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Abstract 

 

 Gene regulation is an integral part of cellular function and key to understanding how 

genetic material is expressed in prokaryotes and eukaryotes.  One of the regulatory pathways is 

hypothesized to be the interaction of sense and antisense transcripts that lead to the degradation 

of the dsRNA and consequently transcriptional regulation.  The Rhind Lab has shown that 

certain meiotic genes in S. pombe have statistically high antisense transcripts that would be 

needed for this type of regulation.  The sense and antisense mediated RNA regulation model was 

investigated by direct transcript analysis by qRT-PCR without the presence of any double-strand 

specific ribonucleases.  The transcriptional analysis suggested a more biologically complex 

interaction.  Another method utilized a RFP/GFP reporter that changed expression of one 

fluorescent protein for the other in vivo.  The development of this assay is under construction 

and is needed for the confirmation that the sense and antisense transcription is part of gene 

regulation.  The in vivo assay accompanied by the qRT-PCR data could suggest a specific case 

where antisense transcription plays a biological role in gene regulation adding to the complexity 

of the RNAi pathway.   
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1.0 Introduction 

 

1.1 Schizosaccharomyces pombe as a model organism 

S. pombe is a unicellular archiascomycete fungus that is part of a unique branch fungi that 

are used as model organisms for genetic and biochemical research.  Although S. pombe which is 

part of the fission yeast classification, is unicellular it also participates in many of the same 

biological functions as high eukaryotes. (26)  The species diverged from its close relative 

Saccharomyces cerevisiae, a fission yeast, an estimated 330-420 million years ago and similarly 

diverged from metazoans and plants an estimated 1,000 -1,200 million years ago.  (35)  S. pombe 

has proven to be a useful organism in the scientific field since its discovery.   

S. pombe was first introduced to geneticists in the 1890s and was extensively examined 

during the course of the 1950s leading up to its genome sequencing in 2002.  A DAP1 stained 

image of vegetatively growing S. pombe cells is depicted 

in Figure 1.  Once S. pombe joined the ranks as the sixth 

model eukaryote organism to have its genome sequenced 

its true potential was elucidated. (36)  S. pombe was found 

to be a significant organism as it had the smallest number 

of predicted genes than any other recorded eukaryote. 

Even when compared to S. cerevisiae, S. pombe still had 

just under 1000 less predicted genes. (26)  The small 

number of genes coupled with the S. pombe genome 

size, 13.8-Mbp comprised of three chromosomes, made 

the study of cell-cycle control, mitosis and meiosis, 

Figure 1:  Mitotic growth in the fission 

yeast S. pombe  

An image of Mitotic growth in the 

fission yeast S. pombe that has been 

stained with DAP1 to highlight the 

nucleus. The nuclear changes that take 

place during the mitotic life cycle are 

clearly shown.  
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DNA repair and recombination, and checkpoint controls easier for geneticist to explore.  (35)   

A small genome, a limited number of genes, and an organism that can be genetically 

manipulated with ease sets the stage for scientific exploration in a number of cellular functions. 

(35)  Exploration into these areas such as DNA replication, RNA transcription, and gene 

expression are a few examples of what this simple eukaryote can give insight into.  This research 

could be analogous to far more complex systems and pathways present in the higher eukaryotes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2 S. pombe Life Cycle 

S. pombe is part of the fission yeast clade and follows both a mitotic and meiotic growth 

cycle as shown above in Figure 2.  The type of mitotic division is classified by the fission yeast 

clade where the yeast cells divide by medial fission. (9)  During G2 the cells elongate from the 

poles of the cylindrical cell in preparation for division. (14)  The elongation of the yeast cells can 

be measure and used as an indicator of the cell’s mitotic progression. (14)  Once the cells are 

committed to mitosis, elongation stops and the cells progress though M phase and then G1.  The 

Figure 2: Two Life Cycles of Fission Yeast 

This image shows vegetative or mitotic growth on the right and the meiotic 

cycle on the left illustrating the general life cycle of fission yeast. 



9 
 

formation of the septum at the geometric middle of the cell sets the stage for cytokinesis and the 

resulting division producing two daughter cells of equal size.  (8)  The daughter cells then 

elongate and proceed to enter the mitotic cycle again by initiation into G2.  

The alternate cell cycle as presented on the left side of Figure 2 represents the meiotic 

cell cycle where the yeast undergoes sexual differentiation.  In the absence of sufficient nutrients, 

the opposite mating types h- and h+, S. pombe cells will commence conjugation.  (28) The newly 

conjugated cells form a diploid zygote which enter meiosis and consequently sporulation.  The 

tetrad ascus formed contains the new haploid spores.  The spores will remain until permissive 

conditions return allowing the spores to fuse, enter G2, and commence elongation. 

1.3 RNA Transcription 

RNA transcription is an integral part of all life and is an important area of biological 

study that is used to gain insight into many essential pathways for gene expression, protein 

synthesis, and many other significant biological functions.  RNA transcription can be separated 

into three distinct stages namely initiation, elongation, and termination.  The first stage of RNA 

transcription, initiation begins when the Preinitation Complex (PIC) is formed by binding the 

RNA polymerase complex.  The promoter of the gene contains a consensus sequence upstream 

of the transcription start site that is recognized by the general transcription factors (GFTs).  The 

GFTs bind to the double stranded DNA and recruit the RNA Polymerase II core. The PIC once 

bound to the DNA will begin the process of copying the DNA. 

The process of synthesizing the RNA transcript from the DNA sequence is called 

elongation.  The PIC will generate a transcription bubble and move downstream from the 

transcription start site in the 5’ to 3’ direction.  This will result in the synthesis of the nasant 

RNA transcript that is cotranscriptionally processed by the carboxyl tail doman (CTD) on the 
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PIC as it is being extruded.  The CTD is responsible for the processing of the 5’ and 3’ ends of 

the RNA transcript by the addition of a 7-methylguanosine triphosphate cap and a poly(A) tail, 

which serve to protect the transcript from degradation once it leaves the nucleus.  The RNA 

transcripts are processed further by post transcriptional splicing mechanism.  Once RNA 

processing is completed the resultant mature RNA product that will then leave the nucleus to be 

translated in the cytosol by the ribozyme.   

Before the GFTs can attract the PIC, the GTFs must bind to the either the Watson or the 

Crick DNA strand associated with a gene before initiation can commence.  When a gene is 

transcribed in the normal direction from either the Watson or Crick strand it is referred to as a 

sense transcript.  When the opposite strand of complementary sequence is transcribed for the 

Figure 3:  RNA Duplex Formation  

This is image depicts both sense and antisense transcription with some proposed consequences 

of nuclear RNA duplex formation. 
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same gene it is called the antisense transcript.  The sense and antisense transcripts comprise two 

oppositely orientated RNA molecules with perfect double strand homology as displayed in 

Figure 3, but only one codes for a functional protein. (27)  The homology between the two 

strands has been shown to create double strand RNA duplexes. (2)  The pathway for the 

formation of RNA double stranded duplexes has been theorized and is represent in the figure 

above.   

 Evidence shows that many organisms, including higher eukaryotes, make antisense 

transcripts as a byproduct bidirectional transcription. (11)  With this mind there are two types of 

duplex RNAs that can be formed from the complementary sequences of RNA.  There are both 

short or imperfect and long or perfect double strand RNA duplexes that can form.  The short 

duplexes are RNA transcripts that are no larger than one hundred base pairs and are most likely 

produced from transcriptional activity at different loci.  The opposite long RNA duplexes are 

most likely formed by opposing transcription at the same locus.  These two types of RNA 

duplexes are postulated to form both in the nucleus and the cytosol and serve as mechanism for 

gene regulation possibly at the transcriptional level. (2, 11) 

 The way that the short and long RNA duplexes are formed is theorized and illustrated in 

Figure 3.  The figure is split into the two theories of where the RNA duplex is formed either in 

the nucleus or the cytosol.  The image Aa on the top of Figure 3 shows the nuclear interpretation 

for RNA duplex formation where the oppositely transcribed RNA form a duplex 

contranscriptionally or post transcriptionally in the nucleus.  This could lead to either alternative 

splicing or the complications in RNA editing (Fig. 3 Ab and Ac) due to the RNA duplex 

interference in identification of introns.  (2)  The other hypothesis where the RNA duplex forms 

outside of the nucleus has the ability to inhibit translation and reduce transcript stability.  Figure 
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3 Ba – Bc proposes three different cytosolic binding motifs that would result in RNA duplex 

formation.  The RNA duplex could aid in the generation of RNA hairpins or mask RNA binding 

sites.  RNA duplexes formed within the cytosol are likely to inhibit translation by delaying 

association with the ribozyme and consequently slowing protein synthesis.  (2)   

 Both the nuclear and cytosolic hypotheses support that the production of RNA duplexes 

from the sense and antisense transcripts could result in endo- or exonuclease degradation of the 

RNA transcripts via RNases. (2, 11, 27)  The RNA duplex could affect transcript stability by 

initiating the RNAi pathway where by the double stranded RNA duplex is recognized as 

exogenous nucleic acids and is degraded into siRNAs. 

1.4 RNAi Pathway 
 

The RNAi pathway is biologically conserved mechanism used in response to the 

detection of either endogenous or exogenous double stranded RNA.  The RNAi pathway is used 

as a means for the cell to protect itself and for gene regulation by the production of miRNAs or 

siRNAs.  In the formation of both miRNAs and siRNAs, is performed by the biological machine 

called Dicer (Dcr1) which is used to identify double stranded RNA.  The RNA duplex formed by 

the sense and antisense transcripts is detected by the Dcr1 machine and bound to it.  Once bound 

Dcr1 cuts the double stranded RNA into approximately twenty-two nucleotide long pieces that 

are then bound to another complex, RISC (RNA-induced silencing complex).  The RISC 

complex unwinds the short double stranded RNA molecules and separates the two strands into 

single stranded RNA.  The resulting short single stranded RNA becomes miRNA or siRNA that 

the RISC complex can use to repress the translation or degrade mRNA transcripts that are 

transcribed later.  The differentiation between siRNAs and miRNAs is the function that they are 
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associated with.  miRNAs are used as means of silencing translation while siRNAs are used to 

degrade mRNA. 

 

 

 

 

 

 

 

S. pombe employs two double strand ribonucleases, Dcr1 and Pac1 in its RNAi pathway.  

Both enzymes have the ability to degrade the double stranded RNA of the sense, antisense 

transcript duplex.  (4, 24)  Dcr1 has been shown to function with ago1 and rpd1 in the RNAi 

pathway.  There is also evidence to suggest that these three genes are involved in the formation 

and maintenance of heterochromatin and chromosome segregation.  (4)  Dcr1 is active in gene 

silencing and has implications as a post transcriptional regulator. (7) 

Unlike Dcr1, Pac1 is an essential gene for mitotic growth that is associated with the 

synthesis of ribosomal RNA precursors. (10)  Pac1 functions not only as a double stranded 

RNase belonging to the RNase III class but also as a mutlicopy suppressor for pat1 which helps 

direct entrance into meiosis.  The overexpression of the gene suppresses the cells entrance into 

meiosis by inhibiting the pat1 as well as prevents all sexual differentiation.  (23) 

 

Figure 4: Ribonuclease involvement in RNAi 

A model for the RNAi pathway utilizing ribonuclease enzymes to illustrate the how dsRNA is 

degraded into miRNA or siRNA.  
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1.5 Bidirectional Transcription S. pombe 
 

There is emerging evidence that shows RNA transcription takes place on both DNA 

strands for a given gene.  S. pombe is no exception as almost one third of its protein coding DNA 

regions contain elevated levels of antisense transcription.  (19)  The abundance of antisense 

transcripts found in the yeast genome suggests new functions of noncoding RNAs (6) could lead 

to a pathway for gene regulation and silencing that could take place at the transcriptional level. 

(3)  The finding of transcription at significant levels adds another layer of complexity to the S. 

pombe transcriptome and sets the stage for the study of new functions of ncRNAs. 

Of these bidirectionally transcribed genes there is significant evidence showing that the 

majority belong to the meiotic and stress response genes. (5, 19, 22)  The relative abundance of 

the antisense transcript has been determined to be higher than that of its sense counterpart in one 

hundred sixteen genes, where the resulting RNAs correspond to mid-meiotic genes.  (5)  This 

phenomena is observed by the deep sequencing plot for Spo6 in Figure 5.   This expression of 

these antisense transcripts is seen in mitotic growing cells where little or no mRNA is expected, 

could suggest that antisense transcripts can act as regulators.  

 

 

 

 

     

 

 

 

Figure 5: High Antisense Transcription is Present at Specific Meiotic Genes 

The plot shows transcription on the Watson and Crick DNA strands on the top and bottom, 

respectively.   The reads from RNA-Deep Sequencing experiments are displayed on a scale of 

0—300 and plotted against the chromosomal coordinates.  Signals greater than 300 were 

truncated so that all low amplitude signal could be seen.  The gene of interest, meiotic gene 

Spo6, shows significantly higher antisense transcription than the corresponding sense 

transcription.   
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The mitotic and meiotic cell cycle shown in Figure 2 is paralleled with a stark change in 

transcription in the yeast cells.  During mitotic growth there must be a tightly controlled   

elimination of any mRNA of meiosis specific transcripts to ensure that the cells do not enter into 

an undesired meiosis.  (1) This has been shown using DNA microarrays to watch meiotic 

expression of these genes.  The data collected showed regulated waves of transcription that 

allowed for many biological functions necessary for a successful meiotic cycle.  (13)  The 

regulation of these genes is important to the function of the yeast cells during mitotic growth and 

antisense transcription could one of the many ways in which these genes are regulated.   

Two of examples of the mid-meiotic genes that produced higher antisense transcription 

than sense transcription are the S. pombe genes Spo6 and Spo4.  Spo6 has been identified as gene 

related to sporulation, required for the initiation of DNA replication and regulated by Mie4 as a 

forkhead transcription factor. (17)  During the study of Spo6 function it was determined that the 

antisense transcription level is high relative to the sense transcription during vegetative growth.  

Spo6 transcription changes with the onset of meiosis. (22)  The arrival of the new cell cycle 

allows the sense transcript to proliferate and the antisense to diminish. (17)  The function of spo6 

in DNA initiation has been investigated because the Spo6 gene codes for a protein of similar 

sequence to budding yeast S. cerevisiae’s Dbf4p which is a regulatory protein subunit of Cdc7p 

protein kinase complex.  Dbf4p associates with Cdc7p and binds to the DNA PIC to start 

initiation by phosphorylating MCM proteins permitting DNA replication. (17)   

Spo4 similar to Spo6 is also a meiotic induced gene that is involved in sporulation during 

Meiosis II.  The Spo4 associates with its regulator Spo6 by the formation of an active kinase 

complex.  Spo4 unlike Spo6 is not essential for mitosis or DNA replication, but is required 

proper progression through Meiosis II. (18) The function of Spo4 is exposed when looking at the 
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preferential nuclear localization of the protein without Spo6 requirement.  This suggests that 

Spo4 is a Cdc7 kinase (18) and more specifically a serine, threonine protein kinase. 

1.6 Reporter Cassettes 

Any time that transcription is analyzed and assayed for, a method must be employed to 

distinguish when the transcript is produced or not.  A common method used for in vivo research 

in transcript analysis is the employment of Green Fluorescent Protein (GFP) and Red Fluorescent 

Protein (RFP) as a reporter cassette.  For example GFP or RFP cassettes could be inserted into 

the yeast genome such that when the RNA transcript of interest is transcribed, one of the 

fluorescent proteins is also transcribed.  When the RNA transcript is not present no fluorescent 

protein in produced.  Under fluorescent light the yeast can be analyzed and the amount of 

fluorescent protein quantized.   

GFP or 1EMP was isolated from the bioluminescent 

jellyfish Aequorea victoria found in the north Pacific. (15)  

The jellyfish use aequorin, a bioluminescent protein to emit 

blue light that the 1EMP absorbs and consequently emits 

green light.  (29) 

The GFP is comprised of 230 residues where the 

protein shown in Figure 6.  The shape of the protein 

tertiary and quaternary structure is described as a beta-

can where the protein consists of a “cylinder comprising of eleven strands of beta-sheet with an 

alpha-helix inside and short helical segments on the ends of the cylinder.” (29, 37)  RFP is a 

homologue to GFP isolated from reef coral and anemone that emits red spectral light.  RFP 

subunits adopt similar shape to that of GFP beta-can confirmation.  (33)   

Figure 6.  Structure of 1EMP beta-can. 
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Both GFP and RFP are part of the fluorescent protein family that spontaneously fluoresce 

by autocatalytic chromophore generation. (15)   The chromophores of the fluorescent proteins 

are comprised of an internal tripeptide that is protected inside of the cylinder of the structure.  

(37)  In the case of GFP the tripeptide is Ser65-Tyr66-Gly66 where the three subsequent amino 

acids catalyze the reactions with 4-(p-hydroxybenzylidene)-5-imidazolinone.  The local 

chemistry and chemical groups near the chromophore determine the wavelengths of light both 

absorbed and emitted.  (15)  The short amino acid sequence of the fluorescent proteins and the 

local chemistry of the chromophore makes the proteins easily manipulated for a variety of 

biological functions.  (15)   

Another reporter cassette that is often employed is the Cre-loxP System.  Cre-loxP is an 

example of a site specific recombinase that is comprised of Cre complex and the sequence of 

DNA that the Cre complex binds which is referred to as a loxP site.  Cre is a recombinase 

encoded by bacteriophage P1 and has suggested implications in cyclization of the genome and 

dealing with dimeric chromosomes formed during DNA replication.  (30)  The Cre recombinase 

binds to the thirty-four base pair loxP site by the binding with two fourteen base pair long 

recombinase binding elements (RBE) centered on a six base pair crossover region.  (30)  At each 

site two Cre complexes bind and cleave the DNA in the crossover region by phosphoryl transfer 

strand exchange.  (30)  The cleaved strand can then participate in crossing over and the new 

strands are ligated together.   

The discovery of high levels of antisense transcription at specific meiotic genes that 

changes during the two life cycles in S. pombe gives rise to the hypothesis that antisense 

transcription acts as a mechanism to regulate these genes.  The antisense transcripts are 

suggested to be involved in the RNAi pathway by hybridization with the complementary sense 
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transcript.  The dsRNA formed is degraded by the yeast double strand ribonucleases and 

consequently the gene is regulated.  To investigate the hypothesis transcriptional analysis was 

done by qPCR experiments and an in vivo method utilizing a Cre-LoxP recombination to 

changed expression from one fluorescent protein to the other.   
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Materials and Methods 

 

In Vitro Assay 

Time Course:  

Yeast strains in Table 1 were grown in YES at 25 °C to inoculate 500 mL cultures of 

temperature sensitive stains and 100 mL cultures for non-temperature sensitive strains.  The 

cultures were inoculated in YES at 35°C to be OD 0.10 and placed into a 35°C water bath.  

Throughout the time course cultures were kept at typical logarithmic growth concentrations.  

Duplicate samples of OD 10 size for each strain were taken at hours 0, 12, 15, 18, 21, and 24 or 

every six hours for 24 hours.  The samples were immediately spun down at 4000 rpm at 4°C, 

washed with cold, sterile water, dropped into liquid nitrogen, and stored at -80°C.   

RNA Isolation:  

Yeast samples were thawed on ice and RNA isolation was performed using Invitrogen’s 

TRIzol Reagent and protocol including during lysis, glass beads were added and the suspension 

was shaken for 10 minutes.  From the isolated RNA, the transcripts of Spo6 sense, Spo6 

antisense, Ade4 sense, and a no primer control were strand specifically reverse transcribed to 

become cDNA by Qiagen’s QuantiTect Reverse Transcriptase (RT) Kit.  A 1:20 dilution of 

Actimoycin D in water was added to the 900 ng of Template RNA and used in the Genomic 

DNA Elimination step of the protocol.   

RNA Quantitation:  

The quantitative amount of cDNA was measured by RT-qPCR using KAPA Biosystems 

SYBR Fast Universal qPCR Kit. RT-qPCR was performed in triplicate for each RT reaction 

using 90 ng of cDNA including a background control reaction from the no RT primer control for 

both Spo6 and Ade4 transcripts.  The resulting data was quantized using standard CT value 
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calculations, and two methods of five parametric sigmoid curve fitting to approximate the initial 

fluorescence value.   

 

In Vivo Assay: 

Yeast and Bacterial Strain and growth media 

 Yeast and Bacterial strains are listed in Table 1 with relevant mutations.  All yeast were 

grown in yeast extracts (YES) and bacteria in LB Amp.   

Alkaline Lysis MiniPrep 

 All E. coli plasmids were prepped after overnight growth and then alkaline lysis protocol 

using Solution A (50 mM Tris pH 7-8, 10 mM EDTA, 100 µg/mL RNase A), Solution B (200 

mM NaOH, 1% SDS), and Solution C (3 M KOAc >pH 5).   

Yeast and Bacterial Transformations 

 S. pombe transformations were performed using traditional lithium acetate protocol to 

produce colonies with integrated linear DNA through homologous recombination.  Solutions of 

10X LiOAc/TE (1.0 M LiOAc, 0.1 M Tris pH 7.6, 20 mM EDTA pH 8.0, 14 mM glacial Acetic 

acid) and 40% PEG in 1X LiOAc (40% PEG, 1X LiOAc/TE) were used.  All colonies were 

verified by PCR using primers in Table 2. 

 E. coli transformation was performed using NEB 10β competent cells and a typical heat 

shock protocol. 

PCR-amplification 

 Invitrogen Q5 high fidelity PCR was used for all PCR in conjunction with a Touchdown 

protocol with two minute elongation times.  All primers for PCR are located in Table 3. 
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Gibson Assembly: 

 NEB Gibson Assembly was the method used to synthesize pLD3/pLD4.  A combination 

0.2-1.0 pmol of purified PCR products of the cassette was added to three fold excess of the 

vector with 10 µL of 2X Gibson Assemble Master Mix and water up to a total volume of 20 µL.  

For two fragments the mixture is incubated at 50°C for fifteen minutes and stored at -20°C until 

the plasmid can be transformed into bacteria. 

Spheroplast FACs: 

  

 Spheroplast preparation was performed by yeast collection and EtOH fixation.  The cells 

were then put through osmotic stress and cell wall digestion using solutions of 0.6 M KCl, 0.6 M 

KCl with 1.0 mg/mL lysing enzymes* and 0.3 mg/mL Zymolyase 20T*, 0.1 M KCl 0.1% triton-

x-100, and 20 mM Tris-HCl, 5 mM EDTA pH 8.0.  The samples are then incubated with RNase 

A overnight at 37°C.  The cells are spun down, cooled at -20°C for eight minutes, and sonicated 

using a 3 mm micro tapered tip at output 5 for seven seconds.  After sonication 300 µL of the 

spheroplasts are dyed with 300 µL of 2.0 µM Sytox* dye in FACS sheath fluid.  The dyed cells 

are vortexed and analyzed by flow cytometry.  

*Lysing enzymes: Sigma “Lysing Enzymes from Trichoderma harzianium”  

*Zymolyase: US Biological Zymolyase 20T 

*Sytox Dye: Invitrogen Sytox Green nucleic acid stain 5 mM in DMSO 

  

Yeast Mating and Spore Selection: 

 

 Yeast mating was performed on ME and sporulated yeast cells were digested overnight in 

1:100 dilution of glusylase in water.  On YES, 500, 5000, and 50000 spores are plated and then 

replica plated at YES again and then on selective media.  The genotype of the spores were 

characterized by PCR amplification.   

 

Design of the Two Color Transcription Reporter Cassette:   
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The strain was developed by mating one strain that has a Cre recombinase integrated at 

the Spo6 locus after the promoter either in the Sense and Antisense directions with another strain 

that has a RFP/GFP cassette with integrated LoxP sites at Leu1.  The Cre integrated strains were 

developed by transforming a PCR-amplified Ura5 + Lys7 cassette from plasmid pFS385 using 

oligonucleotides LD99, and LD100 into yFS808, an Ura4- Lys- background strain at the Spo6 

locus after the promoter region.  The new strain yLD124 was transformed with either PCR-

amplified sense Cre cassette using LD86 and LD87 or PCR-amplified antisense Cre cassette 

using LD88 and LD89 to knockout the Ura5 + Lys7 cassette at the Spo6 locus.  This was 

repeated to produce strains with integrations at Spo4 and Mde2.   

 The complimentary strain containing the RFP/GFP cassette was created by integrating 

the cassette at the Leu1 genomic locus of wild type strain yFS104.  The RFP/GFP cassette was 

PCR-amplified with RH16 and RH19 and a vector containing Leu1 and an adh1 promoter was 

PCR-amplified from plasmid pFS181 using RH20 and RH21.  The two PCR products were PCR-

amplified, annealed, and ligated using New England Biolab’s Gibson Assembly to place the 

RFP/GFP cassette under the control of the adh1 promoter.  The new plasmid has transformed 

into 10β-competent E. coli cells.  The transformed bacterial cells were grown up and digested 

using Xho1 to cut the plasmid in the coding sequence of the Leu1 region.  The new DNA 

fragment was transformed into wild type yeast yFS104 to integrate the plasmid through 

homologous recombination at the genomic Leu1 locus.   

 The two strains of sense and antisense integrated Cre strains were mated with the 

RFP/GFP integrated strain to produce a single strain that has both cassettes.  The resulting strain 

can then be mated with Pac1-TS, Dcr1Δ and the double mutant to produce the experimental 

strains.   
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Results 

 

In vitro Relative mRNA Analysis: 

 To investigate that the hybridization of sense and antisense mRNA transcripts play a role 

in gene regulation of specific meiotic genes in S. pombe transcriptional analysis was performed.  

The first section of Table 1 lists the S. pombe strains and corresponding mutations that were used 

in the time courses and consequent mRNA isolation, RT, and qPCR.  yFS105 was used as a wild 

type control to compare the change in transcript levels of sense and antisense at Spo6.  To 

eliminate and inactivate the two fission yeast ribonucleases that would degrade any double 

stranded mRNA transcripts the strains with Dcr1Δ and/or Pac1-TS (Pac1-Temperature sensitive, 

Pac1 was not deleted because of its biologically essential roles) background were chosen.  The 

involvement of Mie4 was also investigated with a parallel time course.   

 The specific mRNA transcript levels were quantized by manipulations of the 

quantification curves and Ct values generated from each time course.  Three manipulations were 

performed on the data to address the relative transcript levels.  Typical Ct value calculations 

were performed by calculating ΔCt where the Ct value for each triplicate was averaged and 

subtracted from the Ade4 sense values.  The relative mRNA concentration difference between 

samples was calculated by taking the inverse base 2 log of the values and then the reciprocal.  

The background was subtracted from the no RT primer controls of Spo6 and the data presented 

in terms of values relative to Spo6 sense at zero hours as in Figure 7C.  The remaining two 

manipulations were performed by five parametric sigmoid curve fittings on the fluorescence data 

from all forty cycles and the analysis was repeated on a subset of the data, Figure 7A and Figure 

7B.  The subset of data for the second sigmoid approximation was determined by the local 
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minimum of plots analogous to Figure 8 that were generated for each qPCR sample.  Figure 8 

was generated by performing the same five parametric sigmoid curve fittings on 40 cycles and 

subtracting one cycle from 40 cycles down to 20 cycles.  The corresponding number of cycles to 

the local minimum of Figure 8 dictated the “cutoff” sigmoid approximation where only cycles 

less than and equal to the value were used.  For both methods of sigmoid approximation the 

values were averaged, normalized to Ade4 sense, background subtracted, and presented relative 

to Spo6 sense levels at zero hours.   

After analysis and comparison to the quantification curves of the three manipulations, the 

Ct value manipulation best represented the data and was the analysis primarily used.  Figure 9 

was one control performed to demonstrate that relative transcripts of the wild type strain is 

reproducible between experiments.    

The results from one time course is plotted in Figures 10 and 11 showing the relative 

mRNA of sense and antisense Spo6 transcripts relative to Spo6 sense at time zero for Wildtype, 

Pac1-TS, and Pac1-TS; Drc1Δ.  Each sample was normalized to an endogenous gene, Ade4 

sense which is expected to be transcribed consistently throughout the experiment.  The 

background was subtracted by a no RT primer control for both the sense and antisense 

transcripts.  Figure 10 shows transcript levels for each strain during the course of the experiment 

with relative amount of transcript versus hours at the no permissive temperature.  The plot 

representing Wildtype only shows samples for 0, 12, and 24 hours because no significant change 

is expected in the transcriptional profile.   

The resulting plots show a trend in the three strains, Wildtype, Pac1-TS, and Pac1-TS; 

Dcr1Δ of increasing relative sense and antisense transcript levels over the course of the 

experiment.  The data shows limited evidence for either case that antisense transcription is 
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involved in gene regulation by the formation of dsRNA or not.  The plots illustrate an increase in 

sense transcripts as expected with the inactivation of the ribonucleases showing that the 

ribonucleases are involved in the degradation of the sense transcripts.  In addition, the plots also 

show a consistent increase in the antisense transcript as well.   

To further address the qPCR data the plots in Figure 11 were displayed to show the 

change in transcription of sense and antisense Spo6 transcripts between strains.  In comparison 

of Pac1-TS and Pac1-TS; Drc1Δ, the double mutant would be expected to show increased sense 

transcription when compared the single mutant and an even greater difference when compared to 

the Wildtype strain.  The data does not represent such a phenomena but suggests a general trend 

of increased transcription in all strains.  In both Figures 10 and 11 there is a general trend for an 

increase in both sense and antisense transcripts across all three strains.  The transcriptional assay 

remains unconvincing and further investigation is needed to show a biologically more complex 

mechanism can be involved with antisense transcription in gene regulation.   

 

In vivo Assay Design: 

 Addressing the possibility of indirect antisense transcription involvement in gene 

regulation was investigated by the model presented in Figure 12.  The development of the assay 

began with the construction of the integrated reporter cassette in Figure 13A.  A 3662 bp 

fragment of pFS387 and 5280 bp fragment of pFS181 diagramed in Figure 14A and 14 B were 

PCR amplified using primers RH16/RH19 and RH20/RH21.  Amplifications of the two cassettes 

shown in Figure 15 were used in Gibson assembly to anneal and circularize them into 

pLD3/pLD4, Figure 14C.   The plasmid was transformed into E. coli which was selected against 

the AmpR gene on the plasmid.  Verification of the transformed E. coli was validated by alkaline 

lysis miniprep and restriction digest using ClaI and ApaLI with expected fragments of 4369 bp, 
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2622 bp, 1245 bp, and 497 bp seen in Lanes 2 of Figure 16.  pLD3/pLD4 was isolated, digested 

with Xho1, and transformed by homologous recombination at the genomic Leu1 locus of 

yFS104.   

The integration of pLD3/pLD4 at Leu1 in Figure 13A would make yFS104 Leu1 positive 

by the recombination with the endogenous Leu1-32.  The strain did not become Leu1 positive 

and needs to be sequenced to confirm two mutated Leu1 cassettes present.  The transformation 

colonies were verified by and PCR amplification with LD1/LD2, RH26/RH27, RH26/RH28, 

RH27/RH29, and RH28/RH29 in Figure 17.  In Figure 17, Lanes 1, 3, 5, 7, 9 and 2, 4, 6, 8, 10 

represent two identical PCR sets for two transformation colonies.  The odd numbered lanes 

represent a failed integration and the even lanes represent a positive integration.  The even 

numbered lanes 2, 4, and 10 represent positive PCR control (470 bp) and integration at the 

upstream and downstream Leu1 sites (1808 bp and 2122 bp).  Lanes 6 and 8 show the negative 

control for plasmid integration with no band observed and no product for the total length of the 

transformed locus due to the length, 10612 bp.  To further verify the RFP/GFP integration into 

the yeast genome the colony was examined by fluorescent microscopy in Figure 18.  The three 

images show a Dapi, GFP, and RFP image for the cells showing the auto-fluorescence of the 

yeast cells, no expression of GFP or bleed through from the red channel, and expression of RFP 

as expected.  The yFS104 plus RFP/GFP strain will then be mated with strains with integrated 

Cre genes to produce strains that contain both integrations.   

 The demonstration of the RFP/GFP cassette recombination with the Cre LoxP 

recombinase mechanism to change the fluorescent protein expressed is in progress.  The 

recombination will be shown by transforming pFS240 or pFS241 in Figure 19 into the yFS104 

plus RFP/GFP strain.  The Cre recombinase in the plasmid is under the control of an nmt1 
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promoter that will express Cre and change all transformants from the expression of red 

fluorescent protein in yFS104 plus GFP/RFP to green fluorescent protein.  The colonies of the 

transformation are screened using a fluorescent dissecting microscope and final verification of 

the recombination will be performed by sequencing. 

  With the proof of the RFP/GFP reporter cassette recombination working, the second 

design of the assay was to develop strains where Cre recombinase was integrated both sense and 

antisense in place of Spo6, Spo4, or Mde2.  The endogenous gene was removed by a 

transformation of yFS808 with pFS385 (Figure 20), an Ura5 and Lys7 gene to make yFS808 

Ura5 Lys7 positive in Figure 13B.   The colonies were selected for using positive selection for 

the Ura5 and Lys7 integration.  PCR amplification of pFS385 in Figure 20 was done using 

RH33/RH34, RH49/RH50, and RH51/RH52 for the genes respectively.  The replacement of 

Spo6 was verified by PCR with LD1/LD2, LD101/LD140, and LD140/RH22 in Figure 21.  

Similarly the replacement of Spo4 in two colonies was confirmed with LD1/LD2, RH36/RH37, 

RH09/RH37, and LD101/RH37 in Figure 22.  The double band appearing in lane two and five 

were evidence of the transformation yielding a heterozygous diploid for the two colonies 

selected.  This was confirmed by Speroplast FACS in Figure 23.  The transformation for the 

replacement of Mde2 is in progress along with the subsequent transformations with pFS378.  

 To this point the knockout of Spo6 and Spo4 have been performed and integration of the 

reporter cassette at Leu1.  The knockout of Mde2 is in progress along with the integrations of 

sense and antisense Cre.  Once the Cre gene is integrated in the proper orientations and locations 

the strains will be mated to the strain with the RFP/GFP reporter cassette.  The mating will be 

performed by sporulation and random spore selection to produce the testing strains.  The testing 
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strains can then be mated with Pac1-TS and Pac1-TS; Dcr1Δ mutant strains to contrast the 

results if the transcriptional analysis.   

 Once all three strains with the replacement of either Spo6, Spo4, or Mde2 are 

transformed, the following transformation is performed twice, once with pFS378 in Figure 24 

PCR amplified with LD86/LD87 and again with LD88/LD89.  The resulting integration is 

represented in Figure 13C and 13D with sense and antisense integration of an unmarked Cre 

recombinase gene.  The six resulting strains are then to be mated with the yFS104 plus RFP/GFP 

strain, put through sporulation, and random spore selection to make the testing strains.  The 

testing strains can then be used for experiment and to be mated with yFS787 and yFS118.  With 

the final experiments assaying for radial sectors of green fluorescent colonies which are 

indicative of relative sense transcripts.    
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Discussion 

 Gene regulation is an important biological function that is ubiquitous in cells of every 

organism for maintaining homeostasis and moderating cell activity.  Of the many mechanisms of 

gene regulation, antisense transcription is proposed to be relevant by the pairing with the 

complimentary mRNA transcript thereby inhibiting translation or initiating degradation.  RNA 

sequencing data performed on fission yeast showed elevated antisense transcription levels at a 

specific group of genes.  (22)  A subset of the meiotic S. pombe genes maintained this 

characteristic elevated antisense transcripts during mitotic growth but the relative sense and 

antisense transcripts changed dramatically during the meiotic life cycle.  To address whether 

antisense transcription of certain meiotic genes has implications in gene regulation by preventing 

entrance to a meiotic life cycle during vegetative growth, transcriptional analysis of mRNA 

concentrations was performed and a dual fluorescent protein assay was designed. 

 To address mRNA transcriptional levels, strand specific qRT-PCR was performed on the 

gene Spo6.  Spo6 was a gene that had previously been identified to have elevated antisense 

transcripts that changed when the yeast life cycle changes.  The qRT-PCR samples were taken 

using yeast strains that had neither, one, or both of the S. pombe double stranded ribonucleases 

inactive.  The suppression of the two ribonucleases would allow the concentration of dsRNA to 

increases constantly for specific sequences that are the result of hybridization of the sense and 

antisense transcripts.  The ribonucleases Dcr1 and Pac1, if active, would degrade the dsRNA 

acting to regulate the expression of the meiotic gene in question.  Dcr1Δ was used because it was 

previously shown to lead to no major change in the transcriptional profile.  On the other hand, a 

temperature sensitive allele of Pac1 was used because Pac1 is an essential gene and important in 

the processing of snRNA.   
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 After the qRT-PCR quantification was collected and analyzed, the resulting data 

displayed relative sense and antisense Spo6 transcripts.  The transcriptional assay remains 

unconvincing and further investigation is needed to show the biologically more complex 

mechanism involving antisense transcription in gene regulation.   

 One of the limits of the qPCR technique that accounts for the variability and less than 

convincing data is the restriction by the low concentration of sense transcript present.  The 

detection of such low concentrations leads often to negative qPCR quantification analyzes and 

makes the data inconclusive as it does not accurately represent the biological activity of the cells.  

The need for a more sensitive assay lead to the development of the in vivo assay using the 

RFP/GFP reporter cassette.   

 With the inconclusive data associated with transcriptional analysis another assay was 

designed so show that a biologically more complex mechanism was at hand involving antisense 

transcripts and gene regulation.  The schematic laid out in Figure 12 demonstrates the design of 

the assay.  To show similarly how sense transcript levels change in vivo, a Cre-LoxP 

recombination with a RFP/GFP cassette was used.  The Cre protein was to be integrated both 

sense and antisense direction as an unmarked cassette in the place of the gene of interest, in this 

case Spo6, Spo4, and Mde2.  Once integrated, the new strains with Cre would be mated to the 

strain with the RFP/GFP reporter cassette at Leu1.  The resulting new strain can be tested to 

show relative sense transcripts by counting the radial green fluorescent sectors of colonies under 

a fluorescent dissecting microscope that are indicative of the recombination of the reporter 

cassette by Cre recombinase to produce GFP instead of RFP.   

 The investigation of antisense transcription forming dsRNA duplexes with their 

complementary sense transcripts was addressed by this assay.  In vivo, the RFP/GFP reporter 
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cassette will be able to show if the hybridized sense and antisense transcripts participate in the 

gene regulation pathway via RNAi which is key to understanding how some genes may be 

regulated.  Evidence for the RNA duplex formation cannot be made purely on the qPCR data due 

to its inconclusive and variable nature, but the in vivo assay, demonstrated by the fluorescent 

color change in the RFP/GFP reporter cassette with the Cre LoxP recombination, may allow for 

the sensitivity that is needed.  The design of this assay is hinged on the premise that the 

expression of the Cre recombinase protein once expressed will come in contact with the LoxP 

sites and the expression of the fluorescent proteins.  The design also assumes that the integration 

of Cre recombinase protein does not alter the transcriptional profile of any of the genes of 

interest so that Cre is expressed in the same manner as if the endogenous gene remained under 

the control of the promoter.  Maintaining these two assumptions that the transcriptional profile 

does not change and the Cre recombines the cassette, this assay can be applied to any 

transcriptional investigation.  The incorporation of the Cre-LoxP recombination and the 

RFP/GFP cassette is a powerful and sensitive tool that can address transcriptional analysis by 

simple monitoring of change in fluorescent profile.  This being true, the in vivo assay with 

continued investigation will lead to insight into more comprehensive understanding of regulatory 

pathways of the cell and potential for new ways to artificially regulate gene expression.    
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Figure 7: Sample qPCR Data Interpretations: 

The three plots display qPCR data of Pac1-TS with three different calculations of Spo6 Sense, in 

orange and Spo6 Antisense, in blue.  The Spo6 mRNA transcripts are relative to Spo6 Sense at 

zero hours for all four time points.  (A)  Using a five parametric sigmoid curve approximation of 

the mRNA at cycle zero for all forty cycles of qPCR data.  (B) Using the cutoff approximation 

with a subset of the forty cycles of qPCR data as described in R. G. Ruteredge’s Paper (25).  (C) 

Typical Cutoff threshold approximation using delta Ct values.   
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Figure 8: Determination of Cycle Cutoff Approximation 

The plot above shows how the subset of qPCR data is determined.  The quantification data is 

taken and five parametric sigmoid curve approximations are performed on the full 40 cycles and  

consequently N - 1 cycles from forty down to twenty cycles.  The local minimum of the 

approximations versus the corresponding number of cycles, in this case at 23 cycles, represents 

the best fit of the data.   
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Figure 9:  Wildtype Reproducibility Control 

Three independent samples of Wildtype in duplicate were taken from mid-log growth cells 

grown at 30°C.  The six samples had Spo6 mRNA Sense and Antisense quantized.  The typical 

calculations for qPCR analysis was performed on the parallel samples showing the 

reproducibility of the first time point.   
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Figure 10:  Complete Time Course Analysis for Wildtype, Pac1-TS, and Pac1-TS; Dcr1Δ 

Data from qPCR experiments is plotted as antisense signal relative to sense signal for the three 

strains Wildtype, Pac1-TS, and Pac1-TS; Dcr1Δ.  Each plot represents the relative amount of 

transcript compared to Spo6 levels at zero hours plotted against the time at 35°C in the time 

course.  Sense and Antisense transcript levels for each time point are plotted alongside one 

another in blue and orange, respectively.  A)  Wildtype B) Pac1-TS C) Pac1-TS; Dcr1Δ 
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Figure 11:  Spo6 Sense and Antisense Transcription between Strains 

Presenting plots A), B), and C) from Figure 10 on the same graph gives another perspective on 

the transcriptional analysis.  Time points at six and eighteen hours for Wildtype were not 

performed as no change in transcription is expected, therefore only Pac1-TS and Pac1-TS; 

Dcr1Δ are represented.   
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Figure 12:  Schematic of In Vivo Testing Strain Design 

The diagram illustrates the pathway to develop the In Vivo assay using the RFP/GFP reporter cassette and 

the CRE LoxP Recombinase system.  Beginning on the right branch, the RFP/GFP reporter cassette and a 

destination vector were PCR amplified.  The two fragments were hybridized, ligated, and amplified by 

NEB’s Gibson Assembly.  The resulting combined fragments placed RFP under the control of an Adh1 

promoter and left GFP unexpressed.  The plasmid was transformed into bacteria, and amplified so that it 

could be linearized and transformed into yeast by homologous recombination at the Leu1 locus.  The 

transformation produces a strain that is Leu+ with Kanamycin resistance, and fluoresces red when excited 

with 568 nm light.  The other branch of the diagram produces the CRE protein.  The left branch is the 

synthesis of an unmarked integration of CRE in the sense and antisense directions in place of Spo6 under the 

genomic promoter.  This is achieved by two transformations, first introducing the Ura5 + Lys7 integration 

replacing Spo6 and a subsequent transformation to replace it with CRE Recombinase.  Once the unmarked 

CRE is integrated in the two strains, it can be mated with the RFP/GFP reporter strain.  Random spore 

selection will give rise to colonies that have both mutations and can then be used in the assay.   
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Figure 13:  Gene Maps of Transformation Integrations 

Diagrams of integrated cassettes achieved by transformations in the design of the in vivo assay.  

(A) RFP/GFP report cassette in genomic Leu1 of yFS104.  (B) Replacement of Spo6 in yFS808 

with Ura5 + Lys7 cassette.  (C) Sense Cre integration at Spo6.  (D) Antisense Cre integration at 

Spo6. 

  

B 

C 

D 

A 



39 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14:  Plasmid Maps of pFS387, pFS181, and pLD3/pLD4 

Gene maps for (A) RFP/GFP cassette, pFS387, (B) Accepting vector pFS181, and (C) the 

combination of pFS387 and pFS181 created by Gibson Assembly. 
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Figure 15: PCR Amplification of two pieces of Gibson Assembly Plasmid 

High fidelity PCR amplification of the  RFP/GFP construct and a vector containing Leu1 and an 

Adh1 promoter in Lanes 1 and 2, sizes 3662 bp and 5280 bp.   
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Figure 16: PCR Verification of Transformation of pLD3/pLD4 into E. coli 

The two vectors amplified in Figure 14 were annealed and ligated by NEB’s Gibson Assembly.  

The resulting plasmid was transformed in NEB 10β competent E. coli cells.  The plasmid was 

negatively selected by using kanamycin (Kanamycin resistance gene located between RFP and 

GFP).  The plasmid was miniprepped and digested using ClaI and ApalI with expected sizes 

4369 bp, 2622 bp, 1245 bp, and 497 bp.  Lane 1 represents an unsuccessful transformation where 

not all of the plasmid remained intact.  Lane 2 shows the four expected bands for successful 

transformation.   
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Figure 17: RFP/GFP integration into yFS104  

Transformation of the linearized plasmid by digest with Xho1 to place the construct at Leu1 was 

confirmed by PCR Amplification.  Lanes 1, 3, 5, 7, 9 and 2, 4, 6, 8, 10 represent two identical 

PCR sets for two transformation colonies.  The odd numbered lanes represent a negative 

integration where the construct integrated at another locus while even numbered lanes represent 

the positive integration at Leu1.  Going down the odd lanes, the PCR products represent  a PCR 

control (470 bp), no integration at the downstream Leu1 (no band),  a negative integration of the 

plasmid (2068 bp), product for the total length of the untransformed loci (1867 bp),  and no 

integration at the upstream Leu1(no band).  Even Lanes 2, 4, and 10 show positive control (470 

bp) and integration at both Leu1 sites (1808 bp and 2122 bp).  Lanes 6 and 8 show the negative 

control for plasmid integration with no band observed and no product for the total length of the 

transformed locus due to the length, 10612 bp.   
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Figure 18: Verification RFP/GFP integration into yFS104 by Fluorescent Microscopy 

The integration of the RFP/GFP cassette at Leu1 was confirmed by fluorescence microscopy.  

(A) A Dapi filter showing the presence of yeast cells.  (B) GFP filter shows the negative control 

and confirms that the RFP has no bleed through in the green fluorescent channel. (C) RFP filter 

show the expression of the RFP yielding the red fluorescent yeast cells.   
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Figure 19: Plasmid Maps of pFS240 and pFS241 

Gene maps of pFS240 and pFS241 that will be transformed into yFS104 plus RFP/GFP so show 

the proper recombination of the cassette and the change from red to green fluorescence.. 
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Figure 20: Plasmid Map and Amplification of pFS385 

Gene map of pFS385 used for replacement of Spo6, Spo4, and Mde2.  pFS385 (Ura5 + Lys7 

cassette) amplification is shown for both Spo6 and Spo4 in Lanes 1 and 2 with expected sizes 

2500 bp . 
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Figure 21: Verification of Replacement of Spo6 with pFS385 Cassette 

PCR confirmation of integration of the Ura5 + Lys7 cassette at Spo6.  Lane 1 is a PCR control 

from an endogenous loci.  Lane 2 and 3 are products from a primer pair inside the transformed 

cassette and downstream of Spo6 and a primer pair upstream and downstream of Spo6.  The 

expected sizes for the three lanes are 470 bp, 715 bp, and 2074 bp.    
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Figure 22: Verification of Replacement of Spo6 with pFS385 Cassette  

PCR confirmation of the transformation of the Ura5 +Lys cassette at Spo4 resulting in diploid 

sample.  Lane 1 is a PCR control (470 bp) and the next lane represents the primer pair upstream 

and downstream of Spo4, resulting in a double band suggesting a heterozygous diploid 

transformant (expect one band from genomic locus at 2034 bp and successful transformation at 

2495 bp).   Lanes 3 and 4 show integration of the Ura5 + Lys7 cassette and the presence of the 

endogenous Spo4 gene with expected sizes 1341 bp and 584 bp.   
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Figure 23: Diploid Confirmation of Replacement of Spo4 by Speroplast FACS  

Two colonies from the transformation to replace Spo4 with Ura5 + Lys7 were suggested to be 

diploid by initial PCR amplification.  The result in Figure 22 that the colonies were diploid was 

confirmed by FACS.  The two samples on the top in blue and pink are compared to a diploid 

control in green and haploid control in purple. 
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Figure 24: Plasmid Map of pFS378 

Gene map of pFS378 used for sense and antisense integration of Cre at Spo6, Spo4, and Mde2 

(Figure 12C and 12D) by replacing pFS385 cassette in Figure 12B. 

 

 

  



50 
 

Tables 

    

Yeast and Bacterial Strains: 

Strains used in Time Courses: 

yFS105 Wild Type (h-) 

yFS787 Pac1 - Temperature Sensitive (ts) 

yFS118 Pac1-ts; Dcr1Δ 

yFS799 Mei4Δ 

yFS800 Pac1-ts; Mei4Δ 

Strains used for In Vivo Assay 

yFS104 Wild Type (h+) 

yFS808 Ura4- Lys- 

yLD124 yFS808 with Ura+ Lys+ at Spo6 

yLD125 yFS808 with Ura+ Lys+ at Spo4 

yLD126 yFS808 with Ura+ Lys+ at Mde2 

pFS181 Gibson Assemby Vector 

pFS240 Leu2 Cre Expression Plasmid 

pFS241 Ura4 Cre Expression Plasmid 

pFS385 Lys+ Ura+ 

pFS378 CRE 

pFS387 RFP/GFP Cassette 

Table 1:  Yeast and Bacterial Strains 
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