
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2018

Models for automatic learner engagement
estimation
Eli Sanborn Skeggs
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Skeggs, E. S. (2018). Models for automatic learner engagement estimation. Retrieved from https://digitalcommons.wpi.edu/mqp-all/
287

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F287&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F287&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F287&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F287&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/287?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F287&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/287?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F287&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu


Models for automatic learner engagement estimation

Advisor:

PROFESSOR JACOB WHITEHILL

Written By:

ELI S. SKEGGS

A Major Qualifying Project
WORCESTER POLYTECHNIC INSTITUTE

Submitted to the Faculty of the
Worcester Polytechnic Institute

in partial fulfillment of the requirements
for the Degree of Bachelor of Science in

Computer Science & Mathematical Sciences.

JANUARY 10TH, 2018 - APRIL 26TH, 2018





ABSTRACT

Automatic estimation of student engagement [1–6] can help computer-based learning systems
adapt to individual learners [7]. Linear models trained on Gabor features established
cutting-edge yet sub-human accuracy on this task [1], while convolutional neural networks

(CNNs) [8, 9] overfit [10] to the dataset’s few subjects [9, 11]. We found that transfer learning
[12–14] enabled linear ridge regression to leverage CNN features learned for image recognition
[15, 16] and face re-identification [17, 18] tasks. Our best model achieved a four-fold cross-
validated correlation of r = 0.581, significantly outperforming [1] (r = 0.522). Our information
strength metric correlated with model accuracy (FaceNet, r = 0.755; ImageNet, r = 0.077), inviting
future study of feature utility prediction.
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1
INTRODUCTION

Computer-based learning systems such as intelligent tutoring systems, educational games,

and massive online courses all serve to supplement a traditional curriculum based on lectures and

problem sets [19–22]. Such systems often fall short in adapting instruction to fit the needs of their

users. To better fulfill their purpose, computer-based learning systems must come to understand

their students, particularly in the moment-to-moment engagement of the individual. Indeed, some

computer-based learning systems attempted to use sensors or algorithms to judge the engagement

of the learner [2–4], and adjusted the content or presentation to improve engagement such as

in [7]. Engagement estimation ranks users on a well-defined scale of engagement. This ranking

can be manual, derived from self-reports or teacher reports, or it can be automatic, via computer

modeling such as [2, 23].

Several different tools have arisen to tackle automatic engagement recognition. Engagement

tracing infers engagement from patterns in response timing and correctness [5], but its narrow

view of the user limits inherently limits its power and capacity to generalize. Similarly, neuro-

logical and physiological sensor readings yielded signals that help determine engagement [6].

This approach required specialized equipment, limiting its adoption to small-scale research. A

third variety of automatic estimation explicitly or implicitly analyses the pose and expression

of the subject using computer vision techniques [1, 3]. This technique is unobtrusive compared

to physical sensors, and potentially more accurate than engagement tracing [1]. The computer

vision-based approach is well-positioned to see the broadest implementation, thanks to the

proliferation of commodity and on-device digital cameras.

Computer vision engagement estimation requires a workable definition of engagement. For

machine learning, the subjective decision-making of individual human labelers determines

this definition, implicitly embedding it within the labels. [1] provided human labelers with still

images containing subjects, and a definition for an engagement scale with four levels. Importantly,
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CHAPTER 1. INTRODUCTION

the human labelers agreed on the appropriate engagement labels for given images—both on

a coarse scale (low vs high engagement, with Cohen’s κ = 0.96), and on a granular scale (1-4,

with Cohen’s κ= 0.56). This agreement showed that [1] defined engagement well enough for it

to be a measurable function of the images. This finding established automatic recognition of

engagement as a tenable problem. Additionally, [1] found that engagement labels of constituent

frames predicted the label of their containing video clip, so an accurate frame-level estimator

would easily apply to video as well. Together, these results showed that frame-level automatic

engagement estimation is both tractable and applicable.

Prior work in computer vision engagement estimation has not achieved human-level accuracy

[1]. Approaches from traditional computer vision, such as linear combinations of Gabor filters,

perform adequately. However, these approaches don’t leave much room for experimentation.

Unlike deep convolutional neural networks (CNNs), they cannot be easily augmented to introduce

greater representational power. CNNs offer significant room for exploration in the choice of

architecture design, hyper-parameters [24], and training procedures. Efforts to train deep CNNs

to recognize engagement have struggled to match the accuracy of traditional computer-vision

techniques [10]. To become viable, deep models need a means to sidestep their training difficulties,

which are rooted in overfitting on small engagement datasets [9].

Transfer learning adapts knowledge in the form of parameters from one machine learning

model to another [12, 25]. With transfer learning, deep convolutional networks can take valuable

features from one domain, and use them to better understand a related domain. In particular,

this pre-training works well even (and especially) if the related domain has less available data

[12]. Chapter 2.3 includes further detail on transfer learning theory and practice.

We sought to understand whether transfer learning would provide a means for the engage-

ment estimation problem to benefit from deep convolutional networks. To accomplish this, we

applied transfer learning to train models that estimate the apparent engagement of a subject

from still images. We designed a set of experiments to measure the efficacy of models that use

features extracted from pre-trained deep computer vision models. We also designed an informa-

tion strength metric, as a computational tool for deciding which layer(s) in pre-trained networks

offer the most utility for engagement recognition.

Organization of the report. Chapter 2 describes relevant research. In Chapter 3, we detail

the design of our transfer-learning architecture and experiments. Chapter 4 documents our

experimental results, and briefly discusses findings that arose during implementation. Chapter 5

explains the results and findings. Chapter 6 talks about related future work and offers concluding

remarks on the project.

2



C
H

A
P

T
E

R

2
LITERATURE REVIEW

Most relevant literature for this project comes from the fields of deep learning, automatic

engagement estimation, and transfer learning.

2.1 Deep learning

Deep learning research investigates challenges in designing and training deep neural net-

works (DNNs). For particularly deep networks (more than a dozen or so layers), conventional

gradient descent for parameter optimization fails to converge [26, 27]. Deep learning includes

solutions such as convolutional layers, residual connections, parameter initialization, clever

architecture design, and vast datasets.

2.1.1 Convolutional networks

To solve this, convolutional layers exploit spatial information in images to help the network

learn spatially-invariant features [9]. They learn restricted mappings from small windows into

the input space [8, 9, 28], whereas conventional feed-forward networks learn parameters for

every pair of neurons in adjacent layers [9]. Convolutional layers match patterns to subsets of the

input image or spatial features. Pattern matching involves applying a set of filters to well-defined

regions in the input space; each layer builds up a more sophisticated representation of the input

by learning a growing number of more abstract features. Convolutions tend to learn features that

are translation invariant, and that generalize to across the input space. These qualities make

allow convolutional layers to boost accuracy and mitigate overfitting [8, 9].

3



CHAPTER 2. LITERATURE REVIEW

2.1.2 Residual networks

Residual connections can solve optimization instability in DNNs [27]. They build on the

intuition that optimizing an identity mapping with a residual component should be simpler

than building a complete mapping that carries sufficient upstream information. Because deeper

networks perform worse than their shallower counterparts, adding skip connections to deeper

networks should allow them to perform at least as well as comparable shallower networks.

That is, a shallow network can be trivially deepened with identity mappings H(x)= x, and the

residual H(x)= F(x)+ x adds a learned term that allows the network to build more sophisticated

representations.

2.1.3 Inception networks

The Inception networks arose from a careful investigation of architecture design and op-

timization [29]. They identified inefficiencies in deep networks and devised patterns—called

Inception blocks—to increase efficiency without sacrificing performance. Inception blocks emulate

sparse local connectivity using fast dense primitives [30], in a style called split-transform-merge.

Inception networks further apply dimensionality reduction convolutions following the Network

In Network pattern [31], which improves the representational strength of local feature extraction

and increases computational efficiency. [15] proposed Inception-ResNet-v1 and Inception-ResNet-

v2. These architectures explored fusing residual connections with the prior design strategies of

the Inception networks, establishing a new state-of-the-art in image classification.

2.1.4 Pre-trained networks

Due to the extreme computational requirements for training deep networks from scratch, some

researchers publicly release complete copies of their networks, including the learned parameters.

The TensorFlow models repository [16] includes networks trained on the ILSVRC-2012-CLS

dataset that perform image classification. An arbitrary selection of other models includes:

1. A model that analyzed neuroscience data [32]

2. A network that modeled natural language [33]

3. An end-to-end image recognition model that transcribes street names [34]

4. And a similar attention-based model to transcribe street names [35]

Advancements in metric learning [36–39] have facilitated the success of face re-identification

models [17, 40–44]. These models learn to distinguish the identity of photographed subjects,

ignoring confounding factors such as lighting, context, clothing, hairstyle, or expression. State-of-

the-art face re-identification has reached accuracies upwards of 99.7%. Some of these networks

4



2.2. AUTOMATIC ENGAGEMENT ESTIMATION

have pre-trained models, such as OpenFace, VGGFace, SphereFace and NormFace, and a third-

party implementation of FaceNet [18] (which achieved a competitive accuracy of 99.2% on the

Labeled Faces in the Wild dataset [45]).

2.2 Automatic engagement estimation

Prior approaches have attempted to estimate engagement from images of test subjects [1, 3,

4, 10, 46–48]. Many approaches used Gabor filters and linear regression to perform expression

recognition [1, 46–48]. In [1], this model achieved a correlation coefficient of r = 0.5216. [10]

extended these findings by showing that using the label distribution from the human labelers

significantly improved the performance of both a classifier and a regressor on the Gabor features.

[3] proposed a deep neural network approach that determined whether individual students

were engaged based on labeled features extracted from images of students in a lecture hall. Such

a system could be used as the basis for an automatic teaching assistant, which would propose

specific strategies to maintain student interest during lectures [7]. This approach managed a 59%

subject-independent cross-validated accuracy on their dataset, which did not test their solution

on subjects in other contexts or experimental conditions [3]. [3] also did not directly report a

human baseline for their results, leaving the reported accuracy with no context.

While [3] demonstrated the value of features beyond simple Gabor features, none of these

concepts have attained human-level engagement recognition accuracy.

2.3 Transfer learning

Transfer learning—sometimes called domain adaptation—involves the adaptation of data or

parameters from one domain to a related target domain [25]. For instance, a machine-learning

model trained to transcribe spoken English to text could be adapted to transcribe spoken German,

as both require an understanding of speech dynamics and involve similar frequency bands. In a

sense, transfer learning compensates for relative weaknesses inherent to the design of the model.

In the transcription example, transfer learning would be most useful if the corpus of labeled

data were significantly larger for English than German: the German model would benefit from

the volume of data from the English dataset. We focused on a type of transfer learning called

inductive transfer learning, which applies when labeled data is available in the target domain

[25]. Other other types of transfer learning tackle problems where there is no labeled data for the

target domain, and perform a kind of unsupervised or semi-supervised learning [25, 49, 50].

Prior research has already studied the combination of transfer learning and deep learning. [51]

gauged the effects of several common techniques on the transferability of models, including the

impact of network depth, truncation, early-stopping, and fine-tuning. [14] showed that transfer

learning enables state-of-the-art results on face attribute detection using deep features from

pre-trained image classification models. Indeed, prior work has demonstrated both that transfer

5



CHAPTER 2. LITERATURE REVIEW

learning on pre-trained deep neural networks yields competitive results [13]. For example,

[52] and [53] showed state-of-the-art performance using linear models on deep features. They

suggested that the linear models were not just viable, but necessary to ensure generalization.

Transfer learning performs well both in improving overall accuracy and generalization beyond

the conditions of the dataset. The availability of pre-trained networks has substantially increased

the utility of transfer learning, as it lowers the barrier to entry. A similar approach might

similarly improve test accuracy on automatic engagement estimation, where prior approaches

have not been able to make the most of convolutional networks.
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3
METHODOLOGY

We examined whether transfer learning could enable deep networks to estimate engagement.

To assess this, we devised experiments to evaluate models built on features extracted from two

pre-trained deep computer vision models.

3.1 Design

First, we defined criteria for the selection of pre-trained models. The selected models needed

to capture knowledge about visual patterns and relationships, and faces and expressions. To judge

the models, we researched and defined the general approach, and developed the experimental

design and procedures.

3.1.1 Pre-trained model selection

To allow us to concentrate on the core problem, we determined the following criteria for model

selection.

1. image-based, not for neuroscience data analysis [32] or natural language modeling [33]

2. relevant: either a general image model or a human-centric one; not a specialized model

such as one for street sign recognition [34, 35], to ensure we’re considering the effects of

relevant features

3. single-pass: we were interested in finding simple approaches to engagement estimation,

and the adaptation of multi-pass [54] and cascading [55] models would have introduced

additional complexity

7



CHAPTER 3. METHODOLOGY

4. available in TensorFlow, to avoid spending time researching other frameworks or migrat-

ing weights between frameworks

5. comparable between models, or at least similar in architecture, so the differences in

results are not merely due to superior architecture

Given those requirements, we selected two networks based on the Inception-ResNet networks

[15]. We selected a pre-trained Inception-ResNet-v2 model from the TensorFlow models repository

[16]. We also selected [18], an open-source implementation of FaceNet [17]. Sandberg’s implemen-

tation, when trained on a cleaned version of [56], achieved a competitive face re-identification

accuracy of 99.2% on the LFW dataset [45]. We motivated these selections by observing that the

image classification network may encode general features useful for classifying many objects,

while the face re-identification network may encode specialized features that pick up on subtle

facial cues. However, we hypothesized that FaceNet may have learned to erase information such

as pose, expression, and lighting that would confound identity recognition. As our estimator

needs expression information, this could result in a decrease in performance of our estimator.

While they would have met our requirements, we did not select VGGNet [57] and VGGFace [42]

because they require greater computation resources for the same accuracy. That said, a colleague

did report anecdotal evidence that VGGNet encodes superior features.

FaceNet used a slightly modified version of the Inception-ResNet-v1 architecture [15], which

closely resembled the architecture used in the ImageNet network. The image classification

network exhibited a model capacity of about 5.6M trainable parameters as opposed to FaceNet’s

2.8M. Moreover, the ImageNet model required more computation due to the higher number

of layers in the network [15], and due to FaceNet’s reduced input image size [17]. As a result,

differences in the performance of the final estimator may be due to differences in the exact

formulation of the network.

3.1.2 Estimator

[58] and [59] argued that some tasks benefit from concrete and localized features in shallower

layers, and others benefit from abstract and de-localized nature of deeper layers. This argument

receives further credence by [60]’s investigations into abstraction as a function of depth. Thus,

different layers may yield a better representation to learn an approximation of engagement. We

established our estimator protocol to explore this effect.

Because both Inception-ResNet architectures share a superstructure, we identified each of

the six high-level building elements as a hook and assigned each a number, where larger values

correspond to deeper layers (those more distant from the input image). See Figure 3.1 for a

high-level map of the Inception-ResNet network, and Table 3.1 for the exact mapping between

superstructure elements and labeled hooks. The original softmax layer in Inception-ResNet maps

directly to output classes, so per convention, we truncated the networks before their softmax

8



3.1. DESIGN

hook1 hook2 hook3 hook4 hook5 hook6
stem block A reduction A block B reduction B block C

Table 3.1: The hook-layer mapping for Inception-ResNet feature extraction. These blocks corre-
spond to those defined in [15].

layers and preceding dropout and average-pooling layers. Moreover, it doesn’t make a lot of

intuitive sense for a model to learn engagement from a linear combination of predictions that

represent the degree to which an image looks like a bird or a car.

To facilitate comparisons between [1] and our results, we retained the input image size of

48x48 grayscale. We then upscaled the input to match each network’s train and test conditions:

299x299 for ImageNet, and 160x160 for FaceNet. Following the upscaling operation, we duplicated

the images over a new axis to reach the expected three color channels and performed appropriate

per-image standardizations. To match ImageNet’s train and test conditions, we linearly scaled

the input color intensities from the interval [0,1] to [−1,1]. For FaceNet, we standardized each

image X by applying Equation 3.1, using TensorFlow’s tf.image.per_image_standardization

operation. Equation 3.1 linearly scales the color intensities of image X such that µX = 0 and

σX ≈ 1. In a series of experiments, we considered the performance of linear models trained on

feature vectors from individual hooks.

(3.1) Xnorm = X −µX

max
(
σX , N

− 1
2

X

)

image

engagement classi�er:
linear ridge regression

Inception-ResNet

stem block A

5n

reduction A block B

10n

reduction B block C

5n

adapted parameters

Figure 3.1: Inception-ResNet attached to a simple linear model; applies to both FaceNet and
ImageNet. The variable n is a scaling factor that corresponds to the version of the network: n = 1
for FaceNet and n = 2 for ImageNet. A single classifier operated on the outputs from just one of the
hooks.
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CHAPTER 3. METHODOLOGY

3.2 Dataset

We followed the data annotation, and filtering procedures from [1], and reused their raw data.

They collected their data from an experiment, wherein they captured video footage of participants

as they used a set of cognitive skill training programs. Each image was cropped to the face

bounding box as identified by [46].

The subjects in that experiment consisted of 26 undergraduate students at a Historically

Black College/University (HBCU) in the southern United States. [1] asked their team of labelers

to view static images from the experiment, and rate the engagement of the participant on a scale

of 1-4, or X, with X being no subject/unclear. Each labeler labeled set of images that overlapped

with the sets for other labelers, but the labelers did not label every image in the complete image

set. This assignment balanced the need for mul-

1

2

3

4

Figure 3.2: Images of subjects from each

engagement level, where labelers considered

the top two images engagement level 1, and

the bottom two engagement level 4 [1].

tiple engagement data points per image with

the desire to label many images. To ensure rea-

sonably consistent labels, the labelers only con-

sidered the apparent engagement, as opposed

to imagining the context. [1] used the following

definition for their engagement labels:

1. Not engaged at all – e.g., looking away

from computer and obviously not thinking

about task, eyes completely closed.

2. Nominally engaged – e.g., eyes barely

open, clearly not "into" the task.

3. Engaged in task – student requires no ad-

monition to "stay on task".

4. Very engaged – student could be "com-

mended" for his/her level of engagement

in task.

X. The clip/frame was very unclear, or con-

tains no person at all.

10



3.3. METRICS

From the labeled images, we used the following data selection procedure from [1] to eliminate

problematic examples:

We started with a pool of 13584 [image] frames from the HBCU dataset. We then applied the

following procedure to select training and testing data:

1. If the minimum and maximum label given to an image differed by more than 1 (e.g.,

one labeler assigns a label of 1 and another assigns a label of 3), then the image was

discarded. This reduced the pool from 13584 to 9796 images.

2. If the automatic face detector (from CERT [46]) failed to detect a face, or if the largest

detected face was less than 36 pixels wide (usually indicative of [an] erroneous face

detection), the image was discarded. This reduced the pool from 9796 to 7785 images.

3. For each of the labeled images, we considered the set of all labels given to that image by

all the labelers. If any labeler marked the frame as X (no face, or very unclear), then the

image was discarded. This reduced the pool from 7785 to 7574 images.

4. Otherwise, the "ground truth" label for each image was computed by rounding the

average label for that image to the nearest integer (e.g., 2.4 rounds to 2; 2.5 rounds to 3).

This procedure yielded 10698 frames from the HBCU dataset. For reasons that weren’t

immediately clear, this number differed from the 7574 frames reported by [1]. Consequently, we

reported results for both their approach and our approaches on the larger set of 10698 frames.

3.3 Metrics

To more accurately estimate the performance of our approaches given the small number of

subjects and frames in our dataset, we employed four-fold subject-independent cross-validation.

This allowed us to train and test the model over the entire dataset. We used identical folds to

those used in [1] to enable direct comparison of results. Per Section 3.2, we filtered and partitioned

the data, such that the images and labels for each subject were assigned to one and only one fold.

We reported a cross-validated Pearson correlation coefficient to compare our approaches with

Gabor filter techniques as in [1].

3.4 Hardware

We ran our experiments on a high-performance computing system acquired through NSF MRI

grant DMS-1337943 to WPI. The wonderful Academic & Research Computing group at Worcester

Polytechnic Institute supported our use of the computing system. We considered Microsoft’s Azure

cloud computing platform but found WPI’s compute cluster provided the on-demand job scaling

we needed to run our experiments in a time-efficient manner.

11



CHAPTER 3. METHODOLOGY

We used a mix of NVIDIA Tesla GPUs to run our experiments, including K20Xms, K40s, K80s,

and V100s. We allocated between 10 and 128GiB of memory, and between 1 and 20 CPUs to each

job to maximize training throughput. We allocated such a wide range of hardware because we

saw a significant increase in throughput with multi-core scaling and caching of input data using

TensorFlow’s Dataset API, but didn’t consistently need the higher number of cores or amount of

memory.

3.5 Transfer learning experiment

We extracted off-the-shelf features from the ImageNet and FaceNet networks per Section

3.1. We normalized the feature vectors v → v̂ from each hook, such that µv̂ = 0 and σv̂ = 1 for

each example. For vector v̂ from each hook, we trained a linear ridge regression model to predict

engagement, using the three regularization strengths α= 0.1, α= 1.0, and α= 10.0. Per Section

3.3, we reported the four-fold cross-validated correlation coefficient for each trial. As a baseline,

the best prior result was r = 0.5216 [1]. Using a 1-sample (paired) t-test on the correlation

coefficients from each fold, we tested the hypothesis that our experiments yielded a statistically

significant improvement over [1].

3.5.1 Implementation details

We first ran our experiments without including the per-image normalization and zero-meaning

the extracted feature vectors. This produced significantly sub-par results, and prompted us to

use the normalization expected by the network and zero-mean the produced vectors. The models

experienced a mean accuracy degradation of ∆r = −0.0714 (up to ∆r = −0.1351) without the

prescribed normalization operations. Similarly, when we omitted the feature vector normalization

step v → v̂, we saw warnings about singular matrices and numerical inaccuracy during solving.

Given that the experiments did not include fine-tuning, which might have helped the network

resolve its expectations for the data distribution.

3.5.2 Engagement-subject information strength metric

FaceNet was designed to differentiate people irrespective of lighting, pose, and expression

[17]. Therefore, we hypothesized that the features from deeper layers in the network would tend

to erase pose and expression information—information crucial to engagement estimation. In

contrast, the ImageNet network should learn more abstract features of the scene in deeper layers

[60].

To test our hypothesis, we needed to better understand the performance of models trained on

the features from the hooks in the two networks. We devised the following information strength

metric S(h) to approximate the relative strength of engagement-discriminating information and

subject-identifying information.

12



3.5. TRANSFER LEARNING EXPERIMENT

Let v⃗(h)
s,i be the feature vector from hook h for the ith frame of subject s.

Let es,i be the engagement in the integer range [1,4] for the ith frame of subject s.

E(h) = Es,i, j

[⃗v(h)
s,i − v⃗(h)

s, j

2

2

]
s.t. es,i = 1, es, j = 4(3.2)

I(h) = Es,t,k,k′

[⃗v(h)
s,k − v⃗(h)

t,k′

2

2

]
∀s ̸= t(3.3)

S(h) = E(h)

I(h) for hook h(3.4)

In practice, we approximated the expectations in Equations 3.2 and 3.3 by sampling. For E(h),

we sampled 32 frame pairs for every one of the 18 subjects. For I(h), we sampled 64 frame pairs

from 32 subject pairs (ensuring each pair of subjects contained two different subjects). Feature

vectors from hooks with a large information strength ratio S(h) should contain more information

that helps discriminate between frames that have different levels of engagement compared to the

information that helps determine the subjects’ identities.
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4
RESULTS

We implemented the model designs and executed the experimental procedures described

in Chapter 3. Our results compare the accuracy of the transfer learning-based approaches to

the approach by [1] based on Gabor filters, shown in Tables 4.1 and 4.2, and Figures 4.1 and

4.2. The cross-validated accuracy of [1]’s Gabor filter-based approach managed a correlation

coefficient of r = 0.5216. The average four-fold cross-validated correlation accuracy using the

hooks from ImageNet was r = 0.5751, and from FaceNet was r = 0.5809; both higher than using

Gabor features.

hook1 hook2 hook3 hook4 hook5 hook6
α= 0.1 0.5600 0.5700 0.5566 0.5507 0.5655 0.5351
α= 1.0 0.5629 0.5687 0.5670 0.5809* 0.5634 0.5363
α= 10.0 0.4836 0.4776 0.4705 0.4950 0.4926 0.4628

Table 4.1: The cross-validated correlation accuracy of the linear ridge regression models trained
on the outputs of each fundamental building element from the FaceNet pre-trained network. The α
parameter corresponds to the regularization strength for the linear ridge regression model. The
entry in bold designates the hook and regularization that yielded the best accuracy.

hook1 hook2 hook3 hook4 hook5 hook6
α= 0.1 0.5495 0.5560 0.5751 0.5526 0.4320 0.3974
α= 1.0 0.5077 0.5510 0.5469 0.5399 0.4377 0.4306
α= 10.0 0.4369 0.4768 0.4474 0.4761 0.4003 0.3947

Table 4.2: The cross-validated correlation accuracy of the linear ridge regression models trained
on the outputs of each fundamental building element from the ImageNet pre-trained network. The
α parameter corresponds to the regularization strength for the linear ridge regression model. The
entry in bold designates the hook and regularization that yielded the best accuracy.
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4.1. ANALYSIS
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Figure 4.1: A graph of linear ridge regression correlation accuracy trained on the outputs of
each fundamental building element from the FaceNet pre-trained network. The α parameter
corresponds to the regularization strength for the linear ridge regression model. The dashed line
labeled Gabor represents the previous state-of-the-art from [1]. The raw images reference point
represents linear regression on the raw 48x48 grayscale images.

4.1 Analysis

We performed the 1-sample (paired) t-test described in Chapter 3.5 on the results. The test

considered the pair of correlation coefficient from each fold as corresponding samples, taking

samples from [1] and our results. We used the test to determine whether particular experiments

with the transfer learning model outperformed the results of the Gabor approach. On the best

result of FaceNet hook4 features with an α= 1.0, we found a T-value of 3.6245, which yielded

a p-value of 0.0361. The 95% confidence interval for the improvement was (0.0072,0.1113).

This analysis showed that our model is a viable alternative to Gabor filters. We could not

assert whether our approach is strictly better than Gabor filters, as we took the best of three

regularization parameters, and did not have enough data to perform nested cross-validation.
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CHAPTER 4. RESULTS
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Figure 4.2: A graph of linear ridge regression correlation accuracy trained on the outputs of
each fundamental building element from the ImageNet pre-trained network. The α parameter
corresponds to the regularization strength for the linear ridge regression model. The dashed line
labeled Gabor represents the previous state-of-the-art from [1]. The raw images reference point
represents linear regression on the raw 48x48 grayscale images.

FaceNet ImageNet
α= 0.1 0.786 0.022
α= 1.0 0.911 0.164
α= 10.0 0.567 0.045

Table 4.3: The correlation between the model accuracy as reported in Tables 4.1 and 4.2, and the
information strength metric reported in Table 4.4

4.2 Information strength metric

We computed the engagement-subject information strength S(h) (defined in Chapter 3.5.2)

for each hook and reported the strength values in Figure 4.3 and Table 4.4. We also computed

the correlation between the information strength metric and the correlation accuracy on the two

networks across the hooks and reported them in Table 4.3. FaceNet correlated strongly with the
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4.2. INFORMATION STRENGTH METRIC

Model hook1 hook2 hook3 hook4 hook5 hook6
FaceNet 0.8439 0.8561 0.8605 0.8499 0.8145 0.6641
ImageNet 0.9083 0.9405 0.9804 0.9485 0.9330 0.9586

Table 4.4: The information strength metric as defined in Chapter 3.5.2 for features extracted from
the hooks of both models. The different values for the raw image depth correspond to the two
expected input image sizes of the networks.

metric (r = 0.755), whereas ImageNet did not correlate with it (r = 0.077).
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Figure 4.3: A graph of engagement-subject information strength. Larger values correspond to
relatively more engagement information than subject information. The dashed line labeled Gabor
corresponds to the information strength metric for the features of the bank of Gabor filters from [1].
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5
DISCUSSION

We aimed to determine whether convolutional neural networks would benefit from transfer

learning when estimating engagement. Our results demonstrated that transfer learning allows

convolutional models, without any fine-tuning, to achieve a higher correlation accuracy than

Gabor filters and linear regression. Moreover, we can achieve a significantly higher accuracy

when we also optimize the hyper-parameter α in the same cross-validation experiment.

Ideally, hyper-parameters such as the regularization parameter α should be evaluated against

validation data before being tested on the test data. Varying the regularization parameter without

using a separate test set or nested cross-validation thus departed from best-practice. We did so to

get a sense for the upper performance bound of the approach, and to allow comparison of results,

as [1] partitioned the HBCU dataset into the same folds that we used. Moreover, because the

size of the HBCU dataset required a technique such as cross-validation to estimate accuracy, the

addition of a validation fold would have reduced the performance of the final classifier. The size

of the dataset requires that experiments trade-off accuracy between optimizing the right factors

and avoiding data contamination.

We weren’t able to conclude whether general or face-derived deep features yield the best

performance, due to the inherent differences in the ImageNet and FaceNet’s complexity and

capacity. In retrospect, we may have eliminated this inconsistency by training the models on

features extracted from VGGNet-16 [57] and VGGFace [42]. These models use an identical

architecture, and while VGGNet-16 is more inefficient and yields worse accuracy than VGGNet-

19 and Inception-ResNet [15], that comparability would have allowed us to reach stronger

conclusions.

We noted with interest that the information strength metric correlated strongly with FaceNet

performance, but didn’t correlate with ImageNet performance. This discrepancy may indicate

18



nothing, due to the differences in the networks’ design and implementation. Alternatively, this

may indicate that one (or both) of the linear models underutilized their feature vectors.

The size of the input image likely limited the ability for the off-the-shelf models to extract

good features. The network may have benefited from full-color images and an increase in input

resolution. The pre-trained models may have also seen an improvement from data augmentation,

whereas we used none.
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6
FUTURE WORK & CONCLUSION

Although we focused on linear models due to their precedent of performing well on small

datasets [52, 53], we hypothesize that this dataset might be large enough to allow slightly deeper

models to learn good parameters from the hooks. Our pilot efforts to train deeper models on top

of the hooks did not result in increased accuracy compared to just linear ridge regression. Future

research may benefit from better tools such as [60] that help to visualize and debug intermediate

features.

We did not fine-tune the pre-trained models. Fine-tuning has worked in other problem

domains [12, 61–63]. While some research has indicated that fine-tuning on small datasets

results in overfitting [12] or is unnecessary [11], other findings indicated that fine-tuning is an

important step [61, 62]. Curiously, [63] found that for expression recognition, the resolution of

the input image determines whether fine-tuning benefits the task. They linked this factor to

the possibility that holistic processing may dominate facial expression recognition [64–66]. This

evidence merely indicates that we need to further experiment with fine-tuning, to understand

the conditions under which it improves accuracy.

We experimented solely with transfer learning. Multi-task learning has the same theoretical

foundations as transfer learning, and may similarly help overcome poor generalization on small

datasets.

We also propose that erasing confounding information as a preprocessing step or a form of

network regularization may improve final model accuracy. The HBCU dataset included a subject

that wore glasses, and the cross-validated fold that included the subject in its test partition

performed worse than the other folds. The preprocessing or regularization might help eliminate

information that identifies subject gender, skin color, or age, yielding a representation with

fewer potential confounds. This could be potentially formulated as a minimax problem [67]
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or the optimization of a ratio of discriminabilities for different tasks (such as maximizing the

discriminability of engagement while minimizing the discriminability of glasses) [68]. These

approaches could serve as yet another way to amplify the value of small engagement datasets

using supplementary data.

Future research might benefit from other complex model extensions, including end-to-end

spatial transformations [69], and visual attention-based approaches [70]. Small datasets should

also benefit from data augmentation, including varying the rotation, position, and size of bounding

boxes, the addition of obscuring elements, and synthetic augmentation such as [71]. However,

these particular extensions are more experimental and than our other recommendations, and we

believe they would yield marginal improvements.

The models we proposed did not achieve human-level accuracy in engagement estimation.

Our experiments showed that transfer learning enables automatic engagement estimation to

benefit from convolutional networks. The utility of the information strength metric indicated that

the features might be abstract enough that we could reliably determine useful feature layers for

transfer learning. Our results provided further evidence that the transfer learning can overcome

some limitations of small datasets.
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