
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2010

Open Source Natural Language Processing
Kara Bernadette Greenfield
Worcester Polytechnic Institute

Sarah Elizabeth Judd
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Greenfield, K. B., & Judd, S. E. (2010). Open Source Natural Language Processing. Retrieved from https://digitalcommons.wpi.edu/
mqp-all/1490

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/1490?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/1490?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1490&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

0

PROJECT NUMER: CS-GXS-1001

Open Source Natural
Language Processing

A Major Qualifying Project Report submitted to the
Faculty of the

Worcester Polytechnic Institute

in partial fulfillment of the requirements
for the Degree of Bachelor of Science by

Kara Greenfield

Sarah Judd

4/29/2010

Professor Gábor N. Sarkozy, Major Advisor

Professor Stanley M. Selkow, Co-Advisor

1

Abstract

Our MQP aimed to introduce finite state machine based techniques for natural language processing

into Hunspell, the world’s premiere Open Source spell checker used in several prominent projects

such as Firefox and Open Office. We created compact machine-readable finite state transducer

representations of 26 of the most commonly used languages on Wikipedia. We then created an

automata based spell checker. In addition, we implemented an transducer based stemmer, which

will be used in the future of transducer based morphological analysis.

2

Acknowledgements

We would like to thank the following people for helping us in varying ways throughout the project:

Professor Sárkózy Gábor - main Advisor

Professor Stanley Selkow - co-Advisor

Kornai András - SZTAKI liaison

Varga Dániel - MOKK liaison

Zsibrita János - original code developer

Richard Farkas - original code developer

Recski Gábor - SZTAKI Colleague

Zseder Attila - SZTAKI Colleague

Erdélyi Miklós – SZTAKI Colleague

Szabó Adrienne - SZTAKI Colleague

Daniel Bjorge - C debugging

Worcester Polytechnic Institute

3

Table of Contents

Abstract ... 1

Acknowledgements ... 2

Introduction .. 10

Chapter 1: Background ... 12

Affix and Dictionary Files .. 12

Dictionary File ... 12

Affix File ... 13

Finite State Automata ... 14

Deterministic Finite State Automata .. 14

Nondeterministic Finite State Automata .. 16

Finite State Transducers ... 17

Advantages of Lexical Transducers Over Affix and Dictionary Files ... 18

Residual Finite State Automata .. 19

Advantages of RFSAs for this Project .. 20

Chapter 2: Spell Checking ... 22

History of Hunspell .. 22

TYPO .. 22

4

Spell ... 22

Ispell .. 25

International Ispell .. 25

MySpell.. 25

Hunspell .. 25

History of Finite State Transducers in Spell Checking ... 27

Rewrite Rules .. 27

Two Level Morphology.. 29

Ordered Rules ... 30

Our Contribution to Open Source Spell Checking ... 30

Overall Spell Checking Process.. 30

Java System Architecture .. 32

Creation of a Finite State Automata: .. 32

The following sections describe the main projects we use in this process 35

factor ... 35

jmorph ... 36

transducer ... 36

RFSAs ... 36

Constructing RFSAs ... 36

5

RFSA Format .. 37

RFSA Format without Suffixes ... 38

RFSA Format with Suffixes .. 38

RFSA File Format ... 41

RFSA Results .. 42

Compiler .. 43

Compression Scheme .. 43

Development of the Compiler .. 50

Compression Results ... 52

C Spell Checker .. 55

Spell Checking Process .. 56

Example of Spell Checking .. 58

Spell Checking Results ... 59

Chapter 3: Stemming .. 66

History of Stemming ... 67

The Porter Stemmer.. 67

Lexicon – Based Stemmers ... 68

Finite State Transducers in Stemming .. 69

Our Contribution to Open Source Stemming ... 69

6

Overall Stemming Process .. 70

Extension of the Compiler to Support Stemming ... 70

In-Memory Data Structures .. 70

Compression of Stem List.. 75

Additions to the FST Compression Format ... 77

C Stemmer Program .. 78

Determining the Output String ... 78

Chapter 4: Future Research .. 81

References .. 82

Appendices .. 84

Appendix A. Hunfst_1_0 File Format .. 84

Appendix B. Hunfst_1_1 File Format .. 86

Appendix C. Compiler Finite State Automata ... 89

Appendix D. Language Encoding Schemes.. 97

Appendix E. Affix File Format .. 98

Standard: ... 98

7

Table of Figures

Figure 1 FSA Example – Single Accept State ... 14

Figure 2 FSA Example - Multiple Accept States .. 15

Figure 3 NFSA Example ... 16

Figure 4 FST Example .. 18

Figure 5 FST Graphical Example .. 18

Figure 6 RFSA Example .. 20

Figure 7 RFSA Graphical Example ... 20

Figure 8 Spell Checking Process .. 31

Figure 9 RFSA Generation ... 34

Figure 10 RFSA - No Suffixes ... 38

Figure 11 Single Suffix Group .. 39

Figure 12 Multiple Suffix Groups .. 40

Figure 13 RFSA Format .. 41

Figure 14 Example RFSA .. 41

Figure 15 Example Language .. 41

Figure 16 Average Total Number of Arcs .. 43

Figure 17 Average Number of States .. 43

file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218742
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218743
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218744
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218745
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218746
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218747
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218748
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218749
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218750
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218751
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218752
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218753
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218754
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218755
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218756
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218757
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218758

8

Figure 18 Mean Number of Arcs per State ... 43

Figure 19 Compressed FSA Example ... 47

Figure 20 Compiler Rules .. 52

Figure 21 Compressed FSA File Sizes .. 54

Figure 22 RFSA Compression Times .. 55

Figure 23 Spell Checking ... 56

Figure 24 Spell Checking Pseudocode ... 57

Figure 25 In-Memory FSA Example ... 58

Figure 26 Overall Stemming Process .. 70

Figure 27 Output Strings - Naive Solution... 71

Figure 28 Output Strings - Trie Based Solution ... 73

Figure 29 Output Strings - Hybrid Solution ... 74

Figure 30 Compressed Stems .. 76

Figure 31 Compressed Stems with Single Letter Stems .. 77

Figure 32 Stemming .. 78

Figure 33 FST with Pointers to Meaningful Output Strings .. 79

Figure 34 FST with Output String Pointers for All Arcs ... 80

Figure 35 Indexed Stem List .. 80

file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218759
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218760
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218761
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218762
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218763
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218764
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218765
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218766
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218767
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218768
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218769
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218770
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218771
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218772
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218773
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218774
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218775
file:///C:/Users/Kara%20Greenfield/Documents/kara/Kara-School/WPI/Junior/MQP/paper/4_27_2010%20final.docx%23_Toc260218776

9

 Table of Tables

Table 1 Hunfst Format Variations ... 46

Table 2 Hunfst Format Variation Constraints ... 46

Table 3 Most Common Rejected Words in the Google Corpus .. 62

Table 4 Most Common Rejected Words in the English Wikipedia Corpus ... 66

10

Introduction

Spelling is an integral component of the understanding of written text by speakers of the language it

is written in. Unfortunately, human beings are prone to spelling errors, resulting from both typing

incorrectly and a lack of knowledge of the proper spelling. Several helpful computer programs have

been developed in order to help mitigate this issue, with varying degrees of success.

Hunspell is the most popular Open Source spelling aid. It spell checks by referencing one file which

contains properly spelled root words and another file which contains affixes (word elements which

can be appended to a root word in order to alternate it’s syntactic meaning, i.e. adding “ed” to the

end of a verb in English in order to make the verb past tense). This method has a long history and is

well developed. As such, it adequately meets the needs of morphologically simple languages such as

English. However, for more morphologically complex languages, such as Hungarian, this method is

insufficient. A morphologically complex language is one in which internal word structure can be very

complicated. In Hungarian, this morphological complexity arises due to the agglutinative nature of

the language.

There exist proprietary spell checkers which can deal with morphologically complex languages better

than Hunspell can. Researchers at Xerox leveraged finite state transducers to build tools that were

capable of analyzing and spell checking. The use of finite state transducers made many natural

language processing tasks much more efficient and compact. Unfortunately the Xerox software is

proprietary, which has resulted in a stagnation in the continued integration of finite state

transducers into the natural language processing arena.

Our MQP aims to give Hunspell, and thus the Open Source community, the same functionality the

Xerox codebase had. In doing so, we will be improving the spell checker used in several prominent

Open Source projects, such as Firefox and Open Office.

11

In order to do this, we first had to update a Java codebase which created finite state automata from

files of a specific format, known as morphDB. At the time of this writing, Hungarian and English have

been encoded in that format, but very few other languages have. We needed the code to

additionally support the more common format used by Hunspell. Supporting this additional file

format drastically increased the number of languages which we were able to support.

The finite state automata files output by our java code adequately conveyed the information about

the languages, but they were too large to be portable over the internet. As portability was one of

our main requirements, we developed a condensed file format, hunfst_1_0, and a compiler which

was able to convert the large finite state automata files into much smaller files.

Our last task in spell-checking was to implement a spell checker that was capable of taking in finite

state automata as input and traversing said automata in order to determine whether a given set of

words belongs to a particular language. We accomplished this by writing a C program, which we

then tested on several large corpora in order to assert the speed and accuracy of our methodology.

12

Chapter 1: Background

Affix and Dictionary Files

The most naive spell checker would be a simple dictionary. Words would be checked against this

dictionary. If the user had typed a word that did not match a dictionary word, it was assumed to be

spelled incorrectly. This can get very inefficient. Long, long-er and long-est would all have to be in

this dictionary, despite the fact that English has rules that give all adjectives like long the ability to

add -er and -est to their ends. With a large enough dictionary, a naive spell checker can, in fact, find

misspelled words. Upkeep, however, would take a long time. For each new word that has been

created, the editor would have to add not only the word, but all the other forms. In addition, simply

looking through the file would take a long time for the spell checking program. Clearly, in order to

spell check efficiently in any language, we need a system that is more intelligent.

Using Aff/Dic files rather than a dictionary alone helps to alleviate problem. The dictionary file still

contains a long list of words, but it only needs to contain root words and words that cannot be

formed by these root words. Another file, the affix file, contains all the additions and relationships

between words. Further description of these files can be found below.

Dictionary File

As with the naive spell checker described above, the dictionary contains a list of words. Unlike the

naive dictionary described above, however, it only needs to contain root words, and words that

could not be obtained by adding to these root words using affix rules. It also notes what type of

word each word in the list is, so that we do not add -ed for past tense to verbs, not nouns.

Dictionary File Format

Hunspell dictionary files start with a number indicating the size of the dictionary file.

13

This is followed by a list of dictionary words. Each written on their own, single line.

Dictionary words are entered into the .dic files with the following general format:

<Word> is the if no affix/compounding rules apply to this word

<Word>/<Flags for rules that apply to this word>

*<forbidden word>

Affix File

The affix file contains rules for adding to the words in the dictionary file. It can easily take care of

simple affixes like adding -er to a dictionary file adjective. It has a list of these. Over time, the affix

files are getting better and better. They also have the ability to deal with changing stems (for

example stripping the “y” from “happy” in order to make it become “happier”). For English, this

would be sufficient. Hungarian, German, and other more agglutinative languages, however, require

more complex affix files.

Standard Format

The standard format is the format used by Open Office. Several more dictionaries have been written

for the standard format than the morphDB format. It includes keywords for compounding words,

letters that are commonly mistaken for each other, and the languages being used. For more

information on the keywords, see Appendix E. Affix File Format.

MorphDB Format

The morphDB format is a newer, more refined format than the standard format. It has only 10

keywords, compared to the standard format's approximately 50. This is because the morphDB

format treats compounding words as prefixes and suffixes, rather than as an entirely separate

process. As of the writing of this paper, only a few languages have been encoded in the morphDB

14

format, which will be described in the section below. For more information on the morphDB

keywords, see Appendix E. Affix File Format

Finite State Automata

In the introduction to their book Finite State Language Processing Emmanuel Roche and Yves

Schabes define a finite state automata as

“a 5-tuple ()

 is a finite alphabet

 is a finite set of states

 is the initial state

 is the set of final states

 () is the set of edges” [1 p. 4]

Deterministic Finite State Automata

Example:

 * +

 * +

 * +

 *() () () ()+

The double circle is used to denote an accept state. The letters are the input values and the arrows

indicate the state transitions that occur when reading that input.

This Finite State Automata accepts any languages that end in an a.

Figure 1 FSA Example – Single Accept State

15

For example, the string "abba" would be accepted by this automata. The traversal would pass

through the edges (0, a 0) (0, b, 1) (1, b, 1) (1, a, 0). At this point, the automata will have run

out of input, and be in the accept state. This means the automata has accepted the input.

The string "abb" will be rejected by this finite state automata. It would pass through the edges (0, a

0) (0, b, 1) (1, b, 1). At that point, the automata will have run out of input to read, and not be in

an accept state. This means the automata has rejected the input.

Finite state automata can have more than one accept state. In such cases, if the end of the input

takes the automata to any of the accept states.

Example:

 * +

 * +

 * +

 *() () ()+

This Finite State automata accepts the string "ab" and the string "abc." It does not accept any other

strings.

The string "aa" does not have a valid path in the automata. The automata will run through (0,a,1).

From state 1, it will read an "a" which does not bring it to a state in the automata. At this point it

will reject the string.

The string "a" does not end in an accept state. The automata will run through (0,a,1). At this point,

it is not in an accept state, and does not have any further information to read. It will reject this

string.

Figure 2 FSA Example - Multiple Accept States

16

The string "ab" will pass through (0, a, 1) (1, b, 2). At this point, the automata has no further

input to read, and it is in an accept state. It will accept the string.

The string "abc" will pass through (0, a, 1) (1, b, 2) (2, c, 3). At this point, the automata has no

further input to read, and it is in state 3, which is also an accept state. It will accept the string.

Finite State Automata are closed under Kleene Star, Union, Concatenation, Intersection, and

Complementation [1].

Nondeterministic Finite State Automata

All automata described above are deterministic. In all states, for any input there is only one state

that input can transition to. In a nondeterministic finite state automata, this is not the case. Unlike

a deterministic Finite State Automata, which has a single start state , a nondeterministic finite

state automata can have a set of start states [2].

Example:

 * +

 * +

 * +

 * +

 *() () () () ()+

Like Figure 1 FSA Example – Single Accept State, the above FSA accepts the language consisting of all

words that end in “a.” If any It has an option from state 0 given the input a to move to state 1.

It accepts the string "aa" if it takes the path (0, a, 0) (0, a, 0). This path ends in an accept state.

While there exists a path for "aa" that does not end in an accept state, (0, a, 0) (0, a, 1), because a

path to an accept state exists in the automata, the automata accepts the input.

Figure 3 NFSA Example

17

Every non-deterministic finite state automata can be written as a deterministic finite state automata

(DFA). The proof of this can be sketched intuitively. Any transitions in the nondeterministic

automata where a single element, , transitions to a single state can be kept in the

deterministic finite state automata. Where one input character can cause traversal from a state to

several possible destination states , these states can be described as a single state

representing . The same can be done for the states reachable by that state. A more detailed

proof can be found in [2].

Finite State Transducers

A finite state transducer is a finite state automata with two tapes. Finite state transducers can be

deterministic or nondeterministic. Frequently, these tapes are described as being an input and

output tape. These names are somewhat inaccurate, however, as either tape can be used as input

to create the other tape. The "input" tape can just as easily be used as an "output" tape, and vice

versa. The tapes represent a relationship between the symbols, and it is arbitrary which tape

represents which part of the relationship.

In the introduction to their book Finite State Language Processing Emmanuel Roche and Yves

Schabes define a finite state transducer as:

“A 6-tuple () such that

 is a finite alphabet, namely the input alphabet

 is a finite alphabet, namely the output alphabet

 is a finite set of states

 is the initial state

 is the set of final states

 is the set of edges” [1].

18

Σ 𝑎𝑏

Σ 𝑎𝑏

𝑄 * +

𝑖

𝐹

𝐸 *(𝑎 𝑏) (𝑏 𝑎) 𝑏 𝑏) (𝑎 𝑏)+

Example:

Figure 5 FST Graphical Example uses the

same notational conventions as were used

in the previous FSA examples, with the

adaptation of labeling each arc with both

an input character and an output

character, with the input and output

delimited by a colon. This finite state

transducer accepts the same language as

the finite state automata in Figure 1 FSA

Example – Single Accept State. In

addition, however, it produces an output

string. For the input "abba" the transducer runs through the edges (0, a, b, 0) (0, b, a, 1) (1, b,

b, 1) (1, a, b, 0), and outputs the string "babb."

Advantages of Lexical Transducers Over Affix and Dictionary Files

Morphologically complex languages are notoriously difficult to perform even the simplest of natural

language processing tasks on. For example, the complexity derived from the highly agglutinative

language of Turkish has prevented the writing of even preliminary Turkish affix and dictionary files.

The aff / dic file format has been found to be particularly prohibitive to agglutinative languages

because of the need to have not only flags that can be applied to root words, but also, many layers

of flags that can be applied to flags that have already been applied to words. The many levels of this

that are required for agglutinative languages is too high and complex to be effectively represented in

the aff/dic format. Alternatively, such agglutination can be easily represented in finite state

transducers by having the last node of the portion of the FST which encodes a given suffix contain

Figure 5 FST Graphical Example

Figure 4 FST Example

19

outgoing arcs to the first states of portions of the FST which encode other suffixes. Doing this for

many or all of the affixes allows for easy agglutination.

Residual Finite State Automata

A finite state transducer is a finite state automata with two tapes. Finite state transducers can be

deterministic or nondeterministic. Frequently, these tapes are described as being an input and

output tape. These names are somewhat inaccurate, however, as either tape can be used as input

to create the other tape. The "input" tape can just as easily be used as an "output" tape, and vice

versa. The tapes represent a relationship between the symbols, and it is arbitrary which tape

represents which part of the relationship [3].

An understanding of residual languages is necessary in order to gain an understanding of Residual

Finite State Automata. We define residual languages below before defining Residual Finite State

Automata.

The 2001 paper "Residual Finite State Automata" written by François Denis, Aurélien Lemay, and

Alain Terlutte includes the following definition for a residual language:

"Let L be a language over and let . The residual language

of L with regard to u is defined by * | +. If L is

recognized by a NFA , then ()

 .” [3]

Paraphrased, this means a residual language of a given language, , over the alphabet , for a given

string contains the set of all strings which when appended to form words in . Under the

notation of the definition, u is the prefix of v in .

In their 2001 paper Residual Finite State Automata, Denis et. al. describe a residual finite state

automata as

20

Σ * +

𝑄 * +

𝑄

𝐹

𝛿 *() () () ()) () ()+

"an NFA () such that, for each state is a

residual language of . More formally, there exists a

 such that " [3].

Example:

The RFSA in Figure 6 RFSA

Example and Figure 7

RFSA Graphical Example

accepts the language

 . This is an RFSA, as

opposed to just being an

NFA, because the

language associated with

each state is a residual

language of the language

associated with the start

state. The language associated with state 0 is . This is , the residual language of with

respect to . The language associate with state 1 is . This is . The language

associated with state 2 is , which is . Since every state’s associated language is a

residual language, it can clearly be seen that this is an RFSA.

Advantages of RFSAs for this Project

The RFSA files that we generate for each language were designed to be distributed over the internet.

In order to facilitate this, we needed them to be as small as possible. We were able to achieve most

of the necessary space savings by minimizing the number of nodes in the finite state machine by

deciding to use either RFSAs or more generally NFAs. In order to increase the speed with which we

could perform natural language processing tasks, we additionally wanted our finite state machines

Figure 7 RFSA Graphical Example

Figure 6 RFSA Example

21

to be easily traversable. We chose to use RFSAs as our language representation scheme because it

met both of these needs better than any of the alternate forms of finite state machines which we

considered.

22

Chapter 2: Spell Checking

The first task that we chose to use finite state transducers for was simple spell checking. In this, a

language and one or more words were to be provided by the user and those words would either be

confirmed or rejected as being valid in that language. At its most basic level, this required us to

generate finite state automata for all languages that we were going to support and then to develop a

methodology for traversing such automata.

Spell checking has a fairly long history branching from the Hunspell and Xerox lineages. Our spell

checker aimed to combine the best aspects of both of these prior efforts.

History of Hunspell

Hunspell, the spell checker currently used by most major open source programs, developed from a

long line of increasingly more complex spell checkers. That history is traced below.

TYPO

In 1980, there were two main spell checkers for UNIX systems, TYPO and SPELL [1]. TYPO was

developed for the IBM/360 and IBM/370 systems by researchers at the Thomas J Watson Research

center in Yorktown Heights. It took a different approach to spell checking than SPELL. It looked

through the document for digrams - pairs of letters - and trigrams - groups of three letters - that

were common in the document. It then matched these tokens against a list of digrams and trigrams

derived from a list of over 2.500 common words. It could then order the words in the paper it was

spell checking from words with infrequently used digrams and trigrams to frequently used digrams

and trigrams. Usually, the infrequently used digrams and trigrams would occur in words that were

improperly spelled, so the user would find their misspelled words at the top of the list [1].

Spell

23

Spell, written by R. Gorin in Assembly for the DEC-10 in 1971, was the first spell checker written as

an application, rather than for research purposes [1]. At the time, it was not considered to be a

major project, but it has been steadily developed since [2].

SPELL made use of a dictionary search - checking each word in a document against a list of words

that were known to be spelled correctly. The predecessors to SPELL would create and print a list of

words that were misspelled, but the user would have to find where in his/her document the words

had occurred on their own. SPELL spell checked interactively, allowing the user to see where in

his/her document the misspelled word had occurred. In addition, it allowed the user to fix the

mistake.

Upon discovering a misspelled word, SPELL would allow the user to choose one of 5 options, which

will seem familiar to users of current spell checkers.

A user could choose:

a) Replace - the word would be deleted, and the user would be able to type in a correctly spelled

word.

b) Replace and Remember - if the misspelled word was anywhere else in the text, all occurrences

would be replaced with the fixed version of the word.

c) Accept - the word should be considered correct.

d) Accept and remember - everywhere in this document that the word is found, mark it correct.

e) Edit - go back and edit the word in the context of the document.

To address usability concerns, SPELL needed to consider efficiency, both in time and space. SPELL

did this by separating word lists. First, it would check the most commonly used English words. Then,

24

it would check against the most commonly used words in the document. Last, it would check a

much larger dictionary of known words, which would be stored elsewhere.

In addition to discovering which words are misspelled, SPELL offered the user options of correctly

spelled words similar to the misspelled one. Similar, in this case, was defined as:

" (1) transposition of two letters

 (2) one letter extra

 (3) one letter missing

 (4) one letter wrong"

(1)

To address (1) and (2) the spell checker would simply have to try the word against the dictionary

with the possible reversals of the error. The problems of (3) and (4) are more complicated, and

require a clever algorithm. To discover if the word was off by one letter, SPELL utilized their already

existent hash program. If the wrong letter had occurred in the third character or later, the

misspelled word would hash to the same thing as its properly spelled version. This limits the number

of words the misspelled word has to be checked against to find the correct alternative. The program

then changes the first two letters to each of the 25 other letters those letters could have been, one

at a time. A missing letter is found similarly. The program generates a number of words equal to the

length of the misspelled words plus two, each with a null character placed at a different point in the

misspelled word. SPELL then runs the same algorithm it ran for a word with an incorrect letter on

these words. The null character acts as the incorrect character.

SPELL also contained rules for affix adding, including stripping letters from the ends of words before

adding the suffix.

25

SPELL was the first application-driven spell checker.

Ispell

Work continued on Spell, switching the language to C, and improving the affix files, adding support

for other languages.

SPELL allowed for suffix removal, but it was based on heuristics. Bill Ackerman changed the code to

work with affix flags directly from the dictionaries themselves, in order to make the affix stripping

(removal of affixes from a word in order to determine the root of that word) more accurate. The

idea has continued through Hunspell. Bill Ackerman was also the first contributor to call the

program Ispell, which later became the official name [2] [3].

Pace Willison rewrote the code from scratch in C [2].

International Ispell

Geoff Kuenning created a table-driven version of Ispell to allow Ispell to work for languages other

than English. At the same time, Pace Willison had improved the efficiency of his version of Ispell.

Having parallel versions of similar but different spell checkers with the same name led to the

renaming of Kuenning's version to International Ispell [3].

MySpell

Myspell brought thread safety to Ispell. [4]

Hunspell

Hunspell is the current popular incarnation of spell. While MySpell took steps towards working with

compound words, it still could not handle the complex morphology (internal word structure) of

languages such as Hungarian. It has the following improvements over MySpell:

26

 HunLex

HunLex is a language-independent tool with configurable parameters for maintaining

morphologies. Before HunLex, maintenance relied on resources such as Magyar Ispell, a

"mix of shell scripts, M4 macros, and hand-written pieces of MySpell resources" [5]. From a

maintainability perspective, HunLex is greatly preferable.

 Hunmorph

Hunmorph allows for an optional morphological description field to aid in part of speech

analysis and language translation. Myspell requires the languages to be writable in some

ASCII format. Hunspell allows for UTF-8 encoding, opening it to languages for which an ASCII

alphabet is not available. Hunmorph added twofold suffix stripping to Myspell's single suffix

stripping, easing morphological analysis for heavily agglutinative languages like Hungarian.

Twofold suffix stripping also means that Hunspell dictionaries can theoretically represent all

of the affixes Myspell dictionaries can, with a square root of the number of rules. Myspell

allowed for single-character flags. Hunspell allows 2-character flags for affixes, which allows

for a larger number of affix classes (categories of related affixes such as the English

pluralizing suffixes “s” and “ies”). Hunspell also allows repeated elements for homonyms

(e.g. : an element for “work” as a verb and “work” as a noun). Hunmorph understands

circumfixes (affixes which consist of two word elements to be appended to the root word,

one at the beginning and the other at the end), seeing them as single affixes. Hunmorph

also has support for direction-sensitive compounding (the agglutination of multiple root

words in order to form a new word, i.e. “play” and “ground” can combine to form the

compound word, “playground”). Sometimes words can combine in one direction but not the

other (“play” and “ground” cannot combine to form the word, “groundplay” in English).

Myspell allowed compounding, but not in a direction-specific manner. Hunmorph has

separate flags for words that can be compounded at the beginning vs. at the end, making it

more accurate than Myspell [5].

27

History of Finite State Transducers in Spell Checking

The spell checkers described above rely on lists of words and rules for how those words can be

modified. While they were being developed, researchers at Xerox were developing a more efficient

and extensible way in which to store words and their modifications, which we describe in the rest of

this section.

Rewrite Rules

Human languages consist of infinitely many possibilities; there is no limit to the number of

grammatically correct sentences a human can make. The grammars that these sentences are

created with, however, are finite in nature. This is known because the entire grammars are held

within a human brain, which contains a finite amount of space. In order for a finite grammar to

describe an infinite language, the grammar must allow for recursion. This recursive grammar forms

the syntactic component, the "deep structure" of a sentence. The "deep structure" partially

determines the "surface structures," including the phonological (sound) interpretation of the

sentence. It is the latter that we discuss here –it is the surface structure of words that a spell

checker checks, and that a stemmer is interested in.

In their 1968 book The Sound Pattern of English Noam Chomsky and Morris Halle formalized

phonological interpretation.

 It had to represent the rules in a manner that was clear and precise.

 It had to be able to distinguish rules which represented how a competent native speaker of a

language produced and understood sentences in that language.

 The rules that it described had to be "linguistically-significant." Chomsky and Halle defined

linguistic significance in terms of psychology, as well as word analysis. The rules should

represent the mental description a child has of the language. It also needs to describe the

actual phonological patterns of speech [5].

28

It is possible to use the Chomksy-Halle generative grammars to create grammars that are not valid

ways of describing actual speech patterns.

The rules took the following form:

This means to rewrite as if is between and , where and are "usually allowed to be

regular expressions" [6]. Regular expressions are useful in languages with vowel harmony, such as

Hungarian. In Hungarian, the suffixes which can be appended to words depend on which class of

vowels were in the word. Any number of consonants can follow this vowel without it changing the

way the rule should be applied.

Context Sensitivity of Rewrite Rules

Until the early 1980s, linguists used language-specific cut-and-paste techniques based on the rule

system described above to analyze words. These were very similar to the aff/dic format used by

modern open source spell checkers. In 1972, Douglas Johnson noticed that these rewrite rules were

context-sensitive [7]. This means that each rule in the grammar can only be applied to input once.

The new string can later be used as the context for the next rule, but it cannot have the rule applied

on itself.

Consider the rule .

The first application of this rule creates the string “aabb” from the string ”ab” (which can be read as

“ ”

If the rewrite rules allowed us to arbitrarily place between any two characters and consequently

read "aabb" as " ", and reapply the rule, we would obtain the context free language

* | +. We do not allow this to occur, however. Now that we have applied the rule to the

string, the current string can only be used as the context for the next rule, meaning the entire string

29

"aabb" would have to be the or for it to create further productions. This difference motivates the

notation difference between the rewrite rules described above, and the form [6].

Context Sensitive Rules are Regular Relations

In 1980, Kaplan and Kay added to Johnson's realization, noting that the fact that these rewrite rules

were context sensitive meant that they were regular relations.

In their 1994 paper Regular Models of Phonological Rule Systems, Ronald Kaplan and Martin Kay

describe a regular relation by the recursive definition

 “The empty set and * + , * +- , * +- are regular relations” [6]. This is to

say that a string of any length is a regular relation.

 If and are regular languages, then so are their concatenation, union and Kleene

closure.

 "There are no other regular languages" [6].

Regular relations are accepted by finite state automata. An n-way regular relation is the union of n

strings of characters. The automata that accepts n-way regular relations is an n-type finite state

transducer [6].

In 1961 Schutzenberger had proven that transducers were closed under composition [7], i.e. if A and

B are both transducers, then adding one or more arcs from the accept state(s) of A to the start state

of B will result in a transducer. This meant that you could describe all the rewrite rules for a

language in a single transducer.

Two Level Morphology

Koskeniemmi did not believe that transducers alone would be efficient enough for language analysis.

To deal with the problem more efficiently, he invented a system of two-level morphology. Like

cascaded transducers, two level morphology broke the language down into rules. Unlike cascaded

30

transducers, two-level morphology did not consider rules in order, but all at the same time. This

means that the grammar is not only closed under union and composition, but also intersection [7].

From these two level rules, compilers were built. The first compiler was written in Pascal by

Koskenniemi. Later versions were written in InterLisp. The current version, called TWOLC, was

written in C at PARC between 1991 and 1992. Other compiler implementations of two level

morphology include University of Texas' KIMMO, SRI's CLE, the ALEP Natural Language Engineering

Platform and the MULTEXT Project [7].

Ordered Rules

Computational linguists found keeping track of cascading rules easier than figuring out when rules

would conflict in the two level system. For that reason, computational linguists stopped using the

two level rules in favor of simple cascading finite state transducers. They found it easier to deal with

ordering the rules properly. Finite State Transducer building for lexical analysis has gone back to

writing rewrite rules in a logical order.

Our Contribution to Open Source Spell Checking

While the open source movement has spent the past twenty years developing a spell checker that

works well, the spell checker based on Finite State Transducers developed by Xerox still works

better, especially for languages with complex morphologies like Hungarian. We worked on bringing

Finite State Transducers into the Hunspell library, bringing the functionality of Xerox's proprietary

software into the Open Source world.

Overall Spell Checking Process

31

Traditionally, spell checking

has been done by directly

referencing affix and

dictionary files. In order to

use finite state transducers,

our first objective was to

create them from the given

affix and dictionary files. Two

versions of the FSTs were

deemed to be necessary: a compact binary file for distribution purposes and an in-memory version

for actual computation.

The progression from affix and dictionary files to FSTs

followed the following sequence of steps. The affix and

dictionary files were fed into the java code that we had

modified to accept dictionaries in either the standard aff /

dic format or the morphDB format. This code then

generated a human readable residual finite state

automata for the given language. This was then fed as

input to Flex, a “tool for generating scanners” [7], and Bison, a “general purpose parser generator”

[8]. The Flex code parsed the file into appropriate tokens which were then given to the Bison code

to assemble into an in-memory finite state transducer. However, having an in-memory finite state

transducer at this phase did not meet one key requirement for our in-memory finite state

transducer, namely that it exist in a place where it could be traversed to validate or invalidate input

words. We wrote a printRFSA() function in the Bison code that was able to take the in-memory finite

state transducer and convert it into the compressed finite state transducer. This was the FST that

Figure 8 Spell Checking Process

PrintRFSA()

{

 print header information

 print state section header

 print 3 byte state representations

 print arc section header

 print 4 byte arc representations

}

32

buildRFSA()

{

 initialize state array

 initialize arc array

 for each state

 copy 3 byte state representation to state array

 for each arc

 copy 4 byte arc representation to arc array

}

was to be distributed to any machine

which was going to use our spell-checker.

The compressed FST was then taken as

input to the C program, “spell” which used

its buildRFSA() function to regenerate an

in-memory FST. From here, the C program

could traverse the FST to use it for spell-

checking.

Java System Architecture

Our project built on a pre-existing codebase that existed to create and use finite state transducers.

Finite state transducers are useful for a wide variety of natural language processes, ranging from the

spell checking processes to the speech recognition. The codebase we started with contained 22

Eclipse projects, 1883 java files, and took up 215M of memory. This was difficult to manage, and in

large part, unnecessary for our purposes. We wanted to build RFSAs and Transducers from aff/dic

files. We did not want to understand what someone was speaking. We streamlined the workspace

by first discovering what code was necessary for our purposes, then looking for what these projects

depended on. Daniel Varga, our liaison to MOKK then streamlined this code even further. Our

current workspace is 139M (packaged without affix and dictionary files) and consists of 769 java

files. This codebase is more manageable to upkeep, run, and understand.

Creation of a Finite State Automata:

There are two main components to creating a finite state transducer from aff/dic files: creating an

automata of words, then turning this into one that uses letters.

At first, automata are created where the transitions are words and affixes. The automata composed

of words and affixes is created, determinized, minimized, and compressed. At this point, the

33

automata can be "letterized," changed into a finite state automata where the transitions are letters

rather than full words. This letterized transducer is then minimized, compressed, and turned into an

RFSA.

Figure 9 RFSA GenerationError! Reference source not found. describes how the Java code

implements this process.

Larger Arrows are classes, smaller arrows denote inputs. Boxes denote outputs. Outputs that are

later inputs to other classes are marked with the same number as an output as they are as an input.

Where an input arrow feeds into another arrow of the same size, the first arrow is renamed to the

name in the second input before it enters the class. When two input arrows feed directly into a

class, it means that both files are used as input to the class.

34

Figure 9 RFSA Generation

35

The following sections describe the main projects we use in this process

factor

The factor package takes on aff/dic files and turns them into Finite State Automata. It contains the

classes necessary to convert affix and dictionary files into a finite state automata.

Changes to the factor Package

When we received the code, the factor package worked only for the MorphDB format. We extended

the code to allow it to work for the format that the vast majority of other languages were in. This

process included creating the following classes:

 Package szte

o Convert

Java interface for classes that run the conversion process from affix and dictionary

files to a residual finite state automata.

o ConverterStandard

Implementation of the Convert interface for the standard format.

Input: a language name in all capital letters. The possible language choices can be

found in Appendix D. Language Encoding Schemes

o Output: a residual finite state automata

o ConverterMorphDB

Implementation of the Converter class for the MorphDB file format.

o Language

Enum used for matching the input language.

 Package com.all.factor.morphdb

o Factorize

An abstract class containing the basic methods for reading affix and dictionary files

and understanding the interactions between them.

36

o FactorizerMorphdbTest

the implementation of factorize for the morphDB format.

o FactorizerStandard

The implementation of factorize for the MorphDB format. It understands more

keywords than the MorphDB version. See the section on affix file formats for more

information.

jmorph

The jmorph project analyzes and generates words. It is used extensively by the factor project to

combine affixes with lemmas (word roots, canonical forms). These later become accept states of the

spell checking finite state automata.

transducer

The transducer package deals with the running and creation of transducers. It also converts

transducers to regular finite state automata.

RFSAs

The generation of RFSAs, or residual finite state automata, was the first step in the process of

completing tasks in linguistic analysis by utilizing the power of finite state automata over simple

dictionary and affix files. Having the automata in a human readable format at this point in the

process proved to be invaluable for testing and debugging the generation process. The undesirable,

yet inherent side-effect of creating human readable output is the large amount of space that such

files consume. However, this was an acceptable trade-off at this phase and would be dealt with at a

later point in the process.

Constructing RFSAs

37

The initial code base that we had been given was capable of constructing RFSAs, but only in very

limited circumstances. First, this code originally required the input aff / dic files in the morphDB

format. Unfortunately, there are only a few languages for which morphDB formatted dictionaries

exist. Second, the code assumed many properties of the input language that are valid for Hungarian,

but not for a variety of other languages that we had hoped to support. As one of the primary goals

of this research project was to support a large variety of languages, it was necessary for us to make

several extensions to the initial code base that we had been given. These extensions were mainly

concerned with adding support for affix and dictionary files in standard format and removing hard-

coded language properties specific to Hungarian.

RFSA Format

There is a start state from which all words originate and multiple accept states. The accept states

are indexed sequentially beginning with 0. The accept state with the highest index is notable for the

fact that it is the only state in the RFSA which does not have any outgoing arcs. The arc

corresponding to the last letter of any word which cannot have additional suffixes appended to it

will have the highest indexed accept state as its destination state. If at any point in the process of

traversing the FST, a valid word is formed, there will be an arc from that state to one of the accept

states. During the traversal of a valid word, at most one accept state will be traversed which

corresponds to a root word.

There were two distinct options to be considered when determining whether to use this model or to

construct a more typical FSA, where multiple accept states corresponding to root words can be

encountered during the course of the traversal of the FSA with a given word as input. This option

would have had the benefit of requiring fewer arcs, but would have made stemming more difficult.

A more comprehensive explanation of the benefits that stemming derives from this format can be

seen in the Stemming Chapter. The FSA format chosen also differed from more conventional

automata in that it doesn’t reserve state 0 as the start state. A major benefit of having all accept

38

states indexed sequentially, starting with 0 is that no space in the in-memory version of the FST

needs to be devoted to describing whether or not a state is an accept state.

RFSA Format without Suffixes

Figure 10 RFSA - No Suffixes displays a simple example

of an RFSA which corresponds to a language without

any suffixes. This language consists of the words “a”

and “ab”. As there are no suffixes, there is only a

single accept state, namely state 0.

RFSA Format with Suffixes

The addition of suffixes to languages in RFSAs, slightly complicates the structure of the graph. There

will be one accept state for each set of suffixes, such that there is some word which can have every

element of that set appended to it. The number of accept states in an RFSA is bounded by the

number of suffixes in the language.

Proof of the Boundedness of the Number of Accept States in an RFSA

 ()

 ()

We define a suffix group, G, as an element of () such that there exists some word,

 ()

The RFSA for a given language wil have | | accept states.

Figure 10 RFSA - No Suffixes

39

 ()

 | | | ()| ()| | | | | | |

Examples of RFSAs with Suffixes

Figure 11 Single Suffix Group displays the RFSA for the language which accepts the words: {bike,

bikes, biked, care, cares, cared}. The root words in this language are “bike” and “care”. There are

two suffixes in this language, “s” and “d”. Every root word can have every suffix applied to it. Thus,

there is one suffix group derived from the root words. Additionally there are words, such as “bikes”

which cannot have any suffixes appended to them; a second suffix group corresponding to the

empty set is derived from this. The RFSA contains two accept states, corresponding to the two suffix

groups.

Let be the language containing the following words: {jump, jumping, jumped, jumps, walk,

walking, walked, walks, run, runs}. contains 3 suffixes: “ed”, “ing”, and “s”. Additionally, there are

Figure 11 Single Suffix Group

40

words in which cannot have any suffixes appended to them. The equations below show the suffix

groups of and calculate the size of the group of suffix groups.

 * +

| |

 () { * + * + * + * + * + * + * +}

| ()| | |

 {* + * + }

| | | ()|

Figure 12 Multiple Suffix Groups

41

starting state number of states total number of edges

for each state:

state number boolean indicating whether or not the state is an accept state

number of transitions originating from this state

 for each transition from the state:

 input char $ word matched(optional) destination state number

RFSA File Format

RFSAs which are generated by our system have been designed to adhere to the following formatting

convention.

Example RFSA

We have generated an example RFSA that models a toy language in order to assist the reader in

 Figure 15 Example Language

Figure 14 Example RFSA

Figure 13 RFSA Format

42

following the steps taken in creating and using finite state transducers in the context of spell-

checking. The language which this machine models has been designed to consist of the following

words: “aa” and “bc”.

RFSA Results

The overall statistics for the RFSAs generated can be seen below. Interesting things to note in the

graphs are that there were on average 517,888 arcs per RFSA, with an average of 1.6489 arcs

originating from each state.

43

Compiler

We developed a compiler to convert the RFSA into the more compact hunfst_1_0 format described

below. We chose to go through the formalities of developing a compiler to complete this task, as

opposed to hand-writing a small program to do the same task for a variety of reasons. Because we

utilized Flex and Bison, we were more confident in the speed and accuracy of the file conversion

process. Additionally, a formal compiler afforded us the opportunity to see exactly where any syntax

errors had occurred in the RFSAs. A third reason for deciding to create a formal compiler was that

this is a much more widely accepted and utilized method of translating between varying file formats.

As such, other developers who may need to edit our compiler at some point in the future, for

example during the development of the hunfst_2_0 file format, will have an easier time doing so.

Compression Scheme

Figure 16 Average Total Number of
Arcs

Figure 17 Average Number of
States

Figure 18 Mean Number of Arcs per
State

44

We needed a highly compact compression scheme for the RFSAs. As the automata files will be

replacing the currently used affix and dictionary files as the standard dictionary format and will

consequently be transferred over internet connections in massive quantities, the size of the files

must be kept to a minimum. Achieving this feat consisted of a combination of identifying the key

elements of a finite state transducer and taking the smallest subset which still maintains a bijection

with the set of finite state transducers. We found this set, and from it generated the hunfst_1_0

standard, which is described below.

Hunfst_1_0

We have developed Hunfst_1_0 as the first iteration of the hunfst file format. This was designed to

be a highly compressed, highly portable file format. It consists of 3 main sections. The first is a small

header section which contains basic information on the name of the language being described, the

character set(s) used for encoding, and other basic information pertaining to the specifics of the

language and the options selected for the particular type of finite state transducer. This is also

where any miscellaneous comments should be written. The second and third sections of the

hunfst_1_0 file format vary slightly, as described below. The following describes them in the

standard format, which is generally applicable to all other supported formats as well.

The second section of the file is a list of all of the states. For each state, a 3 byte pointer to the first

arc is written as the only information for that state. The last arc is the arc with index immediately

preceding that of the arc pointed to by the next state. The intermediate outgoing arcs can be

uniquely determined because the arcs are sequentially numbered. All of the states are written on

the same line in order to avoid wasting space with new lines, which don’t convey any information.

The boundaries between states are apparent because they are all occupying the same number of

bytes.

45

The final section is a list of arcs. Four bytes are devoted to each arc. The first denotes the input

character and the next three bytes are a pointer to the destination state of that arc. As with the list

of states, all arcs are written on the same line in order to conserve space

Format Variants

There a variety of different options that can be selected and encoded within the hunfst_1_0 file

format. These options exist because, FSTs which are being used for different purposes will require

different amounts of information. For example, an FST which is being used only for spell checking

will require much less information than one which is also being used for morphological analysis(the

study of word structure), as the latter will have to store the various morphological

annotations(identifying tags for various word elements such as part of speech and tense) that

pertain to each accepted word. We decided to avoid forcing all FSTs written in the hunfst file format

to have space for sections which they may not use. Instead, there are a variety of different common

formats supported. The format names are stored in a text file and their meanings are interpreted by

the compiler. Future versions of the hunfst file format will be able to add additional format variants

as finite state transducers and analysis on them are improved to be able to support more complex

natural language processing tasks.

There are three basic areas in which hunfst variations can occur. The first is that while most

languages only use characters which can be uniquely identified by 8 bits, ideographic languages,

such as Chinese, Japanese, and Korean require 16 bits to store each character. FSTS that are in fact

transducers and not generalized automata, will require a pointer to an output string, while simple

automata will not. The last way in which variation can occur is in the presence or absence of a

probability value for each arc and the precision of the probability when it is present. The following

table has been designed to display the format variants that have already been designed and are a

part of the hunfst_1_0 format specifications.

46

Format Variant Name Bytes Devoted to the

Input Character

Bytes Devoted to the

Output String

Bytes Devoted to the

Probability

standard 1 0 0

standardFST 1 3 0

Ideogram 2 0 0

ideogramFST 2 3 0

standard_smProbFST 1 3 2

standard_lgProbFST 1 3 4

ideogram_smProbFST 2 3 2

ideogram_lgProbFST 2 3 4

Table 1 Hunfst Format Variations

Future versions of the hunfst file format should use values within the following ranges in any new

format variations. The values have been designed to ensure the continued portability of the

resulting transducers.

 Input Character Output String Probability

Minimum Number of

Bytes

1 0 0

Maximum Number of

Bytes

2 3 4

Table 2 Hunfst Format Variation Constraints

In-Memory Format

The in-memory hunfst format is the same both when it is generated as a step towards creating the

portable compressed format and when it is regenerated in order to be used in spell checking. It

47

40 73 63 68 65 6d 65 20 34 20 73 74 61 6e 64 61 72 64 0a

40 6c 61 6e 67 20 65 6e 5f 55 53 0a

40 63 68 61 72 73 65 74 20 49 53 4f 38 38 35 39 2d 31 0a

40 69 6e 74 65 72 6e 61 6c 2d 63 68 61 72 73 65 74 20 49

 53 4f 38 38 35 39 2d 31 0a

40 73 74 61 74 65 73 20 34 0a

00 00 00 00 00 00 00 00 01 00 00 02 0a

40 61 72 63 73 20 34 0a

61 00 00 00 63 00 00 00 62 00 00 02 61 00 00 01

consists of 2 arrays: one of which enumerates the states and the other, the transitions. Both of the

arrays consist of pointers to each other. This data structure was designed to have the mutual

benefits of its small size and to be easy to traverse.

Example Compressed Finite State Automata

The following example has been

designed to help the reader

better understand the details of

the aforementioned compressed

format. The compressed version

of the finite state automata can

be seen in Figure 19 Compressed

FSA Example.

Single Line in hunfst_1_0 File Interpretation and Explanation

40 73 63 68 65 6d 65 20 34 20 73 74 61 6e 64 61 72 64 0a @scheme 4 standard

This is the first line of header

information. The “@scheme”

keyword has been used to denote

that the scheme is being defined.

The 4 states that 4 bytes are devoted

to every transition and “standard” is

the name of the variant being used.

The 4 is redundant information, but is

included to assist in file processing.

40 6c 61 6e 67 20 65 6e 5f 55 53 0a @lang en_US

Figure 19 Compressed FSA Example

48

The “@lang” keyword has been used

to indicate that the name of the

language being encoded for is to

follow. In this example, the language

was United States English.

40 63 68 61 72 73 65 74 20 49 53 4f 38 38 35 39 2d 31 0a @charset ISO8859-1

The “@charset” keyword has been

used to indicate that the name of the

character set used by the language

being encoded is to follow. In this

case, the character set is basic Latin

1.

40 69 6e 74 65 72 6e 61 6c 2d 63 68 61 72 73 65 74 20 49

 53 4f 38 38 35 39 2d 31 0a

@internal-charset ISO8859-1

The “@internal-charset” keyword has

been used to show that the name of

the internal encoding scheme used

within the file is to follow. This will

have been a superset of the

aforementioned language specific

character set, as it is necessary to

encode all possible letters of the

language as input characters in

transition descriptions. The name,

internal-charset, is somewhat

misleading, in that the file is actually

a binary file, so the only valid

characters are the digits and letters

a-f. However, it has been

determined that the internal

character set is still a useful file

49

property to indicate because of input

characters.

40 73 74 61 74 65 73 20 34 0a @states 4

The “@states” keyword has been

used to indicate the beginning of the

states section. In this example, the

number 4 has been written after the

@states keyword. This has been

done to indicate that the next line

will contain information on 4 states.

00 00 00 00 00 00 00 00 01 00 00 02 0a 0 0 1 2

This is the states section. Every 3

bytes, define a state, which as

previously mentioned is a pointer to

the first outgoing arc. Big-endian

encoding has been used for the

pointers.

The first state will have always been

written as “00 00 00”, but this is not

to say that the first output arc of this

state is the 0th arc in the arc array.

Rather, as the sink accept state, there

are no outgoing arcs from this state.

The 0 has been used only as a place

holder.

40 61 72 63 73 20 34 0a @arcs 4

The “@arcs” keyword has been used

to indicate the beginning of the arcs

sections. In this example, the

50

number 4 has been written after the

keyword. This has been done to

denote that the next line will contain

information on 4 arcs.

61 00 00 00 63 00 00 00 62 00 00 02 61 00 00 01 a 0 c 0 b 2 a 1

This is the arcs section. Every 4 bytes

defines an arc, the first of which is for

the input character and the last three

of which denote the pointer to the

destination state. For example, “61

00 00 00” defines the first arc, which

has an input character, “a”, and a

destination state 0. Big-endian

encoding has been used for the

pointers to destination states.

Development of the Compiler

We used Flex and Bison to develop a compiler which is capable of generating files in hunfst_1_0

format. Our compiler has been designed to parse the human-readable RFSA file and convert it into a

version with a substantially smaller file size without losing any of the information required to rebuild

the finite state automata. The primary concerns that we took into consideration during the

development of our compiler were the importance of achieving a good compression ratio and

allowing for the compiler to be easily extensible to support future iterations of the hunfst file

format.

Flex

We designed our Flex code to accept integers, boolean values, characters from any language, and

output expressions as valid input. An output expression is a word (correctly spelled or otherwise)

preceded by a dollar sign; for this purpose, a word is defined as a continuous sequence of

51

characters. All white space is ignored, and any miscellaneous characters, such as punctuation,

return a warning message. The possible tokens which can be returned by our Flex program are:

NUMBER, TRUE, FALSE, CHAR, and OUTPUT.

A Note on Punctuation

Punctuation can be very problematic in natural language processing tasks. Most punctuation can be

viewed as something off to the side that does not actually affect the spelling of the words which

they are adjacent to. However, the period is a notable exception to this rule. Many languages have

incorporated common abbreviations, treating them in the same way as all other words, and many of

these abbreviations end in periods in their correct spelling. This double use of the period as a

character in the language itself and as a delimiter between distinct sentences can be a source of

confusion to spell checkers. This confusion has been compounded by the fact that it is common

practice amongst many languages, including English, to only write one period when two would

otherwise occur adjacent to each other, for example when a sentence ends with an abbreviation.

There were three basic options that we had to consider when deciding how to deal with

punctuation. The first was to ignore it completely, much in the same way as white space is ignored.

However, this would result in valid words, such as “Mr.” in English being read in as “Mr”, which is

not a valid English word. The second option was to accept it as input and deal with its validity when

traversing the FSA. This had the nice property of allowing us to handle punctuation in the Bison

code, with more powerful tools than were available to us in Flex. However, most punctuation is

never a valid part of a word. Accepting it as valid input by the Flex code, would have required

additional tokenization and token handling for every piece of punctuation. The third option was to

have the Flex code print out a warning message whenever punctuation was encountered, but not to

tokenize any of the punctuation.

52

program header statesList

header NUMBER NUMBER NUMBER

statesList statesList state | state

state state_start arcsList

state_start NUMBER TRUE NUMBER | NUMBER FALSE NUMBER

arcsList arcsList arc | arc

arc CHAR NUMBER | CHAR OUTPUT NUMBER

We chose to apply the third option and have our code report warning messages on input consisting

at least partially of punctuation characters. We viewed this as a compromise between the first two

options in that it avoided putting an unnecessary workload on the compiler or increasing the size of

the resulting FSA, but alerted the user when this was happening.

Bison

We designed our Bison code to analyze a token stream according to the rules shown in Figure 20

Compiler Rules. The two notable occurrences in this set of rules are the recursive progression

through the lists of states

and arcs. This is where most

of the actual processing of

tokens takes place.

The above rule set was

sufficient to parse an RFSA,

but not to actually generate

the corresponding hunfst_1_0 file format. For this purpose, we wrote three functions in the Bison

code to accompany the rules. Two of these functions, copyToStates() and copyToArcs(), are used in

the generation of the in-memory representation of the FSA. They take as input an index in the

appropriate array and a value to be placed at that index and copy the value in byte-wise. It was

necessary for us to take this approach instead of simply assigning values to various locations in the

arrays in order to keep the size of the resulting data structure as small as possible. The final function

that we wrote in the Bison code, printInMem(), was designed to handle “printing” out the completed

in memory data structure to a hunfst_1_0 file.

Details of the resulting compiler can be seen in Appendix 2. Its FSA representation has 22 states.

Compression Results

Figure 20 Compiler Rules

53

As can be seen in Figure 21 Compressed FSA File Sizes, the compiler was able to convert the finite

state automata into files approximately one quarter of the original size of the RFSAs. These much

smaller files are far better suited than their human-readable predecessors. An added benefit of the

compression, in addition to portability, was that the spell checking program would need to devote

less time to reading in the hunfst_1_0 file and less time parsing it once read in, as all unnecessary

superfluous information had been removed.

54

6.01

13.55

3.35

4.16

16.43

1.50

6.68

30.29

8.30

26.20

22.73

10.26

13.81

7.02

5.95

10.42

0.13

1.80

3.93

1.03

1.26

4.30

0.49

1.98

6.49

2.54

7.37

6.53

3.00

3.45

2.13

1.78

2.65

0.05

0 5 10 15 20 25 30 35

Catalan

Czech

English

French

Hebrew

Indonesian

Italian

Korean

Lithuanian

Norwegian

polish

Romanian

Russian

Serbian

Swedish

Ukrainian

Vietnamese

File Size (MB)
La

n
gu

ag
e

RFSA size (MB) compressed size(MB)

Figure 21 Compressed FSA File Sizes

55

As shown in Figure 22 RFSA Compression TimesError! Reference source not found., compression

time grows linearly with the size of the initial RFSA file. While expected based on the compression

techniques used, this result was still viewed favorably, as it confirmed that there was no exponential

increase in time due to the generation of the in-memory FSA.

C Spell Checker

Once we had successfully created hunfst_1_0 files for all of the languages which we were to support,

we developed a spell checking program which was able to regenerate the in memory representation

of the FSA and then to traverse that FSA. We chose to implement our spell checking program in C

because of the ease with which C would allow us to read and manipulate data at the bit level, as was

needed to handle the hunfst_1_0 formatted files and because of the low overhead incurred when

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30 35

C
o

m
p

re
ss

io
n

 T
im

e
 (

se
co

n
d

s)

RFSA File Size (MB)

Figure 22 RFSA Compression Times

56

running a program written in C. Our spell checker takes as input a hunfst_1_0 file and list of words;

it outputs the subset of that list which were not accepted by the FSA.

Spell Checking Process

Once the in-memory finite state automata has been

generated within the spell program, it must be traversed in

order to determine whether or not it accepts a given word.

Figure 23 Spell Checking displays the conceptual process

that accomplishes this task. At any point, the FSA must

know its current state. It then checks the outgoing arcs

from that state and traverses the one which matches the current letter in the word being checked.

If at any point, no such arc exists, the word will be said to

not be accepted by that transducer and consequently to not belong to the corresponding language.

Additionally, the word will also be rejected if after the FSA has been traversed for all letters in the

word, the current state is not the accept state.

Due to the compressed format in which the FSA is stored, the actual traversal process that we

implemented is slightly more complicated than the above conceptual process. Figure 24 Spell

Checking Pseudocode shows the actual algorithm that we implemented in order to check the

membership of a potential word in the set of correctly spelled words in a language. The main

component that we added to the actual implementation that was not apparent in the conceptual

algorithm was the process of determining which arcs originate from the current state in the

automata. The sequential indexing of all arcs made it possible for us to accomplish this. The first

outgoing arc was easily known, because the state representation is a 3 byte pointer to that arc. The

last arc was determined by looking at the arc pointed to by the next sequentially indexed state; the

arc which immediately preceded that would be the last outgoing arc from the current state.

Figure 23 Spell Checking

57

Current state = start state

FOR EACH letter in the word:

 Find the first outgoing arc from the current state

 Find the last outgoing arc from the current state

 FOR EACH arc between the first and last, inclusive

 IF the arc’s input character equals the current letter and the last letter condition is met

 Traverse arc

 Set the current state to be that arc’s destination state

 BREAK

 IF no arcs were traversed

 FAIL = The word is not accepted by the FSA

 Output the misspelled word

 BREAK

IF the current state is the accept state

 ACCEPT = The word is accepted by the FSA

ELSE

 FAIL = The word is not accepted by the FSA

 Output the misspelled word

Figure 24 Spell Checking Pseudocode

58

Example of Spell Checking

For the purposes of better explaining

the spell checking algorithm, we have

developed the following example.

Figure 25 In-Memory FSA Example

shows the in-memory representation

of an FSA which maps to a language

that consists of the following set of

words: {cab, cot, a}.

Testing the correctness of the spelling

of the word, “cot” on this FSA would proceed as follows. The current state would be state 4 and the

current input letter is “c”. The first arc would be arc 4 and the last arc would be arc 5; therefore, the

set of outgoing arcs which originate from state 4 would be the set {4, 5}. Loopinging through the

elements of that set, arc 4 would be found to be the correct arc to traverse becasuse its input

character matches the current letter and the last letter condition is met, namely that “c” isn’t the

last letter of the input word and the destination of arc 4 isn’t the accept state. Arc 4 would then be

traversed and the current state correspondingly set to equal arc 4’s destination state, state 3. The

process would then repeat itself with the input letter “o”. Arc 3 would be found as the correct arc to

traverse and the current state would then be set to be state 1. Finally, the process would repeat

with input letter “t”. Arc 0 would be found to be the correct transition because its input character

matches the current letter and the last letter condition would be matched; “t” is the last letter of the

word being checked and the destination state of arc 0 is the accept state. The current state would

then be set to equal state 0 and the process would ould output an ACCEPT response and terminate.

Figure 25 In-Memory FSA Example

59

The FSA in Figure 25 In-Memory FSA Example could be used to determine the incorrectness of the

spelling of the word “cb” by the following progression. The initial current state would be state 4.

The set of output arcs originating from the current state would be {4, 5}. Arc 4 would then be found

to be the correct arc. Arc 4 would then be traversed and the current state would be set to state 3.

The set of output arcs from state 3 is {2, 3}. Both arcs 2 and 3 would be checked, but found to fail to

meet the input character condition. At that point, the process would output the rejection of the

word “cb” and terminate.

Spell Checking Results

In order to verify the accuracy of our spell checker and to determine the speed with which it is

capable of running, we tested it against the Google and Wikipedia corpora.

Google

The first corpus which we checked our results against was the 1-gram portion of Google’s n-gram

corpus [8]. The 1-gram portion of the corpus consists of every word typed into the English language

version of Google prior to February 1st, 2006. This amounted to 1,024,908,267,229 instances of

13,588,391 distinct words, which provided us with a very large database of words in the English

language with frequencies representative of the actual usage [9].

After accounting for frequency, 85.2% of the words in the Google 1-gram corpus were accepted by

our English spell checker. The most frequently entered words which were rejected can be seen

below.

word frequency

reviews 0.062751

de 0.059669

details 0.057068

resources 0.043692

login 0.028635

60

reports 0.023037

rss 0.022574

sep 0.021198

ange 0.020102

records 0.019647

centre 0.019604

et 0.01759

al 0.015133

eur 0.015121

usr 0.014901

pre 0.014099

returns 0.014052

cnet 0.01349

mp3 0.012594

eg 0.012494

cities 0.012141

pdf 0.011785

programme 0.011648

ip 0.011542

los 0.010519

ie 0.009933

prev 0.009782

1st 0.00974

usb 0.009702

increased 0.00944

msn 0.009386

phentermine 0.009305

proposed 0.009213

described 0.009163

requires 0.008805

angeles 0.00866

releases 0.008461

units 0.00844

61

php 0.008322

zealand 0.008228

llc 0.008157

dvds 0.008116

texas 0.007714

las 0.007293

th 0.006988

detailed 0.006889

el 0.00683

dev 0.00681

returned 0.006691

shopping.com 0.006506

www 0.006501

tripadvisor 0.0065

pubmed 0.006394

xp 0.006376

xbox 0.006321

hong 0.00631

amazon.co.uk 0.006298

hentai 0.006294

asian 0.006292

milf 0.006272

devices 0.006231

au 0.006117

cds 0.006096

range 0.006029

usd 0.006018

multi 0.005889

di 0.005761

devel 0.005654

provisions 0.005636

sitemap 0.005622

username 0.005577

62

removed 0.005526

replies 0.005478

shemale 0.005373

del 0.005342

zum 0.005332

requests 0.005312

reporting 0.005293

sexo 0.005292

des 0.005279

multi 0.005177

theatre 0.005173

src 0.005167

pda 0.005011

du 0.005006

na 0.004976

dsl 0.00495

verzeichnis 0.004948

conducted 0.004915

touch 0.004873

recommendations 0.004849

utc 0.004819

dvd 0.004786

le 0.00475

un 0.004709

sql 0.004708

uk 0.004691

gps 0.004672

url 0.004618

cd 0.004534

Table 3 Most Common Rejected Words in the Google Corpus

Wikipedia

63

The Wikipedia corpus consists of all of the words in Wikipedia, separated by language. In checking

our spell checker against the English section of the corpus, we were able to achieve a 92.3% hit rate

after accounting for frequency. The most frequent rejected words can be seen below.

word frequency

de 0.090422

centre 0.021563

records 0.020112

returned 0.019887

los 0.016549

zealand 0.014767

range 0.014535

described 0.013987

replaced 0.013379

angeles 0.013152

units 0.01279

et 0.011821

cities 0.011614

theatre 0.010383

el 0.009672

von 0.009246

retired 0.009182

fc 0.00909

records 0.008826

increased 0.008809

resources 0.008368

hong 0.008139

http 0.007864

des 0.007808

al 0.007685

proposed 0.007411

del 0.007368

der 0.00725

64

voivodeship 0.00725

renamed 0.007126

removed 0.006997

labour 0.006775

du 0.006717

ret 0.00624

conducted 0.005981

defence 0.005945

gmina 0.005926

bgcolor 0.005889

details 0.005733

reports 0.005706

metres 0.005686

theatre 0.005566

sri 0.005552

refused 0.00537

di 0.005246

derived 0.005161

puerto 0.005117

ep 0.004685

returning 0.004669

programme 0.004658

didn 0.00465

prix 0.004594

und 0.004563

describes 0.004353

da 0.004145

las 0.004105

requires 0.003834

designs 0.003799

residing 0.003796

reviews 0.003778

returns 0.003684

65

capita 0.00368

devices 0.003641

rowspan 0.003624

releases 0.003562

restored 0.003448

cdp 0.003378

depending 0.003354

pts 0.003348

doesn 0.003325

organisation 0.003112

lanka 0.003077

detailed 0.003

iucn 0.002953

uefa 0.00292

br 0.002893

afterwards 0.00289

dnp 0.002885

range 0.00281

fifa 0.002809

anime 0.002729

costa 0.002699

sox 0.002662

replacing 0.002641

le 0.002568

colour 0.002565

scotia 0.00256

manga 0.002523

injuries 0.002521

colspan 0.002512

honours 0.002478

honour 0.002459

pos 0.002385

pdf 0.002375

66

friedrich 0.002372

recovered 0.002363

petersburg 0.002353

tons 0.002351

sr 0.002331

increases 0.00233

Table 4 Most Common Rejected Words in the English Wikipedia Corpus

Reasons for Rejects by the Spell Checker

While 85.2% and 92.3% hit rates may seem rather unimpressive, there were a variety of

circumstances under which it was desirable of our spell checker to reject a given word. Some of

these reasons are actual spelling errors, non-English words, highly technical terms that don’t belong

in a standard dictionary, and nonstandard abbreviations. The only problematic reason for rejecting

words is that our current finite state machine representations of languages were generated directly

from the aff / dic files and consequently only contain the word from those files. A future research

goal for the continuation of this project is to have linguists amend the RFSAs to include a broader

range of terms by using our spell checker to identify commonly used words that are being missed.

Chapter 3: Stemming

Stemming is an important task in natural language processing for a number of reasons. The most

common use of stemming is as a pre-processing step in information retrieval systems. For example,

a query containing a singular noun should return results containing the pluralized form of that noun

even if the singular version is absent [10]. This has historically been accomplished by comparing the

stems of the words in the query to the stems of the words in the document [11]. The more

accurately the stemming program can identify the roots, the higher the probability of matching

useful answers with the queries. This is especially true in smaller documents, which are less likely to

contain the same form of the word that was present in the query [10].

67

There are two types of suffixes which can be appended to stems, inflectional and derivational.

Inflectional suffixes are those which pluralize a word or change its tense. The inclusion or exclusion

of an inflectional suffix very rarely affects the meaning of the word. As such, it is always desirable

for a stemmer to remove such suffixes. Derivational suffixes are those which change the syntactic

category of the root word, i.e. changing a verb to a noun. Derivational suffixes are much more likely

to change the meaning of a word than inflectional suffixes and thus more care must be taken in

deciding when it is appropriate for them to be stripped [12].

History of Stemming

The Porter Stemmer

The Porter Stemmer has been one of the most prevalent stemmers since its conception. It was

designed as a rule-based stemmer. As such, it does not require an accompanying lexicon from which

to identify stems. The Porter Stemmer algorithm consists of a list of rules describing when suffixes

can be stripped from the input word. The longest suffix which can be stripped is stripped and this

process is iteratively repeated until there are no longer any suffixes which can be stripped [11]. The

Porter Stemmer was largely a success for its speed, ease of implementation in a variety of languages,

and relatively good performance when used in information retrieval [10].

Shortcomings of the Porter Stemmer

As the Porter Stemmer was created to be completely independent from a lexicon, it was forced to

suffer from several errors of both commission and omission.

Errors of Commission Errors of Omission

organization / organ european / europe

doing / doe analysis / analyzes

generalization / generic cylinder / cylindrical

68

numerical / numerous matrices / matrix

policy / police urgency / urgent

university / universe create / creation

easy / easily decompose / decomposition

addition / additive machine / machinery

negligible / negligent useful / usefully

execute / executive noise / noisy

define / definite route / routed

past / paste search / searcher

ignore / ignorant explain / explanation

arm / army resolve / resolution

head / heading triangle / triangular

[12]

For specific tasks, the Porter Stemmer suffered from an additional shortcoming other than over

conflation and narrow coverage. The stems returned by the Porter Stemmer would often not be

words in and of themselves [12]. While this was an acceptable occurrence for information retrieval,

it is unacceptable in linguistics based tasks which aim to actually identify root words.

Lexicon – Based Stemmers

Krovetz attempted to improve on the Porter Stemmer by using it in conjunction with a lexicon. His

method consisted of following the Porter algorithm with the additional step of checking if the word

is in the dictionary at each iteration. If it was in the dictionary, stripping ended. While this idea

initially looked promising, it ultimately failed. There are many words which strip off their last letter

before adding some suffixes and don’t for other suffixes. For such words there will be two disjoint

69

classes of suffixed forms and they will not be matched to each other. In English, the most common

occurrence of this is in words which end in the letter “e” [12].

After an early failure, Krovetz managed to surpass the Porter Stemmer by re-writing the rules to

output actual root words instead of just stems and hand-checking for the exceptions that had caused

errors for his modified version of the Porter algorithm. Most notably, he was very careful when

dealing with the suffixes “ed” and “es” about whether to strip one or two letters [12].

It is also possible to have a fully lexicon based stemmer. Since many dictionaries list root words and

the various suffixes which can be appended to them, the input words can just be matched against

this list and the appropriate stem returned. Unfortunately, this method, while accurate, is inefficient

to the point of being unusable.

Finite State Transducers in Stemming

The inefficiency problem of lexicon base transducers can be ameliorated by storing the lexicon in a

data structure which is more easily traversable. A finite state transducer is perfectly situated for this

task. Kokenniemi developed a small scale version of such an FST in hopes of it being later used to aid

in morphological analysis. However, he was never able to implement his architecture on a full

language and consequently wasn’t able to use the theories he developed in a meaningful way.

Additionally, his work was proprietary, belonging to Xerox, and thus unavailable to other researchers

to further develop [13].

Our Contribution to Open Source Stemming

We created a transducer based FST and an accompanying program in C which actually stems the

input words. This consisted of revising the compiler that we had created previously for spelling and

revising the spell checking program to appropriately handle output strings. As we can automatically

generate our FSTs from affix and dictionary files, we are able to support not only one real language,

but any real language for which aff / dic files have already been created.

70

Overall Stemming Process

We designed the

stemming process to be

very similar to the spell

checking process,

building on what we

created in the spell

checking compiler and

spell checking program

and adding the necessary

components to allow for

determining the root of a

word in addition to determining if the word had been spelled correctly. The main adjustment that

this required was for us to transform the C spell program into a stem program, i.e. handle output.

The minor components that we added were a printRoots() method in the Bison code and a

buildRoots() method in the C stemming program.

Extension of the Compiler to Support Stemming

In order to extend the compiler which we had previously created to support stemming, we merely

had to include pointers to an output string for each arc and store the output strings in an efficient

manner.

In-Memory Data Structures

We had to make one minor change to the RFSA data structure in order to transform it to an RFST

(Residual Finite State Transducer), namely to associate an output string with each arc in addition to

the input character that was already associated with each arc. This allowed us to generate output

Figure 26 Overall Stemming Process

71

from the input words. Additionally, we needed to design a data structure which could hold all of the

possible stems.

Stem List

We initially considered many options when deciding how

best to store the list of stems (output strings). The first

solution which we looked at can be viewed as the naïve

solution. It consisted of simply storing a list of words. The

arcs would then have pointers to the first character of the

corresponding word. This option had the obvious benefits

of ease of implementation and speed of determining the

output string associated with a given arc. However, it

suffered tremendously from the large amount of storage

required to contain such a list. We saw much of this

storage as wasted space and wanted to improve upon it.

As can be seen in Figure 27 Output Strings - Naive

SolutionError! Reference source not found., the letters at

the beginning of a word will be listed many times in such

an encoding scheme, even though it is clearly visible that

in such an alphabetical listing, all of the words between

the first word beginning with an “a” and the first word

beginning with a “b” will begin with an “a.” Likewise, all

of the words between the first words beginning with the

characters: and the first word beginning with the

characters will begin with the characters

 . The naïve solution allots space for every character of every output string, and thus

Figure 27 Output Strings - Naive Solution

72

consumes as much space as could ever reasonably be allotted. However, as was shown above, much

of this space is clearly unnecessary.

That finding motivated us to investigate the use of a trie based solution to the stem storage

problem. Figure 28 Output Strings - Trie Based Solution shows the tree based solution for the same

set of root words that was used in the naïve solution above. At first glance, this solution seems to be

much better, as the fewest possible number of characters is used. However, the most significant

benefit of the naïve solution, the ease of output string determination, has been completely reversed.

In this case, determining the output string requires a very messy traversal of pointers. The arc will

have to point to the last letter of the word in order for there to exist a deterministic way of

identifying the input string. However, it is very difficult to determine the state which came before a

given state; being able to do so would have required us to store pointers between all of the nodes in

the trie in addition to storing the nodes themselves. By that point, we would have lost all of the

benefits gained from storing as few characters as possible.

73

We eventually decided to implement a hybrid of the previous two solutions. Most of the repetition

in characters can be found in the first few characters of a word. For a given 2 letter sequence, there

Figure 28 Output Strings - Trie Based Solution

74

are generally going to

be many words which

begin with that

sequence. However,

for a 5 letter

sequence, there are

going to be very few

words which begin

with that sequence.

We chose to set the

cutoff tolerance for

the number of letters

at the beginning of a word to group by at 2. This decision was based primarily on intuition derived

from experience with language and was validated by the guidance of Kornai András.

Our hybrid approach consists of subdividing the output strings into classes corresponding to two-

letter strings. A word, w, is placed in the set if the first two letters of w are . The data

storage consists of a series of linked lists, one for each set. The first element of each linked list is the

two letter string associated with that set. The subsequent elements of the linked list are the strings

that can be appended to the two letter string to form valid output strings.

Overall, this data structure seemed to meet all of our needs. The only things which it was ill-

equipped to handle were one and two letter output strings. The problem of two letter output

strings was easily circumvented by allowing arcs to point to the first element of the linked list. Single

letter output strings were more complicated, because they weren’t encoded for anywhere in the

current data structure. In order to handle this, we allow there to be a separate linked list consisting

of single character elements.

Figure 29 Output Strings - Hybrid Solution

75

The other problem that arose from not only the hybrid solution, but also the other in-memory data

options was deciding how to handle those arcs which do not have an output string. We chose to do

this by giving them a pointer to an output string anyway but having it point to the null pointer.

A Note on the Order of Elements within the Hybrid Solution Linked Lists

By inspecting Figure 29 Output Strings - Hybrid Solution, one might easily assume that the elements

in the linked list other than the first element are stored in alphabetical order. However, this need

not be the case. The elements can be stored in whatever order the compiler finds them. This is

because the arc will have a pointer to the specific linked list element which corresponds to the

output string. It doesn’t matter where in the list it occurs. We found this fact to be very convenient,

because it allowed us to avoid incurring the time expense associated with alphabetizing the linked

lists.

At this point, we made a memory saving discovery. Since we would only ever be appending to the

end of the linked list, never inserting anything in the middle, we could use a far more efficient and

compact data structure for even the in-memory version of the stem list. We stored the conceptual

linked list as a string. Every time we would have added an element to the end of the linked list, we

instead appended it to the end of the string. We delimited the different elements with spaces.

Since the list of all single letter output strings by definition contained elements of the same length,

we were able to avoid delimiting that list completely.

Compression of Stem List

Since we are already using an efficient form of storage for the in-memory data structure, the biggest

task for compressing the entire stem list was to combine the lists into a single, more connected and

compact structure. We appended the strings to form a single larger string, using dollar signs to

delimit between the different conceptual linked lists. This was necessary because the stemming

76

program must be able to determine the two letter word beginning of the output string in addition to

the rest of the string.

We then had to handle adding the linked list of single character elements into our agglutenated

string. We did this by inserting dollar signs before every character in the string representation of

that list and then appending the string corresponding to the rest of the linked lists to the end of the

string for the single characters. An example end product of this process can be seen in Figure 31

Compressed Stems with Single Letter Stems.

Figure 30 Compressed Stems

77

Additions to the FST Compression Format

We had to make one change to the hunhst_1_0 file format in order to support stemming. This was

to include an output string section at the bottom of the file. The hunfst_1_0 method for dealing

with output string was to store them in a separate file. We chose to develop hunfst_1_1 in order to

benefit instances where it is more convenient to only have a single file, which stores the entire

contents of the FST.

Hunfst_1_1

We developed hunfst_1_1 as a counterpart to hunfst_1_0, not as its replacement. The full

documentation that we wrote to formalize the hunfst_1_1 standard can be seen in Appendix B.

Hunfst_1_1 File Format, but the only notable difference is the output string section described above.

Figure 31 Compressed Stems with Single Letter Stems

78

C Stemmer Program

At a basic level, the stemming program

proceeds by first rebuilding the in-memory

representation of the FST from the

compressed version. Additionally, the in-

memory representation of the output string

list must also be rebuilt before the FST can be

traversed. Subsequently, the FST can be

traversed much in the same way as was done

by the spelling program. In converting the

FSA traversal process that we had used in

spell checking into an FST traversal method appropriated for use in stemming, we added an

additional step to the traversal process. Prior to beginning the FST traversal, a pointer is initialized.

This pointer will be replaced with the pointer to the output string once that pointer has been

determined.

Determining the Output String

Figure 33 FST with Pointers to Meaningful Output StringsError! Reference source not found. shows

an example of and FST that contains pointers to output strings. The FST is traversed much the same

as it was for spell checking. If at any point in the traversal, an arc which contains a pointer to an

output string is crossed, that pointer is set as the pointer to the output string for the input word. In

a well-formed FST, the traversal of multiple arcs with pointers to output strings would indicate that

the prior traversal of an arc with an output string was due to the non-deterministic nature of the FST

and was not enroute to the proper spelling of the word. Additionally, in the traversal of a valid input

word on a well-formed FST, at least one arc with an output string will be crossed.

Figure 32 Stemming

79

This process has been made slightly more complex because arcs which we would not normally want

to have output strings at all have been designed to instead have pointers to NULL as their output

string. In this situation, every arc has an output string and thus the pointer to the output string of

the input word would have been changed at every arc traversal under the aforementioned traversal

algorithm. As such, any suffixed words would be set to have NULL as their stem, even though this is

not accurate. What this means is that during traversal, a previous pointer to an output string is only

replaced if the replacement doesn’t point to NULL.

Figure 33 FST with Pointers to Meaningful Output Strings

80

Figure 35 Indexed Stem List shows the pointers to the list of input words. Once the pointer for an

output string has been found the actual output string is determined as follows. The output string is

initially set to equal the word pointed to. If this word begins with a dollar sign, the dollar sign is

stripped and the algorithm terminates. Otherwise, the list is traversed backwards until a dollar sign

Figure 34 FST with Output String Pointers for All Arcs

Figure 35 Indexed Stem List

81

is encountered. The two letters following the dollar sign are then appended to the beginning of the

output word and the algorithm then terminates.

Chapter 4: Future Research

For future research, we would love to see the finite state transducer model that we have given to

the open source community extended to support morphological analysis. This would be relatively

simple, as the morphDB versions of the aff / dic files contain morphological annotations. The

shortcoming of this would be that morphDB is available for very few languages. However, morphDB

formats are being developed for more languages and the development of an advanced tool such as a

morphological analyzer which supports morphDB might help to increase motivation to speed up the

process.

Additionally, we would like to see linguistic research efforts put forth towards improving the

available aff / dic files. We found most of our shortcomings to stem from missing entries in the aff /

dic files. It would be very interesting for us to see how much better coverage we could obtain if

given better input files.

82

References

1. Computer Programs for Detecting and Correcting Spelling Errors. Peterson, James, L. s.l. :

Association for Computing Machinery, December 1980, Communications of the ACM, Vol. 23, pp.

676-687.

2. Kuenning, Geoff. Where it came from. XEmacs. [Online] October 2007. [Cited: April 13, 2010.]

http://www.xemacs.neoscientists.org/Documentation/packages/html/ispell_6.html.

3. —. International Ispell. Laboratory for Advanced Systems Research. [Online] 3.3.02,07, June 7,

2001. [Cited: April 6, 2010.] http://www.lasr.cs.ucla.edu/geoff/ispell.html.

4. —. International Ispell. Laboratory for Advanced Systems Research. [Online] April 1996. [Cited:

April 13, 2010.] http://www.lasr.cs.ucla.edu/geoff/ispell.html.

5. Németh, László, et al., et al. Open Source Morphological Analyzer. [CD-ROM] 1.0, Philadelphia,

Pennsylvania, United States of Ameriaca : Linguistic Data Consortium, 2008. Hungarian-English

Parallel Text.

6. Karttunen, Lauri and Beesley, Kenneth R. Twenty-Five Years of Finite-State Morphology. Inquiries

Into Words, a Festschrift for Kimmo Koskenniemi on his 60th Birthday. Stanford : CSLI Studies in

Computational Linguistics, 2005, pp. 72-83.

7. The Flex Project. Flex: The Fast Lexical Analyzer. [Online] 2008. [Cited: April 15, 2010.]

http://flex.sourceforge.net/.

8. Free Software Foundation. Bison - GNU parser generator. GNU Operating System. [Online] May 1,

2009. [Cited: April 15, 2010.] http://www.gnu.org/software/bison/.

83

9. Németh, László. Hunspell. sourceforge. [Online] 1.2.9. [Cited: April 12, 2010.]

http://hunspell.sourceforge.net/.

84

Appendices

Appendix A. Hunfst_1_0 File Format

File Format for hunfst_1_0

Sections of the File==

may be used at the beginning of a line anywhere within the file to denote that that line should be

ignored by the compiler

@scheme <digit> <string>

It is necessary that all arcs include 1 or 2 bytes devoted to the input character; most languages will

only require 1 byte for this, but languages with many distinct characters such as Chinese and

Japanese will require 2. Each arc also requires a 3 byte pointer to the output state. The exact

number of bytes devoted to this is dependent on the total number of states. An optional 3 bytes can

be used as a pointer to an output string if a transducer, not and automata, is being described. If this

is being done, a table of output strings must be stored somewhere. This output string can, in

addition to simply listing the output value of the transducer, also include elements such as part of

speech tags. An optional 1-4 bytes may be used to give a probability value to each arc. It is not

necessary to devote any space in this structure to define whether or not a given state is a final state,

because the first state(s) listed will always be the only final state(s) in the transducer.

The digit is the number of bytes per arc. Valid values are integers between 4 and 12, inclusive.

The string is the name of the scheme being implemented by this transducer's arcs. An external file

will contain the list of all scheme names and their corresponding descriptions.

@lang <aa_bb>

aa is the 2 letter language code. bb is the 2 letter country code.

85

@charset <string>

The string is the name of the encoding used by the language being described.

@internal-charset <string>

The string is the name of the encoding used within the hunfst file itself. In general, this will be the

same as the charset used by the language or some superset thereof. This is because it is necessary

to be able to write all of the possible input characters.

@states <number>

This number is the total number of states.

This is the beginning of the states sections. At this point, there will be a line containing a list of

unique states. Each state will consist of a pointer to the first arc which originates from that state.

Since the number of bytes in each pointer is known ahead of time, it is not necessary to waste any

memory with delimiters between states. The contents of each state are written byte by byte in

hexadecimal notation.

@arcs <number>

The number is equal to the number of arcs.

This is the beginning of the arcs section. One line is devoted to each arc. The contents of each arc

are written bitwise in hexadecimal notation and the meaning of the byte is as was described above.

@cksum <number>

The check sum value is used to ensure that there were no errors incurred while copying or moving

the file.

86

Appendix B. Hunfst_1_1 File Format

hunfst_1_1 is a variant on hunfst_1_0 that has been specially designed to handle finite state

transducer models of languages for stemming. In this version of hunfst, output pointers are a

necessary component of all arcs. In the case where there shouldn’t be an output pointer associated

with a given arc, the pointer consisting of all nines (in decimal notation) is used as a place holder.

hunfst_1_1 introduces an additional section which lists the output strigs.

File Format for hunfst_1_0

Sections of the File==

may be used at the beginning of a line anywhere within the file to denote that that line should be

ignored by the compiler

@scheme <digit> <string>

It is necessary that all arcs include 1 or 2 bytes devoted to the input character; most languages will

only require 1 byte for this, but languages with many distinct characters such as Chinese and

Japanese will require 2. Each arc also requires a 3 byte pointer to the output state. The exact

number of bytes devoted to this is dependent on the total number of states. An optional 3 bytes can

be used as a pointer to an output string if a transducer, not and automata, is being described. If this

is being done, a table of output strings must be stored somewhere. This output string can, in

addition to simply listing the output value of the transducer, also include elements such as part of

speech tags. An optional 1-4 bytes may be used to give a probability value to each arc. It is not

necessary to devote any space in this structure to define whether or not a given state is a final state,

because the first state(s) listed will always be the only final state(s) in the transducer.

The digit is the number of bytes per arc. Valid values are integers between 4 and 12, inclusive.

The string is the name of the scheme being implemented by this transducer's arcs. An external file

will contain the list of all scheme names and their corresponding descriptions.

87

@lang <aa_bb>

aa is the 2 letter language code. bb is the 2 letter country code.

@charset <string>

The string is the name of the encoding used by the language being described.

@internal-charset <string>

The string is the name of the encoding used within the hunfst file itself. In general, this will be the

same as the charset used by the language or some superset thereof. This is because it is necessary

to be able to write all of the possible input characters.

@states <number>

This number is the total number of states.

This is the beginning of the states sections. At this point, there will be a line containing a list of

unique states. Each state will consist of a pointer to the first arc which originates from that state.

Since the number of bytes in each pointer is known ahead of time, it is not necessary to waste any

memory with delimiters between states. The contents of each state are written byte by byte in

hexadecimal notation.

@arcs <number>

The number is equal to the number of arcs.

This is the beginning of the arcs section. One line is devoted to each arc. The contents of each arc

are written bitwise in hexadecimal notation and the meaning of the byte is as was described above.

@output

The output section consists exclusively of a compressed list of root words. The compression has

been designed to adhere to the following standard. Root words are divided into two sections, the

first being their first two letters, and the second being the rest of the word. The encoding scheme

88

for a single two letter word beginning consists of “$” followed by a two letter word beginning,

followed by all possible word endings that can match that word beginning. The different word parts

are delimited by spaces. Such an encoding is written for each two letter word beginning.

@cksum <number>

The check sum value is used to ensure that there were no errors incurred while copying or moving

the file.

89

Appendix C. Compiler Finite State Automata

Grammar

 0 $accept: program $end

 1 program: header statesList

 2 header: NUMBER NUMBER NUMBER

 3 statesList: statesList state

 4 | state

 5 state: state_start arcsList

 6 | state_start

 7 state_start: NUMBER TRUE NUMBER

 8 | NUMBER FALSE NUMBER

 9 arcsList: arcsList arc

 10 | arc

 11 arc: CHAR NUMBER

 12 | CHAR OUTPUT NUMBER

Terminals, with rules where they appear

$end (0) 0

error (256)

TRUE (258) 7

FALSE (259) 8

NUMBER (260) 2 7 8 11 12

CHAR (261) 11 12

90

OUTPUT (262) 12

Nonterminals, with rules where they appear

$accept (8)

 on left: 0

program (9)

 on left: 1, on right: 0

header (10)

 on left: 2, on right: 1

statesList (11)

 on left: 3 4, on right: 1 3

state (12)

 on left: 5 6, on right: 3 4

state_start (13)

 on left: 7 8, on right: 5 6

arcsList (14)

 on left: 9 10, on right: 5 9

arc (15)

 on left: 11 12, on right: 9 10

state 0

 0 $accept: . program $end

 NUMBER shift, and go to state 1

 program go to state 2

 header go to state 3

state 1

91

 2 header: NUMBER . NUMBER NUMBER

 NUMBER shift, and go to state 4

state 2

 0 $accept: program . $end

 $end shift, and go to state 5

state 3

 1 program: header . statesList

 NUMBER shift, and go to state 6

 statesList go to state 7

 state go to state 8

 state_start go to state 9

state 4

 2 header: NUMBER NUMBER . NUMBER

 NUMBER shift, and go to state 10

state 5

 0 $accept: program $end .

92

 $default accept

state 6

 7 state_start: NUMBER . TRUE NUMBER

 8 | NUMBER . FALSE NUMBER

 TRUE shift, and go to state 11

 FALSE shift, and go to state 12

state 7

 1 program: header statesList .

 3 statesList: statesList . state

 NUMBER shift, and go to state 6

 $default reduce using rule 1 (program)

 state go to state 13

 state_start go to state 9

state 8

 4 statesList: state .

 $default reduce using rule 4 (statesList)

state 9

93

 5 state: state_start . arcsList

 6 | state_start .

 CHAR shift, and go to state 14

 $default reduce using rule 6 (state)

 arcsList go to state 15

 arc go to state 16

state 10

 2 header: NUMBER NUMBER NUMBER .

 $default reduce using rule 2 (header)

state 11

 7 state_start: NUMBER TRUE . NUMBER

 NUMBER shift, and go to state 17

state 12

 8 state_start: NUMBER FALSE . NUMBER

 NUMBER shift, and go to state 18

state 13

94

 3 statesList: statesList state .

 $default reduce using rule 3 (statesList)

state 14

 11 arc: CHAR . NUMBER

 12 | CHAR . OUTPUT NUMBER

 NUMBER shift, and go to state 19

 OUTPUT shift, and go to state 20

state 15

 5 state: state_start arcsList .

 9 arcsList: arcsList . arc

 CHAR shift, and go to state 14

 $default reduce using rule 5 (state)

 arc go to state 21

state 16

 10 arcsList: arc .

 $default reduce using rule 10 (arcsList)

95

state 17

 7 state_start: NUMBER TRUE NUMBER .

 $default reduce using rule 7 (state_start)

state 18

 8 state_start: NUMBER FALSE NUMBER .

 $default reduce using rule 8 (state_start)

state 19

 11 arc: CHAR NUMBER .

 $default reduce using rule 11 (arc)

state 20

 12 arc: CHAR OUTPUT . NUMBER

 NUMBER shift, and go to state 22

state 21

 9 arcsList: arcsList arc .

 $default reduce using rule 9 (arcsList)

96

state 22

 12 arc: CHAR OUTPUT NUMBER .

 $default reduce using rule 12 (arc)

97

Appendix D. Language Encoding Schemes

Language Encoding Scheme

Arabic UTF-8

Catalan ISO8859-1

Czech ISO8859-2

Danish UTF-8

Dutch ISO8859-1

English ISO8859-1

Esperanto UTF-8

French UTF-8

German ISO8859-1

Hebrew ISO8859-8

Hungarian ISO8859-2

Indonesian ISO8859-1

Italian ISO8859-15

Korean UTF-8

Lithuanian ISO8859-13

Norwegian ISO8859-1

polish ISO8859-2

Portuguese UTF-8

Romanian UTF-8

Russian KOI8-R

Serbian UTF-8

Slovak UTF-8

Spanish ISO8859-1

Swedish ISO8859-1

Ukrainian UTF-8

Vietnamese UTF-8

98

Appendix E. Affix File Format

Standard:

Many keywords have overloaded meaning. In such cases the first time the keyword shows up for a

particular flag, it is to mark the number of rules following it containing that flag, or keyword. These

cases are have the Form: KEYWORD <number> line in the following documentation denoting that

the flag can take that form. Keywords that do not have a “Form:” descriptor are keywords that turn

on or off an option by existing in the file or not.

LANG is the keyword setting the language associated with this affix file

Form: LANG <language>

SET is the he character encoding set used with this language

TRY is the set of characters in order from most to least frequently used.

Example (from English) TRY esianrtolcdugmphbyfvkwzESIANRTOLCDUGMPHBYFVKWZ'

FLAG is the Affix flag type.

The following options will follow this keyword:

 default is the ascii

 UTF is the flags will be using UTFis the8 characters

99

 long is the flags will be 2 ASCII characters long

 num is the flags are marked

Form: FLAG <option>

COMPLEXPREFIXES is the keyword that allows for twofold suffix stripping (see linguistics basics)

NOSUGGEST marks a word that may be a word in the dictionary, but should not be suggested as a

possible correct spelling for a misspelled word. This is used to mark vulgar words.

MAXNGRAMSUGS sets the maximum Lowenstein distance between the suggested word’s spelling

and the mispelled word’s spelling.

NOSPLITSUGS is a keyword disabling suggestions that are actually two separate words.

SUGSWITHDOTS is the If this keyword is present in the affix file, add a dot to the end of the word in

suggestions if there was a dot at the end of the original word. For example, if the word read Mf., the

keyword SUGSWITHDOTS would offer Mr. as a suggestion. This keyword does not work in Open

Office, because Open Office already has this functionality.

MAP maps a letter that is commonly mistaken for another letter to that letter for use in suggestions.

100

COMPOUNDMIN sets the length of the shortest possible word to consider compounding. Without

this keyword, the default is 3.

Form: COMPOUNDMIN <number>.

COMPOUNDFLAG sets the flag that marks a word available to be compounded

Form: COMPOUNDFLAG <flag>

COMPOUNDBEGIN sets the flag that allows a word first part of a compound word

Form: COMPOUNDBEGIN <flag>

COMPOUNDMIDDLE sets the flag that allows a word to be in the middle of a compound word

Form: COMPOUNDBEGIN <flag>

ONLYINCOMPOUND is the marks a suffix that can only be found inside a compound word

Form: ONLYINCOMPOUND <flag>

COMPOUNDPERMITFLAG is the by default, prefixes are allowed in the beginning of compound

words, and suffixes go at the end. COMPOUNDPERMITFLAG allows prefixes and suffixes to also be

part of the words that are being compounded.

101

Form: COMPOUNDPERMITFLAG <flag>

COMPOUNDFORBIDFLAG sets the flag that assures that a version of a word that has had affixes

added will not be compounded

Form: COMPOUNDFORBIDFLAG <flag>

COMPOUNDROOT sets the flag that marks compounds that are in the dictionary

Form: COMPOUNDROOT <flag>

COMPOUNDWORDMAX is the By default, words can be compounded on each other infinitely. This

flag sets a maximum amount of words that can be in a compound word

Form: COMPOUNDWORDMAX <number>

CHECKCOMPOUNDDUP is the assures that words will not be duplicated in compound words. For

example, if foo is a word that can be compounded, this keyword would not allow the word foofoo

CHECKCOMPOUNDREP assures that if a compounded word could also be a misspelled word with

letter from REP in it, it doesn’t get marked spelled properly.

CHECKCOMPOUNDCASE assures that words within compound words are not allowed to have capital

102

letters

CHECKCOMPOUNDTRIPLE assures that words will not compound if it will create a word with a triple

letter run, such as bar|rro or foo|ox.

CHECKCOMPOUNDPATTERN forbids letters that end a word and letters that begin the next word of a

compound word from appearing together.

Form: CHECKCOMPOUNDPATTERN number_of_definition

Form: CHECKCOMPOUNDPATTERN end_chars begin_chars

COMPOUNDSYLLABLE makes sure that a word that has more words than COMPOUNDWORDMAX

have less syllables than the first parameter of this keyword. Syllables are calculated from the list of

vowels that make up the second parameter.

Form: COMPOUNDSYLLABLE <max_syllables> <list_of_vowels>

SYLLABLENUM “Needed for special rules in Hungarian [14]”

Form: Syllablenum <flags>

FORBIDDENWORD defines a flag denoting a word that cannot exist.

Form: FORBIDDENWORD <flag>

103

WORDCHARS defines characters that are acceptable as parts of single words. “For example, dot,

dash, n-dash, numbers, percent sign are word character in Hungarian.”

REP creates suggestions of characters to replace the characters they are commonly mistaken for. In

English an example may be REP ph f. It can also be used the same way for words.

Form: REP <number_of_definitions>

Form: REP original replacement

CIRCUMFIX defines the flag denoting that a word exists as long as it also has a prefix. In some

languages, such as German, the

KEEPCASE defines the flag denoting a word that is acceptable in lowercase form, but not uppercase

form.

From: KEEPCASE flag

LEMMA_PRESENT flag separating dictionary words that are real lemmas from dictionary words that

are actually affixed forms.

Form: LEMMA_PRESENT <flag>

104

NEEDAFFIX sets the flag denoting a word that cannot exist in a non-affixed form.

PSEUDOROOT is the former name of NEEDAFFIX. It has been deprecated.

COMPOUNDRULE defines a custom compound pattern using a regular expression-like syntax.

This keyword is not compatible with any other compound keywords, and as such should not be used

with any of them.

Form: COMPOUNDRULE <number_of_definitions>

Form: COMPOUNDRULE <pattern>

CHECKSHARPS is a keyword letting Hunspell know it should look for special cases of capitalized

letters. In German, for example when the letter-pair SS exists in a place that should be capitalized,

they are capitalized together as a “sharp S.”

COMPOUNDEND sets the flag that allows a word last part of a compound word

Form: COMPOUNDEND <flag>

BREAK denotes characters that can be the break points between compounded words. Break works

recursively.

Form: BREAK <number_of_break_definitions>

105

Form: BREAK <character_or_character_sequence_that_can_break_words>

KEY - a keyword marking letters that are close to each other on the keyboard. Here is a basic

example for a QWERTY keyboard: KEY qwertyuiop|asdfghjkl|zxcvbnm. It is also possible to mark

letters that are near each other by adding additional conditions. For example, the above example

could have included |kjm

ICONV - marks an input conversion table. This keyword assures that if a character can be written

two separate ways, both will be seen as correct.

Form: ICONV <number_of_conversions>

Form: ICONV <char> <char>

OCONV -does the same thing as ICONV for an output conversion table.

Form: ICONV <number_of_conversions>

Form: ICONV <char> <char>

AF substitutes cardinal numbers for affix flags

Form: AF number_of_flag_vector_aliases

Form: AF flag_vector

106

IGNORE lists the characters that can be ignored in a word. This is useful for languages such as Arabic

and Hebrew where diacritical marks are optional in a word

Form: IGNORE <characters>

SIMPLIFIEDTRIPLE is a keyword allowing compound words that would cause a triple letter to occur,

to strip one of those letters. This phenomena is found in correctly spelled Norwegian and Swedish

words.

SFX A keyword denoting a flag for a suffix that can be added to a word

SFX has the following options:

 Cross-product - Y or N (yes or no) flag permitting prefix/suffix combinations

 Stripping - defines letter or letters to be stripped from the end of the non-affixed form. If no

stripping will be necessary, the value of this flag is ‘0’

 Suffix - character or characters to add to the end of a word

 Condition - regular expression type character, string, or set of characters stating under what

conditions the suffix can be added

 Condition Form: [chars...]denotes a set of single characters that must be present in order to apply

the SFX rule

 ^ denotes a character (or string) that cannot be present in order to apply the SFX rule

 [^chars] denotes a set of characters that cannot be present in order to apply this rule

107

 Morphological fields - ease morphological analysis of words. This tag is optional.

Form: SFX <flag> <cross_product> <number_of_rules_with_this_flag>

Form: SFX <flag> <stripping> <suffix> <condition> [morphological_fields...]

PFX A keyword denoting a flag for a prefix that can be added to a word

SFX has the following options:

 Cross-product - Y or N (yes or no) flag permitting prefix/suffix combinations

 Stripping - defines letter or letters to be stripped from the beginning of the non-affixed form. If no

stripping will be necessary, the value of this flag is ‘0’

 Suffix - character or characters to add to the beginning of a word

 Condition - regular expression type character, string, or set of characters stating under what

conditions the suffix can be added

 Condition Form: [chars...]denotes a set of single characters that must be present in order to apply

the SFX rule

 ^ denotes a character (or string) that cannot be present in order to apply the SFX rule

 [^chars] denotes a set of characters that cannot be present in order to apply this rule

 Morphological fields - ease morphological analysis of words. This tag is optional.

Form: PFX <flag> <cross_product> <number_of_rules_with_this_flag>

Form: SFX <flag> <stripping> <suffix> <condition> [morphological_fields...]

108

(9)

109

	Worcester Polytechnic Institute
	Digital WPI
	April 2010

	Open Source Natural Language Processing
	Kara Bernadette Greenfield
	Sarah Elizabeth Judd
	Repository Citation

	Open Source Natural Language Processing

