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Abstract
The goal of this project is to develop XVA pricing methods for options with discrete time set-
tings. Particularly, this project focuses on risk valuation adjustments pertaining to funding
spread and counterparty credit risk, and applies them to the binomial tree model. The final
model incorporates both risk valuation adjustments, and numerical examples are provided.
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1 Introduction

A derivative is a financial contracts whose value at settlement depends on the value of an
underlying asset. Under the classical models, e.g. Black-Scholes, binomial tree, etc., a set of
limiting assumptions are made in order to price derivatives. These assumptions offer ease of
calculation, but are not reflective of the complexities of today’s financial markets. For exam-
ple, the framework allows investors to buy and sell any number of stocks, including fractional
amounts, and ignores all funding costs. It is also common to assume that financial agents
are non-defaultable, which has been disproven by recent events. In financial mathematics,
efforts have been made to relax the simplifying assumptions of the classical framework and
to propose adjustments to pricing methods that capture and mitigate certain risks. A set of
adjustments that seeks to address multiple sources of risk in the market is known as Total
Valuation Adjustment pricing (TVA). In the literature, the pricing methods used are referred
to as XVA pricing, where ’X’ stands for the particular risk that is adjusted for. Modifications
to a pricing model that account for risks experienced in a trading environment are referred
to as risk valuation adjustments.

XVA pricing has been researched more extensively for models in continuous time than
models in discrete time. The purpose of this project is to work towards construction of
an XVA framework for derivative pricing with discrete time. Particularly, this project in-
corporates both counterparty credit risk and non-zero funding spread into a binomial tree
model.

Funding Spread. An investor often must hedge a derivative with investments in stock,
as well as cash that is lent to or borrowed from the treasury. If the hedging portfolio produces
the same cash flows as the derivative, it can be used to price it. Traditional models often
assume there is one risk-free rate, r, under which all money that passes through the treasury
desk accrues. However, the existence of this risk-free rate must be reconsidered, as it is
no longer true that a bank funding rate, government rate, or LIBOR can be used in this
context. More generally, the rate at which an investor can borrow or lend money can be
calculated based on his own credit [1]. This difference in borrowing and lending rates creates
challenges in using the replicating portfolio to price a derivative. In this paper, we refer to
this difference as funding spread.

Credit Risk. In the classical framework, it is also assumed that both parties to a
financial derivative contract are non-defaultable. That is, the agreed-upon payments will be
made fully at the agreed-upon time. However, it is possible for either party to default on the
contract, in which case the non-defaulting party will receive a partial settlement, or zero. As
such, it is necessary to consider the possibility of future default when pricing the contract at
its outset. We will refer to the risk of default by the counterparty as credit risk, and default
by the investor as debit risk.

The unpredictable nature of derivatives makes credit and debit risk particularly interest-
ing. Unlike other financial contracts with pre-determined payoff structures, such as bonds,
in which credit risk is equivalent to lending risk, the value of future payments at the time of
default is uncertain for derivatives. For example, the payout of a European call must be at
least zero, but has no maximum (given that the stock price at maturity has no limit). This
means that an investor who holds a long position in the call will be exposed to an unknown
amount of credit risk. Consider derivatives whose payoffs may be either positive or negative
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for investors who hold a long position in it. In this case, the exposure to credit and debit risk
is uncertain, since at the time of the contract’s start, the investor does not know whether he
will be the one “owing” or the one “owed” in the case of default. For these reasons, credit
risk for a derivative is truly bilateral — meaning that each party is exposed to risk from the
other [3], [4]. However, this project will only consider unilateral credit risk from the point
of view of the investor — also referred to in this paper as counterparty credit risk.

We begin by exploring basic concepts of no-arbitrage pricing in both complete and in-
complete markets. Then, we introduce adjustments to the binomial model based on non-zero
funding spread, and prove conditions under which the model is free of arbitrage. Next, we
consider the impact of counterparty credit risk on the replicating portfolio and other pricing
methods, and formalize these findings into a separate model. Finally, we combine the two
sources of risk into a single model, exhibit the results, and briefly discuss areas for further
research.

2 Background

2.1 Important Terms and Concepts

• European Call/Put Option – A European option can only be exercised at the date of
maturity. For the European call option, the holder may choose to buy an underlying
asset at the price agreed in the option or not to exercise at the expiration date. Simi-
larly, the European put option gives the holder the right, but not obligation to sell at
the agreed upon price at the maturity date.

• Strike Price – This is the price at which an option may be exercised. For a call option,
the strike price indicates how much the security can be bought at, whereas for a put
option, it indicates how much the security can be sold at.

• Counterparty – The counterparty is the other party that participates in a transaction.

• Replication/Replicating portfolio – A portfolio that contains shares in tradeable assets,
which replicates the cash flows of a different asset or liability at each market state. The
replicating portolio can include options.

• Arbitrage – An arbitrage occurs when one starts with no capital, and at some later
time, loses no money and has a positive probability of making money. That is, a
portfolio with net initial investment of zero — call this Y — would be an arbitrage
strategy if at some later time, T ,

1. The probability that YT ≥ 0 is one.
2. The probability that YT > 0 is strictly more than zero.

• Hedge – A hedge is an investment that is designed to reduce the risk of unfavorable
price movements in a given asset. It will typically take the form of an offsetting posi-
tion in a related asset.
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• Super hedging price – The super hedging price of a portfolio is the smallest amount
needed to construct an admissible portfolio such that the future value of the admissible
portfolio is no less than the contingent claim.

• Risk-free rate – This rate is the theoretical rate of return on an investment with no
risk of financial loss.

• Market Completeness - A complete market is one in which every derivative security
can be replicated, with the information available at the current time.

2.2 Fundamental Theorems of Asset Pricing in the Discrete Set-
ting

There are two fundamental theorems for asset pricing in the discrete setting. This section
briefly reviews both.

The First Fundamental Theorem of Asset Pricing A discrete model is arbitrage-
free if and only if there exists one risk-neutral measure that is equivalent to the physical
measure.

The Second Fundamental Theorem of Asset Pricing An arbitrage-free market
consisting of stocks and bonds is complete if and only if there exists a unique risk-neutral
measure that is equivalent to the physical measure.

The first fundamental theorem enables us to find an alternative measure that agrees with
the “real-world”, physical measure on impossible events, in order to arrive at an arbitrage-
free price for a derivative. Under this risk-neutral measure, the stock price discounted by the
risk-free rate is a martingale — meaning, that the conditional expectation of the discounted
stock price at a future time is equal to the current stock price, which we will denote as St.
Formally, we denote the discount factor from time T to time t, t < T , as Dt,T

1. We denote
all information available up to time t under the risk-neutral measure as the sigma-algebra
Ft. So2:

E[Dt,TST |Ft] = St

Under a discrete model, calculation of the risk-neutral measure is relatively simple using the
equation above.

Recall that a complete market is one in which a derivative can be replicated at every state.
The second fundamental theorem ultimately means that if exact replication is possible, the
existence of a unique risk-neutral measure is certain. Pricing by replication as it pertains to
the binomial tree model is discussed in the next section.

1Note that if interest is compounded annually, by risk-free rate r, D0,1 = 1
1+r

2Note: by convention, E[x|F0] = E[x]
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2.3 The Binomial Tree Model

The binomial tree model was introduced by Cox, Ross, and Rubinstein as a simple model
for option valuation, based on the idea that the underlying asset follows a two-state lattice
[5]. We let the underlying asset be a stock, whose initial price is denoted as S0. The capital
gain to the stock over each period can take only one of two values, commonly referred to as
the price in ’up-state’ and the price in the ’down-state.’ The ratio between these prices and
S0 are, repectively, the up-factor, u, and the down-factor, d. The risk-neutral probability
of the stock price reaching the up-state in one period is denoted as p, and the risk-neutral
probability of it reaching the down-state is denoted as 1− p.

S0

S0u

S0d

p

1− p
X0 = ∆S0 +M

X(H) = ∆S0u+M(1 + r) = V (H)

X(T ) = ∆S0d+M(1 + r) = V (T )

p

1− p

Figure 1: Stock and replication portfolio modeled on a one-period binomial tree model.

Pricing by Replication The model traditionally assumes a market consisting of stocks
and bonds. In order to price a derivative, an investor replicates his position in a derivative
with shares of stock and bonds (a.k.a. money market account). Let ∆ denote the number
of shares of stock the investor buys, and M denote the number of shares of money market
account the investor lends. Investments into the money market grow at compound interest
by the risk-free rate, r, over every period. For this discussion, we will denote the value of
the option at the up-state as V (H) and the value of a variable at the down-state as V (T ).
The same notation is followed for other variables.

Let Xt = ∆tSt+Mt denote the value of the investor’s replication portfolio at time t. The
aim of the investor is to exactly replicate the cash-flows of the derivative at every market
state. (For the following discussion, the absence of a subscript on ∆ and M indicates time
zero.) Therefore, after one period:

X(H) = ∆S0u+M(1 + r) = V (H)

X(T ) = ∆S0d+M(1 + r) = V (T )

Thus,

∆ =
V (H)− V (T )

(u− d)S0

M =
uV (T )− dV (H)

(u− d)(1 + r)
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Finally, the price of the derivative, V0, is equal to the price of the replicating portfolio,
X0 = ∆S0 + M . The risk-neutral probability of an up-movement is defined such that
p = (1+r)−d

u−d .
The existence of a replicating portfolio implies that a derivative can be priced by taking

the expectation of discounted payoffs under the risk-neutral measure. Note that we have
concluded that the price Vt = Xt ∀t ∈ [0, T ] for a derivative with maturity T . Consider a
derivative modeled with a one-period binomial tree.

E[VT ] = E[XT ] = E[∆ST +MT ] = E[∆ST ] +M0(1 + r)T

Suppose we multiply both expectations by the discount factor, D0,T = 1
(1+r)T

. Then,

E
[ VT

(1 + r)T

]
= E

[ XT

(1 + r)T

]
= ∆E

[ ST
(1 + r)T

]
+M0

Using the fact that the stock price discounted by the risk-free rate is a martingale, we arrive
at,

E
[ VT

(1 + r)T

]
= ∆S0 +M0

Note that the right-hand side is equivalent to the price of the portfolio, which we have already
established is equivalent to the price of the derivative. Thus,

V0 = E
[ VT

(1 + r)T

]
(1)

Similar arguments can be made for a derivative modeled on a multi-period binomial tree.
For a multi-period model, we instead take expectations and discount over a single period at
a time, starting at maturity.

To outline the methods used to price a derivative on the binomial model, we present a
simple example:

Example 1
Suppose a European call option is modeled on a two-period binomial tree. You are given:

(i) each period is 6 months
(ii) the current price of a stock is S0 = 100

(iii) u = 1.1, where u is 1 plus the gain on the stock if the price of the stock goes up
(iv) d = 0.8, where d is 1 plus the gain on the stock if the price of the stock goes down
(v) the risk-free interest rate, compounded annually, is r = 3%
(vi) the strike price, K, is 100

We will first construct a binomial tree modeling the possible values of S at times 0, 6
months, and 1 year.
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S0 = 100

S0.5(H) = 110

S0.5(T ) = 80

S1(HH) = 121

S1(HT ) = 88

S1(TT ) = 64

p

1− p

1− p

p

1− p

p

Then, we calculate the payoff of the call at the three possible endpoints — the payoffs
resulting from: two downward movements in the stock, two upward movements in the
stock, and one upward, one downward movement in the stock.

Recall, the payoff function for a call option is VT = (ST −K)+, so:
V (HH) = 21, V (HT ) = 0, V (TT ) = 0

To find the risk-neutral price of the derivative, we must find the risk-neutral proba-
bility of an upward stock movement, p:

p =

1
D0,1
− d

u− d
=

(1 + .03)
1
2 − 0.8

1.1− 0.8
≈ 0.7163

Next, we move one period to the left on the tree, and calculate the values of the option
at the 6-month mark. Since we know the risk-neutral probability of an upward stock
movement, we can calculate these prices as conditional expectations at each node:

V0.5(H) = D0.5,1 · E[V1|S0.5 = 110] = (1.03)−
1
2 · [p · V (HH) + (1− p) · V (HT )]

V0.5(T ) = D0.5,1 · E[V1|S0.5 = 80] = (1.03)−
1
2 · [p · V (HT ) + (1− p) · V (TT )]

To arrive at an initial price for time zero, we repeat the same calculation:

V0 = D0,0.5 · E[V0.5] = (1.03)−
1
2 · [p · V0.5(H) + (1− p) · V0.5(T )]

Rounded values are given in the tree below.

V0 = 10.461

V0.5(H) = 14.822

V0.5(T ) = 0

V1(HH) = 21

V1(HT ) = 0

V1(TT ) = 0

p

1− p

1− p

p

1− p

p
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2.4 Pricing in Incomplete Markets

In a traditional binomial tree model, which is a complete market, a derivative can be uniquely
priced and replicated. However, in multinomial models, there is insufficient information to
find a unique solution for the risk-neutral measure, and the market is incomplete.

2.4.1 Trinomial Model

Consider pricing a European call option on S, modeled with a one-period trinomial tree as
follows:

(i) initial stock price is S0 = 100
(ii) the stock price can be one of the set {120,110,90} at the end of the period

(iii) the constant risk-free interest rate per period is r = 4%
(iv) the strike price is K = 105
(v) the option expires at time T = 1

(vi) under risk-neutral probability measure P , let:
(a) p1 = P (S1 = 120)
(b) p2 = P (S1 = 110)
(c) p3 = P (S1 = 90)

To find an arbitrage-free price for this option, one begins by finding the risk-neural
measure from the given information. In the tree model, the events at time t are simply the
possible values that St can take. The events are disjoint — meaning, S1 cannot be equal to
both 120 and 90, for this example. Therefore, we know that the probabilities of these events
sum to 1:

p1 + p2 + p3 = 1 (2)

Additionally, we know that the discounted value of the stock price is a martingale under the
risk-neutral measure. EP [S1] = S0 · (1 + r). Thus,

EP [S1] = 120p1 + 110p2 + 90p3 = 100 · (1 + r) = 104 (3)

Treating equations (2) and (3) as a system, we can observe that it is under-informed.
There are two equations with three unknowns {p1, p2, p3}; as such, it is not possible to find
a unique solution for P . Since there is no unique solution for the risk-neutral measure, this
is not a complete market, and no unique arbitrage-free price can be found.

Instead, we can obtain an interval of values for each pi. We begin by using equation (2)
to solve for one pi. Then, we substitute this value into (3), solve for pj where i 6= j, and
bound that value by [0,1]. For example:

p3 = 1− p1 − p2

30p1 + 20p2 = 14 =⇒ p1 =
7

15
− 2p2

3
=⇒ 0 ≤ 7

15
− 2p2

3
≤ 1

It is clear that from the last inequality, we can conclude p2 ∈ [0, 21
30

]. Similarly, we find
p1 ∈ [0, 14

30
], p3 ∈ [ 3

10
, 8
15

].
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An infinite number of risk-neutral probability measures exist — (one for each possible
of p1 ∈ [0, 14

30
], p2 ∈ [0, 21

30
], p3 ∈ [ 3

10
, 8
15

], when chosen consistently). Under any of these
measures, the no-arbitrage value of an option is equivalent to the discounted expectation
of the payoff, since the payoffs of the derivative are dependent on only the value of the
underlying asset, St. In this example,

C(S,K, T ) = EP
[ V1

(1 + r)1

]
=

15p1 + 5p2 + 0p3
1.04

Using this equation, we can parameterize a pi to find the price bounds for the option. Taking
p2 as our paramater, we arrive at: C(S,K, T ) ∈ [3.37, 6.73].

2.4.2 Replication in an Incomplete Market

The non-uniqueness of price exhibited in the trinomial model example is connected to the
existence of a unique replication portfolio and risk-neutral measure. In fact, the formation
of an exact replication portfolio is not possible in an incomplete market. For example, in
the trinomial model example, in order to replicate V , we must form some portfolio of shares
of stock, ∆, and shares in a money market account, M , such that, at time t = 1:

120∆ +M · 1.04 = 15

110∆ +M · 1.04 = 5

90∆ +M · 1.04 = 0

This is an over-informed system. As such, it is not possible to find a solution for {∆,M}.
A natural choice would be to implement super-hedging. By super-hedging, we ensure that
our portfolio outperforms the claim in every terminal market state, i.e.:

120∆ +M · 1.04 ≥ 15

110∆ +M · 1.04 ≥ 5

90∆ +M · 1.04 ≥ 0

To find the initial value of the super-hedging portfolio, X0 = ∆S0 + M , we find the lower
bound of the interval of X0’s such that the above holds true. In this example, the value
is X0 = 6.73, which is the same as the upper price bound that was found in the previous
section. Note that with this structure, it is possible to construct a portfolio that exactly
replicates one of the three claims at time 1, and exceeds each of the other two claims. If one
were to implement strict super-hedging, the inequalities above would be strict, and no state
would be exactly replicated.

2.4.3 Binomial Tree with Multiple Assets

Suppose the payoff of an option with maturity time T is max[0, ZT − YT − K], where ZT
and YT are the prices of two different assets at time T , and K is a common strike price. The
method for pricing this option depends on whether or not Zt and Yt are dependent. For the
following discussion, let these assumptions hold true:

8



Table 1: Joint Probability Distribution between Z1 and Y1, with Zt ⊥ Yt
Y1 = Y0uY Y1 = Y0dY

Z1 = Z0uZ p1 · p3 p1 · p4
Z1 = Z0dZ p2 · p3 p2 · p4

(i) the derivative being priced is a European spread call option on Zt and Yt
(ii) the values of Zt and Yt are modeled using separate 1-period binomial trees

(iii) dZ , dY are the down factors for Z and Y respectively; uZ , uY are the up factors
(iv) risk-free rate, r is a constant
(v) under risk-neutral probability measure P , let:

(a) p1 = P (Z1 = Z0uZ), p2 = P (Z1 = Z0dZ), p3 = P (Y1 = Y0uY ), p4 = P (Y1 = Y0dY )

If Zt and Yt are treated as independent, then the joint probability distribution between
Z1 and Y1 is simply equal to the products of the probabilities, as summarized in Table 1.

Note that we can also form similar equations to the previous example, for each of our
binomial trees - the one modeling Zt, and the one modeling Yt. Namely:

p1 + p2 = 1

p3 + p4 = 1

Z0uZ(1− p1) + Z0dZp2 = Z0 · (1 + r)

Y0uY (1− p3) + Y0dY p4 = Y0 · (1 + r)

Since there are now four equations with four unknowns, we can find a unique solution
for {p1, p2, p3, p4}, and conclude

C(S,K, T ) = EP
[ V1

(1 + r)1

]
=

max(0, Z0uZ − Y0uY −K) · (p1p3)
(1 + r)

+
max(0, Z0uZ − Y0dY −K) · (p1p4)

(1 + r)

+
max(0, Z0dZ − Y0uY −K) · (p2p3)

(1 + r)
+

max(0, Z0dZ − Y0dY −K) · (p2p4)
(1 + r)

If the movements of the two underlying assets are dependent, we can no longer use the
joint probability distribution described in Table 1. Instead, the probability distribution is
redefined as follows:

(a) q1 = P ((Z1 = Z0uZ) ∩ (Y1 = Y0uY ))
(b) q2 = P ((Z1 = Z0uZ) ∩ (Y1 = Y0dY ))
(c) q3 = P ((Z1 = Z0dZ) ∩ (Y1 = Y0uY ))
(d) q4 = P ((Z1 = Z0dZ) ∩ (Y1 = Y0dY ))

9



(Note that for any probability measure space (Ω,F , Q), and disjoint sets B,C ∈ Ω such that
B ∪C = Ω, Q(A) = Q(A ∩B) +Q(A ∩C) for A ∈ Ω. Then Q(X1 = X0uX) = q1 + q2, etc.)
Therefore,

q1 + q2 + q3 + q4 = 1

Z0uZ(q1 + q2) + Z0dZ(q3 + q4) = Z0 · (1 + r)

Y0uY (q2 + q4) + Y0dY (q1 + q3) = Y0 · (1 + r)

This is now similar to the problem presented by the trinomial model discussed earlier.
We have four unknown probabilities, and three equations. Using the same strategy presented
with the trinomial example, we can find upper and lower bounds for the price of the spread
option, but no unique solution exists.

3 Results

We begin our adjustments to the binomial tree model by exploring the impact of non-
equal borrowing and lending rates on the replication portfolio. Then, separately, we develop
a model that incorporates counterparty credit risk and introduce a third asset into the
replication portfolio to hedge this risk. Finally, we combine these ideas into a single model.

3.1 Model 1: Funding Spread

The traditional framework assumes there is one risk-free interest rate, r, under which cash
values are accumulated and discounted. However, it is more practical to suppose that there
is a non-zero funding spread of interest rates offered by the treasury desk. Let rb represent
the (constant) borrowing rate, rl the (constant) lending rate. Note that a negative value
in the cash position of the investor’s portfolio represents cash borrowed, whereas a positive
value is cash lent. In the following discussion, this portfolio is denoted as (l, b,∆), where l
is shares of cash lent, b is shares of cash borrowed, and ∆ is shares of stock bought.

In Theorem 1, we introduce necessary conditions on u, d, rl, and rb under which one can
arrive at an arbitrage-free price for a derivative modeled in a one-period binomial tree.

10



X0 = ∆0S0 + l + b

X1(H) = ∆1S0u+ l(1 + rl) + b(1 + rb) = V1(H)

X1(T ) = ∆1S0d+ l(1 + rl) + b(1 + rb) = V1(T )

p

1− p

Figure 2: One-period model of length h = 1 illustrating a replication portfolio (l, b,∆). The
lent portion of the money market account grows at rate rl, whereas the borrowed portion of
the money market account grows at rate rb. We assume rl 6= rb.

Theorem 1. : No-Arbitrage Condition: For a derivative on a stock modeled with a
one-period binomial model of length h, let rb > 0 and rl > 0 be the Treasury borrowing
and lending rates, respectively, and u, d have their usual definitions. Then no arbitrage
is possible if and only if u > d, d < (1 + rb)

h, rl < rb, and (1 + rl)
h < u.

Proof. “⇐ :” Suppose an arbitrage strategy X = (l, b,∆) exists. Assume d < (1 + rb)
h,

rl ≤ rb, and (1 + rl)
h < u. We will prove by contradiction that no such arbitrage strategy

exists.
The initial investment (t = 0) for this strategy is:

X0 = l + b+ ∆S0 = 0 ⇐⇒ l + b = −∆S0 (4)

We can construct a system for the value of the portfolio at time t = h. Under the
definition of arbitrage, there must be a non-zero probability of making a profit, meaning
Xh > 0 for one state, and Xh ≥ 0 for another state at time h. Since u is strictly greater
than d, and X is an arbitrage strategy, we can conclude for ∆ > 0 that Xh(H) > 0, and
Xh(T ) ≥ 0, (and the argument for ∆ < 0 follows similarly).

Xh(H) = l(1 + rl)
h + b(1 + rb)

h + ∆S0u > 0
Xh(T ) = l(1 + rl)

h + b(1 + rb)
h + ∆S0d ≥ 0

Taking the substitution from (4), we find:

l((1 + rl)
h − u) + b((1 + rb)

h − u) > 0
l((1 + rl)

h − d) + b((1 + rb)
h − d) ≥ 0

Note: b < 0, and l > 0, and, since rl ≤ rb we can conclude:

l((1 + rl)
h − u) + b((1 + rl)

h − u) ≥ l((1 + rl)
h − u) + b((1 + rb)

h − u) > 0
l((1 + rb)

h − d) + b((1 + rb)
h − d) ≥ l((1 + rl)

h − d) + b((1 + rb)
h − d) ≥ 0

11



From the first inequality:

(l + b) · ((1 + rl)
h − u) > 0

u>(1+rl)
h

======⇒ (l + b) < 0

Similarly, from the second inequality:

(l + b) · ((1 + rb)
h − d) ≥ 0

d<(1+rb)
h

======⇒ (l + b) ≥ 0

No l, b exist such that (l + b) < 0 and (l + b) ≥ 0. Thus, we arrive at a contradiction.

“⇒” Suppose that u ≤ (1 + rl)
h, and that no arbitrage is possible. We will prove by

contradiction that rl < rb, u > (1 + rl)
h, and d < (1 + rb)

h.
Consider the portfolio Y = (l, b,∆) = (S0, 0,−1) Again, we construct a system for the

possible values of the portfolio at time h:

Yh(H) = −uS0 + S0(1 + rl)
h = S0((1 + rl)

h − u)
Yh(T ) = −dS0 + S0(1 + rl)

h = S0((1 + rl)
h − d)

However, since u ≤ (1 + rl)
h:

Yh(H) = S0((1 + rl)
h − u) ≥ 0

Yh(T ) = S0((1 + rl)
h − d) > 0

Thus, we derive a contradiction.
Now suppose that d ≥ (1 + rb)

h.
Consider the portfolio Z = (l, b,∆) = (0, S0, 1). At time h:

Zh(H) = uS0 − S0(1 + rb)
h

Zh(T ) = dS0 − S0(1 + rb)
h

Since u > d and d ≥ (1 + rb)
h, this is equivalent to:

Zh(H) = S0(u− (1 + rb)
h) > 0

Zh(T ) = S0(d− (1 + rb)
h) ≥ 0

Z is an arbitrage strategy, which is a contradiction.
Finally, suppose that rl > rb. Now, we consider the portfolio W = (l, b,∆) = (1, 1, 0).

The values of this portfolio at time t = h are:

Wh(H) = Wh(T ) = (1 + rl)
h − (1 + rb)

h > 0

Again, W is an arbitrage strategy, which contradicts our hypothesis. QED
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3.1.1 Replication with Non-Zero Funding Spread

Without loss of generality, in the following discussion we will suppose that an investor cannot
borrow and lend simultaneously to the money market account, since this is a sub-optimal
strategy. Because l and b (as defined above) now behave such that l = 0 if b 6= 0 and vice
versa, we revert back to denoting M as the amount invested into the money-market account.
We let M accrue at rate r∗ := rb1{M<0}+ rl1{M≥0}, where 1 denotes the indicator function3.

In a market with non-equal borrowing and lending rates, we cannot price by replication
in the usual way. To construct a replicating portfolio for a long position in V , denoted as XV ,
one would utilize either a borrowing or lending position in M , depending on the behavior of
the derivative. The replicating portfolio for the short position, X−V , must take the opposite
money-market account strategy to XV . Without the presence of a risk-free rate, the prices
of XV and −X−V are no longer equal. Therefore, the no-arbitrage price for the derivative is
not a single point, but is an interval of values.

In a one-period binomial tree model of length h, the initial value of the replicating port-
folio XV can be found as follows:

XV = ∆V S0 +MV

∆V =
Vh(H)− Vh(T )

S0(u− d)

MV =
u · Vh(T )− d · Vh(H)

(u− d)(1 + r∗V )

Consider similar equations for X−V :

X−V = ∆−V S0 +M−V

∆−V =
−Vh(H) + Vh(T )

S0(u− d)

M−V =
−u · Vh(T ) + d · Vh(H)

(u− d)(1 + r∗−V )

We can come to the following five conclusions directly. These conclusions are used to
construct replicating portfolios under non-zero funding spreads.

(a) ∆−V = ∆V

(b) u · Vh(T )− d · Vh(H) > 0⇒MV > 0
(c) u · Vh(T )− d · Vh(H) < 0⇒MV < 0
(d) r∗V = rb1{MV <0} + rl1{MV ≥0}
(e) r∗−V = rb1{MV ≥0} + rl1{MV <0}

3

1{M<0} =

{
1, if M < 0

0, else

1{M≥0} =

{
1, if M ≥ 0

0, else

13



For the following discussion, we denote the price of the replicating portfolio for a long
position in V as Φ(XV ). Similarly, let Φ(X−V ) denote the price of the replicating portfolio
for a short position in V . Denote Φ(X∗V ) as the minimum price of a strictly super-hedging
portfolio for a long position in V . Similarly, denote Φ(X∗−V ) as the minimum price of a
strictly super-hedging portfolio for a short position in V . All prices are set at the same time
t.

Theorem 2. Let V be a European-type derivative modeled on a one-period binomial
tree with non-zero funding spread. Assume the no-arbitrage conditions from Theorem
1. Then, any arbitrage-free price of the derivative at time t, Vt, satisfies:

max{−Φ(X∗−V ),−Φ(X−V )} ≤ Vt ≤ min{Φ(X∗V ),Φ(XV )}

That is, the prices within this interval are arbitrage-free, and only those outside of the
interval produce arbitrage opportunities. If max{−Φ(X∗−V ),−Φ(X−V )} = −Φ(X∗−V ),
then the interval is open on the left: Vt > −Φ(X∗−V ). If min{Φ(X∗V ),Φ(XV )} = Φ(X∗V ),
then the interval is open on the right: Vt < Φ(X∗V ).

Proof. The proof for this theorem will be split into two parts. First : to show that the largest
no-arbitrage price of a derivative is equal to the minimum between the price to replicate it
and the price to super-replicate it. Second : to show that the smallest no-arbitrage price is
equal to the maximum between the inverse of the price to replicate and super-replicate short
positions in the derivative. Third : to show that the prices between the largest and smallest
price are arbitrage-free.

Part 1. Show Vt ≤ min{Φ(XV ),Φ(X∗V )}

Suppose min{Φ(X∗V ),Φ(XV )} = Φ(XV ), and Vt > Φ(XV ).
Consider the strategy that takes a short position in Vt and a long position in XV . Denote
this strategy as Y . The initial cash-flow for Y is:

Y0 = −Φ(XV ) + Vt > 0

Then, at time h, the value of portfolio Y would be:

Yh(H) = Vh(H)− Vh(H) = 0

Yh(T ) = Vh(T )− Vh(T ) = 0

Since the initial profit still stands, Y is an arbitrage strategy. Therefore, Vt ≤ Φ(XV )

Suppose min{Φ(X∗V ),Φ(XV )} = Φ(X∗V ), and Vt ≥ Φ(X∗V ).
Then one can choose to buy X∗V and sell the derivative for Vt, for an initial cash flow of:

Y0 = −Φ(X∗V ) + Vt > 0

14



Then, at time h, the value of portfolio Y would be:

Yh(H) = X∗h(H)− Vh(H) > Vh(H)− Vh(H) = 0

Yh(T ) = X∗h(T )− Vh(T ) > Vh(T )− Vh(T ) = 0

Since SV uses strict super-replication, a positive profit is guaranteed at both states. (Note:
if X∗V used traditional super-replication, then X∗V would exactly replicate V at one state,
and super-replicate it at the other, so a positive profit would still be guaranteed.) So, Y is
an arbitrage strategy.
Additionally, since X∗V is strict, its price can be expressed by:

Φ(X∗V ) := inf{Φ(Z)|Zh(H) > Vh(H) and Zh(T ) > Vh(T )}

where Z is a portfolio comprised of stock and money-market investments. As such, Vt cannot
equal Φ(X∗V ).
Thus Vt < Φ(X∗V )

Part 2. Show Vt ≥ max{−Φ(X−V ),−Φ(X∗−V )}

Suppose max{−Φ(S−V ),−Φ(X−V )} = −Φ(X∗−V ), and Vt < −Φ(X∗−V ) ⇐⇒ −Vt >
Φ(X∗−V ).
Then one can buy X∗−V and sell −Vt (equivalent to buying the derivative for Vt) for an initial
profit of:

Y0 = −Vt − Φ(X∗−V ) > 0

Then, at time h, the value of the portfolio Y would be:

Yh(H) > −V (H) + V (H) = 0

Yh(T ) > −V (T ) + V (T ) = 0

So, Y is an arbitrage strategy, which is a contradiction.Therefore, Vt > −Φ(X∗−V )

Now, suppose max{−Φ(X∗−V ),−Φ(X−V )} = −Φ(X−V ), and Vt < −Φ(X−V ) ⇐⇒ −Vt >
Φ(X−V ).
Then one can buy X−V and buy the derivative for Vt for an initial profit of:

Y0 = −Vt − Φ(X−V ) > 0

Then, at time h, the value of the portfolio Y would be:

Yh(H) = V (H)− V (H) = 0

Yh(T ) = V (T )− V (T ) = 0

So, Y is an arbitrage strategy, which is a contradiction. Therefore, Vt ≥ −Φ(X−V )
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Part 3. Show any arbitrage-free price Vt satisfies

max{−Φ(X∗−V ),−Φ(X−V )} ≤ Vt ≤ min{Φ(X∗V ),Φ(XV )}

Suppose the hypothesis is true. Consider a strategy Yt = −aVt + ∆tSt + Mt, which we
claim to be a selling arbitrage strategy, where a is the number of shares of Vt bought. That
is, the initial cash-flow at time t is

aVt −∆tSt −Mt > 0,

for some arbitrary {∆t,Mt} such that at time T , there is positive profit, and at the other
state, there is no loss. Without loss of generality, we let Y (H) > 0 and Y (T ) ≥ 0. (This
choice is inconsequential.):

Y (H) = −aV (H) + ∆tStu+Mt(1 + r∗)(T−t) ≥ 0

Y (T ) = −aV (T ) + ∆tStd+Mt(1 + r∗)(T−t) > 0,

for r∗ = rb or r∗ = rl. From this, we conclude:

aV (H) ≤ ∆tStu+Mt(1 + r∗)(T−t)

aV (T ) < ∆tStd+Mt(1 + r∗)(T−t)

However, this implies that aΦ(X∗V ) ≤ ∆tSt +Mt. From our initial cash flow, this implies,

Φ(X∗V ) < Vt,

which is a contradiction. So, Y is not an arbitrage strategy.
Now suppose that Yt = aVt−∆tSt−Mt is a buying arbitrage strategy. Then, the initial

cash flow at time t is
−aVt + ∆tSt +Mt > 0,

for some arbitrary {∆t,Mt} such that at time T , there is positive profit, and at the other
state, there is no loss. Without loss of generality, we let Y (T ) > 0 and Y (H) ≥ 0. (This
choice is inconsequential.):

Y (H) = aV (H)−∆tStu−Mt(1 + r∗)(T−t) ≥ 0

Y (T ) = aV (T )−∆tStd−Mt(1 + r∗)(T−t) > 0,

for r∗ = rb or r∗ = rl. From this, we conclude:

−aV (H) ≤ −∆tStu−Mt(1 + r∗)(T−t)

−aV (T ) < −∆tStd−Mt(1 + r∗)(T−t)

However, this implies that aΦ(X∗−V ) ≤ −∆tSt−Mt. From our initial cash flow, this implies,

−Φ(X∗−V ) > Vt,

which is a contradiction. So, Y is not an arbitrage strategy.

QED
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3.1.2 Remark About Super-replication in Theorem 2

One is tempted to assume that the parameters of the binomial model would be chosen
such that u and d do not lie between the returns on borrowing and lending, i.e. d < 1 <
(1 + rl)

h < (1 + rb)
h < u. However, this is not always true. In fact, it has even been the case

that depositors to government banks have been charged interest for short-term investments
— meaning that rl can actually be negative [2].

We begin by observing that when u < (1 + rb)
h, or d > (1 + rl)

h, it is less expensive
to super-replicate a derivative using only shares of stock, than it is to super-replicate by
investing in both stock and money-market. Take, for example, the case where d > (1 + rl)

h.
Then, if one were to construct a super-hedging portfolio for V , X∗V = ∆∗S0 +M∗, one could
use any ∆∗ and M∗ strategies that would outperform the derivative. However, the investor
would not choose to lend money to the money-market account, since the return per dollar
would be less than the return per share of stock (i.e. it is more expensive to lend money than
to take the equivalent long position on stock). Suppose M∗ = 1 dollar. Then that dollar
will be worth (1 + rl)

h dollars at time h, whereas with ∆∗ = 1
S0

shares, that investment will

be worth either u or d dollars at time h — both of which are larger than (1 + rl)
h. The

same argument follows for the case when u < (1 + rb)
h; in this case, the investor is looking

to minimize the return on what he has borrowed, since a higher return only increases the
amount that he must repay later. Therefore, it is always optimal to super-replicate by using
only investments in stock when u < (1 + rb)

h, or d > (1 + rl)
h.

We observe that it is sometimes possible to replicate −V for a V that pays non-negative
values, starting from a positive value. Then, when Φ(X−V ) is negated to find a suitable
price for V , the outcome is a negative value. This creates an arbitrage opportunity, since the
investor has been paid to construct the portfolio, and is again paid a non-negative amount
from the payoff of the derivative. However, when one constructs a super-hedging portfolio
for −V using only shares in stock, the price is negative — as expected — and −Φ(X∗−V ) is
positive, and arbitrage-free. See the following example for details.

Example 2
Consider a derivative modeled on a one-period binomial tree which distributes payoffs of
13.4 in the down state and 11.8 in the up state at time 1, with the following specifications:
S0 = 100, u = 1.015, d = 1.014, rb = 3%, rl = 1%.
We begin with finding the replicating portfolio for −V .

∆−V =
−V (H) + V (T )

S0(u− d)
=

−11.8 + 13.4

100(1.015− 1.014)
= 16

M−V =
−uV (T ) + dV (H)

(u− d)(1 + r∗−V )
=
−1.015 · 13.4 + 1.014 · 11.8

(1.015− 1.014) · (1 + .03)
≈ −1588.16

X−V = ∆−V S0 +M−V ≈ 11.85

So, −Φ(X−V ) = −11.85
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Next, we find the price of the super-hedging portfolio for −V .

X∗(H) = ∆∗S0u+ 0 > −11.8

X∗(T ) = ∆∗S0d+ 0 > −13.4

⇒ ∆∗ = max{ −11.8

1.015 · 100
,
−13.4

1.014 · 100
} ≈ −.116

Φ(X∗−V ) ≈ −.116 ∗ 100 = −11.6

So, −Φ(X∗−V ) = 11.6

Finally, max{−Φ(X∗−V ),−Φ(X−V )} = 11.6

3.2 Model 2: Counterparty Credit Risk

Recall that without any additional information, the value of a derivative is dependent only
on the value of the underlying asset. However, it is prudent to consider an adjustment to
the model based on the possibility that the counterparty may default, which would result
in partial (or zero) payment. This is referred to as unilateral Credit Valuation Adjustment
(CVA) from the point of view of the investor. Of course, in a more realistic scenario, either
party may default, but we presume there is only one credit-risky party. For this model, we
restore the assumption that there exists some risk-free interest rate, r.

To hedge against this new risk, we must introduce a third asset into the replication
portfolio: a corporate bond issued by the counterparty. This bond earns some rate, rc,
which differs from the risk-free interest rate. Since the bond is issued by the counterparty,:

(i) each share of the bond is worth zero in the case of counterparty default, OR
(ii) each share of the bond is worth (1 + rc)

t at time t if the counterparty does not default.
The introduction of this third asset effectively hedges against the counterparty default risk.
From the point of view of the investor, the bond may be used to mitigate the negative impact
of defaulting on the contract.

Next, we will discuss our attempts at modeling the derivative and replication portfolio
under these new conditions.

3.2.1 Unilateral CVA: The 1 + ε Model

For this model, we treat counterparty default and the determination of the derivative payoff
as two non-simultaneous events. Instead, we assume that default can occur shortly after the
moment that the underlying asset is valuated. This means that for a derivative modeled with
a one-period binomial tree of length h, the information that is known at time h includes:
• the price of the underlying asset, Sh, and money-market account
• the full exercise value of the derivative, Vh

whereas the information available at time h+ ε, for small ε > 0 includes:
• whether or not the counterparty has defaulted
• the realized exercise value of the derivative (some portion, α ∈ [0, 1] of the full exercise

value)
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For simplicity, we discuss a model with length h = 1; i.e., the 1 + ε Model. We also assume
the recovery rate, α, is zero.

We do not allow the investor to trade in the counterparty bond during the first period. In-
stead, the initial portfolio includes investments in only the stock and money-market account,
and X0 = ∆0S0 +M0.

At time 1, the investor knows the value of the underlying asset. Based on that knowledge,
he allocates funds away from the money market account or stock and into the bond. We
denote the amount invested in the bond at the up and down state as BH

1 and BT
1 , respectively.

Thus, the value of the portfolio (in the up-state and down-state) before and after rebalancing
can be expressed by the following:

X1(H) = ∆0S0u+M0(1 + r)
rebalance

= ∆H
1 S0u+MH

1 +BH
1 (5)

X1(T ) = ∆0S0d+M0(1 + r)
rebalance

= ∆T
1 S0d+MT

1 +BT
1 (6)

One is not concerned with exact replication at time 1. Instead, exact replication occurs only
at time 1 + ε at the four terminal nodes. During the second period, from t = 1 to t = 1 + ε,
the stock and money-market account values remain constant. Together, they essentially act
as a cash account.

We now consider replication at the four terminal nodes. Let DX1+ε(H), DX1+ε(T ) repre-
sent the value of the portfolio in the case of the counterparty’s default, given that the stock
moves up and down, respectively. Then we can express the value of the portfolio at the four
terminal nodes as follows:

X1+ε(H) = ∆H
1 S0u+MH

1 +BH
1 (1 + rc)

ε = V1(H) (7)

DX1+ε(H) = ∆H
1 S0u+MH

1 = αV1(H) = 0 (8)

X1+ε(T ) = ∆T
1 S0d+MT

1 +BT
1 (1 + rc)

ε = V1(T ) (9)

DX1+ε(T ) = ∆T
1 S0d+MT

1 = αV1(T ) = 0 (10)

See Figure 3 of a (1 + ε)-step tree for illustration.

We begin by treating equations (7),(8) as a system, and equations (9),(10) as a separate
system. This allows us to solve for BH

1 and BT
1 .

BH
1 = V1(H)

(1+rc)ε
, BT

1 = V1(T )
(1+rc)ε

Additionally, we can set limitations for the choices of ∆H
1 ,M

H
1 ,∆

T
1 ,M

T
1 . From equations

(7) - (10), we can conclude:

∆H
1 S0u+MH

1 = 0 = ∆T
1 S0d+MT

1

Note that ∆ and M sum to zero and therefore can be disregarded. The aim is to find values
for ∆0 and M0 in order to find the price of the replicating portfolio. Finally, we use (5),(6)
to arrive at:

⇒M0 = 1
(1+rc)ε

· uV1(T )−dV1(H)
(u−d)(1+r) , ∆0 = 1

(1+rc)ε
· V1(H)−V1(T )

S0(u−d) ,

and the price of V at t = 0 is X0 = ∆0S0 +M0.
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X0 = ∆0S0 +M0

X1(H) = ∆1S0u+M1 +BH
1

X1(T ) = ∆1S0d+M1 +BT
1

X1+ε(H) = V1(H)

DX1+ε(H) = 0

X1+ε(T ) = V1(T )

DX1+ε(T ) = 0

Figure 3: Illustration of the 1 + ε Model. Note that for derivatives with T > 1, the tree
would extend only from the terminal nodes in which no default occurred. In this diagram, the
branches in green would be extended, and those in red would terminate.

3.2.2 Extension to Multi-Period Model

Assumptions
We maintain the same assumptions regarding the risk-free interest rate r and the risk-neutral
probability of a stock price increase p. We extend the 1+ ε model into a multi-period model,
and generalize it to allow for longer “ε” periods. We also relax the assumption of a recovery
rate, α, of zero.

We suppose there are 2N total periods, which consist of N “trade periods” in which both
stock price and money-market accounts can be traded, and N “default periods” in which
the counterparty may default. The counterparty cannot default during a trade period, and
the stock and money market accounts remain constant during a default period.
• The length of each trade period is denoted by h.
• The length of each default period is denoted by g.
• For an option with maturity date T , g+h = T

N
. Note that g does not necessarily have

to be “small” as compared to h. This differs from the “1+ε” model, which assumed
ε > 0 to be small.
• We express time as the sum of “a” trading periods and “b” default periods, i.e.:
t = ah+ bg, for a, b ∈ {0, 1, ...N}, a = b, or a = b+ 1.
• Each trade period must directly precede a default period, and each default period must

directly follow a trade period.

Now, we consider the new risk-neutral measure. Let the filtration containing market
information (stock and money-market account values) be denoted as H := {Ht}, the filtration
containing default information be denoted as G := {Gt}, with H and G independent. Note
that since stock and cash is constant in the default period, St ⊥ G, and Mt ⊥ G, 0 ≤ t ≤ T .
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Define Ft = Ht

∨
Gt, which contains information on both stock movements and defaults

which have occurred up to time t.
Now, we define the risk-neutral probability of the counterparty’s default, denoted as q.

This value can be thought of as a default intensity, for which the probability of default is
depends on the length of time. Suppose that the risky bond issued by the counterparty earns
rate rc, and is modeled by a one-period tree of length g. At time g, each dollar invested in
the bond will be worth either (1 + rc)

g with probability 1 − q, or 0 with probability q. We
assume that during this period, the bond earns the risk-free rate. However, recall that the
money-market account remains constant during the default period. Therefore, the risk-free
rate we use is zero. Thus, in this period under the risk-neutral measure:

1(1 + 0)g = (1 + rc)
g · (1− q) + 0 · q ⇐⇒ q = 1− (1 + rc)

−g

From this calculation, we can surmise that instances of default, and q itself, are independent
of the market information in the filtration Ht. Thus, to verify that the value of the derivative
is a martingale under F, it suffices to show that the discounted stock price is a martingale.
Since St ⊥ G, we know that

E[STDt,T |Ft] = E[STDt,T |Gt ∨Ht] = E[STDt,T |Ht] = St

So, discounted future stock price is a martingale under the probability measure space (Ω,F , P )
— the risk-neutral measure. Therefore, the price of the derivative can be found using the
discounted expected payoffs under F. Generalizing, we say that at time, t = ah + bg, the
price of the derivative, Ct, is:

Ct = E[VTDt,T |Ft]

= (D0,h)
N−a · [αq + (1− q)]N−b ·

N−a∑
i=0

(
N − a
i

)
pi(1− p)N−iV (T, Stu

idN−a−i)

Note that N − a and N − b represent the number of trading periods and default periods
left before expiration. In the equation above, the discounting factors during default periods
are ignored, because the risk-free rate during these periods is zero. The second term, [αq +
(1− q)]N−b, is arrived at by calculation of the expected value of the derivative taken prior to
every default period. The summation is the typical form for the expected value of a random
variable that is distributed binomially (VT ∼ B(N − a, p)). 4

3.2.3 Replicating Portfolio

Taking the four-period model depicted in Figure 4 as an example, we can replicate the option
using three assets, as before. The replicating portfolio reflects movements from two trading
periods, as well as two default periods. We begin finding portfolio values (∆,M,B), by
looking at the two-equation systems at the terminal nodes:

XHH
2h+2g = ∆HH

2h+gS0u
2 +MHH

2h+g +BHH
2h+g(1 + rc)

g = V (HH) (11)

4By convention,
(
0
0

)
= 1, and

(
1
0

)
= 0
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S0

S0u

S0d

Ch+g

αCh+g

αCh+g

Ch+g

S0u
2

S0ud

S0du

S0d
2

αV (T, ST )

V (T, ST )

αV (T, ST )

V (T, ST )

αV (T, ST )

V (T, ST )

αV (T, ST )

V (T, ST )

p

1− p
q

1− q

q

1− q

p

1− p

p

1− p

q

1− q

q

1− q

q

1− q
q

1− q

Figure 4: Illustration of stock movements and payoffs to the investor in a 4-period model.
Values in red occur as the result of counterparty default.

DX
HH
2h+2g = ∆HH

2h+gS0u
2 +MHH

2h+g + 0 = αV (HH)

XHT
2h+2g = ∆HT

2h+gS0ud+MHT
2h+g +BHT

2h+g(1 + rc)
g = V (HT ) (12)

DX
HT
2h+2g = ∆HT

2h+gS0ud+MHT
2h+g + 0 = αV (HT )

XTH
2h+2g = ∆TH

2h+gS0du+MTH
2h+g +BTH

2h+g(1 + rc)
g = V (TH) (13)

DX
TH
2h+2g = ∆TH

2h+gS0du+MTH
2h+g + 0 = αV (TH)

XTT
2h+2g = ∆TT

2h+gS0d
2 +MTT

2h+g +BTT
2h+g(1 + rc)

g = V (TT ) (14)

DX
TT
2h+2g = ∆TT

2h+gS0d
2 +MTT

2h+g + 0 = αV (TT )

Notice that these portfolios are not rebalanced before termination.
From these systems, we find B2h+g values. For events, ωi ∈ {H,T} :

Bω1ω2
2h+g =

1− α
(1 + rc)g

V (ω1ω2) =
1− α

(1 + rc)g
C2h+2g

Continuing, we find that any portfolio chosen such that

∆ω1ω2
2h+gS(ω1ω2) +Mω1ω2

2h+g = αC2h+2g

is a replication portfolio for the terminal nodes.
Therefore, we move backward by one default period to find the values of ∆h+g, Mh+g, and

Bh+g. To do so, we set the value of X2h+g to the expected value of future payoffs, discounted
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by one default period (since this is equivalent to the price of the derivative, C2h+g). Note
that before rebalancing, the portfolio uses ∆, M , and B from time t = h+ g.

XHH
2h+g = ∆H

h+gS0u
2+MH

h+g(1+r)h+BH
h+g

rebalance
= ∆HH

2h+gS0u
2+MHH

2h+g+BHH
2h+g = EQ[V (HH)]

XHT
2h+g = ∆H

h+gS0ud+MH
h+g(1+r)h+BH

h+g
rebalance

= ∆HT
2h+gS0ud+MHT

2h+g+BHT
2h+g = EQ[V (HT )]

We evaluate the expectations and simplify to the system below, (and do the same for
portfolio values under events {TH} and {TT}).

XHH
2h+g = ∆H

h+gS0u
2 +MH

h+g(1 + r)h +BH
h+g = (αq + (1− q))V (HH)

XHT
2h+g = ∆H

h+gS0ud+MH
h+g(1 + r)h +BH

h+g = (αq + (1− q))V (HT )

Recall that BH
h+g = 0. Thus, we arrive at generalized formulas for ∆ω1ω2...ωa

ah+bg , Mω1ω2...ωa
ah+bg ,

and Bω1ω2...ωa
ah+bg , as follows:

∆ω1ω2...ωa
ah+bg Sah+bg +Mω1ω2...ωa

ah+bg =

{
αCah+(b+1)g, if a 6= b

C(a+1)h+bg, if a = b

Bω1ω2...ωa
ah+bg =

{
1−α

(1+rc)g
Cah+(b+1)g, if a 6= b

0, if a = b

Above, we use St as shorthand for S(ω1ω2...ωa). Note that a 6= b ⇐⇒ ’at the beginning
of default periods’, and a = b ⇐⇒ ’during trade periods’.

Let us consider the price of a derivative modeled on a 2N-period model, at time t =
Nh+ (N − 1)g — just before the final default period. In the previous model, we calculated
the price of the derivative using expectations discounted by the risk-free rate. Denote this
value as Ct. Recall,

Ct = (αq + (1− q)) · V (ω1ω2...ωa) (15)

Now, we take the value of the replicating portfolio at t, denoted by Xω1ω2...ωa
t . Based on the

generalized formulas in the previous discussion, we find:

Xω1ω2...ωa
t = ∆ω1ω2...ωa

t St +Mω1ω2...ωa
t +Bω1ω2...ωa

t

=

[
1− α

(1 + rc)g
+ α

]
· V (ω1ω2...ωa)

(16)

Compare (15) to (16), and find that:

αq + (1− q) =
1− α

(1 + rc)g
+ α

We will denote this constant as λ. We will use this constant to eliminate the dependence
on the risk-neutral measure, and continue our discussion with differential borrowing and
lending rates.
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3.3 Model 3: Funding Spread and Unilateral CVA

In our third model, we combine Model 1 and Model 2, in order to incorporate both funding
spread and unilateral CVA. This is relatively simple, since we have decided to divide our
previous model into trade periods and default periods.

For the price of the derivative prior to default periods, we can calculate the price as a
single point, since the differential rates have no effect during these periods. The price at
time t = nh+ (n− 1)g is simply,

Cω1,...,ωn
nh+(n−1)g = λ · Cω1,...,ωn

nh+ng

However, when moving backward over a trade period, the borrowing and lending rates
do affect the price of the derivative. The counterparty default risk, on the other hand, has
no effect. Therefore, Theorem 2 can be applied directly. For the price of a derivative at
time t = nh + ng, we denote the lower bound with Lωnnh+ng, and the upper bound with
Uωn
nh+ng. Note that both L and U are dependent on the two possible values of Cωn

(n+1)h+ng.
This does not matter for calculations just prior to the last trading period, since the price
of the derivative at the terminal nodes are the realized exercised values. However, this does
become important for further recursive calculations.

Lωnnh+ng = max{−Φ(X∗−Cωn
(n+1)h+ng

),−Φ(X−Cωn
(n+1)h+ng

)}

Uωn
nh+ng = min{Φ(X∗Cωn

(n+1)h+ng
),Φ(XCωn

(n+1)h+ng
)}

Cωn
nh+ng ∈ [Lωnnh+ng, U

ωn
nh+ng]

See Figure 5 for illustration.
Once two Cωn

nh+ng have been chosen, (one from the up state, and one from the down
state), the process of multiplying by lambda (to calculate the price prior to the previous
default period), and finding the arbitrage-free interval (over the previous trading period) is
repeated. For each pair of CH

t , C
T
t , there is a single arbitrage-free interval [L0, U0].

However, the purpose of the model is to find an arbitrage-free price range for the derivative
itself — not specific to prices chosen at a future date. The arbitrage-free interval of prices
for the derivative as a whole can be captured by taking the lower bound to be the minimum
possible value of L0, and the upper bound to be the maximum possible value of U0. This
interval may be open, closed, or half-open dependent on the parameters passed into the
model. The exact mapping between the intervals for the two prices at time nh+ng and the
boundary points of the interval two periods back is not yet known.

4 Numerical Implementation

The final model is quite simple to implement. In order to verify that the model produces
reasonable price ranges, we developed a spreadsheet to run 4-period examples. What follows
is an outline of some results from this spreadsheet.

Specifications
The derivatives being considered are puts and calls.
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C0ε[L0, U0]

λ · CH
h+g

λ · CT
h+g

CH
h+gε[L

H
h+g, U

H
h+g]

αCH
h+g

αCT
h+g

CT
h+gε[L

T
h+g, U

T
h+g]

CHH
2h+g = λV (HH)

CHT
2h+g = λV (HT )

CTT
2h+g = λV (TT )

αV (HH)

V (HH)

αV (HT )

V (HT )

αV (TT )

V (TT )

Figure 5: An illustration of a 4-period model incorporating both funding spread and
credit risk. Notice that the price of the derivative alternates between being a single
point and a range of intervals, and that the intervals can either be open or closed.

• For simplicity of calculation, we let each trade period and each default period be of
length h = g = 1.
• We first calculate the ranges [LH2 , UH

2 ], [LT2 , UT
2 ].

• We then choose 100 stratified CH
2 ’s and CT

2 ’s from each range to simulate model out-
comes under different combinations of {CT

2 ,CH
2 }.

• We store the resulting lower price bounds, L0, in a 100x100 matrix, and do the same
for the upper price bounds, U0.
• To present the results from the model, we represent these matrices as planes in three-

dimensional space, where:
– The X-axis and Y-axis correspond to values of CT

2 and CH
2 , respectively.

– The Z-axis corresponds to both the lower and upper bounds, with the lower
bounds in the lower plane, and the upper bounds in the upper plane.

• The baseline parameters for the model are the following, and should be assumed unless
otherwise stated:

– α = 0.30, rc = 0.05, rb = 0.03, rl = 0.01, S0 = 100, K = 90
The model was first implemented without using super-hedging. Meaning, the upper and

lower bounds were chosen such that:

Vt ∈ [−Φ(X−V ),Φ(XV )]

When the model incorporates super-hedging, the arbitrage-free price intervals typically
become more narrow, and do not include negative values. The difference in results between
implementation of only replication and incorporation of super-hedging is particularly notice-
able when the values of u or d are set to lie between the rates of gain from lending and
borrowing. In some situations, the price to super-hedge the long position in V was much

25



less expensive than the price to exactly hedge it; so, the model excluded these high positive
values as upper bounds as well. See the figures below for comparisons between these two
methods.

First is a comparison of the outputs for a call option which is modeled on a tree with
u = 1.025 and d = 1.015 (Figure 6). In this case, both factors are between the borrowing
and lending rate. In turn, this causes a peak to form in the lower bounds and a valley to
form in the upper bounds. In Figure 6, both the valley in the upper plane and the peak in
the lower plane run nearly parallel to the horizon line from the viewer’s perspective.

Figure 6: Rendering of model outputs with and without super-replication for a European
Call Option.

Additionally, by incorporating super-hedging into the model, the ranges of arbitrage-free
prices can sometimes narrow or widen. Using the same example as pictured in Figure 6, we
can illustrate these changes in Figure 7.
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Figure 7: Rendering of price intervals with and without super-replication for a European
Call Option.

In these two graphs, the arbitrage-free intervals are pictured as vertical lines at times 0
and 2. (Nothing is pictured at time 1, since any single point within the intervals at time 2
are arbitrage-free.) An open circle indicates that the interval is open at that end because
the boundary point was produced by super-replication. The blue line represents the interval
for CH

2 and the red line represents the interval for CT
2 . Notice that for this option, the price

intervals no longer overlap at time 2, and narrow considerably at both time 0 and time 2
after implementing super-replication.

We notice a different problem with the put option. Figure 8 depicts a put option modeled
with u = 1.02 and d = 0.7. Without using super-replication, the initial price bounds can be
negative. By using super-replication, though, the lower bounds are near zero, but strictly
positive. The interval for the initial price for the derivative is open on the left.
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Figure 8: Rendering of model outputs with and without super-replication for a European
Put option.

Again, note how the arbitrage-free price intervals narrow and do not produce negative
results when super-hedging is used for the put, in Figure 9.

Figure 9: Rendering of price intervals with and without super-replication for a European
Put option.
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5 Recommendations for Further Research

As financial market risks change, the necessity for a comprehensive XVA framework for
derivative valuation increases. Though strides are being made in the continuous time en-
vironment, a framework for discrete time is lacking. The research we have done does not
suffice for a comprehensive framework, as it does not account for a multitude of risks that
are typically considered, and makes many simplifying assumptions.

One particular area this model could improve is incorporating bilateral CVA and collater-
alization. Some XVA frameworks consider valuation adjustments based on the institution’s
or investor’s possibility of default (DVA) counter-intuitive and exclude it [3]. However, since
derivatives are typically valued by a third party, and are inherently bilateral in nature, such
an adjustment is suitable. Similarly, collateral is often posted in two-party agreements in the
form of cash. This collateral, like other cash assets, can be invested and earns a particular
rate. Collateral can be introduced as another asset in the replicating portfolio.

Additionally, since our research always takes the point of view of the investor, it remains
to be seen how funding spread is affected by a third-party valuation. Particularly, the
counterparty will be charged different borrowing and lending rates based on their credit,
which results in differing prices between the two parties. These differences must be reconciled
and formalized mathematically.

The Binomial Asset Pricing Model can be related to the Black-Scholes framework by
allowing the number of periods between t = 0 and t = T to approach infinity. The binomial
model approaches a lognormal distribution for a stock under appropriate scaling. Our model
differs, however, since each trading period is followed by a default period. The length of
each period in relation to each other will likely have some effect when the number of periods
approaches infinity, since default intensity and the constant λ both depend on the length of
the default period. The scaling of this model in such a way is an important area of research.

Of course, this model can be improved upon by incorporating more risk valuation ad-
justments, and eliminating certain simplifying assumptions, such as zero trading cost and
the ability to trade any number of stock. However, this model does provide a foundation for
research on the XVA framework with discrete time setting.

29



6 Appendix: Spreadsheet used for Numerical Imple-

mentation

Figure 10: This figure contains the inputs, outputs, final no-arbitrage price interval, and the
no-arbitrage price intervals for CT

2 and CH
2 .

Figure 11: This figure displays a small portion a big, colored rectangle matrix of lower bound
values with low prices colored green, high prices colored red, and prices in between colored
yellow to orange.
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Figure 12: This figure displays a small portion a larger matrix containing upper bound values
with low prices colored green, high prices colored red, and prices in between colored yellow
to orange.
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