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Abstract

The Career Development Center (CDC) at Worcester Polytechnic
Institute (WPI) is a key organization in helping students develop the
skills necessary for finding a career path after graduation. Our team an-
alyzed graduation, CDC usage, and internship data in order to better
understand factors which predict student outcomes after graduation.
Through machine learning, we pinpointed the most relevant predictors
for post-graduate success. The CDC can use this information to better
use their resources and provide insight for future analysis.
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Executive Summary

One of the most important outcomes of a college career is a student’s post-
graduate job prospects, graduate school attendance, or other markers of
educational success. Like most universities, Worcester Polytechnic Institute
(WPI) has a Career Development Center (CDC), which offers students a
wide range of resources, programs, and networking opportunities to enhance
their prospective job opportunities and other post-graduate ambitions. But
while the CDC annually reports on alumni status, there has not yet been
a dedicated effort to analyze career outcomes data in-depth using math-
ematically rigorous methods. Although the CDC can summarize student
outcomes for a given year, deeper questions about what aspects of college
life predict those outcomes demand more inspection.

The goal of this project was to apply supervised machine learning meth-
ods to analyze the CDC’s class 2015 student outcomes data. This data was
merged with two additional datasets which tracked information on student
internships and CDC usage for the class of 2015. These datasets are re-
ferred to as Full Class of 2015, Internship, and CDC Usage, respectively.
After combining these datasets, pre-processing the data, and devising an
encoding scheme, we studied several classification methods. After some
consideration, we decided that decision trees were the optimal approach for
our dataset since they do not require separators and were more efficient than
the alternative methods.

We researched and then modified an over-sampling algorithm called
Synthetic Memory Over-Sampling Technique (SMOTE) and then imple-
mented a more accurate Borderline-SMOTE variant to resolve the issue
of imbalanced predictors within our datasets. We then applied k-fold cross-
validation, split the data into training and testing sets, and ran our algo-
rithms through several runs on the three different datasets: Full Class of
2015, Internship, and CDC Usage.

During these runs, we determined the top four predictors using SMOTE
and Borderline-SMOTE for each of the three datasets, finding that the
Borderline-SMOTE runs were either as accurate or more accurate than the
regular SMOTE runs in all three cases. For the Full Class of 2015 data, we
found that Walk-Ins were the most important predictor, followed by Degree
Date (when a student received his or her degree), Career Fair, and Degree
Type (what type of degree a student received).

10



Run Most
Important

2nd Most 3rd Most 4th Most

1 Walk-In Degree Date Career Fair Science Degree

2 Walk-In Degree Date Career Fair Workshop

3 Walk-In Degree Date Workshop Career Fair

4 Walk-In Degree Date Career Fair Resumazing

5 Walk-In Degree Date Career Fair Degree Type

6 Walk-In Degree Date Career Fair Degree Type

7 Walk-In Degree Date Degree Type Career Fair

8 Walk-In Degree Date Career Fair Resumazing

9 Walk-In Degree Date Workshop Career Fair

10 Walk-In Degree Date Degree Type Career Fair

Table 1: Top Four Predictors (in order of importance) for each of the Ten
Borderline-SMOTE Runs for the Full Class of 2015 dataset.

As a note, the accuracy scores in Table 2 are examples of the scores we
got from testing. These scores will differ from run to run.

Category Added Accuracy Post-Category Addition

Walk-In 58.550 %

Degree Date 68.891 %

Career Fair 71.328 %

Degree Type 72.934 %

Table 2: Example Run Results of Category importance for Borderline-
SMOTE found by Forward Subset Selection for the Full Class of 2015
dataset.

For the Internship data, we found a less clear-cut result. Degree Date
was the most significant predictor, followed by Resumazing. However, there
were only marginal increases in accuracy with added categories from the fol-
lowing predictors: Nationality, Summer Internship, and so on up to IMGD
Degree. Here “marginal increases in accuracy” refers to increases in predic-
tion accuracy of < 5% from adding a new predictor. Finally, for CDC Usage,
we found Degree Date again was the most significant predictor, followed by
Walk-In and then with marginal increases in accuracy from added categories
from the following predictors: Degree Type, Business Engineering, Summer
Internship, and so on up to Mathematics Degree.
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Category Added Accuracy Post-Category Addition

Degree Date 62.58 %

Resumazing 74.41 %

Nationality 76.69 %

Summer Internship 80.05 %

Degree Type 82.77 %

Science Degree 83.90 %

Workshop 84.90 %

Co-op 85.39 %

IMGD Degree 85.60 %

Table 3: Example Run Results of Category importance for Borderline-
SMOTE found by Forward Subset Selection for the Internship dataset.

Category Added Accuracy Post-Category Addition

Degree Date 58.41 %

Walk-In 72.60 %

Degree Type 74.22 %

Business Engineering 74.90 %

Summer Internship 75.23 %

Company Info Session 75.69 %

Civil Engineering 76.04 %

Mathematics Degree 76.05 %

Table 4: Example Run Results of Category importance for Borderline-
SMOTE found by Forward Subset Selection for the CDC Usage dataset.

We concluded that the most relevant predictors across the datasets are
Walk-In and Degree Date. It should be noted that by claiming, for instance,
that the four predictors in the Full Class of 2015 dataset have a total accu-
racy of nearly 73% when they are all added to the model is not equivalent
to saying that going to a certain number of Walk-Ins, graduating at a cer-
tain time, going to a certain amount of Career Fairs, and having a certain
level of degree will guarantee a student an approximately 73% chance of any
particular outcome. Rather, this means that when they are all applied, the
top four predictors will be able to predict a generic student’s outcomes with
a 73% accuracy, whether they received a job, went to graduate school, vol-
unteered, are still seeking employment, or did not get a job at all. Further
analysis is required to make stronger assumptions about why those predic-
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tors lead to those outcomes. The best way to get these results is to analyze
the decision tree pathways and see which conditions led to which predictions
of the response variables.

For future works, we suggest that the next steps are as follows. First,
improving CDC survey-gathering techniques and in-house data cleanup to
produce more easy to process datasets without the need for manual and
programmatic modifications. Second, attempting a more in-depth run of
the class of 2015 data using our methods applied to a dataset including a
Walk-In subcategory breakdown in line with the CDC’s recommendations
due to its significance as a predictor. And finally, applying these methods
to both a new (2016 or later) dataset for comparison and to determine
trends. Older datasets (2014 or earlier) may be useful for analyzing such
trends as well. Other potential additions might include using CDC usage
data to determine ranges of optimally beneficial use of certain programs and
to add other intersecting datasets beyond the ones used in this project to
investigate correlations among other aspects of undergraduate life.
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1 Introduction

College is one of the most costly investments one can make, so achieving
a stable and well-paying job after graduation is necessary to justify the
expenses. A student’s activities and decisions during college greatly affects
his or her career path and other post-graduate opportunities. In this project,
we used cutting-edge data analysis to discover trends that lead to successful
outcomes for college students and to guide career development programs
and services to reflect this information.

The Career Development Center (CDC) at Worcester Polytechnic Insti-
tute (WPI) routinely collects self-reporting survey data from alumni. These
forms include information on employment, graduate school attendance, and
other markers of post-graduation progress. Additionally, the CDC tracks
records of attendance for its programs, such as Career Fairs, Workshops,
and employer-led information panels. They also ask students to report on
internships and cooperative opportunities they have participated in while at
attending WPI. We used all of this information to compile the three sources
into one large dataset for analysis.

Combined, these three datasets offer a substantial framework for ana-
lyzing the success of alumni, relative to their career paths and additional
schooling. Using the thousands of data points provided by the CDC, we were
able to apply machine learning methods, including decision trees, to analyze
what parts of our data were most indicative of certain outcomes. Through
these analytic approaches, we were able to provide the Career Development
Center with unique information that will help them program future events
and help steer students in the right directions. They can use this analysis
to determine which events are most beneficial to helping a student get a job
and what other factors might contribute to better opportunities.

1.1 Background

This section provides the background of our sponsor, the CDC at WPI.
It also reviews the origin and nature of the datasets used, as well as key
concepts in machine learning which were used throughout the project. More
specific information about the datasets, including how they were cleaned and
modified for analysis, are discussed in later sections.

14



1.2 Measuring Outcomes

The CDC serves as the primary career-oriented resource for students at
WPI, offering a large selection of programs and services to help students
with networking, resume writing, interviewing, and finding careers that suit
their interests. These events are presented in several ways depending on the
audience and its needs. The CDC hosts workshops, employer-led discussion
panels, mock interviews, and Career Fairs throughout the year. The CDC
also collects information on the general usage of their services and atten-
dance at their events, as well as self-reported data from full time students
who participated in an internship, a co-op, or some form of summer research
opportunities.

A clear marker of student success for the CDC is reflected in posi-
tive post-graduate standings in employment, continued education, volun-
teer work or military involvement. Determining the effectiveness of their
programs motivates the CDC to compile an annual report of outcomes for
alumni. It is from the 2015 report that we have obtained the core data for
our project. According to the 2015 report, the university acquired data from
1420 of the 1671 graduates that year - a nearly 85% coverage rate for the
student body [7]. The introduction further claims,

Again this year, WPI can boast a very strong success rate:
91.7% of graduates for whom we have outcomes data were ei-
ther employed, entering graduate school, serving in the military,
or participating in volunteer service (such as City Year, Teach
for America, etc.). [7]

At least for the previous year, this was true as well [8]. For the class of
2014, WPIs CDC confidently concluded that the previous years graduates
had a post-graduate success rate of over 90% [8]. This was further broken
down in the introduction of the 2014 report showing an increase in suc-
cess rates from the bachelor level (89.4%) to masters (91.7%) and doctoral
(96.0%) [8].

These reports and their high-level outcomes give us a significant reference
point for outlining our project goals. The converse of the reports success
story, for instance, is that 8.3% of students surveyed did not have outcomes
which were successful by the CDCs measure. These graduates are either
unemployed or are actively seeking employment without a secondary plan
of action.

Knowing this leads us with our first major question to try and answer,
using information from all of these available databases: What can the CDC
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do to improve outcomes for these 8.3% of alumni? And the reverse of this
question is worth keeping in mind while addressing this concern: What is
the CDC doing right (or best) to produce optimal outcomes for the majority
of postgraduate students? Once these results are identified, not only should
we ask how they can further enhance the quality of outcomes for those
already benefiting from the CDCs programs, but also how the most effective
services be tailored and translated to the minority of students with negative
outcomes.

2 Literature Review

Here we provide a brief overview of the existing literature on the subject
of using data science and machine learning methods in the context of post-
secondary career development. A review of existing literature did not reveal
any major published works using the methods applied in this project for the
purposes of enhancing career outcomes through university career develop-
ment organizations. In fact, the use of data mining and machine learning
data analysis techniques in higher education in general is a new frontier
which deviates from traditional applications in business decision-making [9].
Pal describes the emerging field of Educational Data Mining, which deals
with data mining to discover knowledge from data originating from educa-
tional environments [10], but this scope does not necessarily include career
development pathways. Rather, it is more exclusively focused on answering
questions about educational outcomes within the classroom.

2.1 Academic Outcomes with Machine Learning

Researchers have conducted several studies which focus on student academic
outcomes. Delen applied a six-step approach and analyzed model perfor-
mance using 10-fold cross-validation. Notably in close alignment with our
own project, Delen remarks that approximately 80% of project time is de-
voted to the methods first three steps, which include determining the scope
and goals of the project, identifying and accessing the necessary datasets,
data cleanup, and data transformation [9]. The study was based on data
from 16,066 students enrolled in an unnamed public university from 2004
to 2008 and relevant variables from the student datasets included degree,
major, various measures of GPA, sex, SAT scores, age, and transfer hours
among others [9].

The major outcomes of Delen’s study are threefold. First, he confirmed
that machine learning prediction models outperform statistical ones [9]. Sec-

16



ond, that there was unacceptably low accuracy of 50% for the imbalanced
No class, a predictor which corresponded to students who dropped out after
a semester [9]. A balanced dataset was unequivocally better at producing
results with a higher accuracy than on which was imbalanced. Finally, the
imbalanced data problem was addressed to produce higher accuracy pre-
dictions [9]. Delen separated the minority class samples from the set and
randomly selected an equal number of samples from the majority class, re-
peated ten times [9]. Support vector matrices produced the best results in
this study, but all of the machine learning methods employed had prediction
rates around 80% both before and after the imbalanced data was addressed
[9].

Addressing the differences between data analysis in education and in the
private sector for business decision-making, Luan identifies critical questions
a data scientist might ask in either case [2]. For instance, from a business
perspective, one might want to get to the bottom of which customers are the
most profitable or what makes them likely to use a competitors services [2].
But within an educational context, those questions might be concerned with
which students exhibit the most academic prowess and what the university
can do to get more students to enroll [2]. The common theme is that both
of these domains ask questions mainly about the behavior of their major
constituents (consumers and students) and about what the organization in
question (a business or university) can do to appeal to them based on their
behaviors and trends.

For our purposes, the major constituents are students and the organiza-
tion in question is the universitys Career Development Center. The types
of questions we will attempt to answer are closer to academic success, but
contain some elements of the business world, as they are career-oriented and
contingent upon the individual having a job, pursuing the foundations for
employment, or serving in some other capacity. The information on salaries
from our dataset was anonymized and encoded in the form of tiers, rather
than specific dollar amounts, yet is still an integral aspect of measuring suc-
cess. In this way, the question of outcomes appears more closely related to
that of business-oriented analysis than academic.

Luan introduced a case study similar to the one found in Delen. In this
instance, the SPSS software Clementine was used to make predictions about
students who transfer into a four-year college from a community college
[2]. The reader is invited to read the case study for a further look at the
specific outcomes, but the basic process is one which is closely paralleled
to our own. Those steps are determining the most accurate model (neural
networks, for this case study), testing accuracy using confusion matrices,
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adjusting parameters as needed to produce a maximal prediction accuracy
rate, and analyzing results of the prediction to draw conclusions about the
data [2]. Luan’s case study yielded a prediction accuracy rate of 76.5% with
neural networks and sorted features by importance, ranging from number of
liberal arts classes taken (0.315) as the most important, to number of degree
applicable courses taken (0.074) as the least important [2]. Features were
measured as a range from 0 (lowest) to 1 (highest) in this study.

Combinations of the approaches and questions from these two studies
have been applied elsewhere to produce similar outcomes in similar contexts.
Beck and Woolf [11] developed a machine learning algorithm to measure
student responses in terms of time taken to answer and whether or not their
answer was correct. Kotsiantis et al. used machine learning approaches
to predict student performance while participating in a distance learning
system at Hellenic Open University, where the student and instructor are
in physically different locations and communication is done remotely [12].
The Naive Bayes algorithm was determined to be the most accurate, and
was used to help construct a prediction model to assist tutors to help them
understand which of their students were most likely to complete their course
in a timely fashion [12]. Naive Bayes is a Bayesian network method which
assumes feature independence. We did not consider it for our study, so
the curious reader is encouraged to seek further reading, such as the brief
explanation offered in [12].

3 Project Outline

From the start, the goal of the project was defined broadly as follows: Use
supervised machine learning methods to analyze the outcomes report and
other related 2015 alumni datasets to suggest data-driven improvements
to CDC programs and outreach. To accomplish this goal, we took three
major steps. First, to practice with methods that would become useful
later on using a test dataset. To do this we used a dataset provided by the
University of California- Irvine to learn how the methods described above
apply to an actual dataset. Second, we needed to apply what was learned in
that process to the datasets themselves, which included an active process of
outlining goals based on what could be derived from the data. And finally,
to structure a detailed plan of action for the CDC based on an interpretation
of the results. In many ways, this is our most crucial step as it will help
them plan future events and work with future project teams.
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3.1 Test Dataset

Before acquiring an anonymized and analysis-ready initial dataset, we first
planned to work on an openly-available dataset on a Portuguese secondary
school performance. During this time, we familiarized ourselves with the
concepts of data science, programming in Python, and using other software
(Atom, Bitbucket, etc.). The process applied to the test dataset would
become a model for how we would approach the actual datasets for our
project. Our general outline was to familiarize ourselves with the data and
the given features; determine the scope of what we wanted to analyze; clean
and transform the data, encoding it so it could be properly processed; run
a variety of algorithms on the dataset; determine the most accurate model
to use through cross-validation; perform feature selection to determine the
most relevant predictors; and determine outcomes using the chosen method.
These were all important lessons to learn before we got our actual dataset.
This way we could quickly begin executing our own data clean up and anal-
ysis, armed with the knowledge of challenges we might face and ways to
possibly fix them.

3.2 Data Pre-Processing

With the data in our hands, it was evident before starting the process that
cleanup, manipulation, encoding and transformation would be required. In
addition, since the datasets of interest were not combined, we had to manu-
ally merge them by intersecting them based on a common key between them
both: a student identifier, which is a random alphanumeric code generated
for each student in both databases and is consistent across the databases so
that the same alphanumeric code is used for a single student. Using Excel
and basic filtering and manipulation, we combined the two datasets into one.
Primarily taking advantage of the same built-in functionality in both Excel
and Google Sheets, along with Python, we cleaned the data of duplicates
and erroneous information, transformed it to meet our processing needs, and
encoded non-categorical data using a one hot encoding scheme. We had to
do this in order to make sure that our programs would not be thrown off by
duplicates or hard to read data. This cut down on the number of issues we
might face in the future with regards to things we could change and fix.

3.3 Selecting and Executing Methods

Considering the nature of the data in question while also applying standard
tests to measure accuracy of prediction models, we settled on a single model
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which resulted in the highest prediction accuracy and made the most sense
given the structure of our data and its classes. This model was one of the
four we tested on the initial dataset. It is called decision trees and allows
us to graphically show the CDC what helps a student when they graduate.
We also had to keep in mind that our data is imbalanced. This means it
is heavily loaded in one direction and this was a major obstacle we had to
overcome. We had to carefully choose our methods in order to make sure
we were giving the CDC proper and not skewed results. To accomplish this,
we applied k-fold cross-validation using k = 10 folds.

3.4 Crafting Recommendations CDC Programs

Based on our outcomes, we would finally analyze the full spread of data and
devise recommendations for the CDC for how to use the results we found
to improve their own operations. Using our conclusions, the CDC can help
students achieve better career outcomes and attempt to lower the percentage
of graduates who fall into the Seeking/Serving status category. Also, based
on our methods we would be able to provide code and other materials for
future students who work with the CDC on projects of this nature. We hope
to provide the CDC with a means to help themselves for years to come.

3.5 Crafting Data Recommendations for the CDC

We were very lucky to be provided with so much data from the CDC so that
we would have enough to draw some conclusions. While the large amounts
of data were greatly appreciated, there are still a few things that could
have been done to make the data processing easier. This really has nothing
to do with the data being imbalanced, this is real life and that happens,
but the data received was at times both all over the place and inconsistent.
Besides giving the CDC recommendations for their future programs we hope
to provide them with some guidance in how to collect the data so that this
process goes smoother in the future. Things like keeping surveys consistent
that data can be compared from year to year and not repeating pieces of
data within a spreadsheet will greatly speed up future work. It is our hope
with these recommendations that the CDC will be able help future students
who work on projects like this by making the data transition smoother and
more efficient.
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3.5.1 Data Issues

A significant hurdle we had to overcome during this project was manipulat-
ing and cleaning the data from its original form. This was distinct from the
problems of set intersection, in which we had to create parity between the
three major datasets, and encoding, in which we had to convert non-numeric
data into binary and other numeric values. The major issues of this compo-
nent of the project included general errors in the data, inconsistent recording
across datasets, ungrouped data categories, and missing information.

General errors in the data were to be expected from the start. Essen-
tially any situation in which an individual enters information which is not
pre-defined will be subject to misspellings, multiple different ways to refer-
ence one thing, or other similar inconsistencies which have to manually be
scrubbed. For instance, one of the first things we had to address was the
problem of inconsistent city data. Before we even began deciding on column
predictors, we had to consider the fact that there were multiple ways to ref-
erence one city because some had slight misspellings or capitalization errors.
As an example, “Beijing” could have been recorded in the primary dataset
as simply “Beijing,” “Beijing” followed by an equivalent ZIP Code identifier,
or “Beijing” preceded by a similar identifier. We ultimately decided against
using cities in our process because in the highest level of categorizing we
could group them into (countries), a skewed majority of them were in the
US. Because we had another means of identifying if the student was a US
citizen or an international student, we eschewed this category.

Still, similar issues had to be addressed in other categories. For instance,
the CDC Usage dataset’s kiosk categories had a multitude of different ways
of recording the same information. As an example, the kiosk name “Inter-
view Workshop” was recorded in this form. But it was also recorded with
dates before it “2 25 15 Interview Workshop,” and combined with a sep-
arate category from itself “10 28 14 Tour Guide Resume/Interview Work-
shop.” There was also the category “Interviewing Workshop” which also had
a date precede it. We discuss the issue of categorization in terms of group-
ing similar categories into larger but still distinct groups in a later section.
This particular issue was in reconciling categories which were clearly the
same but which were recorded differently due to differences in event nam-
ing and recording across various years for certain events. We recommend
that the CDC standardize its recording of kiosk programs by distinguishing
date identifiers and event name. The date is already present in a separate
category designated “Kiosk Time Recorded,” timestamped in mm/dd/yyy
hh:mm format, so having it included in any form in the kiosk name category
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is redundant. Combining the two also makes it extremely difficult to deal
with the data beyond the highest level of consideration by further making
entries unnecessarily unique. We also suggest that the CDC begin including
higher-level categorization of its programs into its dataset for future entries.
Attached in the appendix is a version of the dataset which was manipu-
lated and re-categorized by adding a new column for certain higher-level
categories.

There were some elements of information in these datasets which we
had to incorporate manually from other sources, or which limited our abil-
ity to deal explicitly with certain data types. The ‘special request’ variant
of kiosks–in which a program is offered on-request for a class, fraternity, or
other organization/individual on campus–was not well-understood until late
into the project. Since we did not have adequate time to venture into an-
swering questions relating to special request program usage and its relation
to future program usage, we did not pursue re-categorizing our data into
special request versus regular programs. However, if the CDC continues to
have an interest in answering this question, it would be useful to create a
breakdown category inherent to the dataset which designates whether the
course was special request or a regular group program. This would make
data processing simpler instead of having special request tied into the kiosk
name similar to the date as mentioned above. As an example, instead of
“2 11 SR: AEI - Job Finder,” the CDC would use the existing date category;
a separate column having “SR,” “Yes,” “1” or some other indicator that the
event was special request, and “Job Finder” as the kiosk name. The CDC
could also consider designating where or for whom these events were held,
since “AEI” in this case is such a modifier on “Job Finder” as a program.

4 Machine Learning Techniques

For the sake of reference and providing background knowledge, we offer a
brief overview of the basic methods in supervised machine learning which
were considered and either used or rejected for the purposes of this project.
These include cross-validation methods, classification methods, and decision
trees. We discuss the specific rationale behind decisions to use or reject given
methods in Section 5.

4.1 Training and Testing Data using Cross-Validation

For machine learning to work on a dataset, the data must be broken up into
a training set and a testing set. A training set is a set of data that is used
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to teach the statistical method how to find the target value [1]. A test set
is a set of data in which the model is not given what the target variable
is, this set allows the user to see how well their model predicts other data.
Training and Testing datasets are used so that the model is more robust to
other datasets that are used with it.

For our datasets, we used k-fold cross-validation to make our training
and testing sets. Cross-validation is used to ensure that the algorithm is
giving the best result possible without overfitting or data snooping. In k-
fold cross-validation, the algorithm randomly divides the data in k folds, or
groups [1]. The first group is used as the test dataset and the remaining
k − 1 groups are used as the training set [1]. This process is done for k
times each with a different fold as the test set [1]. At the end of the process
the average of all the models is taken and that gives the accuracy. For our
k-fold cross-validation we used k = 10. We chose this number because it is
a common practice in data science to use k = 10 for this method.

Figure 1: Example of K-Fold Cross-Validation with k = 5. The blue boxes are
testing data and the white are training data.

The above figure shows an example of k-fold cross-validation. The blue
boxes represent how k-fold picks out the testing data during each fold. Each
box represents a percentage of the data that is put in to be the testing data.
After that fold those points may not be used for testing data again.
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4.2 Linear Discriminant Analysis

Also known as LDA, linear discriminant analysis is a classification method
used as an alternative to linear regression. Some insights into this method
are given in [13], describing it as a way to project a dataset onto a lower-
dimensional space with good class-separability in order to avoid overfitting,”
as well to speed up computation [13]. For this reason, it is much like prin-
cipal component analysis (PCA), which also is used to map from a higher-
dimensional space to a lower-dimensional one.

James, et al. describe how LDA works in An Introduction to Statistical
Learning [1]. First, we define conditional distributions according to Hilde-
brand, as “the distributions obtained d by fixing a row or column in the
matrix and rescaling the entries in that row or column so that they again
add up to 1” [14]. Say we want to model the conditional distribution of the
response Y = k, given that the predictor(s) X = x. This is expressed in the
form: P (Y = k|X = x).

In an alternative approach to logistic regression, the distribution of X
is modeled separately for each response class Y [1]. Bayes theorem is then
used to generate estimates of the conditional distribution for the response
given predictor(s). Bayes’ Theorem is used for classifying observation into
one of K classes, K ≥ 2 where fk(x) is the density function defined by the
given probability function, fk(X) = Pr(X = x|Y = k). We let πk denote
the prior probability “that a randomly chosen observation comes from the
kth category of the response variable,” in this case Y [1].

Bayes’ theorem is then given as:

pk(X) = Pr(Y = k|X = x) =
πkfk(x)∑K
l=1 πlfl(x)

(1)

An estimate of πk is easily computable by computing the fraction of
training data in the kth class, and so it can be substituted into Equation 2
with an estimate of fk(X).

The cut-point decision boundary estimated by LDA depends largely on
the assumption that fk(x) is Gaussian. If there is only one predictor, such
that p = 1, then the following is the one-dimensional normal density if fk(x)
is assumed to be Gaussian (normal):

fk(x) =
1√

2πδk
exp(− 1

2δ2k
(x− µk)2) (2)

Where µk and δ2k are the mean and variance parameters for the kth class
[1]. Using this estimate of fk(X) and plugging it into Equation 2 yields
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pk(X) =

1√
2πδk

exp(− 1
2δ2

(x− µk)2)∑K
l=1 πl

1√
2πδk

exp(− 1
2δ2

(x− µl)2)
(3)

Figure 2: Two normal-density functions with a Bayes decision boundary indicated
by a dashed line along the y-axis. LDA estimates this boundary from sample data
assuming a normal distribution. Adapted from [1].

By taking the log of Equation 3, it can be shown that assigning an
observation X = x to the class for which the equation is largest is equivalent
to assigning the observation for the class for which the following expression
is also the largest:

δk(x) = x ∗ µk
δ2
− µ2k

2δ2
+ log(πk) (4)

The Bayes decision boundary then can be found to correspond to the
point where:

x =
µ21 − µ22

2(µ1 − µ2)
=
µ1 + µ2

2
(5)

In essence, LDA approximates the Bayes classifier by taking estimates
of πk, µk, and δ2 and substituting them into Equation 4 [1]. Two estimates
are used:

µ̂k =
1

nk

∑
i:yi=k

xi (6)

δ̂2 =
1

n−K

K∑
k=1

∑
i:yi=k

(xi − µ̂k)2 (7)

π̂k =
nk
n

(8)
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Where n is the total number of training observations from the dataset
and nk is the number of training observations belonging to the kth class
[1]. The value for µ̂k is the average of all training observations from the kth

class, and δ̂2 is the weighted average of the sample variances for each of the
K classes [1].

For cases where there are two or more predictors such that p > 1, LDA
assumes that the observations in the kth class come from a multivariate
Gaussian distribution. Parameter estimation similar to the case where p = 1
is done.

More specifically, the LDA procedure can be broken down into the fol-
lowing steps when being implemented through Python using scikit-learn:

1. Compute the d-dimensional mean vectors for the classes in the given
dataset

2. Compute two scatter matrices: in-between-class and within-class

3. Compute eigenvectors and eigenvalues for the above scatter matrices

4. Choose keigenvectors with the largest eigenvalues from a sorted list
of eigenvectors sorted in decreasing order based on their eigenvalues.
Then form a d ∗ k matrix W .

5. Use the matrix of eigenvectors to transform samples onto a new sub-
space.

A more in-depth resource for LDA can be found using Raschka’s resource
[13], or by reading James, et al. [1] Additionally, James, et al. give three
reasons why LDA would be preferred over logistic regression:

1. It is not hampered by instability when classes are well-separated

2. It is more stable for small values of n with an approximately normal
distribution of the predictors.

3. It is more commonly used when there are two or more response classes.

4.3 Support Vector Machines

A method for data analysis, also known as SVM, support vector machines are
best considered when binary classification is concerned [15]. The machine is
a given set of vectors in a space and their labels. The SVM in its simplest
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form is a hyperplane that separates the data by a maximal margin. The
hyperplane can be considered up to a p-dimensional setting and its equation
has the form:

β0 + β1X1 + β2X2 + ...+ βpXp = 0 (9)

In the above equation β1 through βp are the parameters and X =
(X1, X2, ...Xp)

T is a point in p-dimensional space. If a point put into that
equation ends up greater than 0 then it lies on one side of the hyperplane
and if it is less than 0 then it lies on the other. Tong and Koller [15] tell
us that if this is the case then of all vectors lying on one side of the hyper-
plane are then labeled as −1, while those on the other side of the hyperplane
are labeled as 1. Now we have two separate classes of points [15]. Once a
hyperplane that can separate the data into classes is determined one may
find that there are infinite hyperplanes that divide the data. In this case
a maximal margin hyperplane is chosen so that the hyperplane is farthest
from the training observations [1]. All of this can be seen in the linear SVM
example below which was created a basic set of points.

Figure 3: Example of a visual representation of a Support Vector Machine in which
a small number of points are classified based on their attributes
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The training instances that lie closest to the hyperplane are then called
support vectors which a classified to help build the SVM. The SVM itself is
an extension of the support vectors that results from enlarging the feature
space in a specific way using something called kernels [1]. Kernels are simi-
larity functions that a programmer provides to the algorithm to determine
how similar two pieces of data are. Kernels are usally linear, but can be
polynomials creating different shaped boundaries instead of just a straight
line. An example of a kernel equation can be seen below.

K(xi, xi′) =
p∑
j=1

xijxi′j (10)

The above kernel equation is one of a linear nature, but they can be
polynomial as well. By adding 1 and raising the expression to a power d,
then the result is a polynomial kernel of degree d. When a non-linear kernel
is combined with the support vector classifier the resulting classifier is a
support vector machine. This non-linear case has the form

f(x) = β0 +
∑
i∈S

αiK(x, xi) (11)

Generally speaking, SVM works best in a two-class or binary setting.
The concept of separating hyperplanes upon which SVMs are based does
not lend itself to more than two classes [1]. There are a myriad of proposals
on how to extend SVM to a k-class case, but no one proposal has been
chosen as definitive at this point. One of the most popular approaches is
called one-versus-one, which constructs

(k
2

)
SVMs which compares pairs of

classes [1]. The other is called one-versus-all which fits k SVMs, each time
comparing one of the k classes to the remaining k− 1 classes [1]. Neither of
these are considered the universal way to approach multiple classes.

4.4 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a classification method used in data analysis,
in which given an integer k, the algorithm looks at the K points around a
specified point to determine what class that specified point would fall into
[1]. Using the equation below,

Pr(Y = j|X = x0) =
1

k

∑
i∈N0

I(yi = j) (12)
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The algorithm estimates the conditional probability for each class in the
target variable and then picks which class the specified point is based on
the classes from its neighbors [1]. The algorithm chooses the class for the
specified point based on which class has the highest probability. Choosing k
is extremely important because if the k-value is too large, then it can increase
the bias toward the training dataset in the model and cause overfitting.
However, an extremely small value of k will not predict well on either dataset
[1]. KNN is extremely good at predicting models correctly, it is however
extremely expensive when it comes to computing power. Thus, in a large
dataset it, it is not the most ideal method to use.

Figure 4: Example of a K-Nearest Neighbors, the blue, orange and green points
represent different classes and the black outlined point represents the point trying
to be classified with k = 3. Adapted from [1].

The above figure shows what the KNN algorithm is design to do. In this
image, there are three classes, blue, orange and green. The black outlined
point is the point that this algorithm is trying to predict. Here k = 3,
so the algorithm looks for the three closest points to the outlined point to
determine which class that point would be in. The three closest points are
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circled in Figure 4. Two of the circled points are from the blue class and
one point is from the orange class. This is where the algorithm votes and
blue wins this vote two to one against orange. Therefore the algorithm will
decide that the outlined point is from the blue class and will predict “blue.”

4.5 Decision Trees

Decision trees are a statistical method that segment the predictor space into
many regions and then use those regions to make predictions on the data [1].
The regions are called nodes or leaves and the segments connecting the nodes
are called branches [1]. There are two kinds of decision trees: regression trees
and classification trees. A regression tree is used for regression problems,
where the tree will guess a number at the end of the tree. A classification
tree is used for a classification problem, where the tree will guess a class at
the end. An example is provided below in Figure 5.

Figure 5: Example of a decision tree, in which a set of rules determines whether
or not a student is a “persister, and then runs through possible choices for each
subcategory based on other features to make predictions about major, gender, and
club affiliation [2].

For purposes with both the test dataset and the CDC datasets, we used
classification trees. A classification tree is grown by creating binary splits
in the data in order to make a prediction. Each split is made by observing
the gini index to determine the best split per region [1]. The gini index is
a measure of node purity, so a small value indicates that the leaf contains
observations from mostly one class. The gini index equation is given as:
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G =
K∑
k=1

pmk(1− pmk) (13)

The following figure shows an example of how these binary cuts are
made. This figure shows four cuts that were made in the CDC dataset.
The first cut (red line) is how many Walk-Ins the student attended and the
cut is made at five Walk-Ins. The next cut (blue line) is when a student
received their degree, this cut was made at two where two is spring and zero
or one is fall or winter. The third cut (green line) is how many Career Fair
the student attended, this cut was made at two Career Fairs. The final cut
(purple line) is what type of degree a student received. This cut was made
at six where four is Bachelors Degree and six and ten are Masters and PhD.
A decision tree can make more than just these cuts, this is just an example
of one of the pathways a tree can make.

Figure 6: Example of how a tree makes binary splits using the CDC Usage dataset
top four categories

5 Methodology

The following is a summary of our methodology for this study, following the
planned project outline as detailed in the previous Chapter.
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5.1 Practice Data Testing

Before working with specific self-reporting data from the CDC, we used
a practice dataset from the UCI Machine Learning Repository [16]. The
dataset we used measured student performance in secondary education at
two schools in Portugal. There was two sets, one that focused on perfor-
mance in math and the other in learning the Portuguese language. We
mainly focused on the students performance in math. The dataset had
thirty three categories of information on all types of topics that was gath-
ered through school reports and questionnaires.

Once we became familiar with the data we had to use our understanding
of the dataset to clean it up for analysis. We looked for unusual patterns and
found one involving students with a final grade of zero. After some research
we figured out a reason for the zero final grade which was that it meant the
student dropped out or did not finish the school year. We determined it was
safe to remove those from the set for analysis purposes. We had decided
that we would be predicting the final grade using all of the other categories.

From there we had to determine what predictors we wanted to use. We
ended up removing fourteen of the thirty three categories for several reasons.
One reason for removing categories was based on subjective ratings. Some
predictors such as health, alcohol consumption, and free time were rated on
a scale of one to five with no standardization so that could skew the data.
Other categories were removed because there was not enough variation in
the data and that would imbalance the data for our calculations. The desire
to continue on to higher education, for example, was near unanimous so it
was removed. Finally, other categories were removed because they seemed
irrelevant to the analysis. For example, since we were trying to predict the
final grade, we determined that whether or not studetns were in a romantic
relationship or not was irrelevant.

The next step involved encoding some of our predictors so that we could
analyze them. Quantitative data is easier to process than qualitative data.
Categories such as which school a student attended, what their gender was,
and their parents cohabitation status were transformed from qualitative an-
swers to numerical values. Other categories that were binary Yes or No
answers were converted into a 1 for Yes and a 0 for No. Once all of this was
completed we could perform some analysis.

We were able to use this practice dataset to try out different methods of
analysis. There were four different machine learning techniques we used: k-
nearest neighbors, decision trees, linear discriminant analysis, and support
vector machines. We coded these methods in Python and then ran our
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data through them. From there we looked at the error rates and what we
could learn from these methods. We decided that for the dataset received
from the CDC, decision trees would be the best method to use. This set
the groundwork for our decision-making process for the actual datasets we
received from the CDC.

5.2 Career Development Center Datasets

We received access to the datasets from the CDC and applied the following
methodology to begin our analysis. This methodology involves data clean
up, intersecting multiple sets of data, training and testing the data in our
programs, perfecting feature selection, creating decision trees and pruning
them so that they provide the best information.

5.2.1 Data Clean Up

Few datasets are naturally well-formatted and “clean” to begin wtih. In
order to process a dataset, it must be reviewed to ensure that information is
not inaccurate, mischaracterized, missing altogether, or otherwise erroneous.
One of the first things we noticed in the dataset was that there doubles of
some student identifiers. This was because some students had double majors,
so they were listed twice with each major listed in both of the categories
labeled Major 1 and Major 2. To prevent redundancy we removed the second
instance of all of these cases making sure to leave the the instance where
their primary major was listed in the Major 1 column.

We then had make sure that for categories that had a written response
that the answers were all spelled the same. We then renamed and combined
some answers within categories so that we did not have categories that were
too small for analysis. For example, because there are such a large amount of
individual majors at the undergraduate and graduate level offered at WPI, it
was necessary for us to group similar majors together into larger categories.
Mathematics, for instance, was designed to include Mathematical Sciences,
but also Actuarial Mathematics, Financial Mathematics, and other similar
majors.

Next we had to pull out only the students from the class of 2015 from
the CDC usage and Internships data sets. The data we got was a massive
file of every student who used the CDC in a certain time period and we had
pull all relevant data. The same goes for the internship data. Finally, we
had to decide which categories from all of these datasets that we wanted to
use for our analysis. This was not a final list, but a starting point because
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we had other ways, as described below in great detail, to make sure we were
selecting the right pieces of data.

5.2.2 Set Intersection

The first step before analysis could begin was to create a single, easy to
process data package. Using the common key identifiers in each dataset,
corresponding to unique students, a simple intersection scheme was designed
in Excel to create a single database from which data could be encoded and
processed easily, with relevant information from all datasets present in one
location.

Figure 7: Selection from our intersection dataset combining information from three
datasets: the class of 2015 set, CDC usage, and internship/co-op data.

The system works as follows. First, each dataset (CDC Usage and In-
ternships) was filtered in its own file. Identifiers from the 2015 outcomes
file were imported. These were then compared against the identifiers in the
original set using a simple MATCH() function. The matches were called out
and sorted so that a file was produced containing only data whose members
were common to both sets.

When entered into the common merged dataset, the two intersection
sets of identifiers from the CDC Usage and Internship files were imported
along with relevant categorical information from each file. A COUNTIFS()
function in Google Sheets was implemented to create a frequency matrix to
encode relevant features against the IDs in the primary set. In the above
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table, the column highlighted green are these primary IDs, against which all
other sets were compared. The blue column is from the CDC usage file and
the golden column is the identifiers from the Internship data.

None of the latter two columns required sorting to align with the first
column of IDs, nor did they actually need to be included and processed
during the analysis. They only exist in the file to be used as references to
generate the frequency matrices. For example, take the identifier nESjF in
the first entry. The COUNTIFS() function on nESjF checks if it appears
at all in the CDC Usage column Unique Identifiers. If it does not, a 0 is
produced. If it does, it then counts how many instances of the category
are affiliated with that ID. In the case of Career Fair, it checks to see how
many nESjF identifiers have a Career Fair associated with them. That is, it
checks how many times that student used attended a Career Fair. Since the
count is specific to the row including the first columns IDs, the remaining
list of identifiers doesnt need to match them. The COUNTIFS() are specific
to the ordered list in the first column. In this way, data can be easily
and dynamically added or removed from the intersected files to allow us to
quickly encode and visualize data common to all three major datasets.

5.2.3 Further Categorization

Initially, we used a set of high level categories in order to classify CDC
program usage. There were six in total. The list included: Career Fair,
Company Info Session, Pre-Career Fair Event, Resumazing, Walk-In, and
Workshop. Below is an example of how we used a matrix using the system
described in the previous section based on these sections.

However, this was not going to be the final state of our analysis. The
CDC would not benefit from merely knowing information about their ser-
vices at this high of a level. For instance, Workshop at the time had well
over 100 subcategories which were specific to event type, but also major class
and location (for example, an event targeting chemical engineering majors
or one held at a Greek house). And the Career Fair is held several times dur-
ing the year and there are related Career Fairs which target specific major
domains at times. To capture this level of detail we had to do two things.
First, we needed to re-classify the data to the best of our abilities. This
was done using Excel and transforming the column of existing Workshop
categories. For the other columns of data, a check on feature relevance for
each sub-category was done by filtering to find the occurrences of all other
sub-categories in the CDC Usage dataset and then using formulas to calcu-
late the percent that each occurred under its meta category. See Figure 9
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Figure 8: Frequency matrix in our original intersecting dataset using the six basic
high-level categories for CDC usage.

below for examples of Walk-In and Career Fair categories.
Second, we needed to discuss this one-on-one with the CDC to deter-

mine their perspective. Our sub-category re-classification, mainly for the
Workshop category, was the one left primarily to interpretation because
there were so many sub-categories with minor significance, similar names to
other categories, subtle differences in details, and so on. We met in person
and then exchanged our original categorization scheme for them to consider.
Figure 10 is the outcome of that meeting and exchange, and was finalized by
the team as the Workshop sub-category spread that we would use to expand
our CDC Usage features. Time constraints meant that for the sake of this
project, we did not investigate to this level of depth for Workshops. Walk-
Ins tended to be more accurate predictors than Workshops, but Workshops
did have minor relevance in the SMOTE and Borderline-SMOTE runs of the
Internship dataset, for which the two versions of the algorithm performed
about equally well. Therefore, it is worth including these sub-categories in
future models. We discuss this in more detail in Chapter 10, Limitations
and Future Works.

5.2.4 Predictors and Target Variables

The datasets had 28 predictors and one target variable that we decided to
use. In total, 4 of those predictors were categorical, 8 of them were made
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Figure 9: Example of subcategory breakdown from the original CDC Usage
dataset, with Walk-In and Career Fair as the first two major categories consid-
ered.

from the Major 1 and Major 2 variables and 8 of them were nominal. The
categorical variables had to be encoded so that the model could understand
what the categories were. The variables made from Major 1 and Major 2 had
to be one-hot-encoded, using ones and zeros to describe whether a student
is a major or not. The following list describes what each of the variables
mean, how they were categorized and how they were encoded.

Nationality: This predictor showed whether a student is and Interna-
tional Student or Not.

Encoding: 0 meant they were not International and 1 meant they were
international. This was chosen because it needed a simple yes or no on
whether the student was International or not.

Degree Type: This predictor showed what type of degree a student
received.

Encoding: 4 meant the student received a bachelors degree, 6 meant
the student received a masters degree and 10 meant the student received a
PhD. This encoding was based on the average amount of time it takes to
earn that degree starting from freshman year. So, it takes four years to earn
a bachelors degree, 2 more to earn a masters and 4 more to earn a PhD.
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Figure 10: Our breakdown of kiosk Workshop categories (left) and the CDC’s
recommendation based off this list (right).

Degree Date: This predictor showed when a student received their
degree.

Encoding: The dates started out as October, December and May which
were then translated to Fall, Winter and Spring respectively. These words
were then encoding by 0 being fall, 1 being winter and 2 being spring. This
encoding was chosen because there needed to be a way to distinguish between
the times when students graduated but the time between each did not need
to be considered for our purposes as we just wanted to see if the degree date
determined primary status.

Gender: This predictor shows the gender of each student.
Encoding: 0 meant the students was male and 1 meant the student

was female. We just needed a simple encoding for gender to identify which
students were male and which were female.
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The following variables are the nominal variables and do not require
encoding

Career Fair: This predictor indicates how many Career Fairs each
student attended. This includes the Fall Career Fair, Spring Career Fair
and Life Sciences Career Fair.

Company Info Session: This predictor indicates how many company
info sessions a student attended. Examples of subcategories of this predictor
include Info Sessions hosted by Analog Devices, Cisco Systems, Google,
Juniper Networks, NASA, Sonos, and Towers Watson.

Pre-Career Fair: This predictor indicates how many pre-Career Fair
events a student attend. The three subcategories of this predictor are Em-
ployer Resume Critiques, How to Work a Career Fair with Pegasytems, and
How to Work a Career Fair with GE.

Resumazing: This predictor indicates how many resumazing events a
student attended. Resumazing is a resume critique that is done by local
employers instead of the CDC.

Walk-In: This predictor indicates how many Walk-Ins a person went to.
A Walk-In includes resume critiques done by the CDC, cover letter critiques
and mock interviews.

Workshop: This predictor indicates how many workshops a student
attended. Examples of subcategories include Job Searching, Career Fair
Preparation, Marketing Yourself, Resume/CV, and Cover Letter (based on
CDC input on categorization).

Summer Internship: This predictor indicates how many summer in-
ternships a student reported having.

Co-op: This predictor indicates how many traditional co-ops or summer
co-ops a student reported having.

The following predictors are the one-hot encoded majors, so if there is
a one in a category the student was this major and if there was a 0 the
student was not this major. Some students had two ones in their row which
indicates that the student had a double major. Each of these were made by
categorizing every major in the set into more general majors.

Mathematics: This predictor included all the people who indicated
their first or second major was mathematics. The majors that went into this
category were Actuarial Math, Applied Math, Applied Statistics, Financial
Math and Mathematical Sciences.

Aerospace Engineering: This predictor included all the people who
indicated their first or second major was Aerospace Engineering. Aerospace
Engineering was the only major that went into this category.
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Civil Engineering: This predictor included all the people who indi-
cated their first or second major was Civil, Architectural, Environmental
Engineering or any major related to them. The majors that went into this
category included Architectural Engineering, Civil Engineering, Construc-
tion Project Management, Environmental and Sustainability Studies and
Environmental Engineering. We chose to put these majors together because
they are in the same department at WPI.

Science: This predictor included all the people who indicated their first
or second major was Biology, Chemistry or Physics. The majors included
in this category were Bioformatics and Computational Biology, Biology and
Biotechnology, Chemistry, Biochemistry, Physics, Bioscience Administra-
tion and Engineering Physics. We decided to put these majors together
because they are all general sciences.

Biomedical Engineering: This predictor included all the people who
indicated their first or second major was Biomedical Engineering (BME).
BME was the only major that went into this category.

Chemical Engineering:This predictor included all the people who in-
dicated their first or second major was Chemical Engineer. Chemical Engi-
neering was the only major that went into this category.

Robotics Engineering: This predictor included all the people who
indicated their first or second major was Robotics Engineering (RBE). RBE
was the only major that went into this category.

Computer Science:This predictor included all the people who indicted
their first or second major was Computer Science or a major related to it.
The majors included in this category were Computer Science, Information
Technology and Management Information Systems.

Liberal Arts: This predictor included all the people who indicated their
first or second major was related to Liberal Arts. The majors included in this
category were Humanities and Arts, Professional Writing, Economic Science,
Psychological Science, Society, Technology and Policy, International Studies,
Masters for Physics Educators, Master of Mathematics for Educators and
Learning Sciences and Technologies. These majors were grouped together
because they were all humanities and social sciences.

Electrical and Computer Engineering: This predictor included all
the people who indicated their first or second major was Electrical and
Computer Engineering (ECE) and those major related to it. The majors
included in this category were ECE, Power Systems Engineering, Systems
Engineering and System Dynamics.

Materials: This predictor included all the people who indicated their
first or second major was related Materials Science. The majors included
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in this category were Materials Process Engineering and Materials Science
and Engineering.

Business Engineering: This predictor included all the people who in-
dicated their first or second major was related to Business and Engineering.
The majors included in this category were Industrial Engineering, Manage-
ment Engineering, Manufacturing Management and Manufacturing Engi-
neering. These majors were placed together because they are a part of the
business school at WPI as well as an “engineering” at WPI.

Mechanical Engineering: This predictor included all the people indi-
cated their first and second major was Mechanical Engineering. Mechanical
Engineering was the only major that went into this category.

Interactive Media and Game Development:This predictor included
all the people who indicated their first and second major was Interactive
Media and Game Development (IMGD). IMGD was the only major that
went into this category.

Fire Protection Engineering: This predictor included all the people
who indicated their first or second major was Fire Protection Engineering
(FPE). FPE was the only major that went into this category.

Business: This predictor included all the people who indicated their
first or second major was related to Business. The majors included in this
category were MBA, Marketing and Technological Innovation, Management
and Operation, Design and Leadership. These majors were placed together
because they are all major at WPI’s school of business.

The final variable is the target variable. This is the variable that we are
trying to predict. This variable is called Primary Status. The data is taken
from a survey that students fill out after graduation. The primary status is
what the student is doing after graduation from WPI. A student can pick
answers ranging from full time job, going to or thinking of pursuing grad
school, serving in the military, volunteering, and still seeking or not seeking
employment. There is also students who have blank responses, these are
the students who did not fill out the survey that the CDC sent out. These
students were then placed in the Unknown category.

5.2.5 PCA

Principal Component Analysis (PCA) is a process in which linear combi-
nations of predictors (principal components) are computed and then used
to make sense of the data. These principal components are made using p
features and then p principal components are made. [1] We wanted to use
PCA to visualize our data and see if there were any principal components
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that could help further explain it. The first principal component is made
by making a linear combination of features with the largest variance. The
second component is made using features with the largest variance that is
uncorrelated with the first component. [1] These linear combinations fol-
lowthe logic of the following equation.

Zn = φ1nX1 + φ2nX2 + ...+ φpnXp (14)

In Equation 14, n is the component and p is the number of features. φ1n, ..., φpn
are known as the loadings of the principal component. These loadings are
used to help make the variance as large as possible among the predictors.[1]

To visualize our data, we ran PCA to find the first principal component.
In figure 11, 3 is Full Time Job, 2 is Grad School, 1 is Not Seeking or Serving
and 0 is Unknown or Seeking. This figure shows that our data does not have
a clear relationship between the classes. It also shows the problem that our
data is imbalanced because Full Time Job clearly has more points then any
of the other classes.
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Figure 11: Plot of the First Principal Component versus Primary Status using the
CDC Usage dataset

We also investigated relationships between predictors by plotting one
component against another. As seen in figure 12, there are only two dots. All
the comparisons looked similar to this. Since there were only two dots, this
means that there is not a clear relationship among the predictors. Figure 13
shows a comparison of principal components that show a clear relationship.
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Figure 12: Plot of the First Principal Component versus Second Principal Com-
ponent using the CDC Data

Figure 13: Plot of the First Principal Component versus Second Principal Com-
ponent from [1]
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5.2.6 Feature Selection

Making a model using all the predictors is not a good choice. In our
dataset, there are a total of 28 predictors, which makes the model be in
28-dimensional space. A way to make this model smaller is to reduce the
number of predictors used but to do this predictors must be chosen in a
certain way so that the accuracy or error rate is still good. The way we
did this was using Forward Subset Selection. Forward Subset Selection is a
method for selecting a subset of predictors by finding the best model using
only one predictor, then the best model using that predictor and another
predictor and so on until all the predictors are used. [1] The way to make
a subset of predictors is to choose the accuracy rate that is the highest for
each predictor added and keep going until a predictor is added which makes
the accuracy decrease.

Figure 14: An Example graph plotting the accuarcy post category addition. The
red circle indicates where to stop Forward Subset Selection and the black circle
indicates noise in the accuarcy

The above graph shows an example of how Forward Subset Selection
works. The red circle indicates where to stop considering predictors for the
subset of predictors. This is chosen because in the graph this is the first
peak encountered. The black circled area indicates noise in the selection.
So, while there are points that have a better accuracy then the point chosen,
it is not necessarily true that the greater number of predictors will always
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have a better accuracy. We chose Forward Subset Selection because it was
computationally efficient to do for how many points and predictors we had.
We could have chosen Best Subset Selection, which is similar to Forward
Subset Selection except it chooses that best model for every number of
predictors, however that would be too computationally expensive for us to
do in the time we had.

5.2.7 Classification Trees and Bagging

At the end of the analysis of the test data, we decided classification trees
were the best way to get the results we needed for the CDC data. This is
because trees do not need a separator like LDA or SVM do and the original
data did not seem to have a clear separator. Trees also are computationally
efficient unlike KNN. Since trees are computationally efficient, we are able
to make a lot of them in a small amount of time to get a more accurate
result on our data. This allows us to perform bagging, in which many trees
are built and the result is averaged [1]. As an added feature of using trees,
they provide a simple and straightforward process to follow when they are
made, which gives a nice visual for the CDC to use in the future.

We used three different datasets when making these trees: the full
dataset, the Internship dataset, and the CDC Usage dataset. The full
dataset contained everybody that was included in the self-reporting data
that was given to us by the CDC. The Internship dataset contained only
those people who reported having internships or co-ops. The CDC dataset
contained only those people who had gone to at least one event presented
by the CDC. When we would run our bagging program, we would end up
with an average accuracy and a summed-average confusion matrix. This
summed confusion matrix would be all the matrices added up from k-fold
cross-validation and then averaged from all the trees.

5.2.8 Tree Pruning

Tree pruning is the process of making a smaller tree to reduce the chances
of overfitting and to improve the performance of a test set[1]. There are two
ways to prune a tree. One way is to grow a large tree and then prune it back
to make a subtree[1]. The other way is to build a tree that is only so big and
then to use cross-validation to decide how big to continue growing the tree.
The first way is considered a more desired method of pruning because its
alternative might not generate the right splits to produce the best possible
subtree[1].
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Although the first approach is generally cited as being more effective,
scikit learn does not have a way of pruning this way so we have to use the
second way. To build small trees, we will be using the categories found from
feature selection and then we will use attributes such as min samples and
max leaf nodes. Min samples is an attribute in decision trees for scikit learn
that will only make a node if that node has more than the specified number
of samples and max leaf nodes is an attribute that will grow a tree with a
specified number of leaf nodes.

5.3 Imbalanced Data

One major problem we had with the dataset was that the target variable
(Primary Status) was imbalanced. This is a common issue wherein a single
class is so prevalent that the algorithm guesses the dominant result, without
accurately capturing minority classes. In this dataset, there are four major
classes based on the students outcome after graduating. They are: full
Time, Graduate School, Not Seeking a job or Serving, and Unknown or
Seeking a job. Full Time makes up 64% of our data, with Graduate School
consisting of 13% and the remaining classes comprising 23%. When decision
trees are created without balancing the data most, if not all the decisions
predict Full Time job. This way has an accuracy of around 55% which
reasonably succeeds at its goal of having a decent accuracy while being
entirely misleading and useless for data analysis.

True/
Predicted

Full Time Grad School Not Seek-
ing/
Serving

Unknown/Seeking

Full Time 94 13 2 11

Grad
School

7 8 0 5

Not Seek-
ing/
Serving

3 1 0 0

Unknown/
Seeking

10 4 0 6

Table 5: An example of an early confusion matrix from the same test set as
the tree above.

The above tree illustrates how this problem arose and how it impacted
our early stage results. Using our original methods, the algorithm only
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Figure 15: An example of an early tree that we ran on the Full Class of 2015
dataset. Notice how the majority class “Full Time” is predicted in every instance.

predicted Full Time, the dominant Full Time majority class. While this is
correct most of the time, by the above logic, it still resulted in a massive
error rate. The confusion matrix further helps show this. While it predicts
accurately for the Full Time employed, predicting 97 of the 117 (82.91%),
it does not come close to this accuracy for any of the other predictors. The
next best one is graduate school, predicting 8 out of 26 (30.77%). For one
that was guessed correctly, one was misidentified as Full Time. The final
two categories, Not Seeking/Serving and those who are either Unknown or
Seeking employment had even wider discrepancies at this stage. The algo-
rithm predicted Full Time instead of Not Seeking/Serving for both instances
of that class, meaning the actual class was not predicted at all (0%). It also
did so for 11 out of the 22 Unknown or Seeking cases as well, resulting in
an extremely low (27.27%) accuracy. To fix this issue we researched many
ways to balance and weight the data to see if we get a better outcome.

5.3.1 Weighting the Data

Weighting the data is one way to make data seem more balanced. To do
this, “weights” are assigned to each class to make it seem as though each
class has the same amount of weight in the data. Weighting can be done
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two ways. The decision tree algorithm has two built in weighting functions,
class weight and sample weight. Class weight uses a keyword “balanced to
balance the data used for the tree. If the key word is used the algorithm
uses an equation to adjust weights that are inversely proportional to the class
frequency. The equation used is n samples/(n classes∗np.bicount(y)). This
means it takes the number of samples in the data divided by the number
of classes in the data times the number of occurrences of the class being
weighted. Sample weight is used whenfitting the tree to the training data.
Sample weight needs a weight specified for each sample in the data. The
approach we took was to make the weight a ratio of majority class to one of
the minority classes. Sample weight augments the gini measure so that the
tree will take a less pure cut of the majority class in favor of having a more
pure cut of one of the minority classes.

Type of Weighting Accuracy

No Weights 55.9 %

Class weight 44.0 %

Sample weight 43.9 %

Table 6: Chart of Accuracies using weighting functions

Table 6 shows that weighting actually performed worse than the data
imbalanced data. Because of this we discovered we had to find a different
way to balance the data to improve accuracy.

5.3.2 SMOTE

Through our literature review, we came across an algorithm that aids in bal-
ancing data using synthetic minority over-sampling technique, also known
as SMOTE. By design, SMOTE avoids over-sampling with replacement by
generating synthetic examples of the minority class which are then over-
sampled[3]. The overall SMOTE process is illustrated in Figure 16. We
found a Python package online called imbalance-learn that could do SMOTE.
However, the package did not work well on datasets with extremely few mi-
nority instances and the packaged code ran too slow on our large dataset
and thus we coded the algorithm ourselves.
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Figure 16: Diagram of the SMOTE algorithm adapted from [3].

The SMOTE algorithm begins by randomly selecting one of the points
in the minority class to base the new point off of. In our project, all ran-
dom selection of points was done by using a built-in Python function called
random.randrange(A) which randomly selects an element from the num-
bers 0 to A (not including A). Almost all of the functions in the Random
Library of Python use the Mersenne Twister as the core pseudo-random
number generator (PRNG) [17]. The Mersenne Twister algorithm, which
the generator is based off, generates random numbers with nearly uniform
distribution and a large period length meaning the sequence of generated
numbers wont be repeated for a longer time [18]. Along with its speed, this
makes the Mersenne Twister pseudo-random number generator popular in
many applications such as Python [19].

Next, we find the five nearest neighbors of the chosen minority point.
Each data ”point in the dataset is a single-row vector where each entry in
the vector is predictor. To find the 5 nearest neighbors to the chosen mi-
nority point, we must first calculate how far each data point is from the
chosen minority point. Since our predictors have different ranges of possible
values, we must normalize each column of all the data points (vectors) so
that a predictor that has a larger value doesnt dominate the distance cal-
culation [20]. To standardize the points we used the scikit-learn function
StandardScaler(). The function automatically transform the data to look
like a normal distribution. StandardScaler() is finding the mean and the
standard deviation (std) of the data points and then scales the data using
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the equation: DataScaled = (data−mean)/std. [21] StandardScaler() then
stores this transform so that it can later reapply it to denormalize the data.
[22]

Once the columns of all the data points are normalized, we now calculate
the Euclidean Distance (15) between each point and the chosen minority
point:

EuclideanDistance = 2

√√√√ 27∑
i=1

(~ui − ~vi)2 (15)

where ~ui is the ith entry of the chosen minority point and ~vi is the ith

entry of the data point we are currently looking at. Note: the range of i was
determined by the length of the vectors in our big CDC dataset. Once all of
the distances are calculated, we sort the distances and choose the five data
points that correspond to the five distances with the lowest value. These
will be our five nearest neighbors for the chosen minority point. We decided
to choose k = 5 since this was the standard in the original design coded in
[3] and this is also a typical choice for general KNN classification. SMOTE
next randomly chooses one of the five nearest neighbors to work with, again
using the same built-in PRNG that Python implements. The final step,
illustrated by figure 17 is done by placing the new synthetic point on the
line segment joining the chosen nearest neighbor and the chosen minority
sample [3]. Each new synthetic point is generated as follows:

α ∗ |~Vknn − ~Vminority|+ ~Vminority (16)

where, α is a random number between 0 and 1, ~Vknn is the vector of the
randomly chosen nearest neighbor and ~Vminority is the vector of the randomly
chosen minority point. Notice that Equation 16 has absolute values around
the difference of vectors [3]. Originally, we started with an equation that
looked like:

(1− α) ∗ ~Vminority + α ∗ ~Vknn (17)

with all of the variables being the same as the variables in equation 16.
We quickly noticed that when one expands the equation out:

~Vminority + α ∗ (~Vknn − ~Vminority) (18)

After looking at the equations geometrically, we noticed that both equa-
tions 17 and 18 create a point that is not between the two starting points if
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~Vminority > ~Vknn. Thus, the absolute value was placed into the equation to
avoid this problem in the future.

After the synthetic point has been given a position, the point is then
denormalized using the mean and std from normalizing. From here, the
point is then reviewed by a series of if statements to ensure our encoding
stayed intact. Once the synthetic point has been generated, the algorithm
repeats the process until the number of synthetic points made is equal to
(number of majority samples) − (number of minority samples).

Figure 17: Illustration of the SMOTE algorithm adapted from [4] using k = 5.

We decided to compare the results from using SMOTE to balance the
data and simply using the imbalanced data. We decided to compute confu-
sion matrices for each case. Table 7 represents the confusion matrix showing
the results of prediction without using SMOTE, in which the majority class
is over-predicted for all classes. Table 8, representing the confusion matrix
produced by using the over-sampling procedure with SMOTE, yields results
are much closer to their targets from the training set overall. For example,
Table 7 tells us that the model didn’t guess any of the Not Seeking/Serving
students correctly while Table 8 tells us that once SMOTE was applied to
the dataset, our model was able to predict some of the Not Seeking/Serving
students correctly. This provided evidence that SMOTE is balancing the
data which will stop our model from blindly guessing Full Time as the cor-
rect answer all the time.
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True/
Predicted

Full Time Grad School Not Seek-
ing/
Serving

Unknown/
Seeking

Full Time 97 13 2 11

Grad
School

7 8 0 5

Not Seek-
ing/
Serving

3 1 0 0

Unknown/
Seeking

10 4 0 6

Table 7: Confusion Matrix on Full Class of 2015 dataset without using
SMOTE.

True/
Predicted

Full Time Grad School Not Seek-
ing/
Serving

Unknown/
Seeking

Full Time 75 12 2 18

Grad
School

14 58 13 23

Not Seek-
ing/
Serving

1 7 90 10

Unknown/
Seeking

24 21 13 49

Table 8: Confusion Matrix on Full Class of 2015 dataset using SMOTE.

We also modified the value of k in equation 12 to see its effects on
the SMOTE algorithm and to verify the approach taken by [3]. We ran
SMOTE using two standard values for k, namely k = 5 and k = 10. Figure
18 shows that when using a value of ten for k in equation 12, we seem to
generate synthetic points whose overall distribution is tighter and “closer”
to the original minority points that were over-sampled. However, using
a value of five for k seems to give us less extreme outliers in the newly
generated, synthetic minority samples meaning these points would more
likely be misclassified as there are no minority points around that area.
Simply comparing the two distributions in Figure 18, it’s hard to determine
which value of k is superior, so for most of the project we decided to go with
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the literature [3] and use a value of five for k to provide consistency.

Figure 18: Difference in synthetic point generation using k = 5 and k = 10 in the
SMOTE algorithm. Adapted from [5].

5.3.3 Borderline-SMOTE

While the application of the SMOTE algorithm has improved results, the
algorithm is not perfect. The SMOTE algorithm focuses on using the nearest
neighbors of one of the minority points to generate the new synthetic point,
but the algorithm does not consider what those neighbors look like. This lack
of consideration can cause problems such as overlapping between majority
and minority classes [4]. Through further research, we were able to find
an improvement on the SMOTE algorithm called Borderline-SMOTE. The
overall process of Borderline-SMOTE is illustrated in Figure 19. Similarly
to SMOTE, Borderline-SMOTE randomly chooses one of the five nearest
neighbors to use to generate the new synthetic point.
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Figure 19: Illustration of the Borderline-SMOTE algorithm.

Once the synthetic point is generated, the Borderline-SMOTE algorithm
then places the point into one of three different categories: “Danger, “Noise
and “Safe. To determine these categories, the algorithm finds the Euclidean
distance of all the neighbors of the synthetic point, makes a sorted list of
these neighbors and takes note of what class the neighbors are a part of.
If a synthetic point has almost all (or all) of its nearest neighbors of the
majority class, then it is put into the Danger class as it has a higher chance
of being misclassified. A synthetic point whose nearest neighbors are all, or
almost all, of the minority class will be put into the Noise category as they
wouldnt contribute to the data since we already know there is a plethora
of minority points in that area [4]. The Borderline-SMOTE algorithm only
accepts synthetic points which are put into the Safe category meaning they
satisfy the inequality:

m

2
≤ |Si:m−NN ∩ Smaj | < m (19)

Where Si:m−NN is the set of nearest neighbors for each point in the

55



minority class, Smaj is the set of majority points, and m is the number of
minority samples in the data [4].

Borderline-SMOTE is designed to only keep the synthetic points that
meet a specific criteria causing issues for minority classes of small sample
size. Our team ran into this issue while implementing Borderline-SMOTE
on the big CDC Dataset. Our original categorization of “Primary Status”
consisted of: Full Time Job, Graduate School, Not Seeking/Serving, and Un-
known/Seeking Employment. While this categorization worked for SMOTE,
once we ran Borderline-SMOTE, our program hung for hourstrying to syn-
thetically generate points for the minority class “Not Seeking/Serving”. Af-
ter debugging the code, we observed that Borderline-SMOTE was throwing
away every single synthetic point being generated and therefore was never
making any “acceptable” synthetic points. We believe this is due to the
small sample size of this minority class and could also have to do with how
these minority class points are distributed because if all of these points are
clumped together away from majority points, Borderline-SMOTE may keep
classifying the new generated points as “Noise” and choose not to keep the
point.

To get around this issue, we had to come up with a new categorization.
First, we decided that since the students at the university who are enrolled
in the ROTC program sign a contract to serve their country for a minimum
of five years after graduation, we saw this as a set in stone “Primary Sta-
tus” that couldn’t be changed by the predictors we were working with. Since
their status was already chosen for them by signing this contract, we felt
comfortable taking these few military students out of our dataset. Our new,
and final, categorization for “Primary Status” is: Full Time Job, Graduate
School and Unknown/Not Paid. The Full Time Job and Graduate School
groups had the same criteria as before but the Unknown/Not-Paid group
consisted of students whose status was: unknown, not seeking employment,
seeking employment and volunteering. After running both SMOTE and
Borderline-SMOTE on this new categorization, we achieved more consis-
tent results and were able to implement Borderline-SMOTE. Chawla et al.
provided pseudocode for the Borderline-SMOTE algorithm which we coded
using Python. Once SMOTE and Borderline-SMOTE were coded, we tested
our code on small, sample datasets. Figure 20 displays the visual differences.

Borderline-SMOTE created a tighter distribution of synthetic points and
steered away from creating points around minority points that have the po-
tential of being outliers. SMOTE seemed to create more synthetic minority
samples in more sparse areas which could be an artifact from randomly
choosing a nearest neighbor and generating the synthetic point without
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Figure 20: Difference in synthetic point generation between SMOTE and
Borderline-SMOTE using k = 5. Adapted from [5].

consideration to the neighborhood of the chosen point. Just as we did for
SMOTE, we also decided to run our code on the small, sample dataset us-
ing k = 10 for the KNN to see if the choice of k = 5 from [3] would be
sufficient for our project. Figure 21 shows that the increase in k seemed to
cause the distribution for Borderline-SMOTE to become more loose. This
looseness could cause problems in the overlapping between classes. After
visualizing the changes that varying the k value made in both Borderline-
SMOTE and SMOTE, we felt most comfortable going with a k value that
optimized Borderline-SMOTE since Borderline-SMOTE has been proven to
be superior to SMOTE. Thus we moved forward using a k value of 5 just as
[3] has suggested.
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Figure 21: Difference in synthetic point generation using k = 5 and k = 10 in the
Borderline-SMOTE algorithm. Adapted from [5].

6 Results

6.1 Overview and Parameters Used

To maintain consistency across different datasets, we standardized our code
with permanently defined parameters. For all k-fold calculations, we used a
standard of 10 folds, meaning at the end we had to divide our accuracy by
10 to get the average accuracy per fold. For both SMOTE and Borderline-
SMOTE, we used a standard of k = 5 for the K-nearest Neighbors calcula-
tions and created synthetic points for all categories that were non-majority.
To find the most important predictors, we used random forests containing
50 trees. After making all 50 trees, each by using 10 folds in k-folds, we
divided our accuracy by 500 to get the appropriate average accuracy score.

When identifying the most important predictors, we ran this forward
subselection 10 times per synthetic point algorithm performing each sub-
selection on the exact same set of data and synthetic points. We noticed
that when we reran the forward subselection process for both SMOTE and
Borderline-SMOTE, the order of important predictors changed often (as well
as the accuracy). This fluctuation is an artifact from the way the dataset
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was split up into training and testing data before applying SMOTE and
Borderline-SMOTE. To work with this issue and reveal meaningful results,
we looked into how often the predictors showed up in the importance and
where they arose in the ten runs. We also realized that the order of the
important features used to make the trees did not matter since we use all of
the predictors at once when creating a tree. Lastly, when producing confu-
sion matrices for the new categorization, we observed the average confusion
matrix over all runs, since these matrices seemed to be the most consis-
tent. Similar to the important features, we ran into the issue of complete
consistency with the confusion matrices as well due to the nature of the
partitioning of the dataset.

In terms of making trees, we chose to only consider trees from Borderline-
SMOTE runs, as this method has proved time and time again to outper-
form SMOTE. Each tree utilized attributes from the decision tree classifier
function found in the scikit-learn Python package. This function used tree
pruning parameters such as minimizing the number of samples per leaf and
setting the maximum number of nodes per leaf. Lastly, cross-validation was
used to determine the tree parameters for any given tree.

Each section has three confusion matrices. The first matrix is the afore-
mentioned average confusion matrix. The next matrix is a comparison of
two summed confusion matrices. This comparison is between a confusion
matrix run without any SMOTE or Borderline SMOTE and a confusion
matrix run with either SMOTE or Borderline SMOTE. We choose to do
this comparison to see how well our algorithm did at predicting only the
original points and not the “fake” points. All these confusion matrices were
run using the same random seed so that the non-SMOTE and SMOTE runs
would use the same training and testing data. A notable observation about
this comparison is that the confusion matrices do not seem to change. We
attributed this to the fact that our testing datasets were only the original
points so that set is much smaller than the set with the SMOTE points.
This means that our tree is not receiving enough training points to train
our algorithm so when we tested the tree was not as accurate as it could be.
We discuss in Section 8.2 that is it possible to fix this issue by using SMOTE
only on the training points and not all points so that the tree can be trained
on as many points as possible. However, because of time constraints we
were unable to try this ourselves. Although it appears that our algorithm
did not work, it does work in the respect that if one wants to use our trees
on people not the class of 2015, it should predict their primary status pretty
accurately.
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6.2 Full Dataset Results

6.2.1 Four Category Categorization

The first scheme we tried for categorizing “Primary Status” left us with
four categories: Full Time, Grad School, Not Seeking/Serving and Un-
known/Seeking. As we discovered in Section 5.3.3, this categorization did
not lend well to the Borderline-SMOTE algorithm because we had so few
data points in one of the categories. Focusing solely on SMOTE, using this
categorization, and using all predictors, our model predicted a given stu-
dent’s “Primary Status” with an average accuracy of approximately 68%.
Our model also showed the most important categories needed to predict
“Primary Status” via Forward Subset Selection. These categories, as well
as the average accuracy of the prediction taken after the category was added,
is displayed in Table 9 below.

Category Added Accuracy Post-Category Addition

Degree Date 45.3779 %

Career Fair 51.4696 %

Workshop 58.1217 %

Summer Internship 60.0670 %

Walk-In 62.2717 %

Degree 62.6899 %

Science All 64.5445 %

Table 9: Category importance found by performing Forward Subset Selec-
tion on the Full Class of 2015 dataset where SMOTE was applied and with
the four category categorization.

6.2.2 Final Categorization

From Section 5.3.3, we introduced the final version of the categorization of
“Primary Status”. Since both SMOTE and Borderline-SMOTE worked on
this categorization, we have results for each of the algorithms. In terms of
accuracy, Borderline-SMOTE outperformed SMOTE by having an average
accuracy of 73-76% while SMOTE had an accuracy of 63-65%. As described
in Section 6.1 , the order of important features varied from run to run. Table
10 shows the top five most important features for each of the ten runs of the
Forward Subset Selection for SMOTE.
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Run Most Im-
portant

2nd
Most

3rd Most 4th Most 5th Most

1 Degree
Date

ECE Business
Eng.

US/
International

Summer
Internship

2 Degree
Date

ECE Business
Eng.

Company
Info
Session

Summer
Internship

3 Degree
Date

ECE Business
Eng.

Company
Info
Session

Summer
Internship

4 Degree
Date

ECE Business
Eng.

Company
Info
Session

Summer
Internship

5 Degree
Date

ECE Business
Eng.

Company
Info
Session

Summer
Internship

6 Degree
Date

ECE Business
Eng.

Company
Info
Session

Summer
Internship

7 Degree
Date

ECE Business
Eng.

US/
International

Summer
Internship

8 Degree
Date

Career
Fair

ECE Summer In-
ternship

Business
Eng.

9 Degree
Date

ECE Business
Eng.

US/
International

Summer
Internship

10 Degree
Date

ECE Business
Eng.

US/
International

Summer
Internship

Table 10: Top Five Predictors (in order of importance) for each of the Ten
SMOTE Runs using the Class of 2015 dataset.

We notice that Degree Date is the most important category in every
run. We can see that whether a student has an ECE major proved to be
the second most important feature 9/10 times and on the 1/10 time that
it wasn’t the second most important, ECE was the third most important.
We continued this path of analysis and also kept in mind that when we
used the most important features to create our tree (model), the order of
the predictors doesn’t matter to the tree. Overall, Table 10 shows us that
Degree Date, ECE, Business Engineering and Summer Internship appeared
in the top five most important predictors for all of the ten runs. Since we are
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looking at making a statement about the top five most important feature,
we needed five features so we also chose the next most prominent predictor,
Company Information Session (in the top five for 5/10 runs) to round out the
top five most important features of SMOTE. The accuracy scores in Table
11 are just an example of the accuracy scores we got from testing and will
differ from run to run. Table 12 gives an example of an average confusion
matrix of our model using only the five important predictors. Again, this
average confusion matrix will vary from run to run. Table 13 shows confusion
matrices summed over all 10 folds for the original data points when using
no SMOTE and SMOTE in conjunction with the top predictors.

Category Added Accuracy Post-Category Addition

Degree Date 54.684 %

ECE 58.761 %

Business Eng. 60.420 %

Company Info Session 61.253 %

Summer Internship 61.914 %

Table 11: Example Run Results of Category importance for SMOTE found
by Forward Subset Selection using the Class of 2015 dataset.

True/
Predicted

Full Time Grad School Unknown/
Not Paid

Full Time 96.0 4.1 7.0

Grad
School

22.6 78.4 6.1

Unknown/
Not Paid

32.2 52.8 22.1

Table 12: Example of a Class of 2015 Confusion Matrix using SMOTE and
all of the “Important Features” as predictors.

Table 13 shows the comparison of the confusions matrices of no SMOTE
Applied and SMOTE Applied. Both confusion matrices show the same
numbers in the cells. This means that SMOTE did not affect the orginal
points and their predictions.
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No SMOTE Applied SMOTE Applied
True/
Predicted

Full
Time

Grad
School

Unknown/
Not
Paid

Full
Time

Grad
School

Unknown/
Not
Paid

Full
Time

1065 3 3 1065 3 3

Grad
School

226 3 0 226 3 0

Unknown/
Not Paid

360 0 0 360 0 0

Table 13: Comparing the confusion matrices (summing over all 10 folds for
the original data points) when using no SMOTE versus SMOTE. Both runs
used the same top predictors using the Class of 2015 dataset.

Table 14 shows the top four most important features in each of the
ten runs of the Forward Subset Selection for Borderline SMOTE. Whether
or not a student attended a CDC Walk-In event is the most important
category in every run and the degree date of the student is always the second
most important feature. CDC Career Fair Event attendance was third most
important, occuring only 6/10 times.Career Fair is in the top four most
important features for 10/10 runs. Our goal then is to make a statement
about the top four most important features, so we need a fourth top feature
so we also chose the next most prominent predictor, Degree Type (BA, MA,
etc.) (in the top five for 5/10 runs).

Run Most
Important

2nd Most 3rd Most 4th Most

1 Walk-In Degree Date Career Fair Science Degree

2 Walk-In Degree Date Career Fair Workshop

3 Walk-In Degree Date Workshop Career Fair

4 Walk-In Degree Date Career Fair Resumazing

5 Walk-In Degree Date Career Fair Degree Type

6 Walk-In Degree Date Career Fair Degree Type

7 Walk-In Degree Date Degree Type Career Fair

8 Walk-In Degree Date Career Fair Resumazing

9 Walk-In Degree Date Workshop Career Fair

10 Walk-In Degree Date Degree Type Career Fair

Table 14: Top Four Predictors (in order of importance) for each of the Ten
Borderline-SMOTE Runs using the Class of 2015 dataset.

The accuracy scores in Table 15 are just an example of the accuracy
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scores we got from testing and will differ from run to run. Table 16 gives
an example of an average confusion matrix of our model using only the four
most important predictors. Again, this average confusion matrix will vary
from run to run. Table 17 shows confusion matrices summed over all 10
folds for the original data points when using no SMOTE and SMOTE in
conjunction with the top predictors.

Category Added Accuracy Post-Category Addition

Walk-In 58.550 %

Degree Date 68.891 %

Career Fair 71.328 %

Degree Type 72.934 %

Table 15: Example Run Results of Category importance for Borderline-
SMOTE found by Forward Subset Selection using the Class of 2015 dataset.

True/
Predicted

Full Time Grad School Unknown/
Not Paid

Full Time 96.5 5.3 5.3

Grad
School

16.4 82.0 8.7

Unknown/
Not Paid

32.9 17.4 56.8

Table 16: Example of a Class of 2015 dataset Confusion Matrix using
Borderline-SMOTE and all of the “Important Features” as predictors.

Table 17 shows the comparison of the confusions matrices of no Borderline-
SMOTE Applied and Borderline-SMOTE Applied. The Borderline-SMOTE
applied matrix shows that some of the points are classified differently when
Borderline is used. For example, five more points were misclassified as Grad
School when they were actually Full Time. This means that borderline
SMOTE placed too many Grad School points in that area of Full Time
points that those points got misclassified. This table also shows that the
number of Grad School points classified correctly did not change and 2 more
of the Unknown/Not Paid points got misclassified after Borderline. From
this we can conclude that while Borderline classified points differently it did
not classify them correctly.

64



No Borderline-SMOTE Applied Borderline-SMOTE Applied
True/
Predicted

Full
Time

Grad
School

Unknown/
Not
Paid

Full
Time

Grad
School

Unknown/
Not
Paid

Full Time 991 50 30 988 55 28
Grad
School

164 60 5 163 60 6

Unknown/
Not Paid

311 34 15 312 35 13

Table 17: Comparing the confusion matrices (summing over all 10 folds
for the original data points) when using no Borderline-SMOTE versus
Borderline-SMOTE. Both runs used the same top predictors using the Class
of 2015 dataset.

The final step is to make a tree using the four predictors mentioned above
from Borderline SMOTE. From cross-validation, we determined that that
having a maximum node leaf number of 15 and minimum samples number
of 50, gave the best original to pruned tree accuracy. The original accuracy
of the unpruned tree was 78.77% and the accuracy of the pruned tree was
72.89%. The accuracy increased from original to pruned tree which means
that the pruned tree’s predictions are just as accurate as the originals. In
the tree shown below, X[0] is a student’s degree type, X[1] is a student’s
degree date, X[2] is the number of Career Fair Events a student attended
and X[3] is the number of CDC Walk-Ins that a student has gone to.

Figure 34 in Appendix A above shows the decisions made by the tree
when making predictors for the three classes. An example of the decisions
goes as followed, if a student went to less than 5 Walk-Ins, received their
degree in the spring, attended less than 2 Career Fairs and received a degree
of Masters or PhD, they are likely to have a primary status of Full Time
Job. Figure 22 shows this pathway from the tree.
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Figure 22: Zoomed in pathway from the Class of 2015 dataset Tree found in
Appendix A

6.3 Internship Dataset Results

In this section, we looked into the Internship Dataset, this set included only
those students who had reported having at least one internship during their
time at WPI. SMOTE and Borderline-SMOTE worked for the categorization
from 5.3.3, so we have results for both of these algorithms. SMOTE had
an average accuracy of 76% - 80% and Borderline SMOTE had an average
accuracy of 76% - 80%. Notice that SMOTE and Borderline SMOTE have
around the same accuracy for this dataset which is untrue for the other two
sets. However, since we look at Borderline SMOTE for the trees for the
other two sets, we will also be look at Borderline for the intern dataset trees
as well. As described in Section 6.1, the order of important features varied
from run to run. Table 18 shows the top five most important features for
each of the ten runs of Forward Subset Selection for SMOTE.
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Run Most
Important

2nd Most 3rd Most 4th Most 5th Most

1 Degree
Date

Career Fair Walk-In Workshop Science
Degree

2 Degree
Date

Resumazing Company
Info
Session

Nationality Workshop

3 Degree
Date

Workshop Career
Fair

Nationality Science
Degree

4 Degree
Date

Company
Info
Session

Nationality Business
Engineer-
ing

ECE

5 Degree
Date

Resumazing Gender Science
Degree

Company
Info
Session

6 Degree
Date

Company
Info
Session

Career
Fair

Workshop Degree
Type

7 Degree
Date

Company
Info
Session

Walk-In Career
Fair

Workshop

8 Degree
Date

Resumazing Science
Degree

Workshop Nationality

9 Degree
Date

Career Fair Workshop Nationality Science
Degree

10 Degree
Date

Company
Info
Session

Nationality Workshop Career
Fair

Table 18: Top Five Predictors (in order of importance) for each of the Ten
SMOTE Runs using the Internship dataset.

This dataset most important predictors tended to differ more than any
other dataset so we had to choose the top five predictors because 3 of these
predictors were in the top five 6/10 times. We notice that Degree Date is
the most predictive category in every run and that Workshop appears in
the top five 8/10 times. Company Info Session, Career Fair and Nationality
each appear 6/10 times making there be five predictors. From this table we
can see that Degree Date, Career Fair, Company Info Session, Nationality
and Workshop are the top five predictors. The accuracy scores in Table 27
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are just an example of the accuracy scores we got from testing and will differ
from run to run. Table 28 gives an example of an average confusion matrix
of our model using only the four important predictors.

Category Added Accuracy Post-Category Addition

Degree Date 62.55 %

Workshop 70.60 %

Career Fair 77.27 %

Nationality 81.06 %

Science Degree 81.99 %

Business Engineering 82.23 %

IMGD Degree 82.48 %

Table 19: Example Run Results of Category importance for SMOTE found
by Forward Subset Selection using the Internship dataset.

True/
Predicted

Full Time Grad School Unknown/
Not Paid

Full Time 17.8 2.5 0.9

Grad
School

2.7 16.4 2.1

Unknown/
Not Paid

1.3 4.2 15.7

Table 20: Example of a Internship dataset Confusion Matrix using SMOTE
and all of the “Important Features” as predictors.

Table 21 shows the comparison of the confusions matrices of no SMOTE
Applied and SMOTE Applied. The SMOTE applied matrix shows that
some of the points are classified differently. This table shows that the num-
ber of grad school points classified correctly increased by seven points but 11
more points were misclassified as Unknown/Not Paid. Unknown/Not Paid
classified one more point correctly without misclassifying anymore points
than before. and 2 more of the Unknown/Not Paid points got misclassified
after Borderline. Two Full Time points were misclassified as Unknown/Not
Paid and two points that were misclassified as Grad School were now mis-
classified as Unknown/Not Paid. From this we can conclude that SMOTE
did a slightly better job at classifying the internship data but points are still
being greatly misclassified.
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No SMOTE Applied SMOTE Applied
True/
Predicted

Full
Time

Grad
School

Unknown/
Not
Paid

Full
Time

Grad
School

Unknown/
Not
Paid

Full Time 183 22 7 181 20 11
Grad
School

32 17 0 23 24 11

Unknown/
Not Paid

9 3 1 9 2 2

Table 21: Comparing the confusion matrices (summing over all 10 folds for
the original data points) when using no SMOTE versus SMOTE. Both runs
used the same top predictors using the Internship dataset.

Table 22 shows the top four most predictive features in each of the ten
runs of the Forward Subset Selection for SMOTE. This set of predictors
was chosen because they appeared in the top five the most. The reason
the top five predictors was not chosen was because when running the model
repeatedly the accuracy very a lot so using the top gave a more stable model.
Degree Date appears in the most important spot for all 10 runs. Resumazing
appears in the top four 7/10 and Nationality appears in the top four 8/10
times. Workshop and Career Fair only appeared in the top four 5/10 times
and 4/10 times respectively. We felt we needed at least a top 4 features so we
looked at the 5th most important and saw that Workshop appeared in the
top five 8/10 times where Career Fair only appeared 6/10 times so we choose
Workshop for the final feature. From this table we can see that Degree Date,
Resumazing, Nationality and Workshop are the top four predictors.
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Run Most Im-
portant

2nd Most 3rd Most 4th Most 5th Most

1 Degree
Date

Resumazing Workshop Nationality Career Fair

2 Degree
Date

Walk-In Career Fair Workshop Degree
Type

3 Degree
Date

Resumazing Workshop Nationality Company
Info
Session

4 Degree
Date

Resumazing Nationality Degree
Type

Career Fair

5 Degree
Date

Resumazing Workshop Nationality Company
Info
Session

6 Degree
Daten

Resumazing Summer
Internship

Nationality Workshop

7 Degree
Date

Nationality Company
Info
Session

Resumazing Workshop

8 Degree
Date

Walk-In Career Fair Nationality Degree
Type

9 Degree
Date

Nationality Resumazing Career Fair Workshop

10 Degree
Date

Walk-In Workshop Career Fair Degree
Type

Table 22: Top Four Predictors (in order of importance) for each of the Ten
Borderline-SMOTE Runs using the Internship dataset.

The accuracy scores in Table 23 are just an example of the accuracy
scores we got from testing and will differ from run to run. Table 24 gives
an example of an average confusion matrix of our model using only the four
most important predictors.
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Category Added Accuracy Post-Category Addition

Degree Date 62.58 %

Resumazing 74.41 %

Nationality 76.69 %

Summer Internship 80.05 %

Degree Type 82.77 %

Science Degree 83.90 %

Workshop 84.90 %

Co-op 85.39 %

IMGD Degree 85.60 %

Table 23: Example Run Results of Category importance for Borderline-
SMOTE found by Forward Subset Selection using the Internship dataset.

True/
Predicted

Full Time Grad School Unknown/
Not Paid

Full Time 20 0.8 0.4

Grad
School

4.5 14.5 2.2

Unknown/
Not Paid

1.6 3.6 16

Table 24: Example of a Internship dataset Confusion Matrix using
Borderline-SMOTE and all of the “Important Features” as predictors.

Table 25 shows the comparison of the confusions matrices of no Borderline-
SMOTE Applied and Borderline-SMOTE Applied. The Borderline-SMOTE
applied matrix shows that some of the points are classified differently. This
table shows that the most the points were classified the same and some mis-
classifications increased by one or two. The only correct classification that
changed was Unknown/Not Paid which increased its correct classification
by two. From this we can conclude that Borderline-SMOTE did not make
much of an affect on the classifying the points better but as was stated be-
fore Borderline and SMOTE work very similarly with the intern dataset so
it is not surprsing that SMOTE worked better in this case.
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No Borderline-SMOTE Applied Borderline-SMOTE Applied
True/
Predicted

Full
Time

Grad
School

Unknown/
Not
Paid

Full
Time

Grad
School

Unknown/
Not
Paid

Full Time 201 7 4 199 8 5
Grad
School

48 1 0 47 1 1

Unknown/
Not Paid

13 0 0 11 0 2

Table 25: Comparing the confusion matrices (summing over all 10 folds
for the original data points) when using no Borderline-SMOTE versus
Borderline-SMOTE. Both runs used the same top predictors using the In-
ternship dataset.

The final step is to make a tree using the four predictors mentioned above
from Borderline SMOTE. From cross-validation, we determined that that
having a maximum node leaf number of 15 and minimum samples number
of 20, gave the best original to pruned tree accuracy. The original accuracy
of the unpruned tree was 79.39% and the accuracy of the pruned tree was
79.39%. The accuracy is the same from original to pruned tree so this means
that the pruned tree’s predictions are just as accurate as the original’s. In the
tree shown below, X[0] is a whether a student is International or American,
X[1] is a student’s degree date, X[2] is the number of Resumazing events
that a student attended and X[3] is the number of CDC Workshops that a
student attended.

Figure 35 in Appendix B above shows the decisions made by the tree
when making predictors for the three classes. An example of the desions
goes as followed, if a student recieved their degree in the fall or winter,
the student was American, attended no Resumazing events and attended at
least one workshop, they are likely to have a primary status of Grad School.
Figure 23 shows this pathway from the tree.
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Figure 23: Zoomed in pathway from the Internship dataset Tree found in Appendix
B

6.4 CDC Dataset Results

In this section we looked into the CDC Dataset, this set included only those
students who had attended a CDC sponsored event at least once in their
time at WPI. SMOTE and Borderline SMOTE worked for the categorization
from 5.3.3, so we have results for both of these algorithms. SMOTE had
an average accuracy of 61% - 63% and Borderline SMOTE had an average
accuracy of 75% - 77%. As described in Section 6.1 , the order of important
features varied from run to run. Table 26 shows the top four most important
features for each of the ten runs of Forward Subset Selection for SMOTE.
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Run Most Im-
portant

2nd Most 3rd Most 4th Most

1 Degree
Date

Summer
Internship

Science
Degree

Company Info
Session

2 Degree
Date

ECE Company Info
Session

Civil
Engineering

3 Degree
Date

Workshop Company Info
Session

Summer
Internship

4 Degree
Date

Summer
Internship

Workshop Pre-Career
Fair

5 Degree
Date

Summer
Internship

Science
Degree

Workshop

6 Degree
Date

Workshop Liberal Arts
Degree

Company Info
Session

7 Degree
Date

Workshop Company Info
Session

Liberal Arts
Degree

8 Degree
Date

Summer
Internship

Science
Degree

Pre-Career
Fair

9 Degree
Date

Workshop Mathematics
Degree

Summer
Internship

10 Degree
Date

Workshop Company Info
Session

Summer
Internship

Table 26: Top Four Predictors (in order of importance) for each of the Ten
SMOTE Runs using the CDC Usage dataset.

We notice that Degree Date is the most predictive category in every run.
We then notice that the next three features seem to change around a lot.
However, since when we run a tree to get a final accuracy that order does not
matter we can look at how often a predictor comes up in the top four. For
Instance, Summer Internship appears in 2nd most important 4/10 times but
overall it appears in the top four 7/10 times. A similar instance happens
with Workshop and Company Info Session, Workshop appears in the top
four 7/10 and Company Info Session appears 6/10. In this chart, there a
few pink boxes however those indicate predictors that appeared randomly
in that spot. So from this analysis, we can say that Degree Date, Workshop,
Summer Internship and Company Info Session appeared in the top four
categories the most. The accuracy scores in Table 27 are just an example
of the accuracy scores we got from testing and will differ from run to run.
Table 28 gives an example of an average confusion matrix of our model using

74



only the four important predictors.

Category Added Accuracy Post-Category Addition

Degree Date 58.32 %

ECE 61.03 %

Company Info Session 62.84 %

Civil Engineering 63.82 %

Materials Degree 64.38 %

Business Engineering 64.38 %

Mathematics Degree 65.59 %

Summer Internship 65.59 %

Co-op 65.72 %

Liberal Arts Degree 65.77 %

Table 27: Example Run Results of Category importance for SMOTE found
by Forward Subset Selection using the CDC Usage dataset.

True/
Predicted

Full Time Grad School Unknown/
Not Paid

Full Time 63.1 1.7 3.1

Grad
School

13.6 39.7 14.6

Unknown/
Not Paid

17.2 26.7 24

Table 28: Example of a CDC Usage dataset Confusion Matrix using SMOTE
and all of the “Important Features” as predictors.

Table 29 shows the comparison of the confusions matrices of no SMOTE
Applied and SMOTE Applied. The SMOTE applied matrix shows that
some of the points are classified differently. This table shows that more
Full Time points were misclassified as Grad School and Unknown/Not Paid
but although many Grad School and Unknown/Not Paid points were still
misclassified as Full Time, the number of points correctly classified increased
for both classes. From this we can conclude that SMOTE did help a little
bit in classifying points correctly. It however did not help classify Full Time
better because more points from other classes were placed next to Full Time
points making it seem as though the Full Time points were from another
class.
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No SMOTE Applied SMOTE Applied
True/
Predicted

Full
Time

Grad
School

Unknown/
Not
Paid

Full
Time

Grad
School

Unknown/
Not
Paid

Full Time 656 7 16 618 21 40
Grad
School

133 0 2 128 6 1

Unknown/
Not Paid

174 1 1 152 3 21

Table 29: Comparing the confusion matrices (summing over all 10 folds for
the original data points) when using no SMOTE versus SMOTE. Both runs
used the same top predictors using the CDC Usage dataset.

Table 30 shows the top six most predictive features in each of the ten
runs of the Forward Subset Selection for SMOTE. This set of data has six
most predictive features for Borderline because, as shown by the table, the
top 6 predictors appear almost always in the top 6. Degree Date and Walk-
In appear in the first two spots respectivley for all 10 runs. Degree Type
appears in the top six 9/10 times, Company Info Session appears 10/10
times, Summer Internship appears 8/10 and Business Engineering appears
8/10 times. This table shows that Degree Date, Walk-In, Degree Type,
Company Info Session, Summer Internship and Business Engineering are
the top six predictors that should be used when doing borderline SMOTE.
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Run Most
Impor-
tant

2nd
Most

3rd
Most

4th
Most

5th
Most

6th
Most

1 Degree
Date

Walk-
In

Degree
Type

Company
Info
Session

Summer
Internship

Business
Engineer-
ing

2 Degree
Date

Walk-
In

Degree
Type

Company
Info
Session

Summer
Internship

Business
Engineer-
ing

3 Degree
Date

Walk-
In

Degree
Type

Business
Engineer-
ing

Summer
Internship

Company
Info
Session

4 Degree
Date

Walk-
In

Degree
Type

Company
Info
Session

Summer
Internship

Math
Degree

5 Degree
Date

Walk-
In

Degree
Type

Civil
Engineer-
ing

Company
Info
Session

Business
Engineer-
ing

6 Degree
Daten

Walk-
In

Workshop Company
Info
Session

Civil
Engineer-
ing

Science
Degree

7 Degree
Date

Walk-
In

Summer
Internship

Company
Info
Session

Degree
Type

Business
Engineer-
ing

8 Degree
Date

Walk-
In

Company
Info
Session

Summer
Internship

Degree
Type

Business
Engineer-
ing

9 Degree
Date

Walk-
In

Summer
Internship

Company
Info
Session

Degree
Type

Business
Engineer-
ing

10 Degree
Date

Walk-
In

Degree
Type

Company
Info
Session

Summer
Internship

Business
Engineer-
ing

Table 30: Top Four Predictors (in order of importance) for each of the Ten
Borderline-SMOTE Runs using the CDC Usage dataset.

The accuracy scores in Table 31 are just an example of the accuracy
scores we got from testing and will differ from run to run. Table 32 gives
an example of an average confusion matrix of our model using only the four
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most important predictors.

Category Added Accuracy Post-Category Addition

Degree Date 58.41 %

Walk-In 72.60 %

Degree Type 74.22 %

Business Engineering 74.90 %

Summer Internship 75.23 %

Company Info Session 75.69 %

Civil Engineering 76.04 %

Mathematics Degree 76.05 %

Table 31: Example Run Results of Category importance for Borderline-
SMOTE found by Forward Subset Selection using the CDC Usage dataset.

True/
Predicted

Full Time Grad School Unknown/
Not Paid

Full Time 63.1 2.4 2.4

Grad
School

13.1 49.8 5

Unknown/
Not Paid

16.4 8.2 43.3

Table 32: Example of a CDC Usage dataset Confusion Matrix using
Borderline-SMOTE and all of the “Important Features” as predictors.

Table 33 shows the comparison of the confusions matrices of no Borderline-
SMOTE Applied and Borderline-SMOTE Applied. The Borderline-SMOTE
applied matrix shows that some of the points are classified differently. This
table shows that only a few more Full Time points were misclassified as
Unknown/Not Paid. However, this table shows greatest improvement in
correct classification of Grad School and Unknown/Not Paid. Grad School
had an increase in 10 points correctly classified and only two more points
misclassified as Unknown/Not Paid and Unknown/Not Paid had an increase
in eight points correctly classified but six more points were misclassified as
Grad School. From this we can conclude that Borderline-SMOTE helped a
great deal with better classifying some of the CDC dataset points and that
this dataset had the greatest improve among all the SMOTE and Borderline
confusion matrix comparisons across all three datasets.
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No SMOTE Applied SMOTE Applied
True/
Predicted

Full
Time

Grad
School

Unknown/
Not
Paid

Full
Time

Grad
School

Unknown/
Not
Paid

Full Time 639 18 22 636 18 25
Grad
School

131 2 2 119 12 4

Unknown/
Not Paid

165 3 8 151 9 16

Table 33: Comparing the confusion matrices (summing over all 10 folds
for the original data points) when using no Borderline-SMOTE versus
Borderline-SMOTE. Both runs used the same top predictors using the CDC
Usage dataset.

The final step is to make a tree using the six predictors mentioned above
from Borderline SMOTE. From cross-validation, we determined that that
having a maximum node leaf number of 15 and minimum samples number
of 25, gave the best original to pruned tree accuracy. The original accuracy
of the unpruned tree was 76.09% and the accuracy of the pruned tree was
75.11%. The accuracy decreased from original to pruned tree but only by
1% so this means that the pruned tree’s predictions are almost as accurate
as the original’s. In the tree shown below, X[0] is a student’s degree type,
X[1] is a student’s degree date, X[2] is the number of Company Info Sessions
a student attended and X[3] is the number of CDC Walk-Ins that a student
has gone to, X[4] is how many summer internships a student had and X[5] is
whether or not a student had Business Engineering as one of their majors.

Figure 36 in Appendix C shows the decisions made by the tree when
making predictors for the three classes. An example of the decisions goes as
followed, if a student recieved their degree in the fall or winter, went to more
than 5 Walk-Ins at the CDC, attended at least one company info session and
attended at least 3 company info sessions, they are likely to have a primary
status of Grad School. Figure 24 shows this pathway from the tree.
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Figure 24: Zoomed in pathway from the CDC Usage dataset Tree found in Ap-
pendix C

7 Discussion

7.1 Algorithm Accuracy

Borderline-SMOTE outperformed SMOTE on the final version of our catego-
rization of Primary Status for the first dataset of Final Class of 2015 data.
The accuracy of Borderline-SMOTE averaged to about 73-76%, whereas
regular SMOTE had a lower accuracy of 63-65%. Accuracy rates were sim-
ilar for the second dataset of internship (76-80%) for both SMOTE and
Borderline-SMOTE. As with the first case, in the final dataset for CDC
usage, Borderline-SMOTE again outperformed SMOTE by an even greater
margin. For this final dataset, Borderline-SMOTE had an average accuracy
of 75-77% and SMOTE had an accuracy of only 61-63%.

It is clear that Borderline-SMOTE with our modifications for low-populated,
multi-class predictors is as accurate or more accurate than the original
SMOTE algorithm for selecting relevant features and making predictions
that overcome data imbalance. This is significant because it is not likely that
future versions of these datasets are likely to lack the imbalance inherent in
the 2015 selections. With regards to primary status, for instance, the Back-
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ground Chapter details how past reports have consistently demonstrated
positive outcomes for more than 90% of graduates. This is an achievement
on the part of both the university and the CDC as well. This method will
be crucial for future studies dealing data of this type and for synthesizing
results across datasets from different years.

7.2 Predictors of Success

From the Borderline-SMOTE runs on the first dataset, Walk-In was the most
important predictor for each of the ten runs, followed by Degree Date and
then Career Fair. It is important to note what this feature selection means
relative to CDC operations. To say that Walk-Ins are the most important
predictor means that it is the first decision-point in the tree used to reach a
conclusion about the response. It is not entirely accurate to say, for example,
that because Walk-In was the top predictor for the first dataset’s ten runs,
that using Walk-Ins at the CDC will result in a student getting a full time
job. More attention is needed to see how the decision pathways describe
likelihoods based on whether certain conditions of that predictor are met.

Using the four important predictors from these runs (Walk-In, Degree
Date, Career Fair, and Degree Type), our decision tree shows some outcomes
worth considering. For students who attended more than 5 Walk-Ins during
their undergraduate careers and graduated in the spring, for instance, the
tree predicts full time employment.However, if the student did not graduate
in the Spring, then the model predicts graduate school attendance which
is not necessarily correct for every given student as our model is not 100%
accurate.This suggests that of the class of 2015 alumni, early graduates who
used more Walk-Ins at the CDC went on to graduate school, while those
who graduated later and were proactive with Walk-In use were more likely
to be predicted as receiving full time jobs. This makes sense if one considers
the idea that early graduates may be doing a five-year Master’s program in
which they might get their undergraduate credit early. Or if students are
not enrolled in such a program, they might want to get their credits done
earlier to allow them more time to pursue a higher-level degree in a shorter
period of time.

We can compare this to another decision pathway, too. If a student
attended less than 5 Walk-Ins and graduated in the spring, they almost
invariably are predicted to receive a full time job regardless of any other
condition. The only pathway that results in a different response is if the
same student attends less than 2 Career Fairs and has a Masters or PhD,
then they are predicted as being in graduate school.
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The results from the other two datasets were less clean-cut. For In-
ternships, Degree Date and Resumazing were the top predictors, followed
by Nationality and Summer Internship. But these latter two categories
and all subsequent ones only added marginal (5% or less) accuracy to the
model. Degree Date and Walk-In were the top predictors in the CDC Usage
dataset, and similarly, all subsequent categories including the next top pre-
dictors (Degree Type and Business Engineering) added only marginal (5%
or less) accuracy. The consistency of Degree Date as a top predictor in all
three datasets suggests that it is one of the strongest overall predictors of
outcomes, which is in line with an assumption about degree levels corre-
sponding to a greater likelihood of getting hired, as well as a demonstration
of individual drive to succeed.

The fact that Resumazing, Walk-Ins, Career Fairs, and so on are also
top predictors should come with a word of elaboration. That is, there is a
need for student motivation to attend these sessions. It is not entirely clear
whether it is the events themselves or if it is the fact that a student makes the
decision to attend them and be proactive, or not, which ultimately decides
outcomes. Our analysis provides highly-accurate categorical predictors of
career outcomes, but what it cannot speak in depth to is how much these
results are confounded by other factors not included in our model. The
primary ones to consider are student drive and academic success.

8 Limitations and Future Work

Our study focused on analyzing outcomes relative to postgraduate career
success as well as other opportunities such as graduate school and volunteer
work. We worked directly with information provided to us from the CDC,
used established methods in machine learning, and adapted algorithms from
scikit learn and SMOTE. There were inherent limitations given our setup
and goals, as well as assumptions we had to make which might need reconsid-
eration. An overview of some of these limitations and possible assumptions
worth reevaluation are offered in order to inform not only the CDC, but also
researchers conducting future studies.

8.1 Limitations

The limiting factors we were competing against during this project were
time, available data, computing power, and an imbalanced dataset. The
time constraint is a given for any project, and forced us to make certain
decisions toward the end of the project about which unfinished goals were
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going to be prioritized. For instance, an investigation into the relationship
between special request CDC Workshops and future use by students, as well
as the determination of an optimally beneficial frequency of use, were not
pursued because they would require pre-processing of a new dataset as well
as additional analysis which would extend past the end of the term. This
example is described in more detail in the Future Work section, and might
be pursued by other teams in ensuing years.

Our available datasets covered a wide array that was satisfactory for the
CDCs primary interests and for us to make robust predictions about career
opportunities based on kiosk usage, major, internship history, and other
categories. But this does not necessarily depict a full picture of undergrad-
uate conditions for positive outcomes. Whatever our data says about the
accuracy of predictions based on features in the data we used, critical infor-
mation which sheds light on other dimensions of the problem are omitted
simply because they were not included in the datasets we had access to.
Academic information is the main missing piece in our case. The only infor-
mation tracked in this domain was major, which did not have a significant
impact to begin with. Beyond this, student GPA, extracurricular activities,
and other indicators of academic and social status were not available for us
to integrate into our prediction models.

The lack of academically-focused information is outside of the scope of
the CDC and therefore the project, since their ability to act on our rec-
ommendations is limited to their organization, staff, programs, and events.
Nonetheless, a more complete profile of students lives during their four year
undergraduate careers would be useful for making stronger cases for corre-
lations between actions or the lack thereof at the undergraduate level and
career opportunities out of college.

Computing power was a real limitation when we began to apply SMOTE,
Borderline-SMOTE, and our modified algorithm to the large primary dataset.
The Jetstream cloud environment using the supercomputer was helpful, but
runtimes were still incredibly slow for running the necessary code. Addi-
tionally, since we were using a remote supercomputer and not one on a local
machine, there were further difficulties when problems arose since they could
not always be solved immediately. It would have been better to have this
ability natively, and to have had access to the supercomputer earlier in the
project than we did.

As described extensively above, the major issue inherent to the data itself
was that it was highly imbalanced. This was addressed by using a modified
SMOTE algorithm, but remains a difficult problem in general. Unlike al-
most all the other limiting factors, imbalanced data is not something that
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can be resolved simply by extending time or increasing resources. It still
undoubtedly limited our ability to quickly and accurately make predictions
using basic methods. A primary obstacle in this final category of limitations
was the fact that SMOTE by its nature does not handle multi-class data.
Chawla et al. notes that two separate versions of SMOTE, SMOTE-N and
SMOTE-NC, are theoretically capable of handling nominal data whereas
the original version was only meant to handle a mixture of nominal and
continuous data [3]. For example, in the example confusion matrix of Ta-
ble 12 we see that “Grad School was wrongly predicted as “Unknown/Not
Paid 52.8 times. This was a starting point for us to consider working out-
side the normal parameters of SMOTE. Namely, the idea was to calibrate
Borderline-SMOTE to include information about the second most likely mis-
classification in the scoring of the potential, new synthetic point. Figure 25
describes the process that we hope will be looked into in the future.

Figure 25: Proposed outline of using confusion matrices to better calibrate
SMOTE/Borderline-SMOTE to avoid minority group misclassifications.

At the end of the project we noticed that the original points were not
being classified any more correctly then they were in the beginning. This is
due to the fact that when we tested only the original points we had a smaller
set of points then the points we had for training so we could only use a subset
of points to train the model. In order to remedy this problem, we could do
SMOTE or Borderline-SMOTE on only the training data instead of the who
dataset and then make a tree using those points. The test data would not
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have seen SMOTE and would be used to make predictions. This method
would hopefully make the original points be correctly classified more but
since there was a time constraint we were unable to see if this would work.
This method is shown in the figure below.

Figure 26: Method of using SMOTE and Borderline in the training data in hopes
of classifying the orginal points better

8.2 Future Work

This project covered data from the class of 2015. Future studies could
benefit from replication for future years, as well as conducting similarly
rigorous analysis on past datasets such as that from the classes of 2013 or
2014. Comparative studies could then be conceived between different years
to establish or confirm patterns of interest. Even larger combined datasets
covering multiple class years would offer more insights than a single year
can. At the very least, it is in the CDCs interest to continue doing this level
of analysis on incoming datasets for the class of 2016 and beyond.

The CDC would benefit from further improving its survey-gathering
techniques and in-house data cleanup. If they wish to use our process and
algorithms for future data analysis, one of the most time-consuming and
non-programmatic steps they will have to take will consist of data cleanup,
transformation, and encoding. Making data capture more consistent from
year to year and standardizing procedures would reduce the need for ex-
tensive data cleanup and transformation during pre-processing. Along with
the CDCs own survey standards being altered, future studies could dedicate
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some time to developing a more programmatic approach than what was used
in this project. For instance, data cleanup was mostly done using a com-
bination of filtering and basic formulas for transforming large quantities of
column data in Excel and Google Sheets. Using regular expression opera-
tions, macro scripts, or Python, there are several ways one could conceivably
begin to develop a system that relies less on hands-on data massaging.

Because our data showed that Walk-Ins were a top predictor for the Full
Class of 2015 dataset, we recommend that future projects use the subcat-
egory categorization scheme devised by the MQP team and modified with
CDC input to run analysis on a dataset with these subcategories rather
than simply “Walk-Ins.” With the categories grouped as they are presented
in an earlier section, there should be few enough each with enough data to
generate a clean set of runs. Additionally, while the predictor was not as
significant in any of the datasets as Walk-Ins or other predictors, Workshops
were still significant, albeit marginally, in the Internship dataset and consti-
tute a large percentage of CDC service capacity. We recommend that future
teams consider incorporating the sub-categorization scheme found in 10.

Additional points of interest such as determining optimal CDC usage
ranges for maximizing successful outcomes and integrating further academic
and extracurricular information into the main dataset may yield more com-
plete results beyond the framework of this project.

9 Conclusion

When we started out with this project our goal was to help the Career Devel-
opment Center by identifying which factors help students get jobs after they
graduate from WPI. In order to do that we had to come up with methods
that would easily allow us to reach any conclusions. Due to imbalanced and
messy data, we had to first find a way to balance it so that our conclusions
would be accurate and usable. We were able to use an algorithm called
SMOTE, and more specifically Borderline-SMOTE, to create data points
that would balance out our data. We were able to modify the Borderline-
SMOTE algorithm in order to account for low population and multi class
predictors which the algorithm did not originally allow. The accuracy as
described in previous sections was good enough so that we were confident
with presenting our results to the Career Development Center.

Through this algorithm our team was able to produce some very intrigu-
ing results for the Career Development Center. We were able to tell them
that one of the most important things a student can do to more accurately
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predict their status after college is to have a Walk-In meeting with them at
the CDC building on campus. Other CDC events such as Career Fairs and
Workshops also showed a degree of importance in determining the student’s
primary status after graduation. After looking at the graduation class of
2015 as a whole we looked into smaller subsets to see if we could find any
other interesting patterns. The muddiest smaller set involved students who
had at least one internship during their college career. In this set, there
were fewer patterns clear from the Borderline-SMOTE algorithm with date
they received their degrees being the most important factor in determining
their post-graduate primary statuses. We also looked at the set of students
who attended at least one CDC sponsored event in their time at WPI. Due
to the larger dataset these results were more clear than the internship data.
Once again Walk-Ins had a big influence on primary status as well as sum-
mer internships and company information sessions. These are quite useful
pieces for the CDC as they plan for the future.

These results have an immediate impact for the people at the Career
Development Center. The first and most obvious impact is the fact that
they can use what we have learned in order to better promote certain events
in the future. This information also helps them understand what they should
be focusing their resources on at the moment. Another less obvious impact
is the possibilities for future projects. A lot of work went into developing the
modified Borderline-SMOTE algorithm so that it could be used by future
researchers working with the CDC when working with similar data. This
could mean working with future data or even looking further into the past
beyond just 2015. In many ways this is the biggest legacy of this project
and the part that provides the most potential for future use by the Career
Development Center.
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10 Afterword

This Afterword was authored independently as a part of the Professional
Writing component of the Major Qualifying Project. The following sections
offer further considerations about data science and considers this particu-
lar project through the lens of rhetorical theory and its application in this
case study of data science project design, implementation, and analysis.
The Afterword is divided into two chapters. First, a chapter investigating
data science as a proto-profession. And second, a chapter relating proto-
professional rhetoric, as well as notions of heuristic and invention in data
science, to the entire project. The first chapter consists of sections 11-15 in
the Table of Contents. The second chapter consists of sections 16-20. The
final two sections, 21 and 22, pertain to both chapters and conclude the
Afterword as a whole.
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11 Introduction

With massive amounts of data being collected across industry and academia,
data science has emerged from the traditional fields of mathematics and com-
puter science as a powerful way to interpret this information. Data science
employs statistics, machine learning, and graphical analysis to transform
large sets of ambiguous data into more concrete and applicable results.

Data science largely emerged from within statistical circles. Influential
statistician John W. Tukey wrote in 1962 about his growing interest in data
analysis from his statistical background in The Future of Data Analysis [23].
Early applications of data science were largely concentrated within industry.
Several early data science studies were published in business journals, target-
ing subjects such as supply chain management. However, it is only recently
that data science has become an academically distinct force within the uni-
versity setting. The discipline is threading a line between an occupational
element and a profession in its own right, like the areas of mathematics and
computer science from which it emerged.

This evolution should produce a shift in the rhetorical framework of
writing within data science, specifically at the professional, academic level. If
data science is an emerging profession, a ‘proto-profession,’ then this should
be observable in the nature of significant texts within the area of study across
journals and other publication sources in comparison to existing, related
professions. This project will use grammatical analysis of existing data
science articles to determine if there has been a significant change in the way
that their authors have rhetorically constructed their field. Additionally, it
will treat a data science Major Qualifying Project (MQP) at Worcester
Polytechnic Institute (WPI) as a source of example and commentary on
predominant rhetorical issues in data science practice and writing.

12 Background

There is an important distinction to make between occupational writing by
an employee in a workplace and writing done by a professional in a pro-
fessional environment. Within the private sector, workers are by definition
forced to negotiate with their employer due to the fact that they are salaried
[24]. Additionally, they neither have politically organized entities operating
in their spaces nor do they control their spaces generally on account of the
fact that “their projects, employment, and quality control are subject to
capitalist oversight” [24].
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Anne Beaufort provides a picture of how writing is shaped by the modern
workplace [25]. For example, she cites a 1986 study that described how the
hierarchical nature of an organization influenced decision-making about the
style of the writing that employees produced [25]. In this study, conducted
by Brown and Herndl, a connection was found between who the writing was
directed toward and the use of nominalizations [25]. Specifically, the use
of nominalizations and verbosity decreased the further down the hierarchy
one was writing, and increased if the writing was targeted toward higher-
ranking people in or out of the company [25]. This is of key interest to
defining a distinction between the two domains of writing because it clearly
illustrates how composition is dependent upon an environment over which
the employee has limited to no control. Even the benefits and drawbacks of
technological tools in the workplace [25], such as computers and nowadays
tablets and smartphones sheds light on this. Apart from personal devices
which are used, these tools are all provided for by the employer with the
expectation that they will be used to complete tasks assigned to employees
using them.

12.1 The Professions

As a contrast to occupational writing, the professions are characterized by
three defining characteristics. First, professional writers have a well-defined
and specific audience to which they write [24]. Although certainly a non-
professional employee may write to specific people within the hierarchy of
his or her company, the professional writes as an “audience advocate” who
is not merely advancing or representing the company but rather writing for
the well-being of this audience [24]. Second, a professional has a social re-
sponsibility to society as a whole. As such, a professional’s work and writing
doesn’t solely serve a company and its interests, but rather “influences the
life of a community” [24]. This is an extension of the idea that a professional
is a source of objective knowledge. This “esoteric and complex” knowledge
[24] is often a virtue to discover and disseminate by itself, especially for re-
searchers. However, even more applied professionals like doctors or lawyers
have a notion of doing good for society based on their own specialized knowl-
edge. Finally, the professions are defined by an ethical awareness of their
actions and a desire to maintain their credibility from this by excluding
competition and easy access to their fields by outsiders [24].
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13 Literature Review

The primary sources of literature on both occupational and professional writ-
ing have been covered in the above background section (Beaufort, Faber).
Of greater interest is existing studies into how data science specifically has
been evolving into a profession and how the field is redefining and reshaping
discussions about rhetoric. The literature here covers both the emergence
of data science as a professional field, as well as addressing or posing key
questions about the rhetorical nature of writing or visual rhetoric within
data science.

13.1 Impact within Information Systems

Agarwal and Dhar note that the modern inceptions of business analytics
and data science have been driven by rapid socioeconomic development as
well as the expedience of digital tools to make large-scale analysis possible
with immense data sets [26]. Their analysis is within the area of business
analytics known as information systems or IS. This area is described in terms
of an occupational industry whose rhetorical framework is driven more by
the needs and value determination of a company or partner, rather than by
a higher pursuit of pure knowledge or a broader societal goal. In their piece,
the authors describe the focus of their field in the following way: “We care
deeply about business transformation and value creation through data, and
less for algorithms or frameworks without a linkage to business value” [26].

Although the authors claim that many theories within areas such as
economics and psychology have stemmed from research of the type they
conduct [26], it is clear that the value of their operations and writing is
largely dependent upon business outcomes. This is why the value of big data
and data science to these individuals is largely utilitarian. However, from a
research point of view, Agarwal and Dhar do value research aided by data
science techniques that helps “pose an interesting and relevant question” [26]
and in this way speaks to some pursuit of higher knowledge. It is interesting
to note that one potential problem here with big data sets, which are the core
of data science, is the “questionable at best or unknown at worst” credentials
the source of such data sets might have [26]. This is one major issue that
must be reconciled for data science to be considered a true profession, since
there is a constant need for data sets, yet the open-endedness of open source
data sets poses problems not inherent to the traditional professions.
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13.2 Rhetorical Questions about Data Science

In a more rhetorical take, Boyd and Crawford ask key questions about data
science and big data, which they define without simply relying on the notion
of a large set of data to analyse [27]. Rather, they use a threefold approach
to defining the term: maximizing computational power, drawing on large
data sets to find patterns to make claims, and viewing these large data
sets as inherently more objective or valid as sources of new knowledge and
conclusions [27]. This sets the tone for big data having one of two potential
types of rhetoric. The first is utopian, the notion that follows directly from
a trusted interpretation of a data science approach to big data as revealing
and useful for a society that values progress and new information [27]. The
converse is a dystopian rhetoric in which privacy rights are further infringed
upon and data is used as a vector for increasing control from the top [27].

The article defines six ways in which big data’s influence demands certain
thoughts and considerations from us a society. They are as follows:

1. Changing the definition of knowledge. This is the notion that “the
numbers speak for themselves” [27]. The authors claim that although
the destabilization that big data has brought to various fields and
industries is challenging classical methodologies for discovery, it should
not be taken purely on its own merit [27]. That is, we need to start
considering exactly how robust these data science approaches are and
what relying on them means if we want to reframe our understanding
of knowledge in terms of their results.

2. Subjectivity vs. objectivity. The assumption that big data results are
objective and inherently accurate is challenged here. The authors as-
sert that just as with other branches of science, big data advocates can
sometimes misconstrue what objectivity means in their practices and
how subjectivity still is a presence to wrestle with [27]. Interpretation
is still critical [27], and researchers have a critical role of making sense
of their data [27]. To refer back to a prior sentiment, the numbers can’t
speak for themselves. That is the job of the researchers, and with hu-
man intervention comes biases and nuances. Additionally, the authors
draw attention to the problem of apophenia, which is the phenomenon
of “seeing patters where none actually exist, simply because enormous
quantities of data offer connections that radiate in all directions” [27].

3. Bigger is not necessarily better. Twitter and Facebook are two familiar
sources of extremely large amounts of people who provide exorbitant
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amounts of data. And it has been a long sought after goal in the
sciences to be able to work with data sets these large as opposed to
the traditionally small sample sizes. But there are problems inherent
to these immense population pools, such as problems with representa-
tion [27], compounding the error through intersecting large data sets
[27], and valuing small data even to the anecdotal level that can offer
insights beyond data mining [27].

4. Context is key. The authors note the distinction between ‘personal
networks’ developed in traditional sociological research, ‘articulated
networks’ generated technically or digitally, and ‘behavioral networks’
through interact through a communication channel [27]. Here the issue
at hand is in the relevance of connections between individuals in these
networks. Not every connection equal in its significance [27].

5. Accessibility does not mean it is ethical. Big data solutions most no-
tably run into ethical problems by compromising privacy. Typical
techniques include reverse-engineering anonymized data [27] or taking
individuals‘ online content out of context [27].

6. Limited access causes issues. One major concern within data science is
how one gets access to the critical data sets needed for analysis. Part
of the issue is that for social network data sets, large social media
companies control access, and a similar issue exists for universities
which have a similarly restrictive means of access [27]. The additions
of a barrier to entry for analysis based on computational knowledge
and the pressure from the sponsor company on researchers means that
there is a privileged divide based on who can access and use certain
critical datasets and for what purposes [27].

13.3 Visual Rhetoric

Michael Salvo of Purdue University has examined the visual rhetoric that has
emerged from big data analysis in recent years [28]. Salvo discusses at a high
level how big data and visual rhetoric collide. He asserts that the critical
“design of communication” of data-oriented results in any form is rhetorical
[28]. That is, the way that data scientists visually construct results from
their data analysis deal intimately with questions of rhetoric by their very
nature. One important feature is targeting an audience. Salvo references
accessible, audience-driven visual displays of data and information such as
TED Talks and IBM’s THINK exhibit [28] as examples of how individuals
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are constructing methods for distributing ideas which are data-intensive and
require special attention to get an audience to pay attention.

Interestingly, Salvo claims that an Aristotelian rhetoric is being revived
through the visual rhetoric of big data. Specifically, this is being done in the
form of re-establishing the “linkage between rhetoric and probability” [28].
If Salvo is correct, then this poses an interesting justification for studying
the visual outcomes of big data in rhetorical terms.

13.4 Additional Literature

The idea of applying machine learning techniques and database analysis
of the type found within the sphere of data science is “relatively new to
higher education,” according to Dursun Delen [9]. Studies in data science
have not been heavily driven toward academia since the corporate world and
social media networks have been the main sources for large data sets. How-
ever, there is an increased push for this type of research. Some researchers
have taken to calling this area of study Educational Data Mining,’ which
uses standard data science techniques to analyse data sets acquired from
educational sources, namely universities and secondary schools [10]. This
is of particular relevance due to the case study of the ongoing WPI project
bridging the gap between occupational, career-oriented data mining and Ed-
ucational Data Mining, since the work is involved in the university’s Career
Development Center (CDC).

Provost and Fawcett reaffirm the idea data science is largely still a prod-
uct of the private sector. They begin their piece by observing that “compa-
nies in almost every industry are focused on exploiting data for competitive
advantage” [29]. They go on to assert that beyond using algorithms to get re-
sults, data scientists need to have the ability to “view business problems from
a data perspective” [29]. Both these assertions fit into the authors’ view that
the primary goal of data science is to improve a company’s decision-making
process by informing relevant parties within the company using data as a
source for their claims, as opposed to intuition alone [29]. This is a highly
occupational interpretation of data science, and it is interesting to note that
this article was published quite recently, in 2013. It was also published
through Mary Ann Liebert Inc. in their Big Data journal, which claims
to be a peer-reviewed journal specific to developments in data science and
analytics according to the journal’s description on the publisher’s website.
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14 Methodology

A collection of papers from traditional mathematics and data science will
be collected and compared to illustrate similarities and differences in the
structure of their writing. A grammatical analysis will be conducted on the
abstract level. Key passages will be highlighted and examined in detail to
illustrate differences among the samples of writing to offer insights about
the rhetorical distinctions between them.

A grounding point for this research will be mathematical journal articles
from professional sources. These include the Journal of Applied Mathe-
matics, Statistics, and Informatics (JAMSI), Probability and Mathematical
Statistics, and Cornell’s arXiv journal archive on Statistical Theory. The
areas of focus in the mathematical realm of discussion will be on recent
(from the past five years) papers in statistical theory and probability. While
mathematics is a widely diverse field encompassing numerous professional
domains, for the sake of this study these fields of mathematics research will
be considered as sufficient, long-established professional areas within the
subject. Abstracts from two articles will be picked from the journals listed
above.

Comparative analysis will be conducted between the grammatical struc-
ture and rhetorical moves in the abstracts from articles in the mathematics
articles versus data science journal articles. There are two major types of
these second articles which will be encountered. The first types are data
science articles which pertain to a particular industry and are largely within
the confines of occupational rhetoric. Classical data science articles tend to
be published in journals pertaining to the field in question for which they
conducted research. The example used in the pilot study (see below) was
published in a business journal, for instance. The second types are articles of
a more academic style, where the article was published in a specific journal
pertaining to data science. These articles should be expected to share more
similarities in their language construction with the mathematical articles.
In this way, the evolution of data science out of a mathematical context into
an applied proto-profession and finally into its own independent field of pro-
fessional study can be identified and explored. To parallel the mathematical
journal sources, two data science journal articles will be chosen.

Along with a grammatical analysis, some data will be generated based
on two major points of interest: subject-verb pair proximity and subject
word choice. In the former case, an average will be computed for all sub-
jects and verbs in the abstract to show proximity as a measure of certain
characteristics of the writing, such as emphasis on brevity, a consequence of
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logical objectivity, lending time to descriptions, and so on. The basic for-
mula will be to count the number of words between a subject and its verb,
counting each word between an auxiliary verb pair and any words that split
up compound subjects or verbs. As an example, in the sentence below:

This process has good expansibility and adaptibility and
can meet the needs of big data quality assessment.

The scheme would count the five highlighted words to produce a prox-
imity score of 5, because the full phrase has two verbs which relate back to
the same subject, even though one of those two pairs has no gaps between
them (“This process has”).

Second, word choice for the subjects of each clause will be broken down
and compared between the journal articles. A more complete analysis would
use a textual analysis program to create a word frequency count of all words
in the journal article. Since the abstract is a limited framework and unlikely
to yield substantial results given the limited sample size of words (generally
less than 500 words at most), this will be considered only for subjects,
where even small amounts of repetition and consistency can reveal important
results.

15 Results

The following details the breakdown of analysis from each of the abstracts
considered. A brief overview of the topic of each paper is offered, as well
as the journal of publication and the general subject matter of the paper’s
thesis. Each abstract is then treated on its own and observed to determine
relevant grammatical and rhetorical moves which distinctly characterize the
professional environment in which they were made. These are then compared
across the two disciplines to highlight key differences and similarities. A
small sketch of the results is displayed through data visualization by counting
occurrences of certain recurring instances of certain grammar usage and
subject-verb proximity.

15.1 Statistical Theory Papers

Two papers were selected for an abstract analysis of topics relevant to the
professional mathematical fields from which data science emerged, in this
case statistics and probability. One paper was chosen from Mathemati-
cal Methods of Statistics, and the other from Probability and Mathematical
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Statistics. Both papers have appeared in other mathematical journals and
publication outlets as well.

15.1.1 Baxter’s Inequality

The first case we consider is a paper by [30], published in Mathematical
Methods of Statistics in April 2015 (with the original article dating to April
2014). This particular article by Meyer, et al. was chosen at random from
a selection of recent additions to the article through the Springer webpage.
The abstract appears in full below:

A central problem in time series analysis is prediction of a fu-
ture observation. The theory of optimal linear prediction has
been well understood since the seminal work of A. Kolmogorov
and N. Wiener during World War II. A simplifying assumption
is to assume that one-step-ahead prediction is carried out based
on observing the infinite past of the time series. In practice,
however, only a finite stretch of the recent past is observed. In
this context, Baxter’s inequality is a fundamental tool for under-
standing how the coefficients in the finite-past predictor relate
to those based on the infinite past. We prove a generalization
of Baxter’s inequality for triangular arrays of stationary random
variables under the condition that the spectral density functions
associated with the different rows converge. The motivating ex-
amples are statistical time series settings where the autoregres-
sive coefficients are re-estimated as new data are acquired, pro-
ducing new fitted processesand new predictors for each n. [30]

Unlike in the mathematical paper on algebraic geometry from the pilot
study, the authors of this paper took the time in their abstract to discuss
some background information regarding the topic. In fact, over half of the
abstract is dedicated to framing the problem and giving information about
it to the reader. Still, despite this being presented, the density of the subject
matter is only slightly alleviated for a reader who is not privy to the technical
terminology being used. For example, consider the sentences:

A central problem in time series analysis is prediction of a future
observation. The theory of optimal linear prediction has been
well understood since the seminal work of A. Kolmogorov and N. Wiener
during World War II. [30]
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In the abstract’s first two sentences, the main problem of the paper is
explicitly outlined and some history is offered in brief. However, an un-
derstanding of the terminology is still required. Note the immediate intro-
duction of terms like “time series analysis” and “optimal linear prediction,”
which are underlined in the passage above to distinguish them. The his-
torically relevant background requires recognition of the work of Norbert
Weiner and Andrey Komogorov, whose work on signal extraction and sta-
tistical filtering is relevant to this work [31]. Here, their work is deemed
“seminal” and not described in any further detail in the paper. It is then
left up to the reader to investigate.

The inherent brevity of an abstract needs to be taken into account, since
only the most high-level and relevant information can be discussed in such
a short passage. Compared to the pilot study’s algebraic geometry exam-
ple, these authors do a better job at giving readers of a varying knowledge
background some context, and it develops the problem in more detail, while
the pilot study’s example. The statements about the authors’ own work
and added value to the field are reserved for the very last sentence in fact.
Although the surrounding information needed to understand Baxter’s in-
equality are provided here, they are done so in a way with an assumption
about deep prerequisite knowledge in statistics, time series prediction, and
linear algebra. Observe for example this first portion of the introduction
from that same paper:

Baxter’s inequality (Baxter (1962), Baxter (1963)) provides a
fundamental tool for understanding the behavior of linear pre-
dictors based on a finite observed history. In particular, let
(Xt)t∈Z be a mean zero, weakly stationary time series. Under
reasonably general conditions (see, for example, Kreiss, Paparo-
ditis and Politis (2011), Pourahmadi (2001), Wiener and Masani
(1958)), such a process admits an AR(∞) representation [30]

Where the authors go on to immediately set up a summation notation
for the time series Xt in the final part of that paragraph. There is no time
wasted in getting to the mathematics. Any lost information on the reader’s
part is directed to several papers from foundational authors of the subject,
with two being more recent authors from 2001 and 2011.

In this example, the majority of the abstract is structured using to-
be verbs (mainly “is”) where in the descriptive background sections of the
abstract, the distance between subjects and verbs is much greater than in
the pilot study. Still, generally they are close in each clause. It is only when
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we get to the sections relevant to the authors’ own work that this proximity
is reduced and remains consistent. Using a similar encoding scheme where
subjects are bolded and verbs are italicized :

A central problem in time series analysis is prediction of a fu-
ture observation. The theory of optimal linear prediction has
been well understood since the seminal work of A. Kolmogorov
and N. Wiener during World War II. A simplifying assump-
tion is to assume that one-step-ahead prediction is carried
out based on observing the infinite past of the time series. In
practice, however, only a finite stretch of the recent past is ob-
served. In this context, Baxter’s inequality is a fundamental
tool for understanding how the coefficients in the finite-past
predictor relate to those based on the infinite past. We prove
a generalization of Baxter’s inequality for triangular arrays of
stationary random variables under the condition that the spec-
tral density functions associated with the different rows con-
verge. The motivating examples are statistical time series set-
tings where the autoregressive coefficients are re-estimated as
new data are acquired, producing new fitted processesand new
predictors for each n. [30]

Notice that while the first half of the abstract contains many pairings
which are not directly next to each other, it is mostly due to descriptive
mathematical language in prepositional phrases or through long adjective
phrases. Consider the following sentences, where the prepositional phrases
are identified by parenthesis:

The theory of optimal linear prediction has been well under-
stood... [30]

In this context, Baxter’s inequality is a fundamental tool for
understanding how the coefficients in the finite-past predictor
relate to those based on the infinite past. [30]

These are necessary prepositional phrases to describe which types of
“theories” and “coefficients” are being discussed by the authors. In the
limited cases where strong subject-verb agreement is broken, the implication
of logical objectivity and confident assertion is not so much replaced, but
rather supplemented, by a technically descriptive break that is still only
accessible to those within the professional space with the required knowledge
to make sense of the topics.
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15.1.2 Extremes of Chi-Square Processes

We now consider a paper by [32], published in Probability and Mathematical
Statistics in 2016 (originally from February 2015) and archived through
arXiv. In this piece, titled “Extremes of Chi-Square Processes with Trend,”
Liu and Ji investigate the chi-square process, which is a more theoretical
and mathematically involved topic related to the familiar chi-square test
which is often taught in elementary statistics courses [33]. The abstract is
as follows:

This paper studies the supremum of chi-square processes with
trend over a threshold-dependent-time horizon. Under the as-
sumptions that the chi-square process is generated from a cen-
tered self-similar Gaussian process and the trend function is
modeled by a polynomial function, we obtain the exact tail
asymptotics of the supremum of the chi-square process with
trend. These results are of interest in applications in engineering
insurance, queuing and statistics, etc. Some possible extensions
of our results are also discussed. [32]

Clearer and more succinct subject-verb agreement dominates in each
sentence. Unlike in the previous example, there is little attention given to
contextual background information on the subjects being described. What
is offered in terms of background information is described as a part of the
formulation of the problem leading into the results, not offered separately in
any historical or prerequisite context like in the “Baxter’s Inequality” piece.
The relevance of the results to various fields and potential applications are
alluded to, but these do not lend any help to a reader outside the professional
framework if they do not understand what precedes them.

We begin with a similar analysis as before, again having subjects in bold
and verbs in italics to show the basic structure of each sentence:

This paper studies the supremum of chi-square processes with
trend over a threshold-dependent-time horizon. Under the as-
sumptions that the chi-square process is generated from a cen-
tered self-similar Gaussian process and the trend function is
modeled by a polynomial function, we obtain the exact tail
asymptotics of the supremum of the chi-square process with
trend. These results are of interest in applications in engi-
neering insurance, queuing and statistics, etc. Some possible
extensions of our results are also discussed.
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Here the focus of subjects is largely upon the paper itself and the research
that went into it. For example, the use of “paper” and “results” overwhelms
any usage of terminology related to the field in question as the main subject
of any particular clause, the exception being:

Under the assumptions that the chi-square process is gener-
ated from a centered self-similar Gaussian process and the trend
function is modeled by a polynomial function... [32]

This portion is where the mathematical content of the paper is given
the most attention, segueing into the major result of the paper in the final
clause. The result is described in terms of the “we” that represents the
authors, who obtained it. This is set up as an assumption from which the
results flow out of, which is a basic structure of a proof. That is, to establish
a set of assumptions and from there construct a proof that produces a result.
In the case of this paper, the body of the article is the middle step here, the
proof itself, with the beginning and end summarized through the abstract
in this portion.

Interestingly, this abstract embodies an element of the pilot study’s
mathematical case example, in that in the above two sentences, a com-
plex noun phrase was not used as the subject. The difference being that in
this usage, the passive voice was used to avoid this, whereas the opposite
was true in the algebraic geometry example. The sentence could have been
written to begin like so:

Under the assumptions that a centered self-similar Gaus-
sian process generates the chi-square process and a polyno-
mial function models the trend function...

However, this variant buries the key point of interest in this description’s
first part: the chi-square process which is the main focus of the whole paper.
While the second instance relating to the trend function is ambiguous as far
as which variant is preferable, it is reasonable that the long noun phrase
should not be used in the first part of this section.

Generally, we observe continued trends that stem from the nature of the
mathematical framework in which the paper was written. A logical, ob-
jective flow of information at the high level emphasized by computational
language such as the use of verbs like “generated” and “modeled.” More
significantly, this abstract shows the emphasis on the importance of verita-
ble results. With the abstract’s subjects and the paper itself being highly
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featured, it demonstrates that the value of this paper lies in the results that
the two authors, with their specialized and exclusive knowledge, were able
to obtain. Applications and relevance to other fields is a secondary concern,
coming at the end of the passage.

15.2 Data Science Papers

Two additional papers were selected for an abstract analysis of topics rel-
evant to data science in the modern context. The first was chosen from
a business journal titled the Journal of Business Logistics. The other was
chosen from the Data Science Journal. The former is oriented toward a
non-data science field, but one which has embraced the study as a way to
enhance results across large swathes of the business sector. The latter is
a journal specifically for publishing data science results from studies done
about the subject in its own space.

15.2.1 Supply Chain Design and Management

The first data science article we consider is titled “Data Science, Predictive
Analytics, and Big Data: A Revolution That Will Transform Supply Chain
Design and Management” [34]. This piece was published in the Journal of
Business Logistics in 2013 by Waller and Fawcett and pertains to areas of
interest in the intersection of supply chain management and the new field
of data science. Its abstract is as follows:

We illuminate the myriad of opportunities for research where
supply chain management (SCM) intersects with data science,
predictive analytics, and big data, collectively referred to as
DPB. We show that these terms are not only becoming popu-
lar but are also relevant to supply chain research and education.
Data science requires both domain knowledge and a broad set
of quantitative skills, but there is a dearth of literature on the
topic and many questions. We call for research on skills that are
needed by SCM data scientists and discuss how such skills and
domain knowledge affect the effectiveness of an SCM data sci-
entist. Such knowledge is crucial to develop future supply chain
leaders. We propose definitions of data science and predictive
analytics as applied to SCM. We examine possible applications
of DPB in practice and provide examples of research questions
from these applications, as well as examples of research questions
employing DPB that stem from management theories. [34]
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An initial reading shows a clear preference for a particular subject: we.
If we treat the abstract as we have previously, coding subjects in bold and
verbs in italics:

We illuminate the myriad of opportunities for research where
supply chain management (SCM) intersects with data sci-
ence, predictive analytics, and big data, collectively referred to
as DPB. We show that these terms are not only becoming pop-
ular but are also relevant to supply chain research and education.
Data science requires both domain knowledge and a broad set
of quantitative skills, but there is a dearth of literature on the
topic and many questions. We call for research on skills that are
needed by SCM data scientists and discuss how such skills and
domain knowledge affect the effectiveness of an SCM data sci-
entist. Such knowledge is crucial to develop future supply chain
leaders. We propose definitions of data science and predictive
analytics as applied to SCM. We examine possible applications
of DPB in practice and provide examples of research questions
from these applications, as well as examples of research questions
employing DPB that stem from management theories. [34]

The “We verb” pairing is common throughout the whole abstract. This
parallels the style of the second mathematical example in this paper more
closely than the first, since in that paper the focus was heavily on the paper
itself and its authors. But it is much more abundant here. This seems to
suggest that the subject matter experts writing in this case have a claim to
knowledge that they can assert directly. While this proximity and strong
active voice is even stronger than in the mathematical examples, the over-
reliance on the actions of the researchers shows that the material itself does
not suffice to stand alone to convey the necessary meaning.

When mathematicians write about their subject matter, they do assert
a claim to their knowledge as researchers and mathematics scholars, but one
crucial component of mathematical and all professional rhetoric is that while
it takes a certain type of individual to acquire and expand the boundaries of
knowledge, the knowledge itself is presumed to be immutable, standalone,
and beyond any one individual’s contributions. In mathematics, Pythago-
ras’s Theorem is true, and Pythagoras discovered it in the Western world
and is therefore the origin of its name. One could argue that Pythagoras
had an esoteric level of knowledge that allowed him to draw that conclusion.
But especially in the context of ancient Greek mathematics, this would be
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rejected, because the fact that Pythagoras found was simply true by itself.
Such mathematical realities, which in our time are given names by their
discoverers, exist independently of those individuals. So in the case of this
data science article calling for investigation into predictive analysis and other
data science tools to be used in supply chain management, the authors are
seeking out such knowledge, but make no claim to know it in the same way
as a mathematician.

Notice the language that is used here as well. These authors “illumi-
nate,” rather than assert, facts about data science as it pertains to the
business industry in question. They are “calling” for and “examining” these
facts, in order that ways they may be useful in the occupational space of
supply chain management can be determined and applied. Unlike in the
mathematical examples, the word choice and language used is mostly non-
technical, with some exceptions such as the few data science terms (“pre-
dictive analysis” and “big data”), which are not nearly as complex, narrow,
or unknown to the public as terms in previous papers, such as “Gaussian
processes” or stationary random variables.” One could imagine almost any
audience being able to read and understand the basic idea of this paper.
This is the exact opposite case for most mathematical articles, applied or
theoretical. A small, technically-advanced readership is expected by most
researchers writing about areas like statistical theory or probability, let alone
even more abstract fields like complex analysis, group theory, or algebraic
geometry.

15.2.2 Data Quality and Quality Assessment

The second paper is a data science journal article titled “The Challenges
of Data Quality and Data Quality Assessment in the Big Data Era” by
Cai and Zhu [35]. This was published in the Data Science Journal in 2015,
which is from the more applied, industry results oriented articles data science
articles might also be published in. Data science is treated as an emerging
profession, or proto-profession, so there are different styles of writing which
are written with different rhetorical frameworks. In this example, we look
at an example where the writing is rhetorically closer to a professional piece
of writing. Let us look at the abstract from the first page:

High-quality data are the precondition for analyzing and using
big data and for guaranteeing the value of the data. Currently,
comprehensive analysis and research of quality standards and
quality assessment methods for big data are lacking. First, this

107



paper summarizes reviews of data quality research. Second, this
paper analyzes the data characteristics of the big data environ-
ment, presents quality challenges faced by big data, and formu-
lates a hierarchical data quality framework from the perspective
of data users. This framework consists of big data quality di-
mensions, quality characteristics, and quality indexes. Finally,
on the basis of this framework, this paper constructs a dynamic
assessment process for data quality. This process has good ex-
pansibility and adaptability and can meet the needs of big data
quality assessment. The research results enrich the theoretical
scope of big data and lay a solid foundation for the future by
establishing an assessment model and studying evaluation algo-
rithms. [35]

We begin by similarly deconstructing the sentence structure by identify-
ing subject-verb pairings and analyzing the rationale behind these choices,
as well as how the surrounding language and word choice figures in. Identi-
fying the subjects and verbs in this passage we find:

High-quality data are the precondition for analyzing and using
big data and for guaranteeing the value of the data. Currently,
comprehensive analysis and research of quality standards and
quality assessment methods for big data are lacking. First, this
paper summarizes reviews of data quality research. Second,
this paperanalyzes the data characteristics of the big data en-
vironment, presents quality challenges faced by big data, and
formulates a hierarchical data quality framework from the per-
spective of data users. This framework consists of big data
quality dimensions, quality characteristics, and quality indexes.
Finally, on the basis of this framework, this paper constructs a
dynamic assessment process for data quality. This process has
good expansibility and adaptability and can meet the needs of
big data quality assessment. The research results enrich the
theoretical scope of big data and lay a solid foundation for the
future by establishing an assessment model and studying evalu-
ation algorithms. [35]

Several differences are notable between this and the mathematical pas-
sages. First, there is a significant abundance of surrounding context in this
abstract. Before analyzing subject-verb pairings, it is important to note

108



that without even identifying them, the sentences written around them are
largely explanatory. Consider the following excerpts:

High-quality data are the precondition for analyzing and using
big data and for guaranteeing the value of the data. [35]

Here the subject-verb pair is in close proximity, but it is not used to segue
into a description of an action relevant to the research. Rather, it relates to
a description of what “high-quality” data is in terms of data value. That is,
this type of data is a precondition, a necessity, for analyzing big data in a
meaningful way. There is no such explanatory clause in any sentence in the
previous abstract for the mathematics example. It is evident that in this
example, while some knowledge is still necessarily assumed on the part of the
authors, there is a variety of information which is not assumed to be known
by an audience. This is characteristic of a more general audience where
the restrictions on readership are not as rigidly enforced in the rhetoric of
describing new knowledge. Consider another example of such a clause in a
sentence:

This framework consists of big data quality dimensions, quality
characteristics, and quality indexes. [35]

Here the “hierarchical data framework” mentioned in the sentence before
this example is defined in terms of what it “consists” of. Again we see a
case where a term is stated but then described in some brief detail to give
the reader an understanding of what is being discussed.

Going back to the subject-verb pairings and their proximity, we notice
that while there is a stronger amount of explanatory, supplementary writing,
most sentences follow the same type of agreement as before. Most sentences
exhibit strong subject-verb agreement in close proximity at the beginning
of sentences, such as “High-level data are” and “this paper analyzes.” The
one exception to this which is not caused by a conjunction is:

Currently, comprehensive analysis and research of quality stan-
dards and quality assessment methods for big data are lacking.
[35]

This is a passive phrase, but unlike the passive in the first example, this
one exists for a different reason. In the mathematics paper, the passive
was a result of the way that mathematical terminology is defined. That is,
formulas or definitions are “given” not necessarily by an actor who gives
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researchers a fact, but by the established existence of such a fact which can
be assumed to be true, and hence be “given” without demonstration. In this
case however, the passive frontloads the two subjects of the sentence: analy-
sis and research, particularly of quality standards and assessment methods.
This is the crux of the paper and what the aim of the research focuses on. So
to justify the major reason for this writing, a lack of analysis and research
in this area, it is vital to ensure that the focus of the sentence is on the
lacking elements: analysis and research. Quality standards and assessment
can suffice in a prepositional phrase, since the reader can infer from the title
of the paper that this is the essence of the research without being explicitly
told in this case with a subject-burying edit such as:

...quality standards and quality assessment methods for big data
are lacking. [35]

Similar to the statistical theory examples, emphasis is given to actions of
the research in some subject-verb pairings. “First, this paper summarizes,”
“Second, this paper analyzes,” “The research results enrich” are some exam-
ples. However, not only do these not make up a majority of the pairs in the
abstract, but even they are far weaker in their assertiveness and rigor than
in the mathematics example. Here the actions are summarizing, analyzing,
and enriching. Analyzing is the strongest, most active verb here in terms of
what the researchers themselves are doing. Compare this to computing or
applying, which are more substantial and active than the acts of summary of
existing material or enrichment which is not directly done by the researchers
to the abstract theoretical scope in consideration.

15.3 Data Visualization

The results of the analysis for subject-verb proximity and word frequency
are provided below. MA1 and MA2 denote the first and second mathematics
papers whose abstracts were considered, in order as they were presented in
the paper. DS1 and DS2 likewise follow from the first and second data sci-
ence abstract presented here. Note that while AVG pertains to the averages
for each table, TAVG is the average of the two averages for each domain,
mathematics and data science.
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Figure 27: Frequency counts and averages for the two mathematics abstracts.
AVG pertains to each individual abstract’s averages. TAVG refers to the average
of the two averages, so the total average.

Figure 28: Subject/verb word frequency counts for the two mathematics abstracts.
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Figure 29: Frequency counts and averages for the two data science abstracts.
TAVG refers to the average of the two averages, so the total average.

Figure 30: Subject/verb word frequency counts for the two data science abstracts.

The average proximity of subjects and verbs in the statistical theory
mathematics papers were lower than those in the data science ones. That is,
in mathematical papers, we would expect that generally there are stronger
subject-verb pairings. While in data science articles, there is more of a
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breakup that separates subjects from their verbs. In the examples described
in this paper, it appears that a verb, rather than a subject, is more likely to
get buried as a result of this. High-valued proximities tended to come from
subjects which came near the beginning of a sentence or clause, but whose
verbs were split up by prepositional phrases in between, or whose verbs were
multiple and listed or otherwise split up.

Interestingly, subjects in the first mathematics and first data science
abstracts both give a reader, without any added information, some concrete
ideas about what the paper is about. In contrast, the second of each type
uses more vague subjects which obscure the specific topics being discussed
by the authors. There is also not as clear a distinction between the two
fields in terms of how subjects vary and are used to convey meaning. Both
types show instances of relying on the author or the paper as the subject,
while both also sometimes rely on the subject matter speaking for itself. The
above analysis shows in more detail, beyond the numbers, how the nuances
of language explain some of this overlap.

To be verbs are extremely common in both works. Verbs such as “is”
and variants where it is paired with another verb as a helper (“is generated”
for instance) and related verbs made up a significant portion of all four
abstracts. The verbs in the mathematics papers tend to be more direct,
definitive, and logical (“converge,” “prove,” “obtain“) while those in the data
science articles vary between being indirect and tempered as well as direct
and echoing more of the professional language of mathematics (“illuminate”
and “examine” vs. “analyzes” and “constructs”). Again, the above analysis
offers more insight beyond the numbers by themselves.

Note also that the subjects of data science abstracts are more likely to
be concentrated on a single repeated subject, whereas there is a wider array
of subjects in mathematics abstracts. The converse is true for verbs. There
is more repetition of particular to be verbs in the mathematics abstracts,
while there is an evenly dispersed selection of verbs in the data science ones.
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Chapter 2: Data Science Design and Analysis
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16 Introduction

Continuing from the previous chapter on data science as a proto-profession,
this chapter concludes the Afterword with a look at the Major Qualify-
ing Project in terms of design and a rhetorical look at analysis and the
implications, biases, and expectations surrounding it. Finally, the chapter
concludes on thoughts concerning the relationship epistemologically between
data science and rhetoric, relative to the truth.

17 Background

We now examine the CDC Data Analytics MQP case study to highlight key
elements of both data science as a rising proto-profession in an academic
context, as well as to show how many of the rhetorical issues which were
raised in the previous chapter manifest in an actual process of data analysis.
This chapter will treat the project as an active instance of mathematicians
engaging in machine learning and data analysis while confronting and having
to wrestle with rhetorical junctures with regards to data pre-processing,
feature selection, programming, and decision-making. Additionally, it will
consider the stakeholders in question, primarily the CDC, and what their
intentions and expectations are, as well as their role in framing the project as
a whole. This framework includes elements such as the data made available
from the CDC, the assumed expectations about their desired outcomes, and
their input via our primary sponsor and other staff members throughout the
project.

18 Literature Review

18.1 Ambient Research for Data Science Studies

One of the key promises big data offers researchers in all fields is the ability
to make sense of immense datasets which can tell us extensive information
about broad and intersecting subjects of interest. This focus on the col-
lective and on using databases which cover a wide range of subjects and
timeframes can lead to problems, however. McNely describes these kinds of
“distributed databases” as having the most applicability for aggregate anal-
ysis which is “depersonalized, decontextualized, and pasted together” with
other databases [36]. This is not far from the truth about how current big
data analysis is conducted and what its major outcomes tend to be about.
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Consider for example that in the aggregate, a company like Amazon
might have a serious interest in knowing what a consumer network looks like
for electronic devices, such as laptops. Simple data analysis can reveal useful
but shallow statistics about purchasing from single dimensions. Looking at
data from a single fiscal year of operations can reveal, for example, the
average price a user paid for a laptop, which brand sold the most in that
time, or what percentage of users took advantage of Amazon Prime in their
decision-making. What becomes more interesting, especially for the crucial
feature of product recommendations, is to ask questions about other related
datasets and merge them. The necessary question to ask to develop such
a network map of consumer preferences and packaged purchases is to look
at other electronic devices and non-electronic items which users bundled
in their purchase. Using this information, Amazon can begin to develop
a probabilistic model to recommend users who, say, buy a laptop that a
certain accessory item (a wireless mouse, laptop bag, etc.) is “Frequently
Bought Together” with the item in question.

Even more useful for Amazon’s business operations still would be to ac-
cess information which is tailored to the user. Further intersecting datasets
might include an individual’s own electronic device purchase history or more
specifically any items identified as laptops or being related to them. This lays
the foundation for tailoring recommendations to specific users, who demon-
strate their preferences in this way which would otherwise be impossible to
deduce accurately based solely on large-scale, community-driven informa-
tion. Going beyond its own services and linking in data from other sites
would be even more useful. Consumers exhibit patterns and preferences off
the site as much as they do on it.

McNely is interested in developing models for communication practices
which address an earlier potential problem in this process, however [36].
While Amazon and other companies like it have a vested interest in getting
to the heart of the “situated, local, human users” McNely describes [36],
their first step in tackling this is to have a process of analysis which is
calibrated for this outcome. That is, the data scientists behind the scenes
have to take a different approach than simply abiding by the old adage,
which advises the analyst to “let the data speak for itself.” Doing so can
lead the analyst into some significant pitfalls, not only from an analysis point
of view, but also in terms of how those results are communicated.

Since information requires “specialized” knowledge to make sense of and
become useful for analysis and communication according to Drucker, as cited
in [36], the analyst’s approach depends heavily on not only the knowledge
one brings to the table, but also the assumptions and considerations one
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makes throughout the process. Questions to ask in this regard include: are
there inherent qualities of the data which need to be taken into account?
What assumptions about the individuals who comprise that dataset (or
produced its contents) are being made? Which results are thrown out and
of those kept, are they being construed to mean something differently than
what one might intuitively deduce? What is the agenda? What data is
available and which data is made available by the stakeholders?

18.2 The Signal and the Noise

Nate Silver’s 2012 book The Signal and the Noise offers an accessible look
at contemporary topics in data science and analysis [6]. Here we look at
some of the major points from the book which apply to the case study at
hand and were influential to the way the project unfolded.

18.2.1 Basic Principles

Silver is quick to caution the reader that data science is not an end-all be-all
solution to any significant problem, because the pitfalls of big data analysis
are still real and difficult to overcome. As we grow more accustomed to
trusting the data and believing that it speaks for itself, we become less
in tune to the instances where it fails. And it does fail often. Silver cites
examples, from instances as diverse as earthquake prediction and biomedical
research results [6].

One of the biggest areas where prediction is a useful tool is politics
and international events, in which these failures are no less prevalent. At
the end of the 20th century, political scientist Philip Tetlock’s research,
a testament to this reality, concluded that most experts in relevant areas
such as economics or geopolitics “had done barely any better than random
chance” and on top of that, had failed to meet the standard of even the most
basic statistical models for prediction in their fields [6]. It was only those
who adhered to certain traits and approaches who performed well. These
rules of thumb are treated as the basis for Silver’s own analytical approach.
That approach is, in summary:

1. Probabilistic thinking. Treating events in terms of likelihood in a range
rather than whether or not an outcome is simply reaching a certain
threshold. Silver uses an example of a plane having a 90% chance
of landing versus a 99.9999% chance, to illustrate how this type of
thinking is not the nave observation of a high-value prediction [6].
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2. Self-correcting, changing analysis. A static model will fail spectacu-
larly if it is attempting to model a volatile and changing reality. New
information demands new tweaks and strategies. Silver describes this
as a need to have “the best possible forecast todayregardless of what
you said last week” [6].

3. Consensus is the key. A prediction made by a single individual is open
to a host of biases and limited scope of consideration. Bringing in
different perspectives and aggregating the prediction is not inherently
superior, but does have benefits that an individual prediction simply
cannot achieve by itself [6].

These components are necessary but not sufficient. Good data analysis
requires more energy and consideration than what is offered above. But
those who do not treat the outcomes of their models probabilistically, correct
their models as new information becomes available, and consider the input
of other people with complementary knowledge risk their models being less
than sufficient for prediction.

18.2.2 Value of Qualitative Information

There are limited ways that one can deal with qualitative (categorical) data
from a mathematical and computer processing standpoint. For most existing
data processing algorithms, that type of data has to be transformed into
numerical data for a computer to make sense of it. However, overreliance on
this type of numerical data which is easy to process and predict from can
lead to inherent biases and bad outcomes.

For one thing, Silver notes that the possibility of this type of transfor-
mation into quantitative data is possible and useful [6] when it comes to
sports analysis in baseball as an example. Using all the information one
can get is better than reducing the scope of the analysis to quantitative
variables [6]. One may think that there is more of a risk for bias from a
preference for this type of information which might not seem immediately
useful since it cannot be manipulated in the same way as purely numerical
data. However, this leads to a bias comparable to that of individuals in
areas like sports analysis who might put too much stock in superficial player
traits (looks, height, charisma, and the general “aesthetics” of the player
as Silver describes them) rather than their measurable qualities [6]. The
counteracting biases are that a statistician in a similar position might only
trust quantifiable information and consider categorical data to be useless.
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It is the folly that Silver describes, to assume that “if something cannot be
easily quantified, it does not matter” [6].

It is important not to discount this information outright and to synthe-
size it with numerical data. Qualitative information can usually be trans-
formed through an encoding scheme into a range or binary (0 or 1) set of
values. Simple yes or no questions for example can easily be denoted 0 for
“No” or 1 for “Yes.” Furthermore, the data can be weighted in a certain
way where non-numerical indicators are attributed weighting scores (plus
or minus a particular value) based on their prevalence. This is a step away
from simply encoding them and turning them into numerical data, but it
preserves an analytic device which can then be figured into a model or equa-
tion and manipulated. Lastly, even information which cannot be quantified
or transformed at all still has value and can be treated separately from the
model as a way to tailor assumptions or interpret results. Aspects like eth-
ical issues, stakeholder desires, structural discrimination, personal feelings,
and the nature of experience cannot be quantified in the ways presented.
However, they should not simply be discounted. Rather, data scientists
should use them to think about the assumptions they are making and how
their model might be influenced by these more elusive factors.

18.2.3 The Problem of Overfitting

While not all data behaves this way, from a statistical standpoint, using
methods such as linear regression, one might be presented with the following
example from [6]:
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Figure 31: A non-specific example of data fitting, where the data points (green) are
the raw data and the model generates an underlying pattern (the parabola) to best-
fit the data points. Here quadratic regression is used to generate a parabolic model
that best fits the data points, using an equation of the form y1 = mx21 + nx1 + b.
Adapted from [6].

Figure 31 shows a relatively straightforward approach that is commonly
used in statistics. Given a set of data points, generate a curve that optimizes
the distance between itself and existing points. In this way, the curve (and
the function generated from it) can be used to make accurate predictions
about unknown values within a certain degree of error. The concept of
“overfitting” can be visualized in Figure 32 below, in which the idea of
generating a curve that gets as close to as many points as possible is replaced
with a goal to get as close to all points:
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Figure 32: An overfit model using one set of data points from the above example.
Note how instead of the underlying model generating a best-fit based on average
proximity (blue dotted-line), the overfit model (red) bounces around wildly from
point to point in an attempt to hit as many as possible. Adapted from [6].

For the purposes of modelling the existing data set, this overfit model
technically performs well. It accurately captures the majority of data points
with a high degree of accuracy. The problem comes when one wants to
predict for a new, unknown point on the x-axis where there does not already
exist a data point. Because this model is so tailored to the existing data and
since there are limited points of reference to begin with, it is unlikely that
this highly-specific model will have the flexibility to accurately predict a new
point either in the range of values between the maximum and minimum, or
especially outside that range.
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19 Project Application

19.1 Data-Driven Formulations vs. Qualitative Analysis

Above all else, the question that underlies our project is the following: what
can a student do during their undergraduate career at WPI to improve
their career outcomes? For the purposes of our project, we consider “career
outcomes” here to include graduate school (presumably, leading either to
stronger credentials for private sector work or to segue into a career in
academia), volunteer work, and military service. Not all of these imply a
traditional job in the private sector, but all are considered to be positive
outcomes from a standard four-year undergraduate experience.

What is undoubtedly a negative outcome from the Career Development
Center’s perspective is the approximately 9.3% of individuals surveyed who
do not fall into any of the successful outcomes categories above [7]. They
are unemployed, still searching for opportunities, or have unknown status.
The CDC is primarily invested in helping students get employed or find
financial opportunity after graduation, so outcomes including this are of
great concern.

A significant potential limitation for the CDC data analytics project
is that there is a lack of intersecting datasets, localized information, and
qualitative analysis. The basis of our major dataset is a combination of three
separate datasets provided by the CDC: 2015 self-reporting career outcomes
data, CDC kiosk usage, and internships (along with co-ops) during their
four yearlong undergraduate careers. Although these datasets were merged
based on common user keys to link between the subjects of interest from
the class of 2015 to identify their kiosk use frequency, this offers a narrow
scope of potential results. In short, they do not offer a complete picture of
the student and fail to cover a broad enough scope of student activity which
might lead to successful career outcomes.

One critical indicator of success which is missing altogether is a detailed
focus on academic success markers. Walk Ins are a highly significant predic-
tor of Full Time job. By saying that our model predicts full time employment
most accurately when using Walk In attendance as a predictor, the impli-
cation is that those who attend career fairs more often have a better chance
at being employed in a full time job after graduation. There are limitations
to the accuracy of this statement and just how powerful it is. One must
consider that the method used here treats a subset of the data first as a
training set (where the algorithm is told all the predictors and response val-
ues) and then another subset is treated as a testing set, where the predictors
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are known but the algorithm must essentially guess the response values.
The reader is encouraged to review the background literature in the

second Afterward chapter as well as Section 5.3.2 on the synthetic minor-
ity over-sampling algorithm (SMOTE) for more information and details on
how this functions mathematically and algorithmically. But in short, this
approach is, in a large sense, mimicking the existing data to produce results
which imply correlation. It is different than saying that some percent of
people who attend Walk In services a certain amount of times will get a full
time job.

19.2 Expectations of Outcome

It was clear that we had to be conscious how we framed our results with the
CDC given that innate desire to want results which are directly correlated
in this way. That is, to make sure it was understood what our model was
capable of doing and what it was not able to do with regards to charac-
terizing job opportunities and postgraduate outcomes in relation to CDC
usage, internships, and other basic student information such as major and
graduation date.

At one point, we presented early results to our CDC sponsor and other
people within the organization who had encountered our project for the
first time. They had a variety of reactions to it, but one individual’s was
noteworthy. She stated that she pictured, as her own imagining of the
project’s deliverable, a pamphlet or other form of advertising the CDC could
present to students with statistics about job outcomes on it. The idea was
to take the results from our project and directly use them to steer positive
outcomes by promoting good practices that would lead to a favourable career
path, graduate school, or some other positive result.

This way of thinking is counter to the reality of what our model is able
to tell the CDC about student outcomes, however. It is in line with Silver’s
caution to think in terms of probabilities, which behave differently than
basic, intuitive statistics [6]. Suppose that we take one example from our
model, which says that non-springtime graduation (fall or winter) and in-
ternational status (international) were predictive of the unknown/not paid
response, following the decision pathway from the internship data tree (pic-
tured above).

But it is not accurate at all to say that this means that international
students who graduate in the fall or winter are likely by design to end up
without full time jobs or in graduate school. All that this means is that the
model predicts this outcome given these conditions most of the time, based
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on the data that it was trained on and tested with. The fact that enough
students fit this description and have this outcome in a way that makes it
predictable using our method should suggest something to the CDC, but it
cannot be interpreted as clearly as a direct correlation with postgraduate
prospects. In other words, we cannot use this model to offer a result that
claims “doing x and y will make you n% more likely to get a job after
college,” because we are not evaluating that likelihood.

Figure 33: A decision pathway from the decision tree generated from the Internship
dataset. Here X[1] refers to degree date, X[0] to international status, and X[3] to
number of CDC workshops a student attended. A “True” value for X[1] <= 1.5
means that the student graduated in the fall or winter. A “False” value for X[0]
<= 0.5 means that the student is an international student. And the values for X[3]
are a split decision between whether a student went to 3 or less workshops or 4 or
more during their academic career.

19.3 Heuristic of Invention

During the project, our team had to make several decisions about the data
as it was given to us to transform it into a workable format. This included
designing heuristic models based on our own knowledge and assumptions.
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19.3.1 Determining Relevant Variables

One of the first discussions we had when reviewing the data was which
categories to include, modify, or ignore in our analysis. Some of this was pre-
determined by the lack of consistency or unusable skewedness of the initial
data from a processing standpoint. For instance, using city data was not
feasible because there were too many individual cities and when grouped by
another category (say state or country) they still remained skewed (largely
in Massachusetts or the US, respectively). This raises a question of whether
this information is then inherently not useful or if it is simply defined within
the context of the dataset in question. It seems that it is almost always the
latter case, that is, certain types of data are more or less useful based on
the total consideration about the dataset in which they exist.

However, one point of consideration that put this theory into question
was our consideration about the categories of gender and race. One of
the main reasons we considered taking gender out of our model initially
was because it was heavily skewed toward males (70.6%) versus females
(29.4%). Before we implemented the over-sampling solution using SMOTE
and Borderline-SMOTE, we had limited options for dealing with this im-
balanced data. A simple, brute force remedy would have involved taking
the imbalanced predictor out of the model all together. We discussed the
relevance of gender in this case, if it would even impact outcomes.

There was some disagreement about the extent to which gender would
be a useful measure of impact for the CDC, largely because it is something
which the CDC could do little to influence if it were a strong predictor of
outcomes. In essence, it did not appear to be what the CDC was “looking
for”in the sense that it was not a modifiable variable within the CDC’s scope
of programs and events. It evolved from a conversation about reducing noise
and making the model work into a discussion about the role of gender within
this situation.

To say that Career Fairs are significant predictors and that lower use
tends to predict the Not Seeking/Serving response would suggest that the
CDC has a justification for making Career Fairs more accessible, more publi-
cized, or further investigating what makes them important for job outcomes.
But to say that gender is relevant and predictive of outcomes such that be-
ing male tends to predict Full Time Job more than being female would be of
little value to the CDC, and might be better taken into account at a larger,
administrative level by the university.

A similar discussion was had about race. Initially this was because our
original dataset did not have comprehensive information about individuals’
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race. But the internship and co-ops dataset we received did, and intersect-
ing them to roll racial data into the model was feasible. Data on race was
far from uniformly distributed, but was still less imbalanced than gender.
Nonetheless, this was another category where we considered not including
it in the model. The line of reasoning was more in parallel to the relevancy
question on gender. The question we asked ourselves was whether or not
racial categories would make sense as a predictor that the CDC could influ-
ence. A slightly more nuanced conversation seemed to imply that there was
some uncertainty about what it would mean to include race both in terms
of maintaining anonymity and suggesting race-based correlations.

19.3.2 Creating Major Predictor Classes

Because WPI offers over 50 different majors and our group wanted to capture
the full spread of major disciplines in our model, we had to group them based
on similarities. This includes both primary majors and secondary (double)
majors. The following are the predictor categories that we created:

1. Mathematics

2. Aerospace Engineering

3. Civil Engineering

4. Science

5. Biomedical Engineering

6. Chemical Engineering

7. Robotics Engineering

8. Computer Science

9. Liberal Arts

10. Electrical And Computer Engineering

11. Materials

12. Business Engineering

13. Mechanical Engineering

14. Interactive Media and Game Development
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15. Fire Protection Engineering

16. Business

Of these categories, eight only contained a single major. They are bolded
in the list above. The rest included multiple majors combined under a single
category identifier. The rationale and some explanation of each’s limitations
follow.

Mathematics included Actuarial Math, Applied Math, Applied Statis-
tics, Financial Math, and Mathematical Sciences. This category was de-
signed to include all undergraduate and graduate-level mathematics ma-
jors. Although there is a large distinction between applied mathematics
and theoretical fields, all of the above majors are mathematically rigorous
and have significant overlap. For instance, the program track for Actuarial
Mathematics and Mathematical Sciences are virtually identical apart from
some additional requirements specific to actuarial studies and theoretical
mathematics specific to each major, respectively.

Civil Engineering contained majors within the same department of Civil
& Environmental Engineering at WPI. These were Architectural Engineer-
ing, Civil Engineering, Construction Project Management, Environmental
and Sustainability Studies, and Environmental Engineering. The university
essentially defines these disciplines as related by being under the purview of
the same department, so there was little contention grouping them together
this way.

Science included the general science majors of Bioinformatics and Com-
putational Biology, Biology and Biotechnology, Chemistry, Biochemistry,
Physics, Bioscience Administration, and Engineering Physics. The ratio-
nale for this category was to consider physics, chemistry, and biology to be
“general sciences,”distinct from applied engineering disciplines. One signif-
icant drawback of this is that while the three are related insofar as they
overlap in practice (the foundation of chemistry is physics, and many bio-
logical processes are inherently chemical), they are distinct fields with more
nuance than just being general science. In terms of content, experiment
design, and applications, physics and biology are vastly different.

Computer Science grouped together Computer Science, Information Tech-
nology, and Management Information Systems. Generally, Management In-
formation Systems (MIS) is classified within the school of Business. How-
ever, the major does include a strong focus on computer science and technical
analysis.

Liberal Arts encompassed one of the largest groups of majors, including
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Humanities and Arts, Professional Writing, Economic Science, Psychologi-
cal Science, Society Technology and Policy, International Studies, Masters
for Physics Educators, Master of Mathematics for Educators, and Learning
Sciences and Technologies. This category combines major groups from the
Humanities and Arts department as well as the Social Sciences department.
There is reason to question at what point a category such as this becomes
too weighted down with different sub-categories when one considers the pres-
ence of psychological sciences, professional writing, and educational majors
in one group.

The Materials category was based on Materials Science majors, the two
majors being Materials Process Engineering and Materials Science Engi-
neering. Both of these have a strong relationship in terms of scope.

Business Engineering encompassed majors related to engineering in busi-
ness, such as Industrial, Management, and Manufacturing Engineering, as
well as Manufacturing Management. These majors all share strong relevance
and are consistently grouped together within the school of business as WPI.

Business is distinct from the above category as it does not explicitly deal
with business in an engineering setting. These disciplines included MBAs;
Marketing and Technological Innovation; Management; and Operation, De-
sign and Leadership. As above, these are well-grouped and consistent with
WPI’s own standards for discerning areas within its business department.

19.3.3 Re-Classifying Military Service

Toward the end of the project, we found that one reason that our Borderline-
SMOTE algorithm was taking so long to process and why our results were
not quite hitting a high threshold of accuracy was because of a categorical
dilemma. Our original “Not Seeking/Serving” class, which covered those
students who were serving in the military or neither seeking neither employ-
ment nor graduate school, was too small. The proposition was to create a
category “Unknown/Not Paid” to encompass students who did not have a
job, volunteer, or did not provide any additional information for primary or
secondary status.

There were, however, still fourteen students serving in the military. The
team concluded that because ROTC students sign a five-year contract to
serve in the military after graduation, that their pathway did not make
sense to include in our model. The rationale was that our model is designed
to predict outcomes with a high accuracy from a selection of predictors that
could be used to formulate a profile of successful and unsuccessful students,
relative to their postgraduate outcomes. But in this sense, students serving
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in the military in this five year period would have their outcomes predeter-
mined by the nature of their declaration at the beginning of their academic
careers. So we removed them entirely from the model. This decision re-
sulted in our code running faster and our accuracy increasing significantly,
but there remains the concern that the CDC still has an interest in work-
ing with ROTC-enrolled students, and that there might be as problematic
an implication to removing them from the model, as there was for race or
gender when those facets were considered as well.

20 Rhetoric and Data Science

There is a strong intersection between data science processes and rhetoric
to examine. To conclude this discussion, we will consider this relationship
in terms of the epistemological questions about machine learning and data
science as tools for discovering and explaining truth.

20.1 Data Science, Rhetoric, and the Truth

Although a unified view of the use and application of rhetoric is difficult
to pin down, scholars and authors have viewed one of its functions as be-
ing means of conveying truth. On the matter of the artful’ use of rhetoric
for speechmaking in his work Phaedrus, Plato speaks through an anecdotal
encounter involving his mentor Socrates to outline what comprises such art-
ful rhetoric. The first of these is to “know the truth concerning everything
you are speaking or writing about” [37]. This distinction was historically
as a facet of Aristotelian theories of rhetoric made in ancient times be-
tween rhetoricians and so-called sophists, whose intention for using rhetor-
ical methods was not for persuading audiences of the truth but for other,
non-truthful purposes [38]. Importantly, rhetoric does not under these def-
initions serve to discover truth in and of itself. Rather, it is a method of
discovering ways to express truth which is derived from some other means
[38].

The goal of truth underlies the general fields of mathematics and the
professional aspects of data science as well. Recall that one characteristic
of professional spaces are that their constituents lay claim to knowledge
which is “esoteric and complex” [24]. This knowledge would be considered
the truth in the context of being valuable, factual information which exists
independently of the motivations or biases of its discoverers and interpreters.
A mathematician in the purest sense would value the truth, in this instance,
of a proof which demonstrates the existence of a robust way to simplify
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solving certain equations. The entire purpose of mathematics is to come to
these types of conclusions whose applicability is intimately tied to a discovery
which is true.

Although the professional aspects of data science in a rhetorical sense
are still not clearly defined with how new the practice is, the element of
valuing truth seems to be an inseparable part of data science, especially in
an academic setting. This is captured well in the common motif that the
data “speaks for itself” [27]. On some level, it could be argued that through
machine learning methods, a data scientist does not do much to create novel
truths but rather interpret truths which are self-evident in the data that
is being analyzed. The formulation and execution of algorithms based on
certain assumptions and classifications of the data in question, under this
interpretation, serve as means of discovering this truth and interpreting it
to be conveyed to a particular audience. Here there is a strong link to the
underlying goals and applications of rhetoric. Neither necessarily makes
any claim to actively creating truth, but both deal directly with means of
discovering, interpreting, and conveying it.

Another point of comparison between the two fields is found in their lim-
itations regarding their pursuit and interpretations of the truth. Both are
subject to biases from human actors and stakeholders with motives which
might not always align with or benefit from the truth. A rhetorician, though
in this sense considered a sophist, might have personal convictions or sub-
jective experiences in conflict with a higher idea of truth. This individual
might compromise a rhetorical presentation of the truth which would cer-
tainly be influenced by their worldview if he or she is not cautious about
their relation to the truth being discussed. The same is true of a data scien-
tist whose expectations about the outcomes of analysis or who is beholden
to a stakeholder with a certain set of assumptions and expectations.

The data may speak for itself in theory, but in practice humans always
do the talking, both at the beginning and the end of the process. Rarely is a
dataset so clean, so well-classified, and so self-evident that even sophisticated
methods reveal clear-cut truths without human intervention or assumptions
about aspects of the data, especially when it is driven by human activity
(for example, when each data point represents a student). All of these
interventions put one at risk to frame analysis in such a way that the results
speak to their expectations rather than an independent reality.

During our project, we were seeking what would be considered the truth
about what elements of student life are most accurately predictive of post-
graduate outcomes. Although we were actively designing a model which
would be able to function without our direct input, say for future projects
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of this type, we had to constantly make assumptions and adjustments which
introduced our own outlooks and biases into the equation, as outlined in the
previous section. Some of those interventions were justified in part based on
the relationship of particular predictors’ relevance and expected outcomes
with regards to our sponsor, the CDC. There is an inescapable balance which
must be struck between painting a full and truthful picture and creating a
model which can be implemented to produce useful and interpretable in-
formation. Too much attention to the former can lead to an overfit and
functionally useless model which too finely categorizes classes of individu-
als to the point where a wholly individualized model would not be able to
predict generalizable results at all and be purely overfit. However, over-
reliance on a model which produces a narrow set of results tailored to a
stakeholder’s immediate and express needs can obfuscate realities that may
be hard to confront but still important.

For instance, in deciding to not include racial breakdowns into our model,
we justified the decision partially as an effort to preserve anonymity, but also
because we did not believe it would be useful for the CDC. But there is an
underlying assumption here that, while positive, might bury the lead on
a major aspect of success. That is, we essentially assumed race did not
matter in this context. It is not easy to grapple with the possibility that
one’s race might be predictive of their success or failure, but if this is true,
that information could be a powerful tool for challenging and resolving racial
biases in the university system. It might be beyond the CDC’s direct control,
but it might also be of great importance in relation to their program success
if racial factors are in play.

The ‘colorblind’ approach might have some benefits, but it enters into
a conversation about preconceived notions surrounding the complex role of
social factors like race and gender in situations where the assumptions about
their relevance appear to stem from an idea of fairness and a notion of equal
opportunity, but may in fact be ignoring real and persisting institutional
biases against such groups. Of extreme importance is the distinction be-
tween considering factors like race and gender as bindingly deterministic
through a supervised learning model and further investigating the potential
reasons they would influence outcomes. One must ask the question why
such factors would be predictive of particular outcomes and be willing to
go beyond a cause-and-effect relationship to investigate institutional hurdles
uniquely faced by certain groups. Such results, while far from congenial, are
of great importance toward making a fairer, better integrated, and more
beneficial university experience that maximizes outcomes for students of all
backgrounds.
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21 Limitations and Future Work

This study was subject to a number of limitations which could have impacted
results and may be adjusted in future, replicated attempts to produce out-
comes with increased quality. Mainly, the time constraints, scope of the
works selected, and the lack of attention to the functional activity within
academic and career spaces all contributed to an incomplete picture which
could be enhanced through further adjustments.

A longer term study could facilitate a wider discussion related to a wider
range of papers, as well as an inquiry into how certain differences show up
between professional domains like statistical theory and data science. The
review was limited to four selections of journal entries from the past five
years as of 2016, two from statistical and probabilistic theory fields within
mathematics and two from data science articles, related to and explicitly
for the field. The more of each type of article that could be sampled, the
more information could be gathered and the more accurate the data could
be generated. The conclusions this paper draws are contingent upon the
sample size that was surveyed from the existing literature. It remains to be
shown if these can be scaled with an increased selection of papers. Further-
more, it would be of great interest to investigate beyond the abstract level.
Selected passages from the other components of these papers (introduction,
methodology, discussion) could raise interesting questions. For example, do
certain sections share more similarities across the fields? Are some much
more distinct? How are they organized, is it the same or different?

The actual workings of data science as an occupation and as an aca-
demic discipline remain to be outlined in more detail. Lingering questions
to consider here include the following: How is statistics taught differently
than data science? What do the theoretical approaches to both look like in
an academic context? How much more or less important is theory versus ap-
plicability in both cases in occupational settings? How certain are claims to
knowledge, and what is done to assert them? Who dominates these spaces
and how are they organized, if at all? How inclusive or exclusive are the
environments and what is done to allow people in or keep people out who
have a more novice knowledge base? All of these are relevant questions that
would need to be answered to fully determine the professional context of
data science and its related fields.
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22 Conclusion

It remains undetermined exactly at what stage in professional data science
writing is relative to more traditional and professionally characterized math-
ematical works. From the results presented above, what is clear is that data
science is still emerging out of an interdisciplinary origin that continues to
divide data science writing between goals-oriented supplements pre-existing
industries and a self-sufficient force for knowledge that acts independently
of other fields or stakeholders.

One way this conflict arises in the differences of writing are demonstrated
by the ways in which confident assertions and definitive claims to knowledge
are made in mathematical papers versus in data science articles, where au-
thors, even in data science, are more likely to temper what they are saying
and not use technical terminology without sufficient reason. This arises
in the writing, through the ways that subjects and verbs are chosen and
paired in proximity. Generally, stronger pairings in closer proximity with
more active verb choices lend to stronger assertions and more rigid claims.
The longer time taken to get from a subject to its verb(s) in these articles
tended to be the result of an author lending more explanation and listing out
concepts. In the case of data science abstracts, the larger gaps were not at-
tributed to more technical terminology, but a need for more supplementary
content for the reader.

That is not to say that there is not jargon and advanced mathematical
concepts within data science findings, investigations, and research. However,
even when they are relevant to the subject in question, they are seldom
frontloaded in the abstract by data science authors. Mathematicians appear
more confident in including them at the high level. Although this research
did not dive deeply into the actual content of the papers beyond the abstract,
the example from the Baxter’s inequality paper shows a common theme that
mathematics papers tend to have introductions which resemble the starts of
proofs, more than a general overview of the topic leading into need-to-know
concepts.

This is in large part because of the assumptions authors in their respec-
tive fields make about the audiences to whom they are writing. There is
an assumed knowledge base for the audience in statistical theory journal
articles, so information overload of mathematical lexicon is common. Even
when information is being explained for the reader in an historical or math-
ematical sense, it still requires significant and narrow knowledge from an
audience which the authors have to assume are at least interested, if not
a part of, their own fields. This is why it is much more difficult to get a
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general sense of what an abstract for a mathematical paper is summarizing
and what its relevance is, versus the data science articles where a general
audience can quite easily deduce meaning. Even if a reader is not aware
of what supply chain management is, or knows the mathematical ways to
measure data quality, one could likely make sense out of what the two data
science articles about these topics are saying. In contrast, it takes a signifi-
cant amount of work for even an educated mathematician without as much
experience in the field to understand all the parts that go into Baxter’s
inequality or chi-square processes.

Traditional mathematicians are still comfortably making definitive claims
and expanding the realm of esoteric knowledge they specialize in to a spe-
cific audience on the same plane as they are. Data scientists meanwhile
are still staking out their territory and while they are differentiating from
their parent fields, they are still largely acting in tandem or even in sup-
port of other industries and stakeholders who use their results for their own
purposes. Even though data scientists use rigorous mathematics and com-
puter science concepts to generate their results (statistical analysis, machine
learning, significance testing, etc.) they are still in a stage where they are
advancing knowledge for its own sake to improve their data science methods,
while at the same time largely relying on or serving other interests to do so.

The proto-professional nature of data science does not mitigate its rela-
tionship to rhetoric’s exercise in discovering and conveying persuasive infor-
mation about the truth to an audience. However, it does potentially exac-
erbate limitations and roadblocks to successfully doing this. Such bulwarks
range from the inevitable biases and complications of human involvement,
to the limiting factors of necessary assumptions and classifications to avoid
overfitting. By including deeply thought out and well-designed qualitative
measures and confronting the implications of human-led design, the value
of a model can be enhanced and humanized to speak beyond what the data
is saying by itself.
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23 Appendix A

Figure 34: The entire tree made using the top predictors from Borderline-SMOTE
from the Class of 2015 dataset 139



24 Appendix B

Figure 35: The entire tree made using the top predictors from Borderline-SMOTE
from the Internship dataset
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25 Appendix C

Figure 36: The entire tree made using the top predictors from Borderline-SMOTE
from the CDC Usage dataset
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26 Appendix D

26.1 XSEDE Supercomputer

Our project required computing large amounts of data which exceeded the
processing power of any local device any member of our group had immediate
access to. To resolve this, we took advantage of a cloud-based supercomputer
which allowed us to greatly reduce program runtime to process our data on
a more timely basis for regular analysis and to test code updates more
periodically.

26.2 XSEDE and Jetstream Overview

Since our largest active dataset has dimensions 39 x 1676, it is comparatively
small in the world of data processing. However, it still proved to be tax-
ing with how many resources were required for computations. To decrease
downtime, we began using a supercomputer from the Extreme Science and
Engineering Discovery Environment (XSEDE) [39]. Led by the National
Center for Supercomputing Applications (NCSA) at the University of Illi-
nois, the organization bridge gaps in accessing state-of-the-art computing
resources and offers researchers quality support for project collaboration
and completion [39].

The particular cloud environment we used for this project was called Jet-
stream, which is tailored toward smaller scale, on-demand processing from
smaller research teams such as our own [40] [39]. Our team was allocated
computing time on the Jetstream environment located at the Texas Ad-
vanced Computing Center (TACC). Jetstream uses the specific application
called Atmosphere which allows the user to launch their desired template of
the virtual computer from a list. These templates are referred to as images
[40] [39].

26.3 Working with Jetstream

At the beginning of this project, we began by launching the image called
Ubuntu 16.04 LTS. We quickly ran into issues with this image getting stuck
in the networking phase of the launch. After submitting a ticket, we received
a response from XSEDE Support who explained that since the Ubuntu 16.04
LTS image was not one of Jetstream’s “featured images, they could not
guarantee it would properly work [39]. After careful contemplation, the
XSEDE support staff, along with his colleagues, determined that this bug
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was something that is inherent using Ubuntu 16.04 LTS on the Jetstream
TACC cloud[39].

After this minor setback, we started running our research on the image
called Ubuntu 14.04.3 Development GUI, a Linux-based environment. In
order to get data from our Windows laptops into the Linux environment of
Jetstream, we used the following tools:

1. PuTTYgen allowed us to create both public and private SSH keys
in order for Jetstream to recognize our specific user login.

2. PuTTY allowed us to SSH into the launched virtual machine.

3. Bash on Ubuntu on Windows allowed Linux commands to be executed
efficiently on the Windows machines.

4. Rsync a Linux command to copy files from the Windows machine to
the launched virtual machine.

With the ability to use the supercomputer to process our data, we were
fully-equipped to proceed with our analysis.
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