
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2007

Ultrasonic 3D Wireless Computer Mouse
Christian John Banker
Worcester Polytechnic Institute

Jamie E. Mitchell
Worcester Polytechnic Institute

Jeffrey D. Tucker
Worcester Polytechnic Institute

Jeffrey Vincent DiMaria
Worcester Polytechnic Institute

Michael A. Cretella
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Banker, C. J., Mitchell, J. E., Tucker, J. D., DiMaria, J. V., & Cretella, M. A. (2007). Ultrasonic 3D Wireless Computer Mouse. Retrieved
from https://digitalcommons.wpi.edu/mqp-all/1902

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1902&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1902&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1902&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1902&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/1902?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1902&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Ultrasonic 3D Wireless Computer Mouse
An improved three-dimensional computer-human interface device

A Major Qualifying Project submitted to the faculty of the
Worcester Polytechnic Institute

Electrical and Computer Engineering Department
in partial fulfillment of the requirements for the

Degree of Bachelor of Science

April 26, 2007

Christian Banker Michael Cretella Jeff Dimaria
cbanker@wpi.edu cretella@wpi.edu jvd07@wpi.edu

Jamie Mitchell Jeff Tucker
jamiem@wpi.edu tux@wpi.edu

magicmouse@wpi.edu

Project Advisor: Professor Brian King
Project: BYK-MOUS

cbanker@wpi.edu
cretella@wpi.edu
jvd07@wpi.edu
jamiem@wpi.edu
tux@wpi.edu
magicmouse@wpi.edu

Abstract

The aim of this project is to develop a three-dimensional computer input device which
provides a better interface between a user and their computer. The user wears a ring on
his or her finger which transmits an ultrasonic signal to a receiver array. A microcontroller
then calculates the three-dimensional coordinates using time-difference-of-arrival methods.
These coordinates are input to the computer as a standard human interface device (HID)
USB peripheral. X and Y dimensions control the mouse cursor on the screen, and the Z
dimension can be used in three-dimensional applications.

i

Executive Summary

The purpose of this project is to develop a “Magic Mouse”, which is a three-dimensional

wireless mouse that is both small in profile and intuitive in use. The standard computer mouse

has been in use for over 40 years, and recent developments in 3D software are testing the limits of

the mouse’s design. To compensate for the two-dimensional nature of the mouse, a scroll wheel

has been added to the mouse, which can traverse the third dimension when needed. However,

this design does not allow for simultaneous movement in three dimensions, nor does it have a

high resolution along the depth axis.

There are a few products previously developed that provide similar functionality to the Magic

Mouse. A wireless gyroscopic mouse by Gyration allows the user to hold the mouse in their hand

and eliminates the need for a table or other form of a mouse pad. However, this product is

cumbersome and lacks three-dimensional movement. Logitech also developed a 3D mouse based

on ultrasonic technology, but it is expensive, bulky and does not have wireless functionality.

The most similar device to the Magic Mouse that is currently on the market is the Wiimote by

Nintendo, which intuitively combines three dimensions and wireless functionality. The difference

between this product and the Magic Mouse lies in the fact that the Magic Mouse is small,

unobtrusive and consumes a minimal amount of power.

Preliminary research explored the areas of ultrasonic transmission, radio frequency identi-

fication, magnetic triangulation, the use of accelerometers, and gyroscopes to determine 3D

coordinates. One of the main design requirements is to have a low-profile solution, so immedi-

ately gyroscopes were eliminated. Accelerometer-based mice have been implemented in projects

at other universities as well as commercially proven. This design seeks a novel approach, so

accelerometers are not the ideal choice. The use of magnetics involves a few complications. For

a small, completely passive device, the use of large electromagnets is needed, and these would

be next to a personal computer which could pose problems to its normal operation. After signif-

icant research, it was found that the design challenges of implementing an accurate and robust

three-dimensional position tracking system using magnetic field sensing outweighs its advantages.

ii

The use of radio frequency identification is a promising implementation for future work, but at

this time the technology to track a signal within one meter and with millimeter accuracy is not

available. To compensate for this, ultrasonic transmission, which propagates about 1 million

times slower than electromagnetic waves, is used as the tracking mechanism.

The final design of the Magic Mouse consists of an ultrasonic signal transmitted from a ring

on the user’s finger. The signal arrives at an array of receivers, at a different time on each receiver

based upon its distance from the transmitter. These receivers convert the acoustic energy into

electrical pulses. Based upon these pulse times, a time difference of arrival (TDOA) algorithm

determines the transmitter’s 3D position in space. This is realized in four major blocks, with the

first being signal transmission. To transmit the signal, a 40 kHz pulse is sent via a microcontroller

and a small ultrasonic transducer. This unit is powered by a rechargeable battery in the shape of

ring, which allows the device to achieve a low profile. The entire circuit board for this block is

less than 1 square inch, and weighs less than 10 grams.

The second stage begins by receiving the signal on five different transducers set in an optimized

array configuration. Analog circuitry then amplifies and shapes the pulse on the five channels.

These conditioned signals provide an acceptable input to a digital signal processor (a Microchip

dsPIC), which is the third system block. The signals are then sampled by an Analog Devices

AD9220 10 MSps 12-bit analog-to-digital converter and read by the dsPIC.

The signals are then compared to a stored characteristic signal shape through a curve fitting

algorithm to determine the time associated with the peak of each channel. Since each pulse has

a similar curve shape, the peak of each pulse is a reliable estimate of the time that the pulse

arrived on each receiver, relative to the other pulses. Finding an accurate peak is essential for

TDOA, and is also computationally intensive. The applied curve fitting algorithm allows peak

detection with a root-mean-squared (RMS) error of less than 5 µs, which translates to a positional

accuracy of less than 1 cm. The relative peak times for each receiver are then input to the TDOA

algorithm. By knowing the precise location of each receiver, the TDOA algorithm converts these

unique time delays into a accurate estimate of the 3D coordinates of the transmitter. The dsPIC

iii

has now generated X, Y, and Z coordinates, and the fourth and final stage sends data to the

computer using the Human Interface Device (HID) Plug-n-Play mouse standard, with the Z-axis

mapped to the scroll wheel. This is accomplished by sending the raw coordinates to a second

microprocessor with its only purpose being to put the coordinates in the correct format and to

send them to the host computer.

Although in the time frame of this project full product implementation was not achieved, the

essential developments for a proof of concept have been implemented. The transmitted signal is

received by the five receiving transducers, and their peaks are accurately detected. The first block

to perform less than ideally is the TDOA algorithm. This is not due to flaws in the mathematics,

but rather a failure to fully calibrate the receiver positions. Knowing the exact receiver positions

is critical for this algorithm to function properly. A 1 mm discrepancy in the position of one

receiving transducer can translate to an error of over 20 mm in the position of the transmitter

after the executing the TDOA algorithm. However, the coordinates have been determined to an

accuracy that meets the basic needs for a proof of concept. The second shortcoming is that a

USB interface has not been fully developed. Synchronization between the microcontrollers using

UART protocol has proved to be more problematic than expected, but with more time, this issue

could be resolved.

This device has many applications for a wide variety of users, including students, professional

engineers, gamers, and general consumers. At this point the limitations of the device can be

easily solved after a moderate amount of time and debugging. Future work such as hardware

gesture recognition can also be readily implemented. Indeed, the versatility and small form factor

of this design are the first steps to a unique and innovative device.

iv

Acknowledgments

We would like to thank WPI and specifically the ECE department and shop for the use of

their facilities.

We would also like to thank the WPI marketing team and Popular Science for giving us the

opportunity to be published in the June issue of the Popular Science magazine.

Most importantly, we would like to thank our advisor, Professor Brian King, for his invaluable

help and support throughout the year. Without his motivation, expert guidance, and seemingly

unlimited insight, the completion of this project may not have been possible.

v

Contents

1 Introduction 1

2 Background 3
2.1 Current Technology . 3

2.1.1 Logitech 3D Mouse . 5
2.1.2 Gyration Air Mouse . 5

2.2 Patents . 6
2.3 Gyroscopic Tracking . 12
2.4 Radio Frequency Identification and Geometry (RFIG) 12
2.5 Accelerometers . 13
2.6 Magnetics . 15
2.7 Time Difference of Arrival (TDOA) . 21

2.7.1 Ultrasonic . 26
2.7.2 TDOA Conclusions . 28

3 Methodology 29
3.1 Project Management . 29
3.2 Power Requirements . 32

3.2.1 Transmitter Power . 32
3.2.2 Receiver Power . 34

3.3 Transmitter . 34
3.3.1 Transducer Selection . 35
3.3.2 Signal Generation Method . 37
3.3.3 Firmware Design . 38

3.4 Receiver and Signal Conditioning . 38
3.4.1 Signal Conditioning Requirements . 39
3.4.2 Signal Demodulation . 39
3.4.3 Data Transmission . 41

3.5 Signal Processing . 42
3.5.1 Processing Requirements . 42
3.5.2 Sampling and Curve Fitting . 43
3.5.3 TDOA Calculation . 44

3.6 PC Interfacing . 46
3.6.1 Hardware Requirements . 48

4 Implementation 50
4.1 Power Block Implementation . 50
4.2 Transmitter . 51

4.2.1 Transducer Selection and Testing . 51
4.2.2 Transmitter Microcontroller Selection 53
4.2.3 Firmware Implementation . 56
4.2.4 Board Layout and Physical Design . 58

4.3 Receiver Signal Conditioning . 60
4.3.1 Receiver Array . 60
4.3.2 Analog Components . 61
4.3.3 PCB Layout . 70

4.4 Signal Processing . 70
4.4.1 Hardware Selection . 70
4.4.2 Sampling Coding . 72
4.4.3 Final implementation . 75
4.4.4 Simulation . 78
4.4.5 TDOA Calculation Coding . 82

vi

4.5 Hardware Interface . 83
4.5.1 Hardware Debugging . 86
4.5.2 Software Design . 88

5 Testing and Results 90
5.1 Testing Plan . 90
5.2 Power Results . 94
5.3 Transmitter Results . 95
5.4 Signal Conditioning Results . 97

5.4.1 AC Amplifier Operation . 99
5.4.2 Precision Rectifier Operation . 102
5.4.3 Chebyshev LPF Operation . 104
5.4.4 Transmitter-Receiver Integration Testing 108

5.5 Processing Results . 112
5.5.1 dsPIC Basic Operation . 112
5.5.2 Multiplexer . 113
5.5.3 Analog-to-Digital Converter . 113
5.5.4 Sampling . 114
5.5.5 Bard Solver . 115

5.6 Processor Communication Testing . 116
5.6.1 USB connectivity . 117
5.6.2 System integration . 117

5.7 System Integration Results . 118
5.7.1 Precision . 119
5.7.2 Accuracy . 120
5.7.3 Motion Tracking . 120

6 Conclusions 122
6.1 The Final Design . 122
6.2 Performance Specifications . 123
6.3 Unimplemented Design Features . 123
6.4 Future Device Upgrades . 124
6.5 Applications and The Future . 127

A Transmitter Appendices 131
A.1 Transducer Data Sheet . 131
A.2 Transducer Frequency Response . 132
A.3 Schematics . 133
A.4 PCB Layout . 134
A.5 Firmware Code . 135

B Processing Appendices 137
B.1 Main . 137
B.2 Sampling . 139
B.3 Syncing . 145
B.4 Curve Fitting . 146
B.5 Bard Solver . 150
B.6 dsPIC’s TDOA Calculations . 151
B.7 usbPIC Code . 155
B.8 Simulators . 158

B.8.1 Single error Ouput . 158
B.8.2 Axial error Ouput . 159

B.9 RS232 MATLAB Calculations . 161

vii

C Receiver Construction 162
C.1 Power Charger Schematic . 162
C.2 Analog Schematic . 163
C.3 dsPIC Schematic . 164
C.4 USB-PIC Schematic . 166
C.5 Receiver PCB . 167

D Parts List 168

viii

List of Figures

1 RFID Modulation . 25
2 Competitive Value Analysis . 31
3 System Block Diagram . 32
4 Transmitter Block Diagram . 34
5 Transmitter Firmware Block Diagram . 38
6 Receiver Block Diagram . 39
7 Operational Block . 46
8 USB Device Speed Configurations[7] . 48
9 Lithium Polymer battery . 51
10 Transmitter Frequency Response (dB) . 53
11 Transmitter Output . 56
12 Transmitter Firmware Flowchart . 57
13 Transmitter Ring . 59
14 Receiver Arrays . 60
15 Receiver Signal Processing Schematic . 61
16 AC Amplifier . 62
17 AC Amplifier Transfer Function . 64
18 Differential Amplifier . 65
19 Precision Rectifier . 66
20 Chebyshev LPF Transfer Function . 67
21 Chebyshev Low Pass Filter . 68
22 LPF/Integrator . 69
23 Sampling flow . 75
24 Sampling output . 76
25 Curve fitting gain and shift . 78
26 Sampling Rate Test . 81
27 Distribution Test . 82
28 Clock Division for PIC18F2550 [7] . 86
29 RS-232 Connection . 87
30 Transmitter MCU Output . 96
31 Received Signal Waveform . 96
32 Transmitter Photo . 97
33 Power Supply Ripple . 98
34 AC Amplifier Sample Output (Test A) . 100
35 AC Amplifier Sample Output (Test B) . 101
36 Precision Rectifier Sample Input (Test A) . 102
37 Precision Rectifier Sample Output (Test A) . 103
38 Precision Rectifier Sample Output (Test B) . 104
39 Chebyshev Sample Output (Test A) . 105
40 Chebyshev Sample Input (Test B) . 106
41 Chebyshev Sample Output (Test B) . 107
42 AC Amplifier Pulse Sample . 108
43 Precision Rectifier Pulse Sample . 109
44 Chebyshev Pulse Sample . 110
45 Chebyshev Pulse Ripple . 111
46 Sampling Time . 114
47 Curve Shape . 115
48 Bard Output . 116
49 Bard Solver Radial Error Histogram . 119
50 Bard Solver Single-Axis Error Histograms . 120
51 Motion Tracking Plot . 121
52 Transducer Data Sheet . 131

ix

53 Transmitter Frequency Response (dB) . 132
54 Transmitter Schematic . 133
55 Transmitter PCB Layout . 134
56 Power Connection and Charging Unit . 162
57 Analog Filtering . 163
58 ADC Schematic . 164
59 dsPIC configuration . 165
60 USB-PIC, PC programming, and USB connection 166
61 Analog Signal Processing PCB Layout . 167

List of Tables

1 Patent Search Results . 9
2 Practical Coil Parameters . 18
3 Distribution of Receivers . 80
4 PIC18Fx5xx family differences [7] . 84
5 Data payload to USBTasks() . 89
6 Testing vectors for dsPIC communication . 94
7 AC Amplifier Testing Results (Test A) . 100
8 AC Amplifier Testing Results (Test B) . 101
9 Precision Rectifier Testing Results (Test A) . 103
10 Precision Rectifier Testing Results (Test B) . 104
11 Cheybshev Low Pass Filter Testing Results (Test A) 105
12 Cheybshev Low Pass Filter Testing Results (Test B) 107
13 Transmitter-Receiver Integration Results . 111
14 Multiplexer Testing Results . 113
15 ADC Output Results . 113
16 USART dsPIC to usbPIC data packet . 117
17 System Specifications . 123

x

1 Introduction

Computer interfaces comprise one of the three major divisions within computer theory: input,

processing, and output. Every device or procedure involved in computing can be categorized as

performing one of these functions. Input devices provide an interface to allow a human to interact

with the computer. Interface efficiency is an important factor of the design of an input device.

The Dvorak keyboard standard, for example, arranges letters in a way that is not uniform to the

alphabetical order of the characters, or to the standard QWERTY layout. As a result, learning

to use the device competently requires time and training. After some experience with the device,

however, one realizes that the keys are arranged in a very efficient way; the most used characters

lie in easily accessible locations for the hands. This exemplifies the trade-off between instinctive

interaction and device functionality. The ideal interface can balance this relationship, resulting

in seamless interaction between the computer and the user. The driving goal of this project is to

develop an input device for the PC that is intuitive to use, and provides increased functionality

over a traditional 2D computer mouse.

The idea of the computer mouse was developed in the 1960s at the Stanford Research Institute

as a token which could be moved about a surface to translate movement data to the computer

[16]. The sensory device was implemented using gears that rested on the table on which the mouse

moved. Although mouse technology has seen significant progress in communication, accuracy,

and functionality in the past forty years, there have been minimal changes to its method of

implementation. In the late 1990s, the addition of the scroll wheel was a significant improvement

to the mouse at the time, as it provided two-dimensional shortcuts as well as the option to

implement a virtual third axis of motion. Most applications today utilize the wheel on the mouse

to scroll information on a page, traversing the Y-axis. In other applications, the wheel represents

zooming in and out in a third dimension.

Our goal is to develop a device that can be used with personal computers that is an intuitive

and functional human-computer interface. It must be versatile enough to track three dimensions

of motion, yet not inhibit the motion of the user. The user places a ring that contains a small

1

battery and circuitry onto their finger to transmit ultrasonic pulses to the receiver microphones

set near the monitor. The receivers then compute the position of the ring, and transmit that

information to the computer, which moves the pointer on the screen. While similar 3D mice exist,

none excel in simplicity or discrete design to date. This report documents the process of designing

and constructing the device, including background research, methodology, implementation, and

testing. Recommendations are also made regarding further development of the device and possible

revisions to its design.

2

2 Background

The first step to meeting the design challenges of this project was to perform extensive

background research. The purpose of this research was to create a deeper understanding of the

scope of the project so that creative solutions to the design challenge could be achieved that

were within the scope of implementation. Previous designs for a 3D position tracking system

were investigated, and the technologies behind each product were scrutinized in detail. The most

important characteristics of these technologies as they apply to a 3D mouse are highlighted and

discussed in the following sections.

2.1 Current Technology

Prior art research is the first step into understanding the design challenge. Technologies that

have already been developed for 3D tracking have succinctly defined what is already possible and

what may be improved upon by this project. Technical reports, design patents, and commercial

products were reviewed and analyzed. This information was a basis for further research into

transmission, sampling, and interface technologies.

Review of 2003 MQP

In 2003, Advanced Media Technology (AMT) in Ireland sponsored a WPI Major Qualifying

Project (MQP) entitled “Magneto-resistive Sensors Applied to the Development of a Three Di-

mensional Wireless Mouse” which had similar goals to this project. The group was to design a

passive three-dimensional wireless mouse, with the added conditions of multiple object tracking,

and the exclusion of optical tracking as a technology. The group researched inductive, magneto-

resistive, and capaciflector field sensing, as well as radio frequency and ultrasonic time delay

tracking.

The first two technologies ruled out were capaciflector field sensing and ultrasonic time delay

tracking. Capaciflector sensing would rely on a tracking object moved inside the electric field

generated by a large air capacitor. The presence of a foreign object in the field would change

3

properties of the dielectric, which would be monitored to track position. It was found, however,

that any material inside the field, including the user’s hand, would have a significant change on

the electric field, so tracking a single object within the field would not be possible. Ultrasonic

time delay tracking proved to be technically viable, but unsuitable for the project, because the

pointing device could not meet AMT’s specification of being passive. The intricacies of ultrasonic

tracking are described in further detail in Section 2.7.1.

The next technology to be eliminated was radio frequency time delay tracking. There were no

experiments performed, but research quickly led the group to the conclusion that the reflection

time would be too small to track accurately.

The group then turned to electromagnetics, and performed experiments involving mutual

inductance and magneto-resistive sensing. The first experiment was to detect a change in the

voltage across a conductor coil due to the induced electric field of a nearby LC circuit. Their

first attempt showed no results, so they constructed a Wheatstone bridge to isolate the electric

field produced by the LC circuit. With the addition of the Wheatstone bridge, when a metal

object was placed inside the inductor coil a small, but usable voltage appeared across the bridge’s

outputs. However, the group decided to eliminate this option as well, after experimenting with

magneto-resistive sensors.

Using a magnet constructed from a screw and magnet wire, the group tested the viability of

the magneto-resistive integrated circuits (ICs) they purchased from Honeywell. A magnetic field

was detected seven centimeters from the ICs, which provided the assurance needed to proceed

with magneto-resistive sensing.

For the final tracking system, three sets of three-dimensional sensors were used to track the

position of a 7 × 1 × 1.5 cm bar magnet. Due to time limitations concerning the software

development, the group was only able to implement two-dimensional tracking. They did this by

constructing a plastic box around their circuit boards, with a 10 × 10 cm grid drawn on its top

cover. The magnet’s south pole was placed face down on the grid, and its movements were

tracked. Repeatability was demonstrated by creating a unique identifier for each cell in the grid,

4

finding the output values of the magneto-resistive sensors at that cell. These values were put

into a SQL database, and when the magnet was again placed on a cell, the software would search

for the corresponding voltages in the database to find the cell the magnet was over. They were

able to achieve 95 percent accuracy with this method.

Limitations of their project include the need for calibration of the magneto-resistive circuits,

and the fact that multiple object tracking would be difficult if not impossible to implement.

2.1.1 Logitech 3D Mouse

A product that was developed by Logitech of Fremont, CA in 1992 called the “3D Mouse and

Head Tracker” is a three-dimensional tracking mouse based on ultrasonic signals. The user takes

this device and places one piece of the device on their head, they can then use the mouse and

head movement to control a virtual reality application. The transmitter unit sits on the desk and

points toward the user. Each of the three speakers on the devices sends an ultrasonic pulse in a

cone area. The mouse has three microphones which detect the pulse and triangulate the position

of the mouse in three-dimensional space. The kit comes with a control unit which connects to

the computer via RS-232, and the mouse and head gear attach to this control unit. Although the

mouse itself is not wireless, the position of the mouse is calculated using wireless transmission.

Although the application of this product is specifically for virtual reality applications and not

as a general-purpose mouse, there is still much that can be learned from this device. The user

manual for the device is more extensive than a typical guide; it provides calculations, schematics,

and an application programming interface (API) for the device [5].

2.1.2 Gyration Air Mouse

Gyration’s air mouse is a two-dimensional input device that is controlled by wrist motions in

the air. It senses angular movement using a two-axis gyroscope and does not require any mousing

surface. It also has the ability to switch into a standard optical mouse mode for desktop use.

Current versions use 2.4 GHz wireless communication to provide approximately a 30 foot range

without requiring line of sight [14]. The current retail price of these devices is $70 for the home

5

version and $180 for the professional version, which adds an additional battery, in-line battery

charger and more advanced professional media and presentation control software [14].

These devices use a miniature two-axis gyroscope IC called the MicroGyro 100, or MG100 for

short [14]. This IC senses rotational force in two axes: up-down and left-right. The chip contains

a miniature tuning fork that is vibrated by an electromagnet. When the device is moved, the

movements of the tuning fork are sensed to determine how the device is being moved [14].

A focus group was held with three air mouse users to determine the effectiveness of these

devices. All three spoke very positively of the overall performance of their mice. They stated that

accuracy is very good once you become accustomed to using the device. They also noted that

with some practice, it can be effectively used for drawing in image editing applications as well

as in some first-person shooter computer games. The trigger button that turns on and off the

motion tracking is an essential feature due to the tendency for the cursor to move when clicking

buttons on the mouse. They also found the additional programmable buttons to be desirable and

liked the ability to program mouse gestures. Their only complaints involve a common problem

where the mouse has trouble switching between air mouse and desktop modes and will not always

switch immediately.

The users interviewed noted that there is a noticeable learning curve, but that it is not too

difficult to overcome. When asked whether this device causes any problems with arm or wrist

fatigue they explained that it was not an issue because of the minimal movement required and

the fact that only the wrist is moved, allowing users to rest their arm on the armrest of their

chair.

2.2 Patents

One resource for prior art research into existing products or technologies pertaining to a three-

dimensional mouse is the United States Patent and Trademark Office (USPTO) patent database.

The patent database is available to search from the USPTO website at (http://patft.uspto.

gov/netahtml/PTO/search-adv.htm) and contains electronic versions of all patents filed in the

6

http://patft.uspto.gov/netahtml/PTO/search-adv.htm
http://patft.uspto.gov/netahtml/PTO/search-adv.htm

United States from 1790 to the present day (2007), and access to most patents filed in the 20th

century in either Europe or Japan. The database is an excellent source of previously implemented

ideas, and their complexity ranges from full-scale technical documents that outline every detail

in constructing a working prototype to outlines of general concepts, the understanding of which

is aided by figures and diagrams. The searches conducted on this database sought to highlight

the content most relevant to implementing a three-dimensional virtual pointing device.

The USPTO advanced search page filters the patent database according to Boolean logic and

uses search strings input by the user. The first search string entered into the USPTO search page

was:

interface AND mouse AND (three AND dimensional OR 3 AND dimensional) AND

position AND (wireless OR radio) AND device ANDNOT (rights OR face AND recog-

nition OR hair OR protein OR robot OR method OR scanner OR barcode OR key-

board)

The keywords were chosen in the hope that they would refine the database down to patents

that pertain to three-dimensional mouse interfaces. Additional words were added to refine the

search further, such as wireless or position. The ANDNOT term of the search string filtered out

patents that pertained to face recognition, barcodes, scanners, protein, robots, methods, hair,

and rights. These search terms appeared frequently in the titles of many patents in a preliminary

search without the ANDNOT term, so they were included in patents to remove from the search.

This limited the patents for further scrutiny down to 23. Twenty-three patents is a very small

percentage of over 7 million patents in the database and a new search was conducted for more

results. The new search was conducted with the following search string:

interface AND mouse AND (three AND dimensional OR 3 AND dimensional) AND

position AND (wireless OR radio) AND device ANDNOT (rights OR face AND recog-

nition OR hair OR protein OR robot OR scanner OR information OR barcode OR

keyboard)

7

This search returned 14 additional patents.

Table 1 lists the patents that were reviewed as part of this background research.

Eight of the twenty-five total patents listed in Table 1 are selected and summarized to highlight

key features. These patents highlight the devices in the patent search that most closely match

the goals of this MQP. Their summaries are roughly ordered according to the method by which

the 3D position of the device was determined. The first three patents correspond to optical

recognition or sensor systems. The next three patents utilize magnetic positioning systems. The

last two patents utilize hybrid systems. One device uses ultrasound triangulation and an RF

transmitter to transmit position data. The final device uses accelerometers to track the position

of the device and pressure sensors to track the orientation of a wand.

United States Patent 7,098,891:“Method for providing human input to a computer”

This patent uses a visual tracking system. An electro-optic sensor detects the position of two

targets on a user’s body and determines the distance between them. From this information, a

computer calculates the two-dimensional motion of the user in the area defined by the two targets.

This invention exhibits the ability to determine position and distance optically, with sensors that

operate at very low power.

United States Patent 5,815,411:“Electro-optic vision system which exploits position and

attitude”

This device is an electronic vision system. The entire system includes a camera to gather

optical information about a particular environment, a computer processor, a device to measure

camera position and attitude, and a database of stored images. The invention uses this vision

system to delete, add, and supplement images to a scene that it is currently observing and displays

these changes in real-time. The algorithms behind image addition, deletion, and supplementation

show that complex optical systems can also determine three-dimensional position based upon

relative object size and location with respect to camera orientation and a database of recorded

images.

United States Patent 6,222,465:“Gesture-based computer interface”

8

Patent Number Patent Title

6,373,492 Computer-assisted animation construction system and
method and user interface

5,854,634 Computer-assisted animation construction system using
source poses within a pose transformation space

6,678,546 Medical instrument guidance using stereo radiolocation
6,222,465 Gesture-based computer interface
6,469,633 Remote control of electronic devices
7,034,804 Computer pointing device employing a magnetic field source

and magnetic field sensors
5,453,785 Measurement camera with fixed geometry and rigid length

support
5,444,917 Sensing device
5,296,871 Three-dimensional mouse with tactile feedback
5,541,621 Mouse or trackball system
5,875,257 Apparatus for controlling continuous behavior through hand

and arm gestures
6,159,101 Interactive toy products
7,098,891 Method for providing human input to a computer
7,096,148 Magnetic tracking system
6,710,770 Quasi-three-dimensional method and apparatus to detect

and localize interaction of user-object and virtual transfer
device

6,774,624 Magnetic tracking system
6,845,241 Relevance assessment for location information received from

multiple sources
6,453,246 System, method, and computer program product for repre-

senting proximity data in a multi-dimensional space
6,445,943 Position tracking and imaging system for use in medical

applications
6,019,725 Three-dimensional tracking and imaging system
6,211,863 Method and software for enabling use of transcription sys-

tem as a mouse
6,008,798 Method of determining an object’s position and associated

apparatus
4,654,648 Wireless cursor control system
4,814,552 Ultrasound position input device
5,815,411 Electro-optic vision system which exploits position and atti-

tude

Table 1: Patent Search Results

9

This patent outlines a system that uses a video capture device to recognize hand gestures and

manipulate elements on a computer screen. The video capture device observes a limited zone

in which it can see the user’s hand and software determines the location and gesture that the

hand represents. There are different commands that the recognition system interprets, including

gripper (thumb and forefinger pressed together), resize, draw, delete object, and menu commands.

These commands can either be traditionally selected with a computer mouse or gestured within

the video capture zone.

United States Patent 7,096,148:“Magnetic Tracking System”

This invention uses a magnetic field generator and sensor to detect changes in a magnetic

field caused by a metal object within that field. The object is placed between the field generator

and an array of magnetic field sensors, which triangulate position. The system is calibrated for

each situation of use under ideal conditions. A shortfall of this technology is that metal objects

within twice the distance between the magnetic field generator and sensor will affect the field.

Another shortfall is that this system must be calibrated under ideal conditions before field use.

United States Patent 7,034,804: “Computer Pointing Device Employing a Magnetic Field

Source and Magnetic Field Sensors”

This device includes a magnetic field source and a magnetic field sensor. The change in

position of the magnetic field source is measured by the magnetic field sensor as the source is

moved in space. The magnetic field source is a permanent magnet or an electromagnetic solenoid.

A Hall Effect element is present in the magnetic field sensor of the device that has the ability to

measure the magnitude of the magnetic field along three axes. The transmission system for this

patent is a connector cable attached to the magnetic field sensor. The purpose of this invention

is to provide an alternative to the traditional two-dimensional computer mouse.

United States Patent 5,854,634: “Computer-assisted Animation Construction System

Using Source Poses Within a Pose Transformation Space”

The object of this patent is to create a system to generate natural computer animation. It

utilizes a set of predefined source poses of an animation sequence. A wand is included and uses

10

magnetic positioning, with a magnetic field generator and magnetic field sensors to detect the

three-dimensional position of the wand. With the wand, the user can move through the source

poses of the animation sequence, and manipulate their display orientation on a computer.

United States Patent 4,814,552: “Ultrasound Position Input Device”

This patent outlines a stylus or pen design that utilizes ultrasound to determine its two-

dimensional position. The device uses a pressure sensor to determine whether the pen is in

contact with a surface, and contains an ultrasonic receiver and wireless RF transmitter. The

ultrasonic receiver is used in conjunction with base unit transmitters to triangulate the position

of the stylus. The wireless RF transmitter sends this position data to a wireless module, which

is then interpreted by a computer into a two-dimensional writing space. One disadvantage of

this device is that it uses an ultrasonic transmitter/receiver pair and an additional wireless RF

transmitter/receiver pair.

United States Patent 5,875,257: “Apparatus for Controlling Continuous Behavior Through

Hand and Arm Gestures”

This invention utilizes accelerometers embedded in a wand to determine the beat and po-

sition of the rod while it is being used to conduct music. The bulbous, cupped portion of the

wand contains five pressure sensors which are aligned to each of the user’s fingers. The device

transmits accelerometer and pressure sensor data wirelessly to a receiver unit that interfaces with

a computer. From this raw data, the absolute three-dimensional position of the baton can be

determined, as well as its speed and the “beat” of its motion. The aim of this invention is to

improve the user’s conducting abilities with the aid of computer analysis and feedback.

These patents are examples as to how others have implemented three-dimensional position

tracking systems. The summarized designs serve as a basis for potential methods of implementing

the tracking system for this project. The selected patents are by no means a comprehensive list

of the available options, but they show what has been done in the past and what may be

accomplished in the future.

11

2.3 Gyroscopic Tracking

Gyroscopic tracking involves using gyroscopes to sense rotational changes. This is very effec-

tive for rotational movements, but does not map so well to lateral movement. One example of a

device that uses this technology is the Gyration Air Mouse that was described earlier.

This design works well for two-dimensional applications, however it would not work very well

for a three-dimensional design. Adding a third dimension would require the rotational axis of the

wrist to be used. This would be difficult in conjunction with the left-right rotation. Because

of the similarity between these axes, the three rotational axes could not be mapped intuitively

to the Cartesian coordinate system. Another disadvantage is that the tracking is done by the

hand-held device, so it would not be possible to implement this technology passively or in a very

small device.

2.4 Radio Frequency Identification and Geometry (RFIG)

Radio Frequency Identification and Geometry, or RFIG, is a new technology that is an extension

of RFID. It uses photosensitive RFID tags to make millimeter-accurate positioning possible. This

technology is still under development and is being designed by Mitsubishi Electric Research Labs.

RFIG allows objects to be precisely located in two-dimensional space and can also be extended

to provide three-dimensional positioning.

The basic operation of RFIG involves tags mounted to objects being tracked along with a

sensor and projector unit. The photo-sensing RFID tags are queried through RF as normal RFID

tags would be. The projector then beams a unique time-varying code that is decoded by the

tags [11]. Based on the code received, the tags then respond through RF with their precise pixel

location [11]. The projector can then display information on the items being tracked for visual

feedback.

Some of the currently envisioned applications include package tracking for stockrooms and

book positioning for libraries. RFIG can be used to locate packages and display relevant infor-

mation, such as expiration status. In libraries, books can be checked for proper position and

12

orientation using a handheld projector. If the books are out of place, the projector can even

display arrows to show where they should be moved [11].

RFIG has the benefit that the tags do not necessarily require a battery. Since the tags only

receive light and do not emit any, they have very low power requirements and can be implemented

as passive tags. The current prototypes use a battery because active tags are easier to program,

however future revisions can be passive. With passive tags, the size will be able to be reduced to

the point where a tag can be as small as a grain of rice [11].

Three-dimensional positioning can be accomplished with the addition of a second projector.

The two projectors are spaced apart and both aimed at the object from different angles [11]. By

combining the information from the two separate projectors, positioning can be tracked in 3D

space.

RFIG has some benefits and drawbacks for use as a 3D computer mouse. It has the advantages

of the tags being small and not requiring power. It is also already fairly accurate and can be

used for 3D applications. Unfortunately, there are some major drawbacks that would make this

technology somewhat ineffective for the purposes of this project. The size of the two projectors

required would be prohibitive, as would be their cost. Additionally, this is very new technology

that is still in its early development stages and has not yet been released. Although most of these

problems will be eliminated in the future, they are currently too detrimental to the goals of this

project for RFIG to be a competitive option.

2.5 Accelerometers

While in search of previous products or research in three-dimensional tracking, it was found

that a popular technology involves tracking with accelerometers. These devices are small, au-

tonomous, low power chips making them well suited for this application. Accelerometer chips

which detect three-dimensional acceleration send their signals to a processor which then must

use a pair of integrators to determine the three-dimensional position of the mouse. This position

can then be sent to the computer as a Human Interface Device (HID). Several projects at other

13

engineering universities have developed accelerometer based mice influenced by the film industry

which exhibit the control of a computer interface using movements and gestures in the hands

and fingers.

Students at the University of California at Berkeley developed a two-dimensional wireless

glove that used accelerometers on each finger. The data from the accelerometers is sent to the

base station (driven by an Atmel MPU) which is connected to the PS/2 interface on the PC;

the devices are powered by two AA batteries. The application for the glove was mainly used

for detecting individual finger movement and gestures, although the team had developed a basic

Human Interface Device driver for the glove [8]. Graduate students at Cornell University developed

a three-dimensional accelerometer based mouse which was a wired device and supported limited

two-finger gestures. The device is controlled using an Atmel Megacontroller MPU, and connects

to the PC over the PS/2 interface. This device is perhaps small enough to be discrete, however

it lacks wireless communication abilities [3]. Of the existing accelerometer based tracking devices

found, MIT students have developed the most comprehensive device. Operating on an FPGA and

connected to the PC over the PS/2 interface, this device incorporates all three axes of motion and

uses a single accelerometer board which communicates over RF with the base station [4]. These

well-documented projects provided much insight in the consideration of using accelerometers for

this project.

Accelerometers do not depend on any other devices for their operation and are autonomous

by detecting individual changes in G-forces in each direction. The chips are small enough to

incorporate many sensors on one hand, increasing the precision of the device. For the application

of a simple HID mouse this does not benefit the device, however for applications that involve

tracking of hand gestures, an accelerometer based approach would work well.

In order to interpret acceleration into positional data, accelerometers require fast integrators

which should be located between the sensory equipment and the computer. The integrators

must be quick and efficient enough to produce a consistent output for the user; inaccurate

calculations of position could lead toward undesired movement of the cursor. The device must

14

also be consistently calibrated in order to find the logical zero for the devices.

For the application of this project, the use of accelerometers is not the most logical decision.

The goal for a very discrete device relies on wireless communication and ideally a passive device.

Using accelerometers, the chips must be constantly powered and must be equipped with an RF

transmitter/receiver combination. This would not be conducive to a discrete solution. In the

projects completed at other universities the sophistication of the devices was one of the desired

goals of the projects. The purpose of this project is simple three-dimensional movement of a

mouse cursor and perhaps a basic gesture for clicking, which does not require the implementation

of a sensor on each finger.

2.6 Magnetics

The distance between a source and receiver can be determined in some cases based on the

amplitude of the received signal. The amplitude of most analog signals and fields varies inversely

with the distance from the source. Therefore, if the signal amplitude at the source is known, the

distance from the receiver to the source can be calculated based on the amplitude received.

A magnetic field is a good example, since field strength varies inversely with the square of the

distance from the source, as is shown in equation 1. If the value at one point is known, then the

distance from the source can be calculated for any other point using this equation. By taking

the electric field value at four different points, the distance from each point is obtained. Each

of these distances represent the radius of a sphere, and the intersection of four or more of these

spheres will uniquely define a point in 3D space.

B =
µIL sin(Θ)

4πr2
(1)

For each receiver, an expression of the form shown in equation 2 can be created to determine

a sphere of radius ra, where a denotes the specific receiver. The intersection of four or more

of these spheres will uniquely define a point in space relative to the coordinate locations of the

receivers.

15

r2
a = (xa − x)2 + (ya − y)2 + (za − z)2 (2)

To increase accuracy, additional receivers can be added. The additional data provided by an

extra receiver can allow averaging and correction for errors that is not possible with the minimally

determined case of only four receivers.

Electromagnetics

There are several ways to use electromagnetics to track an object. If a primary inductive

coil is used to create a large magnetic field, eddy current detection of a metal object or an LC

oscillating circuit can be used. Alternatively, if the tracking object is itself a magnet, magneto-

resistive sensors can be used. The former relies on the induced current in a metal object in a

time varying magnetic field, while the latter relies on a material that has a change in resistance

in the presence of a magnetic field.

To track a metal object or an LC circuit, a large coil of ferrous material is necessary. When

current is run through the coil, a magnetic field is induced. The shape of the magnetic field

follows the right hand rule, and a tightly wound coil will have a field through its radial axis.

When a metal object or a tuned LC circuit is placed inside the magnetic field a current will be

induced in the object, and hence it will create its own magnetic field, which opposes the original.

This opposing magnetic field changes the voltage across the inductor, and the magnitude of the

change is proportional to the distance from the coil to the tracking object. Measuring the change

in voltage allows the object to be tracked in one dimension. One-dimensional tracking is simple

to implement, and the Biot-Savart law (which states that a tightly wound solenoid behaves in

the same manner as a magnetic dipole) and Faraday’s law provide equations to determine the

changing voltages and magnetic fields.

A similar approach has been developed at Waseda University in Tokyo, Japan. To detect

a position tracker inside the human body, they used primary coils of 1.3 mH carrying 2.5 A of

current to produce a magnetic field around the body where the secondary tracking coil resides.

16

The induced voltage in the secondary coil is then modulated to FM frequencies using circuitry

powered by a small watch battery, and the FM signal is picked up by detectors on the body to

triangulate its position. The result of the experiment was a detectable range of 500 mm with an

accuracy of 10 mm. This accuracy and range are within an acceptable range, and despite the

reported large size of the system, its success proved promising for our experiments.

In order to track in three dimensions, the use of 4 coils plus an exciter object that would

change the voltage across each coil is needed. The first coil would serve the same purpose as

explained above, plus there would be three other coils placed along three axes. The first coil serves

to power the three other coils, and an exciter object would be placed inside the magnetic field

near the three perpendicular coils. Following the same principle described above, when the object

moved closer to each coil the voltage across that coil would be lessened, and the three changes

in voltages can be tracked to triangulate the object’s position. At first this theory seemed viable

and fairly easy to implement. However, with research we learned that when more magnetic fields

are introduced to track an object in multiple axes, finding a function for the position becomes

far more complicated, as every additional coil contributes to the magnetic field. Tracking would

then have to be done through experimentation, noting voltage across the coils at each position

and comparing the past and present values to find position. While this method is possible to

implement, because of its complexity it was not a promising option.

An apparatus was constructed in order to test the theory that a metal object in a changing

magnetic field could alter that field according to its position. The impetus of this experiment

was based upon the idea that eddy currents in a metal object could alter the perceived field of a

sensing coil whereby creating a voltage dependent upon the position of the metal object. The basis

behind these magnetic field experiments was primarily due to the knowledge of electromagnetic

field principles, and was validated by the content of prior art, namely US patents 7,096,148,

7,034,804, and 5,854,634. Patent 7,096,148, described in section 2.2 outlines a system of three

excitation and three sensing coils to determine three-dimensional position.

Three coils were constructed, one transmitter and two receivers, as a proof of concept that

17

a metal object would distort the magnetic field between transmitter and receiver based upon

its position in the field. The transmission coil X was constructed from 22 gauge magnet wire,

wrapped 70 times around a hollow spool 8 cm in diameter. Receiver coil A was constructed from

18 gauge glass-cloth insulated transformer wire, wrapped around a spool 10 cm in diameter, which

was later removed, leaving an air core. Receiver coil B was constructed with similar dimensions

and materials as coil A, but did not have as many windings as coil A. The practical parameters

for coils X, A, and B are described in table 2 where the resistance values of the wire are measured

as DC resistances.

Coil Inductance (L) Resistance(R)

X 422.8 uH 0.7 Ω
A 4.08 mH 1.3 Ω
B 1.54 mH 0.7 Ω

Table 2: Practical Coil Parameters

In the first phase of the experiment, coil X and coil A were connected as the inductors of

two separate parallel RLC circuits. The R value of each circuit was 1 kΩ. Using equation 3

with a desired frequency of 20 kHz, the capacitance value of the circuit containing coil X was

determined to be approximately 98 nF. Because of capacitance value rounding, the new resonant

frequency of the system shifted from 20 kHz to 25.4 kHz. This was determined by sweeping a

0.5 V peak-to-peak sine wave on the transmission circuit and testing the frequency that caused

a voltage maximum. The capacitance value of the circuit containing coil A was 9.55 nF based

upon the new resonant frequency.

f =
1

2π
√

LC
(3)

With both coil X and coil A tuned to resonance at an input frequency of 25.4 kHz, coil A

was separated from coil X by a distance of 1 m. The voltage measured across coil X was 100

V peak-to-peak at its resonance frequency of 24.5 KHz and amplitude of 0.5 V for the input

voltage. This voltage was roughly measured using the peak-to-peak voltage measurement on

oscilloscope channel 1. The oscilloscope was used to measure the voltage of coil A on channel

18

2. This voltage was measured to be 10 V peak-to-peak. A thin copper plate, 15 cm × 10 cm,

was moved in the field region between coil X and coil A. At first, the plate was oriented such

that the large flat surface was covering the opening of coil X. A significant change was noted in

coil A voltage as the plate was moved both vertically and horizontally through the magnetic field

in this orientation. Different orientations of the plate were tried, and it was determined that if

the plate was parallel to the magnetic field, its area was reduced in correlation to the field, and

its effect on coil A voltage minimized. Next, a copper bar was placed in the field at different

orientations. The change in voltage on coil A was not as noticeable on the scope, and had a

similar characteristic to the copper plate parallel to the magnetic field.

In the second phase of the experiment, coil A and coil B were oriented such that the opening

of each coil was perpendicular to the other. They were oriented orthogonally to the opening of

coil X approximately 20 cm above. Under this experiment, coil A and coil B were within a close

enough proximity that resonance in these circuits was not necessary to induce a significant voltage

from the magnetic field. A voltage of 0.5 V AC with a frequency of 24.5 KHz was applied to coil

X, as in the first phase of the experiment. With this orientation, the copper plate was passed

through the magnetic field created by coil X. The voltages of coil A and B were measured on the

oscilloscope and were noted to change according to the distance and orientation of the copper

plate in the field with respect to each coil. It was difficult to determine whether the magnetic

fields produced by coils A and B from the induced voltages were interfering with each other, since

the object within the field was non-uniform to all axes.

These magnetic field experiments have shown that an easily measurable voltage could be

induced in a single coil at distances less than 1 m. The voltage was shown to be directly

dependent upon the position of the object that was distorting the magnetic field. The apparatus

that was constructed for this case was relatively easy to implement, and did not require complex

circuitry, other than the equipment provided in any ECE lab in the Atwater Kent Building.

The magnetic field experiments also showed that the magnetic field decays rapidly over large

distances. Ideally, a maximum voltage of 100 V peak-to-peak would be desired on the receiver

19

coil. In resonance, the receiver coil was only able to sense about 10% of the input voltage. The

difficulty of attaining resonance for each coil, and keeping the entire system in tune was a unique

challenge of this type of position sensing. The interference of the magnetic fields of coils A and

B was not determined empirically, but theoretically they should interfere with each other since

they are creating their own magnetic fields, whereby inducing a voltage on coils in close proximity.

What was noted, most importantly, was that the voltages on each coil also changed with the

orientation of the object in the magnetic field. The change in voltage on the coil also depended

on the inductance of each coil. This resulted in different magnitudes of voltages being induced in

each coil, and different rates of change in voltage due to the distance of the obstructing object.

The design challenges of implementing an accurate and robust three-dimensional position

tracking system using magnetic field sensing outweigh its advantages. The main complexity of

this system is that the voltages represented by each axis would not correspond to the absolute

distance of the tracked object to each field sensor. The sensors, would otherwise provide a

dynamic voltage output, customized to the precise construction of each coil, its orientation in the

apparatus, and the type of interference of additional objects in the apparatus. The device would

require calibration at the beginning of each session of use, unless other means were conceived

that would reduce or eliminate the non-idealities introduced by this method of position sensing.

Magneto-Resistive

Magneto-resistive sensing would be the simplest electromagnetic choice, as magneto-resistive

sensors exist in prepackaged ICs. The most popular manufacturer of these devices is Honeywell,

and they start at a base of 2.5 volts, and have sensitivities of 1mV/V/Gauss (1 Tesla is 10,000

Gauss). Experimentation from the 2003 MQP found a usable change in voltage 10 cm from the

ICs. Our own experimentation was planned, however the IC did not arrive in time to perform

adequate tests. We believe this approach would be viable, but the magnet would have to be

strong enough to create a change in the IC’s output voltage at twelve or more inches from the

PCB, and such a magnet would be a burden to use as a pointing device.

20

2.7 Time Difference of Arrival (TDOA)

Time Difference of Arrival (TDOA) at its most basic level involves the difference in arrival

times of a signal at multiple receiver locations. The TDOA principle relies on calculating the

distance from each point based on the time it takes for the signal to travel between the source

and receiver. One of the points is specified as the reference point and all other points are

compared to this one. Based on the propagation speed of the signal and the time difference

between each point and the reference point, the distance of each point from the transmitter can

be calculated. By receiving the signal at four or more points to determine three dimensions, this

method allows the location to be calculated without knowing the initial time, T0, that the signal

was sent. This is especially beneficial in systems where there is no direct line of communication

between the transmitter and receiver, because it would be difficult to determine the start time of

the signal.

For our purposes, the handheld device would emit or reflect a signal that would be received by

at least 4 receivers. The receivers provide the time of arrival for processing, which gives the time

difference between the arrival of the signal at the different receivers. The following 4 equations

relate the propagation time to the distance between each receiver and the transmitter. In these

equations, c denotes the propagation speed of the signal and x, y, and z denote the unknown

coordinates of the transmitter.

TL =
1

c

√
(xL − x)2 + (yL − y)2 + (zL − z)2 (4)

TR =
1

c

√
(xR − x)2 + (yR − y)2 + (zR − z)2 (5)

TQ =
1

c

√
(xQ − x)2 + (yQ − y)2 + (zQ − z)2 (6)

TC =
1

c

√
x2 + y2 + z2 (7)

The following three equations calculate the TDOA between the reference receiver and each

other receiver. By simultaneously solving these three equations for x, y, and z, the position of

the transmitter can be accurately determined.

21

τL = TL − TC =
1

c

√
(xL − x)2 + (yL − y)2 + (zL − z)2 −

√
x2 + y2 + z2 (8)

τR = TR − TC =
1

c

√
(xR − x)2 + (yR − y)2 + (zR − z)2 −

√
x2 + y2 + z2 (9)

τQ = TQ − TC =
1

c

√
(xQ − x)2 + (yQ − y)2 + (zQ − z)2 −

√
x2 + y2 + z2 (10)

Although positioning can be adequately accomplished using only four receivers, the accuracy

can be improved with additional receivers. If interference is introduced, it may cause the equations

to not specify a single point, which would leave some room for uncertainty between the curves.

Additional data points can help in these situations by allowing averaging or error correction.

Positioning using TDOA is generally quite accurate because it is relatively easy to measure

time with a high degree of precision. Accuracy is primarily affected by geometry and timing.

The location of the transmitter and the configuration of the receivers can have an effect on

how accurate the system is. The accuracy of the system decreases at certain points due to

geometrical effects and is worse when the transmitter is further from the center of the receiver

array. Uncertainty about the locations of the receivers can also be a cause of error. Since this is

a time-based operation, timing is the most prominent cause of inaccuracy. The timing accuracy

for the received pulses is essential, but there also must be timely communication between the

sensors and the processor. If the system is not designed well, unforeseen latency can occur within

the processing unit.

The propagation speed of the signals being used can also have an effect on system perfor-

mance. Sound signals will propagate more slowly than waves that move at the speed of light,

increasing the time differences observed. The example below derives the required time resolution

to achieve a given spatial accuracy. The constant r represents the propagation speed of the signal

and d and t represent distance and time, respectively.

2∆d = r∆t (11)

22

∆t =
2∆d

r
(12)

The two solutions below show the time resolution needed for 1 mm spatial accuracy in a single

dimension with different propagation speeds.

r = speed of light:

∆t =
2× 10−3

2.998× 108
= 6.67ps (13)

r = speed of sound:

∆t =
2× 10−3

340.29
= 5.88µs (14)

These examples emphasize the six orders of magnitude difference between using a low speed

signal such as ultrasound versus an optical or electromagnetic signal that propagates at the speed

of light. Having slower speeds to work with is beneficial, but there are also trade-offs with other

factors that will be discussed later in this section.

Radio Frequency and RFID

Radio frequency and RFID tracking involve high frequency signals that are transmitted by

one or more transmitters, altered by a passive device being tracked and received back at the

transmitters. The primary difference between RF and RFID deals with how the signal is altered.

With RF, the signal is simply reflected, whereas RFID tags modulate the transmitted signal with

another one to send information. Both of these technologies would rely on TDOA principles to

determine position and for the purposes of this discussion can be considered the same because

they differ only in specifics of implementation.

The way RFID would be implemented for tracking in 3D is to have one reader capable of

transmitting and receiving, one RFID tag and three or more receivers. A signal is sent from the

reader and is modulated by the tag. The modulated signal would be received back at the reader

and the other receivers at different times based on their distance from the tag. From the time

23

differences between the receivers, the position of the tag relative to the known receiver locations

could be determined. The same principle applies to RF, using reflections instead of modulation.

To determine whether it would be possible to read an RFID signal with multiple receivers, we

designed some basic tests using a 125 kHz RFID reader and tags. We contacted Jay Farmer, a

WPI graduate student, about designing a near field receiver for our application. He walked us

through some calculations to determine inductance and capacitance parameters. The equations

below determine inductance and shunt capacitance based on frequency and relate the two values

based on operating frequency f0.

f0 =
1

2π
√

LC
(15)

LC =
1

4π2f0
2 (16)

C =
1

4π2Lf0
2 (17)

L =
1

4π2Cf0
2 (18)

Jay recommended using these equations to determine the necessary capacitance to complete

a coil of known inductance and offered us use of an inductance meter. He was able to provide

us with a pre-made coil, designed for similar frequencies. We measured the inductance of this

coil to be 398.5 µH. The calculations below show how we determined the necessary value for the

shunt capacitance, C.

C =
1

4π2 × 398.5× 10−6 × (125× 103)2
= 4.0681× 10−9 ≈ 4nF (19)

The primary goal of testing the multiple reader system was to determine whether we can re-

ceive the communication occurring between the RFID reader and tag with an additional read-only

coil. The first test was performed with just the coil and capacitors connected to the oscilloscope.

24

It was possible to see signals being received by the coil and there was a change in the signal when

the tag was introduced. However, at this point the signal could not be positively identified as

modulation being introduced by the tag.

In an attempt to obtain more intelligible signals, we tried filtering the signal to make it easier

to view. Following the information provided by the RFID Proximity Security System [12], we

added some circuitry that acts like an envelope detector to make the modulation more visible. A

series capacitor was also added to remove the DC offset of the signal. Figure 1 shows the result

of applying this filter and clearly shows modulation being detected.

Figure 1: RFID Modulation

The above modulation appears to be a digital signal and is present whenever the RFID tag

is communicating with the reader. When the tag is not within range, only the 125 kHz carrier

signal is seen.

The fact that modulation can be seen on the additional antenna shows that using a read-only

antenna is a valid means of picking up the communication between a reader and tag. This could

be extended with additional read antennas to receive the modulated signal reflected off of the

tag and the received signals can be compared to determine the tag’s 3D location.

RFID can operate at one of a few established frequencies. After evaluating the different

options, we determined that 13.54 MHz would be most effective. This frequency has a range of

about one meter and is not prone to interference problems associated with higher frequencies.

25

In addition to only having a three inch read range, the 125 kHz reader we tested uses too

long of a wavelength to discern the phase difference for small distances. With a wavelength of

over 2 km, it would be very difficult to determine any phase difference from differences of only

several centimeters.

λ =
c

f
=

2.998× 108

125000
= 2398.4m (20)

The next logical step is to test a system using a 13.56 MHz carrier frequency. At 13.56 MHz,

the wavelength is more manageable:

λ =
c

f
=

2.998× 108

13.56× 106
= 22.11m (21)

Using RFID as the technology for our project has some potential, but would certainly come

with many problems. The major difficulties lie in accurately measuring the phase difference

between signals and sampling the signals. These difficulties would certainly take some work to

overcome and must be weighed against other technologies.

2.7.1 Ultrasonic

TDOA positioning can also be performed using ultrasonic waves. Ultrasonic waves propagate

at the speed of sound, which simplifies detection, however there are still some implementation

concerns. This section details the testing of a basic ultrasonic TDOA system.

The ultrasonic transducers we used for initial testing were graciously provided by the Machine

Vision Lab and include one transmitter and two receivers. Each of the transducers had been built

into a complete unit with appropriate support circuitry and necessary interconnects and have the

following specifications.

Transmitter Specifications:

• Supply Voltage: ± 12V

• Input Signal: 3V pk-pk continuous, 5V pk-pk intermittent (60 sec)

Max DC Offset: 0.5V

26

• Pass Band: Approx 42 kHz to 48 kHz (-10 dB)

Receiver Specifications:

• Supply Voltage: ± 12V

• Output Signal: 12V pk-pk max

• Pass Band: Approx 42 kHz to 48 kHz (-10 dB)

A sine wave of appropriate frequency (42-48 kHz) from a signal generator was provided as

input to the transmitter and viewed on channel 1 of the oscilloscope. The output of the receiver

was connected to channel 2 of the oscilloscope and the signals were monitored and compared with

the scope triggered on channel 1. Basic transmission was effective for both receivers, however

at these frequencies, obstructions such as a human hand cause significant interference. Since

these specific transducers are only omnidirectional in two dimensions, significant offset in the Z

direction will cause signal deterioration.

After basic communication was established, transmission to two receivers was tested by view-

ing the two received signals as the transmitter was moved. The two receivers were set up along

a measured line and the transmitter was slid alongside the line going between them. Observing

the time delay between the two signals provides information about the difference in distance from

the transmitter to the two receivers, following the equation below (d in meters, t in seconds):

∆d = 344×∆t (22)

Transmission to two receivers was effective and showed very useful results. Both signals could

be seen on the scope and if the receivers were at different distances, they can be told apart by

their amplitudes. By triggering the scope on one of the channels and moving the transmitter

along the workbench, the phase between the two signals could be seen to change proportionately

to the movement of the transmitter.

Although the movement could be viewed on the oscilloscope, there was no way to determine

the exact location of the transmitter due to the small wavelength as calculated below.

27

λ =
c

f
=

344

45000
= 7.64mm (23)

Having such a short wavelength means that single phase tracking is only effective for within a

single wavelength, however, time difference in this case could be determined by measuring arrival

time of a pulse rather than the phase of a constant signal.

Ultrasonic tracking worked very effectively and is relatively easy to work with because of the

slow signal speed. Since the device being tracked is a transmitter, it requires power and cannot

be a passive device. The transmitter we tested was rather large and required a lot of power,

however there are other options available that are much smaller. A carefully designed custom

transmitter that is designed for close-range use could potentially be made very small.

2.7.2 TDOA Conclusions

The best TDOA options appear to be RFID and Ultrasonic, however, they both have their

benefits and drawbacks. RFID has the advantages of being passive and not susceptible to most

common forms of interference, however the signals propagate very quickly and would be difficult

to develop the device. Ultrasound has a much slower propagation speed, but suffers from problems

with objects blocking the communication path and cannot be implemented passively. To decide

between these two, we will have to decide which qualities we value the most and choose which

technology we feel would be most successful considering our goals and time frame.

28

3 Methodology

The aim of this section is to document the logical methods, theory, and group discussion

behind important aspects of the design. The technology choice for the transmission method is

discussed and selected. This section outlines the requirements necessary for the design to complete

a working prototype, and is organized into functional blocks. It also discusses the considerations

taken that best meet these requirements. Furthermore, this section discusses integration of all

of the blocks into a complete system and testing plans to determine the level of performance for

individual blocks and the entire system.

3.1 Project Management

With a team of five students working with many facets of the project from different computers,

it is crucial to have a plan for data management to prevent loss of data and reversible changes.

We have utilized open source tools such as LATEX in conjunction with Subversion (SVN) for data

management for this project. Specifically, an SVN server was run through the department’s UNIX

machine maxwell.ece.wpi.edu. This allowed each of the members of the magicmouse group

to access the data files through Secure Shell (SSH).

By using LATEX to author the document, we can benefit from the excellent rendering of figures,

equations and the structure it provides. Also, by placing the master document on the server

directly, we can rely on the redundancy of the ECE servers for data reliability. The document

was structured in a hierarchy with the master file referencing each section and subsection. This

allows different members of the team to work on different portions of the paper simultaneously.

Each TEX file for the document was under version control using subversion. Using subversion,

each member could check out a local copy of the document and only commit files which they

have edited. Also, because the document is maintained on the server, reviews by the advisor were

as simple as checking out and compiling the document. Although only one member of the group

had extensive LATEX experience, the others were able to learn the application during the course of

the project.

29

Using Subversion to establish and maintain the document became second nature to the team,

and it was logical to extend its capabilities. We have employed version control on our firmware

code for the microcontrollers used in the design. This provides the opportunity to commit

changes when the code has reached certain milestones. When the code is then broken, it can

be easily reverted back to a working state without lost time. Additionally, due to the ease of

using subversion repositories on the ECE servers, It was simple to create a way to keep track of

revisions to the printed circuit boards. Although these files are binary, we can still keep track of

prior versions and easily reference or revert to them. Also saving the state of the board when it

was sent to be produced is an advantage in case one needs to refer to an old board’s schematic.

Overall the small amount of additional time spent establishing the skeletal structure for the

LATEX document and creating SVN repositories prevented any data loss catastrophes that could

have occurred otherwise.

Project Overview

Bringing a design concept from an idea to the creation of the device begins with a foundation

in background research pertinent to that idea. From this foundation, a decision must be made

that determines the direction of the project. In many designs, this is the critical step, and

eventually determines whether or not the idea may be feasibly realized. If the idea passes this

step, this decision will set the stage for the rest of the design. A handy metaphor for this process

is comparing the design to pitching a tent. The foundation of background research provides

stable, solid ground on which to construct the design. The debate over transmission technology

discussed in the background section is a debate over where to stake down the first pole of the

tent. Since subsequent decisions on the design are directly related to the transmission technology,

it is a rational place to start. From the first pole, all other poles may be placed in reference to

it. From here, the remaining challenge is building the tent, or physically constructing the design.

The Competitive Value Analysis located in Figure 2 is a graphical depiction of the thought

process that went into the transmission technology decision. The most important criteria are ease

30

of implementation, position accuracy, size of the transmitter, transmitter power consumption, and

total cost. The two major goals of the project are to create a device that accurately detects the

position of a wireless object while using as little power as possible to do so. These criteria are

weighted more favorably than the other, secondary criteria. Each technology is rated on a scale

from 1 to 5, where 5 is the best score and their weighted scores in each area are summed. In

theory, the technology with the highest score is considered the best option.

Figure 2: Competitive Value Analysis

Ultimately, the transmission technology selected for this design is ultrasound. The elec-

tromagnetic options were tested in the lab, and proved to be too inaccurate for 3D position

measurements. The implementation of these designs also proved to be challenging, especially

in creating a passive device that would create fluctuations in an induced magnetic field. Three-

dimensional positioning using gyroscopic sensors does not fit into the limits of a low or no-power

device which is one of the major goals of the project. The use of accelerometers fits into the

same category. Implementation of either of these strategies, though they are remarkably accu-

rate, would require active RF communication. RFID, or passive RF technologies are difficult to

implement, and depending upon the implementation may prove costly. Ultrasound fits the middle

of the design criterion, while only excelling in a single category, emerged as an overall winner.

The implied ultrasonic mouse design has been broken down into several functional blocks.

Each block achieves a different function toward realizing a final prototype. With the exception

of the power block the design proceeds linearly with the transmitted pulse of the signal, and

provides a manageable structure to divide workload. These functional blocks are broken down

31

into transmitter, receiver signal processing, TDOA processing, PC interface, and power blocks.

The system block diagram is shown in Figure 3.

Figure 3: System Block Diagram

3.2 Power Requirements

This section details the power requirements for the transmitter and receiver portions of the

system.

3.2.1 Transmitter Power

The power requirements for the transmitter are largely dictated by the physical specifications

needed to meet the design goals. The device needs to be small, and for prolonged use, it must

run on low power. Conventionally the best way to meet these goals would be to use a button

cell lithium-ion battery.

Button cell batteries, which are commonly used in watches, hearing aids, and other small,

low-power devices, have typical outside diameters ranging 4 mm to 32 mm, and have nominal

32

voltages of 1.5 V or 3 V. The capacity of non-rechargeable button cells is typically in the 100’s

of mAh range for the size we need, but the rechargeable options have on average one-tenth of

that capacity. For this reason we chose to pursue further research, and found Lithium Polymer

batteries to be a viable option.

Created in the late 1990’s Lithium Polymer batteries have a lower capacity, but more flexibility

and lighter weight than their traditional Lithium Ion counterparts. While they are still gaining

popularity, the typical applications for Lithium Polymer batteries are in small-scale electronics,

such as cellular phones and remote-controlled aircraft. They suit this purpose because they

can be custom made in any shape, are inherently rechargeable, and priced competitively with

existing technology. They are uniquely flexible because in polymer cells external pressure is not

required as the electrode sheets and the separator sheets are laminated onto each other. They

are typically available to consumers in rectangular blocks, with smaller cells at the range of 900

mm3 (5× 12× 24 mm). The nominal voltage of nearly all small-scale Lithium Polymer batteries

is 3.7 V, and their capacity ranges from 50 mAh at 900 mm3 to 620 mAh at 6600 mm3.

These blocks would be too large for this project, and ordering a custom battery would not

be feasible for a prototype, but further research led us to PowerStream Technology, a distributor

of ultra-thin Lithium Polymer cells with thicknesses ranging from 1 mm down to 500 microns.

Normally these cells would have to be ordered in quantities of at least 100, but a small quantity

of one model, the PGEB0052081, can be ordered for electrical testing. This cell has dimensions

of 0.5 × 81 × 20 mm, and has a capacity of 45 mAh. After calculating the expected power

consumption of the transmitter unit to be less than 1 mA this capacity yields over 45 hours of

continuous use and is appropriate for the requirements of the device.

These batteries would not be of much use if they cannot be easily recharged. Research on

the charging of Lithium Polymer batteries led to the MAX1555 IC, which will safely charge the

battery from either a computer USB port or 5 V DC power supply. The small size of this IC allows

for the possibility of including a charging station on the receiver module without interfering with

the rest of the components.

33

3.2.2 Receiver Power

Powering the receivers is a much simpler task. Section 7.2.1 of the USB 2.0 specification

document defines a unit load to be 100 mA, and states that each port can source “up to five

unit loads” [15], and based on our preliminary power consumption estimates, the four receiver

modules, PIC microcontroller, and battery charger will use significantly less than that, particularly

because the charger, which draws 100 mA, will not be used at the same time as the rest of the

circuitry, which uses less than 100 mA.

3.3 Transmitter

The purpose of the transmitter is to send a periodic signal that can accurately be detected

by the receiver. This section describes the requirements for the transmitter subsystem and how

the methods of implementation were selected.

Figure 4 shows a block diagram of the transmitter subsystem. A signal is generated which is

then put through some drive circuitry to create a better signal for the transducer, which in turn

converts the signal into ultrasound waves capable of propagating through the air.

Figure 4: Transmitter Block Diagram

Transmitter Requirements

One of the main goals for this project requires that the transmitter is a small, unobtrusive

device. It is clearly important to keep this in mind during the entire process of designing the

34

transmitter. To this end, the transmitter needs to be made as small and low-power as possi-

ble, while still fulfilling the necessary requirement of producing a pulsed signal in the ultrasonic

frequency range.

3.3.1 Transducer Selection

Ultrasound is defined as sound waves in the frequency range above that of human hearing,

or over 20 kHz. An ultrasonic transducer works exactly like a speaker or microphone, converting

electrical energy to and from mechanical waves. These devices are designed to have a specific

resonant frequency that is in the range above typical human hearing. This section details the

relevant characteristics of these devices and describes the selection of an appropriate set of

transducers for this system.

There are a number of different frequencies that can be used for ultrasonic systems, however

nearly all economically priced transducers operate at 40 kHz. Typical transducer prices for 40

kHz devices are in the $5 to $20 range, whereas transducers for other frequencies tend to be $50

or more. Because the needs of this project are not extremely specific in regards to frequency and

several transducers are required, it makes sense to use the most cost effective option, which is

40 kHz.

There are two main types of ultrasonic transducers: open and enclosed. Open transducers

have their piezo device and cone exposed to the air behind a screen. Enclosed transducers have

the piezo device mounted directly to the outer case, which is designed to resonate. Enclosed

transducers are useful for harsh conditions, but have the drawbacks of being less sensitive and

more expensive. Open transducers are generally inexpensive and have very good performance.

For these reasons, an open transducer is the clear choice for this application.

When selecting ultrasonic transducers there are a few different performance parameters to

consider:

• Sensitivity and Sound Pressure

• Directivity

35

• Bandwidth

Sensitivity is a measurement of a receiver’s ability to convert mechanical waves into an elec-

trical signal. It is typically measured as a negative decibel (dB) value relative to the transmitted

signal, indicating the attenuation at the receiver. Sound pressure level (SPL) is the equivalent

measure for a transmitter. This value, in decibels, describes the output sound pressure that the

transmitter is capable of producing. These parameters often include graphs to show how the

sensitivity and SPL vary as a function of frequency.

Directivity describes how directionally dependent a transducer’s response is. It is generally

expressed as a graph showing the attenuation in dB for 360◦ around the transducer. A transducer

with more omnidirectional directionality will have a wider range with little or no attenuation. For

some applications, it would be desirable to have a directional transducer to avoid interference,

however that is not the case for this design. The configuration of this system will require that

the transducers are operated primarily in the 30◦ to 45◦ range. To achieve minimal attenuation,

it is important that the transducers have good directivity and do not attenuate the signal too

much within this range of angles. Some transducers have dead spots in their range where very

high attenuation occurs between the center and side lobes. For this system, this is not desirable

because it could produce undetectable areas within the range of the mouse.

Bandwidth determines the range of frequencies outside of the center frequency where the

attenuation is less than 6 dB. This essentially dictates the usable frequency range and is most

important in applications where frequency modulation is used. For this design, only the center

frequency will be used, so bandwidth is not an important consideration for transmission, however

it should be considered in terms of how the transducers act as a bandpass filter for the receiver.

There exists a range of different sizes for ultrasonic transducers, the smallest being cylinders

about 10 mm in diameter and 10 mm deep. SPL and sensitivity tend to decrease with smaller

sizes and in many cases qualities such as directionality vary between differently sized transducers.

Although small size is definitely desirable for this design, the other qualities of the transducer

must also be adequate.

36

3.3.2 Signal Generation Method

There are essentially two general methods to generate the desired signal consisting of pulses

of a 40 kHz square wave or sinusoid. The first option is to generate a signal external to the

microcontroller and switch it using a transistor and a digital output on the microcontroller. The

second method involves generating a 40 kHz clock signal as an output of one of the microcontroller

ports.

A couple different methods of generating signals externally were first explored, including

crystal oscillators and timer integrated circuits. We tried a variety of different crystal oscillator

configurations and were unable to get the crystal to produce the desired signal. It is likely that

these problems were due to not having the proper components to excite the crystal. A timer

circuit was also created with a 555 timer. This circuit produced a 40 kHz signal with nearly a

50% duty cycle, however the current draw of about 3 mA would be completely unacceptable for

this battery-powered application.

After exploring options for external signal generation, it became apparent that even though

it may be possible this way, there would be more effective options. This led to the exploration

of options using a microcontroller to generate the entire signal. The microcontroller option has

the advantages of low power consumption, fewer components and a more flexible design that

can generally be altered with a few lines of code rather than changing components. One way to

accomplish this is to manually toggle an output port in firmware, however implementing this can

be time consuming and sensitive to code errors.

TI’s MSP430 chips offer a simpler and more effective option for accomplishing this goal by

routing the clock signal to an output port. During the course of our research, we came across

a document produced by Texas Instruments (TI) entitled Ultrasonic Distance Measurement with

the MSP430 [10]. This document provides schematics and code for the implementation of a

complete one-dimensional ultrasonic ranging system. It is designed to bounce an ultrasonic pulse

off of an object and then receive the reflected signal back to calculate the distance to the object.

Most importantly, it describes how to configure an MSP430 to route the signal from its clock

37

crystal to an output port. This method is the best choice for this application because it can be

controlled very precisely and requires few components and minimal power.

Hardware Design

Although TI’s document has a wealth of useful information, it is not a complete design for

this exact application. Some circuit design is necessary to set up the microcontroller appropriately

and adapt the circuitry TI uses to fit the needs of this project.

The first step to designing the hardware is to determine the necessary blocks within this part

of the system. It is then necessary to determine which microcontroller pins are needed and how

they must be connected. After these steps have been accomplished it is possible to design the

specific hardware for each block, draw up a schematic and build a prototype. A working prototype

can then be made into a printed circuit board, which would permit the use of small surface mount

components and could shrink the design to an acceptable size.

3.3.3 Firmware Design

Figure 5 shows a block diagram of the transmitter firmware. It begins with an initialization

stage, where all of the outputs and functionality are configured. The main loop performs the

transmit pulses. The interrupt service routines handle interrupts to bring the microcontroller out

of low power modes that it enters when it is between pulses.

Figure 5: Transmitter Firmware Block Diagram

3.4 Receiver and Signal Conditioning

The goal of the receiver is to preserve the timing information of each 40kHz signal pulse and

convert the pulses into a format that the decision device within the dsPIC can translate into time

38

delays. This section defines the specific requirements of such a system and outlines the process

behind its implementation.

The block diagram of the system may be seen in Figure 6. The pulsed signal is received

through the receiver transducer array, amplified through an AC amplifier, rectified, filtered, and

digitized. The block diagram represents the operative flow of the signal through the system for

one of the five receivers. All five receivers are constructed from this basic design.

Figure 6: Receiver Block Diagram

3.4.1 Signal Conditioning Requirements

The receiver signal processing is required to amplify and convert each pulse into information

that may be digitized. It is also required to preserve the pulse peak time throughout the system,

by both minimizing distortion of the signal and propagation delay deviation.

3.4.2 Signal Demodulation

The demodulation hardware approach is comparable to that of other acoustic TDOA sys-

tems. These approaches involve minimal analog front-end amplification, and immediate digital

acquisition. [9] They differ from the design used in this project in that they utilize standard

digital acquisition cards to sample the data and run TDOA calculations on a PC. [17] Within the

constraints of conducting all TDOA calculations outside of the PC, this leaves calculations to be

conducted on a DSP chip, or other dedicated microprocessor.

There are two major approaches to demodulation architecture. The first approach is to use

39

Digital Signal Processing and coherent phase detection algorithms in software to determine precise

phase delay and to minimize error. The second approach is to use discrete analog components

to pre-process the signal before it becomes digitized. Pre-processing may involve coherent or

incoherent detection with a square-law device.

Coherent detection first multiplies the incoming signal with the expected pulse signal, inte-

grates the product, and detects the peak of the signal, either directly or through a curve fitting

algorithm. The time at which the pulse has arrived may be ascertained from the peak, as it is

directly related to the final edge of the received pulse. Since the pulse length is the same on all

receivers, the peak should correspond to the time at which the pulse is received on each receiver.

When the initial receiver peak time is subtracted off of any subsequent receiver peak time, the

time delay associated with distance may be acquired.

Coherent phase detection on a DSP chip has the advantage over analog coherent phase

detection in that it can normalize the amplitude of the result and determine the peak of each signal

more accurately in software. The processing that occurs within a DSP chip is also more resistant

to circuit noise than analog components if properly configured. Since many operations that would

normally require three or four discrete hardware components can be created and changed easily in

software, the development time of processes that involve these functions is greatly reduced. The

only drawback of using a DSP is that most DSP chips only offer ADC speeds of about 400 KSPS.

Using a simple direct sampling method requires that each channel is sampled at least 1 MSPS for

accurate peak detection and position determination. A regressive curve fitting method of peak

estimation may allow slower sampling speeds with little decrease in performance. The ADC is

required to sample at at least 1 MSPS per channel in order to accommodate direct sampling

peak detection since curve fitting peak detection has higher development time, complexity, and

risk.

Incoherent detection utilizes a square law device to rectify the signal. The major difference

between coherent and incoherent detection is that the signal is rectified instead of multiplied for

correlation. The rectification process is similar to taking the square root of the square of the

40

signal, or the absolute value function. The signal is then filtered, in this case, to standardize the

pulse shape at 40 kHz. Similar to coherent detection, the peak of the pulse is then determined,

either through direct sampling or curve fitting regression. The main advantage of the incoherent

detection approach is that it is inexpensive compared to coherent detection. This is due to the

minimization of receiver complexity by not requiring a sync to the carrier frequency, otherwise

necessary with coherent detection methods. Disadvantages of incoherent detection are that the

phase information of the carrier is distorted, and it is not as resistant to multipath.

Balancing factors of cost, sampling speed, and accurate pulse time detection, a unique mixed

signal approach was taken. While coherent detection with a DSP chip or discrete analog hardware

is accurate and more efficient, both options were priced. For a coherent detection method

implemented with discrete components each receiver would cost $40, totaling $200 for 5 necessary

receivers. This is almost one third of the project budget, and prototyping costs weigh heavily

against this option. DSP chips that meet the requirements of the design are expensive, require

supporting components, and often come in packages that are difficult to solder. For these

reasons, incoherent detection techniques were employed. First, the signal is received on the

receiver transducer. It is amplified using an AC amplifier, with a tuned maximum gain at 40 kHz.

The amplified signal is rectified, removing negative components. The signal is then filtered to

create a recognizable pulse, with the peak corresponding to the end of the received signal pulse.

This pulse has a much sharper peak than the original that was received and aids the sampling

block in peak determination. The sampling block digitizes the signal and utilizes a microcontroller

to achieve peak detection.

3.4.3 Data Transmission

The first priority of the system was to determine positional data, with digital data transmission

as a secondary goal. The transmission protocol was selected with these considerations in mind.

For data transmission, however, FSK, BPSK, and OOK protocols were considered. The receiver

transducers involved in this project are bandwidth limited to ±1 kHz and may be modeled as

41

high order bandpass filters around a center frequency of 40 kHz. The factors of low bandwidth, a

low-power transmitter, and receiver simplicity were of highest priority when making the selection.

An FSK receiver would require a phase locked loop, or other phase matching component to

accurately define transmitted symbols. A BPSK receiver would require a phase detection scheme.

With an acoustic wave that is constantly changing phase with transmitter position, BPSK would

be difficult to implement. For the reasons of receiver simplicity, scalability, and practicality, the

OOK approach was selected. The trade off for this method was a decrease in signal to noise ratio

versus FSK or BPSK methods. The operating range of the device is small enough such that the

received signal may be amplified and filtered from any ultrasonic room noise at 40 kHz, and the

drop in signal to noise ratio is an issue that can be managed. With an OOK transmission method,

multiple pulses could be transmitted per transmission cycle. The first pulse could be used for

location determination, with additional pulses transmitted to encode mouse click or mode data.

While the possibility of digital data transmission was accounted for in the transmission protocol,

and a button input built into the transmitter for this purpose, encoded data transmission is not

necessary and was left as a future improvement.

3.5 Signal Processing

The purpose of the processing block is to calculate the location of the transmitter based on

the received signals. Using the output of the receivers, this block generates five time delays.

From these delays it uses TDOA calculations to determine the location of the transmitter.

3.5.1 Processing Requirements

Many of the functionality goals of the mouse must be met in this block. The main constraints

are how much time is available for processing data and how fast the data can be sampled. Both

of these factors determine the resolution of the mouse. An updated transmitter location must

be sent to the computer at least once every 16 ms to ensure that the cursor movement appears

smooth on a typical 60 Hz monitor. To calculate the location of the transmitter we need to know

when the five signals were received in relation to one another. The differential time values must

42

have a high resolution for the TDOA calculations to work with minimal error. The faster the

channels are sampled, the higher the time resolution will be, which will in turn improve spacial

resolution.

This block is broken down further into three smaller sections. The three blocks concerned

with processing are sampling, curve fitting and TDOA calculations. The sampling block takes in

the five receiver channels and samples them into a data array in memory. The curve fitting block

takes this data and processes it to determine the precise peak time for each signal. The TDOA

block uses these time delays to calculate the 3D location of the transmitter.

3.5.2 Sampling and Curve Fitting

The sampling block takes in five conditioned pulses from the analog signal conditioning. To

process the data further, the five channels must be converted into digital data. To accomplish

this, the analog stream of data is fed into a device that can convert from analog voltages into

quantized digital numbers representing these voltages.

The analog-to-digital converter (ADC) can only convert one channel at a time so the five

channels need to be combined into a single stream. Using a multiplexer, the five channels can be

separately selected to be passed on to the output. With proper timing, the multiplexer channel

is selected and once the ADC has converted that signal, the processor receives a digital version

of the signal. Using this method, the processor is able to receive data from all five channels.

Although the amplitude of the pulses varies based on their power, these pulses have a con-

sistent shape based on the previous stage. This attribute can be used to determine the peak of

the pulses very precisely by comparing the received signal to a precise known signal.

The next step is to determine precisely when each signal was received. Because the square

wave pulses sent by the transmitter are bandwidth-limited by the transducers, a sharp edge cannot

be produced and the received pulse resembles a smooth curve. Since this curve’s voltage is based

on the power of the input signal and varies with the distance and angle between the transmitter

and receiver, a voltage level can not be used to determine the peak of a received signal. However,

43

the signal’s shape is not based on the input power and remains consistent from one pulse to the

next. The time at which the signal reaches a peak only varies with the time at which the signal

is received. This means the peak of the signal can be used to determine when the signal was

received.

A method called curve fitting can be used to determine the time a pulse is received very

accurately. This algorithm compares a low resolution received signal to a stored higher resolution

signal and uses the relationship between the two to determine the time that the peak is received.

After detecting the time that pulses were received on all five channels, they must be converted

to time differences. By subtracting the time one pulse was received from all of the others, the

time difference can be quickly determined.

3.5.3 TDOA Calculation

Once all of the receiver time delays have been determined, TDOA calculations are used to

develop an estimate of where the transmitter is located. In these equations, c represents the

propagation speed of sounds waves in air. The L,R,Q,W , and C starting coordinates are all

initial conditions in the system. The C on corresponds to the center point which determines

the relative location for all delays to be calculated. The center point will be a static receiver

because all of the relational positions of the receivers are based on the center receiver being at

the coordinate origin (0,0,0). This center point does not necessarily need to be located in the

center of all the receivers, but it is considered the center because all other time delays are based

on their relation to the time delay measured at this receiver.

Solving for the (x, y, z) coordinates with the standard TDOA equations is computationally

intensive to implement on a microcontroller, and the processor would take far too long to complete

the computations for this to be an effective solution. Fortunately, a resource for a more efficient

solution came from Ben Woodacre, a WPI graduate student, who has worked on a similar TDOA

issue. He uses an algorithm for TDOA calculations by John D. Bard, which avoids difficult

differential equations and instead determines a solution using matrix and algebraic math [1].

44

From this paper Ben Woodacre wrote a MATLAB program that calculates the location of a

transmitter called bard solver.

Appendix B.5 shows a MATLAB version of the code that can be used to calculate positions

using the TDOA method. The program takes three inputs, the first of which is a matrix containing

the [x,y,z] coordinates of the receivers in the system. The second input is time delay between

the selected receiver and the receiver that is defined as the origin. The third input is the pulse

transmission rate. Since the transmission is performed using ultrasound, the speed of sound in

millimeters per second is used for this value. This value is dependent on the ambient temperature

as shown in equation 24, and for room temperature (25◦C) results in the speed of sound being

approximately 346,000 mm/s.

csound = 0.3315

√
1 +

T

273.15
mm/s (24)

The bard solver has no unit requirement, so the units that are entered are carried through

to the output. The data is entered in units of millimeters, seconds, and millimeters per second

so the differential output of the transmitter location is expressed in millimeters.

The coordinates obtained at this point will be relative to the receiver set as the origin. The next

step is to create an operational zone that is unobstructed by the receivers. The operational zone

is an imaginary box where the user will be able to interact with the computer. Unfortunately, the

area directly between all of the receivers cannot be used, even though it is the optimal placement

for TDOA calculations. This is because the ultrasonic transducers have a specific transmission

and receiving directional range of about 45◦ from their center axis. This limits the possible

locations for this device, so the operational zone must be offset away from the receivers. The

operational zone is shown in Figure 7. This shows the offsets added to the random data points

to simulate the location of the operational area.

45

Figure 7: Operational Block

3.6 PC Interfacing

The requirements for the connection between the microcontroller and the PC dictate the

interface. The available options for PC communication are the PS/2 port, USB ports, or the

Serial COM port. The original mouse was developed for serial communications over the COM

port which communicated with the computer using the RS-232 protocol. Data is transmitted

bi-directionally through 9 pins on the port, including control signals. The availability of power

over the serial line is limited to about 10 mA at 12 V, which is not sufficient for powering the

microcontroller and sensors. The largest problem however with using a serial mouse is that it is

an old standard, and supports a limited two buttons and two axes. Although the interface and the

transmitted packet could be defined, this method would require the development of a specialized

driver for the device thereby eliminating any entirely portable applications. The portability of

this device is one of the driving requirements for the design, so the PS/2 interface would also

46

not be the best choice for the interface. PS/2 connections are not hot-pluggable and therefore

cannot be connected to the computer while it is on. This leaves as the only logical solution for

implementation the USB interface.

The universal serial bus (USB) is a versatile standard which devices of almost any kind can

operate on. This has become the standard for peripheral communication on modern computers.

Input devices have migrated from older PS/2 and serial standards to USB, of which one of the

most notable advantages is hot-plug capability. The USB interface supports four major modes of

data transfer: Control, Bulk, Interrupt, and Isochronous. Without going into extensive detail, the

implementation of these transfer procedures exemplifies the ‘Universal’ nature of the interface.

Luckily, USB devices are also classified based on their use; Human Interface Devices, or HIDs are

a class of USB devices which categorizes interaction between the computer and the user. Such

devices include the mouse, keyboard, joysticks, remote controls, bar-code readers, etc. HIDs

running at full speed can transfer 64,000 bytes per second, whereas a low speed device can

operate at 800 bytes per second. Because of the nature of this project, the HID classification of

devices will be the most logical path if USB is to be utilized as an interface. The primary reason

to implement using USB-HID is reducing the need to develop specialized drivers for the device.

The HID standard is open enough to support input devices with many axes of freedom, and as

many logical buttons as one pleases and will be the method of connectivity for this device [15].

The USB port will typically supply 100 mA at 5 V to the attached device and will supply a

maximum of 500 mA. Devices such as external hard drives which consume more than 500mA

of power must be self-powered while connected to the USB hub. The wireless mouse will not

exceed the 500 mA supplied by the USB hub and therefore will operate sufficiently with hub

power. The USB connector takes four lines; the mouse will use the Vcc and GND ports for

power and communicate with the PC using the data lines.

USB can run at two speeds: low-speed (USB 1.1) and full-speed (USB 2.0). The speed of the

device is interpreted by the PC using one of two pull-up resistor configurations. Figure 8 shows

the configurations for each device speed. Once the speed of the device has been decided, the

47

Figure 8: USB Device Speed Configurations[7]

device is then responsible for transmitting data on the data lines at the appropriate frequency.

These two requirements are the sole differences between implementing the devices as high-speed

versus low-speed.

3.6.1 Hardware Requirements

The major requirement for programming a USB capable device is a microprocessor which

supports the USB protocol. This narrows the choice of microprocessors substantially, but if

requirements between blocks conflict, a separate USB chip could be implemented such as the

Maxim MAX3420E, a USB peripheral controller. In order for a microcontroller to support the

USB interface, it must contain the function calls and data structures that allow it to handshake

with the computer and then transfer data.

The major disadvantage to a USB implementation is the complication of sending information

according to the USB protocol [15]. Implementation using C compiler packages makes developing

an interface as simple as several function calls. When the device connects to the system, the

system checks the impedance of the input rails to determine the communication speed of the

peripheral. Once the speed is determined, all forward communications are at 48MHz or 11MHz

for USB 2.0 or USB 1.1, respectively. The host then asks the device for a blueprint of information

that it plans to send with each packet called a descriptor. When the host receives the descriptor

from the client it then assigns it an address and loads the required driver on its system to

communicate with the device. The driver sends the last known or default configuration to the

48

device, and the connection is then established.

Any communication between the device and the PC is done through descriptors. Upon each

transaction, a structure of data is transmitted over the bus which contains any data such as

positional information, button status, or LCD display information. In the case of the computer

mouse, the movement coordinates and button status are sent to the host with each descriptor.

49

4 Implementation

The previous chapter outlined the methods and requirements for each subsystem block. In

this chapter we discuss the realization of these methods. The implementation of these blocks has

been defined in a way that documents the functionality and expected results of each section. The

following sections include a discussion of power modules on both the transmitter and receiver

devices, the transmitter ring design, receiver signal conditioning, sampling methods, TDOA pro-

cessing, and interfacing the design with the PC. Each section outlines the challenges associated

with its implementation and as these designs are only part of a prototype, their shortcomings

are also discussed. Finally, ideas are suggested on how to improve the design, with a working

prototype as the desired final result.

4.1 Power Block Implementation

To begin realizing the power specifications, a visualization of the final product is needed. Prior

to the initial research into the transmitter power system, it was assumed that the source would be

a button cell, which would rest on top on the user’s finger. With the discovery of lithium polymer

batteries that can be designed to take any shape comes a radically changed design perception.

Because of the flexible nature of lithium polymer cells, nearly any mold is possible for commercial

development, and ideally the prototype should closely match the design for a completed product.

The final visualization for the end product is a battery that doubles as the ring itself, with a gap

that allows for size adjustment. The prototype realizes this concept almost exactly. Ultra thin

cells from PowerStream electronics are 500 microns thick, and can be bent into a ring, as shown

in figures 9(a) and 9(b). With a capacity of 45 mAh, they are perfect for the task of running a

low power microprocessor and ultrasonic transducer. The PCB with the transmitting components

will rest on the battery, on top of the user’s finger.

50

(a) Top View (b) Battery Shaped as a Ring

Figure 9: Lithium Polymer battery

The PCB includes charging circuitry to allow the battery to be charged right on the receiver.

It uses a MAX1555 charging IC, which is designed to charge lithium polymer batteries. The

charging circuitry is powered by the USB power supply provided by the board.

As for powering the receiver module, the USB port used for PC interfacing will source the

entire board. Initial testing of the components set the current draw to be between 100 and 200

mA, depending on whether or not the battery is charging. A single USB port can source up to

500 mA, therefore the use of USB power for the receiver is acceptable.

4.2 Transmitter

The implementation of the transmitter involves selecting a microcontroller, programming it

to produce proper output, and designing the supporting hardware to run the microcontroller

and drive the transducer from the generated signal. This section details the transducer and

microcontroller selection, signal design specifics, hardware design, and firmware implementation

required to create a complete transmitter unit.

4.2.1 Transducer Selection and Testing

Based on the transducer parameters described in section 3.3.1 and research of numerous

transducer options, we selected a pair of transducers produced by Kobitone with the transmitter

and receiver part numbers 255-400ST12 and 255-400SR12, respectively. See Appendix A.1 for

51

the data sheet for these devices. These transducers are ideal for our purpose because of their

directionality, size and cost. They are more omnidirectional than most other transducers, having

minimal attenuation in the range of 0◦ to 45◦. They also happen to be some of the smallest trans-

ducers available, at a size of 9.9×12.7 mm. As an added bonus, they are relatively inexpensive

at only $4.79 each for low quantities.

According to the data sheets for the transducers, their center frequency is 40.0 kHz, however

it is still important to know the precise center frequency as well as the bandwidth and frequency

response.

This specification was verified experimentally by performing a frequency sweep. This was

done by setting the transmitter and receiver at a fixed distance apart facing each other and

slowly sweeping the input frequency through a range of values. Measurements were taken every

100 Hz from 38 kHz to 42 kHz and additionally every 50 Hz between 39.50 kHz and 40.50 kHz.

The output was monitored to see at which frequency ranges the highest response occurred. In

these tests, the best response was at 40.3 kHz, with very minimal attenuation at 40.0 kHz.

Figure 10 shows the frequency response of the transducers in decibels. The peak is fairly flat

from 40.00 to 40.45 kHz and drops off steeply on either side. The -6 dB points are at about 40.0

kHz and 40.5 kHz. The attenuation rate in the stop bands is approximately -6 dB per 100 Hz.

52

Figure 10: Transmitter Frequency Response (dB)

These results are perfect for this application because of the center frequency and frequency

response. The transducers perform well at 40 kHz, which is the set frequency that will be provided

to the transducers. The fact that the response drops off very quickly outside of the center

frequency allows the transducers to operate as a tight bandpass filter, blocking any acoustic noise

outside of the signal range. This eliminates some components from the analog signal processing

section because an initial acoustic bandpass filter is not required.

4.2.2 Transmitter Microcontroller Selection

When selecting a microcontroller (MCU), there are several requirements to keep in mind while

evaluating available options. The device must be low power and come in a small, low pin-count

package. It should have an external crystal connection for a 40 kHz crystal and should have at

least one available digital Input/Output line. Additionally, it should be able to be programmed

using tools and software that are inexpensive or already available to us.

53

A variety of different chips from several manufacturers such as Microchip, TI, Maxim and

EM Microelectronic were explored. Common problems with many chips were the lack of an

external crystal connection and unavailability of programming tools. EM Microelectronic makes

a microcontroller that comes in an 8 pin package and draws a mere 2 µA of current, however

programming tools for it are prohibitively expensive, which ruled it out as an option.

After evaluating several different options, it was determined that the best choice is TI’s

MSP430 series of microcontrollers, and more specifically, the MSP430F2xxx series. The MSP430

is a ultra-low power mixed signal microcontroller that offers a large product line with varied

features and multiple low power modes for power savings. The F2xxx series is one of TI’s newer

lines of flash-based chips and includes most of the lowest pin count MSP430 chips. For the

purposes of this project, all of the MSP430F20xx chips would perform exactly the same, so the

F2013 was selected because it is the standard chip offered with TI’s USB programmer. This

chip runs on 220 µA in active mode and less than 1 µA in some of its low power modes. It is

available in 14-pin packages in both PDIP and TSSOP, which makes it easy to develop with,

yet small enough for final designs. It also has the ability to accept an external crystal. MSP430

chips can be programmed either using a USB key Spy Bi-Wire interface or a parallel port JTAG

programmer. JTAG cables are available in WPI’s ECE labs and TI offers a development kit with

a USB programmer for only $20, which was purchased for testing.

An additional benefit of using an MSP430 chip is that TI provides numerous application notes,

including one describing the implementation of an ultrasonic range-finder using an MSP430 [10].

Although this document is written in reference to a higher pin count MSP430F413, it is still

entirely applicable to the smaller versions such as the MSP430F2013. For the transmit side of

TI’s described design, the only necessary pins are the Xin and Xout external crystal connections

and the auxiliary clock (ACLK) port, which are included on all MSP430 chips. The only major

differences in implementation will be some slight changes to the code and hardware to account

for different pin assignments and chip features.

54

Transmit Signal Design

In choosing a signal to send to the receiver, a balance must be struck between accuracy and

transmission rate. Because transmissions are being sent as square pulses, the duration of the

signal determines the bandwidth and how accurately it will be received. On the other hand, a

longer signal means a slower transmission rate and could cause the device to perform slowly.

Simulink simulations were run to determine that a pulse duration of 20 cycles of the 40 kHz

wave would be adequate to produce a usable signal. These results are supported by the TI

application note, which suggests a pulse duration of only 12 cycles [10]. Twelve cycles could be

used if necessary, however 20 cycles provides a larger bandwidth without having an unreasonably

long period, lending to higher accuracy.

It was determined that a pulse rate of 100 Hz would be adequate, since it is faster than the

refresh rate of nearly all computer monitors. This will provide a maximum amount of processing

time, while still allowing the device to perform smoothly. This transmit rate translates to a pause

of 380 cycles between pulses.

After the pulse is produced by the microcontroller, it is beneficial to amplify the signal to

a higher voltage for increased output power. In most applications, this could be done using an

amplifier or by switching a higher supply voltage. However, these options require a higher voltage

power supply and this device is limited to the voltage provided by the battery. A more creative

approach is introduced in TI’s application note [10]. This method splits the signal into two paths,

one of which is given a 180◦ phase shift using a logic inverter. When these two parts are added

back together, they add to a voltage of twice the original signal. This higher voltage increases

the output power of the transmitter, increasing the signal strength and range.

Figures 11(a) and 11(b) show simulations of the ideal signal output from the MCU and to

the transducer.

55

(a) Ideal MCU Signal Output (b) Ideal Output to Transducer

Figure 11: Transmitter Output

The schematic in Appendix A.3 shows all of the components used in the transmitter system

design. The output of the MCU at pin 2 drives a transistor to provide adequate current for the

transducer. The set of inverters serves to double the signal to a 6 V signal.

4.2.3 Firmware Implementation

To produce the proper signal from the microcontroller, firmware must be written to control

it. The purpose of the firmware is to configure the microcontroller, set up its clocks and timing,

and tell it to output the appropriate signals.

The flowchart in figure 12 shows the overall design of the firmware with minimal details. The

program essentially loops through code that sends pulses continuously.

56

Figure 12: Transmitter Firmware Flowchart

The firmware is written using assembly language because of the control and efficiency gained

by coding in assembly. The device’s auxiliary clock (ACLK) is set to run off of the 40 kHz crystal

that is attached to the MPU. The Capture/Compare Register (CCR) is used to count up to a

specified value at a rate of one count per ACLK cycle and then trigger an interrupt.

The firmware sends a signal by following these steps:

1. Set Port 1.0 to output ACLK

2. Enter low power mode (LPM3)

3. Set CCR to count 20 ACLK cycles then interrupt to come out of low power mode

4. Turn off ACLK output on Port 1.0 then enter low power mode

5. Set CCR to count 380 ACLK cycles then interrupt

6. Repeat

The complete firmware code can be seen in Appendix A.5

57

4.2.4 Board Layout and Physical Design

Appendix A.4 shows the PCB layout for the transmitter. The board size is 0.9 × 0.9 in,

making it small enough that it fits into the design of the transmitter ring and is unobtrusive.

There are a few physical considerations that were taken into account for the design of the

transmitter. How the ring will be worn, placement of the transducer and how the board will

interface with the battery are issues that must be addressed.

There are three different ways that the ring could potentially be used. It could be worn as a

regular ring, mounted on the fingertip, or used on the palm side of the hand. All three of these

positions Figures 13(a) to 13(c) show the different ways in which the ring can be worn.

58

(a) Ring Worn on Finger (b) Ring Worn on Fingertip

(c) Ring Worn on Palm (d) Transmitter PCB

Figure 13: Transmitter Ring

The transducer should be placed on the circuit board in a manner such that the board will not

be within the 45◦ transmit cone. The transducer’s leads are bent 90◦ to allow it to be mounted

facing forward and it is be mounted on the front edge of the board, hanging over the front edge

by several millimeters.

Figure 13(d) shows the populated transmitter PCB. Because the leads on the battery are on

its front edge and spaced too far apart to be close to each other when the battery is wrapped

around the user’s finger, it is be necessary to extend the leads. Small wire leads are run from the

battery leads to the PCB along the bottom of the board

59

4.3 Receiver Signal Conditioning

This section covers the initial stages of receiver, including the receiver array and the circuit

implementation of the receiver analog signal processing. It has been decided that a mixed signal

envelope detection scheme would be most applicable for this design due to its low cost. The

number of receivers may be scaled with little consequence to the project budget. The functional

range of the device is limited only by the AC Amplifier gain.

4.3.1 Receiver Array

The receiver array was first implemented with plywood and dowels to serve initial testing

needs while the design for a more sturdy and precise array could be made. The first array is

shown in 14(a). Using T-Frame extrusions from 80/20 Inc., and aluminum tubes cut with a CNC

machine, an array was constructed that is structurally sound while allowing flexibility in the array

design. This is because the transducer extrusions can be adjusted in increments of less than 1

mm, and the lengths can be interchanged for testing and optimization. A picture of this array

can be seen in figure 14(b).

(a) Wooden Array (rev1) (b) Metal Array (rev2)

Figure 14: Receiver Arrays

The functional circuit block diagram for an example receiver is shown in Figure 15. The

signal enters the transducer, which acts like a bandpass filter centered around 40kHz. The signal

is passed through an AC amplifier, which blocks any DC component and amplifies the signal

60

around 40 kHz. From this stage, the Precision Rectifier rectifies the signal. The signal then

passes through a low pass filter, which transforms the rectified 40 kHz wave into a single sine

wave shaped pulse. The peak of this signal corresponds to the signal that was on the receiver

transducer, relative to other receiver channels. The signals are then digitized by the analog

multiplexer and ADC.

Figure 15: Receiver Signal Processing Schematic

4.3.2 Analog Components

The AC Amplifier section consists of a DC blocking high-pass filter, and a frequency dependent

non-inverting gain amplifier. Experimentally, a minute DC offset voltage was observed on the

signal from the transducer, and when gained by the ordinary non-inverting gain amplifier, the

op amp saturates. The AC amplifier effectively blocks this DC offset voltage before it reaches

the positive voltage input of the op amp, and ensures that the 40 kHz component of the signal

receives the full gain of this stage. There is also a DC offset voltage caused by the non-ideality

of the op amp. In order to prevent the DC offset voltage from becoming gained, a capacitor is

placed in the negative feedback loop. This causes the DC gain of the op amp to be 1, and is

illustrated in Equation 29.

The AC amplifier design is shown in Figure 16.

61

Figure 16: AC Amplifier

The governing equation of the high pass filter section is:

fo =
1

2πR21C11

Hz (25)

The R value was chosen to be 1 kΩ, and the cutoff frequency was 40 kHz. The capacitance

was computed from the above equation to be 3.9 nF.

The governing equation of the non-inverting gain amplifier is first determined by:

fo =
1

2πR5C2

Hz (26)

These two values set the frequency at which the gain is at its highest. Substituting in

62

impedance values for C2 into the standard non-inverting gain equation leaves:

A =
R6

R5 + 1
ωC2

+ 1 (27)

The overall transfer function of the AC amplifier is:

H(ω) =
R21C11ω(R5C2ω + R6C2ω + 1)

(1 + R21C11ω)(R6C2ω + 1)
(28)

R5 was selected to be 1 kΩ and C2 was calculated to be 15 nF. The 3 dB bandwidth of H(ω)

is 14 kHz. From a DC standpoint, the capacitor in the feedback loop appears to be an open

circuit. This simplifies the gain equation in this case to:

A =
R6

R5 +∞
+ 1 (29)

A = 1 (30)

With properly chosen resistor and capacitor values, the AC amplifier stage amplifies the 40

kHz signal the most and blocks DC entirely. The transfer function of the AC amplifier is shown

in Figure 17.

63

Figure 17: AC Amplifier Transfer Function

The R6 value was determined experimentally from range tests conducted on the receiver

prototype to be 560 kΩ. A gain of 500 at 40 kHz allows a received signal to be resolved by the

dsPIC sampling algorithm for a receiver distance up to 1.5 meters.

Differential Amplifier

A second configuration that was considered was a differential amplifier. The purpose of using

a differential amplifier was noted when the first revision of the PCB was constructed and tested.

During the testing of this PCB, there was a level of unacceptable noise found on the ground

lines of the AC Amplifier stage. The differential amplifier design uses a differential input of the

transducer, instead of referencing the signal gain to the circuit ground. The main advantage of

using a Differential Amplifier is that the common-mode noise can be substantially rejected. The

diagram of this design may be found in Figure 18.

64

Figure 18: Differential Amplifier

The magnitude of the transfer functions for the AC amplifier and Differential Amplifier are

the same, given the resistor and capacitor values in Figure 18. The second revision of the PCB

has the potential to be switched from an AC amplifier to Differential Amplifier configuration.

Precision Rectifier

The Precision Rectifier stage consists of two diodes, two resistors, and an op-amp. This

section is the first part of the envelope detection circuit. The diodes leave only the positive part

of the sinusoid, and the op-amp is included to reduce the forward voltage drop to almost zero.

This greatly improves the range of the transmitter and alleviates inclusion of a gain stage after

rectification. The schematic for the precision rectifier is shown in Figure 19.

65

Figure 19: Precision Rectifier

The ideal gain equation for this circuit is:

G =
R4

R3

(31)

The gain of this stage was selected to be unity, since the preceding AC Amplifier stage had

sufficiently amplified the signal.

Low Pass Filter

The final design of the low pass filter block is a Chebyshev low pass filter design. The

Chebyshev low pass filter has the benefits of a sharp roll-off after the cutoff frequency. The

transfer function is shown in Figure 20.

66

Figure 20: Chebyshev LPF Transfer Function

The design maximizes the attenuation of the signal after the cutoff frequency, fc. The

Chebyshev Filter was chosen for this characteristic in order to attenuate the 40 kHz carrier signal.

The linearity of the phase of the signal is of little importance because the signal is band limited

to ±1 kHz. The diagram of the Chebyshev Low Pass Filter topology is shown in Figure 21.

67

Figure 21: Chebyshev Low Pass Filter

The design equation for this filter is:

RC =
1

2πfcfn

(32)

where fc = 1700 Hz and fn = 0.9707. In Figure 21, R = R12 = R22 = R16 and C = C6

= C7. The value of 0.1 µF was chosen for C. The cutoff frequency of 1700 Hz was determined

experimentally to provide the most narrow peak pulse shape. The closest practical R value for

this design is 1 kΩ. With these component values, the actual cutoff frequency of the filter is

1180 Hz. R13 in the negative feedback loop of the op-amp determine the gain of the filter.

Low Pass Filter-Integrator

The LPF-Integrator stage consists of four resistors, a capacitor, and an op-amp. The Integra-

tor’s function is to create a signal with a sharp peak at the end of the received signal pulse. The

68

pulse varies in amplitude as the transmitter-receiver distance changes. This poses a problem on

edge triggered methods of signal detection without an automatic gain circuit. Since the transmit-

ter is sending a pulse of energy, this design attempts to generate the highest signal voltage at the

final edge of the pulse. The voltage of the signal at 40 kHz is integrated over time. This results

in an increase in output voltage while the input voltage is non-zero. The integrator schematic

may be found in Figure 22.

Figure 22: LPF/Integrator

It was found experimentally on the circuit in the lab that, although the design shown in Figure

22 behaves like an integrator in the 40 kHz range, it retains some 40 kHz ripple on the output.

The performance is not ideal enough for the sampling block to resolve an accurate peak. The

pulse shape is also not ideally square, and ideal integration results in a rounded peak shape. A

requirement of the pulse peak shape is that it needs to be as sharp and consistent as possible,

69

so the LPF-Integrator design was revised into the Chebyshev Low-Pass Filter.

4.3.3 PCB Layout

The analog signal processing section of the receiver has completed its final stages of design and

its PCB layout is shown in Appendix C.5. The layout utilized entirely surface mount components.

The resistors, capacitors, and diodes each had a standard footprint of 0805. The four Op Amp

ICs have SOIC-14 footprints.

Each of the op amp IC power rails are bypassed using 0.1 µF surface mount capacitors to

minimize power supply noise. The green footprints to the left of Figure 61 are external connectors

that will be wired to the receiver transducers on the receiver array. The green footprints at the

bottom right in the figure are jumpers on the signal traces to the next system block. This is the

sampling block, and includes the analog multiplexer and ADC.

4.4 Signal Processing

The purpose of the processing subsystem is to digitize the data coming from the five receivers,

perform peak detection, determine time difference between the different receivers and calculate

the location of the transmitter. These operations are performed on the dsPIC chip that is being

used for the processing, along with some supporting hardware.

4.4.1 Hardware Selection

The hardware required to perform the processing operations is comprised of three major

blocks: multiplexing, sampling and processing. Each of these hardware blocks corresponds to

a specific chip. Hardware for the processing block was selected to fit the needs for processing

capabilities and accuracy.

The first decision that had to be made was the processor necessary to perform the TDOA

calculations, as this determines what additional hardware is required. The options available for

processing include regular microcontrollers, microcontrollers with DSP instruction sets and DSP

chips. Based on the amount of DSP operations used in the TDOA calculations, we determined

70

that we would be able to take advantage of a DSP instruction set, which ruled out regular

microcontrollers as an option.

The selection of a DSP versus a microcontroller with DSP instructions is a trade-off between

processing power and ease of implementation. DSP chips are capable of high speeds and efficient

processing, but typically require significant supporting hardware and are generally not available

in easy to use packages. DSP Microcontrollers such as Microchip’s dsPIC series are designed

to provide additional DSP capabilities while still maintaining the ease of use associated with

microcontrollers. A DSP microcontroller is clearly easier to implement and is a good choice if it

can fulfill the necessary processing requirements. To determine what type of processor we needed,

we calculated the number of instructions that would be required to implement the TDOA solver.

Based on this number of instructions, we were able to determine the time required for these

calculations on a 30 MIPS dsPIC, which was significantly shorter than the available processing

time. These calculations assured us that a dsPIC would provide enough processing power for this

application.

Selection of the specific dsPIC model was based primarily on our requirements for I/O pins and

packaging. The dsPIC33F family of chips were eliminated as options because the extra processing

power is not necessary and they are not available in through-hole packages, which would make

initial prototyping and testing difficult. This left the dsPIC30F family, which includes a range of

pin counts and features. We required a minimum of 12 I/O pins for ADC input, 3 pins to set

the multiplexer select lines and 1 to provide a debugging LED, for a total of 16 required I/O

pins. This ruled out any 14-pin packages and made a 28-pin package the clear choice, as they

provide enough I/O pins without being excessively large. The dsPIC30F3013 was chosen because

it provides the most RAM and ROM of the dsPIC chips and is available in 28-pin DIP and SOIC

packages.

To achieve a maximum speed of 30 MIPS for the dsPIC, it must have an internal clock of

120 MHz. The dsPIC clock is provided using a 7.37 MHz oscillator with a 16x PLL multiplier

which steps up the clock speed to 120 MHz.

71

The ADC and multiplexer were selected based on their accuracy and speed. The most effective

way to run the ADC is using the same clock that is provided to the microcontroller. This method

does not require an additional clock source and ensures that the ADC will be synchronized with

the dsPIC instructions. Since the dsPIC clock runs at 7.37 MHz, the ADC must be capable

of running at least this fast. Based on the speed requirement and the desire for 12 bits of

accuracy, the Analog Devices AD9220 was selected. This chip is capable of providing 12-bit

analog-to-digital conversion at a rate of up to 10 MHz.

By running the ADC at the processor clock speed of 7.3728 MHz and multiplexing the input

to it with five different channels, each receiver will be sampled at about 1.5 MSPS. The output

of this converter is a set of 12 parallel lines representing the 12-bit digitized signal.

The multiplexing of the five channels is performed by an Analog Devices ADG608 analog

multiplexer. This device is capable of switching fast enough to change channels once per ADC

cycle. The select lines for the multiplexer are controlled by the dsPIC, permitting precise control

of the switching.

4.4.2 Sampling Coding

The software end of sampling consists of four blocks: multiplexer control, reading and storing

samples from the ADC, peak detection, and determining delays for output to the processing

block. These operations are all performed in the dsPIC chip and are implemented as functions

within the sampling and processing code.

Controlling the multiplexer involves controlling both the multiplexer chip and the separation

of receiver data within the processor. To change between the five channels, the multiplexer needs

five different 3-bit values placed on the select lines.

The first scheme for creating the select lines was to use a counter. This method was chosen

for two reasons. The first reason for using the counter was because it did not require the code

on the processor be synchronized to the clock. This is because the ADC and the counter will

be running synchronously because they are drawing from the same clock. Since the processor

72

is running at four times the speed of the clock the read instruction for sampling the ADC can

happen at any time during the clock cycle. This does not make a difference because the ADC

is valid during the entire clock cycle. The second reason for using the external counter was for

sampling speed. If the processor is not taking extra cycles to set the select lines, the sampling

will be faster.

In testing we found that all the high frequency lines were radiating noise into other parts of the

system and the counter was especially problematic. The design could be built without the counter

with slightly more processor involvement. The problems cause by the counter far outweighed the

benefits. The multiplexer was reconfigured to manually pass selected values through to the input

pins of the dsPIC. Through careful timing of instructions it is ensured that the receiver being read

is always known. It is important to ensure that information about which receiver is currently being

processed is appropriately passed to all of the software blocks within the sampling and processing

system. With the counter removed, the processor must be synchronized with the clock because

the processor will need to issue instructions based on the clock edge. The goal is to output the

address to the multiplexer three instructions before the rising edge of the clock. This ensures

that the multiplexer is at its most stable level when the ADC reads the voltage triggered by the

clock edge.

Reading samples from the ADC involves a function to read the data off of the 12 digital input

lines. This data needs to be stored in memory for the peak detection algorithm. To increase

sampling speed, only the most significant 10 bits of the ADC are in use, because the dsPIC can

only read in 10 bits on a single port. Reading all 12 bits would require reading two different ports,

then combining the bits into a single value and would significantly increase the time required to

read a sample. The reasons the 12-bit ADC is still being used are to provide the option for higher

accuracy and to avoid the risk of changing to a new chip with limited testing time.

Determining time delays involves starting a counter when the first receiver passes a set thresh-

old. The peak detection block looks at the currently received sample and compares it to the

previous maximum sample for that channel. If this is a new maximum, then it is stored in mem-

73

ory, along with the counter value for the time at which this value was received. On the rising

edge, a new maximum is reached on most samples, however once the peak is reached, the highest

value has been obtained and no new maximums will be reached. After 2 ms from when the first

channel’s threshold has been exceeded, all peaks will have been received and the time differences

can then be calculated.

The method to sample the signal needed to be changed multiple times for the system to

become functional. The first path taken involved the counter, so after initializations and once

the sampling function was called, the processor would reset the counter and wait until channel

1 was selected. At which point sampling would begin synchronously. This was changed due to

noise generated by the counter.

The next version involves manually controlling the select lines of the multiplexer with the

microcontroller. The multiplexer value is changed once every four instruction cycles to provide

the ADC with a new value every clock cycle. To account for the ADC pipeline delay of 3 ADC

cycles, the first multiplexer changes are issued a set number of cycles before the port is read

and changed every 4 cycles after the first control instruction. Once it has waited, the processor

then reads and stores port B every four instructions for all five select lines. After all five channels

have been stored the processor starts issuing multiplexer control commands while it runs the peak

detection algorithm.

The peak detection algorithm also went through several revisions. The first revision valued

simplicity and time efficiency rather than eloquence and error detection. This version was im-

plemented when the counter was still in the circuit, and was short enough to run in-line with

the sampling code while the microcontroller was waiting for the counter. Every pass through the

sampling algorithm the amplified and integrated voltage of each receiver was compared to the

previous sample, and if the former was greater than the latter, that value and time would be

stored in the dsPIC’s memory. While this method would work for a clean signal, the amount of

noise on the PCB caused many false peaks, and thus the method was deemed inaccurate.

74

4.4.3 Final implementation

To replace this scheme, a curve fitting algorithm is used. To use a curve fitting algorithm

many samples of the incoming signal needed to be sampled and stored. This is required because

the sampled signal needs to be compared to the stored signal in this method. The first revision in

this new approach was the sampling. The previous sampling revisions were based on the simple

sample and compare method with no storage of the sampled value. The samples were not stored

due to limited memory space to work with. This forced us to move from a low intelligence

sampling method to one with the ability to acquire only the values on the rising edge of the

curve. The current flow chart of the code can be seen below in Figure 23.

Figure 23: Sampling flow

75

The flow chart shows the code starting by incrementing a variable called offset. The offset

variable will act as the counter in this revision. Every time each of the channels is sampled it

will increment this value which will happen every 6.1035 µs. This code runs the same 3 routines

on all five receivers. The first part of the routine looks for a threshold which when exceeded will

set the flag for the channel and store the offset value. This flag controls whether the channel

will be storing the sampled values or not. The stored offset for that channel will be the sampling

initial time. The routine then checks if the flag is on and will store the value it sampled and

increment its index so the next sample will go to the next array position. If the channel has

sampled 90 times it will increment another flag signaling that it has finished its sampling. Once

all five channels have gone through this routine it checks to see if all the channels have received

all 90 values. If so it will exit the sampling function. The result of this code is 90 samples each

6.1035 µs apart from each channel starting at the threshold. Figure 24 shows an example of a

sampled curve.

Figure 24: Sampling output

76

Using our sampling dsPIC and our sampling scheme we outputted with a serial port over a

hundred pulse shapes for each channel. Using MATLAB to average the stored pulses a charac-

teristic version of our pulse shape was created to be used for. The premise behind curve fitting

is that if difference difference between stored and sampled was summed at a certain shift and

graphed versus the time shift there would be a minimum value defining were the two curves match

up. So one approach to determining the time at which the curves fit would involve shifting and

comparing the errors until a minimum is reached. This is ineffective for our scenario because each

error calculation takes 3 ms in the current configuration. So a different approach is required to

minimize error.

The idea of our algorithm was to intelligently shift the signal until it reached low error instead

of shifting by a known amount until we reached the lowest error. To do this we have the error

itself determine the shift so the higher the error the more it move to correct itself. However to

do this the error must approach zero which is not possible when the amplitude of the signal is

different. So the first step in this implementation is to determine the max value in the sampled

curve and gain the sampled signal based on the difference between the stored and sampled max

value. With the gain signal the closer the signal get to fitting the smaller the error which means

smaller shift steps until the error reaches zero or crosses to the other side and becomes negative.

Fortunately the shift is not going to vary by much from pulse to pulse so we can store the last

pulse for the next shift calculation.

77

Figure 25: Curve fitting gain and shift

At this point we have a time value for the start of sample and the difference from that time

to the peak. To get the absolute peak time we subtract the shift from the offset value. This

give the time difference from when the sampling started to when the peak is reached. A single

receiver is considered the center point and the peak time for this receiver is subtracted from all

of the other values. This array of time differences will be passed to the processing block, which

performs time difference of arrival calculations on the data to determine 3D position.

4.4.4 Simulation

The location of the receivers and the rate of sampling will significantly affect the accuracy

of the calculations. Because these factors influence hardware design, it would be difficult to

determine the true effect with physical testing. Because of this, a MATLAB-based simulator was

developed to determine the requirements for sampling rate and receiver location.

78

The full simulation code is found in Appendix B.8. The simulator uses code to simulate the

other blocks in our system which allows testing of the TDOA calculation code under non-ideal

conditions. The MATLAB function is given a set of receiver coordinates, the number of times to

repeat the procedure, and the sampling rate. It then outputs a matrix of all the errors and the

locations corresponding to the error.

function[matrix_array,cord_set] = proccessingblock_rev4(rec_dist,Res,rate)

The first section of the simulator describes the behavior of the transmitter. It creates a random

location within our desired operating block which signifies the location of the transmitter. An

arbitrary location is created so that the same starting points are not used every simulation and

thus avoiding missing values between our stepping amount. This also allows a small sample to

achieve a full representation of the system.

Rx = (rand - 0.5) * 0.2;
Ry = (rand - 0.5) * 0.2 + 0.5;
Rz = (rand - 0.5) * 0.2 + 0.1;
R = [Rx Ry Rz];

Next is the transmission simulation. To simulate the transmission of our signal, the distance

between the created coordinate and every receiver is calculated. Each distance is then divided by

the speed of sound which produces the transmission time to each of the receivers.

P = repmat(R,5,1);
d = sqrt(sum((P - rec_dist).^2,2));
T = d / 340;

The next section simulates the sampling process. First, each of the delays is calculated in

relation to the first receiver. This section also simulates the sampling rate by truncating the

delays at the next multiple of the input rate. This effectively simulates the sampling because

after the signal is received and the value goes high, the processor will not read it until the next

time it samples.

delta_T(1) = T(1) - T(1);
delta_T(2) = T(1) - T(2);
delta_T(3) = T(1) - T(3);

79

delta_T(4) = T(1) - T(4);
delta_T(5) = T(1) - T(5);
T_col = ceil(delta_T / rate);
T_col = T_col * rate;

This value is then fed into the bard_solver to calculate the location of the transmitter.

Once this process has finished, the error in the calculated location is found by using the difference

between the generated location and the calculated location. This provides for graphing the error

and seeing the accuracy trend.

[est,est2] = Bard_solver(rec_dist_OOPS,T_col,340);
error = sqrt(sum((R-est2’).^2));
error2 = sqrt(sum((R-est’).^2));
x(n) = min(error,error2);

Returning to the source of the bard_solver code it was found that the solver outputs two

solutions. Running MATLAB in debugging mode revealed that one solution is correct while the

other coordinates are based on another possible solution outside the operational area. To correct

this in the simulation, the value with the minimum error is taken as the correct solution.

The first source of variation introduced in simulations is the input sampling rate. To test

this, a static distribution of receivers is set in the simulation, which is then run using variations

of the sampling rate. The following set of coordinates is used as the distribution of receivers in

the prototype receiver array.

Position X (m) Y (m) Z(m)

A 0 0 0
B 0 0.2 -0.2
C 0.1 0.1 -0.1
D 0.2 0 -0.2
E 0.2 0.2 0

Table 3: Distribution of Receivers

Using this distribution, the sampling rate is varied, starting at the desired 62 µs and decre-

menting until the desired error of one millimeter is calculated, as shown in Figure 26.

80

Figure 26: Sampling Rate Test

A sampling rate of 1 µs is needed to reach the desired accuracy, but assuming optimal

distribution, the desired accuracy could have been obtained from 11 µs of error. This means that

there are better distributions of receivers possible. To determine the optimal receiver distribution,

the least accurate axis needs to be calculated. For this reason, the error calculation was modified

to look at each axis individually. The distributions in this section were determined by the design

goals. The receivers will be on their own fixture so that standard distances will be known, and

this simulation confines them to a ten centimeter cube. The most representative of our results

is shown by figure 27. The top left graph shows a single plane distribution. This distribution has

an average error greater than 10 cm and for the axis perpendicular to the plane the error is over

a meter. The best distribution for this system is to have a square of receivers and a receiver in

the middle in terms of x and z axes, then distribute the receivers on the y-axis so they are on

three levels.

81

Figure 27: Distribution Test

Another non-trivial source of error comes from uncertainty in the location of the receiver.

When measuring the distance between the receivers it is expected to have some error. Even

if care is taken in measuring the distances, an error of half a millimeter could still be possible.

Knowing the large amount of error that will be caused by a variation in the location of the receiver

and the value used for calculations, a calibration method must be used to rectify this.

4.4.5 TDOA Calculation Coding

The MATLAB version of the bard solver can not be run directly on the dsPIC. The micro-

controller can only run code written in assembly or C. Therefore, the MATLAB code needed to

be converted to one of these forms. The use of C allows for multidimensional arrays which helps

recreate the matrices that MATLAB uses, making it the obvious choice for coding. The C code

version of the bard solver is in Appendix B.6.

82

Variables pinvA and phi are calculated each time the MATLAB version of the bard solver

runs, however the two variables are independent of the time delays and are only based on the

locations of the receivers. This allows us to calculate the values once in MATLAB for our

configuration and enter the variables as constants. The calculation of these values is one of

the largest portions of the MATLAB version due to the calculation of the pseudo-inverse of the

receiver matrix. The removal of this code saves considerable processing time.

The rest of the bard solver is simple matrix math. However, when running in C the

matrix math must be done manually, meaning each element in the array needs to be calculated

separately. This is a risky way to code because there are many possible sources for error which

greatly increases time required to debug the code. However this approach gives more control in

what is done with the processor allowing for decreased looping and redundancy in calculations.

This code needs to take as little time to run as possible so the sampling is ready for the next

pulse so ensuring that this runs efficiently is important.

Once the C version of the code worked on a PC it was not difficult to implement onto the

dsPIC. Porting the code to the dsPIC was relatively easy because it mimics already functional

code. When an error occurs, each stage of the code can be compared to the equivalent code

for MATLAB response. When programming on the dsPIC the only barrier was an issue with the

addressing, where certain variables were getting unexpectedly cleared. Better declarations were

used to solve this problem. To test the functionality of this block, delays with known solutions

were manually entered. Once the output of the MATLAB version matched the code on the

processor, the code was considered functional.

4.5 Hardware Interface

When determining the system design characteristics, the largest factor in choosing a micro-

controller is the availability of USB support. The microcontroller must be able to communicate

easily through USB to the computer and to the processing microcontroller through UART. This

processor’s sole purpose is to communicate data to the PC while the dsPIC is processing new

83

data.

Most sources on the Internet that communicate with the PC over USB utilize the PIC18Fxx5x

series devices. This family of devices was developed with a USB2.0 interface to replace the

PIC16C745 microcontroller which supported a USB1.1 interface. Due to the many designs

and user support of this family of devices, it will be used to develop the prototype. The four

PIC18Fxx5x devices and their characteristics are shown in Table 4. The PIC18F2455 was chosen

for the design due to its smaller form factor and lack of the need for more I/O lines.

Device Flash Instructions I/O A/D

PIC18F2455 24K 12288 24 10
PIC18F2550 32K 16384 24 10
PIC18F4455 24K 12288 35 13
PIC18F4550 32K 16384 35 13

Table 4: PIC18Fx5xx family differences [7]

The USB specification document is several hundred pages long and goes into extreme detail on

USB communication between peripherals and the PC. Implementing a USB stack for this device is

a chore that goes beyond the scope of this project. There exist two C compilers that are available

for the PIC microcontrollers which allow a much simpler implementation of USB connection.

Both compilers supply example code which implements a HID USB mouse that rotates in a circle

on the PC. Although elementary, this code will serve as testing software for the microcontroller

circuit which will confirm that a USB device can properly attach and communicate with the PC.

Once a working example is obtained, the code will then be used as a building block to design the

customized code for the project.

The Microchip C18 Compiler specifically supports the PIC18Fxx5x series of chips and the USB

extensions. The compiler is offered on Microchip’s website [6] as a student demonstration version.

In accordance with the C18 suite, Microchip has developed a USB Bootloader for the PIC18Fxx5x

series of microcontrollers. The software itself specifically says it supports the PIC18F4550 chip,

but with some modification of the source code, it can be compiled to support the rest of the

family. The USB Bootloader takes advantage of the USB capability of the device to allow serial

84

programming of the FLASH memory over USB. The USB bootloader source is downloadable from

Microchip’s website but must be compiled using the C18 compiler. Once compiled, this software

is loaded using the PIC burner as with any other PIC device. The device will enter programming

mode if the PRG button is active while the device is rebooting. Once in programming mode, the

device communicates with the PC using a Microchip supplied driver. The device can then be

programmed using the Microchip USB Programming application. Utilizing this application will

allow for rapid prototyping of code at most locations as opposed to needing to unmount the chip

and use the PICSTART programmer. The implementation circuit must then be developed around

the hardware. This includes the button configuration, clock frequency, and bypass capacitors to

filter the input voltages.

The PIC18F2455 can support a variety of clock speeds and input formats. The most efficient

clock implementation for the PIC is a crystal resonator which is excited by the device’s clock pins.

The clock is also controlled using two decoupling capacitors for which Microchip has suggested

different values according to the desired frequency. This input is then interpreted through an

internal Schmitt trigger which quantizes the oscillation. The simplest of clock formats is the use

of an external clock. An oscillator IC was used to generate a square wave which is interpreted by

the microcontroller as an external clock. The PIC then makes no attempt to condition or excite

the clock pins, but uses the given input as the system clock. According to various resources on

the Internet, the most widely used input frequency is 20MHz. All examples provided by PIC C

compilers incorporate a 20MHz clock. The system clock goes through three stages in which the

frequency is manipulated. Depending on the USB speed, the clock frequency is set appropriately.

The diagram in figure 4.5 below shows the clock divisions.

After meticulously deciding upon a clock configuration to use, the remainder of the circuit

configuration must be decided upon. The test circuit design shown in Appendix C.4 was devel-

oped from the PIC18Fxx5x datasheet [7], the Microchip C18 compiler example code, and the

schematics and suggestions of several hobbyists on the Internet. This circuit was constructed on

a standard breadboard using a DIP (Dual In-line Package) PIC18F2455. A butchered USB cable

85

Figure 28: Clock Division for PIC18F2550 [7]

was also tied to the appropriate lines on the circuit. The thought arose that perhaps problems

with the enumeration of the USB device could be due to the inefficiencies that lie in the bread-

boarded assembly and the data lines of the USB cable which run at 48Mhz. Fortunately there

exists a similar circuit to the breadboarded device called the USB Bit Whacker [13]. This device

is manufactured by SparkFun.com in a PCB layout with a PIC18F2455 chip and the supporting

hardware for the Microchip USB Bootloader code. Using this device in a small package would

provide portability to the device as well as enable programmability via USB. The slight disadvan-

tage of using these boards is the lack of access to the PIC chip itself. If the USB bootloader

somehow gets overwritten with a segment of code, the bootloader would have to be replaced

using in-circuit serial programming (ICSP). These devices were purchased and were used as the

primary development boards during the early stages of design for the PC interface side of the

project.

4.5.1 Hardware Debugging

The PIC microcontroller used in our design is equipped with a USART port which allows for

serial communication on Tx/Rx lines located on pins 17 and 18 respectively. These lines can

attach to a PC’s serial port and aid in debugging the device at various lines in the code. The

Microchip C18 compiler supplies the option to establish RS-232 communication over the USART.

The baud rate for the connection can be specified through preprocessor directives. Once the RS-

86

Pin No. Name
1 Data Carrier Detect
2 Receive Data
3 Transmit Data
4 Data Terminal Ready
5 Signal Ground
6 Data Set ready
7 Request to Send
8 Clear to Send
9 Ring Indicator

(a) RS-232 Pinout

(b) DB-9 connector [2]

Figure 29: RS-232 Connection

232 connection to the PC is defined, output can be written using fprintf(). The physical

connection between the PC and the microcontroller can be established by incorporating a logic

inverter to the Tx pin of the device; the output of which can then be sent to the serial port of

the PC. The only pins necessary for PC communication are the Transmit Data, Receive Data,

and Signal Ground lines. Figure 4.5.1 shows the pinout for RS-232 communication with the PC’s

serial port. The other pins for the connector are only used for fast and reliable communications

with flow control. The communication used for debugging will be one-way data sent to the PC

from the PIC.

Once the device’s firmware attempts to initialize USB communication, debugging can take

place between the computer and the device. Once attached to the PC and powered up, the USB

hub will sense the impedance of the PIC denoting the operation speed of the USB. If debugging

messages are enabled in the kernel’s USB modules, the system logs will report all USB activity.

Using this feature, higher level communication between the device and the PC can be monitored

to ensure communication is working properly.

87

4.5.2 Software Design

Although the PIC18FXX5X datasheet thoroughly describes the availability of configuration

registers and implementation of processor instructions in assembly, it does not delve into writing

and compiling C code for the device. The C compiler manuals also are not as in-depth as desired,

however the respective companies provide example code which is generically written to perform

simple tasks. Microchip C18 compiler provides a simple USB Virtual COM port, a simple Mass

Storage Device, as well as a HID mouse which rotates in a circle. These examples are also used

for hobbyist projects found on the Internet. It seems as though the best method of implementing

the device is to branch from the provided example.

All USB examples contain the same wrapper code. The Device powers on and goes through

initialization for USB communication with the host. The device is considered connected by

the PC and the PIC begins in a small loop. The first instruction USBTasks() services the

hardware by polling the host computer for data. If data is found, it diverges into the driver

servicing subroutine. Following this procedure, the next called is ProcessIO(). This subroutine

performs whatever function the device is configured to execute. This subroutine is located in

user/user_mouse.c. For the mouse example, the code enters a counting loop that cycles

the x and y coordinates so the mouse moves in a circle. This was a good start for the device

implementation. The major problem implementing this example code was configuring the PIC

circuit as well as ensuring the example code, which came significantly undocumented, matched

the circuit. Some modifications needed to be made to the code in order for it to be detected and

operate by the PC. The major modification which required hours of debugging was commenting

out the USE_USB_BUS_SENSE_IO directive. If the device is using bus sense, additional circuitry

must be wired onto the I/O pins. If the chip is told to use Bus Sense and that circuitry is not

connected, the device will enumerate and immediately shutdown and disconnect.

It is a requirement that the USBTasks() subroutine be executed routinely in order to send the

the USB page-data to the PC. If the code manages to hang at a certain point and the subroutine

is not executed, the device will be rejected by the PC and fail. Therefore it is important that

88

when the USB PIC is listening on the USART lines from the dsPIC, it does not block unless

data is on the bus. A quick check to see if the USART line is a logical 0 (idle state for USART

is logical 1), is done prior to reading data from the port. The dsPIC will serially transmit three

single precision floating point numbers (float) representing the x, y, and z coordinates of the

mouse. This value will be immediately processed.

The HID specification requires positional data for the mouse type to be relative. Considering

the dsPIC is quite busy with sampling and calculations, the calculation of relative position as well

as bounding box calculations and cursor sensitivity will take place on the USB PIC. The input

coordinates into the USB PIC will first be checked against the bounding box of operation for the

user; This will expel erroneous data. If the data is considered invalid, the pointer will not move.

When the coordinates are considered valid, the last known coordinates are subtracted from the

recent coordinates and a multiplier is applied.

At this point, mouse gestures could be easily added to the code. For a proof of concept, we

have decided to include a clicking gesture. If the code detects a high acceleration in the depth

direction, it will emulate a mouse click. This will allow the user to “poke” toward the screen,

causing the hardware to register a mouse click. Ideally, the Z-axis would be mapped to the scroll

wheel which in most 3D applications operates the depth dimension.

When the data has been tuned and is ready to be sent to the PC, the HIDTxReport() is

called which takes in the data buffer as an argument. This sends the data payload to the internal

USB handling functions predefined by Microchip, Inc. The buffer which is sent to the PC is

shown below in Table 5.

Data Range Type

X-Axis -127 to 128 Signed Byte
Y-Axis -127 to 128 Signed Byte
Z-Axis -127 to 128 Signed Byte
Mouse BTN 1 0,1 Bit

Table 5: Data payload to USBTasks()

89

5 Testing and Results

The purpose of this section is to analyze our system, quantify our results and evaluate the

operation of the device. Testing results for each block of the system are described and compared

to original goals. The entire system is then examined in terms of its performance and compliance

to desired specifications.

5.1 Testing Plan

The following is the detailed testing plan used to verify the functionality and performance of

the system. It steps through the various components of the system testing them one at a time

and then testing for system integration each time a new functionality benchmark is reached.

A. Transmitter

i. Connect power to transmitter.
ii. Use an oscilloscope to probe the leads of the transmit transducer on the transmitter

to view the waveform being provided to the transducer.
1. Pass: Square pulses of a 40 kHz wave can be seen on the oscilloscope.
2. Fail: Else. Check that the MSP430 is being powered and is properly programmed.

iii. Connect a receive transducer to an oscilloscope and place the transducer within 40
cm of the transmitter and less than 45◦ from the center axis of the transmitter.
1. Pass: Consistent curved pulses of a 40 kHz wave can be seen on the oscilloscope.
2. Fail: Else.

B. AC Amplifier Test

i. Connect power to the receiver circuit board.

ii. Use a function generator to provide a test input of: 10−2 ∗ sin(2π40000t). Apply this
signal to the AC amplifier input of each receiver channel.

1. Pass: Signal is amplified by the expected gain factor of 300 ±10%. The expected
signal is either a clipped or unattenuated sinusoid with amplitude proportional to
the test input when measured with an oscilloscope.

2. Fail: Else. Check the power connections to the receiver circuit board, and ensure
that the components are the correct values.

iii. Use a bench power supply to provide a test input of 1 V DC. Apply this signal to the
AC amplifier input of each receiver channel.

1. Pass: 1 V DC is observed on the output of each channel with an oscilloscope.
2. Fail: Else. Check the power connections to the receiver board, and ensure that

the components are the correct values.

C. Precision Rectifier

i. Connect power to the receiver circuit board. Ground the input to the AC amplifier
block for all channels.

90

ii. Use a function generator to provide a test input of: 1 ∗ sin(40000 ∗ 2π ∗ t). Apply this
signal to the precision rectifier block input of each receiver channel.

1. Pass: Signal is a rectified version of the test input when observed with an oscil-
loscope. Some negative component may be observed, but this should not exceed
-0.5 V.

2. Fail: Else. Check that all diodes are oriented correctly, and that the receiver
board is powered.

iii. Ground the precision rectifier inputs for all channels.

1. Pass: The measured output magnitude is less than 50 mV when observed with
an oscilloscope.

2. Fail: Else. Check the power connections to the receiver board, and ensure that
all diodes are oriented correctly.

D. Chebyshev Low Pass Filter

i. Connect power to the receiver circuit board.

ii. Ground the Chebyshev Low Pass Filter inputs for all channels.

1. Pass: Output voltage is less than 350mv when observed on an oscilloscope.
2. Fail: Else. Check the power connections to the receiver board, and ensure that

components are the correct values.

iii. Connect power to the receiver circuit board. Ground the input to the AC amplifier
block for all channels.

iv. Use a function generator to provide the test input: sin(40000× 2π × t) + 1

1. Pass: Output voltage of each channel is greater than 1 V and contains less than
10 mV of 40 kHz ripple when measured with an oscilloscope. Each channel filter
also passes part A.

2. Fail: Else. Check the power connections to the receiver board, and ensure that
components are the correct values.

v. Determine the 3 dB cutoff for the filter by sweeping the input frequency.

1. Pass: Filter cutoff is within 10% of the desired cutoff frequency.
2. Fail: Else. Check the power connections to the receiver board, and ensure that

components are the correct values.

E. Transmitter to Receiver Integration Testing Integration Testing

i. Connect a single transducer to all AC amplifier inputs of the Analog Front End Block.

ii. Activate the transmitter to generate a transmit pulse.

iii. Place transmitter 20 cm away from the receiver transducer.

iv. Connect power to the receiver circuit board.

v. Test each block for the expected signal.

1. AC Amplifier Expected Output: Pulsed sinusoidal input amplified by gain when
measured with an oscilloscope.

2. Precision Rectifier Output: Appears to be a rectified version of pulsed sinusoid
when measured with an oscilloscope.

3. Low Pass Filter Output: Slightly distorted pulse shape, less than 5 mV of 40 kHz
ripple when measured with an oscilloscope.

91

vi. Measure delays of each channel with an oscilloscope. Trigger the oscilloscope on the
pulse generated on the transmit transducer. Use the other channel of the scope to
measure the output peak of the Chebyshev Low Pass Filter block. Use this data for
calibration.

F. dsPIC Basic Operation

i. Probe the dsPIC oscillator’s clock output on an oscilloscope. Use the shortest ground
leads possible to avoid introducing noise to the measurements.

1. Pass: The clock has no more than 12% of the peak voltage in switching noise
and ripple noise during the high or low state is not larger than 5% of the peak
voltage.

2. Fail: Else. Check the oscillator’s solder joints.

ii. Program the dsPIC with code that begins by initializing PORTD bit 8 as an output
and then turns it on.

iii. Reset the dsPIC using switch S2.

1. Pass: Almost immediately after the switch is released, the LED should light
indicating that the dsPIC is powered, receiving a clock signal and able to run.

2. Fail: Else.

G. Multiplexer

i. Remove jumpers JP1-JP5 to disconnect the sampling block from the analog front
end.

ii. Set a variable power supply to 1 V and measure the AC noise on the power supply.

iii. Connect the variable power supply to the digital side of JP1 and connect the power
supply ground to the circuit ground.

iv. Use the dsPIC code to set the multiplexer to pass channel 0 by setting PORTF=0.
Read the DC output voltage of the multiplexer (pin 8) using an oscilloscope for each
input.

1. Pass: The output of the multiplexer has the same DC voltage as the input to the
channel and changes when the channel input voltage is varied.

2. Fail: Else.

v. Measure the AC noise on the output of the multiplexer and compare to the noise
on the power supply being used to apply the input. Record the frequency of any
noticeable periodic noise.

1. Pass: The output of the multiplexer has no more than 10 mV of additional noise
beyond that on the power supply.

2. Fail: Else.

vi. Repeat for the remaining 4 channels, setting PORTF = 16, 48, 112 and 96 for channels
1-4, respectively and connecting the input to the appropriate jumper.

H. Analog-to-Digital Converter

i. Remove jumpers JP1-JP5 to disconnect the sampling block from the analog front
end.

ii. Program the dsPIC to select receiver line 0 of the multiplexer

iii. Apply an adjustable input voltage to the sampling side of JP1 and set the voltage to
1 V. Make sure this power supply ground is connected to the circuit ground.

92

iv. Set a breakpoint in the dsPIC code and open up the watch window to view PORTB.
Run 25 times, watching PORTB after each execution and keeping track of the mini-
mum and maximum values of PORTB. Record the range of values seen.

1. Pass: The average PORTB value displayed is 205 ± 20 and the value does not
vary more than ± 3.

2. Fail: Else.

v. Vary input voltage from 0 to 5 V, continuing to run after each small change.

1. Pass: The value of PORTB should follow the changing input voltage.
2. Fail: Else.

vi. Repeat ADC testing procedure for the remaining 4 channels, appropriately changing
the input voltage connection and dsPIC multiplexer select line.

I. Sampling

i. Connect jumper JP1-JP5 from the sampling block to the analog front end.

ii. Power on the transmitter and firmly affix it in a position so that it is within the 40
cm of the receiver array and so its center axis is at an angle of less than 45 degrees
from all receive transducers.

iii. Set up the dsPIC to continuously sample.

1. Pass: Time between the rising edge of receiver one and the next rising edge is
consistently 6.1 µ

2. Fail: Else.

iv. Set up the dsPIC continuously sample and serial output all of the full curves for
MATLAB

1. Pass: The sampled curve for each channel looks like the scoped curve
2. Fail: Else.

J. Bard Solver

i. Using a set of reasonable time delays, run the MATLAB Bard solver to obtain coor-
dinate calculations.

ii. Disable the dsPIC sampling code and provide the same time delays as input to the
dsPIC Bard solver.

1. Pass: Output of the dsPIC Bard solver should be identical to the MATLAB version
to within 0.5 mm in each coordinate axis.

2. Fail: Else.

i. Power on the transmitter and firmly affix it in a position so that it is within the
appropriate range and angle of the receiver array.

ii. Set up dsPIC code to send the Bard solver coordinate output through debugger mode
of MPLAB.

1. Pass: The location specified by the Bard solver does not vary more than ±2.5
mm in any direction and the average location does not drift over time.

2. Fail: Else. Note that the device can still be functional to a lesser degree of
accuracy without meeting the precision and accuracy specifications.

K. PIC Communication

i. Configure dsPIC to output the values found in table 11 in floating point to UART.

93

ii. Configure USB PIC to receive through UART.

iii. Connect USB PIC to a computer through USB and ensure that it is detected properly.

1. Pass: The cursor on the screen moves in an ”M“ shape according to the provided
coordinates.

2. Fail: Else.

x[] = [0.10,0.10,0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18,0.19,0.20]

y[] = [0.12,0.12,0.14,0.16,0.18,0.20,0.18,0.16,0.14,0.16,0.18,0.20]

z[] = [0.10,0.10,0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18,0.19,0.20]

Table 6: Testing vectors for dsPIC communication

L. Total System Integration

i. Power on the transmitter and firmly affix it onto the translation stage in a position so
that it is within the appropriate range and angle of the receiver array.

ii. Ensure that receiver board is correctly connected to the computer through USB and
detected.

iii. Adjust the translation stage by increments of 5 mm in each axis.

1. Pass: A movement of 5mm causes a noticeable movement on the computer screen
in all axes and there is minimal jitter of the cursor.

2. Fail: Else.

iv. Remove transmitter from translation stage, attach to battery and affix to user’s finger.

1. Pass: Movement of the user’s hand causes appropriate movement on the screen.
2. Fail: Else.

M. Battery Charger

i. Measure the voltage of a depleted battery. The voltage should be less than 3.0 V

ii. Connect the battery to the battery charging connectors.

iii. Allow battery to charge for 1 hour and then remove from charger.

1. Pass: Battery voltage is greater than 3.7 V.
2. Fail: Else. Note that the battery charger is a secondary function and the system

can still be effective without proper charging functionality.

5.2 Power Results

The power for the transmitter functions as expected, with the battery lasting for over 40 hours

of continuous use between charges. Future improvements could include an ON/OFF switch, or a

one-axis accelerometer controlled by the MSP430 to save battery power when the device is not

in use. In a mass produced design, the battery shape could be customized to make it sturdier

and further improve battery life.

94

The power for the receiver circuitry has one major flaw that has not yet been remedied. The

-5 V rail has a large inductive kick at the switching frequency of the MAX764 voltage inverter.

This spike is partially due to the PCB layout, but is worsened by an inadequate design in terms

of voltage smoothing. On the PCB, the inductor is located next to the 5 V power line, and

this allows the spike to easily travel through this line. Moving the inductor closer to the -5 V

IC, and hence nearer to the conditioning capacitors, would diminish this leakage effect. Future

additions to the circuit that would help alleviate this voltage spike are a charge pump or a voltage

regulator connected to the -5 V output, and also the implementation of an inductor that has

better shielding than the one currently being used.

Aside from this issue, the power for the receiver performs as expected. The receiver circuit

draws less than 100 mA when running without the transmitter battery connected to the charging

circuit, and with the MAX1555 regulating the current draw from the battery to 100 mA, there

is an overhead of at least 300 mA beyond the USB port’s maximum current rating of 500 mA.

Future additions to this circuit could be include switch so that when the battery is charging, the

rest of the circuit turns off to save power and limit the maximum current draw.

5.3 Transmitter Results

Testing of the transmitter involves making sure that it can produce an accurate and consistent

signal. The transmitter’s output at the microcontroller is viewed by probing the ACLK output

pin on an oscilloscope. The final transmitter signal is viewed by connecting an oscilloscope probe

to a receive transducer and viewing the received signal that has propagated through the air.

Figure 30 shows the actual signal output from the MCU to the transmit transducer, which

looks very close to the ideal signal.

95

Figure 30: Transmitter MCU Output

Figure 31 shows the actual signal received at the array. The signal appears to be clean enough

to detect an edge for processing. The additional waveforms that appear within the envelope of

the signal are due to aliasing caused by the oscilloscope.

Figure 31: Received Signal Waveform

96

The transmitter is fully functional and meets its specifications, as shown by figures 30 and

31. It has been assembled onto a final printed circuit board and attached to the battery. Figure

32 shows the final assembled transmitter ring with battery.

Figure 32: Transmitter Photo

5.4 Signal Conditioning Results

The receiver signal conditioning testing ensures that the analog signal conditioning compo-

nents of the receiver circuit board are operating according to the requirements specified in the

Methodology and Implementation Chapters of the report. The testing plan outlines the require-

ments of the AC Amplifier, Precision Rectifier, and Chebyshev Low Pass Filter blocks for each

channel individually, and this section shows the results of these functional tests. The blocks are

then tested together, with a sample signal pulse to show that they are able to function from end

to end.

Before beginning the testing of the signal conditioning block, the power supply must be

97

checked. The MC33079 op amp is a dual supply op amp, and requires +5 V and -5 V power

rails. A noiseless and stable power supply is crucial for analog electronics to operate at full

functionality. If there is noise on the power rails supplying the signal conditioning block, this

noise will propagate through the signal lines on each channel and these undesired effects will be

present on the output. Power supply testing conducted prior to the testing of this section ensures

that there is a nominal amount of noise on the signal. For sake of isolation from the power

functional block, a lab bench power supply was used. Despite being a commercial product, a

small amount of noise was detected when the rail was measured with an oscilloscope. The ripple

may be seen in Figure 33.

Figure 33: Power Supply Ripple

The power supply ripple frequency is approximately 54 kHz. The magnitude of this ripple

was measured to be approximately 2 mV, with non-periodic voltage spikes of up to 14 mV. Since

the ripple voltage of the power supply is close to the average magnitude of the received signal,

98

this will have effects on the signal voltages if proper precautions are not taken. For this reason,

0.1 µF bypass capacitors between the +5 V rail and ground and the -5 V rail and ground are

included in the circuit design. Despite these precautions, the power rails on the receiver PCB

were measured with an oscilloscope to have about 2 mV of remaining 54 kHz noise.

5.4.1 AC Amplifier Operation

The AC Amplifier is tested to ensure that it blocks DC voltages on its input, and only applies

unity gain to the DC offset voltage of the op amp. A trim resistor could have been included in

this stage of the design to reduce this DC offset, but board space was a premium, and the DC

offset voltages of the MC33079 are a maximum of 15 mV. This was deemed acceptable, as it

does not affect the overall pulse shape of the received signal.

A test input of a 20 mV peak-to-peak 40 kHz sine wave was applied to the input of each

AC Amplifier channel. The outputs were measured with an oscilloscope, and a sample output is

shown in Figure 34.

99

Figure 34: AC Amplifier Sample Output (Test A)

Table 7 shows the results of this testing.

Channel Unattenuated 40 kHz Sinusoid

0 Pass
1 Pass
2 Pass
3 Pass
4 Pass

Table 7: AC Amplifier Testing Results (Test A)

The gain of each channel was measured to be roughly 49.5 dB.

The second test applied to the AC Amplifier block is a DC voltage blocking test. A DC

voltage of 1 V was applied to the signal inputs of each AC amplifier channel. A sample output

voltage from this test is shown in Figure 35.

100

Figure 35: AC Amplifier Sample Output (Test B)

The expected output of this section is a constant DC voltage between ground and 15 mV. The

54 kHz oscillation that is present on the bench power supply voltage is measured on the output

of this signal with the oscilloscope, however. After a gain of 48 dB, any small 54 kHz fluctuation

on the DC power supply input is expected to have a peak-to-peak voltage of approximately 200

mV. This test determines the DC blocking ability of the AC Amplifier. For this criteria, the AC

Amplifier passes on all channels. The results of the testing are tabulated in Table 8.

Channel Attenuates DC

0 Pass
1 Pass
2 Pass
3 Pass
4 Pass

Table 8: AC Amplifier Testing Results (Test B)

101

5.4.2 Precision Rectifier Operation

The Precision Rectifier block is tested for each channel of the receiver to ensure that any

negative component of the amplified signal is removed. This is required to detect the signal

envelope and provide the correct voltage levels for the input to the ADC. The first test outlined

in the testing plan is the application of a 2 V peak-to-peak 40 kHz sine wave to the input of the

precision rectifier stages for each channel. For this test, the inputs to the AC Amplifier blocks were

grounded to prevent interference with the input voltage. Since the op amp of the AC Amplifier

block is attempting to push its v+ and v- inputs into equivalence, the input voltage applied to

the Precision Rectifier stage is distorted. Figure 36 shows the distortion when a pure 40 kHz sine

wave is applied to the input of the Precision Rectifier when measured with an oscilloscope.

Figure 36: Precision Rectifier Sample Input (Test A)

A sample output is shown in Figure 37 when measured with an oscilloscope.

102

Figure 37: Precision Rectifier Sample Output (Test A)

The input signal was applied to all channels in a similar manner, and they showed the same

result. The results of the tests are shown in Table 9

Channel Rectifies Signal

0 Pass
1 Pass
2 Pass
3 Pass
4 Pass

Table 9: Precision Rectifier Testing Results (Test A)

The next test of the Precision Rectifier block shows the behavior of the signal when the inputs

are grounded. The sample output was measured with an oscilloscope and is shown in Figure 38.

103

Figure 38: Precision Rectifier Sample Output (Test B)

There is no difference between the signal shown in Figure 38 and when the oscilloscope probe

is grounded. The results of the tests are shown in Table 10.

Channel No DC Distortion

0 Pass
1 Pass
2 Pass
3 Pass
4 Pass

Table 10: Precision Rectifier Testing Results (Test B)

5.4.3 Chebyshev LPF Operation

The Chebyshev Low Pass Filter is tested for each channel of the receiver in order to ensure

that the filter is not oscillating when the input is grounded and that the 40 kHz component of

the signal is filtered out. For the first test, the input to each Chebyshev filter is grounded, and

104

the output is measured using an oscilloscope. The measured waveform is shown in Figure 39.

Figure 39: Chebyshev Sample Output (Test A)

As a low pass filter, the measured output behaves as expected for this test. The tabulated

form of the results are shown in Table 11.

Channel Grounded Output

0 Pass
1 Pass
2 Pass
3 Pass
4 Pass

Table 11: Cheybshev Low Pass Filter Testing Results (Test A)

The second test that was conducted on the Chebyshev low pass filter utilized a 2 V peak-

to-peak 40 kHz sinusoid with a 1 V DC offset generated by a function generator as input. The

sample waveform is shown in Figure 40.

105

Figure 40: Chebyshev Sample Input (Test B)

The signal was applied to each channel’s Chebyshev filter and the output was measured using

an oscilloscope. A sample waveform is shown in Figure 41.

106

Figure 41: Chebyshev Sample Output (Test B)

The result is a DC voltage of 2 V. This is because the filter is designed with a pass-band gain

of 2. The 40 kHz ripple is attenuated from the signal and matches the theoretical predictions

for the output of the filter with this particular signal input. The test input was applied to each

channel, and the tabular form of the results is shown in Table 12

Channel 2 V DC

0 Pass
1 Pass
2 Pass
3 Pass
4 Pass

Table 12: Cheybshev Low Pass Filter Testing Results (Test B)

107

5.4.4 Transmitter-Receiver Integration Testing

The transmitter and receiver system are tested as one functional block to ensure that the

expected pulse shape arrives at the output of the Chebyshev low pass filter. The transmitter

was tested prior to the analog signal processing to ensure that it was functioning properly. The

transmitter was powered and placed 20 cm from a receiver transducer, in order to simulate normal

operational ranges. The positive terminal of the same receiver transducer was connected to the

signal input of each AC Amplifier stage. This setup helps to determine the latencies associated

with each channel in a following system test. The output of each AC amplifier block was measured

with an oscilloscope and a sample waveform is shown in Figure 42.

Figure 42: AC Amplifier Pulse Sample

The sample waveform is a gained version of the signal that is received from the transmitter

on the receiver transducer. An image of the received signal is shown in Figure 31. The output

of each Precision Rectifier block was measured with an oscilloscope and a sample waveform is

108

shown in Figure 43.

Figure 43: Precision Rectifier Pulse Sample

This signal is a rectified version of the signal shown in Figure 42, and was observed to be

similar on all channels. The output of each Chebyshev Low Pass Filter block was measured with

an oscilloscope and a sample waveform is shown in Figure 44.

109

Figure 44: Chebyshev Pulse Sample

The signal is the expected waveform. The critical part of the pulse is located around the

peak. The lobe effects to the right of the peak in Figure 44 are caused by multipath effects,

and have not been observed to reach pulse peak height, which is important for accurate peak

detection. The ripple voltage of the 40 kHz signal at the peak of the pulse was measured with

an oscilloscope, and was shown to be approximately 5 mV peak-to-peak. The ADC in its current

configuration can resolve down to a minimum of 5 mV, and the ripple is within this margin. A

sample of the measured pulse ripple is shown in Figure 45 as measured with an oscilloscope. The

ripple magnitude was measured to be similar on all 5 channels.

110

Figure 45: Chebyshev Pulse Ripple

A tabular form of the results of the preceding tests is shown in Table 13.

Channel AC Amplifier Precision Rectifier Chebyshev LPF Ripple Voltage

0 Pass Pass Pass Pass
1 Pass Pass Pass Pass
2 Pass Pass Pass Pass
3 Pass Pass Pass Pass
4 Pass Pass Pass Pass

Table 13: Transmitter-Receiver Integration Results

Latency Measurement

With the above configuration it is easy to measure the circuit latency of each channel from

the time the pulse is transmitted to the time the signal peak is detected on the output of the

Chebyshev low pass filter. The latency was measured with an oscilloscope using the signal on the

transmit transducer as a trigger point. The Chebyshev filter peaks were measured on each channel

111

to be within 5 µs of each other. Using this technique and the sensitivity of the equipment in the

lab, the difference in delays could not be resolved further than this. There was some fluctuation in

these measurements due to multipath issues and the orientation of the oscilloscope with respect

to the Transmitter-Receiver channel.

5.5 Processing Results

Testing the processing block involves checking that the hardware for the multiplexer, Analog to

Digital Converter (ADC) and dsPIC all work independently and then combining them to test the

entire block. After hardware is determined to be functional, it is necessary to test the software.

This section discusses the testing and results for the processing block from the output of the

analog front end to the input of the USB interface.

5.5.1 dsPIC Basic Operation

Before any testing of the processing block can proceed, it is necessary to verify that the dsPIC

microcontroller is functional at a basic level. The clock output of the crystal oscillator is first

measured to ensure that the clock signal is to specification. This test lights an LED to verify

that the dsPIC is receiving power and an adequate clock signal and that it can run properly and

output to an I/O port. The ability to turn on an I/O port is one of the most basic functions of a

microcontroller and is a good test of basic functionality. As none of the advanced I/O features

of the dsPIC are being used, this test can qualify that the processor is functional.

The maximum switching noise observed on the clock was 480 mV, which corresponds to

less than 10% of the 5V peak voltage, which is better than the allowable 12%. The maximum

ripple noise is 240 mV, corresponding to just under 5% of the peak and therefore passes the 5%

requirement. The clock successfully passed both tests and can therefore be considered to perform

adequately.

The dsPIC was programmed using a copy of the processing code with all of the functions com-

mented out except for the initialization. When the dsPIC is programmed and reset, it effectively

turns on the LED and can therefore be considered functional.

112

5.5.2 Multiplexer

The multiplexer was tested to determine that it can correctly pass the selected signal without

introducing significant noise. As described in the testing plan, for multiplexer performance to be

considered acceptable, it must be able to pass the signal to output and the noise introduced must

be minimal at the point of sampling.

Table 14 shows the results of this testing.

Channel Passes Input to Output Noise Noise Acceptable

0 Pass 10 mV Pass
1 Pass 10 mV Pass
2 Pass 10 mV Pass
3 Pass 10 mV Pass
4 Pass 10 mV Pass

Table 14: Multiplexer Testing Results

5.5.3 Analog-to-Digital Converter

The Analog-to-Digital Converter (ADC) is tested to ensure that it can provide a proper digital

representation of an analog voltage to the dsPIC and that its output is stable. It must also be

able to correctly reflect changes to the input voltage at its output. Because functionality of the

dsPIC has already been tested, the values can be read into the dsPIC for simplicity of viewing.

For each multiplexer channel, the ADC was read 25 times to determine the average output

and the output noise. Table 15 shows the range of values obtained for each channel.

Channel Minimum Maximum Pass / Fail

0 191 196 Pass
1 189 194 Pass
2 192 199 Pass
3 190 196 Pass
4 187 192 Pass

Table 15: ADC Output Results

The next test was a qualitative test of the ADC output’s ability to follow input changes. The

output correctly tracked the input for all channels across a range of 0 to 5 V, showing outputs

113

of 0 to 1023. Based on these tests, the ADC can be considered fully functional.

5.5.4 Sampling

The sampling was tested to determine that it is sampling at a consistent rate of 6.10 µs

between samples for each channel and that it starts sampling at the intended threshold with a

proper shape. The sampling rate is checked using the output of the multiplexer. Each channel is

meant to output for 1.22 µs before switching to the next channel, for a total of 6.10 µs between

samples on a given channel. The sampling rate is verified experimentally by measuring the time

between when a channel is selected and when it is selected again after all other channels are

selected. Figure 46 shows an oscilloscope capture of the multiplexer output. It goes through all

five channels in a period of 6.10 µs, which proves it is sampling at the correct rate.

Figure 46: Sampling Time

Figure 47 shows the shape of the sampled curves. This curve is the basis for the curve fitting

algorithm and must be the correct shape. The sampled curve shape is similar to the shape of the

scoped channel, so the sampling code passes.

114

Figure 47: Curve Shape

5.5.5 Bard Solver

To prove the Bard solver is working properly, the output of the dsPIC should be the same

as the proven MATLAB version. This can be verified by entering the same time delays into

MATLAB and the dsPIC and comparing the coordinate outputs. Figure 48 shows a comparison

between the results of the MATLAB and dsPIC versions of the Bard solver. The outputs match,

showing that the dsPIC version of the Bard solver functions properly.

115

Figure 48: Bard Output

5.6 Processor Communication Testing

This section will evaluate the performance and functionality of the interface between the

device and the PC. The functionality of the device depends on the ability for the device to

establish and maintain communication with the PC as well as regularly receive ring coordinates

from the dsPIC30F3013 (dsPIC). Performance of this subsystem shall not hinder the system in

any way. Coordinates sent to the PIC18F2455 (usbPIC) should be used in trivial calculations

and immediately sent to the PC before the next coordinates are transmitted by the dsPIC. The

system’s overall performance cannot be lagged by the usbPIC and therefore operations must be

as fast as possible.

116

5.6.1 USB connectivity

One of the goals for the device is ease of portability. Specifically, the adoption of the USB/HID

protocol which is understood by all modern computers. Other protocols such as PS/2 are not

plug and play, and a non-standard USB device requires special drivers to be installed. USB

communication with the PC was trivial due to the example code provided by Microchip. These

examples contained the structure for code which would maintain the USB connection and was

responsible for transmitting the data payload to the PC. The code which was written by the team

must assure that the USBTasks() function be called regularly. Therefore code must be carefully

written to not poll for I/O or become stuck in conditional loops.

5.6.2 System integration

The PIC18F2455 chip used for PC-Connectivity was originally planned to be programmed on

the fly over USB. The ease of the bootloader could potentially allow the end-user to customize

the device and the firmware. However, for the proof of concept device, it was logical to leave out

the bootloader and program the firmware directly using the Microchip ICD2 debugger.

The output of the bard_solver() is three floating point values representing the X, Y, and Z

absolute positions of the transmitter. Floating point types are 4 bytes each. The total size of the

data transmitted over the USART to the usbPIC will be 14 bytes as shown in Figure 5.6.2. The

last two bytes are used as an ACK for the usbPIC to notify the dsPIC that its data was received.

x-data y-data z-data ACK ”ok”
(4 bytes) (4 bytes) (4 bytes) (2 bytes)

Table 16: USART dsPIC to usbPIC data packet

Initially the team had planned to read data over the USART by polling the receive pin between

USB transfers. This proved a solid idea for the test bit rate of 9600 BAUD. Equation 33 below

shows when the bard_solver() has output its data every 10 ms, a baud rate of 19,200 is

required. With such a high baud rate, polling the USART lines for incoming data would not be

feasible. The alternative is to introduce an interrupt which will trigger and divert the program

117

counter when data is available on the USART lines. The accompanying code can be seen in

Appendix B.7.

14 bytes

10 ms
× 8 bits = 11, 200 baud → 19, 200 baud (33)

The coordinate input was first tested by applying the coordinates which were shown in Table11

in the testing plan. At first these coordinates would move the mouse appropriately in the shape

of an ‘M’. Occasionally the device would become out of sync between coordinate values and the

mouse would jerk across the screen and disconnect. This was temporarily solved by adding the

ACK packet to the transmission.

When the test coordinates were replaced with the generated coordinates from the bard_solver(),

the received data would quickly fall out of sync. Several tests would show cursor movement which

reflected the motion of the mouse, but this would only last several seconds. It was clear that

the device was repeatedly dropping packets of data and losing synchronization. Due to time

constraints, this issue was not resolved. The issue here is the complexity of the dsPIC calcula-

tions as well as the constant need for USB transmission from the usbPIC to the PC. During this

time interrupts cannot be active and therefore any incoming data to the device will be waiting

on the buffer, and not handled correctly. A possible approach to this problem is using a more

advanced method of handshaking which would allow the two devices to synchronize and transmit

data reliably. In the near future, this issue will be investigated and solved.

5.7 System Integration Results

This section analyzes the results of system integration and discusses how the device performs

as a complete system. Although the connection between the dsPIC and USB interface could

not be completed, the coordinate output of the dsPIC can be passed to a computer through an

RS-232 serial interface and analyzed in MATLAB.

These results were determined with the system only calibrated using estimated measurements

of the receiver locations. Imprecise knowledge of the receiver locations can introduce large

118

amounts of error, so it can be expected that a properly calibrated system will perform far better.

Even in these non-ideal circumstances, the precision and motion tracking is reasonable. These

results show that the device performs effectively and has potential to be quite precise.

5.7.1 Precision

Precision refers to the device’s ability to report the same output given a constant input. This

is measured by reading the output of the Bard solver in MATLAB with the transmitter fixed in

place.

Figure 49 shows the radial error for the integrated system. This is a measure of the radius of

error around a fixed point due to inaccuracies in the system. The average error is approximately

2.5 mm and the standard deviation is 3.54 mm.

Figure 49: Bard Solver Radial Error Histogram

Figure 50 shows the single-axis error for the X, Y and Z axes, respectively. The standard

deviations for these error plots are 2.88 mm, 3.75 mm and 2.76 mm, from left to right. In the

current minimally calibrated state, the Y-axis has significantly more error than the other two

119

axes. With improved calibration, the error could be reduced in all axes, which would significantly

improve the radial error.

(a) Bard Solver X-Axis Error Histogram (b) Bard Solver Y-Axis Error Histogram

(c) Bard Solver Z-Axis Error Histogram

Figure 50: Bard Solver Single-Axis Error Histograms

5.7.2 Accuracy

The system’s accuracy is defined by its ability to accurately report the location of the transmit-

ter. Accuracy has not yet been tested because it is very difficult to determine the precise location

of the transmitter. Although a knowledge of accuracy is relevant, it is not critical, because the

main purpose of the system is to track relative movements of the transmitter.

5.7.3 Motion Tracking

Motion tracking is a determination of how well the system can track the movement of the

transmitter.

120

Figure 51 shows a plot of motion tracking. Data is collected with the transmitter in one

position (red X’s), then it is moved by 8mm in the -X direction and additional data is collected

(green O’s). The two sets of data points are centered about different points approximately 8mm

apart. This shows that the device is able to properly detect a change in transmitter location and

display it at the output.

Figure 51: Motion Tracking Plot

Due to the lack of calibration, the data points in figure 51 are not circular because there

is more error in the Y-axis than the other two. This agrees with figure 50, which shows the

increased error for the Y-axis.

Although the data is not especially precise at this point, the system is capable of showing

a response on the computer when the mouse is moved. Further calibration will yield improved

results and will increase the system’s accuracy, precision and ability to track motion.

121

6 Conclusions

This section discusses the overall design, specifications, future improvements and potential

applications. Based on the device performance and potential improvements, conclusions are

drawn regarding the effectiveness of the device and marketability.

6.1 The Final Design

The final design consists of a small, discrete, low-power transmitter, that transmits a 40 kHz

ultrasonic pulse, and a receiver system that converts these pulses into 3D positional coordinates.

The receiver array is composed of a specially designed aluminum frame that houses five receiver

transducers. The signals received by this array are shaped, sampled, and their peaks are deter-

mined. This process involves curve fitting regression that compares each signal’s received pulse

shape to that of a standard stored pulse shape. This allows increased noise resistance over direct

sampling methods by averaging the error of the signal and provides high time resolution with a

low number of sampled points. The peak times are accurately converted into positional coor-

dinates using the Bard solver algorithm. These positional coordinates are transmitted through

serial communication to the PC, and their coordinates are displayed in MATLAB. The UART

communication between dsPIC and usbPIC was not fully implemented, so full USB functionality

was not achieved. Regardless, the simulation in MATLAB is able to demonstrate movement of

the ring in three-dimensional space in real-time and shows reasonable precision, despite the fact

that it is not fully calibrated.

Appendix D lists the parts used in the prototype design for the complete system. At under

$150 for a single unit and less than $85 in larger quantities, the cost of this device is quite

reasonable for its innovative functionality. Compared with the Logitech 3D mouse, which sells for

$1500 or more, it could be offered at a much more affordable price. It may not be inexpensive

enough to completely replace the standard mouse, but could certainly become popular for both

business and personal use.

122

6.2 Performance Specifications

Table 17 shows a summary of the system specifications. Overall the system has met the

project goals, while remaining at a reasonable price level.

Parameter Specification Units

Precision (3D Radial) 3.54 mm
Cost $148 per unit, single quantity (Appendix D)

$83 per unit, quantity of 1000+ (Appendix D)
Transmitter Weight 10 grams
Transmitter Battery Life 40 Hours (Approximate)
Operational Box 20 x 20 x 20 cm
Minimum Distance From Receiver 20 cm

Table 17: System Specifications

6.3 Unimplemented Design Features

Two critical design features of this device were not implemented. The attempted implemen-

tation of the -5 V rail introduced an unacceptable amount of noise into the signal conditioning

and pulse shaping areas of the printed circuit board. The UART communication between dsPIC

and usbPIC was also not fully implemented. This cripples the functionality of the mouse to rely

on the PC to read transmitted 3D coordinates.

Future revisions of the project could include a power system fix that could be easily imple-

mented. The source of noise generated by the current -5 V rail design is the unshielded inductor

of the buck converter. This inductor propagates the switching signal into free space, and into the

+5 V power line that run close to the component traces to the chip. This issue may be resolved

by using an inductor-less design. Charge pumps for this purpose exist, and many configurations

require less components than the current design. A pi filter on the output of the -5 V power block

may also decrease the effects of any switching noise associated with power block operation. This

fix has been implemented in the lab with success in suppressing noise on the -5 V power line.

The +5 V and ground lines were also affected by the -5 V power block, so an entire redesign of

the -5 V power system is recommended.

123

The UART Communication will also be fixed in a future revision of the project. The problems

associated with UART Communication have been identified as synchronization errors between

the dsPIC and usbPIC. The PC first must recognize the usbPIC as an HID mouse, before data

that is transmitted by the dsPIC can be accepted into the usbPIC. The dsPIC currently sends

coordinate data to the usbPIC as soon as it is available. The usbPIC’s purpose is to scale the

data and transmit it to the PC as HID mouse coordinates. The synchronization software that

controls the flow of communication between dsPIC and usbPIC must be resolved. Without this

functionality, serial communication may be read from the dsPIC UART communication transmit

line. Although the device does not meet its final goals as an end-to-end computer mouse we

believe the challenge of the project, ultrasonic tracking, was fully demonstrated in MATLAB. It is

no significant challenge to implement the mouse itself, it would simply require more time. More

time in this project was spent perfecting the detection algorithm for the incoming signal.

6.4 Future Device Upgrades

Future upgrades to the design include integration of the receiver array into the monitor,

increased transmission ranges, mouse gesture recognition, and a relative position mode. While

the design demonstrates accurate 3D position functionality, and 2D functionality comparable to a

standard table-top mouse, implementing these upgrades will allow the average user to seamlessly

interact with cutting-edge virtual environments. This device may also revolutionize the way that

computer input is defined.

Integrating the receiver array into the corners of the monitor would be a crucial feature in

this device’s acceptance into the consumer or professional environments. The current receiver

configuration is designed to be a comfortable fit between functional range and positional error

minimization. The larger the array, the further away the user needs to be to ensure that each

receiver receives the transmitted pulse. This also requires the functional range to be extended

to compensate for user distance. A larger configuration minimizes the amount of positional error

associated with small discrepancies in receiver transducer location. A smaller configuration, while

124

more portable, increases this error. Incorporating the receiver transducers into the corners of the

monitor would seamlessly integrate the array into a bulky piece of equipment that is standard for

most current PCs. This solution places the receiver transducers in a non-optimal configuration

for error within the functional box. In a precisely machined setup, this source of error would be

minimized, and could allow for a smaller array. With improvements in calibration algorithms and

positional accuracy in the processing aspect of the design, other receiver configurations such as the

one suggested may be possible. The number of receivers may be decreased to four transducers,

since this is the minimum required for the Bard algorithm. This introduces additional sources

of error, but may be calibrated so that they are minimized. If calibration is thorough enough,

the mouse may be marketed as a stand-alone device with an array that can be adhered to the

monitor and calibrated by the user.

The transmission range of the device may be increased through the use of a higher voltage

power source. The current Lithium Polymer battery that allows the transmitter to have its

characteristic ring shape is limited to +3.7 V. This limits the transmitted signal amplitude to

about 7 V peak-to-peak. A second battery in series with the original battery will allow the

transmitter to send a pulse at twice its current amplitude. This would increase the operational

range of the device and allow the receiver array to be larger. Implementing this upgrade would

allow the user to incorporate this device into presentations, and increase the overall spatial

resolution. The transmitter power modes could also be toggled to provide higher device lifetimes

for situations when the high power mode is not necessary.

The transmitter could be outfitted to implement a double or triple pulse scheme for digital

modulation, allowing transmission of button click signals. The modulation scheme was discussed

previously in section 3.4.3. This would allow the transmitter to send click or mode data using

a momentary push button connected to an available I/O port on the MSP430 transmitter mi-

crocontroller. This method would require additional processing of pulse succession on the dsPIC

after it has determined a pulse peak. An example of the push button functionality is a refined-

scale mode. In this mode, the on-screen cursor could enter into a state where large changes

125

in transmitter position result in smaller on-screen cursor changes. This would allow the user to

refine the accuracy of the cursor when precision motions are required.

A versatile method to increase the functionality of the device is the implementation of a

hardware-based gesture command system. This system may be implemented on the usbPIC mi-

crocontroller. The microcontroller could have a set of stored positional coordinates that represent

different mouse commands. For example, a mouse click could be implemented by having the us-

bPIC recognize rapid forward and backward motion in the Z-axis position of the transmitter. A

highlight operation could be implemented by having the usbPIC recognize rapid initial forward

Z-axis motion of the transmitter, indicating a click and hold. The hold state of the cursor would

be active until the transmitter is moved to its previous location on the Z-axis. This would indi-

cate a release of the click state. With the HID standard, a maximum of 7 mouse states may be

programmed and triggered on the usbPIC with different transmitter gestures.

Another way to improve the marketability of the device is to streamline its ergonomic and

aesthetic design. Different colors, sizes, and shapes of the transmitter could be created to appeal

to both commercial and home users. A housing could be created to cover the PCB and transducer

to make the device look more streamlined and protect the circuitry. Custom batteries could be

created so that they are thicker and not as wide. For durability, additional padding and an outer

coating could be applied to the battery ring.

Many improvements could be made upon this mouse to increase its functionality if more time

and energy could be spent on developing this project. Many of these upgrades require little time,

such as the gesture-based mouse commands. Other upgrades, such as transmitted pulse digital

modulation, and advanced calibration techniques may require some hardware system redesign.

While this project serves only as a proof of concept for potential future endeavors in this field,

these improvements will only further enhance the user’s control of the human-computer interface.

126

6.5 Applications and The Future

The applications for this device are limitless and range from an improved interface for standard

2D programs to advanced applications specific to this device. This device could prove more

ergonomic for everyday computing tasks and would certainly be valuable for applications like

Google Earth that use the scroll wheel for a Z-axis. The 3D interface would be especially helpful

in applications capable of using a true 3D interface, such as CAD drawing packages. As the

Nintendo Wii has shown, a 3D input interface is very effective for video games and introduces a

level of realism and interaction not possible with a standard 2D mouse.

It is also possible to envision some applications created specifically for this interface, because

of the ability to track motion in three dimensions. One such application could be a program

marketed to students studying music education. The computer could track the motion of the

conductor’s hand to analyze and evaluate their conducting motion. This could be used to compare

their motion to desirable conducting strokes or to analyze their control over beat and dynamics.

By integrating a stored database of patterns created by professional conductors, the program

could even teach students how to conduct in the style of their favorite professional.

An application that could expand beyond using the three dimensions graphically is a digital

musical instrument that changes based on movement of the mouse. For example, the axes of the

mouse could be set to control pitch, volume and timbre, allowing the user to play the instrument

with hand motions. This functionality could be implemented as a standalone application or could

be designed in an existing environment, such as Max/MSP by Cycling ’74, which is a graphical

music programming language that is already capable of responding to mouse input.

With a new interface like this in use, third party developers could certainly design new appli-

cations that would take advantage of the intuitive connection between user input and motion on

the screen. This device could pave the way for a new revolution in computer input technology.

127

References

[1] J.D. Bard, F.M. Ham, and W.L. Jones. An algebraic solution to the time difference of ar-

rival equations. Southeastcon ’96. ’Bringing Together Education, Science and Technology’.,

Proceedings of the IEEE, pages 313–319, 1996.

[2] ZyTrax Inc. RS-232 pinout on DB9 connector(EIA/TIA 574). Retrieved 12 January, 2007

from http://www.zytrax.com/tech/layer_1/cables/tech_rs232.htm, 2007.

[3] Aseem Kohli. Accelerometer mouse. Retrieved October 11, 2006 from

http://instruct1.cit.cornell.edu/courses/ee476/FinalProjects/s2005/

mousewebpageKM249_AK288/index.htm, 2005.

[4] Shirley Li, Joseph Cheng, and Matt Tanwentang. 3D wireless mouse. Retrieved Octo-

ber 11, 2006 from http://web.mit.edu/6.111/www/s2005/PROJECT/Groups/2/main.

html, 2005.

[5] Logitech Inc. 3D mouse and head tracker techical reference manual. Retrieved 18 December,

2006 from http://www.vrdepot.com/manual-tracker.pdf, 1992.

[6] Microchip Technology Inc. MPLAB C18 compiler. Retrieved 18 December, 2006 from

http://www.microchip.com/C18/, 2006.

[7] Microchip Technology Inc. PIC18F2455/2550/4455/4550 data sheet. Retrieved 7 December,

2006 from http://ww1.microchip.com/downloads/en/DeviceDoc/39632c.pdf, 2006.

[8] John Kangchun Perng, Brian Fisher, Seth Hollar, and Kristofer S. J. Pister. Acceleration

sensing glove (ASG). Retrieved October 11, 2006 from http://web.mit.edu/6.111/www/

s2005/PROJECT/Groups/2/main.html, 2005.

[9] Daniel V. Rabinkin, Richard J. Renomeron, Arthur Dahl, Joseph C. French, James L. Flana-

gan, and Michael H. Bianchi. A dsp implementation of source location using microphone

128

http://www.zytrax.com/tech/layer_1/cables/tech_rs232.htm
http://instruct1.cit.cornell.edu/courses/ee476/FinalProjects/s2005/mouse webpage KM249_AK288/index.htm
http://instruct1.cit.cornell.edu/courses/ee476/FinalProjects/s2005/mouse webpage KM249_AK288/index.htm
http://web.mit.edu/6.111/www/s2005/PROJECT/Groups/2/main.html
http://web.mit.edu/6.111/www/s2005/PROJECT/Groups/2/main.html
http://www.vrdepot.com/manual-tracker.pdf
http://www.microchip.com/C18/
http://ww1.microchip.com/downloads/en/DeviceDoc/39632c.pdf
http://web.mit.edu/6.111/www/s2005/PROJECT/Groups/2/main.html
http://web.mit.edu/6.111/www/s2005/PROJECT/Groups/2/main.html

arrays. The Journal of the Acoustical Society of America, Volume 99, Issue 4., pages 2503–

2529, 1996.

[10] Murugavu Raju. Ultrasonic distance measurement with the MSP430. Retrieved December

17, 2006 from http://www.ti.com/litv/pdf/slaa136a, 2001.

[11] R. Raskar, P. Beardsley, J. van Baar, Y. Wang, P. Dietz, J. Lee, D. Leigh, and T. Willwacher.

High precision RFID location sensing. Retrieved October 10, 2006 from http://www.merl.

com/people/raskar/Sig04/, 2004.

[12] Craig Ross and Ricardo Goto. Proximity security system. Retrieved October 10, 2006

from http://instruct1.cit.cornell.edu/courses/ee476/FinalProjects/s2006/

cjr37/Website/index.htm, 2006.

[13] Brian Schmalz. UBW (USB Bit Whacker) project. Retrieved 18 December, 2006 from

http://greta.dhs.org/UBW/index.html, 2006.

[14] Thompson Inc. Gyration optical air mouse. Retrieved October 10, 2006 from http://www.

gyration.com, 2006.

[15] USB Implementers Forum. Universal serial bus specification. Retrieved 7 December, 2006

from http://www.usb.org/developers/docs/, 2006.

[16] Wikipedia. Mouse (computing). Retreived 6 February, 2007 from http://en.wikipedia.

org/wiki/Computer_mouse, 2007.

[17] Maria Wikström, Ulrika Ahnström, Johan Falk, and Peter Händel. Implementation of an

acoustic location-finding system for TDOA measurements. In Nordic Matlab Conference

2003, October 2003.

129

http://www.ti.com/litv/pdf/slaa136a
http://www.merl.com/people/raskar/Sig04/
http://www.merl.com/people/raskar/Sig04/
http://instruct1.cit.cornell.edu/courses/ee476/FinalProjects/s2006/cjr37/Website/index.htm
http://instruct1.cit.cornell.edu/courses/ee476/FinalProjects/s2006/cjr37/Website/index.htm
http://greta.dhs.org/UBW/index.html
http://www.gyration.com
http://www.gyration.com
http://www.usb.org/developers/docs/
http://en.wikipedia.org/wiki/Computer_mouse
http://en.wikipedia.org/wiki/Computer_mouse

130

A Transmitter Appendices

A.1 Transducer Data Sheet

Figure 52: Transducer Data Sheet

131

A.2 Transducer Frequency Response

Figure 53: Transmitter Frequency Response (dB)

132

A.3 Schematics

Figure 54: Transmitter Schematic

133

A.4 PCB Layout

Figure 55: Transmitter PCB Layout

134

A.5 Firmware Code
;***

; Ultrasonic Transmitter

;

; Description: This program operates MSP430 normally in LPM3, pulsing 40 kHz

; ACLK on P1.0 for 20 cycles at 80 cycle intervals.

; All I/O configured as low outputs to eliminate floating inputs.

; Current consumption does increase when transmitter is powered on P1.0.

; ACLK = LFXT1 = 40000, MCLK = SMCLK = default DCO

; //* External 40 kHz watch crystal installed on XIN XOUT is required for ACLK *//

;

; MSP430F20xx

; -----------------

; /|\| XIN|-

; | | | 40kHz

; --|RST XOUT|-

; | |

; | P1.0|--> oscillator control transistor

;

; Christian Banker

; December 2006

; Built with IAR Embedded Workbench Version: 3.41A

;***

#include "msp430x20x3.h"

;---

ORG 0F800h ; Program Reset

;---

RESET mov.w #0280h,SP ; Initialize stackpointer

call #Init_Device ; Device initialization

;

Mainloop bis.b #BIT0,&P1SEL ; Set P1.0 to transmit ACLK

mov.w #20,&CCR0 ; 20 cycle 40 kHz burst

bis.w #LPM3+GIE,SR ; Wait for CCR0 interrupt

bic.b #BIT0,&P1SEL ; Reset P1.0

mov.w #60,&CCR0 ; 60 cycle 40 kHz burst

bis.w #LPM3+GIE,SR ; Wait for CCR0 interrupt

jmp Mainloop ; Repeat

;

;---

Init_Device; Device Initialization

;---

StopWDT mov.w #WDTPW+WDTHOLD,&WDTCTL ; Stop WDT

SetupTA mov.w #TASSEL_1+ID_0+MC_1,&TACTL ; ACLK, upmode

SetupC0 mov.w #CCIE,&CCTL0 ; CCR0 interrupt enabled

SetupX bis.b #XCAP0,&BCSCTL3 ; Turn on internal load capacitors

bis.b #XCAP1,&BCSCTL3 ; for the XTAL to start oscillation

call #ClkDelay ; Delay for oscillator to stabilize

SetupP1 mov.b #0FFh,&P1DIR ; All P1.x outputs

clr.b &P1OUT ; All P1.x reset

SetupP2 mov.b #0FFh,&P2DIR ; All P2.x outputs

clr.b &P2OUT ; All P2.x reset

;---

ClkDelay; Software delay

;---

push #0FFFFh ; Delay to TOS

DL1 dec.w 0(SP) ; Decrement TOS

jnz DL1 ; Delay over?

incd SP ; Clean TOS

ret ; Return from subroutine

;---

TA0_ISR; Common ISR for CCR1-4 and overflow

;---

add.w &TAIV,PC ; Add TA interrupt offset to PC

jmp CCR0_ISR ; CCR0

reti ; CCR1 - no source

reti ; CCR2

135

CCR0_ISR bic.w #CCIFG,&CCTL0

bic.w #LPM0,0(SP) ; Exit LPM0 on reti

reti ;

;---

WDT_ISR ; Exit LPM3 on reti

;---

bic.w #LPM3,0(SP) ; Clear LPM3 from TOS

reti ;

;

;---

; Interrupt Vectors

;---

ORG 0FFFEh ; MSP430 RESET Vector

DW RESET ;

ORG 0FFF4h ; WDT Vector

DW WDT_ISR ;

ORG 0FFF2h ;Timer_A0 vector

DW TA0_ISR

END

136

B Processing Appendices

B.1 Main
#include <p30f3013.h>

#include <uart.h>

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <string.h>

#include "h/curvefitting.h"

/* $Id: main.c 64 2007-04-20 04:49:33Z bk $ */

//Macros for Configuration Fuse Registers:

//Invoke macros to set up device configuration fuse registers.

//The fuses will select the oscillator source, power-up timers, watch-dog

//timers, BOR characteristics etc. The macros are defined within the device

//header files. The configuration fuse registers reside in Flash memory.

_FOSC(CSW_FSCM_OFF & ECIO_PLL16); //Run this project using an external crystal

_FWDT(WDT_OFF); //Turn off the Watch-Dog Timer.

_FBORPOR(MCLR_EN & PWRT_OFF); //Enable MCLR reset pin and turn off the

//power-up timers.

_FGS(CODE_PROT_OFF); //Disable Code Protection

/** V A R I A B L E S

**/

#define led_off() PORTDbits.RD8 = 0;

#define led_on() PORTDbits.RD8 = 1;

unsigned int tuxisgay[34];

static void initPIC(void);

extern void sample();

extern void sync();

void transmit_coords();

void init_uart();

//static void InitializeUSART(void);

float x[]={0.1,0.1,0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18,0.19,0.1},

y[]={0.1,0.1,0.1,0.1,0.1,.1,0.1,0.1,0.1,0.1,0.1,.1},

z[]={0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1};

int main(void)

{

unsigned int portb_buf;

int thisTime[5], lastTime[5];

unsigned int k;

unsigned int led_tmr = 0;

initPIC();

init_uart();

led_on();

dhat[0] = 4;

dhat[1] = 2;

dhat[2] = 2;

dhat[3] = 7;

dhat[4] = 4;

off[0]=0;

off[1]=0;

off[2]=0;

off[3]=0;

off[4]=0;

while(1)

{

137

off[0]=0;

off[1]=0;

off[2]=0;

off[3]=0;

off[4]=0;

sample();

if((off[0] != 1) && (off[1] != 1) && (off[2] != 1) && (off[3] != 1) && (off[4] != 1))

{

curvefit();

bard_solver();

}

transmit_coords();

}

return 0;

}

void initPIC(void)

{

TRISB = 0x03FF; //Port B - all inputs 0-9

TRISC = 0x6000; //Port C - pins 13,14 inputs, 15 output

TRISF = 0x0004; //Port F - 4,5,6 are Mux Switches.

TRISD = 0x0200; //Port D all outputs except for RD9 = Clock

ADPCFG = 0x03FF; //set ADPCFG to 1 for TRISB input.

return;

}

void init_uart(void)

{

//provided by Cody Brenneman

U1MODEbits.USIDL = 0; //Continue during idle

U1MODEbits.ALTIO = 0; //Use U2TX and U2RX pins, not U2ATX and U2ARX

U1MODEbits.WAKE = 0; //wake-up disabled

U1MODEbits.LPBACK = 0; //Loopback mode is disabled

U1MODEbits.ABAUD = 1; //Not going to use autobaud, but it’s now on the U2RX pin

U1MODEbits.PDSEL = 0; //8-bit data, no parity

U1MODEbits.STSEL = 0; //Use one stop bit

U1STAbits.UTXISEL = 1; //Interrupt when transmit buffer becomes empty

U1STAbits.UTXBRK = 0; //no break? what’s a break?

U1STAbits.URXISEL = 0; //interrupt on every character recievied

U1STAbits.ADDEN = 0; //Address detect mode disabled

// U1BRG = 97; //19200 for 30MIPS

U1BRG = 32; //57600 for 30MIPS

// U1BRG = 194; //9600 for 30MIPS

U1MODEbits.UARTEN = 1; //UART is now enabled

U1STAbits.UTXEN = 1; //Enable transmitting

return;

}

void transmit_coords() {

char x_buf[5] = {0,0,0,0,0} ; //clear memory for the UART buffer.

char y_buf[5] = {0,0,0,0,0};

char z_buf[5] = {0,0,0,0,0};

char ack_packet[2] = {0,0};

int i;

while (1) {

for (i = 0; i < 12; i++){

strncpy(x_buf,(char*) &(x[i]),4); //cast x as a char[]

strncpy(y_buf,(char*) &(y[i]),4); //cast y as a char[]

strncpy(z_buf,(char*) &(z[i]),4); //cast z as a char[]

138

// Calculate checksum from received values

//checksum[0] = (x_buf[0] ^ x_buf[1] ^ x_buf[1] ^ x_buf[3]) ^

// (y_buf[0] ^ y_buf[1] ^ y_buf[2] ^ y_buf[3]) ^

// (z_buf[0] ^ z_buf[1] ^ z_buf[2] ^ z_buf[3]) ;

putsUART1(x_buf);

putsUART1(y_buf);

putsUART1(z_buf);

led_off();

getsUART1(2,ack_packet,65534); //get the ack packet, timeout of 3ms.

led_on();

}

}

}

B.2 Sampling
#include <p30f3013.h>

#include <stdio.h>

#include <math.h>

#include "h/curvefitting.h"

//#define thresh 115

#define thresh 150

#define PORTF_MUXMASK 0x8F

#define setMUX(bits) (PORTF=(PORTF & PORTF_MUXMASK) | (bits))

void sample()

{

int sampData0 = 0;

int sampData1 = 0;

int sampData2 = 0;

int sampData3 = 0;

int sampData4 = 0;

int j = 0;

int k = 0;

int l = 0;

int m = 0;

int i = 0;

int fiveflag;

int offset = 0;

int flag0;

int flag1;

int flag2;

int flag3;

int flag4;

int pre;

int po;

fiveflag = 0;

j = 0;

k = 0;

l = 0;

m = 0;

n = 0;

i = 0;

flag0 = 0;

flag1 = 0;

flag2 = 0;

flag3 = 0;

flag4 = 0;

offset = 0;

//fortesting

setMUX(0x70);

asm("nop");

139

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

while(PORTB > thresh/5)

{

}

setMUX(0x00);

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

while(PORTB > thresh/5)

{

}

//end

sync();

asm("nop");

asm("nop");

asm("nop");

asm("nop");

while(fiveflag != 5)

{

offset++;

/*r0*/

sampData0 = PORTB;

setMUX(0x10);

if((sampData0 >thresh) && (j == 0))

140

{

flag0 = 1; //if threshold turn sampling sampling for receiver

off[0] = offset;

asm("nop");

}

else

{

if(sampData0 > thresh)

{

}

else

{

asm("nop");

asm("nop");

asm("nop");

}

asm("nop");

}

if(flag0 == 1)

{

curveData0[j] = sampData0;

j++;

}

else

{

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

}

if((j == K_DATA) && (flag0 == 1)) //Check for terminal count on receiver0

{

flag0 = 0; //if terminal turn off sampling for receiver0

fiveflag++;

}

else

{

if(j == K_DATA)

{

}

else

{

asm("nop");

asm("nop");

asm("nop");

asm("nop");

}

asm("nop");

}

//end

asm("nop");

/*r1*/

sampData1 = PORTB;

setMUX(0x30);

if((sampData1 >thresh) && (k == 0))

{

flag1 = 1; //if threshold turn sampling sampling for receiver

off[1] = offset;

asm("nop");

}

else

141

{

if(sampData1 > thresh)

{

}

else

{

asm("nop");

asm("nop");

asm("nop");

}

asm("nop");

}

if(flag1 == 1)

{

curveData1[k] = sampData1;

k++;

}

else

{

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

}

if((k == K_DATA) && (flag1 == 1)) //Check for terminal count on receiver0

{

flag1 = 0; //if terminal turn off sampling for receiver0

fiveflag++;

}

else

{

if(k == K_DATA)

{

}

else

{

asm("nop");

asm("nop");

asm("nop");

asm("nop");

}

asm("nop");

}

//end

asm("nop");

/*r2*/

sampData2 = PORTB;

setMUX(0x70);

if((sampData2 > thresh) && (l == 0))

{

flag2 = 1; //if threshold turn sampling sampling for receiver

off[2] = offset;

asm("nop");

}

else

{

if(sampData2 > thresh)

{

}

else

{

142

asm("nop");

asm("nop");

asm("nop");

}

asm("nop");

}

if(flag2 == 1)

{

curveData2[l] = sampData2;

l++;

}

else

{

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

}

if((l == K_DATA) && (flag2 == 1)) //Check for terminal count on receiver0

{

flag2 = 0; //if terminal turn off sampling for receiver0

fiveflag++;

}

else

{

if(l == K_DATA)

{

}

else

{

asm("nop");

asm("nop");

asm("nop");

asm("nop");

}

asm("nop");

}

//end

asm("nop");

asm("nop");

/*r3*/

sampData3 = PORTB;

setMUX(0x60);

if((sampData3 > thresh) && (m == 0))

{

flag3 = 1; //if threshold turn sampling sampling for receiver

off[3] = offset;

asm("nop");

}

else

{

if(sampData3 > thresh)

{

}

else

{

asm("nop");

asm("nop");

asm("nop");

}

143

asm("nop");

}

if(flag3 == 1)

{

curveData3[m] = sampData3;

m++;

}

else

{

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

}

if((m == K_DATA) && (flag3 == 1)) //Check for terminal count on receiver0

{

flag3 = 0; //if terminal turn off sampling for receiver0

fiveflag++;

}

else

{

if(m == K_DATA)

{

}

else

{

asm("nop");

asm("nop");

asm("nop");

asm("nop");

}

asm("nop");

}

//end

asm("nop");

asm("nop");

asm("nop");

/*r4*/

setMUX(0x00);

sampData4 = PORTB;

if((sampData4 > thresh) && (n == 0))

{

flag4 = 1; //if threshold turn sampling sampling for receiver

off[4] = offset;

asm("nop");

}

else

{

if(sampData4 > thresh)

{

}

else

{

asm("nop");

asm("nop");

asm("nop");

}

asm("nop");

144

}

if(flag4 == 1)

{

curveData4[n] = sampData4;

n++;

}

else

{

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

asm("nop");

}

if((n == K_DATA) && (flag4 == 1)) //Check for terminal count on receiver0

{

flag4 = 0; //if terminal turn off sampling for receiver0

fiveflag++;

}

else

{

if(n == K_DATA)

{

}

else

{

asm("nop");

asm("nop");

asm("nop");

asm("nop");

}

asm("nop");

}

//end

}

asm("nop");

asm("nop");

asm("nop");

asm("nop");

return;

}

B.3 Syncing
.global _sync

_sync:

; clock is always at phase D for this next instruction. Rising edge will occur after this next instruction.

sync_loop:

BTSS PORTD,#9

BRA sync_loop ; loops until we find a ’1’

nop

sync_loop2:

BTSC PORTD,#9

BRA sync_loop2 ; loops until we find a ’0’ this is 3 instructions after the last read (hence phase is moved 1 to the left)

nop

return

145

B.4 Curve Fitting
#include <stdio.h>

#include <math.h>

#include "h/curvefitting.h"

volatile float _YBSS(4) peakTime[5] = {0,0,0,0,0};

volatile int _YBSS(2) off[5] = {0,0,0,0,0};

volatile unsigned int _YBSS(2) n = 0;

volatile float _YBSS(4) dhat[5];

volatile int _YBSS(2) flag = 0;

unsigned int _YBSS(2) curveData1[K_DATA];

unsigned int _YBSS(2) curveData0[K_DATA];

unsigned int _YBSS(2) curveData2[K_DATA];

unsigned int _YBSS(2) curveData3[K_DATA];

unsigned int _YBSS(2) curveData4[K_DATA];

float _PBSS(4) stoData[N_STORED] = {118.72,128.18,136.91,144.97,152.46,160.68,

170.25,179.11,187.32,196.13,206.46,216.27,

225.16,234.71,245.79,256.07,265.6,275.35,

286.65,297.52,307.54,317.5,329.1,340.33,

350.43,360.53,372.39,383.71,394.07,404.18,

415.7,427.18,437.48,447.24,458.57,469.82,

479.82,489.32,500.13,510.98,520.57,529.4,

539.49,549.81,558.92,567.14,576.39,585.93,

594.25,601.57,609.9,618.69,626.28,632.68,

640.08,647.76,654.34,659.83,665.93,672.65,

678.15,682.44,687.29,692.75,697.13,700.27,

703.77,708.12,711.35,713.27,715.45,718.13,

720.23,720.73,720.56,722.74,724.53,724.03,

722.88,723.59,723.88,722.98,721.31,720.42,719.49};

extern float offdum;

void curvefit(void)

{

float gain;

float c1;

float c2;

int left;

float delta;

float offdum;

float slope;

float peak[5];

float xhat[5];

int p;

int k;

//R0

p = 0;

n=0;

while(p<1)

{

if(peak[0]<curveData0[n])

{

peak[0]=curveData0[n]; //find max value

}

else

{

p++; //find location fo max value

}

n++;

}

gain = stopeak/peak[0]; //calculate gain

k = n - 1;

p = 0;

146

while(p < 1)

{

delta = 0;

left=floor(dhat[0]);

c1=dhat[0]-left;

c2=1-c1;

for(n=0;n<k;n++)

{

delta = delta + (gain*curveData0[n]) - ((c1*stoData[left+n+1])+(c2*stoData[left+n])); //find error between signals

}

p++;

dhat[0] = (delta/1000) + dhat[0]; //add scaled error creating new close shift

}

//end

//R1

p = 0;

n=0;

while(p<1)

{

if(peak[1]<curveData1[n])

{

peak[1]=curveData1[n];

}

else

{

p++;

}

n++;

}

gain = stopeak/peak[1];

p = 0;

k = n - 1;

while(p < 1)

{

delta = 0;

left=floor(dhat[1]);

c1=dhat[1]-left;

c2=1-c1;

for(n=0;n<k;n++)

{

delta = delta + (gain*curveData1[n]) - ((c1*stoData[left+n+1])+(c2*stoData[left+n]));

}

p++;

dhat[1] = (delta/1000) + dhat[1];

}

//end

//R2

p = 0;

n=0;

while(p<1)

{

if(peak[2]<curveData2[n])

{

peak[2]=curveData2[n];

}

else

{

p++;

}

n++;

}

147

gain = stopeak/peak[2];

k = n - 1;

p = 0;

while(p < 1)

{

gain = stopeak/curveData2[79];

delta = 0;

left=floor(dhat[2]);

c1=dhat[2]-left;

c2=1-c1;

for(n=0;n<(stotime-left);n++)

{

delta = delta + (gain*curveData2[n]) - ((c1*stoData[left+n+1])+(c2*stoData[left+n]));

}

p++;

dhat[2] = (delta/1000) + dhat[2];

}

//end

//R3

p = 0;

n=0;

while(p<1)

{

if(peak[3]<curveData3[n])

{

peak[3]=curveData3[n];

}

else

{

p++;

}

n++;

}

gain = stopeak/peak[3];

k = n - 1;

p = 0;

while(p < 1)

{

gain = stopeak/curveData3[79];

delta = 0;

left=floor(dhat[3]);

c1=dhat[3]-left;

c2=1-c1;

for(n=0;n<(stotime-left);n++)

{

delta = delta + (gain*curveData3[n]) - ((c1*stoData[left+n+1])+(c2*stoData[left+n]));

}

p++;

dhat[3] = (delta/1000) + dhat[3];

}

//end

//R4

p = 0;

n=0;

while(p<1)

{

if(peak[4]<curveData4[n])

{

peak[4]=curveData4[n];

}

148

else

{

p++;

}

n++;

}

gain = stopeak/peak[4];

delta = 101;

k = n - 1;

while(p < 1)

{

delta = 21;

gain = stopeak/curveData4[79];

delta = 0;

left=floor(dhat[4]);

c1=dhat[4]-left;

c2=1-c1;

for(n=0;n<(stotime-left);n++)

{

delta = delta + (gain*curveData4[n]) - ((c1*stoData[left+n+1])+(c2*stoData[left+n]));

}

p++;

dhat[4] = (delta/1000) + dhat[4];

}

//end

offdum = (float)off[0];

peakTime[0] = (offdum * dt);

offdum = (float)off[1];

peakTime[1] = (offdum * dt) + 0.6782;

offdum = (float)off[2];

peakTime[2] = (offdum * dt) + 1.3563;

offdum = (float)off[3];

peakTime[3] = (offdum * dt) + 2.7127;

offdum = (float)off[4];

peakTime[4] = (offdum * dt) + 5.4253;

peakTime[0] = peakTime[0] - (dhat[0]*dt);

peakTime[1] = peakTime[1] - (dhat[1]*dt);

peakTime[2] = peakTime[2] - (dhat[2]*dt);

peakTime[3] = peakTime[3] - (dhat[3]*dt);

peakTime[4] = peakTime[4] - (dhat[4]*dt);

peakTime[1] = peakTime[1] - peakTime[0];

peakTime[2] = peakTime[2] - peakTime[0];

peakTime[3] = peakTime[3] - peakTime[0];

peakTime[4] = peakTime[4] - peakTime[0];

off[1] = off[1] - off[0];

off[2] = off[2] - off[0];

off[3] = off[3] - off[0];

off[4] = off[4] - off[0];

return;

}

149

B.5 Bard Solver
function [x_hat, x_hat2] = bard_solver(A,delta_t,c)

% bard_solver Estimates event location given sensor geometry and TDOA info.

%

% Bard Positioning Solution

% Algorithm based on mathematics in the paper, "An Algebraic Solution to

% the Time Difference of Arrival Equations" by John D. Bard, Fredric M.

% Ham, and W. Linwood Jones.

% Over Determined Case: >=N+2 Receivers for N Dimensions.

%

% Inputs:

% A: rows of sensor/receiver [x,y,{z}] coordinates

% delta_t: column vector of TDOAs, delta_t(1) = t1 - t1

% c: speed of light (units: m/s), scalar.

% Outputs:

% x_hat: row vector of [x,y,z] estimated transmitter position. (m)

% x_hat2: extraneous solution in over-determined case of >=N+2 sensors,

% possibly correct solution in under or minimally determined case

% of < N+2 sensors. Units: Meters.

%

% Author: Benjamin Woodacre 7/14/2003

% If more than one TDOA set is passed, call vectorized solver.

if size(delta_t,2) > 1

[x_hat, x_hat2] = vector_bard_solver(A,delta_t,c);

return;

end

c_bar = c.*delta_t;

m = 0.5*(diag(A(:,:,1)*A(:,:,1).’) - (c.^2)*diag(delta_t*delta_t.’));

if size(A,3) >= 2

pinvA = A(:,:,2).’;

% A(:,:,2) = [];

else

pinvA = pinv(A); % Calculate once. Use four times.

end

phi = pinvA.’*pinvA;

%Quadratic solution

aa = (c_bar.’*phi*c_bar - 1);

bb = -(2*m.’*phi*c_bar);

cc = (m.’*phi*m);

root = sqrt(bb^2-4*aa*cc);

sL = ((-bb + [root -root])/(2*aa));

sL = real(sL);

m=m(:,ones(1,size(sL,2)));

xL = pinvA*(m-c_bar*sL);

if sL(1)<0 && sL(2)>0

sL(1) = sL(2);

elseif sL(1)>0 && sL(2)<0

sL(2) = sL(1);

end

sumr = sum(abs(A(:,:,1)*xL - m+c_bar*sL));

[temp,minL] = min(sumr);

if minL == 1

x_hat = xL(:,1);

x_hat2 = xL(:,2);

else

x_hat = xL(:,2);

x_hat2 = xL(:,1);

end

% disp(’Bard Solver done!’);

150

B.6 dsPIC’s TDOA Calculations
#include <math.h>

#include <stdio.h>

extern unsigned int peakTime[5];

extern float cord_out[3];

void bard_solver()

{

float a_prime[3][5];

float pinv[3][5];

float phi[5][5];

float s1[5][2];

float s2[5][2];

float xl[3][2];

float c = 340;

float delta_t[5];

float delta_c[5];

float A[5][3];

float m[5][2];

float A_bar[5];

int n,l,p;

float aa_sum[5];

float bb_sum[5];

float cc_sum[5];

float root;

float sL[2];

float c_bar[5];

float c_bar2[5];

float Delta_c[5];

float A_diag[5];

float aa = 0;

float bb = 0;

float cc = 0;

delta_t[0] = (float)peakTime[0]/30;

delta_t[1] = (float)peakTime[1]/30;

delta_t[2] = (float)peakTime[2]/30;

delta_t[3] = (float)peakTime[3]/30;

delta_t[4] = (float)peakTime[4]/30;

delta_t[1] = delta_t[1] - delta_t[0];

delta_t[2] = delta_t[2] - delta_t[0];

delta_t[3] = delta_t[3] - delta_t[0];

delta_t[4] = delta_t[4] - delta_t[0];

delta_t[0] = 0;

printf("%04d,%04d,%04d,%04d,%04d\r\n",delta_t[0],delta_t[1],delta_t[2],delta_t[3],delta_t[4]);

c_bar[0] = c * delta_t[0] / 1000000;

c_bar[1] = c * delta_t[1] / 1000000;

c_bar[2] = c * delta_t[2] / 1000000;

c_bar[3] = c * delta_t[3] / 1000000;

c_bar[4] = c * delta_t[4] / 1000000;

delta_c[0] = c_bar[0] * c_bar[0];

delta_c[1] = c_bar[1] * c_bar[1];

delta_c[2] = c_bar[2] * c_bar[2];

delta_c[3] = c_bar[3] * c_bar[3];

delta_c[4] = c_bar[4] * c_bar[4];

A_diag[0] = 0;

A_diag[1] = .0636;

A_diag[2] = .0227;

A_diag[3] = .0639;

A_diag[4] = .0626;

151

A[0][0] = 0;

A[0][1] = 0;

A[0][2] = 0;

A[1][0] = 0;

A[1][1] = -.1763;

A[1][2] = .1802;

A[2][0] = .0891;

A[2][1] = -.0958;

A[2][2] = .0744;

A[3][0] = .1811;

A[3][1] = -.1763;

A[3][2] = 0;

A[4][0] = .183;

A[4][1] = 0;

A[4][2] = .1706;

pinv[0][0]=0;

pinv[0][1]=-2.8115;

pinv[0][2]=.5921;

pinv[0][3]=2.4897;

pinv[0][4]=2.7113;

pinv[1][0]=0;

pinv[1][1]=-2.5397;

pinv[1][2]=-.8551;

pinv[1][3]=-2.6667;

pinv[1][4]=3.0551;

pinv[2][0]=0;

pinv[2][1]=2.7993;

pinv[2][2]=.2787;

pinv[2][3]=-2.9508;

pinv[2][4]=2.7842;

phi[0][0]=0;

phi[0][1]=0;

phi[0][2]=0;

phi[0][3]=0;

phi[0][4]=0;

phi[1][0]=0;

phi[1][1]=22.1905;

phi[1][2]=1.12871;

phi[1][3]=-8.4873;

phi[1][4]=-7.5881;

phi[2][0]=0;

phi[2][1]=1.2871;

phi[2][2]=1.1593;

phi[2][3]=2.9319;

phi[2][4]=-.2311;

phi[3][0]=0;

phi[3][1]=-8.4873;

phi[3][2]=2.9319;

phi[3][3]=22.0169;

phi[3][4]=-9.6121;

phi[4][0]=0;

phi[4][1]=-7.5881;

phi[4][2]=-.2311;

phi[4][3]=-9.6121;

phi[4][4]=24.4366;

m[0][0] = .5 * (A_diag[0] - delta_c[0]);

m[1][0] = .5 * (A_diag[1] - delta_c[1]);

m[2][0] = .5 * (A_diag[2] - delta_c[2]);

m[3][0] = .5 * (A_diag[3] - delta_c[3]);

m[4][0] = .5 * (A_diag[4] - delta_c[4]);

152

aa_sum[0] = 0;

aa_sum[1] = c_bar[1] * phi[1][1] + c_bar[2] * phi[2][1] + c_bar[3] * phi[3][1] + c_bar[4] * phi[4][1];

aa_sum[2] = c_bar[1] * phi[1][2] + c_bar[2] * phi[2][2] + c_bar[3] * phi[3][2] + c_bar[4] * phi[4][2];

aa_sum[3] = c_bar[1] * phi[1][3] + c_bar[2] * phi[2][3] + c_bar[3] * phi[3][3] + c_bar[4] * phi[4][3];

aa_sum[4] = c_bar[1] * phi[1][4] + c_bar[2] * phi[2][4] + c_bar[3] * phi[3][4] + c_bar[4] * phi[4][4];

aa = aa_sum[0] * c_bar[0] + aa_sum[1] * c_bar[1] + aa_sum[2] * c_bar[2] + aa_sum[3] * c_bar[3] + aa_sum[4] * c_bar[4] - 1;

bb_sum[0] = 0;

bb_sum[1] = m[1][0] * phi[1][1] + m[2][0] * phi[2][1] + m[3][0] * phi[3][1] + m[4][0] * phi[4][1];

bb_sum[2] = m[1][0] * phi[1][2] + m[2][0] * phi[2][2] + m[3][0] * phi[3][2] + m[4][0] * phi[4][2];

bb_sum[3] = m[1][0] * phi[1][3] + m[2][0] * phi[2][3] + m[3][0] * phi[3][3] + m[4][0] * phi[4][3];

bb_sum[4] = m[1][0] * phi[1][4] + m[2][0] * phi[2][4] + m[3][0] * phi[3][4] + m[4][0] * phi[4][4];

bb = bb_sum[0]*c_bar[0] + bb_sum[1]*c_bar[1] + bb_sum[2]*c_bar[2] + bb_sum[3]*c_bar[3] + bb_sum[4]*c_bar[4];

bb = bb * -2;

cc = bb_sum[0]*m[0][0] + bb_sum[1]*m[1][0] + bb_sum[2]*m[2][0] + bb_sum[3]*m[3][0] + bb_sum[4]*m[4][0];

root = sqrtf(bb * bb - 4 * aa * cc);

if(root > 0)

{

root = root;

}

else

{

root = 0;

}

sL[0] = ((-bb + root)/(2 * aa));

sL[1] = ((-bb + -root)/(2 * aa));

m[0][1] = m[0][0];

m[1][1] = m[1][0];

m[2][1] = m[2][0];

m[3][1] = m[3][0];

m[4][1] = m[4][0];

s1[0][0] = sL[0] * c_bar[0];

s1[1][0] = sL[0] * c_bar[1];

s1[2][0] = sL[0] * c_bar[2];

s1[3][0] = sL[0] * c_bar[3];

s1[4][0] = sL[0] * c_bar[4];

s1[0][1] = sL[1] * c_bar[0];

s1[1][1] = sL[1] * c_bar[1];

s1[2][1] = sL[1] * c_bar[2];

s1[3][1] = sL[1] * c_bar[3];

s1[4][1] = sL[1] * c_bar[4];

s2[0][0] = m[0][0] - s1[0][0];

s2[1][0] = m[1][0] - s1[1][0];

s2[2][0] = m[2][0] - s1[2][0];

s2[3][0] = m[3][0] - s1[3][0];

s2[4][0] = m[4][0] - s1[4][0];

s2[0][1] = m[0][1] - s1[0][1];

s2[1][1] = m[1][1] - s1[1][1];

s2[2][1] = m[2][1] - s1[2][1];

s2[3][1] = m[3][1] - s1[3][1];

s2[4][1] = m[4][1] - s1[4][1];

xl[0][0] = pinv[0][0]*s2[0][0] + pinv[0][1]*s2[1][0] + pinv[0][2]*s2[2][0] + pinv[0][3]*s2[3][0] + pinv[0][4]*s2[4][0];

xl[1][0] = pinv[1][0]*s2[0][0] + pinv[1][1]*s2[1][0] + pinv[1][2]*s2[2][0] + pinv[1][3]*s2[3][0] + pinv[1][4]*s2[4][0];

153

xl[2][0] = pinv[2][0]*s2[0][0] + pinv[2][1]*s2[1][0] + pinv[2][2]*s2[2][0] + pinv[2][3]*s2[3][0] + pinv[2][4]*s2[4][0];

xl[0][1] = pinv[0][0]*s2[0][1] + pinv[0][1]*s2[1][1] + pinv[0][2]*s2[2][1] + pinv[0][3]*s2[3][1] + pinv[0][4]*s2[4][1];

xl[1][1] = pinv[1][0]*s2[0][1] + pinv[1][1]*s2[1][1] + pinv[1][2]*s2[2][1] + pinv[1][3]*s2[3][1] + pinv[1][4]*s2[4][1];

xl[2][1] = pinv[2][0]*s2[0][1] + pinv[2][1]*s2[2][1] + pinv[2][2]*s2[2][1] + pinv[2][3]*s2[3][1] + pinv[2][4]*s2[4][1];

cord_out[0] = xl[0][0];

cord_out[1] = xl[1][0];

cord_out[2] = xl[2][0];

if(xl[1][0] < 0)

{

cord_out[0] = xl[0][1];

cord_out[1] = xl[1][1];

cord_out[2] = xl[2][1];

}

}

\end

154

B.7 usbPIC Code
static void InitializeSystem(void);

static void InitializeUSART(void);

void rx_handler(void);

void USBTasks(void);

signed char x_delta = 0, y_delta = 0; //Two byte relative movement vectors

float x_prev = 0,y_prev = 0,z_prev = 0;

/** V E C T O R R E M A P P I N G ***/

/*

extern void _startup (void); // See c018i.c in your C18 compiler dir

#pragma code _RESET_INTERRUPT_VECTOR = 0x000800

void _reset (void)

{

_asm goto _startup _endasm

}

#pragma code

*/

#pragma code rx_interrupt = 0x8

void rx_int (void)

{

if (PIR1bits.RCIF){ //was it the receive interrupt?

_asm goto rx_handler _endasm

}

}

#pragma interrupt rx_handler

void rx_handler (void)

{

#define CORD_MUL 640 //Sensitivity of the mouse (256 levels/20cm)

#define CLK_THRSHLD 0.1 //Movement threshold for the click gesture

char input_buf[15]; //input buffer from the USART

char str_idx = 0; //will index the strings (1-30)

char x_buf[5] = {0,0,0,0,0},y_buf[5]= {0,0,0,0,0},z_buf[5]= {0,0,0,0,0}; //coordinates are floats

char checksum = 0, lcl_checksum = 0; //local and found checksums

float x = 0,y = 0,z = 0;

char trash; //offset data input by one.

led1_off();

//cast x,y,z as character buffers and read 4 bytes (float length).

// getsUSART(trash,1);

getsUSART(x_buf,4);

getsUSART(y_buf,4);

getsUSART(z_buf,4);

putrsUSART("ok");

//calculate local checksum

// lcl_checksum = (x_buf[0] ^ x_buf[1] ^ x_buf[1] ^ x_buf[3]) ^

// (y_buf[0] ^ y_buf[1] ^ y_buf[2] ^ y_buf[3]) ^

// (z_buf[0] ^ z_buf[1] ^ z_buf[2] ^ z_buf[3]) ;

//compare. if the checksums dont match, throw this shit out and wait again

//if (lcl_checksum != checksum) return;

x = *((float*) x_buf);

y = *((float*) y_buf);

z = *((float*) z_buf);

if (x == 0.1 && y == 0.12 && z == 0.1) led0_off();

if (x_prev == 0 && y_prev == 0 && z_prev == 0)

{x_prev = x; y_prev = y; z_prev = z;};

// find difference in position and magnify it.

155

x_delta = (char) (CORD_MUL * (x - x_prev));

y_delta = (char) (CORD_MUL * (y - y_prev));

//set previous values to current values.

x_prev = x;

y_prev = y;

//led1_on();

/* Clear the interrupt flag */

PIR1bits.RCIF = 0;

INTCONbits.GIEH = 1; //enable interrupts again.

}

#pragma code

/**

* Function: void main(void)

***/

void main(void)

{

InitializeSystem();

InitializeUSART();

led1_on();

led0_on();

// putrsUSART("USB Magicmouse WPI Major Qualifying Project\r\n");

// putrsUSART("Mike Cretella 2007\r\n");

// putrsUSART("Diagnostics Active...\r\n\r\n");

while(1)

{

INTCONbits.GIEH = 0;

USBTasks(); // USB Tasks

INTCONbits.GIEH = 1;

ProcessIO(); // See user\user.c & .h

}//end while

}//end main

/**

* Function: static void InitializeSystem(void)

***/

static void InitializeSystem(void)

{

TRISB = 0x00; //set portb to all output.

TRISC = 0x80; //set portc to outputs, Rx input

ADCON1 |= 0x0F; // Default all pins to digital

#if defined(USE_USB_BUS_SENSE_IO)

tris_usb_bus_sense = INPUT_PIN; // See io_cfg.h

#endif

#if defined(USE_SELF_POWER_SENSE_IO)

tris_self_power = INPUT_PIN;

#endif

mInitializeUSBDriver(); // See usbdrv.h

UserInit(); // See user.c & .h

}//end InitializeSystem

static void InitializeUSART(void)

{

OpenUSART(USART_TX_INT_OFF &

USART_RX_INT_ON &

USART_ASYNCH_MODE &

USART_EIGHT_BIT &

USART_CONT_RX &

USART_BRGH_HIGH,

624);

baudUSART(BAUD_16_BIT_RATE & BAUD_WAKEUP_OFF & BAUD_AUTO_OFF);

156

/* Enable interrupt priority */

RCONbits.IPEN = 1;

/* Make receive interrupt high priority */

IPR1bits.RCIP = 1;

/* Enable all high priority interrupts */

INTCONbits.GIEH = 1;

/* Enable receive as interrupt */

PIE1bits.RCIE = 1;

}

/**

* Function: void USBTasks(void)

***/

void USBTasks(void)

{

/*

* Servicing Hardware

*/

USBCheckBusStatus(); // Must use polling method

if(UCFGbits.UTEYE!=1)

USBDriverService(); // Interrupt or polling method

}// end USBTasks

157

B.8 Simulators

B.8.1 Single error Ouput
function[matrix_array,cord_set] = proccessingblock_rev4(rec_dist,Res,rate)

x = randint(1,Res,[0,0]);

rec_dist_OOPS = rec_dist;

%rec_dist_OOPS(2,3) = rec_dist_OOPS(2,3) + 500e-6;

%rec_dist_OOPS(3,3) = rec_dist_OOPS(3,3) + 500e-6;

%rec_dist_OOPS(4,2) = rec_dist_OOPS(4,2) + 500e-6;

%rec$_dist_OOPS(5,1) = rec_dist_OOPS(5,1) + 500e-6;

for n = 1:Res

Rx = (rand - 0.5) * 0.2;

Ry = (rand - 0.5) * 0.2 + 0.2;

Rz = (rand - 0.5) * 0.2 + 0.1;

R = [Rx Ry Rz];

% R = randint(1,3,[.19e6,.38e6])/1e6;

P = repmat(R,5,1);

d = sqrt(sum((P - rec_dist).^2,2));

delta_d(1) = d(1) - d(1);

delta_d(2) = d(1) - d(2);

delta_d(3) = d(1) - d(3);

delta_d(4) = d(1) - d(4);

delta_d(5) = d(1) - d(5);

T = delta_d / 340;

T_col = ceil(T / rate)’;

T_col = T_col * rate;

% [est,est2] = Bard_solver(rec_dist(1:4,:),T_col(1:4),340);

[est,est2] = Bard_solver(rec_dist_OOPS,T_col,340);

%if (est(1) < -.1 || est(1) > .1) && (est(2) < .2 || est(2)> .4) && (est(3) < 0 || est(3) > .2)

% error = sqrt(sum((R-est2’).^2));

%else

% error = sqrt(sum((R-est’).^2));

%end

error = sqrt(sum((R-est2’).^2));

error2 = sqrt(sum((R-est’).^2));

cord_set(1,n) = est(1);

cord_set(2,n) = est(2);

cord_set(3,n) = est(3);

%x(n) = error

x(n) = min(error,error2)*10e3;

end

matrix_array = x;

158

B.8.2 Axial error Ouput

function[matrix_array1,matrix_array2,matrix_array3,cord_set] = proccessingblock_rev4_XYZ(rec_dist,Res,rate)

x = randint(1,Res,[0,0]);

rec_dist_OOPS = rec_dist;

%rec_dist_OOPS(2,3) = rec_dist_OOPS(2,3) + 500e-6;

%rec_dist_OOPS(3,3) = rec_dist_OOPS(3,3) + 500e-6;

%rec_dist_OOPS(4,2) = rec_dist_OOPS(4,2) + 500e-6;

%rec$_dist_OOPS(5,1) = rec_dist_OOPS(5,1) + 500e-6;

for n = 1:Res

Rx = (rand - 0.5) * 0.2;

Ry = (rand - 0.5) * 0.2 + 0.2;

Rz = (rand - 0.5) * 0.2 + 0.1;

R = [Rx Ry Rz];

% R = randint(1,3,[.19e6,.38e6])/1e6;

P = repmat(R,5,1);

d = sqrt(sum((P - rec_dist).^2,2));

delta_d(1) = d(1) - d(1);

delta_d(2) = d(1) - d(2);

delta_d(3) = d(1) - d(3);

delta_d(4) = d(1) - d(4);

delta_d(5) = d(1) - d(5);

% delta_d(6) = d(1) - d(6);

% delta_d(7) = d(1) - d(7);

% delta_d(8) = d(1) - d(8);

T = delta_d / 340;

T_col = ceil(T / rate)’;

T_col = T_col * rate;

% [est,est2] = Bard_solver(rec_dist(1:4,:),T_col(1:4),340);

[est,est2] = Bard_solver(rec_dist_OOPS,T_col,340);

%if (est(1) < -.1 || est(1) > .1) && (est(2) < .2 || est(2)> .4) && (est(3) < 0 || est(3) > .2)

% error = sqrt(sum((R-est2’).^2));

%else

% error = sqrt(sum((R-est’).^2));

%end

error11 = sqrt(sum((R(1)-est2(1)’).^2));

error12 = sqrt(sum((R(1)-est(1)’).^2));

error21 = sqrt(sum((R(2)-est2(2)’).^2));

error22 = sqrt(sum((R(2)-est(2)’).^2));

error31 = sqrt(sum((R(3)-est2(3)’).^2));

error32 = sqrt(sum((R(3)-est(3)’).^2));

cord_set(1,n) = est(1);

cord_set(2,n) = est(2);

cord_set(3,n) = est(3);

%x(n) = error

x1(n) = min(error11,error12)*10e3;

x2(n) = min(error21,error22)*10e3;

x3(n) = min(error31,error32)*10e3;

end

matrix_array1 = x1;

159

matrix_array2 = x2;

matrix_array3 = x3;

160

B.9 RS232 MATLAB Calculations
var1 = 0;

B=[0,0,0];

%stay in infinite loop

while (var1 = 0){

% Opens a serial communication object

m1=serial(’COM4’,’BaudRate’, 9600,’Parity’, ’none’,’DataBits’,8,’StopBits’, 1);

set(m1,’InputBufferSize’,1024); % ini=512

fopen(m1)

m1.ReadAsyncMode = ’continuous’;

readasync(m1);

% reads an value from microcontroller

v=fread(m1,[1,5],’uchar’);

fclose(m1);

%current measured receiver locations

A = [0,0,0;.1375,0,0;.1375,.15,0;0,.15,0;.073,.073,.005];

bard_solver(A,v,340);

%concatenate coordinate onto C, extract X, Y, and Z values, plot

C = cat(1,B,x_hat);

X = C(: , 1);

Y = C(: , 2);

Z = C(: , 3);

plot3(X,Y,Z)

end

161

C Receiver Construction

C.1 Power Charger Schematic

Figure 56: Power Connection and Charging Unit

162

C.2 Analog Schematic

Figure 57: Analog Filtering

163

C.3 dsPIC Schematic

Figure 58: ADC Schematic

164

Figure 59: dsPIC configuration

165

C.4 USB-PIC Schematic

Figure 60: USB-PIC, PC programming, and USB connection

166

C.5 Receiver PCB

Figure 61: Analog Signal Processing PCB Layout

167

D Parts List
Total Total

Part Supplier Part No. Qty. 1 1000 (Unit) (1000)
Analog Front End Hardware
Diodes Mouser CD1206-S01575 10 0.06 0.03 0.6 0.3
Op Amps Mouser MC33079DG 4 1.03 0.535 4.12 2.14
Resistor (1k Ohm) Mouser CRCW08051K00JNEA 35 0.02 0.016 0.7 0.56
Resistor (560k Ohm) Mouser 260-560K-RC 10 0.04 0.016 0.4 0.16
Capacitor 1.5 nF) Mouser GRM216R71H152KA01D 10 0.1 0.014 1 0.14
Capacitor(0.1 uF) Mouser 08055C104KAT2A 20 0.17 0.1 3.4 2
Receiver Transucer Mouser 255-400SR12-ROX 5 5.24 3.53 26.2 17.65
Power Systems
Charger IC Maxim IC MAX1555 1 1.34 0.85 1.34 0.85
Battery PowerStream Tech. Li-Poly 1 10 5 10 5
Transmitter Voltage Regulator Texas Instruments TPS77030DBVR 1 0.93 0.34 0.93 0.34
Power (-5 v) Inverter IC Maxim MAX764 1 2.49 2.38 2.49 2.38
Inductor (47 uH) Coilcraft D03316P-473MLB 1 1.07 0.58 1.07 0.58
Capacitor (100 uF) Mouser TPSY107M010R0100 1 3.69 2.46 3.69 2.46
Capacitor (68 uF) Mouser TPSE686M020R0150 1 1.5 0.85 1.5 0.85
Diode Mouser 821-ES1B 1 0.11 0.08 0.11 0.08
Red LED Mouser 597-5411-407F 1 0.5 0.219 0.5 0.219
Capacitor (0.1 uF) Mouser GRM21BF51C105ZA01L 3 0.11 0.04 0.33 0.12
usbPIC-PC Interface
Crystal Osc (20 MHz) Mouser ABLS-20.000MHZ-B2-T 1 0.45 0.23 0.45 0.23
Resistor (1k Ohm) Mouser CRCW08051K00JNEA 2 0.02 0.016 0.04 0.032
Capacitor(0.1 uF) Mouser 08055C104KAT2A 2 0.17 0.1 0.34 0.2
Capacitor (0.18 uF) Mouser C0805C184K4RACTU 2 0.63 0.156 1.26 0.312
Diodes Mouser CD1206-S01575 1 0.06 0.03 0.06 0.03
USB Connector Mouser 56579-0576 1 1.9 0.92 1.9 0.92
Blue LED Mouser LTST-C170TBKT 2 0.36 0.178 0.72 0.356
dsPIC
dsPIC Digikey dsPIC30F3013 1 9.15 5.48 9.15 5.48
ADC Digikey AD9220 1 9.26 6.86 9.26 6.86
Analog Mux Digikey ADG608BR 1 4.46 2.52 4.46 2.52
Oscillator Mouser XO57CTECNA7M3728 1 4.56 3.65 4.56 3.65
Diode Mouser CD1206-S01575 1 0.06 0.03 0.06 0.03
Resistor (330 Ohm) Mouser RK73H2ATTD3300F 4 0.08 0.016 0.32 0.064
Resistor (1k Ohm) Mouser CRCW08051K00JNEA 1 0.02 0.016 0.02 0.016
Capacitor(0.1 uF) Mouser 08055C104KAT2A 7 0.17 0.1 1.19 0.7
Capacitor (10 uF) Mouser 80-T491A104K035 10 0.18 0.08 1.8 0.8
Red LED Mouser 597-5411-407F 1 0.5 0.219 0.5 0.219
Resistor (510 Ohm) ECE Shop 510 Ω 1/4W Resistor 5 0.2 0.02 1 0.1
Transmitter
Tx Transducer Mouser 255-400ST12-ROX 1 5.24 3.53 5.24 3.53
Hex Inverter Mouser CD4069UBPW 1 0.26 0.144 0.26 0.144
MSP430 Texas Instruments MSP430F2013I-PWR 1 3.71 2.1 3.71 2.1
Crystal - 40 kHz Mouser CFV20640.000KAZFB 1 1 0.52 1 0.52
NPN Transistor Mouser MMBT-3904 1 0.06 0.022 0.06 0.022
Res 47k 0603 Mouser RK73H1JTTD4702F 1 0.08 0.014 0.08 0.014
res 10k 0603 Mouser RK73H1JTTD1002F 3 0.08 0.014 0.24 0.042
cap .22uf 0603 Mouser C0603C224Z4VACTU 2 0.1 0.024 0.2 0.048
Misc Hardware
Pin Headers ECE Shop Conn-Hdr-M & SR 41 0.08 0.04 3.28 1.64
Shunts Mouser 15-38-1026 20 0.2 0.16 4 3.2
Switches Digikey EVQ-PPFA25 3 0.9 0.449 2.7 1.347
Jumpers (0 Ohm) Mouser 263-0-RC 10 0.05 0.014 0.5 0.14
Receiver Array 80/20 1 30 10 30 10
PCB 4pcb.com 1 66 2 66 2
Twisted-Pair Wire (20 gauge) ECE Shop Feet: 10 0.1 0.01 1

Total Unit Cost (with PCB prototype) 213.74 83.095 (per 1000) Total Unit Cost (before PCB prototype) 147.74

168

	Worcester Polytechnic Institute
	Digital WPI
	April 2007

	Ultrasonic 3D Wireless Computer Mouse
	Christian John Banker
	Jamie E. Mitchell
	Jeffrey D. Tucker
	Jeffrey Vincent DiMaria
	Michael A. Cretella
	Repository Citation

	Introduction
	Background
	Current Technology
	Logitech 3D Mouse
	Gyration Air Mouse

	Patents
	Gyroscopic Tracking
	Radio Frequency Identification and Geometry (RFIG)
	Accelerometers
	Magnetics
	Time Difference of Arrival (TDOA)
	Ultrasonic
	TDOA Conclusions

	Methodology
	Project Management
	Power Requirements
	Transmitter Power
	Receiver Power

	Transmitter
	Transducer Selection
	Signal Generation Method
	Firmware Design

	Receiver and Signal Conditioning
	Signal Conditioning Requirements
	Signal Demodulation
	Data Transmission

	Signal Processing
	Processing Requirements
	Sampling and Curve Fitting
	TDOA Calculation

	PC Interfacing
	Hardware Requirements

	Implementation
	Power Block Implementation
	Transmitter
	Transducer Selection and Testing
	Transmitter Microcontroller Selection
	Firmware Implementation
	Board Layout and Physical Design

	Receiver Signal Conditioning
	Receiver Array
	Analog Components
	PCB Layout

	Signal Processing
	Hardware Selection
	Sampling Coding
	Final implementation
	Simulation
	TDOA Calculation Coding

	Hardware Interface
	Hardware Debugging
	Software Design

	Testing and Results
	Testing Plan
	Power Results
	Transmitter Results
	Signal Conditioning Results
	AC Amplifier Operation
	Precision Rectifier Operation
	Chebyshev LPF Operation
	Transmitter-Receiver Integration Testing

	Processing Results
	dsPIC Basic Operation
	Multiplexer
	Analog-to-Digital Converter
	Sampling
	Bard Solver

	Processor Communication Testing
	USB connectivity
	System integration

	System Integration Results
	Precision
	Accuracy
	Motion Tracking

	Conclusions
	The Final Design
	Performance Specifications
	Unimplemented Design Features
	Future Device Upgrades
	Applications and The Future

	Transmitter Appendices
	Transducer Data Sheet
	Transducer Frequency Response
	Schematics
	PCB Layout
	Firmware Code

	Processing Appendices
	Main
	Sampling
	Syncing
	Curve Fitting
	Bard Solver
	dsPIC's TDOA Calculations
	usbPIC Code
	Simulators
	Single error Ouput
	Axial error Ouput

	RS232 MATLAB Calculations

	Receiver Construction
	Power Charger Schematic
	Analog Schematic
	dsPIC Schematic
	USB-PIC Schematic
	Receiver PCB

	Parts List

