
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

March 2007

Centralized Intrusion Detection via Swarm Robots
Christopher M. Warms
Worcester Polytechnic Institute

Christopher Stephen Thein
Worcester Polytechnic Institute

Derek J. Williams
Worcester Polytechnic Institute

Nathan D. Fuller
Worcester Polytechnic Institute

Nathan S. Rosenblad
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Warms, C. M., Thein, C. S., Williams, D. J., Fuller, N. D., & Rosenblad, N. S. (2007). Centralized Intrusion Detection via Swarm Robots.
Retrieved from https://digitalcommons.wpi.edu/mqp-all/2186

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2186&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/2186?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2186&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Project Number: MAD-006A

CENTRALIZED INTRUSION DETECTION via SWARM ROBOTS

A Major Qualifying Project Report

 Submitted to the Faculty

 of the

WORCESTER POLYTECHNIC INSTITUTE

 in partial fulfillment of the requirements for the

 Degree of Bachelor of Science

by:

________________ ________________

Nathan Fuller Nathan Rosenblad

________________ ________________

Christopher Thein Christopher Warms

Derek Williams

Date: March 1, 2007

Approved:

Professor Michael Demetriou, Major Advisor

 i

Acknowledgments

 We would like to especially thank Professor Michael Demetriou for all his guidance

throughout this project. Special thanks are extended to Eric Twark, whose extensive knowledge

of programming, aided us in the creation of a program for the robots. We would like express our

sincere gratitude to Nathan Rosenblad whose efforts in creating basic circuit board design,

procuring parts, and base construction over the summer made this project possible. Other special

thanks are sent to the Aerospace Engineering Professors who shared their input and ideas at our

weekly meetings.

 ii

Abstract

 The goal of this project is to design, construct, and implement a centralized system to

control drone robots equipped with visible and infrared light sensors which systematically detect,

track, and contain an “intruder.” The drone robots and base station use custom-written software

which allows wireless intercommunication and control between them via radios. Once the

program commences, the robots are controlled autonomously by the base station; there is no

human input, other than controlling the “intruder’s” trajectory.

 iii

TABLE OF CONTENTS

TABLE OF CONTENTS .. iii

LIST OF FIGURES .. v

1. INTRODUCTION... 1

2. COMPONENTS.. 4

2.1 Testing Environment... 4

2.1.1 Environmental Test Platform (ETP) .. 5

2.2 Drone Robots .. 7

2.2.1 Radio .. 8

2.2.2 Battery Pack ... 9

2.2.3 Power Saving Feature .. 9

2.2.4 Infrared Distance Sensors .. 10

2.2.5 Boe Bot Chassis ... 10

2.2.6 Wheels.. 11

2.3 Chute... 12

3. SUBSYSTEM DESIGN.. 13

3.1 Panning Sensor Head .. 13

3.1.1 Light Contamination Detectors.. 14

3.1.2 Angular Positioning of Light Sensors.. 14

3.1.3 Final Design ... 18

3.2 Short Distance Infrared Sensors ... 19

3.3 LED Contaminant Source... 19

3.4 Positioning System Methods .. 20

3.4.1 Time Based Positioning ... 21

3.4.2 Global Based Positioning... 21

3.4.3 Inertial Navigation ... 22

3.4.4 Odometry ... 22

3.5 Main circuit boards and components .. 25

3.6 Programming .. 26

3.6.1 Interactive Graphical User-Interface (GUI)... 27

 iv

3.6.2 Development of GUI.. 27

3.6.3 GUI Obstacles .. 27

3.6.4 Present Programming... 28

4. RESULTS .. 29

4.1 Program: ‘RoboSim V2.0’ .. 29

4.2 Large Testing Environments... 34

4.3 Sensors .. 37

4.4 Radio Communication .. 38

5. ANALYSIS .. 39

6. CONCLUSION ... 41

7. RECOMMENDATIONS.. 42

References .. 43

Appendix A: Robot Component Schematics .. 44

Appendix A: Robot Component Schematics .. 44

Appendix B: Robot Movement Equations.. 46

Appendix C: Full Calculations for Sensor Head Field of View.. 47

Appendix D: Initial Scanning and Panning Sensor Head Design .. 48

Appendix E: Main Cubloc Code.. 49

Appendix F: Radio Cubloc Code... 62

Appendix G: Base Station Code .. 64

Appendix H: Purchased Materials .. 89

 v

LIST OF FIGURES

Figure 1: Unmanned Aerial Vehicle, "Predator" .. 1

Figure 2: MARs Robots Navigating Obstacles... 2

Figure 3: Environmental Test Platform with Robots and Intruder ... 5

Figure 4: Fully Assembled Robot ... 7

Figure 5: Radio Circuit ... 8

Figure 6: Battery Pack with (On/Off/Charge Switch) .. 9

Figure 7:GP2Y0A02YK Infrared Distance Sensor... 10

Figure 8: Boe Bot® Chassis ... 11

Figure 9: Wheel with Encoder Cover ... 11

Figure 10: Chute: The origin and charging port of the robot.. 12

Figure 11: Panning Sensor Head with Sensors ... 13

Figure 12:TSL257 Sensor with and without Collimator... 14

Figure 13: Light and Sensor Calibration Setup... 15

Figure 14: Sensor Output Values.. 15

Figure 15: Plot of Minimum Over-Threshold Data .. 16

Figure 16: Diagram of Sensor Head Angular Offset Nomenclature.. 17

Figure 17: Final Design Panning Sensor Head ... 18

Figure 18: GP2D12 Infrared Short Range Distance Sensors.. 19

Figure 19: Intruder with LEDs.. 20

Figure 20: Boe Bot Chassis with Tank Treads ... 22

Figure 21: Wheel servo with optical encoder fixed to the inside of the servo.............................. 24

Figure 22: Main Circuit Board.. 25

Figure 23: RoboSim's Main Screen .. 29

Figure 24: RoboSim's New Simulation Drop Down Menu .. 30

Figure 25: RoboSim’s Simulation Drop Down Menu .. 30

Figure 26: RoboSim's Scenario Menu .. 31

Figure 27: RoboSim's Environment Size Menu ... 32

Figure 28: RoboSim's Pre-Sim Setup Menu ... 33

Figure 29: RoboSim's Robot Health Menu... 34

Figure 30: Robots in the Chute (Origin) ... 34

Figure 31: Robots Moving to their Starting Positions .. 35

Figure 32: Robots in Position; Awaiting the Start Command .. 35

Figure 33: Robots Initial Movement Towards the Intruder .. 36

Figure 34: Robots Tighten the Gap around the Intruder... 36

Figure 35: Contained Intruder... 36

Figure 36: Panning and Scanning Sensor Head.. 48

 1

1. INTRODUCTION

 The goal of this project was to develop a network of robots with the capability of

detecting an intruder, and having the ability to track, follow, and effectively surround it. Prior to

the development of this system, other robotic programs used by the military and other

universities were studied and reviewed. Previous autonomous robot models were examined, as

this project aims to add more advanced capabilities to autonomous technologies already in place.

An autonomous robot network was developed to allow a robot to detect and capture an intruder

alone and/or with the aid of other robots.

 This was one of the first autonomous robotic projects to be completed in WPI’s

Aerospace Engineering Department. WPI was not the first to investigate the need for

autonomous robots, as there have been many university and military research projects

investigating the plausibility of utilizing self-guided systems. One such system is the military’s

“Predator,” which is an autonomous unmanned aerial vehicle, requiring human input only on

certain mission critical decisions.. It requires the input of a directive or target that it aims to

achieve or destroy.

Figure 1: Unmanned Aerial Vehicle, "Predator"

The “Predator” has the capability to make its own decisions in flight as well as to communicate

to other “Predators.” The concept of a completely autonomous robot is complex, but beginning

with basic sense-and-react algorithms, as was conducted in this MQP project, one is better able

to understand “the next step” in achieving a fully autonomous system.

 2

Another project that involved autonomous robots was the “Multiple Autonomous

Robots” (MARs) program conducted at GRASPP Laboratories, PA. The MARs project worked

with multiple robots over various types of terrain using several types of sensors as seen in Figure

2. These sensors included infrared distance sensors, omni-directional cameras, video

transmitters, and powerful onboard processors. This project modeled tests that involved random

terrain and hazardous conditions (smokey buildings, inclement weather). They used laptop

processors to increase the robots’ operating capacity as well as sensor functionality. The methods

implemented by the MARs project provided useful information on some of the characteristics

that needed to be investigated for the model being developed in the WPI project.

Figure 2: MARs Robots Navigating Obstacles

 The research completed by the MARs group showed that there was the need for an

autonomous system of robots with the ability to track, capture, or contain an object that makes a

safe zone unsafe. This object can be a physical mass or a liquid that results in the harmful

contamination of previously clean area. There are a variety of sensors that can be used to track an

intruder, (video, light, distance, vibration, chemical, or biological, etc). The robot network was

developed to detect an intruding contaminating source using only distace and light sensors. The

project was limited to this scale of sensors due to the availability of equipment and budget. The

sensors used in this project provided an excellent proof of concept in creating an autonomous

network resulting in the potential to integrate additional sensors in the future. The light sensors

that were integrated into the detection robots provide for the tracking of the intruder which emits

a contaminant signature of blue LED light. Using the robots that were built, along with Cubloc®

software, the sensory input from the robots is transmitted wirelessly to the main base station and

in turn to any other robots connected wirelessly with the same software. The program’s ability to

 3

communicate wirelessly is the key to allowing multiple robots to be used in the tracking and

capturing of said intruder.

 Movement is a key part of the robots’ operational features. Each robot is required to

tabulate its own position in order to effectively communicate it to the others operating in the

area. Various transportation methods such as flying, wheeled motion, tread movement, or roller

balls, each have their own benefits but also require different methods for calculating position.

The choice of movement was decided in conjunction with the means of determining position.

Wheel based mobility was chosen due to the fact that a proven system was already in place that

was accurate and useful for the scope of the project.

 Position calculation was another key component of the project, as it was an integral part

in tracking not only the location of the intruder, but the positions of other robots as well.

Accurate movements needed to be recorded in order to effectively track a robot’s position. The

tracking information was relayed to the other robots through the base station allowing for

combined efforts between the robots to contain the intruder. The environment in which the

system was designed to operate was on a small scale, therefore positioning technologies such as

GPS did not provide the accuracy and also had prohibitive costs. The localization method used

required the installation of an optical rotary encoder on the drones’ drive motors to track the

number of wheel revolutions completed. This method was been proven to be accurate using the

Cubloc® software, and was implemented in the design of this project.

 At the time that this project was conducted, there were no other existing projects at WPI

that utilize 9 robots that communicate together in an attempt to trap or contain an intruder. This

project breaks a lot of new ground in the field of autonomous inter-communication, position

tracking, and robot controls. The scope of this project encompassed a large number of aspects

that were challenging to complete in the 3 term period allotted for the project.

 The developed program effectively executes the utilization of the robots’ sensors as well

as allows the robots to communicate with one another, resulting in an efficient, expeditious

containment of an intruder. The design of the system allows the capture of an intruder in multiple

scenarios in various differently sized areas. The project presents a basic model of autonomous

robot based communication and its effectiveness in completing the specifically tasked functions.

It also presents great opportunities for future students to expand and further develop the tracking

and containing methods as well as programming of robot intercommunication.

 4

2. COMPONENTS

 The following sections describe the components of the robots that were purchased or

manufactured and assembled. Additionally, this section details what initial components were

necessary to be built prior to initial testing of the robots. Certain parameters were assumed, as

they provided guidance on how the project was developed in certain areas. For example, the

distance sensors maximum range is five feet, so the testing environment was limited to no more

than 50 square feet. Therefore, the robots would eventually contain the intruder, but after an

extensive amount of time. Limits such as these provided more defined requirements for the

development of the system.

2.1 Testing Environment

 Defining acceptable testing spaces helped concentrate the project goals. The fifty square

foot dimensions of a rectangular area were assumed for a number of factors:

a. Battery life of the robot

b. Capability of sensory equipment (range)

c. Timing of tracking intruder

d. Accessibility to malfunctioning robots

e. Number of robots used for scenario

 Two main reasons for the definition of a testing space included the fact that the sensory

equipment used had limited capabilities, and the amount of time required to track and surround

an intruder needed to be within limits of detecting robot’s battery life. In a large-scale application

of this model, a robot may be given hours to detect an intruder over a large distance, and

provided with the proper equipment to scan large areas. With the allocated budget and time

restraints for developing the model system, the smaller operating area was necessary and well

suited for the robots’ abilities. The smaller area also provides for the recording of data that can

be used to verify the accuracy and effectiveness of the algorithmic functions and the system’s

responses.

 5

2.1.1 Environmental Test Platform (ETP)

 Due to the fact that the speed (eight inches per second) and physical size of the robots did

not mandate a large operating area to demonstrate initial results, an original testing space of 6 by

9 feet was defined. A platform was designed and built, keeping in mind the necessity to access

the robots during testing (all sections of the platform were required to be within reaching

distance). By first operating the system in this well-defined controlled are, it allowed for the

decision to be made as to whether or not the model was ready for testing in a larger area. The

flat, smooth surface eliminated unknown variables such as reflection and slippage. It also

allowed the addition of temporary obstacles which were used to test the maneuverability

functions of the robots. Once moved to a larger testing area, variables such as smooth, flat

surfaces, and external interference (lights, wax floors, reflections) were no longer controlled.

For initial testing, the surface presented no obstacles or obstructions that affected the robots’

distance and light sensors. With no foreign impediments on either of the sensors (light or

distance), the ability to accurately track the results of any test was achieved.. To minimize the

number of impediments, the platform was constructed with a plain white base. The base

consisted of a 3/16 inch rigid particle board material with a semi glossy white surface finish as

seen in Figure 3 below.

Figure 3: Environmental Test Platform with Robots and Intruder

 6

The platform was required to be mobile, giving the robots the ability to be presented or

demonstrated in various locations. This was taken into consideration, as the platform was

designed in three identical sections. Each section had the dimensions of 3 feet by 6 feet by 3

inches (length x width x height). The sections were bolted together to provide stability and

eliminate cracks between the sections of the whiteboard.

 7

2.2 Drone Robots

 There were ten drone robots that were assembled for this project. Nine of the robots were

designed for tracking and sensing an intruder, and one of the robots was set as the intruder. The

setup of the main circuit boards of the robots was designed during the summer previous to the

official project by Nathan Rosenblad, who was participating in a summer internship. Of the ten

robots, the intruder is the only one not equipped with the long/short distance sensors and light

sensors. As seen in Figure 4, the remaining nine robots have the following components:

a. Radio communication board

b. Standard battery pack

c. Power saving feature

d. Infrared distance sensors

e. Boe Bot chassis

f. Wheel based movement

Figure 4: Fully Assembled Robot

 Each component above was used during the testing of the robot. Some of the capabilities

were modified from its manufacturer’s specifications to be more efficient for this project. The

nine drone robots are equipped with a set of long and short range infrared sensors that detect

distance to objects and light. The purpose of these devices was to detect other robots, obstacles,

walls and sources of contamination.

Radio Daughter

Board Scanning Head

Scanning servo

Power management

mosfets

Main circuit board

Battery Connector

Blue light sensors

Long range infrared

distance sensor

Obstacle avoidance

infrared distance sensors

 8

These sensors are divided into two separate groups: navigation sensors and intruder detection

sensors. The navigation sensors are proprioceptive in that they are responsible for the functions

that are inherent to the robots such as the compass or positioning sensors. The intruder detection

sensors are exteroceptive, in that they are influenced by outside sources such as the light from

the intruder or distance readings induced by a physical obstacle.

2.2.1 Radio

 Each robot was equipped with a 2.4 GHz radio with a range of 490 feet, allowing

communication from a base station to the robots. The base station consists of a PC operating the

Cubloc® software and the program that was developed on it. The antenna allows wireless

communication between the robot and the station. The program was designed to directly

communicate from the station to the robots or vice versa. Information from the computer

program is sent to the robot to order it to engage certain functions. The robots also operate based

on the program embedded in their primary CPU, and relay gathered data to the base station. The

robots have the potential to communicate robot to robot, but due to limitations in the onboard

processors, this type of delegation is not viable. The radio daughter board and its components

can be seen in Figure 5.

Figure 5: Radio Circuit

CB220 Processor

module

Radio processor

programming port

Radio ID #

Radio aux. power

Radio Processor reset
3.3 Volt regulator

Data Bus to main

circuit board

XBee 24 Wireless serial

modem

 9

2.2.2 Battery Pack

The onboard power supply for the robots is a Nimh (Nickel Metal Hydride) pack

containing 6 AA sized batteries. Each robot is equipped with a rechargeable battery pack

mounted to the underside of the robot chassis. To recharge the batteries, the battery packs can be

wired to a battery recharging unit, or can be directly connected to a power supply providing a

charge of 9 volts. With the addition of an “on/off/charge” switch, as seen in Figure 6, one can

stop charging the batteries easily when it’s wired directly to a power source.

Figure 6: Battery Pack with (On/Off/Charge Switch)

 The switch has three positions: up (on), middle (off), and down (charge). It takes the battery

pack about 10 hours to charge while in ‘charge mode’. The battery charger was attached to the

chute which provided protection to the robots while they were being charged. These batteries are

suitable for this project because if they ware run at max capacity, meaning all functions of the

robot were running constantly, the battery life during this operation would be about 4 hours.

There was no need to run all the functions of the robot at once so the battery life increases to

about 8-10 hours.

2.2.3 Power Saving Feature

 Similar to what was stated in the ‘battery pack’ section above, the robots have the

capability to use only the functions necessary to complete the required operations. The program

developed to control the robots has commands built in that command the robot to perform

specific functions when certain variables are encountered. This feature allows the robot to sustain

a longer battery life because it knows which functions are necessary at any given time.

On/Off/Charge

Switch

 10

2.2.4 Infrared Distance Sensors

 Each drone robot is equipped with a pair of identical SHARP GP2D120 infrared object

detectors. These detectors, hard-mounted on the front of the robot have the ability to sense

objects in the range of 5 to 40 cm from their front faces. The use of two detectors mounted side

by side allowed the onboard processor to make movement decisions in a given direction based

on the feedback from these detectors.

 A long range infrared sensor was also part of the contamination detection system. The

GP2Y0A02YK, by Sharp, is capable of detecting objects in the range of 20 to 150 cm from the

front of the sensor. One of these long range sensors was mounted on each robot. They served to

aid in contamination detection by locating the distance to the source of the blue light

contamination. The long range distance sensor is shown in Figure 7.

Figure 7:GP2Y0A02YK Infrared Distance Sensor

2.2.5 Boe Bot Chassis

 The base platform chosen for the drone robots was the Boe Bot® Chassis by the Parallax

Company. The chassis was a standard part that allowed for easy integration with the electronic

subsystems. Constructed of aluminum, it had pre-cut square openings for attaching servo motors

for mobility, in addition to a number of standard holes for mounting electronics, wheels, and

sensors. Three additional holes were made to this chassis to support the main circuit board. The

chassis is shown in Figure 8.

Detector/Receiver

Emitter

 11

Figure 8: Boe Bot® Chassis

2.2.6 Wheels

 There was a choice of using wheels or treads as the method of movement for the robot.

Although treads provided a lower amount of slippage compared to wheels, the final decision was

made to use wheels. Initially, treads were installed on the robots; however, the method of

positioning that was attempted was not successful due to the low resolution of the tread counters

that were mounted to the drive sprockets. Wheels were finally chosen because there was already

a position tracking algorithm in place that was modified to work better for our model. With the

wheels, operation in rough terrain such as gravel or shag carpet is not feasible, but the amount of

error in the wheels is far less than what could be obtained with treads. An example of the wheels

that were used is shown in Figure 9.

Figure 9: Wheel with Encoder Cover

 12

2.3 Chute

 The chute was designed to give the robots a starting point for initialization of all

detection scenarios. Since the robots’ positioning system is absolute, they need to have a known

starting point, or global origin, allowing the base station to relay accurate position of where an

individual robot is positioned in the operating environment or in relation to additional activated

robots. The chute provided this known starting point due to the fact that it is placed on the field

in a known position, and the position of each robot in each chute was known. The position of

each robot is based off the bottom left corner of the chute. Since the dimension of the chute was

known, the area of the test platform was known, and the placement of the robots were known, the

robots global origin is defined and its location anywhere on the platform is known with respect to

the origin. This initial set up was the only user interface required to get accurate position. Once

the original position was calculated and entered into the simulation program, the robots were

able to track themselves and the other robots for the duration of the test.

 The secondary function of the chute was to operate as a battery charging station. Holes

were drilled into the rear wall of the chute to allow a charging connector wire access to each of

the robots. The robots, once finished with their testing, returned to the chute and were manually

plugged in by the user. The chute is shown in Figure 10 below.

Figure 10: Chute: The origin and charging port of the robot

 13

3. SUBSYSTEM DESIGN

The “Subsystem Design” section explains how components previously described in the

components section above were integrated resulting in a high performance intrusion detection

network. The designs below were specifically manufactured for this application. These

subsystems include the panning sensor head, LED contaminant robot, optical positioning system,

performance coding, and the main circuit board design.

3.1 Panning Sensor Head

In order to locate and track the contaminating intruder, a sensor head was designed on

which both the long-range infrared object detector and three light-to-voltage converters are

mounted. The infrared distance sensor was mounted vertically as seen in Figure 11 to allow the

scanning capability that is an integral part of locating the intruder. The sensor scans in a 180

degree vertical plane. Many design iterations were performed and the final design was chosen

due to the fact that it successfully integrates its components for use in the dynamic testing

environment. If the future testing environments change, it may be necessary to modify the sensor

head to acquire the best results for the new environment.

Figure 11: Panning Sensor Head with Sensors

Infrared long

distance sensor

Light Sensor with

collimator

 14

 3.1.1 Light Contamination Detectors

 The drone robots are each equipped with a set of sensors that serve the function of

detecting a remote contamination source. For the applications that were investigated in the

project's current research, the contamination source was a blue light emitting diode (LED)

attached to an independent robot. The LED, mounted to the "intruder" robot, emitted a blue

light (approximately 470nm wavelength). Therefore, each drone robot was equipped with a set of

sensors capable of detecting this wavelength. The sensors used to detect the contaminating

source were classified as high sensitivity light to voltage converters. The TSL 257 had its highest

response in the 350 to 500 nm wavelength range, with its peak at 590 nm (TAOS). With an input

voltage source of 2.7 - 5.5 volts, the sensor outputted a voltage that was directly proportional to

the light intensity.

 Initial tests showed that the sensors were reading values that were close to the maximum

limit when used unmodified in a room with ambient fluorescent lighting. This was due to the fact

that the sensors, in their original form allowed light to enter from 180 degrees around the front

surface. Through the attachment of a collimating tube to the front surface of the sensor, the

amount of ambient light that entered the sensor was limited. It only permitted light rays that were

traveling in a straight line parallel with the tube to enter the sensor. This allowed the drone to

determine the location of the intruder based upon the angle with the maximum blue light levels.

The TSL257 light sensor and collimator tube can be seen in Figure 12.

Figure 12:TSL257 Sensor with and without Collimator

3.1.2 Angular Positioning of Light Sensors

The angular placement of the light to voltage converters in the panning sensor head was

determined through the use of initial experimental data. A set of calibrations was completed on a

single light to voltage converter (with collimator) to determine its field of view.

Taos INC. TSL257
Collimator

 15

Figure 13: Light and Sensor Calibration Setup

 The algorithm developed to locate and track the contaminating light source requires

known calibration values for the field of view of each individual sensor, as well as the sensor

head as a whole. An initial experiment was performed to determine the field of view of a single

sensor with collimator attached. As seen in Figure 13, above, a high power blue LED was used

as the light source. The experiment was performed on a vibration isolation table that has bolt

holes every inch on its top surface. A dual output power supply at 4.0 Volts DC was used to

supply the voltage for the LED and sensor. A digital multi-meter was used to measure the sensor

output. The LED was mounted to a steel support block and moved to different x and y

coordinates of the table, with the sensor output being recorded for each location. This data was,

in turn, used to calculate the angular field of view of an individual sensor. A plot of one set of

data recorded can be seen in Figure 14, below.

Figure 14: Sensor Output Values

LED Light

Source

Multimeter

Power

Supply

Light

Sensor

y

x

 16

 Using the data obtained in the measurements described above, the field of view for the

sensor was calculated. During the time of experimentation, the sensor output with ambient

lighting (no LED) was 0.479 volts. In order to determine the angle at which the sensors received

a noticeable light change, a minimum threshold value for measured light had to be set. This

threshold was rounded up from the ambient level to 0.5 volts in order to eliminate any small

offsets or outliers. The lowest values above the 0.5 volt threshold were then used to plot a line

and determine its angular offset from the centerline of the sensor. A plot of the minimum over-

threshold values with overlaid linear trend lines is shown in Figure 15 below.

0

5

10

15

20

25

30

35

40

45

-10 -5 0 5 10

x position (inches)

y
 p
o
s
it
io
n
 (
in
c
h
e
s
)

Figure 15: Plot of Minimum Over-Threshold Data

It can be seen that there is a bias in the data values towards the positive x-coordinates. This is

most likely due to an angular offset in the mounting of the sensor on the steel support block. This

offset is ignored due to the fact that the field of view is taken as the combination of the two

angles. The field of view angle for the sensor-collimator unit was estimated using the slopes of

the linear trend lines shown in the plots above (mL = 7.77, mR = 12.071).

deg07.12
1

tan
1

tan 11 =















+







=Θ −−

RL mm

 17

 Using the field of view angle (Θ), the offset angles for the side sensors were determined. By

setting the intersection point for the side field of view with the center field of view to be four

inches, the angular offset angle (θ) is calculated using the following equation:

2

2
tan

tan90 1 Θ
−
























Θ
−= −

d

d
θ ,

where d is the distance to the intersection point from the front of the collimator. The angle θ that

was calculated for the distance (d) of four inches is 6.93 degrees. Due to manufacturing

constraints, the angle was rounded down to 5 degrees. Using a Bridgeport Milling Machine in

the shops of Higgins Labs, angle blocks were used to drill holes in the sensor head at this angle

and were only available in five degree increments. This angular orientation was tested and

proved to be successful. Figure below illustrates the variables used and the arrangement of the

light sensors.

Figure 16: Diagram of Sensor Head Angular Offset Nomenclature

θ

Θ

d

 18

3.1.3 Final Design

There were many alterations to the original sensor head design to accommodate certain

modifications to the robot. It was determined that the two axes of sensor head panning ability

were unnecessary and possibly detrimental to accuracy, therefore the head was modified to pan

along one axis. The two axes of servos increased the uncertainty of observations because the

long range sensor cannot take accurate measurements at a downward angle. In addition, project

costs were reduced and it freed up more CPU and battery power.

There were other alterations that improved the overall performance of the sensor head.

The original design had three separate components required to mount the servo onto the sensor

head. It was modified to a single piece sensor head to accommodate the single axis operation,

and strengthen the part. This allocated less moving parts, provided more sturdiness and resulted

in less induced error.

Figure 17: Final Design Panning Sensor Head

 One of the major design changes to the sensor head involved the long-range sensor

orientation. The sensor was repositioned from a horizontal to a vertical orientation, as is seen in

Figure 17 above. This was selected because when mounted horizontally, the IR signal interfered

with the short range sensors. The vertical orientation negated the interference, and through

GP2Y0A02YK Infrared

Distance Sensor

Collimator
Taos INC Blue

light sensors

 19

experimental observations this orientation provided measurements that were far superior to

previous ones. This phenomenon occurred because the vertical sensor was now directly aligned

with the contaminant source. This modification consequently allowed distance measurements to

the source of the light to be accurate and properly aligned.

3.2 Short Distance Infrared Sensors

 These sensors also needed to be mounted so their scanning area is a 180 degree vertical

scan. The two sensors mounted on the front of the robot needed to be mounted at a 45 degree

angle outwards (away from each other). This was done in order to eliminate readings from the

sensors concerning the same detected object which would skew the results transmitted to the hub

and send the robot in the wrong direction.

Figure 18: GP2D12 Infrared Short Range Distance Sensors

 3.3 LED Contaminant Source

 The role of the intruding contaminating source was fulfilled by a simple robot similar to

the drone robots. It uses the same chassis as the drones, but was not equipped with a Cubloc®

processor. The robot followed a designated path, and was not designed to operate autonomously

as the drones. The intruder distributed a contaminant within the 2-dimensional operating

environment. Blue light emitted from an LEDs attached to the intruder robot was used as the

contamination source and was detected by the sensor arrays of the drone robots. The LEDs

emitted light with a wavelength of λ ~ 470 nm. A key requirement for the intruder was that the

robot was able to distribute LEDs light 360 degrees around the robot. This allowed the drone

Receiver

Emitter

 20

robots to identify and accurately determine the location of the intruder. Several methods of

distributing the LEDs light around the robot were proposed, including: mounting several LEDs

around the robot, and using one high power LEDs with a reflective distributor. The idea of

mounting several LEDs around the perimeter of the intruder induces a greater error in

determination of the target’s location due to the fact that there are multiple light sources on the

same intruder that were detected by the drone robots. The development of a light distribution

device allowed the light from a single high power LED source (3500-4000 mW) to be distributed

360 degrees around the intruder robot. The light was emitted upwards from the LED and was

reflected off the inverted cone and redirected outwards away from the center of the robot.

Figure 19: Intruder with LEDs

3.4 Positioning System Methods

 In order for successful operation of the drone robots, a precise positioning system was

required. This system was required in order to accurately command each robot to any point in a

2-D space. Each robot should be able to both accurately and precisely navigate to any given set

of coordinates within a specified tolerance (tolerance and error are discussed in the analysis

section). Due to the cooperative operation of the robots, they should also work with the same

coordinate system so that a particular set of coordinates means the same thing for each robot.

The coordinate system can also be used to set boundaries, meaning that physical walls may not

be necessary. Lastly with respect to the intruder, if located by one of the drones its position can

be accurately conveyed to the remainder of the drones.

 21

 Several methods for determining the position of the robots while operating in a defined

area were investigated. Each method had benefits and disadvantages. Time based movement,

Global reference positioning, inertial navigation, electromagnetic guidance, and several methods

of odometry were all researched in the development of the drone robots. The system that was

eventually chosen was a method of odometry that used an optical rotary encoder.

3.4.1 Time Based Positioning

 The highest error rated method was that of time based positioning. The basic concept of

this system was movement over defined periods of time at approximate velocities. This method

achieves partially accurate positioning. However, basing movement on time introduces much

possibility for error. Propulsion errors were large and were difficult to minimize as drive

velocities varied with the type of movement, the acceleration necessary to achieve the velocity,

power train status, terrain, and the kinematics coupling the system to the environment. The

produced results worked, however the tolerance between each robot made the system both

impractical and imprecise. Lastly, such a system has compounding positional errors which were

a function of distance traveled.

3.4.2 Global Based Positioning

 The system was based on measured distances to known positions and was accurate and

precise however, the equipment needed to operate this method was expensive and out of our

budget. The systems ability varied when taking the requested change of distance with respect to

the space to measured. Most of the measured distance systems rely on some sort of

electromagnetic wave transmitter and receiver system. The most popular are GPS and LORAN.

These systems rely on being able to calculate the difference in time it took the radio wave which

traveled at a constant speed to arrive at a location from multiple transmitters. Accuracy was

largely a function of the frequency used as one wavelength was ideal. With GPS for example, a

position could be obtained within a few centimeters with respect to the whole world. In the case

of the drone robots, a few centimeters was a large area as the whole system wasn’t very big. A

positioning system that used distance measuring would require short wavelengths; these

wavelengths were so short that the cost of implementing such systems would be prohibitive.

 22

3.4.3 Inertial Navigation

 Inertial navigation determines an object’s placement in a defined space by measuring

accelerations in various axes and integrating these measurements with respect to time. This

system can be very precise but not accurate as it was subject to drift. It required periodic updates

of its location by a global measurement system. These systems also have the same price short

comings as the GPS style systems in that more accurate systems are expensive.

3.4.4 Odometry

 This left the final method of positioning an object in a defined area, odometry. The

method utilized a system of sensors which estimated the distance traveled by a wheeled or track-

driven robot. The most popular odometry method was measurement of the angular displacement

of the wheels or drive train. This system was particularly accurate when the interaction between

the drive train and ground was ideal. This meant no slippage; one rotation of a wheel with the

diameter of one unit traveled exactly Pi units with respect to ground. Vehicles driven with tracks

or tank-steer had a hard time maintaining accuracy after a series of movements due to friction

and slippage that could not be modeled.

Tread Counter

 The initial odometry method proposed involved the use of optical encoders attached to

the spur gears of the tread drive system. After initial experimentation, it was determined that this

method introduced a highly significant amount of error due to the tread slippage issues discussed

above. These errors resulted in the abandonment of this positioning method.

Figure 20: Boe Bot Chassis with Tank Treads

 23

Mouse (surface)-Based Odometry

In an effort to maintain the implementation of the tread-drive system for the robots,

methods of using optical and ball computer mice to determine position were thoroughly

investigated. It was hypothesized that this would eliminate the slippage problem by removing the

tire/surface interaction from the equation. This method required that onboard sensors directly

evaluate the ground, surface, and identify vehicle movement by detecting the changes in the

surface. This method was widely used in the macro field with ground firing radar which

measures Doppler shift to determine movement. In the micro field of the drone robots, the

preference was the use of optical systems. These systems detected the change in surface texture

or movement of surface anomalies with respect to their field of view. This method was relatively

inexpensive and was thought to have a supposedly high level of precision and accuracy on

surfaces.

 The proposed operation of the mouse (surface)-based odometry system was as follows;

the counts in the x and y axis were to be tabulated for each sensor. The x values were ignored as

they were only indicating slippage in a direction perpendicular to direction of travel. These

values were used to detect the lateral movement such as an outside force acting on the drone. The

position of each drone was determined by analysis of the separate y axis counts for the left and

right sides. When the count was equal to the right count the drone was moving in a straight line.

If the left count was higher the drone is turning right; if the right count was higher the drone was

turning left.

The initial devices used for this method were optical PS/2 computer mice. Preliminary

testing showed that these devices would be successful at completing this task. Communication

between the mouse and the robot’s Cubloc® processor was established. Using these mice

required the addition of a PIC microcontroller chip. However, as programming was further

developed, several major sources of error were discovered. The optical mice calculated position

by integrating an observed velocity which lead to a large number of rounding errors. In further

pursuance of this method, standard PS/2 ball mice were investigated. Ball mice were promising

at first as they measured displacement instead of velocity; however they still had poor

repeatability. This was caused by the fact that the values drifted when the mouse was idle. When

data of positioning was compiled over time, this produced errors, greater than one foot in

 24

magnitude. When used in a small operating environment (six by nine feet), this large magnitude

was highly unacceptable, resulting in the abandonment of this positioning concept.

Wheel-based Odometry (Method Used)

 The positioning system that was chosen for this project was a method of wheel-based

odometry. Often used in robotic applications, this method was overlooked at first due to the fact

that it would not work with the tread-drive system. The decision was made to switch to wheels

and use optical rotary encoders to measure the number of rotations that the wheels traveled.

 In this method, a sensor was used in collaboration with an encoder pattern that was glued

to a gear. The encoder pattern is made up of black and white wedges that are equally spaced

around the gear. A sensor adds to a running total every time a black wedge passes. These two

totals are used in the following algorithm to resolve the current heading and position of the

drone.

Figure 21: Wheel servo with optical encoder fixed to the inside of the servo

Optical encoder pattern

))cos(-)(cos(*AY

))sin(-)(sin(*AX

/
)L-(R*2

)L(R*
 A

*)(

:

)sin(*

)cos(*

:

*

*

ORIGINALNEWDISTANCEPOSITION

ORIGINALNEWDISTANCEPOSITION

DISTANCEDISTANCE

DISTANCEDISTANCE
DISTANCE

θθ

θθ

θθ

θ

θ

+=

+=

+
=

+
−

=

+=

+=

=

=

=

ORIGINAL

ORIGINAL

ICLEWIDTHOFVEH

ORIGINAL

ICLEWIDTHOFVEH

OUNTINCHESPERCCOUNTCOUNT
NEW

ORIGINALDISTANCEORIGINALPOSITION

ORIGINALDISTANCEORIGINALPOSITION

DISTANCEDISTANCE

OUNTINCHESPERCLCOUNTtTOTADISTANCE

OUNTINCHESPERCCOUNTTOTALDISTANCE

Y

X

D

D

NLR

Else

RYY

LXX

RLIf

NRR

NLL

Rotary encoder glued inside the servo

 25

3.5 Main circuit boards and components

 The main board of each robot serves as back plane for all of the components. All

connections between parts are made on the surface of the board. Numerous header connectors

were attached for connecting various sensors and external circuitry. The main board in actuality

was a Cubloc
TM®

 CB280 prototyping board adapted for use on these robots. The board was

made from double-sided copper clad fiberglass. All components are thru-hole mounted meaning

fast and easy repair due to accessibility. The board, as designed for prototyping, has ample space

for component placement as well as easy access to all the IO lines of the processor. Holes were

drilled in the board to ease in the mounting of large components like the charging port.

Components were fastened to the board by means of soldering; most components are located on

the outer perimeter to free space in the middle for future component additions. The main board,

when mounted to the metal chassis of the robot, served as the backbone of each robot.

Figure 22: Main Circuit Board

Power supply

Batter

charging port

Main processor reset

switch

Right motor

connector

Whisker

switches (not

implemented)

Radio daughter

card interface

Cubloc CB280

Processor

ADC zeroing

resistors

Wheel encoder

connector

Left motor

connector

Power Management mosfets

Scanning Servo L. distance sensor

Long range dist. sensor

R. distance sensor

Blue light sensor

Battery

Connector

Main

processor

program port

 26

 The power supply for each robot was located on the main board. It was based on the

LM2576T switching regulator. This device regulates the high non-stable voltage provided by the

battery packs into a stable five volts which were used for all voltage-sensitive components. Due

to the switching nature of the regulator, there was very little energy lost converting from the

higher battery voltage down to five volts. However not all components operate solely on the five

volt bus. The drive motors, used for propulsion, used the raw voltage of the batteries. This

means that as the battery packs discharge, the motors operated slower. This method was chosen

to isolate the sensitive electronics from the back EMF created by the operation of the motors.

The radios used on these robots also operate on a lower voltage then the five volt main bus. The

three volts necessary for the operational radios was provided by a low current regulator pulling

power from the 5 volt bus. The power supply system for these robots was very efficient,

meaning longer run times on the batteries before recharging.

 To further decrease the power consumption of each drone robot; all sub systems can be

powered down either individually or collectively. Mosfet switches are used to control which

subsystems are active. An adaptive power scheme was devised to maximize the run time of the

fleet of robots. Each drone is assigned a different power usage layout based on what its task in

the fleet is. For instance if the drone is in sleep mode, only the main processor and radio is

powered; while in active mode all sensors and motors can be energized.

3.6 Programming

 Programming was a crucial part of this project as it provided the guidance given to the

robots. This part of the project required the user to understand the computer science field.

Programming was the second most important step in the project (the first being the design and

manufacturing of the robots). This project would be unaffective if there was no direction given to

the robots to tell them how to interact. Looking into other literary sources concerning robotic

positioning and models, this project created an advanced track and trap method the robots

followed. All Algorithms and code were broken into two parts, the code which is sent to each

drone and the code running of the base station.

 27

3.6.1 Interactive Graphical User-Interface (GUI)

 The graphical user-interface (GUI) was essential to this project as it allows future teams

to run the same code without an understanding of how it works. The GUI must be intuitive for

users who will not receive a great deal of training. Some training will be available from past

students who worked on the project, however in the future it may be more difficult to find. The

GUI has many requirements, many of which are very time consuming to follow through with.

 The GUI provides a simple, user-friendly way of creating, saving, and loading different

simulation scenarios. A scenario consists of a series of robots, a user-defined environment, static

but randomly placed obstacles, and various robot “states.” There also is a way for a user to

change general preferences, add or remove robots from the software, and view robot vital

statistics without looking at or modifying existing source code. Finally the GUI must show a

real-time simulation view, which has pseudo-scale robot representations moving about the screen

as they are actually doing it in the simulation. For each task detailed in this report, there must be

a graphical counterpart to illustrate that task such that the user need not understand source code

to utilize the software.

3.6.2 Development of GUI

 Before a user-interface can be developed, the tasks that the GUI represented must first be

developed. In this case, the GUI and the represented tasks were done in parallel. For instance,

when functionality becomes available to install or remove a robot, a GUI representation of that

task was developed before another task was started. The GUI part should always be done after

the task has been completed. This means that if a task has become delayed, the GUI

representation of that task has also become delayed.

3.6.3 GUI Obstacles

 There comes a time when the GUI cannot be developed until another part of the project

was also developed. For example, until the position system was tested and working, it was nearly

impossible to test with any certainty the quality of the simulation viewer on the master software.

This module was tested by feeding it sample data, however many variables such as refresh speed

cannot be significantly tested until position is completed.

 28

 The only difficulty was the issue with robot representation scaling on the simulation

viewer module of the master software. Initially the robots were to be on a 9ft by 6ft

environmental test platform. With the resolution of a standard computer monitor, both the test

platform, and the robots could be drawn to scale on-screen while still showing the heading of

each robot. When the scenario changed to placing robots on a 30ft by 30ft environment, the

drawing also changed on-screen. When drawing a large environment to scale, the 8-inch robots

become 1 pixel or less! One pixel was not enough detail for the user to accurately see what is

happening, nor was it enough space for the user to click on to view details. To fix this problem,

the robots have a minimum size. When environments grow large enough, the robot was scaled to

that minimum size. This means for large environments, the robots will not be drawn to scale on

the screen. This may give users some confusion; however it was the only alternative to

presenting the user with unusable software.

3.6.4 Present Programming

 Currently there are many modules that have been developed and tested with a graphical

interface counterpart. The user can currently create a new simulation, selecting any of the

installed robots. The user can assign each robot a “state” when starting the simulation. These

states included: active; moving, sensing and looking for the intruder; paused; stopped, but

sensing and looking for the intruder or sleeping, not moving, not sensing, waiting for a request

from the master to become active. The new simulation dialog also provided a graphical view of

each robots communications test. Within this dialog, a user can define a custom environment

size, and provide specific pre-simulation commands. These commands included stationing robots

at various key points within the environment, and placing them at specific headings.

 The user can also view a list of installed robots, add robots, and remove robots

graphically. In addition, each robot can be viewed using the robot health viewer, a module

designed to show vital statistics about each robot including voltages, sensor outputs, and

communication status. The simulation viewer was on hold due to the positioning system. The

load and save simulation module was complete, however it needed a graphical interface to

represent it. The general preferences module also needed a graphical interface to represent it.

Once these modules have been added, and the positioning system has been finalized the

graphical interface will be close to completed.

 29

4. RESULTS

 Multiple tests needed to be conducted in order to test each sensor individually as well as

to test multiple sensors at once. In addition to the sensors being tested, tests were run with the

introduction of obstacles to test if the robots could handle stationary objects blocking their path.

Light intensity from the intruder was varied to determine how effective the robots would react to

a limited light source.

4.1 Program: ‘RoboSim V2.0’

 The GUI was completed allowing a user with no previous knowledge of the software, the

ability to sit down with little instruction, and run the program. Many hours were spent creating

the background coding to run the program. This background coding can be looked at in

Appendix E, as there are numerous pages of programming that were developed to create this user

friendly interface. Finalized, the following program was labeled “RoboSim V 2.0”

 Opening the program, the user will start off on a blank screen, as seen below. This is the

main screen that opened up when the program was run. The screenshot below provides a visual

to help the user understand what they are looking at.

Figure 23: RoboSim's Main Screen

 Once this screen is opened, we created a ‘new simulation’. This function allowed us to

start a new project, giving the robots new positions and area to test in. The ability to ‘load

simulation’ is also available from this menu. If chosen, one is able to load previous settings of

 30

test conducted in the past. The screenshot below provides visual aid on how to reach these two

options.

Figure 24: RoboSim's New Simulation Drop Down Menu

 The next step was clicking on the ‘Simulation’ tab. A drop down menu brought up three

options, ‘Communication’, ‘Robot Health’, and ‘Simulations Specs.’ When ‘Communication’

was clicked it brought the user to a scenario set-up page which will be discussed in a moment.

The ‘Robot Health’ and ‘Simulation Specs’ buttons were not clicked as there was no scenario

currently programmed into the software. Below a screenshot provides another visual aid of the

step explained above.

Figure 25: RoboSim’s Simulation Drop Down Menu

 31

 After clicking the ‘Communications’ link, we were brought to the ‘Robots’ tab. A

number of important variables were displayed on this screen. First, we checked off the number of

robots used for this particular test. The number of checked robots could vary depending on the

scale of the test. Highlighting an individual robot, the program displayed the ‘Robot Status’ box

whether the robot was ‘active, paused, or sleeping.’ Active meant the robot was moving in an

attempt to find the intruder; paused meant the robot was stopped somewhere on the test platform;

and sleeping meant the robot was charging in the chute. The box to the right labeled ‘Team

Status’ displayed a list of robots the user selected and their statuses. When one robot was

selected, individual robot data was displayed in the ‘Robot Comms’ box on the bottom right of

the screen. Here you saw the robots name, ID #, Robot Comm ID #, and whether it was

initialized. Dependent upon the scenario, the user had the ability to choose from 1 to 9 of the

robots available. To clarify where exactly everything is on this screen, another screenshot is seen

below to provide a better understanding of the directions above.

Figure 26: RoboSim's Scenario Menu

 After the ‘Robots’ tab has been set up, the user moved on to the ‘Scenario’ tab. At this

tab, the user was required to set the dimensions for the testing area. In the case below, a 9ft X 6ft

area was chosen, as it was the size of the ETP. The user clicked on the ‘length’ and ‘width’

 32

boxes to input the dimensions. Various dimensions can be used, depending on the specific

scenario run. The screenshot below shows a visual on where to input values.

Figure 27: RoboSim's Environment Size Menu

 The last stage of the program preparation required us to place the robots we chose in the

area we specified. As stated in section 2.3, the robots started in the chute as that was where their

global origin is found. The chute was always and will always be placed in the bottom left most

portion of the designated area. The program was written with these known variables, and

calculates the position of the robots off of this known origin.

 Clicking on a robot in the ‘Avail Robots’ tab, the mouse was then moved over the white

space depicting the testing area, where a blue outline of the robot appeared. Notice that the

robot’s size was to scale with the specified area. Moving the mouse over the white space, the

robot was placed in the top right corner for demonstration purposes. The robot was only able to

be placed if the icon was blue. If red in color, the robot is not in the programs boundary area.

Once the robot icon was placed, one had the option to rotate the face of the robot by sliding the

pointer in the ‘Heading’ box to a given angle. Once the robot placement and angle was

designated, the next robot (if available) was chosen and the procedure was repeated for as many

robots as were selected in the “Robots’ tab. At any point the user is able to remove a robot by

clicking on the blue robot icon and then clicking the ‘Remove’ button. Once all the robots were

placed, the user hit the ‘Create New’ button, at which point the activated robots moved to their

designated positions and began searching for the intruder. Below is a screenshot to help

understand where the controls are for the directions stated above.

 33

Figure 28: RoboSim's Pre-Sim Setup Menu

 Once all the steps above were completed, the robots moved to their designated positions

and began scanning for the intruder. While the robots ran their scenario, another section of the

software allowed the user to monitor various components of the active robots. Once the user

clicked ‘Create New’, the robots began to move and the computer screen flashed back to the

main page. At this point, the user clicked on ‘Communications�Robot Health’, which opened

the window seen below. In this window, the user chooses a robot that they would like to see the

status of. Status of the robot is checked every 700 milliseconds, which is safe to say that the

robots are continuously being checked. Clicking robot 1, the user verified the robots ID in the

‘Robot Identification’ box. The robots communication status in the ‘Robot Communication’ box

displayed that the ‘comm status’ was ‘not initialized’ because the robot was not in use or the

radio was not communicating to the base station properly. The user was able to track the robots

position at any time in the ‘Robot Positioning’ box. Values were presented in the ‘Sensor

Voltages’ and ‘Actuator PWM’ that allowed the user to track the accuracy and power available

to the robot. To exit the ‘Robot Health’ screen, click on the ‘Close’ button. Below is the

screenshot to aid in following the directions above.

 34

Figure 29: RoboSim's Robot Health Menu

4.2 Large Testing Environments

 The initial testing took place on the ETP, and the program was debugged. Satisfied with

the results the robots were taken to WPI’s squash courts which provided a larger testing area.

Within this area, tests were taken to determine if the maximum range values of the sensors and

were correct. To verify our values a basic test was conducted with the intruder and seven of the

robots.

 The test started by inputting the parameters, into the ‘RoboSim’ program. Seven robots

were used, and the chute was placed in the bottom left corner of the court which established the

robots origin. All the ‘pre-sim’ information was uploaded into ‘RoboSim.’

Figure 30: Robots in the Chute (Origin)

The robots were mapped in the program to align around the perimeter of the squash court.

The perimeter of the squash court was 15ft X 30ft, but we reduced the area to a 15ft X 20ft area.

 35

The intruder was placed in the center of the field. Once the intruder was placed, the ‘Create

New’ button was pushed in ‘RoboSim’ and the robots began to move to their assigned positions.

Figure 31: Robots Moving to their Starting Positions

Once in their assigned positions the intruder’s light was then flipped on and the robots began

searching for the intruder.

Figure 32: Robots in Position; Awaiting the Start Command

 The robots then began moving towards the intruder while the intruder was moving

towards the top left corner of the picture. We noticed that the robots fluidly corrected their

positions to adjust to the intruders movement.

 36

Figure 33: Robots Initial Movement Towards the Intruder

 The intruder continued to try and move through a gap between the oncoming robots, but

the continual updated position of the intruder to the surrounding robots, allowed for quick

corrective movements preventing the intruder from escaping.

Figure 34: Robots Tighten the Gap around the Intruder

 In the tests final stages, the intruder was unable to move as the other robots had

successfully contained the intruder. At this point, the robots kept their assigned minimum

distance of one foot from the intruder.

Figure 35: Contained Intruder

 37

4.3 Sensors

 The 45 degree angle mounted short distance infrared sensors worked perfectly in

detecting oncoming obstacles and redirecting the robots path with plenty of space between the

obstacle and the robot. This minimized the probability that the robot could get stuck or boxed

into a corner, and use valuable energy to maneuver its way out. The short distance sensors

accurately detected an object about 18 inches away.

 The long distance infrared sensor placement proved useful as it was mounted higher than

the short distance sensors and could see above a few of the obstacles that the short range sensor

could not see above. Combined with the light sensors, once both sensors detect the intruder

through the created algorithm, the robot accurately hone in on the intruders’ position.

 The light sensors played the most important role in detecting the intruder. Since the

intruder’s only unique variable was that it gave off light, it was important that the light sensors

covered a wide area over a great distance. The light sensors discerned the difference between

outside variables and what was actually the intruder; something the infrared sensors could not do

alone. With a range of about 62 inches, using seven robots in a 30 foot square grid, it does not

take long for one robot to spot the intruder and relay this information to the other robots to

eventually contain the intruder.

 38

4.4 Radio Communication

 The only method of communication between the robots and the base station was the

radios. The radios needed their own processor that was used to delegate a number of functions

within the program. With nine robots working together, there was a lot of “chatter”. The

processor was able to filter this chatter to specific robots, relaying information about the position

of the intruder which can be transmitted to other robots to quicken the containment process. The

algorithm created for this project lets the processor know what information was critical and

which robot needed to process the information.

 The radio processor used the Cubloc® base program which was written for this project.

The software used has limited processing capability, but enough for the processing required for

this project. If more sensory equipment was added to the robots or the number of robots was

increased, it may be necessary to improve the quality of radio communication.

 39

5. ANALYSIS
 The development of the intrusion detection network using mobile sensor arrays involved

the integration of multiple subsystems into a system capable of dynamically determining the

position of an intruding or contaminating object with known quantifiable characteristics. Once

requirements were defined, the initial base hardware was acquired and development of the

required systems was completed.

 The subsystems and components that were integrated into the system were done so after

several iterations and changes. A key component of the system was the method of determining

the global positions of each individual drone robot. The odometry method that was finally

chosen included the use of optical rotary encoders embedded in the servo-drive motors of the

drones. Compared to the other methods investigated, this system provided precision

measurements of the distance traveled by each drive wheel, allowing sufficient determination of

the robot's heading and position in the given environment. A benefit of knowing the accurate

position of each robot includes the ability for the base station to direct other drones efficiently so

as not to cover the same terrain multiple unnecessary times and to prevent situations where

drones might interfere with each others' movement.

The final arrangement of the detection sensors resulted in the system being capable of

effectively discriminating an intruder with a known "contaminant signature" from other drone

robots and immobile objects such as walls and other obstacles. Based on the measurements

obtained by a single robot, the general location of an intruder is distributed to a given number of

active drones which are sent to further define the exact location of the intruder. This allowed the

system to use a minimum amount of movement and system resources necessary contain the

intruder. The five degree angle that was chosen for the blue light sensors was compatible with

the code developed, allowing the robot to center its sensor head on the intruder and make

intelligent movements based upon both the angular orientation of the intruder and the algorithms

present in the robots control programs. The development of a short range object detection

method began with the inclusion of both physical contact whiskers and short range infrared

distance sensors. The decision to eliminate the whiskers proved to be acceptable due to the

angular orientation of the two IR distance sensors being capable of preventing

unwanted contact.

 40

The finalized intruding contaminating source that was used to test the system is operated

by human-interface and is completely controllable. There are several advantages and

disadvantages to this approach. The use of an intruder controlled by hand is beneficial in that it

allows for testing and manipulation of the device by a wireless radio controller. Thus, it is easier

to test a variety of movement tactics and methods in an attempt to "fool" the sensor network.

However, a downside of this method is that the exact movements and positions of the device are

not known (unless physically measured), disallowing the direct evaluation of the detection

system's accuracy. One of the Cubloc based robots could have been outfitted with blue light

emitters and used as an intruder. This was not done due to the fact that further programming of

each individual scenario would be required. The main benefit of the human-interfaced intruder is

that it allows for random control to test every aspect of the system.

 Development of programming and algorithms for control of the drone robots also

required knowledge of the capabilities of the sensors and drive units. Often times, sensor

components and other hardware were modified due to limitations in programming. The final

program that was developed successfully incorporates the sensor inputs with control algorithms

to track and detain the intruder. The PC-based graphic user interface allows for "on-the-fly"

notifications and scenario updates, proving to be very useful in the operation of the system. The

central hub server programming has the ability to intelligently delegate tasks and functions

assigned by the main server code to the drone robots.

 The operation of the radio communication programming proved to have minor flaws that

resulted in disrupted communications between the central hub and the drone robots. Countless

hours were spent developing and troubleshooting the radio communications problems, but time

did not permit for all the bugs to be fixed. It is recommended that future MQP groups include

students majoring in computer science and electrical engineering. The overall functionality of the

entire mobile sensor network is successful except for the issues discussed regarding the radio

communications programming.

 41

6. CONCLUSION

The primary goal of this project was to develop a system that could effectively use sensor

measurements, wireless communication, and a series of fully developed algorithms to

expeditiously detect, track and detain an intruder. Initially, this project presented the challenge of

learning programming as well as some electrical engineering skills. A user friendly programming

system was chosen, Cubloc ® Technologies, which was used to aid us in developing an

advanced program that allowed us to give orders to multiple robots over one network. Initial

iterations showed that there were vast numbers of possible combinations of types of sensors,

styles of movement, and programming techniques that could have been developed to effectively

complete the desired tasks. We maximized our budget to acquire sensors, processors, and

position encoders, which provided the robots with sensors capable of detecting an intruder up to

five feet away. Since the base circuit board can be modified, there was no limit to the type of

program or sensory components that we used. We took full advantage of the circuit boards

capability and produced the most effective robot possible for the scenarios we tested.

Many hours were invested in determining an accurate method of position tracking. The

focus on tracking position was crucial, as it provided the data that was inputted into the program

‘RoboSim’. If robot tracking produced error, than the information transmitted from the robots to

the base station would be inaccurate and the intruder would mostly likely not be contained.

Tracking an intruder in a 20ft X 20ft area was completely accurate and effective. If this project

were to be implemented on a larger scale, systems already in place (GPS) could be used to track

position. The network that the robots run on made the best use of the sensors and processors

available to our project. In the future, time can be spent on the improvement, rather than the

design of this network, as the need for something new in the field of autonomous robots is in

high demand. Overall, the design and integration of the various subsystems resulted in a state of

the art intrusion detection system capable of tracking and surrounding an intruder.

 42

7. RECOMMENDATIONS

 A number of iterations for the light sensors, distance sensors, position tracking, style of

movement, and programming were evaluated and the current design best suited our MQP’s

environment. Now that base of the robots and programming have been created, future project

groups can focus more time how to make the program better, rather than how to make the

program function. Numerous hours were spent on creating an in-depth program, but as in any

project, the more one analyzes situations, the more opportunities they find for improvement.

 The programming for this project has a major significance in this project as it gives the

robots direction and a mission. Since the group members were not Computer Science majors, it

took a substantial amount of time to learn and write code that would meet the specifications of

the MQP project. In the future it would be extremely beneficial to have an electrical as well as

computer science background, in order to maximize the work output efficiency.

 43

References
1. COMFILE Technology, Version 2.0; Cubloc User’s Manual; COMFILE Technology ©;

Foster City, CA; 2006

2. Holland, John M.; Designing Autonomous Mobile Robots; Newnes Publications, 2004

3. Meystel, A.; Autonomous Mobile Robots; World Scientific Publishing, 1991

4. Military ‘Predator’ UAV: http://www.fas.org/irp/program/collect/predator.htm, January

30th, 2007

5. Multiple Autonomous Robots: http://www.cis.upenn.edu/mars/ , February 1
st
 2007

6. 'TSL257 High-Sensitivity Light-to-Voltage Converter Data Sheet’, TAOS Inc., Copyright
2001

 44

Appendix A: Robot Component Schematics

DRONE ROBOT POWER REGULATOR & CHARGING SYSTEM

DRONE RADIO TRANSPONDER SUB BOARD

MAIN BOARD & SENSOR ACTUATOR CONNECTIONS

 45

 46

Appendix B: Robot Movement Equations

Algorithms

EndElseIf

XXX

YYY

AY

AY

A
LR

ElseIf

XXX

YYY

RRX

RRY

EndIf

RRA
LR

R

R

R

ThenLRIf

EndIf

RRA
LR

R

L

R

ThenLRIf

PREVIOUSCURRENT

PREVIOUSCURRENT

CURRENTHEADINGCOUNT

CURRENTHEADINGCOUNT

PREVIOUSHEADINGCURRENTHEADING

COUNT

COUNTCOUNT

PREVIOUSCURRENT

PREVIOUSCURRENT

WIDTHINSIDE

WIDTHINSIDE

PREVIOUSHEADINGCURRENTHEADING

WIDTHINSIDECOUNT
COUNTCOUNT

INSIDE

COUNT

WIDTH

COUNT

COUNTCOUNT

WIDTHINSIDECOUNT

COUNTCOUNT

INSIDE

COUNT

WIDTH

COUNT

COUNTCOUNT

∆+=

∆+=

=∆

=∆

=

=
+

∆+=

∆+=

∆+=∆

∆+=∆

∆+=

∆−+==
+

=
∆

<

∆+==
+

=
∆

>

)cos(*)(

)sin(*)(

2

:

)cos(*)
2

1
(

)sin(*)
2

1
(

)(*)
2

1
(

2

::

*)
2

1
(

2

::

_

_

__

__

θ

θ

θθ

θ

θ

θθθ

θ

θ

 47

Appendix C: Full Calculations for Sensor Head Field of View

 d 4in:=

Θ2 6deg:=
 2

2

Θ
=Θ

r tan Θ2() d⋅:= r 0.035ft=

α 90deg Θ2−:=

b d
2

r
2

+:= b 0.335ft=

c
.4ft

12
:= c 0.033ft=

a 2− b⋅ c⋅ cos α()⋅ b
2

+ c
2

+:= a 4 in=

s r c−:= s 0.02in=

φ asin
d

a






:=

φ 89.708deg=

θ 90deg φ− Θ2+:=

θ 6.292deg=

d

r

ά

b

a φ

c s

 48

Appendix D: Initial Scanning and Panning Sensor Head
Design

Figure 36: Panning and Scanning Sensor Head

 The initial design of this panning sensor head has the ability to pan left to right, as well as scan

up and down. The movement of the head is facilitated by a pair of mini servo motors as seen in

the figure above. This design called for the manufacture of two separate head components (1 and

2) which were to be screwed together. This design was discarded for several reasons. The

horizontal orientation of the distance sensor resulted in interference with the short range sensors.

The cost of using 2 servos was prohibitive. Large moments due to the weight of the head and

sensors could result in instability of the structure when panning. The largest factor in the decision

to discard this design was the instability of the dual axis servo-servo mounting and the

programming error that would develop due to the vertical scanning. In order to accurately

determine the vertical angle at which the servo is oriented, a separate feedback device would be

needed due to the fact that the sensitivity in the vertical plane is very high. A small error in the

angular position of the servo shaft would result in a large error in the sensor-to-ground distance

reading.

1

2

 49

Appendix E: Main Cubloc Code

Const Device=cb280

Ramclear

Dim SSN As Integer 'Unique identification number used in radio communications

Dim RAW(8) As Integer 'Array of important voltages - Batt/Aux/R Blue/C Blue/L Blue/R

Dist/C Dist/L Dist

Dim PWMS(4) As Integer 'Array of PWM values - Left/Right/Pan/Batt

Dim POSITION(3) As Single 'Array of all Position Information of Robot - X/Y/Heading

Dim header(7) As Byte 'The header input data received for all radio

communications

Dim dataInput(104) As Byte 'Data that will be received for radio communications

Dim PositionMatrix(10,2) As Integer 'Matrix with Position Data

Dim LastX As Integer

Dim LastY As Integer

Dim INTRUDER(3) As Integer 'Array of all Position Information for Intruder -

X/Y/Confidence Interval(0-100)

Dim SPWM As Integer 'PWM For Panning Head Servo

Set Debug Off

'This is the MAIN function block, only the function calls in HERE will be executed

initNavHardware

initRadio

enableSensors

POSITION(0)=0

POSITION(1)=0

POSITION(2)=1.57096

LastX=0

LastY=0

Do

 updateRawVoltages

 If In(48)=1 Then

 ackMsg

 receiveRadioComm

 Endif

Loop

'End MAIN function block

End

Sub initNavHardware()

 50

'This sub initializes all navigation hardware

 Set Count0 On 'INITIALIZE SECOND

HARDWARE COUNTER

 Input 14 'SET PORT 14 (RIGHT

COUNTER) TO INPUT

 Input 15 'SET PORT 15 (LEFT

COUNTER) TO INPUT

 Countreset 0 'RESET RIGHT COUNTER

 Countreset 1 'RESET LEFT COUNTER

 Low 19 'Turn off Panning Motor

 Low 20 'Turn off Left Drive Motor

 Low 21 'Turn off Right Drive Motor

 Pwm 4,3500,65535 'SET PWM Left Drive TO MOTOR

NEUTRAL

 Pwm 5,3500,65535 'SET PWM Right Drive TO MOTOR

NEUTRAL

 High 17 'TURN ON MOTOR

CURRENT

 Input 48 'SET PORT 48 (Radio Proc

Flag) to INPUT

 Output 47 'SET PORT 47 (Radio Response

Flag) to OUTPUT

 Low 47 'TURN OFF "TURN-OFF-

PIN"

End Sub

Sub delegatePosMatrix()

 Dim i As Integer

 Dim myDistance As Single

 For i=0 To 9

 myDistance=Sqr((PositionMatrix(i,0)-LastX)^2+(PositionMatrix(i,1)-LastY)^2)

 Debug Dec i,Cr

 navGoToCoord PositionMatrix(i,0),PositionMatrix(i,1),myDistance

 'If In(48)=1 Then

 ' ackMsg

 ' If header(2)=1 Or header(2)=3 Then

 ' i=9

 ' Else

 ' receiveRadioComm

 ' Endif

 ' Endif

 Next

 Pwm 4,3500,65535

 Pwm 5,3500,65535

 'receiveRadioComm

 51

End Sub

Sub navGetPosition()

 Dim leftDistTrav As Single 'DISTANCE TRAVELED OF LEFT TIRE

 Dim rghtDistTrav As Single 'DISTANCE TRAVELED OF RIGHT TIRE

 Dim radius As Single 'RESULTING RADIUS

 Dim oldHeading As Single

 Dim BOEWIDTH As Single

 Dim IPC As Single

 IPC=0.022776

 BOEWIDTH=4.304 'DISTANCE MEASURED

BETWEEN TIRES (INCHES)

 leftDistTrav = Count(1)*IPC 'ACTUAL TRAVELED DISTANCE OF LEFT TIRE

 rghtDistTrav = Count(0)*IPC 'ACTUAL TRAVELED DISTANCE OF RIGHT TIRE

 If leftDistTrav = rghtDistTrav Then 'If both travel the same distance, it went straight

 POSITION(1) = POSITION(1) + leftDistTrav*(Sin(POSITION(2)))

 POSITION(0) = POSITION(0) + leftDistTrav*(Cos(POSITION(2)))

 Else

 oldHeading=POSITION(2)

 POSITION(2) = (rghtDistTrav-leftDistTrav)/BOEWIDTH + POSITION(2)

 'ACTUAL ANGLE

 radius = (BOEWIDTH*(rghtDistTrav+leftDistTrav))/(2*(rghtDistTrav-

leftDistTrav)) 'ACTUAL RADIUS OF ARC

 POSITION(1) = POSITION(1) - radius*(Cos(POSITION(2))-Cos(oldHeading))

 'ACTUAL Y CORDINATE

 POSITION(0) = POSITION(0) + radius*(Sin(POSITION(2))-Sin(oldHeading))

 'ACTUAL X CORDINATE

 Endif

 Countreset 0

 Countreset 1

End Sub

Sub navGoToCoord(nextX As Integer, nextY As Integer, pntDistance As Single)

'This sub takes the X,Y cords of the next point it is trying to go to, as well as the distance from

the previous point, to the point it is trying to go to.

'The sub makes changes to the robots position until it is close enough to the given position to get

another command.

 Dim distFromGoal As Single

 Dim xStraight As Single

 Dim yStraight As Single

 Dim errorStraight As Single

 Dim xTurnGuess As Single

 Dim yTurnGuess As Single

 52

 Dim errorGuess As Single

 Dim angErrorPerc As Single

 Dim disErrorPerc As Single

 distFromGoal=Sqr((nextX-POSITION(0))^2 + (nextY-POSITION(1))^2)

 Debug "Going To: ",Dec nextX, " ", Dec nextY,Cr

 Do While (distFromGoal > 0.75)

 xStraight=distFromGoal*Cos(POSITION(2)) + POSITION(0) 'X Coord if

robot went straight for distance-to-goal inches

 yStraight=distFromGoal*Sin(POSITION(2)) + POSITION(1) 'Y Coord if robot

went straight for distance-to-goal inches

 errorStraight=Sqr((nextX-xStraight)^2 + (nextY-yStraight)^2) 'How far off is that

hypothetical point?

 angErrorPerc=errorStraight/distFromGoal 'Distance from target point as a

percentage of distance to travel ideally

 disErrorPerc=distFromGoal/pntDistance 'Distance from target as a

percentage of the distance from last registered point (progress)

 'Debug Float xStraight," ",Float yStraight," ",Float errorStraight,Cr

 If (3.0*angErrorPerc) > (disErrorPerc) Then

 'The error in angle is worse than the error in distance

 xTurnGuess=distFromGoal*Cos(POSITION(2)+0.001) + POSITION(0)

 yTurnGuess=distFromGoal*Sin(POSITION(2)+0.001) + POSITION(1)

 errorGuess=Sqr((nextX-xTurnGuess)^2+(nextY-yTurnGuess)^2)

 If (errorGuess > errorStraight) Then

 'Guessed Correction got worse, Turn Right

 Pwm 5,3600,65535

 Pwm 4,3500,65535

 Do While Count(1)<5

 Loop

 Else

 'Guessed Correction got better, Turn Left

 Pwm 4,3600,65535

 Pwm 5,3500,65535

 Do While Count(0)<5

 Loop

 End If

 Else

 'The error in the distance is worse than the error in the angle, Go Straight

 Pwm 4,3600,65535

 Pwm 5,3600,65535

 Do While (Count(0)+Count(1))<10

 Loop

 End If

 navGetPosition

 53

 distFromGoal=Sqr((nextX-POSITION(0))^2 + (nextY-POSITION(1))^2)

 'Debug Float distFromGoal, " ", Float POSITION(0)," ", Float POSITION(1),"

",Float POSITION(2),Cr

 Loop

 LastX=nextX

 LastY=nextY

End Sub

 Sub TRACKING()

 High 34 'center distance sensor enable

 High 36 'blue light sensor enable

 High 18 'PAN motor enable

 Low 19 'PWM channel config

 Dim trk As Byte 'tracking loop counter

 Dim lt As Integer 'left blue light ADC value

 Dim ct As Integer 'right blue light ADC value

 Dim rt As Integer 'center blue light ADC value

 Dim dist As Integer 'distance from robot center target

 Dim headangle As Single 'head angle wrt body in radians (left = pi/2, center =0,

right =-pi/2)

 Dim confidence As Integer 'percentage confidence

 For trk=0 To 4 'trys to resolve a fix on the intruder in 10 trys if not it boots out of

the sub

 lt = Tadin(4) 'sets lt as ADC value of left blue light sensor

 ct = Tadin(3) 'sets ct as ADC value of center blue light sensor

 rt = Tadin(2) 'sets rt as ADC value of right blue light sensor

 If (1.0*ct)<(lt+rt) Then 'changes PWM value if the left or right sensor has

value higher than center

 If lt>rt Then SPWM=SPWM-0.1*(lt-ct) 'If lt > rt, head moves to

left percentage of difference between lt and ct

 If rt>lt Then SPWM=SPWM+0.1*(rt-ct) 'If lt > rt, head moves

to left percentage of difference between lt and ct

 Endif

 If SPWM<1900 Then SPWM=1900 'left motion max limit

 If SPWM>5200 Then SPWM=5200 'right right max limit

 Pwm 3,SPWM,65535 'sets motor to new position

 dist = Longrange(Tadin(6)) 'coverts Longrange distance sensor ADC to

inches

 headangle = 3.379406-(0.0009519*SPWM) 'converts scan head PWM to

radians (left = pi/2, center =0, right =-pi/2)

 INTRUDER(2) = 100.0*(ct/400.0) 'calculates confidence of blue light

tracking based on center intensity and distance

 If INTRUDER(2) > 100 Then INTRUDER(2) = 100 'limits confidence to

100%

 54

 If INTRUDER(2) < 20 Then SCAN 'requires a confidence to higher then

30% or it does a broad scan

 If INTRUDER(2) > 50 Then 'requires confidence to be higher then 50% to

report intruder position

 INTRUDER(0)=POSITION(0)+dist*Cos(headangle+POSITION(2)) 'calcs x cordinate of

intruder

 INTRUDER(1)=POSITION(1)+dist*Sin(headangle+POSITION(2)) 'calcs y cordinate of

intruder

 Goto endtrack 'pointer to get out of FOR loop

 Else

 INTRUDER(0)=0 'sets to zero if confidence is too low

 INTRUDER(1)=0 'sets to zero if confidence is too low

 INTRUDER(2)=0 'sets to zero if confidence is too low

 Endif

 Next

 endtrack:

 End Sub

 Sub SCAN()

 High 34 'center distance sensor enable

 High 36 'blue light sensor enable

 High 18 'PAN motor enable

 Low 19 'PWM channel config

 Dim i As Integer 'counter value

 Dim level As Integer 'threshold to continue scanning

 level = 40 'minimum level needed to try tracking

 For i=SPWM To 1900 Step -10 'moves the head all the way to the

left

 If Tadin(3)> level Then Goto break 'breaks from the loop if the

level is met

 Pwm 3,i,65535 'moves motor

 Next

 For i=1900 To 5200 Step 10 'scans from left to right

 If Tadin(3)> level Then Goto break 'breaks from the loop if the

level is met

 Pwm 3,i,65535

 Next

 For i=5200 To SPWM Step -10 'scans from Right To Left

 If Tadin(3)> level Then Goto break 'breaks from the loop if the

level is met

 Pwm 3,i,65535 'moves motor

 Next

 break: 'break pointer

 55

 SPWM=i 'sets global SPWM to last position scanned

 End Sub

Function Longrange (C As Integer) As Integer 'converts ADC value of a longrange distance

sensor to inches

 Longrange= 5197.9*(C)^-1.0003

End Function

Sub initRadio()

'This sub reads the unique radio identification number from EEPROM, opens communication

with the radio attached to its serial port

'and clears the buffer

 SSN=Eeread(0,1)

 Opencom 1,115200,3,105,105

 Bclr 1,2

End Sub

Sub updateRawVoltages()

'This sub updates a global array containing the raw voltages for all analog channels

 Dim i As Integer

 For i=0 To 7

 RAW(i) = Tadin(i)

 Next

End Sub

Sub enableSensors()

'This sub enables distance sensors and blue light sensors

 High 33

 High 34

 High 35

 High 36

End Sub

Sub receiveRadioComm()

'This sub takes a message received and verified by the radio and parses it into various parts.

'The header contains the address, a function category, the function number within that category,

and a data length

'followed by the amount of data claimed in the header. Once parsed into global and local

variables, the function passes

'the message onto a delegation function which performs the operation requested.

 Dim funcID As Integer

 Dim dataLength As Integer

 Dim k As Integer

 56

 If (Blen(1,0)>=7) Then 'When the length of the input is at least 7

 Geta 1,header,7 'Read the header

 End If

 For k=0 To 6

 header(k)=header(k)-48 'Take ASCII character and convert to

numerical value

 Next

 funcID=header(3)*10+header(4) 'Determine the function ID to

be executed

 dataLength=(header(5)*10+header(6)) 'Determine how long the input string to the

function will be

 Do While (Blen(1,0)<dataLength) 'Wait until the all input is read

 Loop

 Geta 1, dataInput, dataLength 'Puts input values into an array

 Bclr 1,2 'Clear

buffer

 For k=0 To dataLength-1

 dataInput(k)=dataInput(k)-48 'Take ASCII character and convert to numerical

value

 Next

 commDelegate header(2),funcID

End Sub

Sub ackMsg()

 High 47

 Do While In(48)=1

 Loop

 Low 47

End Sub

Sub commDelegate(categoryID As Integer, functionID As Integer)

'This sub pushes the function number to the delegator of the requested category.

 Select Case categoryID

 Case 0

 commCatStatus functionID

 Case 1

 commCatRole functionID

 Case 2

 commCatObstacle functionID

 Case 3

 57

 commCatAutonomous functionID

 End Select

End Sub

 Sub commCatStatus(functionID As Integer)

 'This is the STATUS delegation function, it selects a function to execute based on the

function ID

 Select Case functionID

 Case 0

 statusHandshake

 Case 1

 statusSendRaw

 Case 2

 statusSendPWM

 Case 3

 statusSendNav

 Case 4

 statusSendObstacle

 Case 5

 statusSendIntruder

 End Select

 End Sub

 Sub statusHandshake()

 'This sub responds to the server with a HELO message and the battery voltage to

confirm adequate life

 Putstr 1,"5000011|HELO|"

 If RAW(0)<999 Then Putstr 1,"0"

 If RAW(0)<99 Then Putstr 1,"0"

 If RAW(0)<9 Then Putstr 1,"0"

 Putstr 1,Dec RAW(0),"|",Cr

 End Sub

 Sub statusSendRaw()

 'This sub responds to the server with the raw voltages for all analog channels

 Dim i As Integer

 Putstr 1,"5000142|"

 For i=0 To 7

 If RAW(i)<999 Then Putstr 1,"0"

 If RAW(i)<99 Then Putstr 1,"0"

 If RAW(i)<9 Then Putstr 1,"0"

 Putstr 1,Dec RAW(i),"|"

 Next

 Putstr 1,Cr

 End Sub

 58

 Sub statusSendPWM()

 'This sub responds to the server with the current PWM values for all PWM

channels

 Dim i As Integer

 Putstr 1,"5000226|"

 For i=0 To 3

 If PWMS(i)<9999 Then Putstr 1,"0"

 If PWMS(i)<999 Then Putstr 1,"0"

 If PWMS(i)<99 Then Putstr 1,"0"

 If PWMS(i)<9 Then Putstr 1,"0"

 Putstr 1,Dec PWMS(i),"|"

 Next

 Putstr 1,Cr

 End Sub

 Sub statusSendNav()

 'This sub responds to the server with the current position information of the robot

 Dim datLen As Byte

 datLen=Len(Dec POSITION(0)) + Len(Dec POSITION(1)) + Len(Dec

POSITION(2)) + 5 'Calculates the length of all position data and markup

 Putstr 1,"50003",Dec (datLen),"|",Dec POSITION(0),"|",Dec

POSITION(1),"|",Dec POSITION(2),"|",Cr 'Returns Position info

 End Sub

 Sub statusSendObstacle()

 'This sub responds to the server with all information pertaining to obstacle

avoidance

 End Sub

 Sub statusSendIntruder()

 Dim datLen As Byte

 datLen=Len(Dec INTRUDER(0)) + Len(Dec INTRUDER(1)) + Len(Dec

INTRUDER(2)) + 5 'Calculates the length of all position data and markup

 Putstr 1,"50005",Dec (datLen),"|",Dec INTRUDER(0),"|",Dec

INTRUDER(1),"|",Dec INTRUDER(2),"|",Cr 'Returns Intruder Position info

 End Sub

 Sub commCatRole(functionID As Integer)

 'This is the ROLE delegation function, it executes the function requested by the function

ID

 Select Case functionID

 Case 0

 roleSleep

 Case 1

 roleWait

 Case 2

 59

 roleActive

 End Select

 End Sub

 Sub roleSleep()

 'This sub puts the robot in SLEEP mode

 End Sub

 Sub roleWait()

 'This sub puts the robot in WAIT mode

 End Sub

 Sub roleActive()

 'This sub puts the robot in ACTIVE mode

 End Sub

 Sub commCatObstacle(functionID As Integer)

 'This is the OBSTACLE delegation function, it executes the function requested by the

function ID

 'Select Case functionID

 ' Case 0

 ' Case 1

 ' Case 2

 ' Case 3

 ' Case 4

 'End Select

 End Sub

 Sub commCatAutonomous(functionID As Integer)

 'This is the AUTONOMOUS delegation function, it executes the function requested by

the function ID

 Select Case functionID

 Case 0

 autonomousMatrix

 Case 1

 TurnToHeading

 Case 2

 Backup

 ' Case 3

 ' Case 4

 End Select

 End Sub

 Sub autonomousMatrix()

 Dim i As Integer

 Dim j As Integer

 60

 i=0

 j=0

 Do While i<54

 PositionMatrix(j,0)=dataInput(i)*100+dataInput(i+1)*10+dataInput(i+2)

 PositionMatrix(j,1)=dataInput(i+3)*100+dataInput(i+4)*10+dataInput(i+5)

 j=j+1

 i=i+6

 Loop

 delegatePosMatrix

 End Sub

 Sub TurnToHeading ()

 Dim Heading As Single

 Heading =

dataInput(0)+dataInput(1)/10+dataInput(2)/100+dataInput(3)/1000+dataInput(4)/10000+dataInp

ut(5)/100000

 If POSITION(2)>6.28318530 Then POSITION(2) = POSITION(2) MOD

6.28318530

 If POSITION(2)>Heading Then

 Pwm 4,3450,65535

 Pwm 5,3550,65535

 Do While

(Count(0)+Count(1))<(4.304*Fabs(POSITION(2)-Heading)/0.022776)

 Loop

 Pwm 4,3500,65535

 Pwm 5,3500,65535

 Delay 100

 POSITION(2)=(Heading-

(((0.022776/4.304)*(Count(0)+Count(1)))-POSITION(2)))

 Else

 Pwm 4,3550,65535

 Pwm 5,3450,65535

 Do While Count(0)+Count(1)<(4.304*Fabs(POSITION(2)-

Heading)/0.022776)

 Loop

 Pwm 4,3500,65535

 Pwm 5,3500,65535

 Delay 100

 POSITION(2)=(Heading+(((0.022776/4.304)*(Count(0)+Count(1)))-POSITION(2)))

 Endif

 Countreset 0

 Countreset 1

 End Sub

 61

 Sub Backup ()

 Dim Inches As Integer

 Inches = dataInput(0)*100+dataInput(1)*10+dataInput(2)

 Pwm 4,3450,65535

 Pwm 5,3450,65535

 Do While ((Count(0)+Count(1))/2)<(Inches/0.022776)

 Loop

 Pwm 4,3500,65535

 Pwm 5,3500,65535

 Delay 100

 POSITION(0) = POSITION(0) -

((Count(0)+Count(1))/2*0.022776)*(Cos(POSITION(2)))

 POSITION(1) = POSITION(1) -

((Count(0)+Count(1))/2*0.022776)*(Sin(POSITION(2)))

 Countreset 0

 Countreset 1

 End Sub

 62

Appendix F: Radio Cubloc Code
Const Device =cb220

Dim SSN As Integer

SSN = Eeread(0,1)

 ' DATA RECEIVE SPECIFIC

Dim HEADR(7) As Byte

Dim DAT(104) As Byte

Dim ROBOID As Integer

Dim HEADR_CODE As Integer

Dim DAT_LEN As Integer

Dim REC_INDEX As Integer

Input 13

Output 12

Low 12

Opencom 1,115200,3,105,105

Opencom 0,115200,3,105,105

Bclr 1,2

Bclr 0,2

On Recv1 Gosub RECEIVE

Set Until 1,7

Set Debug Off

Debug "RADIO ID: ",Dec SSN,Cr

Low 12

Do

 If In(13)=1 Then

 Low 12

 Endif

Loop

RECEIVE:

 If (Blen(1,0)>=7) Then

 Geta 1,HEADR,7

 For REC_INDEX=0 To 6

 HEADR(REC_INDEX)=HEADR(REC_INDEX)-48

 Debug Dec HEADR(REC_INDEX)," "

 Next

 63

 ROBOID = HEADR(0)*10+HEADR(1)

 HEADR_CODE=HEADR(3)*10+HEADR(4)

 DAT_LEN=(HEADR(5)*10+HEADR(6))

 Do While (Blen(1,0)<DAT_LEN)

 Loop

 Geta 1, DAT, DAT_LEN

 Bclr 1,2

 For REC_INDEX=0 To DAT_LEN-1

 DAT(REC_INDEX)=DAT(REC_INDEX)-48

 Next

 If ROBOID=SSN Then

 High 12

 Debug Cr,"CONTROL HEADER",Cr

 For REC_INDEX=0 To 6

 Debug Dec HEADR(REC_INDEX)," "

 Putstr 0,HEADR(REC_INDEX)+48

 Next

 Debug Cr,"DATA",Cr

 For REC_INDEX=0 To DAT_LEN-1

 Debug Dec DAT(REC_INDEX)," "

 Putstr 0,DAT(REC_INDEX)+48

 Next

 Debug Cr

 Else

 Return

 End If

 End If

 Bclr 1,2

Return

 64

Appendix G: Base Station Code

PhysicalRobot
using System;
using System.Collections.Generic;
using System.Text;
using System.Windows.Forms;

namespace RoboSim
{
 class PhysicalRobot : IDisposable
 {
 //Robot Information
 private byte robotID; //ID Number Unique to Each Robot
 private byte robotStatus; //0=Active 1=Paused 2=Sleeping
 private string robotName; //Name Used to Describe Robot (Not Unique)
 private bool inSimulation; //0=No 1=yes

 //Communication
 private short commAddress; //16-bit Hex Address Used for Radios
 private string commStatus; //0=Not Initialized 1=Failed
2=Initializing 3=Successful
 private byte commStatColor; //Represents the text color status will
be displayed in

 //Raw Analog Data
 private short battVoltage=0; //0-1024 Battery Voltage
 private short leftLightVoltage=0; //0-1024 Left Blue Light Sensor
Voltage
 private short centerLightVoltage=0; //0-1024 Center Blue Light Sensor
Voltage
 private short rightLightVoltage=0; //0-1024 Right Blue Light Sensor
Voltage
 private short leftDistanceVoltage=0; //0-1024 Left Distance Sensor
Voltage
 private short centerDistanceVoltage=0; //0-1024 Center Distance
Sensor Voltage
 private short rightDistanceVoltage=0; //0-1024 Right Distance Sensor
Voltage
 private short auxVoltage=0; //0-1024 Auxilary Port Voltage

 //Raw PWM Data
 private int sensorPanningMotor=0; //Sensor Panning Motor PWM
 private int leftDriveMotor=0; //Left Driving Motor PWM
 private int rightDriveMotor=0; //Right Driving Motor PWM
 private int battCharge=0; //Is Battery Charging?

 //Navigation
 private int posX=0; //X Position on Environment
 private int posY=0; //Y Position on Environment
 private double heading=0.0; //What is the Robots Heading?

 private int startX=-1; //Where should I start X?
 private int startY=-1; //Where should I start Y?

 65

 private double startHeading = 90; //Where should I Start facing?

 private int[,] PositionMatrix;

 //Obstacle Detection
 private int intruderX = 0;
 private int intruderY = 0;
 private int confidenceInterval = 0;

 //Functions / Methods

 //Constructors
 public PhysicalRobot()
 {
 robotID = 0;
 robotStatus = 3;
 }
 public PhysicalRobot(byte newRobotID)
 {
 robotID = newRobotID;
 setCommStatus(0);
 battVoltage = 0;
 }

 //Destructors
 public void Dispose()
 {
 }

 //Get Properties
 public byte RobotID
 {
 get
 {
 return robotID;
 }
 }
 public string RobotName
 {
 get
 {
 return robotName;
 }
 }
 public short RobotCommAddress
 {
 get
 {
 return commAddress;
 }
 }

 //Accessors
 public short RobotCommAddress2()
 {

 66

 return commAddress;
 }
 public string getCommStatus()
 {
 return commStatus;
 }
 public byte getCommStatColor()
 {
 return commStatColor;
 }
 public byte getStatus()
 {
 return robotStatus;
 }
 public byte getRobotID()
 {
 return robotID;
 }
 public override string ToString()
 {
 return robotName;
 }
 public bool isInSimulation()
 {
 return inSimulation;
 }

 public double getBattVoltage()
 {
 return (double)battVoltage*10/1023;
 }
 public double getLeftLightVoltage()
 {
 return (double)leftLightVoltage*5/1023;
 }
 public double getCenterLightVoltage()
 {
 return (double)centerLightVoltage*5/1023;
 }
 public double getRightLightVoltage()
 {
 return (double)rightLightVoltage*5/1023;
 }
 public double getLeftDistanceVoltage()
 {
 return (double)leftDistanceVoltage*5/1023;
 }
 public double getCenterDistanceVoltage()
 {
 return (double)centerDistanceVoltage*5/1023;
 }
 public double getRightDistanceVoltage()
 {
 return (double)rightDistanceVoltage*5/1023;
 }
 public double getAuxVoltage()
 {

 67

 return (double)auxVoltage*5/1023;
 }

 public int getSensorPanningMotorPWM()
 {
 return sensorPanningMotor;
 }
 public int getLeftDriveMotorPWM()
 {
 return leftDriveMotor;
 }
 public int getRightDriveMotorPWM()
 {
 return rightDriveMotor;
 }
 public int getBattChargePWM()
 {
 return battCharge;
 }

 public int getPosX()
 {
 return posX;
 }
 public int getPosY()
 {
 return posY;
 }
 public double getHeading()
 {
 return heading;
 }
 public int[,] getPositionMatrix()
 {
 return PositionMatrix;
 }

 public int getIntruderX()
 {
 return intruderX;
 }
 public int getIntruderY()
 {
 return intruderY;
 }
 public int getConfidenceInterval()
 {
 return confidenceInterval;
 }

 public int getStartX()
 {
 return startX;
 }
 public int getStartY()
 {
 return startY;

 68

 }
 public double getStartHeading()
 {
 return startHeading;
 }

 //Modifiers
 public void setName(string newName)
 {
 robotName = newName;
 }
 public void setInSimulation(bool newValue)
 {
 inSimulation = newValue;
 }
 public void setCommAddress(short newCommAdd)
 {
 commAddress = newCommAdd;
 }
 public void setCommStatus(short newStatus)
 {
 switch (newStatus)
 {
 case 0: { commStatus = "Not Initialized"; commStatColor = 0;
break; }
 case 1: { commStatus = "Failed"; commStatColor = 1; break; }
 case 2: { commStatus = "Initializing..."; commStatColor = 2;
break; }
 case 3: { commStatus = "Connected"; commStatColor = 3; break;
}
 }
 }
 public void setStatus(byte newStatus)
 {
 robotStatus = newStatus;
 }
 public void setAnalogs(ref string[] myValues)
 {
 battVoltage = short.Parse(myValues[1]);
 rightLightVoltage = short.Parse(myValues[2]);
 centerLightVoltage = short.Parse(myValues[3]);
 leftLightVoltage = short.Parse(myValues[4]);
 rightDistanceVoltage = short.Parse(myValues[5]);
 centerDistanceVoltage = short.Parse(myValues[6]);
 leftDistanceVoltage = short.Parse(myValues[7]);
 auxVoltage = short.Parse(myValues[8]);
 }
 public void setPWMS(ref string[] myValues)
 {
 leftDriveMotor = int.Parse(myValues[1]);
 rightDriveMotor = int.Parse(myValues[2]);
 sensorPanningMotor = int.Parse(myValues[3]);
 battCharge = int.Parse(myValues[4]);
 }
 public void setPosition(ref string[] myValues)
 {

 69

 posX = (int)(double.Parse(myValues[1]));
 posY = (int)(double.Parse(myValues[2]));
 heading = double.Parse(myValues[3]);
 }
 public void setStartPos(int newX, int newY)
 {
 startX = newX;
 startY = newY;
 }
 public void setStartHeading(int newValue)
 {
 startHeading = newValue;
 }
 public void setPositionMatrix(ref int[,] newMatrix)
 {
 PositionMatrix = newMatrix;
 }
 public void setIntruderPosition(ref string[] myValues)
 {
 intruderX=(int)(double.Parse(myValues[1]));
 intruderY=(int)(double.Parse(myValues[2]));
 confidenceInterval=(int)(double.Parse(myValues[3]));
 }

 }
}

Program
using System;
using System.Collections.Generic;
using System.Windows.Forms;

namespace RoboSim
{
 static class Program
 {
 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 Application.Run(new frmMainControl());
 }
 }
}

frmRobotHealth
using System;

 70

using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.Threading;

namespace RoboSim
{
 public partial class frmRobotHealth : Form
 {
 ArrayList activeRobots;
 Object waste=null;
 EventArgs waste2=null;
 System.IO.Ports.SerialPort serialComm;

 //Constructor
 public frmRobotHealth(ref ArrayList myRobots, ref
System.IO.Ports.SerialPort newSerialComm)
 {
 InitializeComponent();
 serialComm = newSerialComm;
 activeRobots = myRobots;
 foreach (object robot in activeRobots)
 {
 lstRunningRobots.Items.Add(robot);
 }
 lstRunningRobots.SelectedIndex = 0;
 lstRunningRobots.Refresh();
 tmrUpdate.Interval = 1000;
 tmrUpdate.Tick+=new EventHandler(updateData);
 startTimer();
 }

 //Destructor
 public void Dispose()
 {
 tmrUpdate.Dispose();
 }
 public void startTimer()
 {
 tmrUpdate.Start();
 }

 //Functions-Methods
 private void updateData(object o, EventArgs eargs)
 {
 PhysicalRobot selRobot =
(PhysicalRobot)activeRobots[lstRunningRobots.SelectedIndex];
 lblRobotID.Text = selRobot.getRobotID().ToString();
 lblRobotName.Text = selRobot.ToString();
 switch (selRobot.getStatus())
 {
 case 0: { lblScenarioRole.Text = "Active"; break; }
 case 1: { lblScenarioRole.Text = "Paused"; break; }
 case 2: { lblScenarioRole.Text = "Sleeping"; break; }

 71

 }
 lblCommAddress.Text = selRobot.RobotCommAddress2().ToString();
 lblCommStatus.Text = selRobot.getCommStatus();
 lblBattVoltage.Text = selRobot.getBattVoltage().ToString("n"+2);
 lblLeftLightVoltage.Text =
selRobot.getLeftLightVoltage().ToString("n"+2);
 lblCenterLightVoltage.Text =
selRobot.getCenterLightVoltage().ToString("n"+2);
 lblRightLightVoltage.Text =
selRobot.getRightLightVoltage().ToString("n"+2);
 lblRightDistanceVoltage.Text =
selRobot.getRightDistanceVoltage().ToString("n"+2);
 lblCenterDistanceVoltage.Text =
selRobot.getCenterDistanceVoltage().ToString("n"+2);
 lblLeftDistanceVoltage.Text =
selRobot.getLeftDistanceVoltage().ToString("n"+2);
 lblAuxVoltage.Text = selRobot.getAuxVoltage().ToString("n"+2);
 lblLeftDriveMotor.Text =
selRobot.getLeftDriveMotorPWM().ToString();
 lblRightDriveMotor.Text =
selRobot.getRightDriveMotorPWM().ToString();
 lblSensorPanningMotor.Text =
selRobot.getSensorPanningMotorPWM().ToString();
 lblBattCharge.Text = selRobot.getBattChargePWM().ToString();
 lblXPos.Text = selRobot.getPosX().ToString();
 lblYPos.Text = selRobot.getPosY().ToString();
 lblH.Text = selRobot.getHeading().ToString();
 }

 //Events
 private void lstRunningRobots_SelectedIndexChanged(object sender,
EventArgs e)
 {
 updateData(waste,waste2);
 }
 private void btnClose_Click(object sender, EventArgs e)
 {
 this.Visible = false;
 tmrUpdate.Stop();
 }
 }
}

frmRobotFileNotExist
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace RoboSim
{
 public partial class frmRobotFileNotExist : Form

 72

 {
 public frmRobotFileNotExist()
 {
 InitializeComponent();
 }
 }
}

frmConfigureRobots
using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace RoboSim
{
 public partial class frmConfigureRobots : Form
 {
 private ArrayList mine;
 public frmConfigureRobots()
 {
 InitializeComponent();
 }

 public void setRoboList(ref ArrayList newList)
 {
 mine = newList;
 dgvRobotDisplay.DataSource = newList;
 dgvRobotDisplay.Refresh();
 }
 }
}

frmAddNewRobot
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace RoboSim
{
 public partial class frmAddNewRobot : Form
 {
 public frmAddNewRobot()
 {
 InitializeComponent();
 }
 }

 73

}

CommTest
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.IO.Ports;

namespace RoboSim
{
 public partial class CommTest : Form
 {
 SerialPort serialComm;
 public CommTest(ref SerialPort newSerialComm)
 {
 InitializeComponent();
 serialComm = newSerialComm;

 }

 private void button1_Click(object sender, EventArgs e)
 {
 try
 {
 serialComm.ReadTimeout = 1000;
 serialComm.WriteTimeout = 1000;
 serialComm.Write(textBox1.Text);
 string x = serialComm.ReadLine();
 label2.Text = x;
 }
 catch
 {
 label2.Text = "Timeout";
 }
 }
 }
}

frmNewScenario
using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Drawing.Drawing2D;
using System.Text;
using System.Windows.Forms;
using System.Threading;
using System.IO.Ports;

 74

namespace RoboSim
{
 public partial class frmNewScenario : Form
 {
 ArrayList loadedRobots;
 double myHeight;
 double myWidth;
 int pixelsPerUnit;
 double pixelsPerUnitD;

 int tempX=-1;
 int tempY=-1;
 int tempHeading = 180;

 //Constructors
 public frmNewScenario(ref ArrayList myRobots, ref SerialPort
newSerialComm)
 {
 InitializeComponent();
 loadedRobots = myRobots;
 serialComm = newSerialComm;
 txtLength.Text = "0";
 txtWidth.Text = "0";
 foreach (PhysicalRobot robot in loadedRobots)
 {
 clistBoxRobots.Items.Add(robot);
 lstPlaceRobots.Items.Add(robot);
 }
 clistBoxRobots.SetSelected(0, true);
 lstPlaceRobots.SetSelected(0, true);
 }

 //Functions-Methods
 private void updateCommStatus(int index)
 {
 lblCommStat.Text =
((PhysicalRobot)loadedRobots[index]).getCommStatus();
 byte color =
((PhysicalRobot)loadedRobots[clistBoxRobots.SelectedIndex]).getCommStatColor(
);
 switch (color)
 {
 case 0: { lblCommStat.ForeColor =
System.Drawing.Color.Yellow; break; }
 case 1: { lblCommStat.ForeColor = System.Drawing.Color.Red;
break; }
 case 2: { lblCommStat.ForeColor =
System.Drawing.Color.Yellow; break; }
 case 3: { lblCommStat.ForeColor = System.Drawing.Color.Green;
break; }
 }
 }
 private void updateTeamStatus(object robot)
 {
 PhysicalRobot myRobot = (PhysicalRobot)robot;
 lstActive.Items.Remove(myRobot);
 lstPaused.Items.Remove(myRobot);

 75

 lstSleep.Items.Remove(myRobot);
 switch (myRobot.getStatus())
 {
 case 0: { lstActive.Items.Add(myRobot); break; }
 case 1: { lstPaused.Items.Add(myRobot); break; }
 case 2: { lstSleep.Items.Add(myRobot); break; }
 }
 }
 private void removeRobotFromTeam(object robot)
 {
 PhysicalRobot myRobot = (PhysicalRobot)robot;
 lstActive.Items.Remove(myRobot);
 lstPaused.Items.Remove(myRobot);
 lstSleep.Items.Remove(myRobot);
 }
 private bool handshake(object newHex)
 {
 try
 {
 string newDestHex = newHex.ToString();
 serialComm.Write(newDestHex+"00000");
 serialComm.WriteTimeout = 1000;
 serialComm.ReadTimeout = 1000;
 string response = serialComm.ReadLine();
 string[] respParsed = response.Split('|');
 response = response.Substring(8, response.Length - 8);
 if (respParsed[1].StartsWith("HELO"))
 return true;
 else
 return false;
 }
 catch (Exception ex)
 {
 string temp = ex.StackTrace;
 return false;
 }
 }
 private void fail()
 {

((PhysicalRobot)loadedRobots[clistBoxRobots.SelectedIndex]).setCommStatus(1);
 removeRobotFromTeam(loadedRobots[clistBoxRobots.SelectedIndex]);
 clistBoxRobots.SetItemChecked(clistBoxRobots.SelectedIndex,
false);
 string
name=((PhysicalRobot)loadedRobots[clistBoxRobots.SelectedIndex]).ToString();
 MessageBox.Show("Communication tests for " + name + " have
failed");
 }
 public double feetToInches(double feet)
 {
 return feet * 12;
 }
 public double metersToCm(double meters)
 {
 return meters * 100;
 }

 76

 private bool canRobotBePlaced(int xCoord, int yCoord)
 {
 bool canIDoThis = true;
 if (xCoord >= 15 && yCoord >= 15 && yCoord <= pnlEnv.Height -
(15) && xCoord <= pnlEnv.Width - (15))
 {
 return canIDoThis;
 }
 else
 return false;
 }
 private bool canRobotBePlaced2(int xCoord, int yCoord)
 {
 bool canIDoThis = true;
 try
 {
 foreach (PhysicalRobot test in lstPlaceRobots.Items)
 {
 if
(!test.Equals(lstPlaceRobots.Items[lstPlaceRobots.SelectedIndex]))
 {
 if (Math.Abs(test.getStartX() - xCoord) < 20 *
pixelsPerUnit && Math.Abs(test.getStartY() - yCoord) < 20 * pixelsPerUnit)
 canIDoThis = false;
 }
 }
 return canIDoThis;
 }
 catch
 {
 return false;
 }
 }
 public int getEnvWidth()
 {
 return int.Parse(txtWidth.Text);
 }
 public int getEnvLength()
 {
 return int.Parse(txtLength.Text);
 }

 //Events
 private void clistBoxRobots_SelectedIndexChanged(object sender,
EventArgs e)
 {
 int index = clistBoxRobots.SelectedIndex;
 PhysicalRobot currRobot = (PhysicalRobot)loadedRobots[index];
 updateCommStatus(clistBoxRobots.SelectedIndex);
 lblRobotID.Text = currRobot.getRobotID().ToString();
 lblRobotName.Text = currRobot.ToString();
 lblRobotCommNum.Text = currRobot.RobotCommAddress2().ToString();
 if (currRobot.getCommStatus().StartsWith("Failed"))
 clistBoxRobots.SetItemChecked(clistBoxRobots.SelectedIndex,
false);
 if (clistBoxRobots.GetItemChecked(clistBoxRobots.SelectedIndex))
 {

 77

 lstRobotStatus.Enabled=true;
 lstRobotStatus.SelectedIndex = currRobot.getStatus();
 }
 else
 {
 lstRobotStatus.Enabled=false;
 }
 }
 private void clistBoxRobots_ItemCheck(object sender,
ItemCheckEventArgs e)
 {
 if (clistBoxRobots.GetItemChecked(clistBoxRobots.SelectedIndex))
 {
 lstRobotStatus.Enabled = false;

removeRobotFromTeam(loadedRobots[clistBoxRobots.SelectedIndex]);

((PhysicalRobot)loadedRobots[clistBoxRobots.SelectedIndex]).setInSimulation(f
alse);
 }
 else
 {
 string
newHex=((PhysicalRobot)loadedRobots[clistBoxRobots.SelectedIndex]).RobotCommA
ddress2().ToString();

((PhysicalRobot)loadedRobots[clistBoxRobots.SelectedIndex]).setCommStatus(2);
 updateCommStatus(clistBoxRobots.SelectedIndex);
 lstRobotStatus.Enabled = true;
 lstRobotStatus.SelectedIndex =
((PhysicalRobot)loadedRobots[clistBoxRobots.SelectedIndex]).getStatus();
 updateTeamStatus(loadedRobots[clistBoxRobots.SelectedIndex]);
 if (handshake(newHex))
 {

((PhysicalRobot)loadedRobots[clistBoxRobots.SelectedIndex]).setCommStatus(3);

((PhysicalRobot)loadedRobots[clistBoxRobots.SelectedIndex]).setInSimulation(t
rue);
 }
 else
 {
 fail();
 }
 updateCommStatus(clistBoxRobots.SelectedIndex);
 }
 }
 private void lstRobotStatus_SelectedIndexChanged(object sender,
EventArgs e)
 {

((PhysicalRobot)loadedRobots[clistBoxRobots.SelectedIndex]).setStatus(byte.Pa
rse(lstRobotStatus.SelectedIndex.ToString()));
 updateTeamStatus(loadedRobots[clistBoxRobots.SelectedIndex]);
 }
 private void btnCancel_Click(object sender, EventArgs e)
 {

 78

 }
 private void btnNewScenario_Click(object sender, EventArgs e)
 {
 try
 {
 int NumRobots;
 int MatrixDistance;
 int RobotDistance;
 int[,] tempMatrix = new int[10, 2];
 double Heading;
 NumRobots = lstPlaceRobots.Items.Count;
 PhysicalRobot tempRobot;
 string id;
 for (int i = 0; i < NumRobots; i++)
 {
 tempRobot = (PhysicalRobot)(lstPlaceRobots.Items[i]);
 id = tempRobot.getRobotID().ToString();
 serialComm.Write(id + "00300");
 string response = serialComm.ReadLine();
 string[] output = response.Split('|');
 tempRobot.setPosition(ref output);
 tempMatrix[0, 0] = tempRobot.getPosX();
 tempMatrix[0, 1] = tempRobot.getPosY();
 tempMatrix[1, 0] = tempRobot.getPosX();
 tempMatrix[1, 1] = tempRobot.getPosY() + 010;
 for (int j = 2; j < 10; j++)
 {
 tempMatrix[j, 0] = (int)(tempRobot.getStartX() * (j /
7.0));
 tempMatrix[j, 1] = (int)(tempRobot.getStartY() * (j /
7.0));
 }
 tempRobot.setPositionMatrix(ref tempMatrix);
 string PosMatrix;
 PosMatrix = tempMatrix[0, 0].ToString() + "|";
 PosMatrix += tempMatrix[0, 1].ToString() + "|";
 for (int n = 1; n < 10; n++)
 {
 PosMatrix += tempMatrix[i, 0].ToString() + "|";
 PosMatrix += tempMatrix[i, 1].ToString() + "|";
 }
 serialComm.Write(id + "300" + PosMatrix.Length.ToString()
+ PosMatrix);
 string ack = serialComm.ReadLine();
 MatrixDistance = (int)(Math.Sqrt((((tempMatrix[3, 0] -
tempMatrix[0, 0]) ^ 2) + ((tempMatrix[3, 1] - tempMatrix[0, 1]) ^ 2))));
 for (int m = 1; m < NumRobots; m++)
 {
 RobotDistance = (int)Math.Sqrt((((tempRobot.getPosX()
- tempMatrix[0, 0]) ^ 2 + (tempRobot.getPosY() - tempMatrix[0, 1]) ^ 2)));
 while (RobotDistance < MatrixDistance)
 {
 RobotDistance =
(int)Math.Sqrt((((tempRobot.getPosX() - tempMatrix[0, 0]) ^ 2 +
(tempRobot.getPosY() - tempMatrix[0, 1]) ^ 2)));
 for (int k = 0; k < 100000; k++)
 {

 79

 }
 }
 }
 }

 tempRobot = (PhysicalRobot)(lstPlaceRobots.Items[NumRobots -
1]);
 while (tempRobot.getPosX() + 1.5 < tempMatrix[9, 0] &&
tempRobot.getPosY() + 1.5 < tempMatrix[9, 1])
 {
 tempRobot.getPosX();
 tempRobot.getPosY();
 for (int k = 0; k < 100000; k++)
 {
 }
 }
 for (int k = 0; k < 100000; k++)
 {
 }
 for (int i = 0; i < NumRobots; i++)
 {
 tempRobot = (PhysicalRobot)(lstPlaceRobots.Items[i]);
 Heading = tempRobot.getStartHeading() * (Math.PI / 180);
 id = tempRobot.getRobotID().ToString();
 serialComm.Write(id + "30106" +
Heading.ToString().Substring(0, 6));
 string ack = serialComm.ReadLine();
 }
 }
 catch
 {
 }
 }

 private void pnlEnv_MouseClick(object sender, MouseEventArgs e)
 {
 tempX = -1;
 tempY = -1;
 try
 {
 if (canRobotBePlaced(e.X, e.Y))
 {
 //if (canRobotBePlaced2(e.X,e.Y))
 //{

((PhysicalRobot)lstPlaceRobots.Items[lstPlaceRobots.SelectedIndex]).setStartP
os((int)(e.X/pixelsPerUnitD), (int)(e.Y/pixelsPerUnitD));
 tckbrHeading.Enabled = true;
 tckbrHeading.Value =
(int)(((PhysicalRobot)lstPlaceRobots.Items[lstPlaceRobots.SelectedIndex]).get
StartHeading());
 pnlEnv.Refresh();
 //}
 //else
 //{
 // foreach (PhysicalRobot test in
lstPlaceRobots.Items)

 80

 // {
 // if (Math.Abs(test.getStartX() - xCoord) < 20 *
pixelsPerUnit && Math.Abs(test.getStartY() - yCoord) < 20 * pixelsPerUnit)

 // }
 //}
 }

 }
 catch
 {
 MessageBox.Show("Please select a robot. If there are no
robots in the list, consult the Robots tab");
 }
 }
 private void pnlEnv_Paint(object sender, PaintEventArgs e)
 {
 Graphics g = e.Graphics;
 GraphicsPath myG = new GraphicsPath();
 Matrix mat = new Matrix();
 if (tempX >= 0 && tempY >= 0)
 {
 mat.RotateAt(tempHeading, new PointF(tempX, tempY));
 myG.AddRectangle(new Rectangle((tempX - 2 * pixelsPerUnit),
(tempY - 4 * pixelsPerUnit), (4 * pixelsPerUnit), (6 * pixelsPerUnit)));
 myG.AddRectangle(new Rectangle((tempX - 3 * pixelsPerUnit),
(tempY - 5 * pixelsPerUnit), (1 * pixelsPerUnit), (9 * pixelsPerUnit)));
 myG.AddRectangle(new Rectangle((tempX + 2 * pixelsPerUnit),
(tempY - 5 * pixelsPerUnit), (1 * pixelsPerUnit), (9 * pixelsPerUnit)));
 myG.Transform(mat);
 if (canRobotBePlaced(tempX, tempY))
 g.DrawPath(new Pen(Color.Blue), myG);
 else
 g.DrawPath(new Pen(Color.Red), myG);
 }

 foreach (PhysicalRobot currRobot in lstPlaceRobots.Items)
 {
 int x=(int)(currRobot.getStartX()*pixelsPerUnitD);
 int y=(int)(currRobot.getStartY()*pixelsPerUnitD);

 if (x >= 0 && y >= 0)
 {
 myG = new GraphicsPath();
 mat = new Matrix();
 mat.RotateAt((int)(currRobot.getStartHeading()),new
PointF(x,y));
 myG.AddRectangle(new Rectangle((x - 2 * pixelsPerUnit),
(y - 4 * pixelsPerUnit), (4 * pixelsPerUnit), (6 * pixelsPerUnit)));
 myG.AddRectangle(new Rectangle((x - 3 * pixelsPerUnit),
(y - 5 * pixelsPerUnit), (1 * pixelsPerUnit), (9 * pixelsPerUnit)));
 myG.AddRectangle(new Rectangle((x + 2 * pixelsPerUnit),
(y - 5 * pixelsPerUnit), (1 * pixelsPerUnit), (9 * pixelsPerUnit)));
 myG.Transform(mat);

 81

 if
(lstPlaceRobots.Items[lstPlaceRobots.SelectedIndex].Equals(currRobot))
 g.DrawPath(new Pen(Color.Blue), myG);
 else
 g.DrawPath(new Pen(Color.Black), myG);

 }
 }
 }
 private void btnRemove_Click(object sender, EventArgs e)
 {

((PhysicalRobot)lstPlaceRobots.Items[lstPlaceRobots.SelectedIndex]).setStartP
os(-1, -1);

((PhysicalRobot)lstPlaceRobots.Items[lstPlaceRobots.SelectedIndex]).setStartH
eading(180);
 pnlEnv.Refresh();
 }
 private void lstPlaceRobots_SelectedIndexChanged(object sender,
EventArgs e)
 {
 PhysicalRobot loadValues =
((PhysicalRobot)lstPlaceRobots.Items[lstPlaceRobots.SelectedIndex]);
 if (loadValues.getStartY() < 0 || loadValues.getStartX() < 0)
 tckbrHeading.Enabled = false;
 else
 tckbrHeading.Enabled = true;
 tckbrHeading.Value = (int)(loadValues.getStartHeading());
 tempHeading = tckbrHeading.Value;
 pnlEnv.Refresh();
 }
 private void tckbrHeading_Scroll(object sender, EventArgs e)
 {

((PhysicalRobot)lstPlaceRobots.Items[lstPlaceRobots.SelectedIndex]).setStartH
eading(tckbrHeading.Value);
 tempHeading = tckbrHeading.Value;
 pnlEnv.Refresh();
 }
 private void pnlEnv_MouseMove(object sender, MouseEventArgs e)
 {
 tempX = e.X;
 tempY = e.Y;
 pnlEnv.Refresh();
 }
 private void pnlEnv_MouseLeave(object sender, EventArgs e)
 {
 Cursor.Show();
 tempX = -1;
 tempY = -1;
 pnlEnv.Refresh();
 }
 private void pnlEnv_MouseEnter(object sender, EventArgs e)
 {
 Cursor.Hide();
 }

 82

 private void tabSwitcher_SelectedIndexChanged(object sender,
EventArgs e)
 {
 if (tabSwitcher.SelectedIndex == 3)
 {
 double envHeight = double.Parse(txtLength.Text);
 double envWidth = double.Parse(txtWidth.Text);
 if (envWidth>=envHeight)
 {
 myHeight = envHeight;
 myWidth = envWidth;
 }
 else
 {
 myHeight = envWidth;
 myWidth = envHeight;
 }
 if (0 == 0)
 {
 myHeight = feetToInches(myHeight);
 myWidth = feetToInches(myWidth);
 }
 else
 {
 myHeight = metersToCm(myHeight);
 myWidth = metersToCm(myWidth);
 }
 double ratio = myWidth / myHeight;
 if (ratio <= 2)
 {
 pnlEnv.Height = 150;
 pixelsPerUnitD = (150 / myHeight);
 pnlEnv.Width = (int)(pixelsPerUnitD * myWidth);
 }
 else
 {
 int tempHeight = 150;
 pixelsPerUnitD = (150 / myHeight);
 while (pixelsPerUnitD * myWidth > 300)
 {
 tempHeight--;
 pixelsPerUnitD = (tempHeight / myHeight);
 }
 pnlEnv.Width = (int)(pixelsPerUnitD * myWidth);
 pnlEnv.Height = (int)(pixelsPerUnitD * myHeight);
 }
 pixelsPerUnit = (int)pixelsPerUnitD;
 if (pixelsPerUnit == 0)
 pixelsPerUnit = 1;
 }
 }
 }
}

frmMainControl

 83

using System;
using System.IO;
using System.IO.Ports;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.Threading;
using System.Drawing.Drawing2D;

namespace RoboSim
{
 public partial class frmMainControl : Form
 {
 private ArrayList loadedRobots;
 frmRobotHealth roboHealth;
 private double envWidth, envLength, pixelsPerUnitD;
 private int pixelsPerUnit;

 //Constructors
 public frmMainControl()
 {
 InitializeComponent();
 loadedRobots = loadRobots();
 initRadio();
 roboHealth = new frmRobotHealth(ref loadedRobots, ref
serialComm);
 roboHealth.Visible = false;
 tmrUpdate.Interval = 700;
 tmrUpdate.Tick += new EventHandler(updateData);
 serialComm.WriteTimeout = 1000;
 serialComm.ReadTimeout = 1000;
 }

 //Functions-Methods
 private ArrayList loadRobots()
 {
 string directory = @"C:\ERIC\ISP\RoboSim v.1.0\RoboSim
v.1.0\Robots\";
 string fileName = "index.ini";
 FileStream indexFile = new FileStream((directory + fileName),
FileMode.Open);
 StreamReader fileReader = new StreamReader(indexFile);
 ArrayList robotFiles = new ArrayList();
 ArrayList myloadedRobots = new ArrayList();
 string lineInput;
 try
 {
 while ((lineInput = fileReader.ReadLine()) != null)
 {
 robotFiles.Add(lineInput);
 }
 }

 84

 finally
 {
 fileReader.Close();
 indexFile.Close();
 }

 for (int k = 0; k < robotFiles.Count; k++)
 {
 try
 {
 fileName = (string)robotFiles[k];
 indexFile = new FileStream((directory + fileName),
FileMode.Open);
 fileReader = new StreamReader(indexFile);
 byte robotID = byte.Parse(fileReader.ReadLine());
 PhysicalRobot toBeAdded = new PhysicalRobot(robotID);
 toBeAdded.setName(fileReader.ReadLine());

toBeAdded.setCommAddress(short.Parse(fileReader.ReadLine()));
 myloadedRobots.Add(toBeAdded);
 }
 catch (FileNotFoundException e)
 {
 string temp = e.StackTrace;
 frmRobotFileNotExist error = new frmRobotFileNotExist();
 error.ShowDialog();
 }
 finally
 {
 fileReader.Close();
 indexFile.Close();
 }
 }
 return myloadedRobots;
 }
 private void initRadio()
 {
 try
 {
 serialComm.Open();
 serialComm.ReadTimeout = 100;
 serialComm.WriteTimeout = 100;
 }
 catch
 {
 MessageBox.Show("The Server Radio is not properly
configured.");
 }
 }

 private void updateAnalogs(ref PhysicalRobot myRobot)
 {
 string address = myRobot.RobotCommAddress2().ToString();
 try
 {
 serialComm.Write(address + "00100");
 string[] response = serialComm.ReadLine().Split('|');

 85

 if (response.Length == 10)
 {
 myRobot.setAnalogs(ref response);
 }
 }
 catch
 {
 tmrUpdate.Stop();
 MessageBox.Show("Lost Communications");
 }
 }
 private void updatePWMS(ref PhysicalRobot myRobot)
 {
 string address = myRobot.RobotCommAddress2().ToString();
 try
 {
 serialComm.Write(address + "00200");
 string[] response = serialComm.ReadLine().Split('|');
 if (response.Length == 6)
 {
 myRobot.setPWMS(ref response);
 }
 }
 catch
 {
 tmrUpdate.Stop();
 MessageBox.Show("Lost Communications");
 }
 }
 private void updatePosition(ref PhysicalRobot myRobot)
 {
 string address = myRobot.RobotCommAddress2().ToString();
 try
 {
 serialComm.Write(address + "00300");
 string[] response = serialComm.ReadLine().Split('|');
 if (response.Length == 5)
 {
 myRobot.setPosition(ref response);
 }
 }
 catch
 {
 tmrUpdate.Stop();
 MessageBox.Show("Lost Communications");
 }
 }
 private void updateData(object o, EventArgs eargs)
 {
 PhysicalRobot currRobot = (PhysicalRobot)loadedRobots[0];
 if (currRobot.getCommStatus().StartsWith("Connected"))
 {
 updateAnalogs(ref currRobot);
 updatePWMS(ref currRobot);
 updatePosition(ref currRobot);
 }
 }

 86

 //Events
 private void newSimulationToolStripMenuItem_Click(object sender,
EventArgs e)
 {
 frmNewScenario newDialog = new frmNewScenario(ref loadedRobots,
ref serialComm);
 newDialog.ShowDialog();
 envWidth = newDialog.getEnvWidth();
 envLength = newDialog.getEnvLength();
 panelResize();
 btnStartSim.Enabled = true;
 pnlEnvironment.Visible = true;
 newDialog.Dispose();
 }
 private void installedRobotsToolStripMenuItem_Click_1(object sender,
EventArgs e)
 {
 frmConfigureRobots newDialog = new frmConfigureRobots();
 newDialog.setRoboList(ref loadedRobots);
 newDialog.ShowDialog();
 }
 private void robotHealthToolStripMenuItem_Click(object sender,
EventArgs e)
 {
 roboHealth.Visible = true;
 roboHealth.startTimer();
 }
 private void commTestToolStripMenuItem_Click(object sender, EventArgs
e)
 {
 CommTest test = new CommTest(ref serialComm);
 test.Show();
 }
 private void button1_Click(object sender, EventArgs e)
 {
 tmrUpdate.Start();
 }
 private void button2_Click(object sender, EventArgs e)
 {
 tmrUpdate.Stop();
 }

 private void panelResize()
 {
 double tempEnvHeight = envLength;
 double tempEnvWidth = envWidth;
 if (tempEnvWidth >= tempEnvHeight)
 {
 envLength = tempEnvHeight;
 envWidth = tempEnvWidth;
 }
 else
 {
 envLength = tempEnvWidth;
 envWidth = tempEnvHeight;
 }

 87

 envLength *= 12;
 envWidth *= 12;

 double ratio = envWidth / envLength;
 if (ratio <= (670/400))
 {
 pnlEnvironment.Height = 400;
 pixelsPerUnitD = (400 / envLength);
 pnlEnvironment.Width = (int)(pixelsPerUnitD * envWidth);
 }
 else
 {
 int tempHeight = 400;
 pixelsPerUnitD = (400 / envLength);
 while (pixelsPerUnitD * envWidth > 670)
 {
 tempHeight--;
 pixelsPerUnitD = (tempHeight / envLength);
 }
 pnlEnvironment.Width = (int)(pixelsPerUnitD * envWidth);
 pnlEnvironment.Height = (int)(pixelsPerUnitD * envLength);
 }
 pixelsPerUnit = (int)pixelsPerUnitD;
 if (pixelsPerUnit == 0)
 pixelsPerUnit = 1;
 }

 private void btnStartSim_Click(object sender, EventArgs e)
 {
 //While goal not met
 foreach (PhysicalRobot currRobot in loadedRobots)
 {
 int[,] tempMatrix = new int[10, 2];
 tempMatrix[0, 0] = currRobot.getPosX();
 tempMatrix[0, 1] = currRobot.getPosY();
 serialComm.Write(currRobot.getRobotID().ToString() +
"00500");
 string response = serialComm.ReadLine();
 string[] output = response.Split('|');
 currRobot.setIntruderPosition(ref output);
 if (currRobot.getConfidenceInterval()>50)
 {

 }
 //pnlEnvironment.Refresh();
 }
 //After goal is met
 //MessageBox.Show("intruder captured!");
 }

 private void pnlEnvironment_Paint(object sender, PaintEventArgs e)
 {
 Graphics g = e.Graphics;
 GraphicsPath myG = new GraphicsPath();
 Matrix mat = new Matrix();

 foreach (PhysicalRobot currRobot in loadedRobots)

 88

 {
 if (currRobot.isInSimulation())
 {
 int x = (int)(currRobot.getPosX() * pixelsPerUnitD);
 int y = (int)(currRobot.getPosY() * pixelsPerUnitD);

 if (x >= 0 && y >= 0)
 {
 myG = new GraphicsPath();
 mat = new Matrix();
 mat.RotateAt((int)(currRobot.getHeading()), new
PointF(x, y));
 myG.AddRectangle(new Rectangle((x - 2 *
pixelsPerUnit), (y - 4 * pixelsPerUnit), (4 * pixelsPerUnit), (6 *
pixelsPerUnit)));
 myG.AddRectangle(new Rectangle((x - 3 *
pixelsPerUnit), (y - 5 * pixelsPerUnit), (1 * pixelsPerUnit), (9 *
pixelsPerUnit)));
 myG.AddRectangle(new Rectangle((x + 2 *
pixelsPerUnit), (y - 5 * pixelsPerUnit), (1 * pixelsPerUnit), (9 *
pixelsPerUnit)));
 myG.Transform(mat);
 g.DrawPath(new Pen(Color.Black), myG);

 }
 }
 }
 }
 }
}

 89

Appendix H: Purchased Materials

	Worcester Polytechnic Institute
	Digital WPI
	March 2007

	Centralized Intrusion Detection via Swarm Robots
	Christopher M. Warms
	Christopher Stephen Thein
	Derek J. Williams
	Nathan D. Fuller
	Nathan S. Rosenblad
	Repository Citation

	Microsoft Word - MQP FINAL.doc

