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Abstract 

Our MQP aimed to introduce finite state machine based techniques for natural language processing 

into Hunspell, the world’s premiere Open Source spell checker used in several prominent projects 

such as Firefox and Open Office.  We created compact machine-readable finite state transducer 

representations of 26 of the most commonly used languages on Wikipedia.   We then created an 

automata based spell checker.  In addition, we implemented an transducer based stemmer, which 

will be used in the future of transducer based morphological analysis.   
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Introduction 

Spelling is an integral component of the understanding of written text by speakers of the language it 

is written in.  Unfortunately, human beings are prone to spelling errors, resulting from both typing 

incorrectly and a lack of knowledge of the proper spelling.  Several helpful computer programs have 

been developed in order to help mitigate this issue, with varying degrees of success. 

Hunspell is the most popular Open Source spelling aid. It spell checks by referencing one file which 

contains properly spelled root words and another file which contains affixes (word elements which 

can be appended to a root word in order to alternate it’s syntactic meaning, i.e. adding “ed” to the 

end of a verb in English in order to make the verb past tense).  This method has a long history and is 

well developed.  As such, it adequately meets the needs of morphologically simple languages such as 

English.  However, for more morphologically complex languages, such as Hungarian, this method is 

insufficient.  A morphologically complex language is one in which internal word structure can be very 

complicated.  In Hungarian, this morphological complexity arises due to the agglutinative nature of 

the language. 

There exist proprietary spell checkers which can deal with morphologically complex languages better 

than Hunspell can.  Researchers at Xerox leveraged finite state transducers to build tools that were 

capable of analyzing and spell checking.  The use of finite state transducers made many natural 

language processing tasks much more efficient and compact.  Unfortunately the Xerox software is 

proprietary, which has resulted in a stagnation in the continued integration of finite state 

transducers into the natural language processing arena. 

Our MQP aims to give Hunspell, and thus the Open Source community, the same functionality the 

Xerox codebase had.  In doing so, we will be improving the spell checker used in several prominent 

Open Source projects, such as Firefox and Open Office.  
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In order to do this, we first had to update a Java codebase which created finite state automata from 

files of a specific format, known as morphDB.  At the time of this writing, Hungarian and English have 

been encoded in that format, but very few other languages have.  We needed the code to 

additionally support the more common format used by Hunspell.  Supporting this additional file 

format drastically increased the number of languages which we were able to support. 

The finite state automata files output by our java code adequately conveyed the information about 

the languages, but they were too large to be portable over the internet.  As portability was one of 

our main requirements, we developed a condensed file format, hunfst_1_0, and a compiler which 

was able to convert the large finite state automata files into much smaller files. 

Our last task in spell-checking was to implement a spell checker that was capable of taking in finite 

state automata as input and traversing said automata in order to determine whether a given set of 

words belongs to a particular language.  We accomplished this by writing a C program, which we 

then tested on several large corpora in order to assert the speed and accuracy of our methodology. 
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Chapter 1: Background 

Affix and Dictionary Files 

The most naive spell checker would be a simple dictionary. Words would be checked against this 

dictionary. If the user had typed a word that did not match a dictionary word, it was assumed to be 

spelled incorrectly. This can get very inefficient. Long, long-er and long-est would all have to be in 

this dictionary, despite the fact that English has rules that give all adjectives like long the ability to 

add -er and -est to their ends. With a large enough dictionary, a naive spell checker can, in fact, find 

misspelled words. Upkeep, however, would take a long time. For each new word that has been 

created, the editor would have to add not only the word, but all the other forms. In addition, simply 

looking through the file would take a long time for the spell checking program. Clearly, in order to 

spell check efficiently in any language, we need a system that is more intelligent.  

Using Aff/Dic files rather than a dictionary alone helps to alleviate problem. The dictionary file still 

contains a long list of words, but it only needs to contain root words and words that cannot be 

formed by these root words. Another file, the affix file, contains all the additions and relationships 

between words. Further description of these files can be found below. 

Dictionary File 

As with the naive spell checker described above, the dictionary contains a list of words. Unlike the 

naive dictionary described above, however, it only needs to contain root words, and words that 

could not be obtained by adding to these root words using affix rules. It also notes what type of 

word each word in the list is, so that we do not add -ed for past tense to verbs, not nouns. 

Dictionary File Format 

Hunspell dictionary files start with a number indicating the size of  the dictionary file. 
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This is followed by a list of dictionary words.  Each written on their own, single line. 

Dictionary words are entered into the .dic files with the following general format: 

<Word> is the if no affix/compounding rules apply to this word 

<Word>/<Flags for rules that apply to this word>  

*<forbidden word> 

Affix File 

The affix file contains rules for adding to the words in the dictionary file. It can easily take care of 

simple affixes like adding -er to a dictionary file adjective. It has a list of these. Over time, the affix 

files are getting better and better. They also have the ability to deal with changing stems (for 

example stripping the “y” from “happy” in order to make it become “happier”). For English, this 

would be sufficient. Hungarian, German, and other more agglutinative languages, however, require 

more complex affix files. 

Standard Format 

The standard format is the format used by Open Office. Several more dictionaries have been written 

for the standard format than the morphDB format. It includes keywords for compounding words, 

letters that are commonly mistaken for each other, and the languages being used. For more 

information on the keywords, see Appendix E. Affix File Format. 

MorphDB Format 

The morphDB format is a newer, more refined format than the standard format. It has only 10 

keywords, compared to the standard format's approximately 50. This is because the morphDB 

format treats compounding words as prefixes and suffixes, rather than as an entirely separate 

process. As of the writing of this paper, only a few languages have been encoded in the morphDB 



14 

 

format, which will be described in the section below. For more information on the morphDB 

keywords, see Appendix E. Affix File Format 

Finite State Automata 

In the introduction to their book Finite State Language Processing Emmanuel Roche and Yves 

Schabes define a finite state automata as  

“a 5-tuple (         ) 

   is a finite alphabet 

   is a finite set of states 

     is the initial state 

     is the set of final states 

     (   )    is the set of edges” [1 p. 4] 

Deterministic Finite State Automata 

Example: 

  *   + 

  *   + 

    

  * + 

  *(     ) (     ) (     ) (     )+ 

The double circle is used to denote an accept state.  The letters are the input values and the arrows 

indicate the state transitions that occur when reading that input. 

This Finite State Automata accepts any languages that end in an a. 

Figure 1 FSA Example – Single Accept State 
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For example, the string "abba" would be accepted by this automata.  The traversal would pass 

through the edges (0, a 0)   (0, b, 1)   (1, b, 1)   (1, a, 0).  At this point, the automata will have run 

out of input, and be in the accept state.  This means the automata has accepted the input. 

The string "abb" will be rejected by this finite state automata.  It would pass through the edges (0, a 

0)   (0, b, 1)   (1, b, 1).  At that point, the automata will have run out of input to read, and not be in 

an accept state.  This means the automata has rejected the input.  

Finite state automata can have more than one accept state.  In such cases, if the end of the input 

takes the automata to any of the accept states. 

Example: 

  *     + 

  *       + 

    

  *   + 

  *(     ) (     ) (     )+ 

This Finite State automata accepts the string "ab" and the string "abc."  It does not accept any other 

strings. 

The string "aa" does not have a valid path in the automata.  The automata will run through (0,a,1).  

From state 1, it will read an "a" which does not bring it to a state in the automata.  At this point it 

will reject the string. 

The string "a" does not end in an accept state.  The automata will run through (0,a,1).  At this point, 

it is not in an accept state, and does not have any further information to read. It will reject this 

string. 

Figure 2 FSA Example - Multiple Accept States 
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The string "ab" will pass through (0, a, 1)    (1, b, 2).  At this point, the automata has no further 

input to read, and it is in an accept state.  It will accept the string. 

The string "abc" will pass through (0, a, 1)   (1, b, 2)   (2, c, 3).  At this point, the automata has no 

further input to read, and it is in state 3, which is also an accept state.  It will accept the string. 

Finite State Automata are closed under Kleene Star, Union, Concatenation, Intersection, and 

Complementation [1]. 

Nondeterministic Finite State Automata 

All automata described above are deterministic.  In all states, for any input there is only one state 

that input can transition to.  In a nondeterministic finite state automata, this is not the case.  Unlike 

a deterministic Finite State Automata, which has a single start state    , a nondeterministic finite 

state automata can have a set of start states     [2]. 

Example: 

  *    + 

  *   + 

  * + 

  * + 

  *(     ) (     ) (     ) (     ) (     )+ 

Like Figure 1 FSA Example – Single Accept State, the above FSA accepts the language consisting of all 

words that end in “a.”  If any It has an option from state 0 given the input a to move to state 1. 

It accepts the string "aa" if it takes the path (0, a, 0)   (0, a, 0).  This path ends in an accept state.  

While there exists a path for "aa" that does not end in an accept state, (0, a, 0)   (0, a, 1), because a 

path to an accept state exists in the automata, the automata accepts the input. 

Figure 3 NFSA Example 
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Every non-deterministic finite state automata can be written as a deterministic finite state automata 

(DFA).  The proof of this can be sketched intuitively.  Any transitions in the nondeterministic 

automata where a single element,    , transitions to a single state     can be kept in the 

deterministic finite state automata.  Where one input character can cause traversal from a state to 

several possible destination states    , these states can be described as a single state 

representing   .  The same can be done for the states reachable by that state.  A more detailed 

proof can be found in [2]. 

Finite State Transducers 

A finite state transducer is a finite state automata with two tapes.  Finite state transducers can be 

deterministic or nondeterministic.  Frequently, these tapes are described as being an input and 

output tape.  These names are somewhat inaccurate, however, as either tape can be used as input 

to create the other tape.  The "input" tape can just as easily be used as an "output" tape, and vice 

versa.  The tapes represent a relationship between the symbols, and it is arbitrary which tape 

represents which part of the relationship.  

In the introduction to their book Finite State Language Processing Emmanuel Roche and Yves 

Schabes define a finite state transducer as: 

“A 6-tuple (             ) such that 

    is a finite alphabet, namely the input alphabet 

    is a finite alphabet, namely the output alphabet 

   is a finite set of states 

     is the initial state 

     is the set of final states 

          
    is the set of edges” [1]. 
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Σ  𝑎𝑏 

Σ  𝑎𝑏 

𝑄  *   + 

𝑖    

𝐹    

𝐸  *(  𝑎 𝑏  ) (  𝑏 𝑎  )   𝑏 𝑏  ) (  𝑎 𝑏  )+ 

Example:  

Figure 5 FST Graphical Example uses the 

same notational conventions as were used 

in the previous FSA examples, with the 

adaptation of labeling each arc with both 

an input character and an output 

character, with the input and output 

delimited by a colon.   This finite state 

transducer accepts the same language as 

the finite state automata in Figure 1 FSA 

Example – Single Accept State.  In 

addition, however, it produces an output 

string.  For the input "abba" the transducer runs through the edges (0, a, b, 0)   (0, b, a, 1)   (1, b, 

b, 1)   (1, a, b, 0), and outputs the string "babb." 

Advantages of Lexical Transducers Over Affix and Dictionary Files 

Morphologically complex languages are notoriously difficult to perform even the simplest of natural 

language processing tasks on.  For example, the complexity derived from the highly agglutinative 

language of Turkish has prevented the writing of even preliminary Turkish affix and dictionary files.  

The aff / dic file format has been found to be particularly prohibitive to agglutinative languages 

because of the need to have not only flags that can be applied to root words, but also, many layers 

of flags that can be applied to flags that have already been applied to words.  The many levels of this 

that are required for agglutinative languages is too high and complex to be effectively represented in 

the aff/dic format.  Alternatively, such agglutination can be easily represented in finite state 

transducers by having the last node of the portion of the FST which encodes a given suffix contain 

Figure 5 FST Graphical Example 

Figure 4 FST Example 
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outgoing arcs to the first states of portions of the FST which encode other suffixes.  Doing this for 

many or all of the affixes allows for easy agglutination. 

Residual Finite State Automata 

A finite state transducer is a finite state automata with two tapes.  Finite state transducers can be 

deterministic or nondeterministic.  Frequently, these tapes are described as being an input and 

output tape.  These names are somewhat inaccurate, however, as either tape can be used as input 

to create the other tape.  The "input" tape can just as easily be used as an "output" tape, and vice 

versa.  The tapes represent a relationship between the symbols, and it is arbitrary which tape 

represents which part of the relationship [3]. 

An understanding of residual languages is necessary in order to gain an understanding of Residual 

Finite State Automata.  We define residual languages below before defining Residual Finite State 

Automata. 

The 2001 paper "Residual Finite State Automata" written by François Denis, Aurélien Lemay, and 

Alain Terlutte includes the following definition for a residual language:  

"Let L be a language over    and let     . The residual language 

of L with regard to u is defined by       *     |     +.  If L is 

recognized by a NFA              , then    (    )     

    .” [3] 

Paraphrased, this means a residual language of a given language,  , over the alphabet  , for a given 

string   contains the set of all strings which when appended to   form words in  .  Under the 

notation of the definition, u is the prefix of v in  . 

In their 2001 paper Residual Finite State Automata, Denis et. al. describe a residual finite state 

automata as  
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Σ  *   + 

𝑄  *     + 

𝑄    

𝐹    

𝛿  *(     ) (     ) (     ) (     )      ) (     ) (     )+ 

"an NFA    (          ) such that, for each state        is a 

residual language of   .  More formally,       there exists a 

     such that         " [3]. 

Example:  

The RFSA in Figure 6 RFSA 

Example and Figure 7 

RFSA Graphical Example 

accepts the language 

     .  This is an RFSA, as 

opposed to just being an 

NFA, because the 

language associated with 

each state is a residual 

language of the language 

associated with the start 

state.  The language associated with state 0 is      .  This is     , the residual language of   with 

respect to  .  The language associate with state 1 is          .  This is     .  The language 

associated with state 2 is         , which is      .  Since every state’s associated language is a 

residual language, it can clearly be seen that this is an RFSA.  

Advantages of RFSAs for this Project 

The RFSA files that we generate for each language were designed to be distributed over the internet.  

In order to facilitate this, we needed them to be as small as possible.  We were able to achieve most 

of the necessary space savings by minimizing the number of nodes in the finite state machine by 

deciding to use either RFSAs or more generally NFAs.  In order to increase the speed with which we 

could perform natural language processing tasks, we additionally wanted our finite state machines 

Figure 7 RFSA Graphical Example 

Figure 6 RFSA Example 
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to be easily traversable.  We chose to use RFSAs as our language representation scheme because it 

met both of these needs better than any of the alternate forms of finite state machines which we 

considered. 
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Chapter 2: Spell Checking 

The first task that we chose to use finite state transducers for was simple spell checking.  In this, a 

language and one or more words were to be provided by the user and those words would either be 

confirmed or rejected as being valid in that language.  At its most basic level, this required us to 

generate finite state automata for all languages that we were going to support and then to develop a 

methodology for traversing such automata. 

Spell checking has a fairly long history branching from the Hunspell and Xerox lineages.  Our spell 

checker aimed to combine the best aspects of both of these prior efforts. 

History of Hunspell 

Hunspell, the spell checker currently used by most major open source programs, developed from a 

long line of increasingly more complex spell checkers.  That history is traced below. 

TYPO 

In 1980, there were two main spell checkers for UNIX systems, TYPO and SPELL [1].  TYPO was 

developed for the IBM/360 and IBM/370 systems by researchers at the Thomas J Watson Research 

center in Yorktown Heights.  It took a different approach to spell checking than SPELL.  It looked 

through the document for digrams - pairs of letters - and trigrams -  groups of three letters - that 

were common in the document.  It then matched these tokens against a list of digrams and trigrams 

derived from a list of over 2.500 common words.  It could then order the words in the paper it was 

spell checking from words with infrequently used digrams and trigrams to frequently used digrams 

and trigrams.  Usually, the infrequently used digrams and trigrams would occur in words that were 

improperly spelled, so the user would find their misspelled words at the top of the list [1].   

Spell 
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Spell, written by R. Gorin in Assembly for the DEC-10 in 1971, was the first spell checker written as 

an application, rather than for research purposes [1].  At the time, it was not considered to be a 

major project, but it has been steadily developed since [2].  

 

SPELL made use of a dictionary search - checking each word in a document against a list of words 

that were known to be spelled correctly.  The predecessors to SPELL would create and print a list of 

words that were misspelled, but the user would have to find where in his/her document the words 

had occurred on their own.  SPELL spell checked interactively, allowing the user to see where in 

his/her document the misspelled word had occurred.  In addition, it allowed the user to fix the 

mistake. 

Upon discovering a misspelled word, SPELL would allow the user to choose one of 5 options, which 

will seem familiar to users of current spell checkers. 

A user could choose: 

a) Replace - the word would be deleted, and the user would be able to type in a correctly spelled 

word. 

b) Replace and Remember - if the misspelled word was anywhere else in the text, all occurrences 

would be replaced with the fixed version of the word. 

c) Accept - the word should be considered correct. 

d) Accept and remember - everywhere in this document that the word is found, mark it correct. 

e) Edit - go back and edit the word in the context of the document. 

To address usability concerns, SPELL needed to consider efficiency, both in time and space.  SPELL 

did this by separating word lists.  First, it would check the most commonly used English words.  Then, 
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it would check against the most commonly used words in the document.  Last, it would check a 

much larger dictionary of known words, which would be stored elsewhere.   

In addition to discovering which words are misspelled, SPELL offered the user options of correctly 

spelled words similar to the misspelled one.  Similar, in this case, was defined as:  

" (1) transposition of two letters 

 (2) one letter extra 

 (3) one letter missing 

 (4) one letter wrong"   

(1) 

To address (1) and (2) the spell checker would simply have to try the word against the dictionary 

with the possible reversals of the error.  The problems of (3) and (4) are more complicated, and 

require a clever algorithm.  To discover if the word was off by one letter, SPELL utilized their already 

existent hash program.  If the wrong letter had occurred in the third character or later, the 

misspelled word would hash to the same thing as its properly spelled version. This limits the number 

of words the misspelled word has to be checked against to find the correct alternative.  The program 

then changes the first two letters to each of the 25 other letters those letters could have been, one 

at a time.  A missing letter is found similarly.  The program generates a number of words equal to the 

length of the misspelled words plus two, each with a null character placed at a different point in the 

misspelled word.  SPELL then runs the same algorithm it ran for a word with an incorrect letter on 

these words.  The null character acts as the incorrect character. 

SPELL also contained rules for affix adding, including stripping letters from the ends of words before 

adding the suffix. 
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SPELL was the first application-driven spell checker. 

Ispell 

Work continued on Spell, switching the language to C, and improving the affix files, adding support 

for other languages.  

SPELL allowed for suffix removal, but it was based on heuristics.  Bill Ackerman changed the code to 

work with affix flags directly from the dictionaries themselves,  in order to make the affix stripping 

(removal of affixes from a word in order to determine the root of that word) more accurate.  The 

idea has continued through Hunspell.  Bill Ackerman was also the first contributor to call the 

program Ispell, which later became the official name [2] [3]. 

Pace Willison rewrote the code from scratch in C [2]. 

International Ispell 

Geoff Kuenning created a table-driven version of Ispell to allow Ispell to work for languages other 

than English.  At the same time, Pace Willison had improved the efficiency of his version of Ispell.  

Having parallel versions of similar but different spell checkers with the same name led to the 

renaming of Kuenning's version to International Ispell [3]. 

MySpell 

Myspell brought thread safety to Ispell. [4] 

Hunspell 

Hunspell is the current popular incarnation of spell. While MySpell took steps towards working with 

compound words, it still could not handle the complex morphology (internal word structure) of 

languages such as Hungarian. It has the following improvements over MySpell: 
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 HunLex 

HunLex is a language-independent tool with configurable parameters for maintaining 

morphologies.  Before HunLex, maintenance relied on resources such as Magyar Ispell,  a 

"mix of shell scripts, M4 macros, and hand-written pieces of MySpell resources" [5].  From a 

maintainability perspective, HunLex is greatly preferable. 

 Hunmorph 

Hunmorph allows for an optional morphological description field to aid in part of speech 

analysis and language translation.  Myspell requires the languages to be writable in some 

ASCII format. Hunspell allows for UTF-8 encoding, opening it to languages for which an ASCII 

alphabet is not available.  Hunmorph added twofold suffix stripping to Myspell's single suffix 

stripping, easing morphological analysis for heavily agglutinative languages like Hungarian.  

Twofold suffix stripping also means that Hunspell dictionaries can theoretically represent all 

of the affixes Myspell dictionaries can, with a square root of the number of rules.  Myspell 

allowed for single-character flags.  Hunspell allows 2-character flags for affixes, which allows 

for a larger number of affix classes (categories of related affixes such as the English 

pluralizing suffixes “s” and “ies”).  Hunspell also allows repeated elements for homonyms 

(e.g. : an element for “work” as a verb and “work” as a noun).  Hunmorph understands 

circumfixes (affixes which consist of two word elements to be appended to the root word, 

one at the beginning and the other at the end), seeing them as single affixes.  Hunmorph 

also has support for direction-sensitive compounding (the agglutination of multiple root 

words in order to form a new word, i.e. “play” and “ground” can combine to form the 

compound word, “playground”).  Sometimes words can combine in one direction but not the 

other (“play” and “ground” cannot combine to form the word, “groundplay” in English).  

Myspell allowed compounding, but not in a direction-specific manner. Hunmorph has 

separate flags for words that can be compounded at the beginning vs. at the end, making it 

more accurate than Myspell [5]. 
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History of Finite State Transducers in Spell Checking 

The spell checkers described above rely on lists of words and rules for how those words can be 

modified.  While they were being developed, researchers at Xerox were developing a more efficient 

and extensible way in which to store words and their modifications, which we describe in the rest of 

this section. 

Rewrite Rules 

Human languages consist of infinitely many possibilities; there is no limit to the number of 

grammatically correct sentences a human can make.  The grammars that these sentences are 

created with, however, are finite in nature.  This is known because the entire grammars are held 

within a human brain, which contains a finite amount of space.  In order for a finite grammar to 

describe an infinite language, the grammar must allow for recursion.  This recursive grammar forms 

the syntactic component, the "deep structure" of a sentence.  The "deep structure" partially 

determines the "surface structures," including the phonological (sound) interpretation of the 

sentence.  It is the latter that we discuss here –it is the surface structure of words that a spell 

checker checks, and that a stemmer is interested in. 

In their 1968 book The Sound Pattern of English Noam Chomsky and Morris Halle formalized 

phonological interpretation.  

 It had to represent the rules in a manner that was clear and precise. 

 It had to be able to distinguish rules which represented how a competent native speaker of a 

language produced and understood sentences in that language. 

 The rules that it described had to be "linguistically-significant." Chomsky and Halle defined 

linguistic significance in terms of psychology, as well as word analysis.  The rules should 

represent the mental description a child has of the language. It also needs to describe the 

actual phonological patterns of speech [5].  
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It is possible to use the Chomksy-Halle generative grammars to create grammars that are not valid 

ways of describing actual speech patterns. 

The rules took the following form: 

           

This means to rewrite   as   if   is between   and  , where   and   are "usually allowed to be 

regular expressions" [6].  Regular expressions are useful in languages with vowel harmony, such as 

Hungarian.  In Hungarian, the suffixes which can be appended to words depend on which class of 

vowels were in the word.  Any number of consonants can follow this vowel without it changing the 

way the rule should be applied. 

Context Sensitivity of Rewrite Rules 

Until the early 1980s, linguists used language-specific cut-and-paste techniques based on the rule 

system described above to analyze words.  These were very similar to the aff/dic format used by 

modern open source spell checkers.  In 1972, Douglas Johnson noticed that these rewrite rules were 

context-sensitive [7].  This means that each rule in the grammar can only be applied to input once.  

The new string can later be used as the context for the next rule, but it cannot have the rule applied 

on itself. 

Consider the rule           . 

The first application of this rule creates the string “aabb” from the string ”ab” (which can be read as 

“     ” 

If the rewrite rules allowed us to arbitrarily place   between any two characters and consequently 

read "aabb" as "         ", and reapply the rule, we would obtain the context free language 

*     |   +.  We do not allow this to occur, however. Now that we have applied the rule to the 

string, the current string can only be used as the context for the next rule, meaning the entire string 
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"aabb" would have to be the   or   for it to create further productions. This difference motivates the 

notation difference between the rewrite rules described above, and the form         [6]. 

Context Sensitive Rules are Regular Relations 

In 1980, Kaplan and Kay added to Johnson's realization, noting that the fact that these rewrite rules 

were context sensitive meant that they were regular relations. 

In their 1994 paper Regular Models of Phonological Rule Systems, Ronald Kaplan and Martin Kay 

describe a regular relation by the recursive definition 

 “The empty set and * +   ,  * +-    ,  * +- are regular relations” [6].  This is to 

say that a string of any length is a regular relation. 

 If       and   are regular languages, then so are their concatenation, union and Kleene 

closure. 

 "There are no other regular languages" [6]. 

Regular relations are accepted by finite state automata.  An n-way regular relation is the union of n 

strings of characters.  The automata that accepts n-way regular relations is an n-type finite state 

transducer [6]. 

In 1961 Schutzenberger had proven that transducers were closed under composition [7], i.e. if A and 

B are both transducers, then adding one or more arcs from the accept state(s) of A to the start state 

of B will result in a transducer.  This meant that you could describe all the rewrite rules for a 

language in a single transducer.   

Two Level Morphology 

Koskeniemmi did not believe that transducers alone would be efficient enough for language analysis.  

To deal with the problem more efficiently, he invented a system of two-level morphology.  Like 

cascaded transducers, two level morphology broke the language down into rules.  Unlike cascaded 
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transducers, two-level morphology did not consider rules in order, but all at the same time.  This 

means that the grammar is not only closed under union and composition, but also intersection [7]. 

From these two level rules, compilers were built.  The first compiler was written in Pascal by 

Koskenniemi.  Later versions were written in InterLisp.  The current version, called TWOLC, was 

written in C at PARC between 1991 and 1992.  Other compiler implementations of two level 

morphology include University of Texas' KIMMO, SRI's CLE, the ALEP Natural Language Engineering 

Platform and the MULTEXT Project [7]. 

Ordered Rules 

Computational linguists found keeping track of cascading rules easier than figuring out when rules 

would conflict in the two level system.  For that reason, computational linguists stopped using the 

two level rules in favor of simple cascading finite state transducers.  They found it easier to deal with 

ordering the rules properly.  Finite State Transducer building for lexical analysis has gone back to 

writing rewrite rules in a logical order. 

Our Contribution to Open Source Spell Checking 

While the open source movement has spent the past twenty years developing a spell checker that 

works well, the spell checker based on Finite State Transducers developed by Xerox still works 

better, especially for languages with complex morphologies like Hungarian.  We worked on bringing 

Finite State Transducers into the Hunspell library, bringing the functionality of Xerox's proprietary 

software into the Open Source world. 

Overall Spell Checking Process 
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Traditionally, spell checking 

has been done by directly 

referencing affix and 

dictionary files.  In order to 

use finite state transducers, 

our first objective was to 

create them from the given 

affix and dictionary files.  Two 

versions of the FSTs were 

deemed to be necessary: a compact binary file for distribution purposes and an in-memory version 

for actual computation.   

The progression from affix and dictionary files to FSTs 

followed the following sequence of steps.  The affix and 

dictionary files were fed into the java code that we had 

modified to accept dictionaries in either the standard aff / 

dic format or the morphDB format.  This code then 

generated a human readable residual finite state 

automata for the given language.  This was then fed as 

input to Flex, a “tool for generating scanners” [7],  and Bison, a “general purpose parser generator” 

[8].  The Flex code parsed the file into appropriate tokens which were then given to the Bison code 

to assemble into an in-memory finite state transducer.  However, having an in-memory finite state 

transducer at this phase did not meet one key requirement for our in-memory finite state 

transducer, namely that it exist in a place where it could be traversed to validate or invalidate input 

words.  We wrote a printRFSA() function in the Bison code that was able to take the in-memory finite 

state transducer and convert it into the compressed finite state transducer.  This was the FST that 

Figure 8 Spell Checking Process 

PrintRFSA() 

{ 

     print header information 

     print state section header 

     print 3 byte state representations 

     print arc section header 

     print 4 byte arc representations 

} 
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buildRFSA() 

{ 

     initialize state array 

     initialize arc array 

     for each state 

          copy 3 byte state representation to state array 

     for each arc 

          copy 4 byte arc representation to arc array 

} 

was to be distributed to any machine 

which was going to use our spell-checker.  

The compressed FST was then taken as 

input to the C program, “spell” which used 

its buildRFSA() function to regenerate an 

in-memory FST.  From here, the C program 

could traverse the FST to use it for spell-

checking.  

Java System Architecture 

Our project built on a pre-existing codebase that existed to create and use finite state transducers.  

Finite state transducers are useful for a wide variety of natural language processes, ranging from the 

spell checking processes to the speech recognition.  The codebase we started with contained 22 

Eclipse projects, 1883 java files, and took up 215M of memory.  This was difficult to manage, and in 

large part, unnecessary for our purposes.  We wanted to build RFSAs and Transducers from aff/dic 

files.  We did not want to understand what someone was speaking.  We streamlined the workspace 

by first discovering what code was necessary for our purposes, then looking for what these projects 

depended on. Daniel Varga, our liaison to MOKK then streamlined this code even further.  Our 

current workspace is 139M (packaged without affix and dictionary files) and consists of 769 java 

files.  This codebase is more manageable to upkeep, run, and understand. 

Creation of a Finite State Automata: 

There are two main components to creating a finite state transducer from aff/dic files: creating an 

automata of words, then turning this into one that uses letters. 

At first, automata are created where the transitions are words and affixes.  The automata composed 

of words and affixes is created, determinized, minimized, and compressed.  At this point, the 
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automata can be "letterized," changed into a finite state automata where the transitions are letters 

rather than full words.  This letterized transducer is then minimized, compressed, and turned into an 

RFSA. 

Figure 9 RFSA GenerationError! Reference source not found. describes how the Java code 

implements this process. 

Larger Arrows are classes, smaller arrows denote inputs.  Boxes denote outputs.  Outputs that are 

later inputs to other classes are marked with the same number as an output as they are as an input.  

Where an input arrow feeds into another arrow of the same size, the first arrow is renamed to the 

name in the second input before it enters the class.  When two input arrows feed directly into a 

class, it means that both files are used as input to the class. 
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Figure 9 RFSA Generation 
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The following sections describe the main projects we use in this process 

factor 

The factor package takes on aff/dic files and turns them into Finite State Automata. It contains the 

classes necessary to convert affix and dictionary files into a finite state automata. 

Changes to the factor Package 

When we received the code, the factor package worked only for the MorphDB format. We extended 

the code to allow it to work for the format that the vast majority of other languages were in.  This 

process included creating the following classes: 

 Package szte 

o Convert 

Java interface for classes that run the conversion process from affix and dictionary 

files to a residual finite state automata. 

o ConverterStandard 

Implementation of the Convert interface for the standard format. 

Input: a language name in all capital letters.  The possible language choices can be 

found in Appendix D. Language Encoding Schemes 

o Output: a residual finite state automata 

o ConverterMorphDB 

Implementation of the Converter class for the MorphDB file format. 

o Language 

Enum used for matching the input language. 

 Package com.all.factor.morphdb 

o Factorize 

An abstract class containing the basic methods for reading affix and dictionary files 

and understanding the interactions between them. 
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o FactorizerMorphdbTest 

the implementation of factorize for the morphDB format. 

o FactorizerStandard 

The implementation of factorize for the MorphDB format.  It understands more 

keywords than the MorphDB version.  See the section on affix file formats for more 

information. 

jmorph 

The jmorph project analyzes and generates words. It is used extensively by the factor project to 

combine affixes with lemmas (word roots, canonical forms). These later become accept states of the 

spell checking finite state automata. 

transducer 

The transducer package deals with the running and creation of transducers. It also converts 

transducers to regular finite state automata. 

RFSAs 

The generation of RFSAs, or residual finite state automata, was the first step in the process of 

completing tasks in linguistic analysis by utilizing the power of finite state automata over simple 

dictionary and affix files.  Having the automata in a human readable format at this point in the 

process proved to be invaluable for testing and debugging the generation process.  The undesirable, 

yet inherent side-effect of creating human readable output is the large amount of space that such 

files consume.  However, this was an acceptable trade-off at this phase and would be dealt with at a 

later point in the process. 

Constructing RFSAs 
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The initial code base that we had been given was capable of constructing RFSAs, but only in very 

limited circumstances.  First, this code originally required the input aff / dic files in the morphDB 

format.  Unfortunately, there are only a few languages for which morphDB formatted dictionaries 

exist.  Second, the code assumed many properties of the input language that are valid for Hungarian, 

but not for a variety of other languages that we had hoped to support.   As one of the primary goals 

of this research project was to support a large variety of languages, it was necessary for us to make 

several extensions to the initial code base that we had been given.   These extensions were mainly 

concerned with adding support for affix and dictionary files in standard format and removing hard-

coded language properties specific to Hungarian.   

RFSA Format 

There is a start state from which all words originate and multiple accept states.  The accept states 

are indexed sequentially beginning with 0.  The accept state with the highest index is notable for the 

fact that it is the only state in the RFSA which does not have any outgoing arcs.  The arc 

corresponding to the last letter of any word which cannot have additional suffixes appended to it 

will have the highest indexed accept state as its destination state.  If at any point in the process of 

traversing the FST, a valid word is formed, there will be an arc from that state to one of the accept 

states.  During the traversal of a valid word, at most one accept state will be traversed which 

corresponds to a root word.   

There were two distinct options to be considered when determining whether to use this model or to 

construct a more typical FSA, where multiple accept states corresponding to root words can be 

encountered during the course of the traversal of the FSA with a given word as input.  This option 

would have had the benefit of requiring fewer arcs, but would have made stemming more difficult.  

A more comprehensive explanation of the benefits that stemming derives from this format can be 

seen in the Stemming Chapter.  The FSA format chosen also differed from more conventional 

automata in that it doesn’t reserve state 0 as the start state.  A major benefit of having all accept 
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states indexed sequentially, starting with 0 is that no space in the in-memory version of the FST 

needs to be devoted to describing whether or not a state is an accept state.   

RFSA Format without Suffixes 

Figure 10 RFSA - No Suffixes displays a simple example 

of an RFSA which corresponds to a language without 

any suffixes.  This language consists of the words “a” 

and “ab”.  As there are no suffixes, there is only a 

single accept state, namely state 0.  

RFSA Format with Suffixes 

The addition of suffixes to languages in RFSAs, slightly complicates the structure of the graph.  There 

will be one accept state for each set of suffixes, such that there is some word which can have every 

element of that set appended to it.  The number of accept states in an RFSA is bounded by the 

number of suffixes in the language. 

Proof of the Boundedness of the Number of Accept States in an RFSA 

                    

                              

        (   )      

 ( )                                                

 

We define a suffix group, G, as an element of  ( ) such that there exists some word,  

              (   )    

                                    

The RFSA for a given language wil have |  | accept states. 

Figure 10 RFSA - No Suffixes 
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    ( ) 

 |  |  | ( )| ( )|   | |  |  |   | |   

Examples of RFSAs with Suffixes 

Figure 11 Single Suffix Group displays the RFSA for the language which accepts the words: {bike, 

bikes, biked, care, cares, cared}.  The root words in this language are “bike” and “care”.  There are 

two suffixes in this language, “s” and “d”.  Every root word can have every suffix applied to it.  Thus, 

there is one suffix group derived from the root words.  Additionally there are words, such as “bikes” 

which cannot have any suffixes appended to them; a second suffix group corresponding to the 

empty set is derived from this.  The RFSA contains two accept states, corresponding to the two suffix 

groups. 

 

Let   be the language containing the following words: {jump, jumping, jumped, jumps, walk, 

walking, walked, walks, run, runs}.    contains 3 suffixes: “ed”, “ing”, and “s”.  Additionally, there are 

Figure 11 Single Suffix Group 
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words in   which cannot have any suffixes appended to them.  The equations below show the suffix 

groups of   and calculate the size of the group of suffix groups. 

  *                + 

| |    

 ( )  {  *    + *     + *   + *          + *         + *         + *              +} 

| ( )|   | |       

   {*        + * +  } 

|  |    | ( )|    

 

 

 

Figure 12 Multiple Suffix Groups 
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starting state  number of states total number of edges 

for each state: 

state number  boolean indicating whether or not the state is an accept state 

number of transitions originating from this state 

 for each transition from the state: 

 input char $ word matched(optional) destination state number 

RFSA File Format 

RFSAs which are generated by our system have been designed to adhere to the following formatting 

convention. 

 

  

Example RFSA 

 

We have generated an example RFSA that models a toy language in order to assist the reader in 

 

 

 Figure 15 Example Language 

Figure 14 Example RFSA 

Figure 13 RFSA Format 
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following the steps taken in creating and using finite state transducers in the context of spell-

checking.  The language which this machine models has been designed to consist of the following 

words: “aa” and “bc”. 

RFSA Results 

The overall statistics for the RFSAs generated can be seen below.  Interesting things to note in the 

graphs are that there were on average 517,888 arcs per RFSA, with an average of 1.6489 arcs 

originating from each state.    
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Compiler 

We developed a compiler to convert the RFSA into the more compact hunfst_1_0 format described 

below.  We chose to go through the formalities of developing a compiler to complete this task, as 

opposed to hand-writing a small program to do the same task for a variety of reasons.  Because we 

utilized Flex and Bison, we were more confident in the speed and accuracy of the file conversion 

process.  Additionally, a formal compiler afforded us the opportunity to see exactly where any syntax 

errors had occurred in the RFSAs.  A third reason for deciding to create a formal compiler was that 

this is a much more widely accepted and utilized method of translating between varying file formats. 

As such, other developers who may need to edit our compiler at some point in the future, for 

example during the development of the hunfst_2_0 file format, will have an easier time doing so. 

Compression Scheme 

Figure 16 Average Total Number of 
Arcs 

Figure 17 Average Number of 
States 

Figure 18 Mean Number of Arcs per 
State 
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We needed a highly compact compression scheme for the RFSAs.  As the automata files will be 

replacing the currently used affix and dictionary files as the standard dictionary format and will 

consequently be transferred over internet connections in massive quantities, the size of the files 

must be kept to a minimum.  Achieving this feat consisted of a combination of identifying the key 

elements of a finite state transducer and taking the smallest subset which still maintains a bijection 

with the set of finite state transducers.  We found this set, and from it generated the hunfst_1_0 

standard, which is described below. 

Hunfst_1_0 

We have developed Hunfst_1_0 as the first iteration of the hunfst file format.  This was designed to 

be a highly compressed, highly portable file format.  It consists of 3 main sections.  The first is a small 

header section which contains basic information on the name of the language being described, the 

character set(s) used for encoding, and other basic information pertaining to the specifics of the 

language and the options selected for the particular type of finite state transducer.  This is also 

where any miscellaneous comments should be written.  The second and third sections of the 

hunfst_1_0 file format vary slightly, as described below.  The following describes them  in the 

standard format, which is generally applicable to all other supported formats as well. 

The second section of the file is a list of all of the states.  For each state, a 3 byte pointer to the first 

arc is written as the only information for that state.  The last arc is the arc with index immediately 

preceding that of the arc pointed to by the next state.  The intermediate outgoing arcs can be 

uniquely determined because the arcs are sequentially numbered.  All of the states are written on 

the same line in order to avoid wasting space with new lines, which don’t convey any information.  

The boundaries between states are apparent because they are all occupying the same number of 

bytes.   
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The final section is a list of arcs.  Four bytes are devoted to each arc.  The first denotes the input 

character and the next three bytes are a pointer to the destination state of that arc.  As with the list 

of states, all arcs are written on the same line in order to conserve space 

Format Variants 

There a variety of different options that can be selected and encoded within the hunfst_1_0 file 

format.  These options exist because, FSTs which are being used for different purposes will require 

different amounts of information.  For example, an FST which is being used only for spell checking 

will require much less information than one which is also being used for morphological analysis(the 

study of word structure), as the latter will have to store the various morphological 

annotations(identifying tags for various word elements such as part of speech and tense) that 

pertain to each accepted word.  We decided to avoid forcing all FSTs written in the hunfst file format 

to have space for sections which they may not use.  Instead, there are a variety of different common 

formats supported. The format names are stored in a text file and their meanings are interpreted by 

the compiler.  Future versions of the hunfst file format will be able to add additional format variants 

as finite state transducers and analysis on them are improved to be able to support more complex 

natural language processing tasks.   

There are three basic areas in which hunfst variations can occur.  The first is that while most 

languages only use characters which can be uniquely identified by 8 bits, ideographic languages, 

such as Chinese, Japanese, and Korean require 16 bits to store each character.  FSTS that are in fact 

transducers and not generalized automata, will require a pointer to an output string, while simple 

automata will not.  The last way in which variation can occur is in the presence or absence of a 

probability value for each arc and the precision of the probability when it is present.  The following 

table has been designed to display the format variants that have already been designed and are a 

part of the hunfst_1_0 format specifications. 
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Format Variant Name Bytes Devoted to the 

Input Character 

Bytes Devoted to the 

Output String 

Bytes Devoted to the 

Probability 

standard 1 0 0 

standardFST 1 3 0 

Ideogram 2 0 0 

ideogramFST 2 3 0 

standard_smProbFST 1 3 2 

standard_lgProbFST 1 3 4 

ideogram_smProbFST 2 3 2 

ideogram_lgProbFST 2 3 4 

Table 1 Hunfst Format Variations 

  

Future versions of the hunfst file format should use values within the following ranges in any new 

format variations.  The values have been designed to ensure the continued portability of the 

resulting transducers. 

 Input Character Output String Probability 

Minimum Number of 

Bytes 

1 0 0 

Maximum Number of 

Bytes 

2 3 4 

Table 2 Hunfst Format Variation Constraints 

In-Memory Format 

The in-memory hunfst format is the same both when it is generated as a step towards creating the 

portable compressed format and when it is regenerated in order to be used in spell checking.  It 
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40 73 63 68 65 6d 65 20 34 20 73 74 61 6e 64 61 72 64 0a 

40 6c 61 6e 67 20 65 6e 5f 55 53 0a  

40 63 68 61 72 73 65 74 20 49 53 4f 38 38 35 39 2d 31 0a 

40 69 6e 74 65 72 6e 61 6c 2d 63 68 61 72 73 65 74 20 49  

     53 4f 38 38 35 39 2d 31 0a  

40 73 74 61 74 65 73 20 34 0a  

00 00 00 00 00 00 00 00 01 00 00 02 0a 

40 61 72 63 73 20 34 0a 

61 00 00 00 63 00 00 00 62 00 00 02 61 00 00 01 

consists of 2 arrays: one of which enumerates the states and the other, the transitions.  Both of the 

arrays consist of pointers to each other.  This data structure was designed to have the mutual 

benefits of its small size and to be easy to traverse. 

Example Compressed Finite State Automata 

The following example has been 

designed to help the reader 

better understand the details of 

the aforementioned compressed 

format.   The compressed version 

of the finite state automata can 

be seen in Figure 19 Compressed 

FSA Example. 

 

Single Line in hunfst_1_0 File Interpretation and Explanation 

40 73 63 68 65 6d 65 20 34 20 73 74 61 6e 64 61 72 64 0a @scheme 4 standard 

 

This is the first line of header 

information.  The “@scheme” 

keyword has been used to denote 

that the scheme is being defined.  

The 4 states that 4 bytes are devoted 

to every transition and “standard” is 

the name of the variant being used.  

The 4 is redundant information, but is 

included to assist in file processing.  

40 6c 61 6e 67 20 65 6e 5f 55 53 0a @lang en_US 

Figure 19 Compressed FSA Example 
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The “@lang” keyword has been used 

to indicate that the name of the 

language being encoded for is to 

follow.  In this example, the language 

was United States English. 

40 63 68 61 72 73 65 74 20 49 53 4f 38 38 35 39 2d 31 0a @charset ISO8859-1 

 

The “@charset” keyword has been 

used to indicate that the name of the 

character set used by the language 

being encoded is to follow.  In this 

case, the character set is basic Latin 

1. 

40 69 6e 74 65 72 6e 61 6c 2d 63 68 61 72 73 65 74 20 49  

     53 4f 38 38 35 39 2d 31 0a 

@internal-charset ISO8859-1 

 

The “@internal-charset” keyword has 

been used to show that the name of 

the internal encoding scheme used 

within the file is to follow.  This will 

have been a superset of the 

aforementioned language specific 

character set, as it is necessary to 

encode all possible letters of the 

language as input characters in 

transition descriptions.  The name, 

internal-charset, is somewhat 

misleading, in that the file is actually 

a binary file, so the only valid 

characters are the digits and letters 

a-f.  However, it has been 

determined that the internal 

character set is still a useful file 
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property to indicate because of input 

characters. 

40 73 74 61 74 65 73 20 34 0a @states 4 

 

The “@states” keyword has been 

used to indicate the beginning of the 

states section.  In this example, the 

number 4 has been written after the 

@states keyword.  This has been 

done to indicate that the next line 

will contain information on 4 states. 

00 00 00 00 00 00 00 00 01 00 00 02 0a 0 0 1 2 

 

This is the states section.  Every 3 

bytes, define a state, which as 

previously mentioned is a pointer to 

the first outgoing arc.  Big-endian 

encoding has been used for the 

pointers. 

The first state will have always been 

written as “00 00 00”, but this is not 

to say that the first output arc of this 

state is the 0th arc in the arc array.  

Rather, as the sink accept state, there 

are no outgoing arcs from this state.  

The 0 has been used only as a place 

holder. 

40 61 72 63 73 20 34 0a @arcs 4 

 

The “@arcs” keyword has been used 

to indicate the beginning of the arcs 

sections.  In this example, the 
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number 4 has been written after the 

keyword.  This has been done to 

denote that the next line will contain 

information on 4 arcs. 

61 00 00 00 63 00 00 00 62 00 00 02 61 00 00 01 a 0 c 0 b 2 a 1 

 

This is the arcs section.  Every 4 bytes 

defines an arc, the first of which is for 

the input character and the last three 

of which denote the pointer to the 

destination state.  For example, “61 

00 00 00” defines the first arc, which 

has an input character, “a”, and a 

destination state 0.  Big-endian 

encoding has been used for the 

pointers to destination states. 

Development of the Compiler 

We used Flex and Bison to develop a compiler which is capable of generating files in hunfst_1_0 

format.  Our compiler has been designed to parse the human-readable RFSA file and convert it into a 

version with a substantially smaller file size without losing any of the information required to rebuild 

the finite state automata.  The primary concerns that we took into consideration during the 

development of our compiler were the importance of achieving a good compression ratio and 

allowing for the compiler to be easily extensible to support future iterations of the hunfst file 

format. 

Flex 

We designed our Flex code to accept integers, boolean values, characters from any language, and 

output expressions as valid input.  An output expression is a word (correctly spelled or otherwise) 

preceded by a dollar sign; for this purpose, a word is defined as a continuous sequence of 
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characters.  All white space is ignored, and any miscellaneous characters, such as punctuation, 

return a warning message.  The possible tokens which can be returned by our Flex program are: 

NUMBER, TRUE, FALSE, CHAR, and OUTPUT. 

A Note on Punctuation 

Punctuation can be very problematic in natural language processing tasks.  Most punctuation can be 

viewed as something off to the side that does not actually affect the spelling of the words which 

they are adjacent to.  However, the period is a notable exception to this rule.  Many languages have 

incorporated common abbreviations, treating them in the same way as all other words, and many of 

these abbreviations end in periods in their correct spelling.  This double use of the period as a 

character in the language itself and as a delimiter between distinct sentences can be a source of 

confusion to spell checkers.  This confusion has been compounded by the fact that it is common 

practice amongst many languages, including English, to only write one period when two would 

otherwise occur adjacent to each other, for example when a sentence ends with an abbreviation. 

There were three basic options that we had to consider when deciding how to deal with 

punctuation.  The first was to ignore it completely, much in the same way as white space is ignored.  

However, this would result in valid words, such as “Mr.” in English being read in as “Mr”, which is 

not a valid English word.  The second option was to accept it as input and deal with its validity when 

traversing the FSA.  This had the nice property of allowing us to handle punctuation in the Bison 

code, with more powerful tools than were available to us in Flex.  However, most punctuation is 

never a valid part of a word.  Accepting it as valid input by the Flex code, would have required 

additional tokenization and token handling for every piece of punctuation.  The third option was to 

have the Flex code print out a warning message whenever punctuation was encountered, but not to 

tokenize any of the punctuation.   
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program   header statesList 

header   NUMBER NUMBER NUMBER 

statesList   statesList state | state 

state   state_start arcsList 

state_start   NUMBER TRUE NUMBER | NUMBER FALSE NUMBER 

arcsList   arcsList arc | arc 

arc   CHAR NUMBER | CHAR OUTPUT NUMBER 

We chose to apply the third option and have our code report warning messages on input consisting 

at least partially of punctuation characters.  We viewed this as a compromise between the first two 

options in that it avoided putting an unnecessary workload on the compiler or increasing the size of 

the resulting FSA, but alerted the user when this was happening.  

Bison 

We designed our Bison code to analyze a token stream according to the rules shown in Figure 20 

Compiler Rules.  The two notable occurrences in this set of rules are the recursive progression 

through the lists of states 

and arcs.  This is where most 

of the actual processing of 

tokens takes place. 

The above rule set was 

sufficient to parse an RFSA, 

but not to actually generate 

the corresponding hunfst_1_0 file format.  For this purpose, we wrote three functions in the Bison 

code to accompany the rules.   Two of these functions, copyToStates() and copyToArcs(), are used in 

the generation of the in-memory representation of the FSA.  They take as input an index in the 

appropriate array and a value to be placed at that index and copy the value in byte-wise.  It was 

necessary for us to take this approach instead of simply assigning values to various locations in the 

arrays in order to keep the size of the resulting data structure as small as possible.  The final function 

that we wrote in the Bison code, printInMem(), was designed to handle “printing” out the completed 

in memory data structure to a hunfst_1_0 file. 

Details of the resulting compiler can be seen in Appendix 2.  Its FSA representation has 22 states.   

Compression Results 

Figure 20 Compiler Rules 
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As can be seen in Figure 21 Compressed FSA File Sizes, the compiler was able to convert the finite 

state automata into files approximately one quarter of the original size of the RFSAs.  These much 

smaller files are far better suited than their human-readable predecessors.  An added benefit of the 

compression, in addition to portability, was that the spell checking program would need to devote 

less time to reading in the hunfst_1_0 file and less time parsing it once read in, as all unnecessary 

superfluous information had been removed. 
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As shown in Figure 22 RFSA Compression TimesError! Reference source not found., compression 

time grows linearly with the size of the initial RFSA file.  While expected based on the compression 

techniques used, this result was still viewed favorably, as it confirmed that there was no exponential 

increase in time due to the generation of the in-memory FSA. 

 

C Spell Checker 

Once we had successfully created hunfst_1_0 files for all of the languages which we were to support, 

we developed a spell checking program which was able to regenerate the in memory representation 

of the FSA and then to traverse that FSA.  We chose to implement our spell checking program in C 

because of the ease with which C would allow us to read and manipulate data at the bit level, as was 

needed to handle the hunfst_1_0 formatted files and because of the low overhead incurred when 
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running a program written in C.  Our spell checker takes as input a hunfst_1_0 file and list of words; 

it outputs the subset of that list which were not accepted by the FSA. 

Spell Checking Process 

Once the in-memory finite state automata has been 

generated within the spell program, it must be traversed in 

order to determine whether or not it accepts a given word.  

Figure 23 Spell Checking displays the conceptual process 

that accomplishes this task.  At any point, the FSA must 

know its current state.  It then checks the outgoing arcs 

from that state and traverses the one which matches the current letter in the word being checked.  

If at any point, no such arc exists, the word will be said to 

not be accepted by that transducer and consequently to not belong to the corresponding language.  

Additionally, the word will also be rejected if after the FSA has been traversed for all letters in the 

word, the current state is not the accept state. 

Due to the compressed format in which the FSA is stored, the actual traversal process that we 

implemented is slightly more complicated than the above conceptual process.  Figure 24 Spell 

Checking Pseudocode shows the actual algorithm that we implemented in order to check the 

membership of a potential word in the set of correctly spelled words in a language.   The main 

component that we added to the actual implementation that was not apparent in the conceptual 

algorithm was the process of determining which arcs originate from the current state in the 

automata.  The sequential indexing of all arcs made it possible for us to accomplish this.  The first 

outgoing arc was easily known, because the state representation is a 3 byte pointer to that arc.  The 

last arc was determined by looking at the arc pointed to by the next sequentially indexed state; the 

arc which immediately preceded that would be the last outgoing arc from the current state.  

Figure 23 Spell Checking 
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Current state  = start state 

FOR EACH letter in the word: 

     Find the first outgoing arc from the current state 

     Find the last outgoing arc from the current state 

     FOR EACH arc between the first and last, inclusive 

          IF the arc’s input character equals the current letter and the last letter condition is met 

               Traverse arc 

               Set the current state to be that arc’s destination state 

               BREAK 

     IF no arcs were traversed 

          FAIL = The word is not accepted by the FSA 

          Output the misspelled word 

          BREAK 

IF the current state is the accept state 

     ACCEPT = The word is accepted by the FSA 

ELSE 

     FAIL = The word is not accepted by the FSA 

          Output the misspelled word 

Figure 24 Spell Checking Pseudocode 
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Example of Spell Checking 

For the purposes of better explaining 

the spell checking algorithm, we have 

developed the following example.  

Figure 25 In-Memory FSA Example 

shows the in-memory representation 

of an FSA which maps to a language 

that consists of the following set of 

words: {cab, cot, a}.   

Testing the correctness of the spelling 

of the word, “cot” on this FSA would proceed as follows.  The current state would be state 4 and the 

current input letter is “c”.  The first arc would be arc 4 and the last arc would be arc 5; therefore, the 

set of outgoing arcs which originate from state 4 would be the set {4, 5}.  Loopinging through the 

elements of that set, arc 4 would be found to be the correct arc to traverse becasuse its input 

character matches the current letter and the last letter condition is met, namely that “c” isn’t the 

last letter of the input word and the destination of arc 4 isn’t the accept state.  Arc 4 would then be 

traversed and the current state correspondingly set to equal arc 4’s destination state, state 3.  The 

process would then repeat itself with the input letter “o”.  Arc 3 would be found as the correct arc to 

traverse and the current state would then be set to be state 1.  Finally, the process would repeat 

with input letter “t”.  Arc 0 would be found to be the correct transition because its input character 

matches the current letter and the last letter condition would be matched; “t” is the last letter of the 

word being checked and the destination state of arc 0 is the accept state.  The current state would 

then be set to equal state 0 and the process would ould output an ACCEPT response and terminate. 

Figure 25 In-Memory FSA Example 
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The FSA in Figure 25 In-Memory FSA Example could be used to determine the incorrectness of the 

spelling of the word “cb” by the following progression.  The initial current state would be state 4.  

The set of output arcs originating from the current state would be {4, 5}.  Arc 4 would then be found 

to be the correct arc.  Arc 4 would then be traversed and the current state would be set to state 3.  

The set of output arcs from state 3 is {2, 3}.  Both arcs 2 and 3 would be checked, but found to fail to 

meet the input character condition.  At that point, the process would output the rejection of the 

word “cb” and terminate. 

Spell Checking Results 

In order to verify the accuracy of our spell checker and to determine the speed with which it is 

capable of running, we tested it against the Google and Wikipedia corpora.   

Google 

The first corpus which we checked our results against was the 1-gram portion of Google’s n-gram 

corpus [8].  The 1-gram portion of the corpus consists of every word typed into the English language 

version of Google prior to February 1st, 2006.  This amounted to 1,024,908,267,229 instances of 

13,588,391 distinct words, which provided us with a very large database of words in the English 

language with frequencies representative of the actual usage [9]. 

After accounting for frequency, 85.2% of the words in the Google 1-gram corpus were accepted by 

our English spell checker.  The most frequently entered words which were rejected can be seen 

below. 

word frequency 

reviews 0.062751 

de 0.059669 

details 0.057068 

resources 0.043692 

login 0.028635 
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reports 0.023037 

rss 0.022574 

sep 0.021198 

ange 0.020102 

records 0.019647 

centre 0.019604 

et 0.01759 

al 0.015133 

eur 0.015121 

usr 0.014901 

pre 0.014099 

returns 0.014052 

cnet 0.01349 

mp3 0.012594 

eg 0.012494 

cities 0.012141 

pdf 0.011785 

programme 0.011648 

ip 0.011542 

los 0.010519 

ie 0.009933 

prev 0.009782 

1st 0.00974 

usb 0.009702 

increased 0.00944 

msn 0.009386 

phentermine 0.009305 

proposed 0.009213 

described 0.009163 

requires 0.008805 

angeles 0.00866 

releases 0.008461 

units 0.00844 
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php 0.008322 

zealand 0.008228 

llc 0.008157 

dvds 0.008116 

texas 0.007714 

las 0.007293 

th 0.006988 

detailed 0.006889 

el 0.00683 

dev 0.00681 

returned 0.006691 

shopping.com 0.006506 

www 0.006501 

tripadvisor 0.0065 

pubmed 0.006394 

xp 0.006376 

xbox 0.006321 

hong 0.00631 

amazon.co.uk 0.006298 

hentai 0.006294 

asian 0.006292 

milf 0.006272 

devices 0.006231 

au 0.006117 

cds 0.006096 

range 0.006029 

usd 0.006018 

multi 0.005889 

di 0.005761 

devel 0.005654 

provisions 0.005636 

sitemap 0.005622 

username 0.005577 
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removed 0.005526 

replies 0.005478 

shemale 0.005373 

del 0.005342 

zum 0.005332 

requests 0.005312 

reporting 0.005293 

sexo 0.005292 

des 0.005279 

multi 0.005177 

theatre 0.005173 

src 0.005167 

pda 0.005011 

du 0.005006 

na 0.004976 

dsl 0.00495 

verzeichnis 0.004948 

conducted 0.004915 

touch 0.004873 

recommendations 0.004849 

utc 0.004819 

dvd 0.004786 

le 0.00475 

un 0.004709 

sql 0.004708 

uk 0.004691 

gps 0.004672 

url 0.004618 

cd 0.004534 

Table 3 Most Common Rejected Words in the Google Corpus 

Wikipedia 
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The Wikipedia corpus consists of all of the words in Wikipedia, separated by language.  In checking 

our spell checker against the English section of the corpus, we were able to achieve a 92.3% hit rate 

after accounting for frequency.  The most frequent rejected words can be seen below. 

word frequency 

de 0.090422 

centre 0.021563 

records 0.020112 

returned 0.019887 

los 0.016549 

zealand 0.014767 

range 0.014535 

described 0.013987 

replaced 0.013379 

angeles 0.013152 

units 0.01279 

et 0.011821 

cities 0.011614 

theatre 0.010383 

el 0.009672 

von 0.009246 

retired 0.009182 

fc 0.00909 

records 0.008826 

increased 0.008809 

resources 0.008368 

hong 0.008139 

http 0.007864 

des 0.007808 

al 0.007685 

proposed 0.007411 

del 0.007368 

der 0.00725 
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voivodeship 0.00725 

renamed 0.007126 

removed 0.006997 

labour 0.006775 

du 0.006717 

ret 0.00624 

conducted 0.005981 

defence 0.005945 

gmina 0.005926 

bgcolor 0.005889 

details 0.005733 

reports 0.005706 

metres 0.005686 

theatre 0.005566 

sri 0.005552 

refused 0.00537 

di 0.005246 

derived 0.005161 

puerto 0.005117 

ep 0.004685 

returning 0.004669 

programme 0.004658 

didn 0.00465 

prix 0.004594 

und 0.004563 

describes 0.004353 

da 0.004145 

las 0.004105 

requires 0.003834 

designs 0.003799 

residing 0.003796 

reviews 0.003778 

returns 0.003684 



65 

 

capita 0.00368 

devices 0.003641 

rowspan 0.003624 

releases 0.003562 

restored 0.003448 

cdp 0.003378 

depending 0.003354 

pts 0.003348 

doesn 0.003325 

organisation 0.003112 

lanka 0.003077 

detailed 0.003 

iucn 0.002953 

uefa 0.00292 

br 0.002893 

afterwards 0.00289 

dnp 0.002885 

range 0.00281 

fifa 0.002809 

anime 0.002729 

costa 0.002699 

sox 0.002662 

replacing 0.002641 

le 0.002568 

colour 0.002565 

scotia 0.00256 

manga 0.002523 

injuries 0.002521 

colspan 0.002512 

honours 0.002478 

honour 0.002459 

pos 0.002385 

pdf 0.002375 
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friedrich 0.002372 

recovered 0.002363 

petersburg 0.002353 

tons 0.002351 

sr 0.002331 

increases 0.00233 

Table 4 Most Common Rejected Words in the English Wikipedia Corpus 

Reasons for Rejects by the Spell Checker 

While 85.2% and 92.3% hit rates may seem rather unimpressive, there were a variety of 

circumstances under which it was desirable of our spell checker to reject a given word.  Some of 

these reasons are actual spelling errors, non-English words, highly technical terms that don’t belong 

in a standard dictionary, and nonstandard abbreviations.  The only problematic reason for rejecting 

words is that our current finite state machine representations of languages were generated directly 

from the aff / dic files and consequently only contain the word from those files.  A future research 

goal for the continuation of this project is to have linguists amend the RFSAs to include a broader 

range of terms by using our spell checker to identify commonly used words that are being missed. 

Chapter 3: Stemming 

Stemming is an important task in natural language processing for a number of reasons.  The most 

common use of stemming is as a pre-processing step in information retrieval systems.  For example, 

a query containing a singular noun should return results containing the pluralized form of that noun 

even if the singular version is absent [10].  This has historically been accomplished by comparing the 

stems of the words in the query to the stems of the words in the document [11].  The more 

accurately the stemming program can identify the roots, the higher the probability of matching 

useful answers with the queries.  This is especially true in smaller documents, which are less likely to 

contain the same form of the word that was present in the query [10]. 
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There are two types of suffixes which can be appended to stems, inflectional and derivational.  

Inflectional suffixes are those which pluralize a word or change its tense.  The inclusion or exclusion 

of an inflectional suffix very rarely affects the meaning of the word.  As such, it is always desirable 

for a stemmer to remove such suffixes.  Derivational suffixes are those which change the syntactic 

category of the root word, i.e. changing a verb to a noun.  Derivational suffixes are much more likely 

to change the meaning of a word than inflectional suffixes and thus more care must be taken in 

deciding when it is appropriate for them to be stripped [12]. 

History of Stemming 

The Porter Stemmer 

The Porter Stemmer has been one of the most prevalent stemmers since its conception.  It was 

designed as a rule-based stemmer.  As such, it does not require an accompanying lexicon from which 

to identify stems.  The Porter Stemmer algorithm consists of a list of rules describing when suffixes 

can be stripped from the input word.  The longest suffix which can be stripped is stripped and this 

process is iteratively repeated until there are no longer any suffixes which can be stripped [11].  The 

Porter Stemmer was largely a success for its speed, ease of implementation in a variety of languages, 

and relatively good performance when used in information retrieval [10]. 

Shortcomings of the Porter Stemmer 

As the Porter Stemmer was created to be completely independent from a lexicon, it was forced to 

suffer from several errors of both commission and omission.  

Errors of Commission Errors of Omission 

organization / organ european / europe 

doing / doe analysis / analyzes 

generalization / generic cylinder / cylindrical 
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numerical / numerous matrices / matrix 

policy / police urgency / urgent 

university / universe create / creation 

easy / easily decompose / decomposition 

addition / additive machine / machinery 

negligible / negligent useful / usefully 

execute / executive noise / noisy 

define / definite route / routed 

past / paste search / searcher 

ignore / ignorant explain / explanation 

arm / army resolve / resolution 

head / heading triangle / triangular 

[12] 

For specific tasks, the Porter Stemmer suffered from an additional shortcoming other than over 

conflation and narrow coverage.  The stems returned by the Porter Stemmer would often not be 

words in and of themselves [12].  While this was an acceptable occurrence for information retrieval, 

it is unacceptable in linguistics based tasks which aim to actually identify root words.   

Lexicon – Based Stemmers 

Krovetz attempted to improve on the Porter Stemmer by using it in conjunction with a lexicon.  His 

method consisted of following the Porter algorithm with the additional step of checking if the word 

is in the dictionary at each iteration.  If it was in the dictionary, stripping ended.  While this idea 

initially looked promising, it ultimately failed.  There are many words which strip off their last letter 

before adding some suffixes and don’t for other suffixes.  For such words there will be two disjoint 



69 

 

classes of suffixed forms and they will not be matched to each other.  In English, the most common 

occurrence of this is in words which end in the letter “e” [12]. 

After an early failure, Krovetz managed to surpass the Porter Stemmer by re-writing the rules to 

output actual root words instead of just stems and hand-checking for the exceptions that had caused 

errors for his modified version of the Porter algorithm.  Most notably, he was very careful when 

dealing with the suffixes “ed” and “es” about whether to strip one or two letters [12].  

It is also possible to have a fully lexicon based stemmer.  Since many dictionaries list root words and 

the various suffixes which can be appended to them, the input words can just be matched against 

this list and the appropriate stem returned.  Unfortunately, this method, while accurate, is inefficient 

to the point of being unusable. 

Finite State Transducers in Stemming 

The inefficiency problem of lexicon base transducers can be ameliorated by storing the lexicon in a 

data structure which is more easily traversable.  A finite state transducer is perfectly situated for this 

task.  Kokenniemi developed a small scale version of such an FST in hopes of it being later used to aid 

in morphological analysis.  However, he was never able to implement his architecture on a full 

language and consequently wasn’t able to use the theories he developed in a meaningful way.  

Additionally, his work was proprietary, belonging to Xerox, and thus unavailable to other researchers 

to further develop [13]. 

Our Contribution to Open Source Stemming 

We created a transducer based FST and an accompanying program in C which actually stems the 

input words.  This consisted of revising the compiler that we had created previously for spelling and 

revising the spell checking program to appropriately handle output strings.  As we can automatically 

generate our FSTs from affix and dictionary files, we are able to support not only one real language, 

but any real language for which aff / dic files have already been created. 
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Overall Stemming Process 

We designed the 

stemming process to be 

very similar to the spell 

checking process, 

building on what we 

created in the spell 

checking compiler and 

spell checking program 

and adding the necessary 

components to allow for 

determining the root of a 

word in addition to determining if the word had been spelled correctly.  The main adjustment that 

this required was for us to transform the C spell program into a stem program, i.e. handle output.  

The minor components that we added were a printRoots() method in the Bison code and a 

buildRoots() method in the C stemming program. 

Extension of the Compiler to Support Stemming 

In order to extend the compiler which we had previously created to support stemming, we merely 

had to include pointers to an output string for each arc and store the output strings in an efficient 

manner. 

In-Memory Data Structures 

We had to make one minor change to the RFSA data structure in order to transform it to an RFST 

(Residual Finite State Transducer), namely to associate an output string with each arc in addition to 

the input character that was already associated with each arc.  This allowed us to generate output 

Figure 26 Overall Stemming Process 
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from the input words.  Additionally, we needed to design a data structure which could hold all of the 

possible stems. 

Stem List 

We initially considered many options when deciding how 

best to store the list of stems (output strings).  The first 

solution which we looked at can be viewed as the naïve 

solution.  It consisted of simply storing a list of words.  The 

arcs would then have pointers to the first character of the 

corresponding word.  This option had the obvious benefits 

of ease of implementation and speed of determining the 

output string associated with a given arc.  However, it 

suffered tremendously from the large amount of storage 

required to contain such a list.  We saw much of this 

storage as wasted space and wanted to improve upon it.  

As can be seen in Figure 27 Output Strings - Naive 

SolutionError! Reference source not found., the letters at 

the beginning of a word will be listed many times in such 

an encoding scheme, even though it is clearly visible that 

in such an alphabetical listing, all of the words between 

the first word beginning with an “a” and the first word 

beginning with a “b” will begin with an “a.”  Likewise, all 

of the words between the first words beginning with the 

characters:          and the first word beginning with the 

characters          will begin with the characters 

       .  The naïve solution allots space for every character of every output string, and thus 

Figure 27 Output Strings - Naive Solution 
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consumes as much space as could ever reasonably be allotted.  However, as was shown above, much 

of this space is clearly unnecessary. 

That finding motivated us to investigate the use of a trie based solution to the stem storage 

problem.  Figure 28 Output Strings - Trie Based Solution shows the tree based solution for the same 

set of root words that was used in the naïve solution above.  At first glance, this solution seems to be 

much better, as the fewest possible number of characters is used.  However, the most significant 

benefit of the naïve solution, the ease of output string determination, has been completely reversed.  

In this case, determining the output string requires a very messy traversal of pointers.  The arc will 

have to point to the last letter of the word in order for there to exist a deterministic way of 

identifying the input string.  However, it is very difficult to determine the state which came before a 

given state; being able to do so would have required us to store pointers between all of the nodes in 

the trie in addition to storing the nodes themselves.  By that point, we would have lost all of the 

benefits gained from storing as few characters as possible. 
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We eventually decided to implement a hybrid of the previous two solutions.  Most of the repetition 

in characters can be found in the first few characters of a word.  For a given 2 letter sequence, there 

Figure 28 Output Strings - Trie Based Solution 
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are generally going to 

be many words which 

begin with that 

sequence.  However, 

for a 5 letter 

sequence, there are 

going to be very few 

words which begin 

with that sequence.  

We chose to set the 

cutoff tolerance for 

the number of letters 

at the beginning of a word to group by at 2.  This decision was based primarily on intuition derived 

from experience with language and was validated by the guidance of Kornai András. 

Our hybrid approach consists of subdividing the output strings into classes corresponding to two-

letter strings.  A word, w, is placed in the set      if the first two letters of w are     .  The data 

storage consists of a series of linked lists, one for each set.  The first element of each linked list is the 

two letter string associated with that set.  The subsequent elements of the linked list are the strings 

that can be appended to the two letter string to form valid output strings. 

Overall, this data structure seemed to meet all of our needs.  The only things which it was ill-

equipped to handle were one and two letter output strings.  The problem of two letter output 

strings was easily circumvented by allowing arcs to point to the first element of the linked list.  Single 

letter output strings were more complicated, because they weren’t encoded for anywhere in the 

current data structure.  In order to handle this, we allow there to be a separate linked list consisting 

of single character elements.   

Figure 29 Output Strings - Hybrid Solution 
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The other problem that arose from not only the hybrid solution, but also the other in-memory data 

options was deciding how to handle those arcs which do not have an output string.  We chose to do 

this by giving them a pointer to an output string anyway but having it point to the null pointer. 

A Note on the Order of Elements within the Hybrid Solution Linked Lists 

By inspecting Figure 29 Output Strings - Hybrid Solution, one might easily assume that the elements 

in the linked list other than the first element are stored in alphabetical order.  However, this need 

not be the case.  The elements can be stored in whatever order the compiler finds them.  This is 

because the arc will have a pointer to the specific linked list element which corresponds to the 

output string.  It doesn’t matter where in the list it occurs.  We found this fact to be very convenient, 

because it allowed us to avoid incurring the time expense associated with  alphabetizing the linked 

lists.   

At this point, we made a memory saving discovery.  Since we would only ever be appending to the 

end of the linked list, never inserting anything in the middle, we could use a far more efficient and 

compact data structure for even the in-memory version of the stem list.  We stored the conceptual 

linked list as a string.  Every time we would have added an element to the end of the linked list, we 

instead appended it to the end of the string.  We delimited the different elements with spaces.  

Since the list of all single letter output strings by definition contained elements of the same length, 

we were able to avoid delimiting that list completely. 

Compression of Stem List 

Since we are already using an efficient form of storage for the in-memory data structure, the biggest 

task for compressing the entire stem list was to combine the lists into a single, more connected and 

compact structure.  We appended the strings to form a single larger string, using dollar signs to 

delimit between the different conceptual linked lists.  This was necessary because the stemming 
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program must be able to determine the two letter word beginning of the output string in addition to 

the rest of the string. 

 

We then had to handle adding the linked list of single character elements into our agglutenated 

string.  We did this by inserting dollar signs before every character in the string representation of 

that list and then appending the string corresponding to the rest of the linked lists to the end of the 

string for the single characters.  An example end product of this process can be seen in Figure 31 

Compressed Stems with Single Letter Stems. 

Figure 30 Compressed Stems 
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Additions to the FST Compression Format 

We had to make one change to the hunhst_1_0 file format in order to support stemming.  This was 

to include an output string section at the bottom of the file.  The hunfst_1_0 method for dealing 

with output string was to store them in a separate file.  We chose to develop hunfst_1_1 in order to 

benefit instances where it is more convenient to only have a single file, which stores the entire 

contents of the FST. 

Hunfst_1_1 

We developed hunfst_1_1 as a counterpart to hunfst_1_0, not as its replacement.  The full 

documentation that we wrote to formalize the hunfst_1_1 standard can be seen in Appendix B. 

Hunfst_1_1 File Format, but the only notable difference is the output string section described above. 

Figure 31 Compressed Stems with Single Letter Stems 
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C Stemmer Program 

At a basic level, the stemming program 

proceeds by first rebuilding the in-memory 

representation of the FST from the 

compressed version.  Additionally, the in-

memory representation of the output string 

list must also be rebuilt before the FST can be 

traversed.  Subsequently, the FST can be 

traversed much in the same way as was done 

by the spelling program.  In converting the 

FSA traversal process that we had used in 

spell checking into an FST traversal method appropriated for use in stemming, we added an 

additional step to the traversal process.  Prior to beginning the FST traversal, a pointer is initialized.  

This pointer will be replaced with the pointer to the output string once that pointer has been 

determined. 

Determining the Output String 

Figure 33 FST with Pointers to Meaningful Output StringsError! Reference source not found. shows 

an example of and FST that contains pointers to output strings.  The FST is traversed much the same 

as it was for spell checking.  If at any point in the traversal, an arc which contains a pointer to an 

output string is crossed, that pointer is set as the pointer to the output string for the input word.  In 

a well-formed FST, the traversal of multiple arcs with pointers to output strings would indicate that 

the prior traversal of an arc with an output string was due to the non-deterministic nature of the FST 

and was not enroute to the proper spelling of the word.  Additionally, in the traversal of a valid input 

word on a well-formed FST, at least one arc with an output string will be crossed. 

Figure 32 Stemming 
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This process has been made slightly more complex because arcs which we would not normally want 

to have output strings at all have been designed to instead have pointers to NULL as their output 

string.  In this situation, every arc has an output string and thus the pointer to the output string of 

the input word would have been changed at every arc traversal under the aforementioned traversal 

algorithm.  As such, any suffixed words would be set to have NULL as their stem, even though this is 

not accurate.  What this means is that during traversal, a previous pointer to an output string is only 

replaced if the replacement doesn’t point to NULL. 

Figure 33 FST with Pointers to Meaningful Output Strings 
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Figure 35 Indexed Stem List shows the pointers to the list of input words.  Once the pointer for an 

output string has been found the actual output string is determined as follows.  The output string is 

initially set to equal the word pointed to.  If this word begins with a dollar sign, the dollar sign is 

stripped and the algorithm terminates.  Otherwise, the list is traversed backwards until a dollar sign 

Figure 34 FST with Output String Pointers for All Arcs 

Figure 35 Indexed Stem List 
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is encountered.  The two letters following the dollar sign are then appended to the beginning of the 

output word and the algorithm then terminates. 

Chapter 4: Future Research 

For future research, we would love to see the finite state transducer model that we have given to 

the open source community extended to support morphological analysis.  This would be relatively 

simple, as the morphDB versions of the aff / dic files contain morphological annotations.  The 

shortcoming of this would be that morphDB is available for very few languages.  However, morphDB 

formats are being developed for more languages and the development of an advanced tool such as a 

morphological analyzer which supports morphDB might help to increase motivation to speed up the 

process. 

Additionally, we would like to see linguistic research efforts put forth towards improving the 

available aff / dic files.  We found most of our shortcomings to stem from missing entries in the aff / 

dic files.  It would be very interesting for us to see how much better coverage we could obtain if 

given better input files. 
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Appendices 

Appendix A. Hunfst_1_0 File Format 

File Format for hunfst_1_0 

Sections of the File============================================================== 

# may be used at the beginning of a line anywhere within the file to denote that that line should be 

ignored by the compiler 

@scheme <digit>  <string> 

It is necessary that all arcs include 1 or 2 bytes devoted to the input character; most languages will 

only require 1 byte for this, but languages with many distinct characters such as Chinese and 

Japanese will require 2.  Each arc also requires a 3 byte pointer to the output state.  The exact 

number of bytes devoted to this is dependent on the total number of states.  An optional 3 bytes can 

be used as a pointer to an output string if a transducer, not and automata, is being described.  If this 

is being done, a table of output strings must be stored somewhere.  This output string can, in 

addition to simply listing the output value of the transducer, also include elements such as part of 

speech tags.  An optional 1-4 bytes may be used to give a probability value to each arc.  It is not 

necessary to devote any space in this structure to define whether or not a given state is a final state, 

because the first state(s) listed will always be the only final state(s) in the transducer. 

The digit is the number of bytes per arc.  Valid values are integers between 4 and 12, inclusive.   

The string is the name of the scheme being implemented by this transducer's arcs.  An external file 

will contain the list of all scheme names and their corresponding descriptions. 

@lang <aa_bb> 

aa is the 2 letter language code.  bb is the 2 letter country code.   
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@charset <string> 

The string is the name of the encoding used by the language being described.   

@internal-charset <string> 

The string is the name of the encoding used within the hunfst file itself.  In general, this will be the 

same as the charset used by the language or some superset thereof.  This is because it is necessary 

to be able to write all of the possible input characters.   

@states <number> 

This number is the total number of states. 

This is the beginning of the states sections.  At this point, there will be a line containing a list of 

unique states.  Each state will consist of a pointer to the first arc which originates from that state.  

Since the number of bytes in each pointer is known ahead of time, it is not necessary to waste any 

memory with delimiters between states.  The contents of each state are written byte by byte in 

hexadecimal notation. 

@arcs <number> 

The number is equal to the number of arcs. 

This is the beginning of the arcs section.  One line is devoted to each arc.  The contents of each arc 

are written bitwise in hexadecimal notation and the meaning of the byte is as was described above.  

@cksum <number> 

The check sum value is used to ensure that there were no errors incurred while copying or moving 

the file. 
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Appendix B. Hunfst_1_1 File Format 

hunfst_1_1 is a variant on hunfst_1_0 that has been specially designed to handle finite state 

transducer models of languages for stemming.  In this version of hunfst, output pointers are a 

necessary component of all arcs.  In the case where there shouldn’t be an output pointer associated 

with a given arc, the pointer consisting of all nines (in decimal notation) is used as a place holder.  

hunfst_1_1 introduces an additional section which lists the output strigs. 

File Format for hunfst_1_0 

Sections of the File============================================================== 

# may be used at the beginning of a line anywhere within the file to denote that that line should be 

ignored by the compiler 

@scheme <digit>  <string> 

It is necessary that all arcs include 1 or 2 bytes devoted to the input character; most languages will 

only require 1 byte for this, but languages with many distinct characters such as Chinese and 

Japanese will require 2.  Each arc also requires a 3 byte pointer to the output state.  The exact 

number of bytes devoted to this is dependent on the total number of states.  An optional 3 bytes can 

be used as a pointer to an output string if a transducer, not and automata, is being described.  If this 

is being done, a table of output strings must be stored somewhere.  This output string can, in 

addition to simply listing the output value of the transducer, also include elements such as part of 

speech tags.  An optional 1-4 bytes may be used to give a probability value to each arc.  It is not 

necessary to devote any space in this structure to define whether or not a given state is a final state, 

because the first state(s) listed will always be the only final state(s)  in the transducer. 

The digit is the number of bytes per arc.  Valid values are integers between 4 and 12, inclusive.   

The string is the name of the scheme being implemented by this transducer's arcs.  An external file 

will contain the list of all scheme names and their corresponding descriptions. 
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@lang <aa_bb> 

aa is the 2 letter language code.  bb is the 2 letter country code.   

@charset <string> 

The string is the name of the encoding used by the language being described.   

@internal-charset <string> 

The string is the name of the encoding used within the hunfst file itself.  In general, this will be the 

same as the charset used by the language or some superset thereof.  This is because it is necessary 

to be able to write all of the possible input characters.   

@states <number> 

This number is the total number of states. 

This is the beginning of the states sections.  At this point, there will be a line containing a list of 

unique states.  Each state will consist of a pointer to the first arc which originates from that state.  

Since the number of bytes in each pointer is known ahead of time, it is not necessary to waste any 

memory with delimiters between states.  The contents of each state are written byte by byte in 

hexadecimal notation. 

@arcs <number> 

The number is equal to the number of arcs. 

This is the beginning of the arcs section.  One line is devoted to each arc.  The contents of each arc 

are written bitwise in hexadecimal notation and the meaning of the byte is as was described above.  

@output 

The output section consists exclusively of a compressed list of root words.  The compression has 

been designed to adhere to the following standard.  Root words are divided into two sections, the 

first being their first two letters, and the second being the rest of the word.  The encoding scheme 
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for a single two letter word beginning consists of “$” followed by a two letter word beginning, 

followed by all possible word endings that can match that word beginning.  The different word parts 

are delimited by spaces.  Such an encoding is written for each two letter word beginning. 

@cksum <number> 

The check sum value is used to ensure that there were no errors incurred while copying or moving 

the file. 
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Appendix C. Compiler Finite State Automata 

Grammar 

 

    0 $accept: program $end 

 

    1 program: header statesList 

 

    2 header: NUMBER NUMBER NUMBER 

 

    3 statesList: statesList state 

    4           | state 

 

    5 state: state_start arcsList 

    6      | state_start 

 

    7 state_start: NUMBER TRUE NUMBER 

    8            | NUMBER FALSE NUMBER 

 

    9 arcsList: arcsList arc 

   10         | arc 

 

   11 arc: CHAR NUMBER 

   12    | CHAR OUTPUT NUMBER 

 

 

Terminals, with rules where they appear 

 

$end (0) 0 

error (256) 

TRUE (258) 7 

FALSE (259) 8 

NUMBER (260) 2 7 8 11 12 

CHAR (261) 11 12 
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OUTPUT (262) 12 

 

 

Nonterminals, with rules where they appear 

 

$accept (8) 

    on left: 0 

program (9) 

    on left: 1, on right: 0 

header (10) 

    on left: 2, on right: 1 

statesList (11) 

    on left: 3 4, on right: 1 3 

state (12) 

    on left: 5 6, on right: 3 4 

state_start (13) 

    on left: 7 8, on right: 5 6 

arcsList (14) 

    on left: 9 10, on right: 5 9 

arc (15) 

    on left: 11 12, on right: 9 10 

 

 

state 0 

 

    0 $accept: . program $end 

 

    NUMBER  shift, and go to state 1 

 

    program  go to state 2 

    header   go to state 3 

 

 

state 1 
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    2 header: NUMBER . NUMBER NUMBER 

 

    NUMBER  shift, and go to state 4 

 

 

state 2 

 

    0 $accept: program . $end 

 

    $end  shift, and go to state 5 

 

 

state 3 

 

    1 program: header . statesList 

 

    NUMBER  shift, and go to state 6 

 

    statesList   go to state 7 

    state        go to state 8 

    state_start  go to state 9 

 

 

state 4 

 

    2 header: NUMBER NUMBER . NUMBER 

 

    NUMBER  shift, and go to state 10 

 

 

state 5 

 

    0 $accept: program $end . 
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    $default  accept 

 

 

state 6 

 

    7 state_start: NUMBER . TRUE NUMBER 

    8            | NUMBER . FALSE NUMBER 

 

    TRUE   shift, and go to state 11 

    FALSE  shift, and go to state 12 

 

 

state 7 

 

    1 program: header statesList . 

    3 statesList: statesList . state 

 

    NUMBER  shift, and go to state 6 

 

    $default  reduce using rule 1 (program) 

 

    state        go to state 13 

    state_start  go to state 9 

 

 

state 8 

 

    4 statesList: state . 

 

    $default  reduce using rule 4 (statesList) 

 

 

state 9 
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    5 state: state_start . arcsList 

    6      | state_start . 

 

    CHAR  shift, and go to state 14 

 

    $default  reduce using rule 6 (state) 

 

    arcsList  go to state 15 

    arc       go to state 16 

 

 

state 10 

 

    2 header: NUMBER NUMBER NUMBER . 

 

    $default  reduce using rule 2 (header) 

 

 

state 11 

 

    7 state_start: NUMBER TRUE . NUMBER 

 

    NUMBER  shift, and go to state 17 

 

 

state 12 

 

    8 state_start: NUMBER FALSE . NUMBER 

 

    NUMBER  shift, and go to state 18 

 

 

state 13 
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    3 statesList: statesList state . 

 

    $default  reduce using rule 3 (statesList) 

 

 

state 14 

 

   11 arc: CHAR . NUMBER 

   12    | CHAR . OUTPUT NUMBER 

 

    NUMBER  shift, and go to state 19 

    OUTPUT  shift, and go to state 20 

 

 

state 15 

 

    5 state: state_start arcsList . 

    9 arcsList: arcsList . arc 

 

    CHAR  shift, and go to state 14 

 

    $default  reduce using rule 5 (state) 

 

    arc  go to state 21 

 

 

state 16 

 

   10 arcsList: arc . 

 

    $default  reduce using rule 10 (arcsList) 
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state 17 

 

    7 state_start: NUMBER TRUE NUMBER . 

 

    $default  reduce using rule 7 (state_start) 

 

 

state 18 

 

    8 state_start: NUMBER FALSE NUMBER . 

 

    $default  reduce using rule 8 (state_start) 

 

 

state 19 

 

   11 arc: CHAR NUMBER . 

 

    $default  reduce using rule 11 (arc) 

 

 

state 20 

 

   12 arc: CHAR OUTPUT . NUMBER 

 

    NUMBER  shift, and go to state 22 

 

 

state 21 

 

    9 arcsList: arcsList arc . 

 

    $default  reduce using rule 9 (arcsList) 
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state 22 

 

   12 arc: CHAR OUTPUT NUMBER . 

 

    $default  reduce using rule 12 (arc) 
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Appendix D. Language Encoding Schemes 

Language Encoding Scheme 

Arabic UTF-8 

Catalan ISO8859-1 

Czech ISO8859-2 

Danish UTF-8 

Dutch ISO8859-1 

English ISO8859-1 

Esperanto UTF-8 

French UTF-8 

German ISO8859-1 

Hebrew ISO8859-8 

Hungarian ISO8859-2 

Indonesian ISO8859-1 

Italian ISO8859-15 

Korean UTF-8 

Lithuanian ISO8859-13 

Norwegian ISO8859-1 

polish ISO8859-2 

Portuguese UTF-8 

Romanian UTF-8 

Russian KOI8-R 

Serbian UTF-8 

Slovak UTF-8 

Spanish ISO8859-1 

Swedish ISO8859-1 

Ukrainian UTF-8 

Vietnamese UTF-8 
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Appendix E. Affix File Format 

Standard: 

Many keywords have overloaded meaning.  In such cases the first time the keyword shows up for a 

particular flag, it is to mark the number of rules following it containing that flag, or keyword.  These 

cases are have the Form: KEYWORD <number> line in the following documentation denoting that 

the flag can take that form.  Keywords that do not have a “Form:” descriptor are keywords that turn 

on or off an option by existing in the file or not. 

 

LANG is the keyword setting the language associated with this affix file 

Form: LANG <language> 

 

SET is the he character encoding set used with this language  

 

TRY is the set of characters in order from most to least frequently used.  

Example (from English) TRY esianrtolcdugmphbyfvkwzESIANRTOLCDUGMPHBYFVKWZ' 

 

FLAG is the Affix flag type.   

The following options will follow this keyword: 

  default is the ascii 

  UTF is the flags will be using UTFis the8 characters 
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  long is the flags will be 2 ASCII characters long 

  num is the flags are marked  

Form: FLAG <option> 

 

COMPLEXPREFIXES is the keyword that allows for twofold suffix stripping (see linguistics basics) 

 

NOSUGGEST marks a word that may be a word in the dictionary, but should not be suggested as a 

possible correct spelling for a misspelled word.  This is used to mark vulgar words. 

 

MAXNGRAMSUGS sets the maximum Lowenstein distance between the suggested word’s spelling 

and the mispelled word’s spelling.   

 

NOSPLITSUGS is a keyword disabling suggestions that are actually two separate words.  

 

SUGSWITHDOTS is the If this keyword is present in the affix file, add a dot to the end of the word in 

suggestions if there was a dot at the end of the original word.  For example, if the word read Mf., the 

keyword SUGSWITHDOTS would offer Mr. as a suggestion.  This keyword does not work in Open 

Office, because Open Office already has this functionality. 

 

MAP maps a letter that is commonly mistaken for another letter to that letter for use in suggestions.   
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COMPOUNDMIN sets the length of the shortest possible word to consider compounding.  Without 

this keyword, the default is 3. 

Form: COMPOUNDMIN <number>.    

 

COMPOUNDFLAG sets the flag that marks a word available to be compounded 

Form: COMPOUNDFLAG <flag> 

 

COMPOUNDBEGIN sets the flag that allows a word first part of a compound word 

Form: COMPOUNDBEGIN <flag> 

 

COMPOUNDMIDDLE sets the flag that allows a word to be in the middle of a compound word  

Form: COMPOUNDBEGIN <flag> 

 

ONLYINCOMPOUND is the marks a suffix that can only be found inside a compound word 

Form: ONLYINCOMPOUND <flag> 

 

COMPOUNDPERMITFLAG is the by default, prefixes are allowed in the beginning of compound 

words, and suffixes go at the end.  COMPOUNDPERMITFLAG allows prefixes and suffixes to also be 

part of the words that are being compounded. 
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Form: COMPOUNDPERMITFLAG <flag> 

 

COMPOUNDFORBIDFLAG sets the flag that assures that a version of a word that has had affixes 

added will not be compounded  

Form: COMPOUNDFORBIDFLAG <flag> 

 

COMPOUNDROOT sets the flag that marks compounds that are in the dictionary 

Form: COMPOUNDROOT <flag> 

 

COMPOUNDWORDMAX is the By default, words can be compounded on each other infinitely.  This 

flag sets a maximum amount of words that can be in a compound word 

Form: COMPOUNDWORDMAX <number> 

 

CHECKCOMPOUNDDUP is the assures that words will not be duplicated in compound words.  For 

example, if foo is a word that can be compounded, this keyword would not allow the word foofoo 

 

CHECKCOMPOUNDREP assures that if a compounded word could also be a misspelled word with 

letter from REP in it, it doesn’t get marked spelled properly. 

 

CHECKCOMPOUNDCASE assures that words within compound words are not allowed to have capital 
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letters  

 

CHECKCOMPOUNDTRIPLE assures that words will not compound if it will create a word with a triple 

letter run, such as bar|rro or foo|ox. 

 

CHECKCOMPOUNDPATTERN forbids letters that end a word and letters that begin the next word of a 

compound word from appearing together. 

Form: CHECKCOMPOUNDPATTERN number_of_definition 

Form: CHECKCOMPOUNDPATTERN end_chars begin_chars  

 

COMPOUNDSYLLABLE makes sure that a word that has more words than COMPOUNDWORDMAX 

have less syllables than the first parameter of this keyword.  Syllables are calculated from the list of 

vowels that make up the second parameter.   

Form: COMPOUNDSYLLABLE <max_syllables> <list_of_vowels>   

 

SYLLABLENUM “Needed for special rules in Hungarian [14]” 

Form: Syllablenum <flags> 

 

FORBIDDENWORD defines a flag denoting a word that cannot exist.   

Form: FORBIDDENWORD <flag> 
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WORDCHARS defines characters that are acceptable as parts of single words. “For example, dot, 

dash, n-dash, numbers, percent sign are word character in Hungarian.” 

 

REP creates suggestions of characters to replace the characters they are commonly mistaken for.  In 

English an example may be REP ph f.  It can also be used the same way for words. 

Form: REP <number_of_definitions> 

Form: REP original replacement 

 

CIRCUMFIX defines the flag denoting that a word exists as long as it also has a prefix.  In some 

languages, such as German, the  

 

KEEPCASE defines the flag denoting a word that is acceptable in lowercase form, but not uppercase 

form. 

From: KEEPCASE flag 

 

LEMMA_PRESENT flag separating dictionary words that are real lemmas from dictionary words that 

are actually affixed forms.  

Form: LEMMA_PRESENT <flag> 
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NEEDAFFIX sets the flag denoting a word that cannot exist in a non-affixed form. 

 

PSEUDOROOT is the former name of NEEDAFFIX.  It has been deprecated. 

 

COMPOUNDRULE defines a custom compound pattern using a regular expression-like syntax. 

This keyword is not compatible with any other compound keywords, and as such should not be used 

with any of them. 

Form: COMPOUNDRULE <number_of_definitions> 

Form: COMPOUNDRULE <pattern> 

 

CHECKSHARPS is a keyword letting Hunspell know it should look for special cases of capitalized 

letters.  In German, for example when the letter-pair SS exists in a place that should be capitalized, 

they are capitalized together as a “sharp S.” 

 

COMPOUNDEND sets the flag that allows a word last part of a compound word 

Form: COMPOUNDEND <flag> 

 

BREAK denotes characters that can be the break points between compounded words.   Break works 

recursively. 

Form: BREAK <number_of_break_definitions> 
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Form: BREAK <character_or_character_sequence_that_can_break_words> 

 

KEY - a keyword marking letters that are close to each other on the keyboard.  Here is a basic 

example for a QWERTY keyboard: KEY qwertyuiop|asdfghjkl|zxcvbnm.  It is also possible to mark 

letters that are near each other by adding additional conditions.  For example, the above example 

could have included |kjm 

 

ICONV - marks an input conversion table.  This keyword assures that if a character can be written 

two separate ways, both will be seen as correct. 

Form: ICONV <number_of_conversions> 

Form: ICONV <char> <char> 

 

OCONV -does the same thing as ICONV for an output conversion table. 

Form: ICONV <number_of_conversions> 

Form: ICONV <char> <char> 

 

AF substitutes cardinal numbers for affix flags 

Form: AF number_of_flag_vector_aliases 

Form: AF flag_vector 
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IGNORE lists the characters that can be ignored in a word.  This is useful for languages such as Arabic 

and Hebrew where diacritical marks are optional in a word 

Form: IGNORE <characters> 

 

SIMPLIFIEDTRIPLE is a keyword allowing compound words that would cause a triple letter to occur, 

to strip one of those letters.  This phenomena is found in correctly spelled Norwegian and Swedish 

words. 

 

SFX A keyword denoting a flag for a suffix that can be added to a word 

SFX has the following options: 

  Cross-product - Y or N (yes or no) flag permitting prefix/suffix combinations 

  Stripping - defines letter or letters to be stripped from the end of the non-affixed form.  If no 

stripping will be necessary, the value of this flag is ‘0’ 

  Suffix - character or characters to add to the end of a word 

  Condition - regular expression type character, string, or set of characters stating under what 

conditions the suffix can be added 

     Condition Form: [chars...]denotes a set of single characters that must be present in order to apply 

the SFX rule 

              ^ denotes a character (or string) that cannot be present in order to apply the SFX rule  

             [^chars] denotes a set of characters that cannot be present in order to apply this rule 
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  Morphological fields - ease morphological analysis of words.  This tag is optional. 

   

Form: SFX <flag> <cross_product> <number_of_rules_with_this_flag> 

Form: SFX <flag> <stripping> <suffix> <condition> [morphological_fields...] 

 

PFX A keyword denoting a flag for a prefix that can be added to a word 

SFX has the following options: 

  Cross-product - Y or N (yes or no) flag permitting prefix/suffix combinations 

  Stripping - defines letter or letters to be stripped from the beginning of the non-affixed form.  If no 

stripping will be necessary, the value of this flag is ‘0’ 

  Suffix - character or characters to add to the beginning of a word 

  Condition - regular expression type character, string, or set of characters stating under what 

conditions the suffix can be added 

     Condition Form: [chars...]denotes a set of single characters that must be present in order to apply 

the SFX rule 

              ^ denotes a character (or string) that cannot be present in order to apply the SFX rule  

             [^chars] denotes a set of characters that cannot be present in order to apply this rule 

    Morphological fields - ease morphological analysis of words.  This tag is optional. 

Form: PFX <flag> <cross_product> <number_of_rules_with_this_flag> 

Form: SFX <flag> <stripping> <suffix> <condition> [morphological_fields...] 
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