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Abstract 
Neurologists face an increasingly overwhelming amount of data that they must 

use to determine diagnoses for patients with potential brain diseases. Our project aims 
to supplement the upcoming technology of automated brain disease classification using 
deep convolutional neural networks to develop a suite of visualization tools for these 
high dimensional deep convolutional neural networks. For this project we developed 
high quality visualizations for convolutional neural networks that classify fMRI brain 
scans. Visualizations such as those developed in this project could be used by doctors 
to identify which parts of the brain are indicators for mental conditions or by data 
scientists to understand more about how their networks work. 
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Introduction 
The effectiveness of neural network classifiers is well known (Zhang et al., 2000), 

and in the field of fMRI brain disease classification there are several such classifiers that 
are convolutional neural networks (Lee et al., 2017). However, these classifiers can be 
difficult to understand (Zeiler and Ferguson, 2013) and, in the case of 4D fMRI images, 
present an extra challenge because visualizing high dimensional data is so complicated. 
The neural network techniques for fMRI images also differ from standard neural 
networks, presenting further difficulty. Such visualization methods are important as they 
are closely connected with understanding modern ideas in deep learning (Zeiler and 
Ferguson, 2013). In this MQP, we created powerful convolutional neural network 
classifiers to assist in automatic labeling of brain diseases and developed visualizations 
to understand these classifiers. Deep learning is currently used in many applications 
such as voice and image recognition (Schmidhuber, 2015) and the results of this MQP 
support novel work in visualizing convolutional networks, deep auto-encoders, and 
convolutional network design. 

Background 

fMRI 
Magnetic resonance imaging (MRI) scans are images formed using magnetic 

fields, typically images of the human brain. Originally introduced in the 1980s, MRI 
scans are used to produce structural images of organs, such as the central nervous 
system (Logothetis, 2008). Functional MRI (fMRI) scans, however, record information 
from each voxel across time, as introduced in a paper for Science in 1991 (Belliveau, 
1991). fMRI scans take separate images of the brain in both the resting and active 
states. The fMRI then observes whether there is any change in hemoglobin by detecting 
the presence or absence of oxygen. The result is a series of images showing a map of 
brain activity. fMRI scans are currently used to detect dynamic patterns of activity in the 
working human brain (Buxton, 2013). Thus, fMRI scans can provide crucial data on the 
higher-level visual cortex using a nonintrusive window into brain function with whole-
brain coverage and reasonable spatial recognition (Cox and Savoy, 2003). 

Cognitive research has used fMRI scans to map brain activity to further 
investigate neural diseases, including Parkinson’s, Alzheimer’s, and Huntington’s. One 
study, for example, used fMRI to observe what brain circuits were associated with 
timing reproduction in patients with Parkinson’s (Elsinger et al., 2003). Another study 
investigating the neural networks of Alzheimer’s disease using fMRI identified a deficit 
of visuospatial abilities in patients, which is a sign of early onset Alzheimer’s (Vanini et 
al., 2008). A third study found that fMRI is sensitive to neural dysfunction occurring 
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more than 12 years prior to the onset of Huntington’s disease (Zimbelman et al., 2007). 
As such, there is enormous capacity for fMRI scans to enable further progress in 
understanding the associations between different areas of the brain for these and many 
other neural diseases. The Huntington’s study also reflects the potential uses of fMRI 
for predicting information about a disease in a neural network using machine learning, a 
point we investigated in this project. 

Machine Learning and Neural Networks 
Data mining and machine learning are used to determine patterns in large 

amounts of data, like fMRI scans. Discovering these patterns allows us to predict 
conditions from the data. For fMRI data, we would be able to create tentative diagnoses 
of various diseases. There are many different approaches to machine learning, 
including decision tree learning, artificial neural networks, support vector machines, 
Bayesian networks, reinforcement learning, and genetic algorithms. Each model has its 
own benefits and drawbacks and it is always a good idea to carefully pick which 
machine learning method(s) to use (Raschka, 2015). 

Neural networks are a programming construct originally inspired by biological 
neurons and the brain’s biological process. In a neural network there are usually many 
neurons, each of which has a number of inputs and one output. The neuron computes a 
linear combination of its inputs and applies a nonlinear transform. Often a neuron is 
used to determine the likelihood for whether a particular input is a member of a 
particular class of inputs, e.g. given an input of flower petal length and sepal length, a 
properly trained neuron could say whether the flower is likely to belong to a certain 
species or not. The weights in the neuron’s linear combination are carefully selected to 
make the output of the neuron tell something useful about the input data. Weight 
selection is usually done via a process called “training”, where the neuron is tested 
against data where the desired output is known (Raschka, 2015; Goodfellow, 2016). 

Neural networks used on classification tasks, by virtue of the problem definition, 
admit tractable loss functions to express the difference between their prediction and the 
known classification for items in the training set. A popular choice among these loss 
functions is Categorical Cross-entropy.The way that neural networks are typically 
trained is through a method called Stochastic Gradient Descent (SGD) with Nesterov 
Momentum, RMSProp, and some form of variance reduction. SGD takes “mini-batches” 
of the training set, which are random subsets of a certain size, and computes the partial 
derivative of the parameters of the network with respect to the loss of the model on the 
inputs from the current mini-batch (Bottou, 2010). This partial derivative is used to move 
the parameters down a sloping gradient function, away from the loss (see L1 and L2 
from figure 1). 

Nesterov Momentum has been shown to dramatically accelerate SGD by 
incorporating a second order “momentum” term, which intuitively moves the search 
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away from plateaus or flat regions of the loss function and toward deeper minima as the 
search accrues momentum that requires hitting opposing directions of loss in order to 
be reduced. Nesterov adds another parameter to be tuned and tends to amplify the 
variance of the parameters across updates, as well as reduce the chance of 
convergence in practice. The best guarantee for convergence of Nesterov is O(1/T2) 
(Sutskever et al., 2013). Another technique to speed up training is RMSProp, which 
operates in a similar way to Nesterov. However, instead of tracking a second order 
term, RMSProp normalizes the updates with respect to the magnitude of a running 
windowed average of gradients. In this way, it escapes areas with relatively small 
gradients and ideally converges to the solution at a fixed rate (Hinton, et al. 2014).  

Variance reduction is a technique by which SGD can use more aggressive 
parameters for Nesterov and RMSProp while still having a chance of convergence. It 
relies on the fact that updates deviate wildly on a per-mini-batch basis, but if an average 
piecewise-linear model is kept, they can be made to adjust a “running average” model 
that is almost forced to converge. The last modification used in this project, and that 
most modern neural networks that are trained employ some variation of, was learning 
rate annealing. The key point of this method is that the gradient should be scaled to a 
finer granularity as the model gets closer to convergence to avoid missing the minima. 
This method, combined with more advanced third-order “negative momentum” methods, 
have recently been introduced that have better provable convergence guarantees 
(Allen-Zhu, 2016), but are not yet implemented in Keras and were therefore unavailable 
to use for our visualizations. 

Shallow neural networks are good tools for determining simple classifications of 
data. Complex tasks such as image recognition, however, greatly benefit from 
increased depth. For more difficult tasks, multiple shallow networks are used, with each 
neural network - or “layer” - feeding into the next and the last neural network providing 
the output classification (Raschka, 2015; Goodfellow, 2016). Usually, between each 
layer, all values are passed through a nonlinear activation function, which prevents the 
more traditional linear layers from combining into a single collapsible linear function; this 
process is called deep learning. Activation functions include nonlinearities between 
layers which are usually either a sigmoid (a rescaled hyperbolic tangent function), or a 
rectified linear unit (ReLU, or max(0, x)). While the sigmoid activation function is 
more biologically motivated, ReLU trains faster and is generally superior for training 
multi-layer networks (Glorot et al., 2011). 

For some problems, using traditional fully connected neurons - unconstrained 
matrices - for all layers of the deep learning network is inefficient. For example, for a 
neural network that classifies images of dogs, a dog in a slightly different location or 
orientation would cause a whole separate set of neurons to fire. This leads to high 
memory costs, a need for larger datasets, and long training times. One solution to this 
problem is the use of Convolutional Neural Networks (CNNs), which are a type of neural 
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network usually used in deep learning and uses a specialized linear operation called 
convolution in place of general matrix multiplication in one or more layers (Goodfellow et 
al., 2016). Convolutional Layers, the primary component of CNNs, use a set of “filters” 
that are convolved over the input to the layer, and each filter produces an output, called 
an activation map, of almost the same size and shape as the input (LeCun and Bengio, 
1995). All of the activation maps are then passed into the next layer. 

Because convolutional layers’ filters focus on low level patterns and classification 
problems often depend on high level patterns (e.g. classifying dog and cat pictures), it is 
necessary to make activation maps significantly smaller. This is achieved using 
subsampling, which are also called pooling layers. Typically, pooling layers combine 
local values into a single value by a simple mathematical formula. For instance, a 3x3 
max pooling layer - the most common type of pooling in CNNs - combines squares of 9 
pixels into a single pixel by picking the maximum (Cohen and Shashua, 2016). 

In addition to the basic building blocks of CNNs, there are a number of 
techniques that make neural networks more reliable and train faster that can be applied 
to most networks. One of these techniques is to apply Dropout. Dropout is a process 
that is only applied during training, where the output from individual neurons (or 
locations in activation maps in convolutional neural networks) is ignored randomly. This 
forces the neural network to become more robust and redundant, providing better 
predictions (Srivastava et al., 2014). 

Another technique is using a Residual Network. In a Residual Network, the 
output from a convolutional layer is a combination of the activation maps of its filters and 
the inputs from the previous layer, which provides continuity over the filters across 
multiple layers. During training, individual layers can be left out much in the same 
manner as Dropout, and allows the training of significantly deeper neural networks (He 
et al., 2016). While using Residual Network and Dropout improves performance and 
training time, a neural network can also have its training time reduced by apply Batch 
Normalization, even somewhat obviating the need for Dropout. Batch Normalization is 
the name for a process where the activation maps from one layer to the next are 
normalized to avoid extreme values in activation maps, or an Internal Covariate Shift, 
and can speed up the training process by a factor of 14 (Sioffe and Szegedy, 2015). 

The capacity of a Convolutional Neural Network can be controlled by varying the 
number of convolutional layers - called depth - and the number and size of the filters - 
called breadth - to make strong and mostly correct assumptions about the nature of 
images, including stationarity of statistics and locality of pixel dependencies (Krizhevsky 
et al., 2012).  
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Figure 1: Math Table 

Layer or Concept Math 

1D Convolution 

 

3D Convolution 
 

Sigmoid 
 

ReLU 
 

Max Pool 

 

Average Pool 

 

Dense Layer 
 

L2 

 

L1 

 
 

Machine Learning Using Brain Scans 
fMRI scans are useful for diagnosing neurological disorders. For instance, one 

study conducted to discern patients with unipolar or bipolar depression was able to 
identify traits common to each type of disease, respectively, but determined that larger 
sample sizes are necessary for greater accuracy (Grotegard et al., 2013). Unfortunately, 
fMRIs are complex enough that it is easy to misdiagnose patients (Sing and Rajput, 
2006). One possible solution to this problem is to automate the process with machine 
learning. 
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Various types of machine learning have been used to diagnose brain diseases. 
For instance, support vector machines and random forests have been used to diagnose 
Alzheimer’s disease and Schizophrenia with over 96% and 80% accuracy respectively 
(Sarraf and Tofighi, 2016; Raventós and Zaidi, 2015), and convolutional neural 
networks have been used on ADHD data (Kong, 2014). In a standard model process, 
the machine learning algorithm takes in input in the form of an image or set of images - 
such as a batch of fMRI scans - and commences training the algorithm on the input 
data, making predictions for the diagnoses that hopefully get closer and closer to the 
actual values. 

Convolutional Neural Network Visualization Techniques 
 

Neural networks are useful 
tools, but it is not obvious how any 
given neural network operates. 
Unfortunately, due to the large number 
of non-linear interacting parts it is 
difficult to determine how the internals 
of the network work, especially for 
filters in the deeper layers of the 
network. A common comparison often 
made is to a “black box” (pictured in 
figure 2) that obscures the layers of 
the training set from outside sources 
(Yosinski et al., 2015). Since 
neurologists observing associations 
between data points within a neural network need to have access to the training filters in 
order to better understand the associations in an enormous dataset, any techniques 
used in this project needed to also address this problem. 

Visualizations of neural networks can show information to serve several different 
purposes: showing the layout of a neural network (Lee et al., 2017), to deconstruct how 
a given neural network operates, to show where improvements could be made to the 
network (Zeiler and Fergus, 2013), or as an educational tool for explaining how a neural 
network works (Smilcov and Carter, 2017). This paper focuses on visualizations unique 
to convolutional neural networks, especially those that are affected by increasing the 
dimensionality of the input data from 2D images to 3D tensors. 

    Figure 2: The Black Box Problem 
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Max-Patch 
One of the most basic approaches for understanding what a filter of a 

convolutional neural network detects is determining the patches of the input image that 
cause maximal activations. It is so basic that in some papers the technique is not even 
named (Zeiler and Fergus, 2013). It is relatively easy to understand for 2D images: If 
the top 10 patches of pictures that cause a filter to maximally activate all show a certain 
feature (e.g. eyes in a dataset of facial recognition images), then that filter is good at 
detecting that feature. There are possible issues with this kind of visualization - 
sometimes it is not clear what the patches have in common, or the filter may detect 
more than one feature from the original images (e.g. the filter activates for both eyes 
and pictures of doorknobs). It is also necessary to have an appropriate dataset on hand 
to pull the patches from. Despite this, Max-Patch visualizations are one of the most 
intuitive ways of detecting the purpose of a filter on a convolutional layer. Figure 3 and 
figure 4 are examples of a Max-Patch visualization on a convolutional neural network 
that classifies images of hand-drawn digits from LeCun’s MNIST dataset. This 
visualization shows that filter 31 is consistently detecting a different shape than filter 21. 

 
 

      
Figure 3 and Figure 4: MNIST Max-Patch Examples 

 
There is also spatial data shown by the location of the maximum activations. This 

can be useful for determining where the filter activates, and get a more general idea of 
what the filter is trying to identify. Figure 5 uses the same classifier as the examples 
above, but this example also shows the location of the maximum activation on the 
original image. It is clear that filter 0 generally activates towards the top of the MNIST 
images’ digits. 

    

Figure 5: Max-Patch Example with Original Location Marked 

Live Activations 
Perhaps the next most straightforward method of visualization is showing the 

activation maps of a filter on an image. This allows a quick visualization of what each 
filter detects, and is fast enough to run on live video (Yosinki et al., 2015). Each 
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activation map is always equal to or smaller than the original image. In figure 6, the 
leftmost image is the original image from the MNIST dataset, and the right three images 
are activation maps for different filters. This visualization shows where the filter 
activates - for instance, the filter corresponding to the rightmost image detects (activates 
on) the bottom of lines on the original image. 

 

 
Figure 6: Live Activation Example 

Guided Back Propagation and Saliency Maps 
 Guided Back Propagation is a technique that aims to visualize what parts of the 
inputs for a neural network are used to determine its output. This technique can be 
easily extended to account for an individual feature instead of the output of the network 
by treating the loss that is back-propagated to the output of the layer containing the 
feature to be the loss output of the classifier and applying the same techniques. 

Saliency Maps use guided back-propagation with a special way of back-
propagating through ReLU layers to determine a feature on an image. The idea is to 
highlight the areas of the image that influence the activation of that feature significantly. 
When using guided back-propagation, one discards all negative gradients each time 
they pass through a ReLU layer, which sparsifies and concentrates the end result on 
areas that correlate positively with the visualized feature (Simonyan et al., 2013). We 
also propose adding the gradient map to a map with only negative gradients if the 
number of ReLU layers considered is even, and the input ReLU positive if the number of 
ReLU layers considered is odd. Because we constrain the sign and two negative signs 
become positive, both of these together give a sparse footprint of how that feature 
activates on the image. 

Saliency Maps encode the location of an object of a given class in an image and 
are computed by finding a derivative using a single back-propagation pass, and then 
rearranging elements in the vector w, where the number of elements is equal to the 
number of pixels in the given image. The Saliency Maps are extracted using a 
Convolutional Neural Network classification trained on the image labels and are then 
visualized (Simonyan et al., 2013). This visualized map can then be used in 
deconvolution. 
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Deconvolution 

 
Figure 7: Basic Example of Convolution and Deconvolution 

  
A Deconvolutional Network is a Convolutional Model that uses the same 

components (filtering, pooling) in reverse (Zeiler and Fergus, 2013). Each layer 
successively unpools, rectifies, and filters the activity in the layer beneath it until it 
reaches input pixel space. Figure 7 is a simple visual aid demonstrating the inverse 
relationship between convolution and deconvolution. Unpooling is an approximate 
inverse of max pooling that takes place in the convolutional equivalent, which then 
switches from the convolutional network and places reconstructions on upper layers in 
order to preserve the structure (Springenberg et al. 2015). The reconstructed signal is 
then passed through a ReLU non-linearity before each filter is transposed vertically and 
horizontally. 

Training a Deconvolutional Neural Network on the output classifications of a 
neural network allows patterns to be drawn from what the neural network thinks a 
typical member of that classification looks like. It is also possible to train 
Deconvolutional Neural Networks to, using a feature map produced by a convolutional 
layer, attempt to find what the original image looked like. A network trained in this way 
can be fed a one-hot vector to attempt to find a “perfect” image for activating a single 
feature at that location. 
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Auto-Encoder 
An auto-encoder, or auto-association, neural network learns a map from the 

high-dimensional space of fMRIs to a low dimensional space of significantly lower size 
and a paired map from the low dimensional space back to the input space using a fully 
convolutional approach with pooling. Because the size of the low dimensional space is 
less than that of the space of fMRIs, it is called an “undercomplete” space as it cannot 
represent all vectors that could exist in the fMRI space (Goodfellow et al., 2016). Auto-
encoders that are completely linear have been shown to be equivalent to Principal 
Component Analysis (PCA) when trained using L2 loss and L2 regularization that is 
sufficient to keep the spectral norm of the resulting matrices below a threshold (Murray, 
2016). PCA finds orthogonal vectors which define a basis such that when the input is 
projected to said basis, expected Euclidean distance to the original input is minimized 
over some data-set. In this way, deep auto-encoders can be thought of as optimizing for 
principle-component half-spaces which separate the data in a way that classifies it into 
categories for which there is a good principal component representation (Basri and 
Jacobs, 2017). 

Auto-encoders have been shown to be useful as pre-training, or pre-conditioning, 
methods for deep neural networks. Before the introduction of sound random 
initializations (in a paper by He et al. in 2015 and another method by Glorot and Bengio 
in 2010), auto-encoder initializations were standard for deep neural network training. 
Deep auto-encoders have been shown to be equivalent to certain forms of manifold 
learning which aids in the intuition that their construction is used to maintain smooth 
areas of the input space as smooth in the feature space (Basri and Jacobs, 2017; Park 
2015). 

Convolutional auto-encoders consist of a CNN with a low dimensional output 
(say 5x5x3 instead of an input image that is 96x96x50) to perform the encoding, 
followed by a Deconvolutional Neural Network to decode the data back to its original 
dimensions (for our example, 96x96x50) (Masci, 2011). 

Results and Visualizations 

Setup and tools 
For this project, we developed a model that we trained on a set of fMRI scans 

based on the patient’s diagnosis for bipolar disorder. This fell into four categories: at risk 
- manic, at risk - genetic, has bipolar disorder, and does not have bipolar disorder. We 
used the following visualization techniques: Max-Patch, Guided Back Propagation, 
Saliency Maps, Deconvolution, and an auto-encoder. Visualizations were developed 
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using Keras backend and pre-processing was performed using a Python script. The 
network was trained on the WPI Ace cluster server. 

Model Structure 

Network Model 
 

One common way of analyzing brain scans is by 
analyzing pairs of regions of the brain and figuring out 
important interactions between them. This method has 
had success in using statistical analysis to show 
similarities in bipolar disorder and schizophrenia (Chai et 
al., 2011), among other neural disorders. We created 
patterned one of our model’s using analysis of pairwise 
signals from brain scans, starting with the architecture of 
the best performing model from Lee’s 2017 paper (also 
by our advisor, Xiangnan Kong). This original model 
began with a 2x1 “valid” layer which Through testing the 
model on our held-out testing set we determined that we 
were slightly underfitting so we added another layer of 
1D convolutions before the 1x2 Convolution proposed in 
the model to arrive at 1x3, 2x1, 1x7, 1x5, 1x10 layers, all 
of which outside of 2x1 were Residual. This difference 
allowed our model (pictured in figure 8) to train faster and 
have more representational power than the model 
originally proposed in Lee’s paper. 

 

 
  

Figure 8: Network Model 
Architecture 
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Fully Convolutional Model 
 

 
Figure 9: Fully Convolutional Model Architecture 

 
Our other model directly convolves on the fMRI images, consisting of 9 

convolutional layers. Our Convolutional layers are divided into three “Functional Units”, 
each containing 1 5x5x5, 1 3x3x3, and 1 1x1x1 Residual Convolutional layers, all of 
which have 16 filters. Each of our Functional Units is separated from the next by a Max-
Pooling layer. Our rationale for this architecture comes from the understanding that 
larger convolutional filters can detect features that smaller ones cannot, but take 
significantly longer to train, and a network that mixes the two provides a good balance 
(Smith and Topin, 2016; Zagoruyko and Komodakis, 2017). A constraint of our model is 
that because we are using Residual layers all the way through, it is impossible to create 
a network which follows the previously standard pyramid-shape architecture for neural 
network design which is to have more filters closer to the input and few towards the 
output of the neural network. There do exist workarounds to this problem (Han et al., 
2016), however this was out of scope for our implementation. This also creates a neural 
network that has a straightforward architecture to create visualizations from. 

This model produces a classifier for a single brain image in a sequence of 150 
brain images, which we used to “boost” the model to obtain a better result than what we 
achieved on the single brain image. 
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Model Fit/Loss 
The fully convolutional model was trained to recognize patients with the ‘DX’ 

label into one of four categories, diagnosed, not-bipolar, at risk: manic and at risk: 
depressive. After revising the network to train by categorical loss, a lower learning rate 
was required. 

For our models, we trained each with a holdout of 13 and 15 items for our 
network and our fully convolutional model respectively (we decided to use a larger 
holdout after worrying that our good result for the network model was due in part to 
variance) for our test set, leaving the rest of the data for the model to learn from. We 
achieved state-of-the-art (to our knowledge) results for both of our models, with an 
86.7% (13/15) accuracy for our boosted fully convolutional neural network and an 
84.6% (11/13) accuracy for our network model. This is a higher classification success 
rate than 64%, the accuracy of the model our network model is based on, though that 
network is diagnosing ADHD (Lee et al., 2017), which may be a significantly harder 
problem. 

Saliency Maps 

      
Figure 10 and figure 11: Saliency Map Examples on our Fully Convolutional Network 

 
 Our implementation of Saliency Maps, as shown in figure 10 and figure 11, 
(Simonyan et al., 2013) operates on a 3D CNN, and can visualize the output of any filter 
of any Residual layer in the model (or as initially described in the paper (Simonyan et 
al., 2013) on the output layer) as a video, each frame being a single saliency map of the 
prediction that is being used to boost the classifier accuracy over the whole fMRI 
sequence. To make this efficiently computable, we used Keras built-in K.gradient 
function on a black-box Keras “functional model” that we created by taking the input of 
the model and the output of the layer we are concerned with and pairing that with a loss 
that is the negative magnitude (in the Euclidean sense) of the output of the feature/layer 
pair in question. If we were to perform gradient descent on this it would allow us to train 
a deep-dream model, however such a visualization would not make sense in the 
already difficult-to-interpret case of brain fMRIs. 
 In order to modify the gradient passed through the ReLU gates to produce our 
Saliency Maps, our functional model must actually run through each Residual layer and 
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then remove the results that are not the correct sign by using a second pass done using 
simple numpy operations.  
 Upon observing the results from our Saliency Map videos we were able to 
distinguish a few features that seemed omnipresent across filters, layers, and brains. 
The most significant of these features was a clear pattern of communication between 
regions of the brain and an area near the back of the top of the brain which we identified 
to be the parietal lobe, which has been associated with bipolar disorder (Najt, 2013). 
 We also created Leave One Out (LOO), pictured below in figures 12 and 13, 
visualizations that show a similar result to the Saliency Map visualizations. LOO 
visualizations are concerned with the impact of all the filters that are not visualized by 
the Saliency Map on how the later layers use the output of the filter visualized. The LOO 
visualization is performed by subtracting the normalized Saliency Map output for a 
single filter from the normalized Saliency Map output of all filters on a given layer and 
clipping the loss to be above zero. This produces the points of the image that are taken 
into account by the other filters to the exclusion of the filter being visualized. 

     
Figure 12 and 13: Examples of Leave One Out (LOO) Visualizations 

Max-Patch 
 We applied several different versions of the Max-Patch visualization to our 
network, and our process evolved over time. 
 One major consideration for Max-Patch is selecting the size of the patches. 
Ideally, the patch includes all pixels that influence the maximum location on the 
activation map. We considered using back-propagation to detect what influences the 
pixel, but it is much simpler to perform a simple calculation (figure 14) using the hyper-
parameters of each of the previous layers. 

 
Figure 14: Simple Patch Size Algorithm 
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 This method does break down on more complex neural networks where layers are not 
linearly arranged, such as the Inception Architecture (Szegedy, 2015), but works quite 
well on simpler neural networks, such as our fully convolutional model. 
The next difficulty we come across is how to display the patches once we gather them. 
Initially, we showed a single cross section, but that clearly did not show enough 
information to identify what features the filter detects. In figures 14 and 15, each column 
corresponds to a different patch and each row corresponds to a different cross section 
of that patch. 
 

 
Figure 14 and 15: Two Max-Patch Visualizations  

  
After that, we tried a few other methods displaying multiple cross sections, one for each 
axis, or one for each Z value. These methods were better, especially the latter, which 
shows all the data, but quickly becomes untenable as the neural network becomes 
deeper and the size of each patch increases. We also started to add a chart displaying 
the location of the patch in the original fMRI (shown 
in figure 17). 
 
Figure 16 (left image): Max-Patch Visualization with Small Patches 

 
Figure 17 (right image): Later in Network Max-Patch Visualization 
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 Finally, we settled on a 3D view placing the patch in its original location in the 
fMRI (figures 18 and 19). This allows us to not only get information about what each 
patch consists of, but also what area of the brain causes a filter to activate the most. 

     
Figure 18 and 19: Two Max-Patch Visualizations with Patches in Original Position in Brain 

Video Rendering 
We used Matplotlib’s (Hunter, 2007) video rendering functionality and 

rendered directly to files. It is important to note that this allowed us to string together 
plots with full resolution and not drop any frames as a result of “lossiness” that another 
method (i.e. using a different video rendering software with a more hands-off approach) 
may have caused. Because there are 88 distinct fMRI samples, we have 88 distinct 
videos for Saliency Maps, LOO, and our dictionary-learned activations. 

Network Model Visualizations 
 Our network model makes its predictions using patterns between pairwise 
regions of the brain, and showing which pairs of regions are important for determining 
our prediction for a particular brain gives a lot of insight into what the neural network 
considers important. 
 We created two visualizations that show just that: a heatmap of the importance of 
the patterns between pairs of regions, and an activation graph network visualization 
superimposed on a drawing of a real brain. Both of these visualizations show the same 
information, but the heatmap is more complete while the graph network is easier to 
understand without memorizing the location of each of the regions (see figure 20 and 
21). 

 
Figure 20 and 21: Visualizations of the First fMRI in the Dataset 
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 In the heatmap, each region of the brain according to our atlas is given a row and 
a column, where the colored squares represent the signal between the regions 
indicated by its row and column. The diagonals are dark because we do not try to find 
patterns meaningful to our diagnosis between a region and itself. In the graph network, 
lines indicate a strong activation for the patterns detected between the regions at the 
endpoints of the edge. 

In these visualizations, red indicates a positive number output from the 
convolutional section of the network and blue indicates a negative one, but the color is 
far less important than the saturation of the squares or the presence of an edge, which 
indicates the strength of the patterns between those two areas. 

Strong vs. Weak 

 
Figure 22 and 23:Strong vs. Weak 

Figure 22 and Figure 23 indicate that fMRI 36 has many more of the patterns the 
network is looking for than fMRI 27. 
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Positive vs. Negative 

 

 
Figure 24, 25, 26, and 27: Positive vs. Negative 
 

These four visualizations (figures 24 - 27) are examples of fMRIs that had a particularly 
large number of positive or negative pattern activations. Note - while this does not mean 
all that much because the dense layer is perfectly capable of reversing these activation. 
The patterns are typically strongly activated positively across our dataset or strongly 
negatively activated, but not both. 

Negative Results 

Iteratively trained model 
Another model we developed was trained iteratively, one or two layers at a time. 

Similar methods are not uncommon, for instance there has been research into 
unsupervised training of individual layers as far back as 2007 (Bengio et al., 2007). This 
allows the training of very deep neural networks and avoids putting the entire network 
into memory at once. The basic idea is to train a shallow neural network (a 
convolutional layer followed by a dense layer to provide output) to classify the brain 
scans, and then take the activation maps’ output from the convolutional layer, and train 
another convolutional layer and a dense layer to classify the activation maps from the 
previous convolutional layer. This is repeated until the output of the classification has 
stopped improving with the addition of new layers. The convolutional layers then are 
stacked together with the last dense layer, as the previous dense layers are discarded, 
to provide a classifier that works on the fMRI images. This allowed us to train each 
convolutional layer independently. 



21 

Unfortunately, the network we built this way was not terribly good at diagnosing 
the brain scans. Deep Neural Networks rely on earlier layers adapting (via training with 
back-propagation) to layers closer to the output, and this method contravenes that. 
Methods like this are usually used as pre-training - making the final training process 
converge much faster (Erhan, 2010). We attempted to ameliorate this issue by training 
two layers at a time, training each convolutional layer twice, but this did not significantly 
increase results. We could have followed up training each layer individually or in pairs 
by training the entire network at once, but by this point we had developed the other 
models sufficiently that this model was no longer a priority. 

4D Convolutional layers 
Early on we attempted to use a 4D convolutional neural network directly, 

however there were several obstacles that stymied our progress. One such obstacle 
was that in order to do this we would need to turn the built-in 3D convolution support 
into 4D convolution support in Keras, as not even the CuDNN toolkit on which Keras is 
based has optimized 4D convolutions. This was a huge performance hit. Additionally, in 
order to develop a performant and deep neural network, we were faced with a challenge 
of either cutting depth or filters by a factor of three as the 3x3x3x3 convolution uses 81 
floats times the width of the previous layer, instead of 27 for a 3x3x3 convolution. 

Auto-Encoder 
We also trained a convolutional auto-encoder on our fMRI scans. The goal of 

training this auto-encoder was to effectively determine a piecewise-linear feature 
description of the input space of fMRI scans that would enable our network model to 
perform better on our dataset than the conventional dictionary learning approach. The 
performance benefit that we aimed to achieve was due to the higher performance of 
deep auto-encoders as dimensionality reduction techniques when used to pre-train 
neural networks as described in Erhan’s 2009 paper and Le Paine’s 2015 paper. 

We trained an auto-encoder with the same general architecture to produce 
several different dimensions as output. The highest performing auto-encoder was 
naturally the 90-dimensional one, as it was the least constrained of the three, however 
what we had to weigh against this performance gain was how well our network model 
performed when it was fed pairs from the 90-dimensional input vs. the 5 or 30 
dimensional inputs. The network model requires a number of weights that is quadratic in 
the number of 1-dimensional inputs it takes. This means that the layout of the deep 
network model allows for a much higher number of trainable convolutional filters per 
layer on the 5 model than the 90 model. 
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Conclusions 
 During the course of this project we created two very different, highly accurate 
predictive models using convolutional neural networks and a number of visualizations 
that show the function of parts of our models. We found that non-overlapping regions of 
the brain are more useful than our convolutional auto-encoder for classifying bipolar 
depressive disorder in our dataset. Additionally, we observed meaningful motifs in 
visualizations both networks, in particular interactions with the parietal lobe, which 
agrees with previous research on bipolar depressive disorder (Najt et al. 2013). 
Visualizations for the two models produced similar results, so we can conclude that they 
work consistently. 

Future work 
There are a number of avenues that one could take to pursue this research 

further: more visualizations, increasing the training set, and applying our approach to 
related problems. There are many visualizations that are commonly used on 2D 
Convolutional neural networks that we did not investigate in this paper, such as 
deconvolution or displaying activation maps, which may be informative and useful. 
Additionally, for this project we had access to fMRIs from 88 unique patients, which is a 
small dataset for a machine learning problem. Training with more fMRIs will show if our 
networks overfit the data and possibly suggest different visualizations and 
understanding of the problem. 

Finally, we trained our network to determine whether a patient has bipolar 
disorder, but there are many more problems relevant to doctors and patients that 
remain unexplored. For instance, around 60% of patients with bipolar disorder are 
misdiagnosed as having major depressive disorder (Hirschfeld et al., 2003; Singh and 
Rajput, 2006) because differentiating the symptoms between the two disorders is 
difficult. As such, potential future applications of this project could be used to identify the 
different patterns associated with bipolar disorder and major depressive disorder using 
fMRI scans of patients. 
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Appendix 
 

Selected	Network	Model	Visualizations	
 
fMRI 0 

 
fMRI 24 
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fMRI 27 

 
fMRI 36 
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fMRI 47 

 
 	



30 

Selected	Fully	Convolution	Model	Visualizations:		
Max-Patch	visualizations	of	Filter	1	and	Filter	2	from	the	last	Convolutional	layer	in	

the	2nd	Functional	Unit	
 
Filter 1’s patches: 
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Filter 2’s patches: 
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