

 

Table 31: Algorithm Comparisons on 2016-17 CFB (Alpha 0, Beta 0) 

AP Bleacher 

Report 

ESPN Y3 Y4 Hill 

Climbing 

ROC 

Clemson Clemson Clemson Alabama Alabama Alabama Alabama 

Alabama Alabama Alabama 
Western 

Kentucky 

Western 

Kentucky 

Western 

Kentucky 

Western 

Kentucky 

South 

Carolina 
Washington 

South 

Carolina 
Clemson Clemson Clemson Clemson 

Washington 
South 

Carolina 
Washington Temple Washington Washington Washington 

Oklahoma Ohio State Penn State 
Southern 

California 
Temple Temple Temple 

Ohio State Oklahoma Oklahoma Washington 
Southern 

California 

Appalachian 

State 

Appalachian 

State 

Penn State Wisconsin Ohio State Wisconsin 
San Diego 

State 

Arkansas 

State 

Arkansas 

State 

Florida State Penn State Florida State 
Western 

Michigan 
Wisconsin 

Western 

Michigan 
Penn State 

Wisconsin Florida State Michigan 
Louisiana 

State 

Western 

Michigan 
Oklahoma Oklahoma 

Michigan Michigan Wisconsin Michigan 
Louisiana 

State 
Penn State 

Southern 

California 

0.53% 0.49% 0.38% 0.11% 0.11%1 0.47% 0.34% 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1
 Although Y3 and Y4 have the same percentage, Y4 performed better (0.14375/130.95 vs 0.15/130.95); this 

difference was lost in the two-decimal precision. 
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Table 32: Algorithm Comparisons on 2016-17 CFB (Alpha 0, Beta 1) 

AP Bleacher 

Report 

ESPN Y3 Y4 Hill 

Climbing 

ROC 

Clemson Clemson Clemson Clemson Clemson Clemson Clemson 

Alabama Alabama Alabama Oklahoma Oklahoma Oklahoma Oklahoma 

South 

Carolina 
Washington 

South 

Carolina 

Southern 

California 
Alabama 

Southern 

California 

Southern 

California 

Washington 
South 

Carolina 
Washington Alabama 

Southern 

California 
Alabama Alabama 

Oklahoma Ohio State Penn State 
Western 

Kentucky 

Western 

Kentucky 

Western 

Kentucky 

Western 

Kentucky 

Ohio State Oklahoma Oklahoma 
Western 

Michigan 

Western 

Michigan 

Western 

Michigan 

Old 

Dominion 

Penn State Wisconsin Ohio State 
Old 

Dominion 

Old 

Dominion 

Old 

Dominion 
South Florida 

Florida State Penn State Florida State South Florida South Florida South Florida 
Appalachian 

State 

Wisconsin Florida State Michigan Penn State Penn State 
Appalachian 

State 
Stanford 

Michigan Michigan Wisconsin Wisconsin Wisconsin Stanford Penn State 

1.20% 1.28% 0.96% 0.42% 0.40% 0.55% 0.39% 
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Table 33: Algorithm Comparisons on 2016-17 CFB (Alpha 1, Beta 0) 

AP Bleach 

Report 

ESPN Y3 Y4 Hill 

Climbing 

ROC 

Clemson Clemson Clemson Alabama Alabama Alabama Alabama 

Alabama Alabama Alabama Michigan Washington Washington Washington 

South 

Carolina 
Washington 

South 

Carolina 
Temple Michigan Michigan Michigan 

Washington 
South 

Carolina 
Washington 

Appalachian 

State 
Temple 

Western 

Michigan 

Western 

Michigan 

Oklahoma Ohio State Penn State 
Western 

Kentucky 

Western 

Kentucky 
Louisville Temple 

Ohio State Oklahoma Oklahoma Clemson Clemson 
Appalachian 

State 

Appalachian 

State 

Penn State Wisconsin Ohio State Wisconsin Wisconsin Temple Louisville 

Florida State Penn State Florida State 
Western 

Michigan 

Western 

Michigan 

Western 

Kentucky 

Western 

Kentucky 

Wisconsin Florida State Michigan Ohio State Ohio State Clemson Clemson 

Michigan Michigan Wisconsin Penn State Penn State Ohio State Ohio State 

0.74% 0.63% 0.68% 0.19% 0.04% 0.57% 0.57% 
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Table 34: Algorithm Comparisons on 2016-17 CFB (Alpha 0.5, Beta 0.5) 

AP Bleacher 

Report 

ESPN Y3 Y4 Hill 

Climbing 

ROC 

Clemson Clemson Clemson Clemson Clemson Alabama Alabama 

Alabama Alabama Alabama Alabama Alabama Clemson Clemson 

South 

Carolina 
Washington 

South 

Carolina 
Washington 

Western 

Michigan 

Western 

Michigan 

Western 

Michigan 

Washington 
South 

Carolina 
Washington Oklahoma Washington Washington Washington 

Oklahoma Ohio State Penn State 
Western 

Kentucky 
Oklahoma Oklahoma Oklahoma 

Ohio State Oklahoma Oklahoma Wisconsin 
Western 

Kentucky 

Western 

Kentucky 

Western 

Kentucky 

Penn State Wisconsin Ohio State 
Western 

Michigan 
Penn State 

Appalachian 

State 

Appalachian 

State 

Florida State Penn State Florida State 
San Diego 

State 
Wisconsin Penn State Penn State 

Wisconsin Florida State Michigan South Florida 
Southern 

California 
Wisconsin Wisconsin 

Michigan Michigan Wisconsin Stanford Ohio State 
Southern 

California 

Southern 

California 

1.02% 0.99% 0.85% 0.08% 0.71% 1.08% 1.08% 

 

In Tables 31-34, the total backedge weight percentages are shown for our rankings and 

external rankings on the 2016-17 college football season dataset. In these tests, we use rankings 

from Associated Press (AP), Bleacher Report, and ESPN. Our rankings were generated using our 

Berger/Shor algorithm implementation with node sorting by win-loss ratio (Y3) and outgoing edge 

weight decreasing (Y4), Hill Climbing implementation, and ROC Search algorithm. 

Similar to our tests on the 2016-17 NFL dataset, at least one of our rankings outperforms 

each external ranking according to the total backedge weight metric. To make evaluation of the 

total backedge weight comparable between external rankings with the top-25 teams and our full 

rankings, we use rank snipping truncation for the top-25 teams in our rankings. However, because 

games between teams outside the top-25 are not considered after truncation, the total backedge 

weight values are much smaller as fewer edges and less edge weight are considered. 

Overall, Y3 and Y4 perform the best in all Alpha and Beta combinations except (0,1), 

where the ranking from ROC Search has the lowest total backedge weight of those we evaluated. 

In some cases, Y3 and Y4 receive unusually low scores, such as 0.08% by Y3 with Alpha/Beta 

values of (0.5,0.5) and 0.04% by Y4 with Alpha/Beta values of (1,0). We suspect that this is 

because the ranking is optimized according to the total backedge weight metric: games between 

teams outside the top-25 are not considered, so these teams are placed in ranks which result in the 
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minimum backedge weight from games between teams within the top-25. These low scores did 

surprise us, especially with Alpha/Beta values of (0.5,0.5), because no edges are removed from the 

decay or point differential modifiers. However, the difference in total backedge weight between 

our algorithms and external rankings is much smaller overall with Alpha/Beta values of (0.5,0.5), 

which we suspect allows for more accurate rank generation rather than optimization specifically 

for total backedge weight. 

A summary of the total backedge weight percentages for the 2016-17 CFB dataset with 

our algorithms and existing rankings are shown in Figure 26. 

 
Figure 26: CFB 2016-2017 total backedge weight results 
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9.1.3: National Hockey League (NHL) Ranking Results 

 

Table 35: Algorithm Comparisons on 2014-15 NHL (Alpha 0, Beta 0) 

NHL.com Y3 Y4 Hill Climbing ROC Search 

Rangers Capitals Rangers Rangers Rangers 

Canadiens Lightning Canucks Capitals Capitals 

Ducks Rangers Blues Lightning Lightning 

Blues Senators Capitals Wild Blues 

Lightning Wild Lightning Blues Senators 

Predators Blues Jets Jets Wild 

Blackhawks Jets Stars Canadiens Jets 

Canucks Canadiens Canadiens Senators Canadiens 

Capitals Kings Senators Kings Islanders 

Islanders Islanders Wild Islanders Dallas Stars 

22.16% 18.35% 20.09% 19.87% 18.80% 

 

 

 

 

 

Table 36: Algorithm Comparisons on 2014-15 NHL (Alpha 0, Beta 1) 

NHL.com Y3 Y4 Hill Climb ROC Search 

Rangers Rangers Rangers Rangers Rangers 

Canadiens Blues Blues Blues Blues 

Ducks Lightning Wild Ducks Ducks 

Blues Ducks Senators Lightning Lightning 

Lightning Wild Ducks Wild Senators 

Predators Senators Blue Jackets Senators Wild 

Blackhawks Canucks Lightning Blue Jackets Capitals 

Canucks Canadiens Canucks Canucks Blue Jackets 

Capitals Blue Jackets Capitals Canadiens Canadiens 

Islanders Capitals Blackhawks Capitals Canucks 

24.19% 22.09% 21.73% 23.24% 22.69% 
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Table 37: Algorithm Comparisons on 2014-15 NHL (Alpha 1, Beta 0) 

NHL.com Y3 Y4 Hill Climbing ROC Search 

Rangers Capitals Lightning Rangers Capitals 

Canadiens Lightning Rangers Capitals Rangers 

Ducks Rangers Blackhawks Lightning Lightning 

Blues Blues Blues Blues Blues 

Lightning Blackhawks Canadiens Blackhawks Blackhawks 

Predators Senators Canucks Jets Wild 

Blackhawks Wild Capitals Wild Jets 

Canucks Jets Penguins Senators Senators 

Capitals Kings Jets Kings Canadiens 

Islanders Flames Kings Canadiens Kings 

22.40% 20.05% 20.02% 21.49% 22.00% 

 

 

Table 38: Algorithm Comparisons on 2014-15 NHL (Alpha 0.5, Beta 0.5) 

NHL.com Y3 Y4 Hill Climbing ROC Search 

Rangers Lightning Rangers Rangers Rangers 

Canadiens Rangers Blues Blues Blues 

Ducks Blues Lightning Lightning Lightning 

Blues Canadiens Canadiens Canadiens Canadiens 

Lightning Capitals Canucks Capitals Capitals 

Predators Wild Blackhawks Wild Ducks 

Blackhawks Blackhawks Ducks Blackhawks Wild 

Canucks Ducks Wild Ducks Blackhawks 

Capitals Senators Capitals Canucks Canucks 

Islanders Canucks Flames Senators Islanders 

23.60% 21.60% 22.42% 23.04% 22.65% 

 

Tables 35 to 38 show the results from our 2014-15 NHL dataset tests with differing Alpha 

and Beta values. In these tests, we utilized the NHL.com standings as our external ranking. These 

standings are based on win-loss ratio, which we expect may influence our results when compared 

to the power rankings utilized in the NFL and CFB tests. Additionally, we used our Berger/Shor 

approximation algorithm with node sorting by win-loss ratio (Y3) and by outgoing edge weight 

decreasing (Y4), as well our Hill Climb and ROC Search algorithms. 

 The tests in Tables 35 to 38 show that the total backedge weights are considerably high on 

average, especially when compared to the total backedge weights in the NFL tests. Additionally, 

in each Alpha/Beta configuration, all of our algorithms performed better than NHL.com’s ranking, 
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although we suspect this may be because standings were utilized in place of power rankings, so 

factors such as point differential were not considered. Either Y3 or Y4 performed the best in all 

cases, but we were surprised to see our ROC Search algorithm perform quite well, where it 

averaged slightly better than Hill Climb and beat Y4 with Alpha/Beta of (0,0). 

 When analyzing the teams in each ranking, we found that the majority of the teams placed 

in NHL.com top-10 standings were found in the top-10 rankings from our algorithms, with the 

exception of one or two teams. We also found that Alpha and Beta both have roughly equivalent 

impacts on the difference in minimum and maximum total backedge weight in our MLB rankings: 

Alpha/Beta of (0,0) have a difference of 3.81%, (0,1) have a difference of 2.46%, (1,0) have a 

difference of 2.38%, and (0.5,0.5) have a difference of 2%. We expect that this means similar 

weights from games are removed if the first set of games is removed with Alpha of 0 as if the set 

of games within one score is removed with Beta of 0. 

A summary of the total backedge weight percentages for the 2014-15 NHL dataset with 

our algorithms and existing rankings are shown in Figure 27. 

 

 
Figure 27: NHL 2014-2015 total backedge weight results 
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9.1.4: Major League Baseball (MLB) Ranking Results 

 

Table 39: Algorithm Comparisons on 2015 MLB (Alpha 0, Beta 0) 

Baseball- 

Reference 

Y3 Y4 Hill Climbing ROC Search 

Cardinals Blue Jays Blue Jays Blue Jays Blue Jays 

Pirates Astros Mets Astros Astros 

Cubs Cubs Nationals Cubs Cubs 

Royals Giants Indians Giants Mets 

Blue Jays Mets Royals Mets Giants 

Dodgers Pirates Giants Pirates Pirates 

Mets Nationals Red Sox Nationals Nationals 

Rangers Rangers Astros Indians Indians 

Yankees Indians Rangers Rangers Rangers 

Astros Dodgers Cubs Dodgers Dodgers 

26.19% 25.36% 24.98% 25.06% 25.16% 

 

 

 

 

Table 40: Algorithm Comparisons on 2015 MLB (Alpha 0, Beta 1) 

Baseball- 

Reference 

Y3 Y4 Hill Climbing ROC Search 

Cardinals Blue Jays Blue Jays Cubs Pirates 

Pirates Cubs Cubs Pirates Cubs 

Cubs Pirates Pirates Blue Jays Blue Jays 

Royals Cardinals Cardinals Cardinals Cardinals 

Blue Jays Rangers Rangers Rangers Rangers 

Dodgers Dodgers Dodgers Royals Royals 

Mets Royals Royals Dodgers Mets 

Rangers Mets Mets Mets Dodgers 

Yankees Indians Indians Indians Angels 

Astros Angels Angels Angels Indians 

26.52% 25.88% 26.08% 26.16% 26.23% 
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Table 41: Algorithm Comparisons on 2015 MLB (Alpha 1, Beta 0) 

Baseball- 

Reference 

Y3 Y4 Hill Climbing ROC Search 

Cardinals Blue Jays Blue Jays Blue Jays Blue Jays 

Pirates Astros Royals Astros Astros 

Cubs Cardinals Giants Cardinals Cardinals 

Royals Pirates Mets Giants Giants 

Blue Jays Giants Nationals Pirates Pirates 

Dodgers Dodgers Indians Dodgers Dodgers 

Mets Royals Astros Royals Royals 

Rangers Cubs Yankees Mets Mets 

Yankees Mets Cardinals Cubs Cubs 

Astros Nationals Dodgers Nationals Nationals 

26.73% 26.31% 26.62% 26.56% 26.56% 

 

 

Table 42: Algorithm Comparisons on 2015 MLB (Alpha 0.5, Beta 0.5) 

Baseball- 

Reference 

Y3 Y4 Hill Climb ROC Search 

Cardinals Blue Jays Blue Jays Blue Jays Blue Jays 

Pirates Pirates Pirates Pirates Pirates 

Cubs Cubs Royals Cubs Cubs 

Royals Cardinals Cubs Cardinals Cardinals 

Blue Jays Dodgers Cardinals Royals Royals 

Dodgers Royals Mets Dodgers Dodgers 

Mets Mets Dodgers Mets Mets 

Rangers Astros Rangers Astros Rangers 

Yankees Rangers Indians Rangers Astros 

Astros Yankees Yankees Giants Giants 

26.93% 27.07% 26.87% 27.28% 26.90% 

 

Tables 39 to 42 above show the results from our 2015 MLB dataset tests with differing 

Alpha and Beta values. In these tests, we utilized the baseball-reference.com’s standings as our 

external ranking. These standings are based on win-loss ratio, similar to NHL.com’s in our NHL 

tests, which we expect may influence our results when compared to power rankings. When testing, 

we used our Berger/Shor approximation algorithm with node sorting by win-loss ratio (Y3) and 

by outgoing edge weight decreasing (Y4), as well our Hill Climb and ROC Search algorithms. 
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Overall, scores for MLB rankings were much higher than other sports datasets we tested 

with, where many rankings contained more than 25% of the total graph weight as backedge weight. 

We expect that this is because the MLB graph is the densest graph in our test cases, with many 

games played between a small number of teams, such that a large number of backedges and 

backedge weight are unavoidable when generating rankings. Despite the high total backedge 

weights, at least one of our algorithms always outperformed the external ranking, and except for 

when Alpha/Beta was (0.5,0.5), all of our algorithms outperformed the external ranking. In 

general, either Y3 or Y4 performed the best, but only with an Alpha/Beta of (0,1) did Hill Climb 

or ROC Search not outperform either of the two variations. 

Additionally, the total backedge weights of the rankings generated by our algorithms are 

much closer when compared to other data sets, which we suspect is also due to the graph density 

resulting in fewer opportunities to improve upon rankings. For example, with Alpha/Beta values 

of (0.5,0.5), the difference in minimum and maximum total backedge weight from all rankings we 

tested was only 0.41% of the total graph weight. We also found that our Hill Climb and ROC 

Search algorithms generated the same rankings with Alpha/Beta of (1,0).  

A summary of the total backedge weight percentages for the 2015 MLB dataset with our 

algorithms and existing rankings are shown in Figure 28. 

 

 
Figure 28: MLB 2015 total backedge weight results 

 

9.2: Rank Differential Testing 

 The second full set of test cases conducted utilize the rank differential metric. Our test cases 

from the prior section demonstrate that our algorithms consistently outperform external rankings 

by the total backedge weight metric, but we wanted to determine how similar our rankings are to 

external rankings, which have consistent analysis and discussion on the ordering of teams before 

publication. As discussed in Section 2.3, the total backedge weight metric is rooted in our graph-

based approach, but success with this metric is also dependent on weighing each edge 
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appropriately. Therefore, comparison against external rankings and the factors they consider was 

a viable method to approximate our approach to weighing edges. 

 Given the nature of the rank differential metric, rank differentials need to be calculated 

from each test ranking to the control ranking, where several control rankings are present per sports 

dataset. Thus, we are not able to show each of the orderings and rank differentials generated, so 

we include a table of which Alpha and Beta values result in the lowest rank differential for our 

algorithms to the external rankings. Additionally, we provide heatmaps of the average rank 

differential which either align with the average trend of other algorithmically-generated rankings 

or are vastly different. Similarly to our external ranking heatmaps in Section 6.3, the heatmaps in 

this section show changes in Alpha on the vertical axis and changes in Beta on the horizontal axis. 

In each of our test cases, we utilize the normalized graph and enable quartile evaluation. 

 The first dataset we tested rank differential with is the 2016-17 NFL dataset. In this dataset, 

we compare with the ESPN, NFL.com, and Sports Illustrated power rankings. The best Alpha and 

Beta values to minimize our rank differential for each of our algorithms are shown in Table 43. 

 

Table 43: 2016-17 NFL Rank Comparison Results (Alpha, Beta) 

2016-17 NFL Hill Climbing Y3 Y4 ROC 

ESPN (1.0, 1.0) (1.0, 0.5) (0.5, 1.0) (1.0, 1.0) 

NFL.com (0.75, 1.0) (0.75, 1.0) (0.5, 1.0) (0.75, 0.75) 

Sports Illustrated (0.0, 0.75) (0.75, 1.0) (0.25, 1.0) (0.25, 1.0) 

 

As shown in Table 43, the best Alpha and Beta values to minimize rank differential for each 

external ranking from all of our algorithms are often both greater than 0.5 for ESPN and NFL.com, 

signifying that these rankings may not place as much emphasis on the recency of game and high 

point differentials as we expected when analyzing each ranking’s heatmap. Sports Illustrated’s 

best values were slightly different: it prefers small Alpha values but high Beta values. We suspect 

that SportsIllustrated places significant important on recency of game when generating their 

rankings as a result.  

Two sample heatmaps of average rank differential for different Alpha and Beta values are 

shown in Figures 29 and 30. In both heatmaps, a clear trend is visible that medium to high Beta 

values are preferred and high Alpha values are preferred. Additionally, average rank differential 

increases significantly with small Alpha and Beta values, especially so when Beta is 0. We expect 

that this is because our algorithms continue to optimize against the total backedge weight metric, 

and that utilizing a Beta value of 0 results in the removal of games where the final point differential 

is one score or less, skewing the output ordering. 
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 0 0.25 0.5 0.75 1 

0 5.6875 2.9375 2.1875 1.8125 1.875 

0.25 6.3125 2.5625 1.6875 1.5625 1.5 

0.5 6.625 2.875 1.5625 1.25 1.3125 

0.75 6.625 3.375 1.625 1.1875 1.25 

1 6.5 3.4375 1.75 1.625 1.5625 

Figure 29: NFL.com vs. ROC Search rank differentials Alpha/Beta heatmap 

 

 0 0.25 0.5 0.75 1 

0 5.5625 3.375 2.75 2.5625 2.625 

0.25 6.0625 3.0625 2.375 2.125 2.0625 

0.5 6.5 2.9375 2.0625 1.8125 1.9375 

0.75 6.625 3.1875 1.8125 1.6875 1.875 

1 6.375 3.25 1.8125 1.6875 1.625 

Figure 30: ESPN vs. Hill Climb rank differentials Alpha/Beta heatmap 

 

 The second dataset we tested rank differential with is the 2016-17 NCAA College Football 

(CFB) Division I dataset. In this dataset, we compare with the Associated Press (AP) and 

Associated Press Coaches polls, Bleacher Report, ESPN, and Sonny Moore power rankings. The 

best Alpha and Beta values to minimize our rank differential for each of our algorithms are shown 

in Table 44.  

 

Table 44: 2016-17 CFB Rank Comparison Results (Alpha, Beta) 

2016-17 CFB  Hill Climbing Y3 Y4 ROC 

AP (0.75, 1.0) (0.5, 0.5) (0.25, 0.75) (0.5, 0.25) 

Bleacher Report (0.75, 1.0) (1.0, 1.0) (0.25, 0.75) (0.5, 0.25) 

AP Coaches (0.75, 1.0) (0.5, 0.5) (0.25, 0.75) (0.5, 0.25) 

ESPN (0.5, 0.25) (0.5, 0.5) (0.0, 0.25) (0.5, 0.25) 

Sonny Moore (0.75, 0.75) (0.5, 0.5) (0.5, 0.5) (0.5, 0.25) 

 

Table 44 shows much more variance in best Alpha and Beta values for the external rankings when 

compared to the 2016-17 NFL results in Table 43. Two interesting trends shown are that ROC 

Search always has the lowest rank differentials for all external rankings with Alpha/Beta values of 

(0.5,0.25), and that Hill Climb almost always has the lowest rank differentials for external rankings 

with an Alpha/Beta of (0.75,1.0). Additionally, Y4 appears to favor small Alpha and Beta values 
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while Y3 prefers Alpha/Beta values near 0.5. Overall, both Associated Press polls, Bleacher 

Report, and Sonny Moore prefer mid-range Alpha and Beta values, while ESPN prefers lower 

values on average. This implies that ESPN’s power ranking favors higher-scoring and recent 

games more than the other rankings. 

 The heatmaps in Figures 31 and 32 show the two trends that each algorithm tended to 

follow during the rank differential tests. Compared to the heatmaps from our 2016-17 NFL dataset, 

the lower rank differentials are far more defined in the center of the heatmaps. However, both still 

show that low Beta values increase rank differential significantly, and that high Alpha and Beta 

values tend to reduce rank differential. Additionally, when compared to the 2016-17 NFL rank 

differential heatmaps, the lowest average rank differential for this set is far greater, though the 

highest average rank differential is only slightly higher. 

 

 0 0.25 0.5 0.75 1 

0 7.76 6.68 6.44 7.16 7.6 

0.25 7.84 5.84 6.44 6.6 7.24 

0.5 7.76 6.52 5.44 5.92 5.88 

0.75 7.84 7 6.24 5.6 5.96 

1 7.76 7.36 6.36 5.92 5.72 

Figure 31: Associated Press vs. Berger/Shor (Y3) rank differentials Alpha/Beta heatmap 

 

 0 0.25 0.5 0.75 1 

0 8.56 6.2 6.36 6.24 6.68 

0.25 7.96 6.76 6.76 6.08 6.6 

0.5 7.88 7.44 6.68 6.24 6.44 

0.75 7.6 7.72 7.4 6.72 6.2 

1 7.92 7.96 7.52 7.76 6.4 

Figure 32: Bleacher Report vs. Berger/Shor (Y4) rank differentials Alpha/Beta heatmap 

 

 Table 45 shows the third set of rank differential tests, which were conducted on our 2014-

15 NHL dataset. In this test case, we show the Alpha and Beta values for the lowest average rank 

differential on the NHL.com standings.  

 

Table 45: 2014-15 NHL Rank Comparison Results (Alpha, Beta) 

2014-15 NHL Hill Climbing Y3 Y4 ROC 

NHL.com (1.0, 0.75) (1.0, 0.75) (0.75, 0.75) (1.0, 0.75) 
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In Table 45, there is minimal variation between algorithms over which Alpha and Beta values 

result in the lowest average rank differential. In all cases except Y4, the best combination is 

(1.0,0.75); in the case of Y4, this combination is similar at (0.75,0.75). We can infer from this that 

these standings do not assign any value to the recency of game, and tend to not apply much more 

weight for a large point differential compared to a small one. This trend manifests itself in the 

heatmap in Figure 33, which also suggests that higher Alpha and Beta values result in lower 

average rank differentials. From this, we can infer that lower Alpha and Beta values assign more 

edge weight to backedges of this ranking, which are more recent and higher-scoring games. We 

expect that this is because our ranking was retrieved from NHL.com standings rather than a power 

ranking.   

 

 0 0.25 0.5 0.75 1 

0 4.46667 4.4 3.93333 3.53333 3.33333 

0.25 4.06667 3.26667 2.73333 2.66667 2.46667 

0.5 3.6 2.6 2.06667 1.86667 1.73333 

0.75 3.46667 2.33333 1.53333 1.4 1.53333 

1 3.6 2.2 1.4 1.33333 1.53333 

Figure 33: NHL.com vs. Hill Climb rank differentials Alpha/Beta heatmap 

 

 The final rank differential tests we conducted were on the 2015 MLB dataset. The results 

from our rank comparison with baseball-reference.com’s standings are shown in Table 46. 

 

Table 46: 2015 MLB Rank Comparison Results (Alpha, Beta) 

2015 MLB Hill Climbing Y3 Y4 ROC 

Baseball 

Reference 

(0.75, 1.0) (0.75, 1.0) (0.75, 1.0) (0.75, 1.0) 

 

Table 46 shows that the best Alpha and Beta values for minimizing the average rank differential 

for this ranking is (0.75,1.0). An interesting pattern is that this combination of values produces the 

lowest average rank differential for all of our algorithms. Additionally, the preference for higher 

values of Alpha and Beta aligns with the rank differential tests of all other datasets we examined. 

The heatmap in Figure 34 highlights this trend, where the highest Alpha and Beta values result in 

the lowest rank differentials. However, unlike the NHL ranking, this ranking appears to perform 

better with smaller Alpha values than smaller Beta values, indicating that the removal of all games 

within one score reduced much of the overlapping forward edge weight our ranking shared with 

the external ranking. 
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 0 0.25 0.5 0.75 1 

0 5.06667 3.93333 2.86667 2.33333 2.46667 

0.25 5.2 3.06667 2 2.06667 1.8 

0.5 4.86667 3.06667 2.06667 1.2 1.66667 

0.75 5.2 2.93333 2.2 1.06667 0.73333 

1 5.2 3.6 2.66667 0.93333 0.73333 

Figure 34: Baseball Reference vs. Berger/Shor (Y4) rank differentials Alpha/Beta heatmap 

 

9.3: Summary 

 In this chapter, we discussed all of the test cases conducted on our rankings and external 

rankings on four sports seasons datasets: 2016-17 National Football League (NFL) regular season, 

2016-17 College Football (CFB) full season, 2014-15 National Hockey League (NHL) regular 

season, and 2015 Major League Baseball (MLB) regular season. We introduced our total backedge 

weight metric test cases, where we tested each of our algorithms with four different Alpha and 

Beta combinations to determine where our algorithms performed the best. In all of these test cases, 

at least one of our algorithms outperformed every external ranking tested based on our total 

backedge weight metric. However, some of the best performances of our algorithms occurred when 

both Alpha and Beta were zero, which resulted in optimization against this metric rather than 

accuracy of ranking.  

 Additionally, we conducted rank differential test cases in the interest of generating rankings 

similar to external rankings to investigate similarities and trends between different Alpha and Beta 

values. In these test cases, we analyzed trends across sports and different rankings to determine if 

a correlation existed between certain Alpha and Beta values and improved accuracy within a given 

sport. In general, we found that, across the sports datasets we tested, Alpha and Beta values of 

greater than 0.5 each resulted in the lowest average rank differential. 
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Chapter 10: Conclusion 
 

 With the spread of technology and communication, people around the world are now able 

to further share their interests in sports and sports rankings with each other instantaneously. New 

forms of analytics, power rankings, and blogs continue to thrive and spark discussion among sports 

fanatics and enthusiasts about which teams played well over the past weeks and their speculations 

of upcoming games. The field of sports rankings remains a vibrant topic as people and systems 

tend to analyze metrics and outcomes of games in different manners, internally weighing factors 

uniquely to output an overall ranking of teams within sports leagues. 

 In this project, we explored sports rankings using a graph-based approach, in contrast to a 

more traditional formulaic approach. This graph-based approach applies a season of sports data to 

a graph data structure, where each team is a node, and each game is a directed edge between two 

nodes, pointing from the winning node to the losing node. The foundation of the graph-based 

approach is to approximate the Minimum Feedback Arc Set for each sports dataset, or the set of 

directed edges in our sports graph which remove cycles or upsets from the graph with as little edge 

weight as possible. Thus, the most accurate rankings for sports datasets would minimize the total 

edge weight of all backedges, or edges of upsets and disagreements with the rankings, which is 

found through the minimum feedback arc set. However, since the Minimum Feedback Arc Set 

problem is NP-Complete and because most computer scientists believe that P ≠ NP, it is not 

computationally feasible to generate these rankings. Therefore, approximations to the solutions are 

utilized instead. 

 Over the course of this project, we provide several contributions to rank generation in the 

context of sports rankings. Specifically, we: 

 

1. apply graph theory and the Minimum Feedback Arc Set problem to sports rankings with a 

unique approach different from the more common formulaic ranking approach,  

2. implement rank generation through a brute force approach and three approximation 

algorithms for the Minimum Feedback Arc Set problem,  

3. reverse-engineer sports rankings published online utilizing our graph data structures, and  

4. outperform existing sports rankings using our own algorithms according to our evaluation 

metric. 

 

We provide each of the above contributions through the different methodologies and test 

cases we conducted during this project. Our first contribution of graph theory application to sports 

rankings was completed through our program, approximation algorithms, and edge weight 

algorithms which convert raw sports season data into a graph data structure internally. We 

accomplished our second contribution of algorithm implementation through background research, 

design, testing, and optimizing four algorithms to generate and approximate rankings, one of which 

was developed using our own evaluation metric of Range of Correctness. The third contribution 

of reverse-engineering external rankings for this project was performed by our Alpha/Beta 
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heatmap and rank differential test cases, which allowed us to determine which of our edge weight 

factors influenced external rankings the most, and which factors brought our own algorithmically-

generated rankings closest to the external rankings. Our final contribution of outperforming 

existing rankings was completed through the correctness testing of our algorithms against external 

rankings on datasets from various sports seasons using the total backedge weight concept as our 

evaluation metric. 

 From the test cases conducted during our project, we came to three conclusions. The first 

conclusion we came to was that our algorithms tended to optimize more effectively for the total 

backedge weight metric in sparse graphs and small Alpha and Beta values, where significant 

amounts of edge weight in the graph could be removed. Secondly, we deduced that, even with 

Alpha and Beta values optimized for external rankings, we were still able to outperform them. 

Finally, we concluded that overall, external rankings tend to favor Alpha and Beta values of greater 

than 0.5, indicating reduced consideration of the recency of games and margin of victory. 

 

10.1: Future Work 

 During this project, several topics came up in discussion that we did not have the chance 

to explore further. The first of these topics is research into additional factors that can be considered 

when weighing edges. Our approach considered point differential, strength of schedule, and 

recency of game, which allowed for flexibility across many sports, but by discounting other factors 

we sacrificed accuracy. We recommend further investigation into program logic for classification 

of sports to account for different factors dynamically depending on which sport is provided as 

input, and for different factors such as roster changes and importance of playoff games to be 

considered. Furthermore, we suggest research into applying exponential decay with recency of 

games, as this could further increase accuracy when analyzing rankings. 

 The second topic we did not have time to explore was modeling sports where more than 

two players or teams participated in a match, such as swimming or track and field. When modeling 

two-team sports, such as football or hockey, the Minimum Feedback Arc Set problem can be 

applied by treating each game as a directed edge between two nodes representing the teams. 

However, when considering matches with more than two teams, a hypergraph-based approach may 

need to be considered, as an edge for one match would need to connect more than two nodes. We 

are unsure of how this would be modeled or if the Minimum Feedback Arc Set problem could be 

applied to hypergraphs, but we think that investigation into this problem in the interest of analyzing 

different sports could yield great benefits. 

 Additionally, we did not have time to explore alternative heuristics for evaluating external 

rankings outside of total backedge weight and average rank differential. We are skeptical of the 

utility of our metrics for use in better understanding external rankings. The Alpha/Beta 

optimization for total backedge weight seemed to favor values where as much edge weight could 

be minimized as possible, leading to Alpha/Beta values that did not reflect the priorities of the 

external ranking. Furthermore, since our algorithms frequently outperformed external rankings on 

the heuristic of total backedge weight, we cannot accurately apply this metric even with the optimal 
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Alpha/Beta configuration for external rankings determined by rank differential because the total 

backedge weight metric optimizes towards reducing edge weight where possible. We recommend 

further exploration into alternative ways of measuring accuracy in rankings to address this. 

Finally, we suggest testing with a wider range of sports seasons in the future. Our test cases 

consisted mostly of recent NFL, NHL, MLB, and college football datasets. We think that further 

data and external ranking collection could allow for deeper analysis into the underlying factors of 

these rankings, as trends could be analyzed over several years of rankings. Additionally, collection 

of data and rankings for other league sports could provide great insight on how ranking factors 

vary across sports. 
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Appendix A: Glossary 
● Graph: A data structure consisting of V, a nonempty set of vertices (or nodes) and E, a 

set of edges 

● Vertex / Node: An entity or datapoint within a graph 

● Edge: An association between one or two vertices 

● Endpoint: A vertex associated with an edge 

● Unweighted graph: A graph whose edges do not contain edge weights 

● Weighted graph: A graph whose edges each have a numerical value as an edge weight 

● Directed graph: A graph whose edge set contains directed edges 

● Directed edge / Arc: An edge associated with an ordered pair of vertices, where the first 

vertex is the starting vertex and the second vertex is the ending vertex 

● Indegree: The number of edges with a given vertex as its ending vertex 

● Outdegree: The number of edges with a given vertex as its starting vertex 

● Path: A sequence of edges (x0, x1), (x1,x2), (x2,x3), … , (xn-1, xn) in G, where n is a 

nonnegative integer, and x0 = A and xn = B 

● Cycle: A path of length n ≥ 1 that begins and ends at the same vertex 

● Cyclic graph: A graph that contains one or more cycles 

● Acyclic graph: A graph that does not contain cycles 

● Ranking: A unique ordering of some collection of entities, with an implied hierarchy of 

which entities are better than others based upon a given comparison metric 

● Forward edge: An edge that agrees with a ranking, whose existence indicates that the 

ordering of one node above another is correct 

● Backward edge / Backedge: An edge that disagrees with the ranking, whose existence 

indicates that the ordering of two nodes may be incorrect  

● Strongly connected: The property of a graph where there is a sequence of directed edges 

from any vertex in the graph to all other vertices in the graph 

● Strongly connected component: A subgraph of a directed graph G that is strongly 

connected but not contained in larger strongly connected subgraphs 

● Total backedge weight: The sum of all backedges for a ranking for a graph 

● Rank differential: A comparative metric measuring the average difference in rank of 

each team between a control ranking and a test ranking 

● Control ranking: The ranking in a rank differential used as the basis for comparison 

● Test ranking: The ranking in a rank differential to compare with 

● Adjacency matrix: “the n x n zero-one matrix with 1 as its (i, j)th entry when vi and vj 

are adjacent, and 0 as its (i, j)th entry when they are not adjacent” [22] 

● Alpha: The factor in our edge weight algorithm which represents recency of game and 

linear decay 

● Beta: The factor in our edge weight algorithm which represents the edge weight before 

normalization to total graph weight 
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● Beta Normalization: The process of assigning edge weights based on the beta interval in 

which the point differential is contained  

● Beta Interval: The number of points assigned to each range in Beta Normalization 

● Heatmap: A matrix of total backedge weight values for a given ranking where the cells 

are colored in varying gradients based on their value, with the horizontal axis indicating 

changes in Alpha and the vertical axis indicating changes in Beta 

● Range of Correctness: An exclusive range for a ranking where the lower-bound index is 

of the lowest-ranked team it lost to, and the upper-bound index is of the highest-ranked 

team that it won against. 

● Bounds (Range of Correctness): The inclusive uppermost or lowermost position in the 

ranking whereby any swaps of a team’s ranking within each bound would result in the 

same or reduced total backedge weight for a ranking  

● Rank pool: A pool data structure which rearranges teams in a ranking based on their 

Range of Correctness 

● Relevant edges (Rank pool): The edges dictating the upper and lower bounds for a 

team’s Range of Correctness 

● CFB: Abbreviation for “College Football” 
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Appendix B: Alpha/Beta Heatmap Testing (cont.) 
 

In this Appendix, we present all of the Alpha/Beta heatmaps created and analyzed but not 

included in our results. The analysis of the heatmaps in our results can be found in Section 6.3. 

 

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.164039 0.1628 0.162039 0.161525 0.161154 0.160874 0.160655 0.160479 0.160334 0.160213 0.160111 

0.1 0.163211 0.162493 0.162054 0.161758 0.161545 0.161384 0.161259 0.161158 0.161076 0.161006 0.160948 

0.2 0.162508 0.162233 0.162066 0.161954 0.161873 0.161812 0.161764 0.161726 0.161695 0.161668 0.161646 

0.3 0.161906 0.162012 0.162077 0.16212 0.162151 0.162174 0.162193 0.162207 0.162219 0.162229 0.162238 

0.4 0.161382 0.16182 0.162086 0.162263 0.162391 0.162486 0.162561 0.162621 0.16267 0.162711 0.162745 

0.5 0.160924 0.161653 0.162093 0.162388 0.162599 0.162757 0.162881 0.16298 0.163061 0.163128 0.163185 

0.6 0.160519 0.161506 0.1621 0.162498 0.162782 0.162995 0.163161 0.163294 0.163403 0.163494 0.163571 

0.7 0.160159 0.161375 0.162106 0.162595 0.162944 0.163205 0.163409 0.163572 0.163706 0.163817 0.163911 

0.8 0.159836 0.161258 0.162112 0.162681 0.163088 0.163393 0.16363 0.16382 0.163975 0.164104 0.164214 

0.9 0.159546 0.161153 0.162117 0.162759 0.163217 0.16356 0.163827 0.164041 0.164216 0.164362 0.164485 

1 0.159283 0.161058 0.162121 0.162829 0.163333 0.163712 0.164006 0.164241 0.164433 0.164593 0.164729 

Figure 35: 2016-17 NFL heatmap (ESPN, Quartiles On) 

 

 The heatmap shown in Figure 35 represents the total backedge weights with different 

Alpha/Beta combinations of ESPN’s power ranking for the 2016-17 NFL dataset. Unlike most 

other heatmaps, this heatmap shows two separate combinations which scored well: the lowest total 

backedge weight with Alpha/Beta values of (1,0), but also low backedge weight with values of 

(0,1). However, if Alpha and Beta were both small, which applies minimal values to the earliest 

and closest games in the season, the total backedge weight was quite high; further, if Alpha and 

Beta were both large, which treats recency of game and point differential as less important than 

the wins and losses themselves, the total backedge weight was nearly equivalent. We suspect that 

the favoring of either Alpha or Beta having a small value while the other has a large value is 

dependent on season specific data, where ESPN’s power ranking maintains team placement such 

that discounting early games or discounting close games resulted in the reduction of “equivalently-

weighted” backedges. 
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 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.159785 0.158517 0.15774 0.157214 0.156834 0.156548 0.156324 0.156144 0.155996 0.155872 0.155767 

0.1 0.165025 0.163104 0.16193 0.161139 0.160569 0.16014 0.159804 0.159535 0.159313 0.159129 0.158972 

0.2 0.169467 0.166973 0.165455 0.164433 0.163699 0.163146 0.162714 0.162368 0.162084 0.161847 0.161646 

0.3 0.173281 0.17028 0.168459 0.167237 0.16636 0.165699 0.165184 0.164771 0.164433 0.164151 0.163911 

0.4 0.176591 0.17314 0.171052 0.169652 0.168649 0.167895 0.167307 0.166835 0.166449 0.166127 0.165855 

0.5 0.179491 0.175637 0.173311 0.171755 0.17064 0.169802 0.16915 0.168627 0.168199 0.167842 0.16754 

0.6 0.182052 0.177837 0.175298 0.173601 0.172387 0.171475 0.170766 0.170197 0.169732 0.169345 0.169016 

0.7 0.184331 0.179789 0.177058 0.175236 0.173933 0.172955 0.172194 0.171585 0.171086 0.170671 0.170319 

0.8 0.186371 0.181533 0.178629 0.176693 0.17531 0.174272 0.173465 0.172819 0.172291 0.171851 0.171478 

0.9 0.188209 0.183101 0.18004 0.178 0.176544 0.175453 0.174604 0.173925 0.17337 0.172907 0.172516 

1 0.189873 0.184518 0.181313 0.17918 0.177658 0.176517 0.17563 0.174921 0.174341 0.173858 0.17345 

Figure 36: 2016-17 NFL heatmap (Sports Illustrated, Quartiles On) 

 

The heatmap shown in Figure 36 represents the total backedge weights with different 

Alpha/Beta combinations of Sports Illustrated’s power ranking for the 2016-17 NFL dataset. In 

this heatmap, the Alpha/Beta value with the lowest total backedge weight was (0,1). From this data 

point, we can infer that this power ranking favors games more based on their recency than on the 

point differential of the game, as a Beta value of 1 only considers wins instead of point differential 

and an Alpha of 0 allows for the maximum decay of earliest games possible. An interesting trend 

from this heatmap is that the total backedge weight increases significantly more if increasing Alpha 

when Beta is small. We suspect that this is because some edges which support Sports Illustrated’s 

ranking have less weight than backedges with smaller Alpha/Beta values compared to when Beta 

is larger. 
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 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.005297 0.006666 0.007749 0.008628 0.009354 0.009966 0.010487 0.010937 0.011329 0.011673 0.011979 

0.1 0.005759 0.007012 0.008003 0.008808 0.009473 0.010033 0.010510 0.010922 0.011282 0.011597 0.011877 

0.2 0.006114 0.007277 0.008199 0.008946 0.009564 0.010085 0.010529 0.010912 0.011245 0.011539 0.011799 

0.3 0.006394 0.007488 0.008353 0.009056 0.009637 0.010126 0.010543 0.010903 0.011217 0.011493 0.011738 

0.4 0.006622 0.007658 0.008479 0.009145 0.009696 0.010159 0.010555 0.010896 0.011194 0.011455 0.011687 

0.5 0.006811 0.007800 0.008583 0.009218 0.009744 0.010187 0.010564 0.010890 0.011174 0.011424 0.011646 

0.6 0.006970 0.007919 0.008670 0.009280 0.009785 0.010210 0.010572 0.010885 0.011158 0.011398 0.011611 

0.7 0.007105 0.008020 0.008745 0.009333 0.009820 0.010230 0.010579 0.010881 0.011144 0.011376 0.011581 

0.8 0.007222 0.008108 0.008809 0.009379 0.009850 0.010247 0.010585 0.010878 0.011132 0.011356 0.011555 

0.9 0.007324 0.008184 0.008866 0.009419 0.009877 0.010262 0.010591 0.010874 0.011122 0.01134 0.011533 

1 0.007414 0.008252 0.008915 0.009454 0.009900 0.010275 0.010595 0.010872 0.011113 0.011325 0.011513 

Figure 37: 2016-17 CFB heatmap (Associated Press, Quartiles On) 

 

 In Figure 37, we show the heatmap of Associated Press’ poll for the 2016-17 NCAA 

College Football (CFB) Division I dataset. In general, this heatmap shows that this ranking has 

low total backedge weights from small Alpha and Beta values, with the best total backedge weight 

occuring with Alpha/Beta of (0,0). Overall, increases in Alpha for this heatmap result in minimal 

increases in total backedge weight, while increases in Beta result in substantial increases in total 

backedge weight. We can infer from this that point differential of the game has more of an 

influence than recency of game, as increases in edge weight for close games result in more 

backedge weight. One interesting trend of this heatmap is how, for high Beta values, increases in 

Alpha reduce the total backedge weight. We suspect this follows the same reasoning as above, 

where earlier games are more likely to be forward edges, so increasing their edge weights through 

Alpha increases the total forward edge weight more than the total backedge weight. 

 

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.005297 0.006464 0.007387 0.008135 0.008754 0.009275 0.009719 0.010103 0.010437 0.010730 0.010991 

0.1 0.005759 0.006824 0.007667 0.008351 0.008917 0.009393 0.009799 0.010149 0.010455 0.010723 0.010961 

0.2 0.006114 0.007101 0.007883 0.008517 0.009042 0.009483 0.009860 0.010185 0.010468 0.010718 0.010938 

0.3 0.006394 0.007320 0.008054 0.008649 0.009141 0.009555 0.009908 0.010213 0.010479 0.010713 0.010920 

0.4 0.006622 0.007498 0.008192 0.008755 0.009221 0.009613 0.009948 0.010237 0.010488 0.01071 0.010906 

0.5 0.006811 0.007646 0.008307 0.008844 0.009288 0.009662 0.009980 0.010256 0.010496 0.010707 0.010894 

0.6 0.006970 0.007770 0.008404 0.008918 0.009344 0.009702 0.010008 0.010272 0.010502 0.010704 0.010883 

0.7 0.007105 0.007876 0.008486 0.008982 0.009392 0.009737 0.010031 0.010285 0.010507 0.010702 0.010875 

0.8 0.007222 0.007967 0.008557 0.009036 0.009433 0.009767 0.010052 0.010297 0.010512 0.010700 0.010867 

0.9 0.007324 0.008047 0.008620 0.009084 0.009469 0.009793 0.010069 0.010308 0.010516 0.010698 0.010861 

1 0.007414 0.008117 0.008674 0.009126 0.009501 0.009816 0.010085 0.010317 0.010519 0.010697 0.010855 

Figure 38: 2016-17 CFB heatmap (Coaches, Quartiles On) 
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In Figure 38, we show the heatmap of Associated Press’ Coaches polls for the 2016-17 

NCAA College Football (CFB) Division I dataset. This ranking aligns with the standard 

Associated Press poll shown in the heatmap in Figure 37, from favoritism towards small 

Alpha/Beta to decreases in total backedge weight when increasing the Alpha value with a high 

Beta value. We suspect that the reasoning behind these trends matches that of the standard 

Associated Press poll, where backedges are more likely to be close games than earlier games. 

Therefore, increasing Beta is more likely to create large amounts of backedge weight, while 

increasing Alpha creates backedge weight and forward edge weight, decreasing the total backedge 

weight in some combinations. 

 

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.004868 0.006485 0.007764 0.008802 0.009661 0.010383 0.010998 0.011530 0.011993 0.012400 0.012761 

0.1 0.005174 0.006657 0.007831 0.008784 0.009571 0.010234 0.010799 0.011287 0.011712 0.012086 0.012418 

0.2 0.005410 0.006790 0.007883 0.008769 0.009503 0.010120 0.010647 0.011101 0.011497 0.011845 0.012154 

0.3 0.005596 0.006895 0.007924 0.008758 0.009449 0.010030 0.010525 0.010953 0.011326 0.011654 0.011945 

0.4 0.005748 0.006980 0.007957 0.008749 0.009405 0.009956 0.010427 0.010833 0.011187 0.011499 0.011775 

0.5 0.005873 0.007051 0.007984 0.008741 0.009368 0.009895 0.010345 0.010734 0.011072 0.011370 0.011634 

0.6 0.005978 0.007111 0.008007 0.008735 0.009337 0.009844 0.010277 0.010650 0.010975 0.011262 0.011515 

0.7 0.006068 0.007161 0.008027 0.00873 0.009311 0.009801 0.010218 0.010579 0.010893 0.011169 0.011414 

0.8 0.006146 0.007205 0.008044 0.008725 0.009288 0.009763 0.010168 0.010517 0.010822 0.011089 0.011327 

0.9 0.006214 0.007243 0.008059 0.008721 0.009269 0.009730 0.010123 0.010463 0.010759 0.011020 0.011251 

1 0.006273 0.007277 0.008072 0.008717 0.009251 0.009701 0.010085 0.010416 0.010705 0.010959 0.011184 

Figure 39: 2016-17 CFB heatmap (Bleacher Report, Quartiles On) 

 

 Figure 39 shows Bleacher Report’s ranking of the 2016-17 NCAA College Football (CFB) 

Division I dataset. This ranking also produces lower total backedge weights with small Alpha and 

Beta values, with the lowest total backedge weight occurring with Alpha/Beta of (0,0). As shown 

in the heatmap, this ranking also has much greater increases in total backedge weight with higher 

Beta values than Alpha values, which we suspect is due to the favoritism of higher scoring games 

over older games. However, this ranking appears to align with many older games, as the total 

backedge weight for a high Beta value decreases substantially as Alpha increases. 
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 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.004653 0.005597 0.006344 0.006950 0.007452 0.007873 0.008233 0.008543 0.008813 0.009051 0.009262 

0.1 0.005421 0.006293 0.006983 0.007543 0.008006 0.008396 0.008728 0.009015 0.009265 0.009485 0.009680 

0.2 0.006011 0.006828 0.007474 0.007999 0.008433 0.008798 0.009110 0.009378 0.009613 0.009819 0.010002 

0.3 0.006478 0.007251 0.007863 0.008360 0.008771 0.009117 0.009412 0.009666 0.009888 0.010083 0.010256 

0.4 0.006857 0.007595 0.008179 0.008653 0.009045 0.009375 0.009657 0.009900 0.010112 0.010298 0.010464 

0.5 0.007171 0.007880 0.008441 0.008896 0.009273 0.009590 0.009860 0.010094 0.010297 0.010476 0.010635 

0.6 0.007436 0.008119 0.008661 0.009100 0.009464 0.009770 0.010031 0.010257 0.010453 0.010626 0.01078 

0.7 0.007661 0.008324 0.008849 0.009275 0.009627 0.009924 0.010177 0.010396 0.010587 0.010754 0.010903 

0.8 0.007855 0.008500 0.009011 0.009425 0.009768 0.010057 0.010303 0.010516 0.010702 0.010865 0.011009 

0.9 0.008025 0.008654 0.009152 0.009557 0.009891 0.010173 0.010413 0.010621 0.010802 0.010961 0.011102 

1 0.008174 0.008789 0.009277 0.009672 0.01 0.010275 0.010510 0.010713 0.010890 0.011046 0.011184 

Figure 40: 2016-17 CFB heatmap (Sonny Moore Top-25, Quartiles On) 

 The heatmap of Sonny Moore’s top-25 ranking for the 2016-17 NCAA College Football 

(CFB) Division I dataset is shown in Figure 40. Similar to the other college football heatmaps from 

this season, this ranking also performs best with small Alpha and Beta values, with the lowest total 

backedge weight occurring at Alpha/Beta of (0,0). In contrast to the other rankings, this ranking 

appears to increase linearly in backedge weight regardless of whether Alpha or Beta are increased, 

where large values of Alpha and Beta result in the highest total backedge weights. We expect that 

this is because the ordering of teams in the ranking results in roughly equivalent backedge weights 

from older games and from close games, as increases in value to either results in similar increases 

towards the total backedge weight. 

 

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.228729 0.237419 0.242752 0.246358 0.248959 0.250924 0.25246 0.253695 0.254708 0.255556 0.256274 

0.1 0.232984 0.241241 0.246285 0.249686 0.252135 0.253982 0.255425 0.256583 0.257534 0.258328 0.259001 

0.2 0.236592 0.244464 0.249256 0.25248 0.254797 0.256542 0.257904 0.258997 0.259894 0.260642 0.261276 

0.3 0.239689 0.24722 0.251789 0.254857 0.257059 0.258716 0.260009 0.261045 0.261894 0.262603 0.263203 

0.4 0.242377 0.249603 0.253975 0.256905 0.259006 0.260585 0.261817 0.262803 0.263611 0.264285 0.264856 

0.5 0.244732 0.251684 0.25588 0.258688 0.260699 0.26221 0.263387 0.264329 0.265101 0.265745 0.26629 

0.6 0.246812 0.253517 0.257555 0.260254 0.262185 0.263635 0.264763 0.265667 0.266407 0.267024 0.267546 

0.7 0.248663 0.255143 0.259039 0.26164 0.263499 0.264894 0.26598 0.266849 0.26756 0.268153 0.268655 

0.8 0.25032 0.256597 0.260364 0.262876 0.26467 0.266016 0.267063 0.267901 0.268586 0.269157 0.269641 

0.9 0.251813 0.257903 0.261553 0.263984 0.26572 0.267021 0.268033 0.268843 0.269505 0.270056 0.270523 

1 0.253165 0.259084 0.262626 0.264984 0.266667 0.267928 0.268908 0.269691 0.270332 0.270866 0.271318 

Figure 41: 2017-18 NFL heatmap (NFL.com, Quartiles Off) 
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 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.222222 0.228702 0.232678 0.235367 0.237306 0.238771 0.239917 0.240837 0.241593 0.242225 0.242761 

0.1 0.231285 0.236792 0.240157 0.242426 0.244059 0.245291 0.246254 0.247027 0.24766 0.24819 0.248639 

0.2 0.238968 0.243617 0.246446 0.24835 0.249718 0.250749 0.251553 0.252198 0.252728 0.253169 0.253544 

0.3 0.245564 0.249451 0.251809 0.253392 0.254528 0.255383 0.25605 0.256585 0.257023 0.257389 0.257699 

0.4 0.251289 0.254495 0.256435 0.257735 0.258667 0.259368 0.259914 0.260352 0.260711 0.26101 0.261263 

0.5 0.256304 0.2589 0.260467 0.261516 0.262267 0.262831 0.263271 0.263623 0.263911 0.264151 0.264355 

0.6 0.260734 0.26278 0.264013 0.264836 0.265426 0.265868 0.266213 0.266489 0.266714 0.266903 0.267062 

0.7 0.264675 0.266224 0.267154 0.267776 0.26822 0.268554 0.268813 0.269021 0.269191 0.269332 0.269452 

0.8 0.268205 0.2693 0.269958 0.270397 0.27071 0.270945 0.271128 0.271274 0.271394 0.271493 0.271578 

0.9 0.271383 0.272066 0.272475 0.272748 0.272942 0.273088 0.273201 0.273292 0.273366 0.273428 0.273481 

1 0.274262 0.274566 0.274747 0.274869 0.274955 0.27502 0.27507 0.27511 0.275143 0.275171 0.275194 

Figure 42: 2017-18 NFL heatmap (USA Today, Quartiles Off) 

 

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.089660 0.10661 0.118152 0.126518 0.132861 0.137835 0.14184 0.145135 0.147892 0.150234 0.152247 

0.1 0.090446 0.107594 0.11926 0.127711 0.134115 0.139136 0.143177 0.1465 0.149282 0.151643 0.153673 

0.2 0.091106 0.108419 0.120189 0.12871 0.135165 0.140224 0.144296 0.147643 0.150444 0.152822 0.154866 

0.3 0.091667 0.109121 0.120978 0.129559 0.136057 0.141149 0.145245 0.148613 0.15143 0.153822 0.155878 

0.4 0.092151 0.109725 0.121657 0.130289 0.136824 0.141943 0.146062 0.149446 0.152278 0.154681 0.156747 

0.5 0.092572 0.11025 0.122248 0.130924 0.137491 0.142634 0.146771 0.150171 0.153014 0.155428 0.157502 

0.6 0.092942 0.110711 0.122766 0.131481 0.138076 0.143239 0.147393 0.150806 0.15366 0.156082 0.158164 

0.7 0.093269 0.111119 0.123224 0.131974 0.138593 0.143775 0.147942 0.151367 0.15423 0.156661 0.158749 

0.8 0.093561 0.111483 0.123633 0.132412 0.139053 0.144252 0.148432 0.151866 0.154738 0.157175 0.159269 

0.9 0.093823 0.111809 0.123999 0.132806 0.139466 0.144679 0.148871 0.152314 0.155193 0.157637 0.159736 

1 0.094059 0.112103 0.124329 0.13316 0.139838 0.145064 0.149266 0.152718 0.155604 0.158052 0.160156 

Figure 43: 2017-18 NFL heatmap (NFL.com, Quartiles On) 
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 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 0.066841 0.087941 0.10231 0.112725 0.120621 0.126814 0.1318 0.135901 0.139334 0.142249 0.144756 

0.1 0.068019 0.089153 0.103533 0.113949 0.121842 0.12803 0.133011 0.137107 0.140535 0.143446 0.145948 

0.2 0.069007 0.090169 0.104557 0.114973 0.122864 0.129047 0.134024 0.138116 0.141539 0.144446 0.146945 

0.3 0.069848 0.091034 0.105427 0.115844 0.123731 0.129911 0.134884 0.138972 0.142392 0.145295 0.147791 

0.4 0.070573 0.091778 0.106176 0.116593 0.124478 0.130654 0.135624 0.139708 0.143125 0.146025 0.148517 

0.5 0.071204 0.092425 0.106828 0.117243 0.125126 0.1313 0.136266 0.140347 0.143761 0.146658 0.149148 

0.6 0.071758 0.092993 0.107399 0.117814 0.125695 0.131866 0.13683 0.140908 0.144319 0.147214 0.149702 

0.7 0.072248 0.093496 0.107905 0.118319 0.126198 0.132367 0.137328 0.141404 0.144812 0.147705 0.150191 

0.8 0.072686 0.093944 0.108355 0.118769 0.126646 0.132812 0.137771 0.141845 0.145251 0.148142 0.150626 

0.9 0.073078 0.094345 0.108759 0.119172 0.127048 0.133212 0.138168 0.14224 0.145645 0.148534 0.151016 

1 0.073432 0.094708 0.109123 0.119536 0.12741 0.133572 0.138526 0.142596 0.145999 0.148886 0.151367 

Figure 44: 2017-18 NFL heatmap (USA Today, Quartiles On) 
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