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ABSTRACT 

Traditional physical therapy for upper-limb impaired post-stroke patients does not 

involve the use of robotic equipment with the ability to quantitatively assess mechanical 

performance. As a consequence, it becomes difficult to study the therapeutic results achieved 

by the patient through the different stages of motor training. The use of robotic systems to 

assist upper-limb rehabilitation, however, offers possible improvements to these limitations. 

The aim of this project was to develop an exomuscular arm that could be actuated through a 

system of Bowden cables linked to precision DC motors housed in an actuation platform. The 

system assists and controls flexion and extension of the five fingers and the elbow, as well as 

pronation and supination of the wrist. Through a sensor array located throughout, a feedback 

system is able to collect quantitative data on joint angles, fingertip forces, motor torques, and 

control all degrees of freedom utilizing this data and several on-board processors.  
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EXECUTIVE SUMMARY 

I. Background 

Hemiparesis causes the majority of post-stroke patients to experience limited dexterity, 

sensitivity, strength, and coordination in their affected upper extremity. Due to this ensuing 

muscle weakness that severely affects their motor function, a great number of hemiparetic 

stroke survivors seek professional rehabilitative and/or assistive help. The conventional 

rehabilitation process for upper-limb impaired patients is greatly affected by time and money 

restrictions, which often results in patients not being able to achieve a maximum potential for 

recovery. The lack of quantitative data available for therapist to provide a complete assessment 

also limit the possible outcomes of therapeutic training. The use of robotic systems to assist 

upper-limb rehabilitation, however, offers possible improvements to these current methods. 

Through the use of robotics, the team aimed to create a device that would not have these 

shortcomings and would provide a holistic physical therapy solution. 

II. Previous Related WPI MQP Work 

A robotic glove system was designed in 2012 by Delph et al. [1], which used cable arrays 

starting at the fingertips and terminating at servomotors placed in a backpack to actuate finger 

movements. A soft robotic exomuscular brace that actuated the elbow was developed in 2013 

by Brauckmann et al. [2] to serve as an assistive device to upper-limb impaired patients.  

III. Proposed System 

The developers of this 2014 MQP aimed to integrate these two designs into a unified 

system with added capabilities, making it a viable device to be used by upper-limb hemiparetic 

stroke survivors for rehabilitative and assistive purposes.  Our proposed sleeve achieves 
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exomuscular actuation through a system of Bowden cables linked to precision DC motors 

housed in an actuation platform. The device provides the motorized assistance of flexion and 

extension of the fingers and elbow, as well as pronation and supination of the wrist. A feedback 

system collects quantitative data on position and pressure through a sensor array in order to 

control all degrees of freedom utilizing several on-board processors. 

IV. Mechanical Design 

The glove itself (see Figure A) is a thin neoprene glove modified with two zippers 

running parallel from the base of the knuckles to the distal end of the wrist on the dorsal side of 

the hand, which allows for ease in putting the glove on a stroke patient suffering from 

decreased hand function. Along the back of each finger and sown into the glove material is a 

pocket in which the flex sensors and leads for pressure sensors are inserted, with their 

electrical connections available at the back of the hand. These flex and pressure sensors are 

used to measure the angle of flexion/extension of the fingers and the force at the fingertips, 

respectively.  

 

Figure A: Fully Assembled Exomuscular Glove with Flex and Pressure Sensors. 
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A detachable mechanism was designed for the wrist to allow cables to be disengaged 

for easy donning of the device (see Figure B). Force is transmitted to a Bowden system through 

a detachable axle that meshes the lower set to the upper set of yellow pulleys. Constant force 

springs are used to keep the cables in tension and in pulley groove while the mechanism is 

detached. The wrist support beam provides spring support in a set range of motion defined by 

the trapezoid shaped hard stops. 

 
Figure B: Detachable Wrist Mechanism 

 A Bowden system of cables linked to motors is used to actuate flexion and extension of 

the elbow and pronation and supination of the wrist (see Figure C). Springs on ends of 

Dyneema cables allow for series elastic actuation. Force sensing is performed by measuring 

spring deflection through a membrane potentiometer. These redesigned smaller brace 

segments allow for better conformity to patient. 

 
Figure C: Series Elastic Sensor for the Elbow 



v 
 

V. Electrical Architecture 

The system includes three custom printed circuit boards (PCB), each with its own 

microcontroller (Microchip’s PIC32MX795F5F512L). These Main, Sensor, and Motor boards are 

programmed to handle individual tasks with their specific components for each task. The Main 

board is directly connected with the Motor and Sensor boards as well as a computer running 

Ubuntu. A high-level functional diagram of these circuit boards and their communication with 

the computer can be seen below in Figure D. 

 
Figure D: High-Level System Functional Diagram. 

 

VI. Results and Deliverables 

The final prototype of the system (see Figure E) allows for motorized flexion and 

extension of the fingers and the elbow, as well as the pronation and supination of the wrist. 

This third iteration of the system improved from the previous two by adding a modular motor 

units that can be easily removed and modified, a wrist support with trapezoid-shaped hard 

stops, and a detachable mechanism that allows the extension cables to be disengaged while 
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dinning the device. Additional achievement of the team include the design of more compact 

and comfortable elbow braces, more robust design of finger cable guides to prevent losses 

from glove elasticity, as well as more compact and workable design for cable tensioning. The 

system is capable of accurately collecting and interpreting sensor data. Improvements were 

also made with the development of several PCBs for dedicated tasks, such as reading and 

interpreting sensor data, actuating and controlling the system, and communicating with the 

master computer. A demonstration video of the system can be found at the following link: 

https://www.youtube.com/watch?v=Xs_7N57YGdU&feature=youtu.be 

 

Figure E: Exomuscular Sleeve Final Prototype. 

https://www.youtube.com/watch?v=Xs_7N57YGdU&feature=youtu.be
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1. INTRODUCTION 

According to the American Stroke Association (ASA), stroke is the leading cause of long-

term disability in the United States, with one stroke occurring every forty seconds [3]. Up to 

85% of stroke survivors suffer from upper-limb hemiparesis, which is a muscle weakness 

affecting one side of the body. Hemiparesis causes the majority of post-stroke patients to 

experience limited dexterity, sensitivity, strength, and coordination in their affected upper 

extremity. Due to this ensuing muscle weakness that severely affects their motor function, a 

great number of hemiparetic stroke survivors seek professional rehabilitative and/or assistive 

help. This help is often provided in the form of conventional rehabilitation or physical care. 

Unfortunately, the weekly frequency of such programs is strictly limited by the coverage most 

insurance companies provide. This limitation partially accounts for the low 5-20% complete 

functional recovery of stroke patients after six months of rehabilitation, with these recovery 

rates declining as the duration between the onset of stroke and the beginning of rehabilitation 

increases [4]. 

The conventional rehabilitation process for upper-limb impaired patients begins with 

the patient assessment conducted by the physical therapist in order to determine their level of 

pain, severity of the brain injury, dexterity, and motor functionality. The training process often 

continues with a combination of physical and verbal cues on how to execute proper arm 

movements as patients try to complete certain activities such as getting themselves dressed, 

getting in and out of bed, and performing many more daily tasks. This task becomes a 
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strenuous job for the occupational therapist, who has to visually monitor and manually guide 

the patient’s movements.  

Traditional upper limb training depends largely on the physical therapist’s skills and 

experience. Since the patient’s progress is not recorded in a quantitative manner, it becomes 

difficult to study the therapeutic results achieved through the different stages of the motor 

training. The use of robotic systems to assist upper-limb rehabilitation, however, offers possible 

improvements to these current methods. Another issue is that progress in rehabilitation is 

considerably proportional to the duration of the therapy. The longer patients are exposed to 

intensive, challenging, and highly repetitive therapy, the greater their chances to improve [4], 

[5], [6]. Having robotic systems at home that could be utilized for therapeutic purposes may 

increase the continuation of care outside a primary health setting and potentially enhance the 

patients’ recovery.  With this in mind, our project aims to develop a myoelectric-controlled 

exomuscular sleeve to be used by upper-limb impaired stroke survivors for rehabilitative and 

assistive purposes in both clinical and domestic settings. 

A robotic glove system was designed as part of an MQP at WPI in 2012 by Delph et al. 

[1], which used cable arrays starting at the fingertips and terminating at servomotors placed in 

a backpack, to actuate finger movements. This device targeted the rehabilitation of the hand 

through both assistive forces to complement the user’s attempt to flex/extend the fingers and 

resistive forces to emphasize the stability and coordination of the movements. A soft robotic 

exomuscular brace that covered the lower arm, elbow and upper arm, was developed in 2013 

by Brauckmann et al. [2] to serve as an assistive device to upper-limb impaired patients. This 

robotic brace emphasized flexion and extension of the elbow.  
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The members of this 2014 MQP aimed to integrate these two designs into a unified 

system that provided flexion and extension of the fingers and elbow, as well as pronation and 

supination of the wrist, making it a viable device to be used by upper-limb hemiparetic stroke 

survivors in both clinical and domestic therapy settings. The proposed system was allow for 

future implementation of myoelectric control and to be used in the rehabilitation of upper-limb 

hemiparetic stroke patients. Cable actuation through precision DC gear motors was selected as 

the mechanism to facilitate the desired motions.  The system was designed to facilitate the 

integration of sEMG electrodes to be placed on the patient’s arm, which would serve as the 

main control source to assist with the therapeutic training. Additional sensor information 

obtained from flex and pressure sensors located on the fingers and wrist, as well as series 

elastic actuators placed on the elbow, was also intended to serve as indicators of exercise 

completion and safety regulators.  
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2. BACKGROUND 

2.1 Biomechanics of the Upper Extremity 

2.1.1 Lower Arm, Elbow and Upper Arm 

 The upper arm, i.e. the section of the arm between shoulder joints and elbow joints, is 

constituted by the humerus bone and the majority of the muscles responsible for flexion and 

extension of the elbow. The elbow consists of three main articulations, the humero-ulnar (HU), 

humero-radial (HR), and proximal radio-ulnar (RU) [7]. These 

articulations are the ones that grant the elbow its two active 

degrees of freedom: flexion/extension, and 

pronation/supination (see Figure 2.1.1).  Flexion/extension 

and pronation/supination are the motions many 

exomuscular, upper-limb devices emphasize, and the ones 

implemented by the system described in this report. Flexion 

is the motion described by decreasing angles between two 

bones in a joint. Extension occurs when these angles 

increase. The humero-ulnar joint, i.e. where the humerus 

meets the ulna, is the joint that allows flexion and extension 

of the elbow. The muscles responsible for flexion of the elbow are the biceps brachii, brachialis 

and brachioradialis, while the muscles responsible for elbow extension are the anconeus and 

triceps brachii. The range of motion associated with elbow flexion-extension is 150 degrees [7]. 

Exceeding this range of motion could damage the humero-ulnar joint.  

 

Figure 2.1.1: Elbow Motions from Top to 
Bottom:  

 Flexion/Extension 

 Pronation/Supination 

Image retrieved from:  
www.teachmeanatomy.com 1/1/5 
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        The radio-ulnar joint is where the head of the radius meets the ulna. This joint allows 

pronation and supination of the forearm. The muscles responsible for elbow pronation are the 

pronator teres and the brachioradialis. The muscles responsible for supination at the elbow are 

the supinator, biceps brachii and brachioradialis. The range of motion for pronation and 

supination of the elbow is from -70 to 70 degrees [8]. The section of arm that is between the 

wrist and elbow joints is the lower arm and it is composed of the radius, the ulna and the 

muscles that are responsible for motion of the forearm, wrist and fingers. 

2.1.2 Wrist 

 The wrist is one of the three critical focus areas for upper-extremity rehabilitation of 

stroke patients. Fine wrist control is necessary for completing tasks that require precision, such 

as getting dressed or serving food. For tasks that require larger forces, it is important that the 

wrist be able to lock its position. In order to develop a mechanism to aid in the rehabilitation of 

the wrist, the biomechanics of the wrist must first be understood. One of the primary concerns 

is the typical flexion and extension range of motion. Taylor and Schwarz [9] measured an 

average of 44 degrees for flexion and 78 degrees for extension. Other equally important 

characteristics of the wrist are its ability to support weight and its maximum force output. 

Schweizer et al. [10] reported moments between 22.6 and 19.1 Newton-meters from the 

neutral position for wrist flexion and extension, respectively. However, the amount of weight 

supported by the wrist at different positions varies considerably. 
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2.1.3 Fingers 

 The hand is one of the most severely impacted extremities for stroke patients because 

its functional recovery involves the integration of muscle activity from the shoulders to the 

fingers. The fingers are required for grasping objects and fine manipulation of items, such as 

pens. Again, the two most important attributes of the fingers that must be considered are 

range of motion and force output. MATLAB models for the hand, such as the one developed by 

Malvezzi et al. [11], have served as a method for discovering how each of the fingers might 

move. Furthermore, studies have demonstrated that in a neutral position, the fingers can exert 

an excess of 66.7 Newtons of force [9]. In more extreme cases, however, fingers can support up 

to 180 Newtons of force for shorter periods of time [10]. 

2.2 Muscle Weakness and Motion Impairment 

Stroke has recently been named the leading cause of physical disability in adults over 

the age of 45 [12].  Reduced capabilities in upper and lower limbs are recognized as the most 

common impairments of stroke survivors.  Impairments typically affect one side of the body 

more severely, and opposite to the affected side of the brain.  About 80% of stroke survivors 

suffer from a “one-side weakness” called hemiparesis.  The effects of hemiparesis reduce the 

victims’ ability to move their extremities such as their arms and legs.  This deficit makes 

performing daily tasks difficult and amplifies the need for rehabilitative innovation in this area 

[13]. 

The severity of these impairments varies among patients proportionally to the severity 

of the stroke.  Common symptoms include reduced strength and coordination of the affected 
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limbs, and can extend to reduced sensation and proprioception as well.  Such symptoms can be 

caused by any combination of muscular weakening, nerve degeneration, or reduced cognition 

interfering with the brain’s ability to utilize affected limbs for performing tasks. 

A study conducted in 2003 by McCrea et al. [14] at the Canadian Institute of Health 

Research evaluating muscle performance in stroke victims discovered that the effects of stroke 

impairment were more severe than initially thought.  The study found that not only was peak 

muscle force affected, but the times to achieve and alleviate peak torque were lengthened, i.e. 

it took stroke victims longer to fully grip and fully let go with the affected arm.  Furthermore, 

these qualities were also reduced in the opposing arm as well, although with less severity. 

The four main motor functions in the arm that are affected by hemiparesis are the 

flexion/extension of the elbow, extension and rotation of the wrist, and extension of the 

fingers. Wrist and finger extension are the hardest muscle movements to regain [15]. 

Additionally, muscle weakness of the hand can be further complicated when analyzing isolated 

finger movements as opposed to congruent finger movements such as the whole hand grasping 

an object.  A common finding among stroke patients has been that their original grip strength 

can recover to a satisfactory degree, but they oftentimes lack the ability to independently move 

their fingers [16]. 

The elbow joint on the human body experiences higher torques than that of the wrist or 

fingers due to the weight and anatomical position of the forearm and hand. Additionally, an 

external load is placed on the elbow joint when an individual is carrying an object due to the 

lever arm nature of the forearm. Past research has revealed that the muscles that actuate the 

elbow joint have selective weakness in post-stroke patients.  In particular, the elbow flexors 
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and extensors are weaker when the muscle fibers are in their shortened range, which reduces 

the working range of the elbow joint.  Selective weakness in the elbow flexors and extensors 

affects the rehabilitation approaches for the elbow joint and has significant bearing on the 

rehabilitation of other stroke-affected muscle groups [17]. 

2.3 Conventional Versus Robot-Assisted Rehabilitation 

An economic analysis of robot-assisted rehabilitation using existing systems compared 

to traditional physical therapy conducted by Wagner et al. [18] revealed that (excluding 

intervention costs) the total healthcare expenses at the end of 36 weeks averaged $12,679 for 

robot-assisted rehabilitation as opposed to $19,098 for the usual physical therapy. The 

incorporation of robotic systems in clinical settings can also increase the cost savings for 

patients since therapists can treat more than one subject simultaneously, which can in turn 

maximize the time and intensity of the therapy sessions. 

Robotic rehabilitation enables the incorporation of different modes of therapy that are 

otherwise unrealizable through conventional methods, such as the use of precise force patterns 

that can be easily repeated by patients over time [19] (an overview of different upper-limb 

robotic systems is provided in Section 2.5). These methods can have great potential for 

performing patient assessment to obtain accurate measurements of motor functionality of the 

impaired limb, as well as for precisely monitoring and evaluating patient progress through the 

rehabilitation process. The aforementioned features of robotic systems can also help therapists 

determine the effectiveness of different therapeutic methods utilized. Furthermore, these 

systems can be used to predict patient progression over time and generate a multi-sessions 

plan for each individual user based on the previously recorded data. The sensors included in 
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robotic rehabilitation devices can produce precise measurements of specific aspects of motor 

function, such as spasticity, strength, coordination, smoothness of movement, the ability to 

perform continuous movements, as well as the number of self-corrections exercised along 

specific paths [20], [21]. 

A key component of typical physical therapy offered to post-stroke patients requires 

therapists to apply certain force using their sense of touch to guide and/or correct the motions 

of the patients. While therapists may become greatly skilled at this task over time, the method 

does not provide the same level of precision that a robotic system could offer. In this type of 

environment, robotic devices could also introduce more sophisticated forms of feedback that 

could not be accomplished in traditional therapeutic settings. In fact, several studies have 

demonstrated that robot-assisted therapy can increase treatment compliance by exposing 

patients to more interactive incentives such as computerized games [4]. By easily introducing 

new motion constraints, these computerized devices can enhance the complexity of the 

different motor tasks to be learned. Likewise, robotic devices can be of great utility to provide 

physical therapy to patients in all stages of recovery, including the chronic population, which is 

often not treated systematically since the conventional post-stroke rehabilitation settings are 

mostly intended for patients in the acute stages. 

Studies conducted by Burgard et al. [22] have demonstrated successful clinical 

outcomes of robotic rehabilitation in assisting paretic arm movements when compared to 

conventional therapy techniques. In these studies, the group of stroke patients exposed to 

robot-assisted therapy exhibited greater improvements in motor function and strength in 

comparison to the control group. The clinical outcomes of robot-assisted therapy also suggest 
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promising post treatment results, specifically in the patients’ ability to voluntarily reach 

towards targets. All of the numerous motivations aforementioned have led to escalating 

advances in the field of robotic rehabilitation in recent years. 

2.4 Upper-Extremity Robotic Rehabilitation Methods 

The major goal of post-stroke rehabilitation is to put into practice methods that 

motivate neural plasticity and recovery [19]. The integration of robotics into the post-stroke 

rehabilitation field offers great possibilities to accomplish these goals through either assistive or 

purely rehabilitative devices. These robotic systems can not only help patients complete various 

activities of daily living, such as grabbing a glass of water, but also provide different levels of 

physical therapy by challenging patients to produce force, control movement, or coordinate 

reaching motions. 

The rehabilitation methods employed in upper-extremity robotic systems can vary 

greatly from one device to another. While some of the devices allow unrestricted motions of 

the shoulder and elbow joints for the completion of reaching movements in the horizontal 

plane, others aim to target the reaching direction along a linear path [23] [24]. A broad 

generalization of the different types of robotic rehabilitation methods employed by most 

current systems yields the following four categories: massed practice, bilateral training, fine 

motor movement, and feedback distortion [19]. 

Massed practice methods in robotic therapy refer to repetitive movement training of 

explicit learning patterns. The underlying idea behind these methods is that repetitive training 

of the impaired upper-limb over an elongated period of time can promote cortical 

reorganization and induce frequent use of the hemiparetic arm in daily activities [19]. The vast 
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majority of the upper-extremity rehabilitation devices that utilize these methods encourage 

gross motor improvements in reaching motions. These robotic systems can be either assistive 

or purely rehabilitative. The majority of purely rehabilitative devices utilize a combination of 

both assistive and resistive forces. Assistive forces are provided when the patients are not able 

to complete target movements by themselves. Resistive forces, on the other hand, are provided 

to counteract or constrain the patient’s direction of movement.  

Bilateral Movement Training (BMT) is an alternative approach employed by many 

rehabilitative robotic devices, which involves repetitive practice of symmetrical upper-limb 

movements. The purpose of this method is to stimulate the functional recovery of impaired 

limbs. This stimulation is done by activating the intact hemisphere in an attempt to facilitate 

the activation of the damaged hemisphere, thus promoting neural plasticity through better 

control of the movements involving the impaired limb [25]. Bilateral methods are also 

employed by some robotic devices to stimulate the training of distal arm movements, such as 

elbow pronation and supination as well as wrist flexion and extension [8], [26]. 

Fine motor movement methods specifically target rehabilitation of the hand and wrist. 

The goal of these methods can vary from improving range of motion, velocity and force 

capacity to increasing coordination during functional tasks [19]. Some upper-limb robotic 

rehabilitation devices using these methods promote coordinated movements of the hand as 

well as independent movement of each finger. In studies conducted by Boian et al. [27], 

subjects exposed to these methods were able to demonstrate an increased range of motion 

and velocity of their finger movements. Other similar devices that employ these fine motor 
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movement methods focus on recovering hand-gripping motions along with pronation and 

supination of the forearm. 

The feedback distortion techniques employed by robotic systems used in upper 

extremity rehabilitation consist mainly of force perturbation and/or visual error augmentation 

[19]. Force feedback is mainly utilized to amplify movement errors generated by the patients 

when completing specific reaching exercises. Studies conducted by Patton et al. [28], [29] 

employed this error magnification paradigm by applying perturbing forces to the impaired limb 

in the opposite direction to specific reaching trajectories for a period of time. The subjects of 

this study counteracted the perturbing force in order to continue along the path of their 

desired reaching trajectories. A neuromuscular after-effect was noted when the perturbing 

forces were unexpectedly removed and the subjects were able to move in the desired 

trajectory. Another relevant result of these studies indicated that the training after-effects 

persisted for a longer period of time in post-stroke patients compared to healthy control 

subjects, thus indicating that error amplification techniques used in rehabilitative training may 

result in greater strength recovery. 

Feedback distortion is also commonly employed by many upper-extremity robotic 

rehabilitation systems in the form of visual feedback displayed on computer screens. This 

technique is suitable during rehabilitation of chronic post-stroke patients who may not be 

willing to perform reaching movements beyond the limits of their comfortable range of motion 

[19].  Studies conducted by Brewer et al. [30] revealed that chronic post-stroke patients are 

able to follow visual distortion to great levels of performance. Subjects in these studies 

demonstrated functional improvements of their pincer grasp abilities. Furthermore, studies 



35 
 

conducted by Wei et al. [31] showed that subjects exposed to visual error augmentation 

demonstrated an accelerated learning process during training. 

2.5 Existing Upper-Extremity Rehabilitative and Assistive Devices 

Advances in the field of rehabilitation robotics have led to the development of many 

robotic systems used in physical assistance and rehabilitation in both clinical and domestic 

settings. Devices that have been developed specifically for upper-extremity treatment make 

use of the aforementioned robotic rehabilitation methods in an attempt to improve strength, 

coordination, spasticity, motor 

functionality, range of motion, 

and smoothness of reaching 

movements. For instance, MIT-

Manus (see Figure 2.5.1) utilizes 

massed practice and force 

feedback methods to provide 

therapy that targets reaching 

motions towards an endpoint. 

The force feedback provided by 

this device consists of forces applied in the same direction as the reaching motion to assist 

muscles in task completion. Studies conducted to evaluate the effectiveness of robot-assisted 

therapy with the MIT-Manus revealed that this system can improve the clinical outcomes for 

repetitive, goal-directed therapy [32], [33], [34], [35], as well as improve the motor and 

Figure 2.5.1: MIT Manus. 

Image retrieved from:  
www.jneuroengrehab.com/content/1/1/5 
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functional recovery gains in subjects with acute [32] and chronic hemiparesis [36], [37], [38], 

[39].  

Another robotic system designed for upper-extremity rehabilitation through massed 

practice methods is the Assisted Rehabilitation Measurement (ARM) Guide (see Figure 

2.5.2).  This device emphasizes repetition of reaching motions along a linear track with assistive 

or resistive forces. Studies conducted by Kahn et 

al. [40] did not reveal significant differences 

between results obtained with robotic assistive 

and resistive forces employed by this device and 

the free, unassisted methods used in 

conventional therapy for the training of 

reaching motions.  

The results obtained when evaluating 

massed practice devices, such as the ARM Guide, in terms of skill retention over time, 

suggested the implementation of 

other methods, such as bilateral 

training, in the development of 

new robotic devices for upper-

extremity rehabilitation. The 

Mirror Image Motion Enabler 

(MIME) (see Figure 2.5.3) was the Figure 2.5.3: Mirror Image Movement Enabler (MIME). 

Image reprinted from: Lum et al. [42] 

Image retrieved from: 
http://biorobotics.eng.uci.edu/armrehab 
 

Figure 2.5.2: Assisted Rehabilitation Measurement (ARM) 
Guide. 

http://biorobotics.eng.uci.edu/armrehab
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first robotic rehabilitation system that explored bilateral training for upper-extremity stroke 

rehabilitation, focusing specifically on the practice of reaching motions. This device is coupled 

to the user’s unimpaired arm, allowing three-dimensional motions that are assisted or resisted 

through force feedback. Studies conducted by Lum et al. revealed that both chronic [41] and 

subacute [42], [43] stroke patients treated with this device demonstrated increases in reaching, 

strength and proximal movement. According to both studies, certain aspects of upper-

extremity recovery appear to occur at a faster rate for patients using MIME during the initial 

period of the rehabilitation process. The long-term effects, however, do not seem to be 

significantly different than the ones obtained through conventional therapy methods. A follow-

up research conducted in 2004 [44] with this same system evaluated the effectiveness of 

utilizing surface electromyogram (sEMG) for improved muscle activation patterns from patients 

with post-stroke hemiparesis. These studies revealed promising results showing consistency 

with related pre-existing research [45], [46] on training patients toward motor recovery. These 

outcomes suggested the potential incorporation of sEMG in this particular device. 

Another robotic system that uses 

bilateral training for upper-extremity stroke 

rehabilitation is the Bi-Manu-Track (see 

Figure 2.5.4). This device focuses specifically 

on flexion and extension of the wrist, as well 

as forearm pronation and supination. In a 

study conducted by Hesse et al. [47], a large 

Image retrieved from: 
http://nursing.stanbridge.edu/?p=19334 

Figure 2.5.4: Bi-Manu-Track. 

http://nursing.stanbridge.edu/?p=19334
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number of acute stroke patients who were treated with this device demonstrated a greater 

improvement in the Fugl-Meyer1 scale [48] (for over three months after the treatment) than 

the other subjects who were treated with electrical stimulation as commonly done with 

conventional therapy.  

Some of the robotic systems developed 

for upper-extremity rehabilitation take the 

form of compact, wearable devices, such as 

gloves, to minimize stress on the hand, fingers, 

and joints during therapy [49]. One of these 

wearable gloves is the SaeboFlex (see Figure 

2.5.5), which is a form of unpowered orthotic 

that emphasizes training of the finger, hand, 

and wrist. This device uses adjustable springs to assist, resist, or stabilize the movement of 

fingers during therapeutic exercises. Studies conducted by Farell et al. [50] revealed that use of 

this device could significantly improve wrist extension but not flexion. The results did not 

demonstrate improvements in finger flexion and/or extension. 

Another wearable device developed for rehabilitation of the hand and wrist is the Hand 

Tutor (see Figure 2.5.6). This ergonomic glove, which comes with software dedicated for 

physical therapy rehabilitation, emphasizes recovery of speed, as well as passive and active 

                                                       
1 Scale for assessment of physical performance regarding: motor, balance, sensation, joint range of motion, and 

pain [48]. 

Image retrieved from: 
http://www.saebo.com/products/saeboflex/ 

 

Figure 2.5.5: SaboFlex System. 

http://www.saebo.com/products/saeboflex/
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range of motion of the wrist and fingers. The device tracks the patient’s hand motions during 

game exercises and provides feedback that serves to improve their motor functionality [51].  

 

 

 

 

 

 

2.6 Previous Work Leading to this Project 

2.6.1 Rehabilitative Robotic Glove 

The Rehabilitative Robotic Glove (see Figure 2.6.1) developed by Delph et al. [1] at WPI 

successfully demonstrated the feasibility of actuating the hand through the use of cables and 

servomotors. In addition to this accomplishment, the team developed a method for gathering, 

filtering, and processing sEMG data. Although never fully implemented, the data collected 

through sEMG could then be used to control the hand’s extension or flexion, allowing the user 

to grasp objects. In addition, the device could also be controlled with switches or programmed 

positions. 

Figure 2.5.6: Hand Tutor. 

Image retrieved from: 
http://www.fysiomed.cz/eng/medicaltechnologies/biofeedback/ 

http://www.fysiomed.cz/eng/medical-technologies/biofeedback/hand-tutor/
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Figure 2.6.1: Rehabilitative Robotic Glove [1] 

The mechanical construction of the glove itself included a collection of attachment 

points at the ends of each of the fingers and a series of cable guides for the Kevlar cables used 

to actuate the hand. In order to compensate for the varying dimensions of users, a tensioning 

system for the cables was placed on the user’s forearm. This system allowed the effective 

length of cables actuating the hand to be reduced. Finally, through the use of polyethylene 

surgical tubing, the team was able to create a Bowden cable system that effectively allowed 

them to select any location for the servomotors and spools. 

The servomotors were controlled with a combination of pulse-width modulation (PWM) 

signals and current limiters. The PWM signals were used to control the positions of the 

servomotors, while the current limiters were used to control each of the servomotors’ torque 

outputs. These servomotors were attached to spools that had two different diameters to 

account for the different amount of cable required to extend and flex the fingers. 

Two bipolar electrode-amplifiers were used to detect hand extension and flexion 

respectively. Another electrode was placed over the bony part of the elbow to serve as a 

reference for the two electrode-amplifiers. The signal was first amplified at the electrode-
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amplifiers then filtered through an analog high pass filter and an analog low pass filter. The 

signal was sampled at a rate of 2 kHz with a MSP430 microcontroller. Finally, the sample data 

were digitally filtered. A circular buffer was used to calculate the signal moving average 

absolute value, which was then used to determine the user’s intent on extending or flexing the 

hand. 

2.6.2 Soft Robotic Exo-Muscular Arm Brace 

The Soft Robotic Exo-Muscular Arm Brace (see Figure 2.6.2) developed by Brauckmann 

et al. [2] at WPI served as a platform for testing different actuation methods, experimenting 

with varying exoskeletal designs for the elbow, and improving sEMG data acquisition and 

processing. Similar to the Rehabilitative Robot Glove project, sEMG data were collected; 

however, the data were never used to actuate the device. 

 

Figure 2.6.2: Soft Robotic Exo-Muscular Arm Brace [2] 
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3. PROJECT STRATEGY 

3.1 Client Statement 

The purpose of this project was to develop an exomuscular sleeve to be used by upper-

limb impaired post-stroke patients for rehabilitation and assistive purposes. The device 

emphasizes flexion and extension of the fingers and elbow, as well as pronation and supination 

of the wrist. The client statement, as developed by the design team reads as follows: 

Redesign the soft robotic glove [1] and the exomuscular arm brace [2] 

developed by previous MQP teams, along with a newly developed wrist 

rotation structure into a unified system for upper-extremity hemiparetic 

stroke survivor therapy that is viable for use in both clinical and home 

settings. 

3.2 Primary Objectives 

The primary objectives taken into account for the development of this robotic system 

were to design a device that would be safe, effective, lightweight, adjustable, intuitive, 

affordable, and portable. The order of these objectives were determined using a pairwise 

comparison chart. These objectives were ranked as follows: 

1. Safe 
2. Effective 
3. Lightweight 
4. Adjustable 
5. Ease of use 
6. Affordable 
7. Portable 
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This ranking was used as a set of dominant guidelines for the project, and their ranked priority 

helped to guide the many design iterations in a direction most beneficial to the project. 

Ensuring the user’s safety was the most crucial characteristic the device had to meet to 

avoid exposing the user to any form of physical harm. Such safety features as tracking cable 

displacement and force-limiting clutches to account for system failures, were considered in the 

design of this system. A safe system utilizing these features would give the operator complete 

control over the system’s operations, while not exposing the user to potential injury or undue 

discomfort, during normal operations or in a failure scenario. An effective device would be one 

suitable for both rehabilitative and assistive purposes during the completion of specific motor 

tasks assigned to the patient, or in daily life. Since the device was intended to be used by stroke 

survivors on a daily basis it was important to make it lightweight. By restricting all powered 

parts to a separate platform, and by putting as few components on the arm as possible, the arm 

could be kept sufficiently lightweight as to not be burdensome on the user moving their arm, 

thus ensuring effectiveness as a mobile device and the user’s comfort. 

The adjustable capabilities of the system, i.e. ensuring that the device could be worn by 

users with different anatomical measurements and at different stages of the rehabilitation, 

were also taken into consideration in an attempt to reach out to a greater user population. 

Furthermore, designing an intuitive computer interface that could be easily used by both post-

stroke patients and physical therapists would endorse the proper operation and application of 

the different therapeutic features, as well as the marketable properties of the device. 

Developing an affordable system was also considered throughout the design process in order to 
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ensure the minimum possible cost of rehabilitation when compared to conventional post-

stroke physical therapy. A final purchasing and operating cost lower than that of a comparable 

regimen of physical therapy would certainly enlarge the number of stroke survivors in need of 

rehabilitation and/or assistance that could benefit from this robotic device. Lastly, producing a 

portable system that could be used in domestic settings or even by wheelchair users was an 

ideal objective to accomplish upon the completion of this design project. 

3.3 Project Constraints 

The constraints for the design were directly derived from the goals in the client 

statement, but limited in scope due to the timeline of the project. For the device to be 

considered an effective rehabilitative tool, it must be ergonomically adjustable to minimize the 

patient's discomfort during daily use.  Since the device was intended to include portability 

features, the entire apparatus must be independently powered and considerably lightweight to 

facilitate its continuous use. Designing an assistive system, one which could supplement its 

user’s own limited strength, would impact the overall portability of the device.  Regarding the 

force requirements and range of motion, the device would meet assistive requirements, but the 

prototype size would compromise its portability.  Therefore, the device would provide aid for 

the completion of daily activities and demonstrate its proof-of-concept as an assistive portable 

device.  True portability, such as what would be expected in a final, marketable design would be 

a matter of time and research costs, which are unfortunately beyond the scope of this project 

timeline. 

Temperature was another important constraint that arose from the need to guarantee 

the patient’s safety when using this device. In order to avoid skin irritation and temperature-
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related soreness, this sleeve could not expose the user’s upper extremity to more than 100° F. 

Though a relatively small concern as the circuit boards and motors would be the only sources of 

heat on the device, heat dissipation was still very much worth accounting for.  Lastly, the 

manufacturing of this prototype robotic system could not exceed the initial budget awarded to 

the team from the different academic departments that the student developers were affiliated 

with. This initial budget consisted of $1,440: $160 per each of the seven students who compose 

the team. This allowance restricted the parts and materials that could be used for the project. 

3.4 Approach 

The long-term and most essential goal of this project was to develop a functional 

exomuscular sleeve that justified its intended use by upper-limb impaired stroke survivors for 

both rehabilitative and assistive purposes. Mechanically and electrically, the system would 

apply resistive and assistive forces as part of its rehabilitative attributes, including force limiting 

and control and associated control algorithms. To ensure user’s safety, smart fail-safes in both 

hardware and software were implemented. In addition, an integrated control system was 

required for the existing exoskeletal glove and arm brace. The design and development of such 

system was divided into the following seven stages: research, design phase, integration of glove 

and arm brace, prototyping/testing, design finalization, and documentation.  

3.4.1 Research 

Research was conducted to understand the specific needs of post-stroke survivors with 

upper-extremity hemiparesis, as well as the different stages of the conventional rehabilitation 

process most of these patients are exposed to. To gather some of that initial information, an 

occupational therapist was interviewed by the design team. The topics discussed covered the 
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impairments of stroke in the upper extremity, the average frequency and duration of the 

treatments, the types of upper-extremity motions stroke survivors tend to lack most, the 

different exercises that post-stroke patients are instructed to execute during rehabilitation, as 

well as the advantages and disadvantages of using assistive versus resistive forces for the 

different rehabilitative exercises. From the information gathered different research topics were 

formulated and divided among the team members. 

3.4.2 Design Phase 

By researching existing systems, the project team was able to establish the current state 

of technology in the field and innovate where necessary. Following the design constraints as set 

by the client statement, the team continually improved upon previous designs to arrive at a 

product which met the design constraints stated previously in Section 3.3. For organizational 

purposes, the group worked in two sub-teams: one mechanical (dealing with the device and its 

physical components), and one electrical (focusing on the control system and sensing). 

The mechanical sub-team assigned each of its three members a specific part of the 

device to design and improve upon.  By continually making changes to designs, bringing them 

to the sub-team for review and criticism, and returning to make further changes, well refined 

designs were created for each component on the device.  As the project progressed, these 

revisions began to include physical prototypes to test for fit and functionality of the various 

components, ensuring the viability of each design. 

Similarly, the electrical sub-team divided the development of the different printed 

circuit boards required for the system as well the software component among its four 
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members. Sub-team meetings with and without the advisors were scheduled every week to 

ensure that each member of the electrical sub-team was progressing appropriately in the 

design and development of the circuit boards. These sub-team meetings also served to confirm 

that the design of all the electrical components followed a consistent pattern and did not 

conflict with one another. 

Furthermore, full team meetings with and without the advisors were scheduled every 

week to ensure regular communication among both sub-teams. In these meetings, the sub-

teams presented the progress made so far to one another and discussed the pros and cons of 

the different design iterations from a mechanical, electrical and software point of view, thus 

facilitating the sustainability of the entire system in development.  

3.4.3 Integration of Glove and Arm Brace 

In keeping with the iterative nature of the project, this team was one of many working 

toward a comprehensive rehabilitative system. Previous teams had successfully developed 

functioning prototypes of two of the subsystems: a glove for the actuation of the fingers, and 

an arm brace for actuation of the elbow. A significant part of the task at hand was to combine 

these two devices, along with additional subsystems developed by the team, into a unified 

product. This complete device featured three subsystems: hand, wrist, and elbow. Operation of 

the system requires a singular power source, a common actuation system, and a unified control 

system. This ultimately was lowered in priority for the prototype in favor of successfully 

demonstrating the functionality of the device, but the prior assessment would still apply for any 

final product. 
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In addition to simply combining these previous systems, several additions were to be 

made as well.  In order to increase the awareness of the control system, flex and presure 

sensors were added to the first knuckle and fingertips of each finger, respectively, and 

modifications to the glove had to be made in order to accommodate these.  Additionally, the 

components making up the previous elbow brace were to be condensed and reduced in size to 

reduce weight and increase user comfort.  Finally, both the glove and elbow were functionally 

integrated into a wrist device designed by the mechanical sub-team to allow for active control 

of pronation and supination of the wrist, and passive support of flexion and extension of the 

wrist.   

This wrist device had to be made to integrate seamlessly into the existing Bowden 

system established by the other two components, which included the motors used to 

manipulate the cables.  A particular challenge posed by the combination of two previous 

projects involved combining the two motor backpacks they each utilized independently.  In 

order for the device to meet the portability specification, the final product would need to 

encompass only one motor backpack containing all the motors necessary to actuate the fingers, 

elbow and wrist, as well as several circuit boards for the control system. 

3.4.4 Prototyping and Testing 

Through the iterative design process, solutions were devised, prototyped, and 

tested.  Mechanical components were subjected to tests of strength and durability, ensuring 

their capabilities and solidifying their design. Electrical control system components were 

subjected to testing for correct signal processing, data analysis, accurate interpretation of data, 
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and proper implementation for desired functionality. Safety was considered throughout all 

testing, and was prioritized while determining the validity of any working designs.  
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4. DESIGN ITERATIONS 

The purpose of this project was to design and develop an exomuscular sleeve to assist 

post-stroke patients with their rehabilitation. A major requirement for this project was the 

development of an assistive sleeve that could mimic the natural behavior of human muscles 

and tendons of the upper limb. In order to accomplish this task, several soft robotics design 

choices were considered for the support and actuation of the different structures of this 

exomuscular sleeve, i.e. fingers, wrist, and elbow, to ensure the development of an easily 

wearable device with an intuitive user interface. 

4.1 Mechanical System 

4.1.1 System Overview 

Figure 4.1.1 shows a high-level sketch of the placement for all of the brace parts on the 

arm. For actuating the flexion and extension of the elbow, Bowden cables are run similar to the 

bicep and triceps. For actuating the pronation and supination of the wrist, cables are wound 

about the forearm between the distal elbow brace and the proximal wrist brace segments. By 

tensioning the cables wound in the same direction, the twp brace parts are rotated opposite of 

each other. A flexible metal plate is installed between the proximal and distal wrist brace 

segments to support the flexion and extension of the wrist. Actuating the flexion and extension 

of the fingers is achieved in a similar manner as actuating the elbow. 
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Figure 4.1.1: Concept Art for Brace Placement 

 

Figure 4.1.2 is a more detailed sketch that shows placement of sensors and wire routing 

with respect to brace parts on the hand. In order to estimate the deflection of the fingers, a flex 

sensor is placed over the first knuckle of each finger. Pressure sensors are attached to each 

fingertip to allow for estimation of grip force. In order to allow for easier donning and doffing of 

the glove, the sensor board and cables are allowed to detach using an interface device placed 

on the back of the hand. 
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Figure 4.1.2: Sensor Placement on Hand 

4.1.2 Cable Drive 

Based on the research conducted by the previous two MQP groups [1]- [2] and as 

suggested by the graduate student advisors, the team decided to continue to use cables strung 

between the joints and a series of motors to actuate the device. Referred to as a Bowden 

system, this design is used in many common devices, such as in the brakes on a bicycle, and is a 

proven way to transmit a force between two points without exerting a force on any 

components in the middle. This system is accomplished by pulling on an inner cable relative to 

an outer tube it sits within, causing the force along the length of the system to cancel while the 

force is experienced at both ends of the cable. In addition, the mechanical team evaluated the 

mechanical design of the previous two projects and decided to make several modifications 

based on their research and the requirements set by ranked objectives.  
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One design change was the system used to tension the cables when fitting the device to 

a new user. The Rehabilitative Robotic Glove developed by Delph et al. [1] used a series of 

knots and a brace to take up the extra slack in cable to account for people of different size. This 

technique, however, made the system a little more bulky than necessary, and the brace 

occupied space that would be necessary for other components of the sleeve. In addition, the 

system was not easy to adjust. The Soft Robotic Exo-Muscular Arm Brace as developed by 

Brauckmann et al. [2] resolved this issue by using one motor per cable. This configuration 

allowed each cable to be tensioned individually. However, this method proved to be very bulky, 

because four motors were required to actuate the elbow instead of one. 

The team decided instead that adjustable spools were the simplest way to account for 

the different lengths of cable required for people of different sizes. This design was 

accomplished by using two separate spools along a threaded rod that could be rotated 

independently when in an “open” position.  When in a “closed” position, the spools would be 

locked and could not rotate independently of each other. Initially this system was designed by 

placing a series of radial triangular gear teeth extending outward from the center of each spool, 

on the facing sides of each of the two spools. These teeth would allow the two spools to be 

pressed together and be unable to rotate independently, but loosened to allow the teeth to slip 

past each other to a new position. The principal is demonstrated below in Figure 4.1.3. 
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Figure 4.1.3: Open and Closed Spool Configurations 

 

Due to the ratio of cable pulled along the top and bottom of each finger differing when 

flexing and extending the finger, one spool had to be much larger than the other, on average at 

a ratio of 2.6:1.  This condition caused a problem in manufacturing as the teeth became very 

small towards the center of each spool.  The spools were to be 3D-printed due to the relatively 

low cost and unique shape of the parts, but even the best 3D-printers have finite precision, and 

the teeth towards the center were simply too small and tended to blend together into a solid 

face in the first prototype. 

In response to the first prototype failing to meet the design, the method was modified 

to have no teeth near the center of the spool.  Ideally this would fix the problem of the printer 

to distinguish one tooth from another.  Since one spool was so small however, a flange was 

added to one face of the small spool to match the diameter of the large spool.  On these faces a 
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ring of teeth was added to fill the outermost 0.75”.  Though the issue seen in the first prototype 

did not occur, a secondary issue which could not be observed in the first prototype was 

discovered.  Due to the small triangular shape of each tooth, the tip of each tooth tended to be 

a single extruded line of plastic from the printer.  Since the material exits the printer nozzle as 

almost a liquid, the material tended to slump and deform, which made each tooth a slightly 

different shape, causing them to not fit together at all. An image of this prototype can be seen 

below in Figure 4.1.4. Only the toothed face is seen in the figure, this was to conserve money 

and time while prototyping the lock mechanism by not printing the full thickness of the spools 

every time. 

 

Figure 4.1.4: Toothed Spools 

A third prototype was created by removing the top .025” of each tooth with the 

intention of removing the singular layer material that had caused the problem in the second 

prototype, while still maintaining the triangular shape of each tooth.  This solution was not 

successful and the same problem persisted.  Finally, the toothed design was abandoned all 

together for the much simpler design utilized in the final design. This design simply featured the 

two spools being compressed together with a layer of rubber between. This rubber friction 

layer prevented the spools from sliding with even a modest amount of pressure. The pressure 
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was applied by a lock nut, with an accompanying washer, on the central threaded rod which 

was firmly glued into the large flexion spool. By loosening the nut, the spools could be 

separated and the small extension spool could be rotated on the threaded rod, which it was not 

glued to. This allowed the slack to be drawn up when fitting the sleeve to a user.  

4.1.3 Series Elastics 

Following in the footsteps of the Soft Robotic Exo-Muscular Arm Brace project, the team 

decided to continue the use of series elastic actuators for actuating the elbow and wrist. The 

Soft Robotic Exo-Muscular Arm Brace employed springs at the cable attachment points to the 

brace segments to achieve the elasticity necessary for a series elastic actuator. The deflection 

of the spring was determined using a magnet and magnetic potentiometer. The deflection 

could then be used to determine the approximate force the cable was applying to the brace 

segment. The measured force, in turn, was used to ensure that an excess of force and torque 

was not applied to the user. 

 

Figure 4.1.5: Ball and Plunger with Membrane Potentiometer Force Sensor 

The team decided to use membrane potentiometers and a ball plunger instead of the 

magnetic potentiometer because of its lower profile as seed in Figure 4.1.5. The more compact 
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design aided in reducing the size of the brace parts, thereby reducing the weight of the overall 

system and increasing the mobility of the elbow and wrist. 

4.1.4 Elbow Brace Design 

One of the major concerns of designing the elbow brace parts was slimming down the 

profile of the braces. The reduced size of the brace parts provides two benefits. First, 

decreasing the size of the part minimizes the amount of weight on the extremities, thereby 

reducing the power requirements for actuation. Secondly, and more importantly, decreasing 

the size of the rigid part increases the ratio of hard to flexible parts, thereby making the brace 

more conforming for different users. In order to ensure ease of donning and doffing of the 

brace parts, each of the segments were designed to be attached to a Neoprene sleeve. The 

flexibility of the Neoprene sleeve allows for some flexibility in final placement of each of the 

brace parts. The sleeve also allows patients to don and doff all of the arm brace parts at once. 

4.1.4.1 Elbow Brace Design from 2012-2013 MQP 

 

Figure 4.1.6: Elbow Brace Design from 2012-2013 MQP 
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Figure 4.1.6 shows a rendering for elbow brace parts that was used by Brauckmann et 

al. [2]. In this design, the Kevlar cables pass through the proximal side of the distal brace (left 

set of red blocks). A knot at the end of the Kevlar cable prevents it from sliding out of the 

device. The cable can thus be put into tension, pulling back on a cylindrical block with a magnet 

attached. The cylindrical block then compresses a spring and also actuates a magnetic 

potentiometer, thus allowing the device to determine the position of the block. 

While testing actuation with the assembled device, the team discovered that some of 

the smaller guides would compress together during arm extension, causing discomfort due to 

pinching. The team attempted to address this problem by adjusting how the brace parts are 

attached to the sleeve to prevent the translation of the parts. 

4.1.4.2 Elbow Brace Design Revision 1 

The first revision of the design from the previous year was an attempt to segment each 

of the brace parts in order to increase the conformity of the brace. 

 

Figure 4.1.7: Elbow Brace Revision 1 



59 
 

This revision, as seen in Figure 4.1.7, includes the use of ball plungers and Spectra 

Symbol SoftPot membrane potentiometers for sensing the force exerted on the cables. The 

membrane potentiometers offered a lower profile sensor package, while the ball plunger blocks 

remained approximately the same size as the blocks used to connect the Kevlar cables to the 

magnets. The additional blocks on the sides were placeholders for Bowden guide endpoints for 

the cables leading to wrist pronation and supination actuation. The first revision was more 

compliant than the previous design but also proved much more bulky.  

4.1.4.3 Elbow Brace Design Revision 2 

The second revision of the elbow brace is lower-profile than the first. Instead of starting 

with a rectangular extrusion, the main body of the brace is instead an arced surface. 

 

Figure 4.1.8: Elbow Brace Revision 2 

As is visible in Figure 4.1.8, the basic construction of the brace is quite similar to the 

model developed by Brauckmann et al. [2]. The endpoints of the cables are tied to the ball 

plungers, which are placed inside small blocks. A square shape was chosen for the channel, 
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because that prevented the blocks from rotating. Tensioning the cables caused the springs in 

the lower part of the arm brace to compress; the displacement would be measured by the 

membrane potentiometers in contact with the ball plungers. 

 

Figure 4.1.9: Comparison of Revision 2 (left) and Original (right) (Front View) 

Figure 4.1.9 shows a front view comparison of the second revision of the elbow brace 

(left) with the original model (right). As is visible, the updated version is slightly thinner and not 

as wide. It is important to note, however, that the updated version does not have extra holes 

for the Bowden system for either the hand or wrist actuation. The thickness of the material 

near the center of the second revision is also too thin. This problem was discovered when the 

brace part was broken in half by flexing is by hand along the length of the part. Although a 

metal brace part would withstand the forces of actuation, a plastic version would not. 

4.1.4.4 Elbow Brace Design Revision 3 

After 3D printing the Revision 2 elbow brace, the team determined that the cables in the 

brace were placed too far from the center of the brace. The distance between the cables and 

the center of the brace is problematic when the arm is at full extension. By placing the cables at 

the extremity of the arcs, the cable tension nearly acts though the elbow’s axis of rotation, 

thereby decreasing the effective torque output of the motors to the cables. Ideally, the cables 

should be placed as far away from the center of joint rotation. 
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Figure 4.1.10: Elbow Brace Revision 3 

Figure 4.1.10 shows a close render of Revision 3 of the elbow brace. The cables are 

closer to the center of the brace. When the elbow is at full extension, the cables are thus 

farther away from the center of joint rotation, thereby maximizing the amount of torque the 

motors can exert on the elbow.  

 

Figure 4.1.11: Front View Comparison of Rev. 3 at the Top, Rev. 2 in the Middle, and Original in the Bottom 
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Bringing the cables closer to the center of the brace part also thickened the part, 

thereby increasing its strength near the center. Figure 4.1.11 shows the third revision 

compared to the second and original versions of the brace. The third revision is flatter and 

narrower than the first two parts.  

4.1.4.5 Elbow Brace Design Revision 4 

In order to further decrease the size of the brace parts, Professor Fischer recommended 

using wave springs instead of normal springs.  

 

Figure 4.1.12: Elbow Brace Revision 4 

Figure 4.1.12 shows a close render of the fourth revision of the elbow brace. In this 

version, the size of the brace part is about half as long at the previous revision. In order to fit 

the SoftPot membrane potentiometers in the brace, the team had to order custom sized 

membrane potentiometers from Spectra Symbol. 
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4.1.4.6 Elbow Brace Design Revision 5 

The fifth revision of the elbow brace design addressed an issue with the cables going 

across the outside of the elbow. If the arm is flexed at the elbow, the cables will take the 

shortest path, going directly from the proximal part of the brace to the distal part of the brace. 

In order to force the cable to travel about the elbow, two additional smaller brace parts are 

placed just above and below the elbow.  

 

Figure 4.1.13: Elbow Brace Revision 5 

Figure 4.1.13 shows the additional parts for guiding the cables around the elbow. One 

end of the shorter segment of the Bowden housing is first roughened using 80 grit sandpaper 

then glued with J-B Weld: Original Cold Weld Formula Steel Reinforced Epoxy into the smaller 

distal brace. The other end, however, is allowed to freely translate within the smaller proximal 

brace, thereby preventing the Bowden housing from flexing outwards when the arm is 

extended at the elbow. The placement of the brace parts can be seen in  
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Figure 4.1.14: Brace Part Placement 

 

 

Figure 4.1.15: Elbow Brace Revision 5 (Close) 

In addition to adding the smaller brace parts for cable management about the elbow, 

additional wave springs were added to the series elastic sensors. The design in Revision 4 only 

allowed for one wave spring in the device, and the 19.98 lb/in spring constant of the wave 
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spring was not high enough for the expected loads on the part. Having only one spring 

effectively means that the series elastic sensor would frequently reach its limits for force 

sensing. By placing two wave springs in parallel, the effective spring constant on each actuator 

is doubled to approximately 40 lb/in (see Figure 4.1.15).  

4.1.4.7 Elbow Brace Design Revision 6 

The sixth revision of the elbow brace reduced the amount of free travel the ball plunger 

blocks have within the brace by extending the rectangular extrusions in the cap. The 

rectangular extrusions prevent the ball plunger block from travelling past the extension limit of 

the springs, thereby eliminating readings from the potentiometer past the maximum extension 

of the spring. In addition to lengthening the rectangular extrusions, the width and height of the 

extruded rectangles were increased; however, this change ended up causing the cap to not fit 

on the end of the brace properly.  

4.1.4.8 Elbow Brace Design Revision 7 

The seventh revision of the brace was created after revision 6 was 3D printed. In this 

version, the slots for the membrane potentiometers are widened and flattened, improving fit. 

The width and height of the extrusions on the cap were also decreased for improved fit. The 

assembly and performance of this final revision is addressed in Section 5.1.3 Elbow Brace 

Design. 
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4.1.5 Wrist Brace Design 

The design of the wrist brace is borrowed from the design of the elbow brace. As visible 

in Figure 4.1.16, the brace part is extended. In the additional extruded section of the wrist 

brace, a slot was created for the shim stock to pass through. 

 

Figure 4.1.16: Wrist Brace Segment (Close) 

 

Instead of having the Dyneema cables run parallel with the length of the forearm, the 

Dyneema is wrapped around the forearm, thereby allowing for the pronation and supination 

motions. 
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Figure 4.1.17: Wrist Ring Cable Guide 

Because the Dyneema is wrapped around the forearm, a method for preventing the 

Dyneema from constricting the forearm was implemented. Figure 4.1.17 shows the CAD model 

of a pair of arcs that form a circular ring when put together. Each segment of the ring is 

attached to the Neoprene sleeve independently of each other. The segments of the ring allow 

the two arcs to separate when the user is donning the sleeve. The x-shaped grooves in the ring 

serve as guides for the Dyneema. The notches and protrusions at the ends of each of the arc 

segments serve as locators, allowing the arc segments to properly align when compressed. 

After testing these rings, the team determined that the neoprene sleeve was sufficient for 

limiting constriction. 

4.1.6 Glove Design 

In addition to providing the actuation needs of an assistive device, a system designed for 

hemiparesis patients must be easy to put on for patients with limited dexterity. Various 



68 
 

features of the system were re-designed with an emphasis on substantially improving the 

process of donning and doffing the device. 

 The glove design was adapted from the previous project work with Bowden cable 

actuated finger guides adhered to a stretchy minimal weight glove. Anchored above the 

fingernail and on the fingertips, cables run through cable guides on top and below the patient’s 

fingers to mimic the flexion and extension motion of the tendons in one’s finger. As shown in 

Figure 4.1.18 and Figure 4.1.19, the cables are constrained by guides on each digit of the 

fingers. 

 
Figure 4.1.18: Glove Designed by Delph et al. [1] 

 

Figure 4.1.19: Previous Finger Guides, Designed by Delph et al. [1] 

One of the drawbacks of this design is that when the flexion cables are pulled to close 

the hand, the guide stretches the fabric outward instead of transferring tension to the fingertip.   
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In order to ensure that the glove was still customizable and solved the problem with a pliable 

glove, the team explored the idea of solid rings.  The idea was to generate a set of user specific 

rings instead of two piece guides so that the extension and flexion guides were connected.  The 

Solidworks models for the finger rings would be linked to an Excel spreadsheet so that a full set 

of rings could be made by entering a patient’s finger diameter into a table. The solidworks 

“Design Table” feature allows users to have the various dimensions used to define a part be 

linked to cells in a spreadsheet, and cells linked to each other via background calculations. This 

table would automatically calculate the dimensions of the entire ring based on only the width 

measurement of the knuckles between the ring and the fingertip on the appropriate finger. 

Please refer to Section 5.1.1: Glove Design and Table 5.1.1: Finger Ring Design Table for 

additional information. 

The exact calculations for the proper sizing underwent several slight changes as the 

exact thickness of the glove, sensors, and sensor pocket was not known, but a conservative 

estimate was used and found to be appropriate based on tests, and ultimately was the correct 

size once the glove was more completely assembled. The calculation proceeds by reading the 

entered input for the finger width, increases it by a constant amount (to account for the 

thickness of the glove material), sets the new number as the inner diameter of the ring, and 

draws the rest of the ring from there. Initially the calculation added 0.075” to the diameter, but 

this value was found to be too small and constricted the wearer’s finger. Next the value was 

multiplied by 1.1, but this approach was unreliable as this assumed that the thickness of the 

glove was proportional to the width of the finger, which was untrue. Finally adding a constant 
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of 0.15” was found to be the exact amount necessary, and indeed is the calculation used in the 

final prototype. A basic model of the rings can be seen below in Figure 4.1.20. 

 

Figure 4.1.20: Solid Ring Finger Guides 

In many cases, hemiparetic stroke survivors have limited control over their fingers or 

stiff joints that would make donning a glove-device challenging.  The glove needed a way for a 

therapist to assist the patient’s fingers as they were donning the glove.  The first glove iteration 

to tackle this constrain featured an “L” shaped zipper sewn along the pinky-side seam of the 

glove and across the top of the knuckles as represented in Figure 4.1.21. 
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Figure 4.1.21: Glove with L-Zipper Layout 

 

The glove with an “L” shaped zipper allowed the patient to slide their hand in from the 

side, but did not give room for someone assisting the donning process to access the patient’s 

index and middle finger. The second glove iteration featured two zippers along the side seams 

as represented in Figure 4.1.22 so that the top of the glove could be hinged up during the 

donning process. The outside zipper ran along the pinky seam while the inside zipper ran along 

the seam above the thumb.   
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Figure 4.1.22: Glove with Two Zipper Layout 

 

Several iterations for donning glove were considered while assessing the effort needed 

to move the hand and fingers during the donning process. Looking at the device from a higher 

standpoint, there are three major parts that a patient would need to thread their arm through: 

the elbow anchors, the wrist anchors and wrist flexion limiter, and finally the finger rings on the 

glove.  Attaching the above listed parts to a neoprene wetsuit sleeve and attached glove 

allowed the patient to thread their arm through every part until the sleeve was completely on 

their arm and hand. This procedure would be easy for a healthy individual with full control and 

high dexterity.   

In order to simplify the device donning process and allow for a therapist to assist 

individuals with limited control over their fingertips, a two-step donning process was devised.  
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Instead of permanently fixing the wrist of the glove to the end of the neoprene sleeve, the 

bottom of the glove would be attached to the sleeve and the top of the glove would fold up.  

In the two step donning process the patient would insert there hand into the sleeve 

with the glove bent down.  In the second step the patient would insert their fingers into the 

glove and then zip the sides of the glove closed.  The zippered sides of the glove also allows a 

second individual the ability to help guide the patient’s fingers into the glove. 

In order for the top half of the glove to be folded up during the donning process the 

Bowden cables for extending the pointer through pinky fingers must be disconnected. The 

detaching mechanism went through several iterations trying to optimize the ease of use and 

keep the thickness of the mechanism slim and close to the surface of the glove. The first 

designs entertained were placing each on a track with a disconnect joint on the track.  

Alternatively, the team decided in using a system where the extension cables were wrapped 

around small spools.  The connection would then be made by connecting the axles of these 

pulleys. The torque on the end affecter would originate from the tension from the Bowden 

cable leaving the backpack wrap around one pulley on connected by a detachable axle to 

another pulley before being threaded to the end of the finger.  

The first major design for the detaching mechanism consisted of small pulleys with 

torsional springs on the same axis as the pulley.  The two halves of the detaching mechanism 

would be mirrored except that the lower half would have exposed cables running through the 

cable guides to the fingertips instead of connecting directly into Bowden cables.  Exploring the 

coaxial pulley idea, the team realized that when the mechanism is detached, there needed to 



74 
 

be a component to keep the pulleys and cables in tension so that the axles would line up when 

donning the glove.  Constant force springs were chosen to provide a constant torque on the 

pulleys. 

 

Figure 4.1.23: Three Iterations of the Detaching Mechanism in Chronological Order from Left to Right 

This first iteration (see leftmost component in Figure 4.1.23) stacked the rotating 

elements vertically, and therefore increased the necessary height of the mechanism. One of the 

original goals for the project was to create a rehabilitative device that was as slim and the least 

inhibiting as possible.  With this in mind the second major iteration of the detaching mechanism 

(see middle component in Figure 4.1.23) placed the tensioning springs on a separate parallel 

access to keep the thickness relatively shallow and used a counter wrapped cable to provide 

tension on the pulleys.   

The third major iteration (see rightmost component in Figure 4.1.23) had the same 

pulley layout but included an acrylic shield on both halves of the detaching mechanism to keep 

all components in place. The heads of the socket cap screws also served as locating pins when 

connecting the two halves together during the donning process. 
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Additionally, A method for supporting the wrist in flexion and extension was explored. 

Establishing, that the wrist portion of the team’s device is primarily used to support hand 

gestures, the wrist was supported as opposed to being actuated like the fingers.  The wrist 

support device would anchor to the detachable mechanism and wrist pronoation module. 

To assure reliability and minimize the number of moving parts the wrist design 

incorporated an exoskeletal beam with hard stops to limit the angle the wrist can bend.  On the 

top of the wrist the thin metal beam provides spring like support for the wrist.  Affixed to the 

surface of the metal beams are rows of trapezoids cut to a specified angle as seen in Figure 

5.1.14 in the final design chapter.  The angle for these trapezoids was computed based on 

analyzing a picture of a human wrist in both their most extended and flexed states.   This will 

allow the wrist to bend at a minimal angle, as mentioned in the design iteration chapter, with 

increasing resistance (provided by the surface mounted metal beam).  Once the wrist reaches 

its limit angle, the trapezoids will meet and provide the hard stops. 

 

4.1.7 Motors, Servomotors, and Encoders 

The Rehabilitative Robotic Glove team used servomotors for actuating the device. 

Through the use of current limiters and PWM signals, the team was able to effectively control 

the position and torque outputted by the servomotors. However, the servomotors were 

incapable of making full revolutions, thus the spools designed for the project had to be large, 

able to retract enough cable for hand flexion and extension over a range of approximately 200 

degrees. This, in turn, made it extremely difficult to make the system compact. 
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The following year, the Soft Robotic Exo-Muscular Arm Brace team decided on using 

stepper motors. Stepper motors can fully rotate, thus eliminating the need for extremely large 

spools. Despite the minimized torque, the stepper motors were not capable of putting out 

enough torque to actuate the elbow. Thus, additional motors were used to supplement the 

stepper motors. The benefit of using stepper motors, however, was that they provided 

excellent position control. 

Based on the experiences of the previous two teams and research conducted by Chris 

Nycz, the team decided to use regular DC motors in conjunction with clutches and quadrature 

encoders. The motors selected were capable of outputting at least the minimum force 

required, and in most cases much more, thereby allowing users to not only move their 

appendage but also to manipulate small objects. The motors achieved this torque by having 

initial speeds of several thousand rpm’s, and using custom fitted gearboxes to reduce the speed 

to a much more reasonable level, all while multiplying the torque significantly. This did have the 

unfortunate side effect of removing any back-drivability that the motors may have had. For an 

additional level of control, as well as preserving the safety of the system, a model of 

electromagnetic clutches were chosen by Chris Nycz to use between the motors and spools.  

These clutches would allow precise control over the force being transmitted to the spools by 

the motors, as well as provide a convenient quick-release mechanism as when the clutches are 

unpowered, the motors and spools are effectively disconnected. The encoders were used to 

track the positions of the spools, and had to be connected directly to the spools instead of the 

more traditional location on the motors, and the use of clutches meant that the motion of one 

was not absolutely tied to the other. 
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4.1.8 Finger Motor 

4.1.8.1 Motor Selection 

In order to find a satisfactory median between the space inefficient servomotors and 

the heavy, underpowered stepper motors, the team made a careful selection from the catalog 

of Maxon Motors.  The specifications required were established during the previous projects, 

and so were carried through to this project. The requirements were: back driveable, weight less 

that 1kg, speed of 50 rpm’s, torque of .65 Nm, peak current draw of 1.5A, and operating 

voltage of 12V.  

The motors initially chosen, when combined with their custom-fitted gearboxes would 

meet almost all requirements set by the design statement: lightweight, powerful, quiet, and 

small.  Unfortunately the one design specification not met was low cost, and so a comparable 

motor found on eBay.com, a Maxon Motor with a third-party gearbox attached was 

significantly and almost identical, and certainly sufficient for the needs of the project. For 

details on the motor chosen, please see Section 5.1.4.1: Finger Motor Units. 

 

4.1.8.2 Finger Housing Revision 1 

One challenge faced by the design team was the layout of the backpack that would 

contain the motors.  The two previous MQP teams, by the nature of their projects being 

separate, had housed their motors in separate backpacks.  Though the glove and brace had 

been in separate locations along the user’s arm, the motors had been in the same location.  

Finding an orientation that would allow for five motor setups for the fingers and two for the 



78 
 

elbow and wrist motors would prove to be challenging.  The first design revolved around 

avoiding all the complications that arose in previous projects from the motors being built into 

the actual backpack.  The first major decision revolved around making each motor into its own 

modular unit containing every piece of the motor train.  Ideally these units would be easily 

removable for maintenance and adjustment.  The first iteration of the actual design involved 

having the cables from each motor unit being routed through the backpack structure using a 

system of pulleys to the upper left corner where they would join with the plastic tubing to 

become a Bowden system.  Though the finer details of this design were never planned, the 

benefits and drawbacks were analyzed and it was determined that a better design was needed. 

4.1.8.3 Finger Motor Housing Revision 2 

The second design iteration kept the modular design of the first concept design, but 

sought a better method of managing the cables from the spools to the Bowden cables.  To 

accomplish this, the modular design was taken a step farther to include the mounting location 

for the mounting cables with the rest of the unit.  A model of the CAD assembly can be seen 

below in Figure 4.1.24.  The motor train features a large central block to which all components 

are attached, as well as several clamps which are used to secure them.  There is also a sliding 

mechanism used for attaching and removing the block to and from the actuation platform.  It 

consists of a baseplate that will be permanently fixed to the actuation platform, and the motor 

block simply slides in and out, held in primarily by gravity.  This revision features no locking 

mechanism for this as it was a last-minute design change. 
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Figure 4.1.24: Finger Motor Train V2 

The cables can be seen protruding from a cross-brace across the top, holding them 

firmly in place and causing each motor train to be absolutely independent of the others, and 

the backpack itself.  The Bowden cables would still be attached to the sleeve, but since they 

only attach to the motors and sleeve they do not bind the motors to the backpack. With this 

design, aside from the wiring to power the motors, clutches, and encoders, each motor train 

may be freely removed from the backpack. The location of the cross-brace had a design failure 

causing it to block the primary access point to the lock nut used for clamping the spools 

together.  To remedy this, the entire assembly was tilted 25° so that when several are stacked 

next to each other, they could be accessed from the exposed side. 

4.1.8.4 Finger Motor Housing Revision 3 

The final motor train changes little from the second revision.  Most of the changes were 

brought about by creating a physical prototype of the motor train and making small changes 

from that.  The greatest change came as lowering the surfaces that the heads of a few of the 
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clamp screws rested against.  Due to a slight error in modeling, the screws in the model were 

slightly longer that the actual screws used in the assembly.  A relatively simple fix, a slight 

removal of material was all that was necessary in the model.  The clamp used for attaching the 

clutch has to be slightly reshaped to account for the wiring port being slightly larger than 

anticipated.  Again, a simple change.   

One problem that did go unnoticed for a long time was the interference between the 

spools and the cable mount, the piece across the top that the Bowden cables fit into. Its shape 

and position on the motor train caused it to interfere with the spools, essentially locking the 

small extension spool in place and preventing it from sliding along the threaded rod, effectively 

disabling the spool adjustment mechanism. The fix for this was to modify the shape of the cable 

mount so it had clearance over the spools and was not in the way. Finally, a large portion of the 

motor block and base was hollowed out. This, while reducing the weight by a trivial amount, 

reduced the material used in manufacturing by a significant amount, which served to reduce 

the cost significantly. This revision of the motor train can be seen below in Figure 4.1.25.  This 

revision is discussed in greater detail in the Final Design chapter. 
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Figure 4.1.25: Finger Motor Train V3 

4.1.9 Elbow and Wrist Motor 

4.1.9.1 Motor Selection 

The first step of finding appropriate motors was determining the expected torque 

output requirements of the motors. Quick calculations estimated a minimum of approximately 

2 Nm of torque from the motor for overcoming the mass of the forearm when flexing the arm 

from full extension.  
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Figure 4.1.26: Motor Torque Estimation 

In order to determine the approximate torque requirements for actuating the arm, the 

average mass of the forearm and hand was assumed to be 1.9 kg [52]. Estimates were made for 

the distance between the elbow’s axis of rotation and the forearm’s center of gravity and the 

distance between the elbow’s axis of rotation and the cable tension, as visible in Figure 4.1.26. 

Assuming that the arm is at full extension, parallel to the earth, the force of gravity due to the 

mass of the forearm is calculated as follows: 

𝐹𝑔 = 9.8
𝑚

𝑠2
∗ 1.9 𝑘𝑔 = 18.6 𝑁 

Next, the moment through the elbow’s axis of rotation, notated as 𝑀0, is assumed to be 

zero. The angular velocity of the forearm is also assumed to be zero. Therefore, the cable 

tension, 𝐹𝑐, required to maintain equilibrium may be solved as follows: 

∑ 𝑀0 = 𝐹𝑐 ∗ 3.81 − 𝐹𝑔 ∗ 15.24 = 𝐹𝑐 ∗ 3.81 − 18.6 ∗ 15.24 = 0 

𝐹𝑐 = 74.4 𝑁 
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Assuming a spool radius of 1” (2.54 cm), the torque output required from the motor is 

calculated as follows: 

𝜏𝑀 = 74.4 ∗
2.54

100
= 1.9 𝑁𝑚 

At $437.70 a piece, the team quickly discovered that these specifications required 

Maxon gearmotors that exceeded the budget of the project. As a result, the team decided on 

using cordless drill motors. Cordless drills are designed to provide high torque, while minimizing 

weight and maximizing efficiency. The motors for actuating the wrist and elbow have similar 

requirements. The first cordless drill considered was the Black & Decker SS12C. With a rated 

torque output of 130 in-lb (14.69 Nm) this drill would have easily performed the task of 

actuating the arm. However, the cordless drills selected for this project were purchased from 

Harbor Freight, item #68239. With a rated torque output of 84 in-lb (9.49 Nm) Harbor Freight 

drill proved sufficient for the application. The team decided on modifying the Harbor Freight 

cordless drills for two reasons: ease of modification and price. 

4.1.9.2 Gearmotor Modification 

The Harbor Freight gearmotor did not have two different speeds, thus the gearmotor 

could be removed from the cordless drill housing as one unit. The gearmotor assembly 

extracted from the Harbor Freight cordless drill had a slip clutch built into the gearbox. 
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Figure 4.1.27: Disassembled Gearbox 

When the output shaft of the cordless drill reached the cordless drill’s set torque, the 

ring gear of the planetary gearbox would slip within the plastic housing. The ribs on the surface 

of the ring gear as shown in Figure 4.1.27 centered themselves in the holes of the plastic 

housing when the clutch was not slipping. 
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Figure 4.1.28: Plastic Insert in Gearmotor 

In order to mitigate the ring gear slippage, a 0.05” thick plastic spacer was 3D printed 

and installed between the washer and motor head as shown in Figure 4.1.28. When assembled, 

the spacer would create enough force between the motor head, ring gear, and plastic housing 

to prevent the ring gear from rotating.   

4.1.9.3 Elbow and Wrist Motor Housing Revision 1 

The first concern for the elbow motor housing is reducing the size of the device. 

Because the team had originally planned to fit this device in a backpack, the primary 

consideration was reducing the size of the actuator.  
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Figure 4.1.29: Elbow Motor Housing Revision 1 (Section View) 

Figure 4.1.29 shows a section view of the model. The shaft on the end of the gear motor 

has a right-hand threaded exterior and a left-hand threaded interior screw. In order to take 

advantage of the threads, a hollow shaft was designed to thread onto the outside of the motor 

shaft. A left-hand screw could then be passed through the shaft and installed, thereby 

effectively attaching the shaft to the gearmotor. Each of the two bearings had grooved circular 

slots cut into the base for placement. Although compact, this design would have been 

extremely difficult to machine, thus the design was quickly altered in favor of machining 

concerns as opposed to size or weight. 

4.1.9.4 Elbow and Wrist Motor Housing Revision 2 

With machinability in mind, the second revision of the elbow motor housing removed 

many of the features that would have been difficult to machine. Instead, more standard off-

the-shelf parts were selected for construction. 
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Figure 4.1.30: Elbow Motor Housing Revision 2 (Section View) 

While the second revision of the part was being developed, the team had decided to 

mount all of the actuators to one plate of aluminum. As a result, the flat base that connected all 

of the retaining blocks in the model was removed, as visible in Figure 4.1.30. Instead of 

machining a shaft for the part, a standard 0.5” diameter D-shaft was selected. The D-shaft is 

attached to the gearmotor using a 0.5” to 0.5” coupler. In addition, the retaining blocks for the 

bearings do not have a groove. Instead, the bearings are held in place solely with friction. The 

CUI C14 quadrature encoder is attached to the final bearing retaining block with an L-shaped 3D 

printed part. 

4.1.9.5 Elbow and Wrist Motor Housing Revision 3 

After the team decided to have a single plate of aluminum as the base for all of the 

motors, the design for the elbow and wrist motor housing had to be reevaluated. 
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Figure 4.1.31: Elbow Motor Housing Revision 3 (Section View) 

The third iteration of the motor housing design took into consideration what resources 

were readily available. The machine shop on campus often has scrap material, and there were a 

number of 2” by 3” and 3/4” thick blocks of aluminum. These could be easily machined to 

create the bearing retaining blocks for the bearings and motor. As visible in Figure 4.1.31, an L-

shaped aluminum channel was added to the model to serve as the base for all of the parts. In 

addition, the side of the aluminum plate serves as the termination points for the Bowden 

cables. 

4.1.9.6 Elbow and Wrist Motor Housing Revision 4 

The fourth revision of the elbow and wrist motor housing design includes some 

modifications to strengthen the part and remove some of the excess material. 
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Figure 4.1.32: Elbow Motor Housing Revision 4 (Section View) 

Because the side wall of the motor housing is likely to experience high forces due to the 

Bowden system, the bearing retaining blocks were made wider, such that they are flush against 

the side of the L-channel, as visible in Figure 4.1.32. The blocks thus provide extra support to 

the L-channel, preventing it from folding inwards. In addition, the cost of buying 3/8” thick 

stock for the bearing retainers was deemed inconsequential compared to the weight reduction, 

thus 3/8” thick blocks are used for the bearing retainer blocks as opposed to 3/4” thick blocks. 

In addition, instead of 3D printing a straight L-shaped bracket, the part was modified from a 

sharp right angle to an arced piece to minimize warping. 

The size of the smaller spool was also reduced to account for the different extension 

and retraction lengths required for extending and flexing the elbow. In order to maintain a 

relatively high surface area between the large and small spools, a flange was added to the 

smaller spool, as seen in Figure 4.1.32.  
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4.2 Electrical System Architecture 

Two main design choices were considered for the electrical system architecture. The first 

one consisted of a more simple design with only one microcontroller. The second option 

evaluated consisted of several microcontrollers communicating with one another. Both options 

would be sufficient to handle sensor data acquisition and motor control. When 

compartmentalizing the system with several microcontrollers, the approach of how many 

controllers to use and what task would they be executing came under discussion.  

One of the advantages of the single controller approach was that it did not require data 

acquisition synchronization amongst multiple controllers. Furthermore, no communication 

protocols were required and the data did not need to be sent to/from other controllers since 

everything was already centralized. However, with only one controller the options for future 

expansion of the system were very limited because most I/O ports on the microcontroller 

would be used. Sensors are spread throughout the body with some being on the hand and 

others near the motors. If all the sensors were to connect to a single controller, the analog 

sensor lines would be longer since the microcontroller cannot be located near all of the sensors. 

This would also allow other signals to interfere with the signal being measured. Therefore, 

placing the controllers within close proximity of the sensors being measured ensures accurate 

sensor measurement. 

The multiple microcontroller approach consisted of three different circuit boards, which 

were to be placed on different areas of the glove and the actuation platform, each with their 

own microcontroller. The approach was to have three controllers: Main, Motor, and Sensor 

circuit boards. One of the main advantages of this multiple-controllers approach was the ability 
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to split up the computation tasks. Each microcontroller would be dedicated to executing one 

function as opposed to one microcontroller doing several functions, such as pressure and flex 

sensor data acquisition and processing, as well as motor control. Separating the motor control 

onto another board as opposed to motor control processes occurring within a single controller 

allowed for a faster feedback control loop where the motor controller would not have to 

interface with many other boards and the computer at the same time. This setup allowed for 

the Main board to act as a hub between the other boards and as an interface to the computer. 

Moreover, software development and debugging could be divided up amongst the different 

developers of this project in a much easier and less conflicting manner. A possible problem that 

could occur with this multiple-controllers design choice was that since each controller had its 

own oscillator driving it, the oscillators would never be exactly the same and therefore data 

acquisition timing would drift over time. Nevertheless, this possible drawback could be solved 

by having the Main controller send a signal to the other controllers to synchronize the data 

acquisition. Therefore, the electrical sub-team selected the multiple controllers option as our 

high-level electrical system structure, using the PIC32MX795F5F512L microcontroller from 

Microchip in each of the different boards.  

4.2.1 Sensors 

One of the main components required for the development of this exomuscular sleeve 

were a set of various sensors that allowed collecting sufficient data to control the performance 

of the device for therapeutic purposes. In order to properly actuate the fingers for exercises 

such as closing and opening the hand, it was important to ensure that the angles of flexion and 

extension did not exceed safety thresholds that could cause pain to the users. Beside safety of 
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the patients, measuring angles can also provides data for position based control. Thes data can 

also be used by patients and therapists to track the progress. Flex sensors were considered a 

viable option to measure the angles of flexion/extension of the fingers.  

Typical therapeutic exercises usually include grasping motions in order to improve the 

patient’s abilities to perform daily tasks, such as grabbing a glass of water. Pressure sensors 

were evaluated as an option to detect pressure at the fingertips, thus allowing to determine the 

quality of the grasping tasks performed by the users. Additionally, the design team considered 

providing visual feedback to the patients that could serve to indicate the completion of specific 

tasks. Light emitting diodes (LEDs) were considered suitable to indicate the patient’s degree of 

motion completion using a predetermined color scale. Sections 4.2.1.1 and 4.2.1.2 provide a 

detailed evaluation of the aforementioned sensors.  

4.2.1.1 Flex Sensors and Force Sensitive Resistors 

An important component of upper limb rehabilitation is to determine the mobility of the 

fingers. In order to obtain such data, flex sensors could be placed on each finger to measure the 

angle of flexion or extension and ensure the motor actuations are not reaching extreme angles 

that could harm the users. Furthermore, force sensitive resistors (FSR) could be placed on each 

fingertip to measure the force exerted when grabbing objects.  

The signal received when reading these sensor data would need to be amplified. 

Instrumentation Amplifiers were determined to be the best choice to achieve this signal 

amplification since they are characterized by having very high input impedance, which would 

not affect the output or gain. Two types of instrumentation amplifier variants were evaluated: 



93 
 

those using dual power supplies and those using Rail-to-Rail Amplifiers. When experimenting 

with dual power supply instrumentation amplifiers, it was determined that they could not 

achieve the desired signal gain between 0 and 5 Volts. Furthermore, these types of amplifiers 

had a tendency to clip at the lower end at approximately 0.9 Volts and at the upper end at 

approximately 4.4 Volts (when using supplies of 0 and 5 Volts). On the other hand, Rail-to-Rail 

Amplifiers were more prone to reach a signal very close to the rails. When tested with 0 and 5-

Volt supplies, these amplifiers were able to swing between 0 and up to 4.5 Volts. These 

characteristics can be observed in the graphs shown below in Figure 4.2.2 and Figure 4.2.3, 

which display the result of simulations done with NI Multisim version 12 (by National 

Instruments Electronics) with one of the sensor circuits (see Figure 4.2.1). 

 

Figure 4.2.1: Wheatstone Bridge circuit used for simulation.
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Figure 4.2.2: Graph showing Vout clipping well below Vs and Ground when using Bipolar Instrumentation Amplifier (AD602BN).
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Figure 4.2.3: Graph showing Vout clipping closer to rails when using Rail-to-Rail Instrumentation Amplifier (AD602BN). 
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4.2.1.2 Visual Feedback through Light Emitting Diodes 

 Several design ideas were considered to give haptic or visual feedback to the user, 

signaling they had accomplished a movement goal, such as placing small vibrating motors or 

light emitting diodes (LED) around the device. Vibrating motors would allow the user to actually 

feel the feedback as the motors vibrated against their skin. However, this option might not be 

successful when treating post-stroke patients with very limited sensation on their upper limb. 

Furthermore, the vibrating motors could interfere with the EMG data collection, which would 

not be suitable for future iterations of this system. 

Two choices were evaluated regarding the placement of the LEDs: on top of the 

fingernails or on top of the knuckles on the hand. When considering the placement of the LEDs 

on the fingernails it was noted that the users might not be able to receive the visual feedback 

when grabbing objects since their hand would be closed and the ends of their fingers could be 

out of sight. Since most tasks for upper extremity rehabilitation involve grasping actions, this 

LED placement would not be ideal. However, arranging the LEDs on top of the knuckles on the 

hand would be much more practical since users would be able to receive visual feedback even 

when grabbing objects. The only case considered in which users would not be able to perceive 

visual feedback from the LEDs on the knuckles would be when the palm of their hand was 

facing them. Nevertheless, in this case the user could visually see their hand closing, so the LEDs 

would not be necessary.   

 Two main choices were considered regarding the selection of the proper LEDs, such as 

passive or active (optoelectronic) LEDs. When evaluating the bipolar LEDs, it was determined 

that these have too many digital output lines, i.e. 3 wires per LED, which 
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would require using 3-to-1 multiplexers than directly selecting 

an LED from one serial communication line. LEDs with 

integrated IC can be daisy-chained and selected by serial bits 

from serial communication lines on the Sensor board (see 

Figure 5.2.8). These LEDs were tested on a prototyping board 

using an Arduino Uno microcontroller as shown in Figure 

4.2.4. To conduct such testing the LEDs were surface-

mounted, which introduced some difficulties when soldering 

them onto the prototyping board. On the other hand, the 

control LEDs displayed below in Figure 4.2.5 cost the same as 

the bipolar LEDs ($ 0.50 for the WS2812 by WordSemi) and 

included built-in Integrated Circuits. The ICs require SPI data 

from the microcontroller to individually control and select color and output, respectively.  

 

Figure 4.2.4: Bipolar LED Testing on 
Prototyping Board. 
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Figure 4.2.5: Control LED with Built-in Integrated Circuit. 

 

4.2.2 Actuation Control Mechanisms 

A total of 7 motors were used to implement the actuation system of this integrated 

exomuscular sleeve; 5 for actuating individual fingers, 1 for wrist actuation and 1 for elbow 

actuation. Since the wrist and elbow motors required different operating voltages than the 

finger motors, it was necessary to have regulator circuits for the various voltages required on 

the motor board. In addition, each one of the 7 motors was connected to an encoder to provide 

position information as a control feedback, sending 2-channel outputs to decoder chips (details 

offered in Section 4.2.2.5). Motors were also connected to 7 motor drivers for control 

independence. Section 4.2.2.2 provides detailed information about the functionality of the 

motor drivers.  
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Within the motor driver circuitry, a main control feedback, current limiting circuit was 

inserted. The current limiting circuit setup was suggested by the advisors since it was 

successfully used in the previous iterations of this MQP [2]. This current limiting circuit 

facilitated the current control for the integrated actuation system (details offered in Sections 

4.2.2.1 and 4.2.2.4). The motor drivers were fed PWM signals from an external PWM driver. A 

selected 16-output PWM driver (Texas Instruments, TLC5940) sources different PWM signals to 

all 7 motor drivers and 5 clutches also included in the actuation mechanisms of this system 

(refer to Section 4.2.2.3 for more details). Other control inputs included were 8 series elastic 

actuators (SEAs). By utilizing two op amp ICs (low power quad op-amps), each IC including 4 

internally compensated op amps for required analog signal conditioning, the SEAs could be able 

to deliver a suitable range of voltage outputs (details on signal conditioning and SEAs are 

offered in Section 4.2.2.6). 

4.2.2.1 Motor Control 

The design team for this project decided to use a current sensing circuit to implement 

the motor control algorithm. Several methods were evaluated, such as voltage or position 

control using transistors or encoders, respectively. Research conducted in this area along with 

the recommendations obtained from the advisors of this project, indicated selecting the 

current limiting design choice since it is a common way to control DC motors, which has been 

thoroughly tested. Furthermore, the current measurements could be used to obtain torque 

estomates and provide control feedback. 
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4.2.2.2 Motor Drivers 

Several DC motor drivers were evaluated, including the L298 chip from 

STMicroelectronics. Some of the requirements taken into account before making the selection 

of the most suitable motor driver were the output current, the number of full H-bridges, and 

the implementation methods. The output current of the system required a maximum between 

2 and 4 Amps to operate the motors previously selected. Having a full H-bridge (see Figure 

4.2.6) was highly considered since the system required fully backdrivable (achieved by 

electromagnetic clutches on finger motors and turn off powers of elbow and wrist motors) DC 

motors for its proper performance during the different rehabilitative tasks assigned to the 

patients. To avoid the need for a separate current sensing circuit, it was suitable to select a 

driver that included current sensing capabilities.  

 

Figure 4.2.6: Motor Driver L298 (4A Dual H-bridge) 
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4.2.2.3 Pulse Width Modulation Drivers 

Additional pulse width modulation (PWM) inputs were required for the motor drivers 

due to the lack of designated PWM outputs from the selected microcontroller. The system 

required a total of 12 PWM signals; 7 for motors and 5 for the clutches that assist the finger 

motors. Each clutch required a PWM input with a NPN transistor as switch for clutch control 

circuit (see Figure 4.2.7).  

 

Figure 4.2.7: Clutch-NPN-PWM Input Circuit Schematic Diagram 

However the microcontroller only had a maximum of 10 PWM outputs from 5 Output 

Compare pins. Since 2 additional PWM supplies were needed, the team decided to source all 

PWM signals from an external PWM driver. Among the main criteria taken into account to 

select the PWM drivers were: maximum PWM duty cycle, reasonably high data transfer rate, 

and simple communication interface. The TLC5940 PWM driver chip from (Texas Instruments 

Inc.) can generate a PWM signal from 0% to 100% duty cycle. The control update loop between 

the Motor board and the motors was designed to run with a frequency of at least 1 KHz. 
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Therefore, the frequency supplied to drive and communicate with the selected PWM driver 

(TLC5940) would have to be high enough to satisfy this update rate. The TI TLC5940 datasheet 

specifies the calculation of the frequencies as shown below: 

f(GSCLK) = 4096 × f(update) 

f(SCLK) = 193 × f(update) 

where f(GSCLK)  is the minimal frequency to drive the peripherals (in this case, motors and 

clutches),  f(SCLK) is the minimal frequency to drive SPI communication, and f(update) is the desired 

update rate for the entire system. The maximum SCLK and GSCLK frequencies specified for the 

TLC5940 are 30 MHz. Using the equations above for these frequencies results in the minimum 

SCLK and GSCLK frequencies required to achieved the desired 1 KHz frequency. The results of 

these computations yield f(GSCLK) = 4,096 KHz and f(SCLK) = 193 KHz. The PIC32 operates at 80 

MHz, but it can be stepped down to anywhere within the range of 193 KHz to 30 MHz. The 

selected 16-bit output-channel PWM driver chip (TLC5940) can be seen below in Figure 4.2.8. 
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Figure 4.2.8: 16-Output-Channel PWM Driver TI TCL5940 

 

4.2.2.4 Current Limiting Circuit 

Consistent with the design choice of having four separate circuit boards, one of them 

was strictly dedicated to control the seven motors included in this system, i.e. five for the 

fingers, one for the wrist, and one for the elbow. The main components of the current control 

system are the current limiting and current measuring circuits. Current limiting is accomplished 

through the use of a current limiting circuit, which limits the amount of current flowing to the 

H-Bridge as shown in Figure 4.2.9. The current limit is controlled by a digital potentiometer. The 

greater the resistance, the more current is inhibited. Current control is accomplished by setting 

the current through a current limiting circuit and measuring the current used by the motor 

through a current sense circuit.  

To implement this motor control board, current limiting was required as a safety factor 

and to provide feedback for force control. Research conducted regarding the design choices 

evaluated by previous projects leading to the development of this device suggested using a 
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zener diode with 4 transistors to regulate current and a digital potentiometer to control the 

current threshold from the microcontroller. The current limiting circuit implemented as 

suggested by previous MQP teams [2] would be connected in between the positive voltage 

supply of the motor (+Vb) and a transistor on positive motor power (P-FET). The current limiting 

circuit can be seen below in Figure 4.2.9. 

 
Figure 4.2.9: Current Limiting Circuit 

 

4.2.2.5 Encoders and Decoders 

Quadrature decoders were considered ideal to accomplish bidirectional position control 

since these do not require additional potentiometers. There were a few parameters that 

needed to be evaluated before making a proper selection, such as operating frequency, counter 

resolution, and communication protocol with the microcontroller. The parameters were chosen 
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based on functional objectives along with the integrated system architecture. A few different 

decoders were researched and picked with reasonably high operating frequencies, high counter 

data resolution, and parallel outputs in order to ensure dedicating the least possible amount of 

I/O pins from the microcontroller to the decoder interface. Quadrature encoders and decoders 

were selected based on the established parameters. There were relatively fewer options for 

quadrature encoders with high resolution, which yielded the selection of optical encoders. For 

decoder chips, one of the high-end quadrature decoder ICs with 14 MHz maximum clock 

frequency was picked. It had 8-channel output, allowing to be chained in parallel from a 

decoder to another in order to reduce the number of input pins for the PIC32 microcontroller. 

4.2.2.6 Series Elastic Actuators 

With the design of this exomuscular sleeve it was very important that the system had 

the capability to measure the torque exerted by users as they perform different exercises. 

Series Elastic Actuators (SEA) were considered as an option to translate this type of data into 

electrical feedback to be sent out to the system. Moreover, using SEAs could serve to limit the 

transient spikes in the torque exerted by the system to ensure the patient’s safety. Series 

elastic actuators are a combination of potentiometers, springs, and actuators, where the 

displacement of the spring is used to determine the amount of force (Fa) exerted onto the 

potentiometer by applying Hooke’s Law (see Figure 4.2.10).  
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Figure 4.2.10: Functional Block Diagram of Series Elastic Actuators [53] 

Four different SEAs could be placed on the elbow brace to ensure its flexion (two SEAs) 

and extension (the other two), while five other SEAs could be used on the wrist for 

measurement not for actuation, i.e. four to determine pronation and supination and one for 

flexion and extension. Preferably two SEAs are needed to accurately measure torques for each 

movement since reading torque from only one SEA cannot cover large movements of the 

forearm. Torque may differ from one end to the other on the side of the arm; therefore, two 

SEAs are used and located on both sides of each area to perform flexion and extension. By 

averaging torques measured from the two sideway ends of rotating plate, more accurate 

torque can be achieved. The analog data obtained from all SEAs could be processed on the 

Motor control board as control feedback to ensure that the system would perform nominally.  

Two different options were considered when evaluating the type of potentiometers that 

could be used, i.e. magnetic potentiometers and soft membrane potentiometers. Magnetic 

potentiometers tend to have a wide range of operation and less actuation force (0.18 N pull 

force required). However, their price was almost twice the price of the soft membrane 

potentiometers ($22 for 10kΩ 50mm magnetic potentiometer and $13 for 10kΩ 50mm soft 

membrane potentiometer). Considering the number of sensors needed and budget allowed for 
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this project, the $9 difference was fairly significant (70% of the price of soft membrane 

potentiometer). Moreover, when evaluating soft membrane potentiometers it was found that 

their actuation force ranged from 0.6 to 1.5 N, which was significantly larger than that of 

magnetic potentiometers. This particular characteristic of soft membrane potentiometers was 

highly desirable since the force exerted by the users is likely to exceed the 0.6 N lower 

boundary and would not press any difficulties when measuring the displacement of the spring 

during each movement.  

Moreover, the thickness of this type of potentiometer was approximately 1/7 the 

thickness of magnetic potentiometers, i.e. 0.02” and 0.138”, respectively. These characteristics 

of soft membrane potentiometers would reduce not only the amount of space dedicated to 

placing these devices on the sleeve, but also the total weight of the system. 

4.2.3 Analog to Digital Converters 

 The output of each sensor goes through the low pass filter seen below in Figure 4.2.11. 

The filter is a unity-gain 2nd order Butterworth Sallen-Key low pass filter. Since the signal input is 

a low-frequency mechanical data with favorable voltage range, there was no need of gain. 

Research conducted revealed very stable output and high performace in Sallen-Key topology 

filters [54]. A cutoff frequency of approximately 25 Hz was preferred because the changing rate 

of the input signal would not exceed 15 Hz since the motions performed by stroke patient do 

not typically reach this frequencies. This 25 Hz cutoff frequency would also keep data below the 

25 Hz range. A 2nd order active filter was designed according to calculations suggested in [54]. 

The designed filter’s frequency response can be seen below in Figure 4.2.12. 
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Figure 4.2.11: Low-Pass Filter for Flex and Pressure Sensors. 

 

Figure 4.2.12: Magnitude Response of 2nd order Butterworth Sallen-Key Low Pass Filter 

 

1uF 
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The output of this filter would be sampled via Analog to Digital Converters (ADC) and 

sent to the microcontroller for data processing. In order to read accurate signals for data 

processing, it was required to choose a suitable ADC. The initial option considered was using 

the internal ADC included in the PIC32 microcontroller. PIC32 microcontrollers have built-in 10 

channel ADCs with a resolution of 10 bits. However, there were many more sensors included in 

this system, which suggested the option of using external ADCs with possibly higher resolutions. 

Another requirement taken into consideration when selecting the proper ADC to use was the 

power supply conflict since the sensors would be driven by 5V power whereas each 

microcontroller would be driven by 3V power. Therefore, the ADC had to be able to read analog 

signals ranging from 0 to 5V, while the clock signal and the chip select signal coming in from the 

microcontroller would only be 3V. The major concern with this setup was that the ADC might 

not register 3V chip select or clock signal as logic high. One of the solutions was to change the 

range of output of sensor circuits from 0-5V to 0-3V, and have a rail-to-rail ADC for the digital 

input lines. This option was not preferred since it limited the output range. Another solution to 

the problem was using an external ADC capable of referencing separate power source for digital 

and analog operation, such as the AD7927 chip from Analog Devices. This chip included eight 

additional channels with 12 bits of resolution. With these specifications in mind the AD7927 

ADC chip was chosen and set up as displayed below in Figure 4.2.13. 
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Figure 4.2.13: Schematic Setup for the Selected Analog to Digital Converter 
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4.3 Communication Protocols 

Two different approaches were considered to send data between the boards: sending 

all the data in one large packet or split it into multiple packets. The single packet approach had 

the advantage of when the packet was received, all the data was there. There would be no 

need to keep track of how many packets were expected to compare it with how many packets 

were actually received. For instance, if the computer commanded the sensor board to publish 

the index finger data, with the single packet approach, one large packet was being sent over 

UART regardless of the amount of sensor data needed to be sent.  

 The multiple packet approach, however, was more conservative on the UART bandwidth 

because it would only send a packet with data from a single finger. This way, only data that was 

requested by the main board would be sent over UART. The downside to this option was that 

all data from one board would not be received at the same time since the total amount of data 

would be split up into multiple packets. On the receiving end, the packets would also have to be 

tracked to see which packets came in the same instance.  

 The approach implemented was the multiple packet approach. This was chosen 

because, as the overall system is expaned into the future when more boards are added and an 

increasing amount of data is being sent around, only packet data with useful information will be 

transferred. With the single packet approach, there is a lot of waste, meaining the entire packet 

isn’t being populated with useful data.  
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5. FINAL DESIGN 

The final design consisted of an exomuscular sleeve covering the upper limb from the 

fingertips to the shoulder. The flexion and extension of the fingers is actuated through cable 

tension applied to the fingertips and measured with flex and pressure sensors connected to 

each finger. These cables run from the fingertips to the actuation platform where the motors 

and the spools are located. The final prototype of the exomuscular sleeve can be seen below in 

Figure 5.1. The entire system is controlled by a Main circuit board placed in the actuation 

platform, which communicates with three other boards monitoring the sensors of the fingers 

and the motor control. A high-level functional diagram of these circuit boards and their 

communication with the computer can be seen below in Figure 5.2. 

  

 

 

Figure 5.1: Exomuslcuature Sleeve Final Prototype 
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Figure 5.2: High-Level System Functional Diagram. 

 

5.1 Mechanical Subsystem 

For organizational purposes the prototype was divided into four segments: the glove, the 

wrist piece, the elbow brace, and the actuation platform (see Figure 5.1.1). Indeed each 

segment was designed independently and even by different team members. In the sections that 

follow the entire final design is reviewed categorically by these sections. 
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Figure 5.1.1: Mechanical System Overview 

5.1.1 Glove Design 

The glove was adapted from previous projects with modifications to support sensing 

and more advanced electrical components.  The glove itself is a thin neoprene glove modified 

with two zippers running parallel from the base of the first and fourth knuckles to the top of the 

wrist, as seen in Figure 5.1.2, which allows for ease in putting the glove on a stroke patient 

suffering from decreased hand function.  Along the back of each finger and sown into the glove 
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material is a pocket in which the flex sensors and leads for pressure sensors are be inserted, 

with their electrical connections available at the back of the hand.  The flex sensors measure 

the angle of the first knuckle, and the pressure sensors measure any pressure present at the 

fingertip resulting from grasping objects or pressing on surfaces.  The cables are attached to the 

glove via a series of two plastic rings fixed to each finger between the first and second knuckle 

the second and third knuckle, in addition to an end cap for the top and bottom of each finger.   

 

Figure 5.1.2: Glove with Two Zippers 

 

The rings are an elliptical shape with a circular hole in the center.  Centered in each of 

the resultant thicker areas are small holes. Through these holes the cable filament is threaded 

and glued. The rings are made of ABS plastic, and were created using a 3D printer. These rings 

are an advancement on designs in previous projects, which utilized two crescent shaped pieces 

which were glued to the top and bottom of the finger. In the previous design, being that the top 

and bottom cables were linked through the glove, rather than a solid piece of plastic, the glove 
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tended to stretch when tension was applied to the cables. This stretch caused much of the 

energy and mechanical advantage applied to the cables to be lost in the glove simply stretching 

and not moving the finger. The revised design solved this problem, while still being thin enough 

on the sides of the finger to avoid interference with the rings on other fingers. The final design 

for the finger rings may be seen below in Figure 5.1.3. 

 

Figure 5.1.3: Plastic Ring Cable Guide 

 Designing the rings rigidly to solve the problem of the glove stretching caused another 

problem: the lack of the glove stretching. While inhibitive to the function of the device, the 

stretching of the glove between the two attachment points was what had previously 

maintained the adjustability of the design by allowing the glove to stretch around users with 

different sized fingers. To maintain compliance with this design goal the rings were said to be 

adjustable in manufacturability. Prior to this conclusion, the rings were planned to be fitted to 

the dimensions of person wearing the glove to keep them from being too tight or too loose. 

This was done by taking a series of measurements of the width of the knuckles of the person 

who would be wearing the glove. These measurements were then entered into a spreadsheet 

which governed the dimensions of the Solidworks model of the rings. Through a series of 

calculations the entire model was built based each knuckle measurement, and an entire hand’s 
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set of rings were created for an individual automatically. Since the measurements are simple to 

take, and the rings are simple to produce using a 3D printer, it was established that any patient 

receiving this product could have a custom-fitted handmade rather simply, preserving the 

design’s compliance with the adjustability design goal. The design table used for calculations 

can be seen below in Table 5.1.1. By entering the measurements taken into the column labeled 

“Finger Diameter” a series of relations calculates the proper size for each other dimension, 

which are then inserted into the model which created the properly sized ring for each finger, 

which are represented by each row in the table. The dimensions within the finger ring model 

which correspond to the table can be seen below in Figure 5.1.4. Dimensions in the table are in 

inches. 

Table 5.1.1: Finger Ring Design Table 
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Index-Middle 0.67 0.82 0.18 0.05 0.09 A 0.5 0.5 0.455 

Index-Proximal 0.78 0.93 0.18 0.05 0.09 B 0.555 0.555 0.51 

Middle-Middle 0.67 0.82 0.18 0.05 0.09 C 0.5 0.5 0.455 

Middle-Proximal 0.75 0.9 0.18 0.05 0.09 D 0.54 0.54 0.495 

Ring-Middle 0.67 0.82 0.18 0.05 0.09 E 0.5 0.5 0.455 

Ring-Proximal 0.73 0.88 0.18 0.05 0.09 F 0.53 0.53 0.485 

Little-Middle 0.63 0.78 0.18 0.05 0.09 G 0.48 0.48 0.435 

Little-Proximal 0.67 0.82 0.18 0.05 0.09 H 0.5 0.5 0.455 

Thumb 0.9 1.05 0.18 0.05 0.09 I 0.615 0.615 0.57 
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Figure 5.1.4: Finger Ring Dimensions 

At the underside of each fingertip there is a clamshell mechanism which serves as the 

end cap for the cable running along the bottom of the finger, as well as forming a housing for 

the pressure sensors located at each fingertip. This device features a flat piece, which presents 

itself as the gripping surface of the fingertip and deflects when subject to a force from the user 

grasping an object.  On the underside of this piece, and butting the pressure sensor, is a small 

protrusion which will interact with the pressure sensor.  This protrusion creates a consistent 

and clean signal in the pressure sensor, as well as protects it from any damage that it would 

incur were it the main interacting surface. This flat piece joins with a platform to form a 

clamshell shape encasing the end of the pressure sensor. The base piece features a flat inlet the 

same size and shape as the pressure sensor, and an opening with a curved edge which allows 

the leads from the sensor to extend around the fingertip and back into the sewn groove of the 
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glove. At the point where the arm and base join there is a small trench which the end of the 

cable is inserted into and glued in the same procedure that the arm and base are glued 

together, solidly fusing all three together. Both pieces of the fingertip design were made of ABS 

plastic with a 3D printer. The final design can be seen below in Figure 5.1.5, Figure 5.1.6, and 

Figure 5.1.7. 

 

Figure 5.1.5: Fingertip-Arm 

 

Figure 5.1.6: Fingertip-Base 
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Figure 5.1.7: Fingertip-Complete 

 As for the back of the fingertip, the design used in earlier projects served fine and 

needed no improvement. It is simply a slightly curved plastic piece with a hole at each end. The 

cable was threaded through both holes and glued, before the whole piece was glued to the 

glove. This piece was made from ABS plastic in a 3D printer as well. The design for this piece can 

be seen below in Figure 5.1.8. Finally, an image of the completed fingertips of the glove can be 

seen below in Figure 5.1.9. 

 

Figure 5.1.8: Fingertip Back 
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Figure 5.1.9: Completed Fingertips 

The final iteration ensured the user could easily don the device while minimizing the 

number of mechanisms. The glove has zippers along both sides that opened the top half of the 

glove. Looking at the donning process at a higher level the process consist of a few simple 

steps. The user slips their arm through the sleeve while the glove is hanging out of the way. The 

top of the glove would unzip allowing the user’s hand to slide into the glove. Finally, the quick 

release mechanism containing the upper metal wrist support, and the end of the finger 

extension cables running from the actuation platform would snap into place. Therefore the 

majority of the finger Bowden cables remain intact, and the four extension cables running on 

top of the hand would have a quick release mechanism. The bottom half of this device can be 

seen below in Figure 5.1.10. 
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Figure 5.1.10: Attached Wrist Piece 

Closer examination of the extension cable detaching mechanism reveals its inner 

workings.  The cable anchored at the fingertips feed through the finger guides and wind onto 

the lower set of pulleys.  The upper half of the mechanism would have an identical set of 

pulleys and a slot for receiving the axles from the lower pulleys. The upper pulley transfers the 

tension into the cable inside the connected Bowden cables leading back to the motor modules. 

This can be seen below in Figure 5.1.11. 
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Figure 5.1.11: Upper Wrist Piece 

Additionally, each pulley would be tension by a counter wrapped cable wound around a 

constant force spring.  The tensioning is required when the mechanism is separated, and the 

pulleys are no longer connected to each other.  The tension keeps the cables wrapped correctly 

on the pulleys. A model of just the pulley and spring system can be seen below in Figure 5.1.12. 

 

Figure 5.1.12: Pulley System 



 
 

124 

A view of the completed glove can be seen below in Figure 5.1.13. 

 
Figure 5.1.13: Final Glove 

 

5.1.2 Wrist Design 

Given that this device will be used in assistive applications, the wrist mobility of the 

human arm becomes significantly more important during rehabilitative motions.  Analyzing 

many daily tasks where this assistive device could allow an individual to more autonomously 

perform chores, wrist supports the hand in grasping and carrying maneuvers.  For example 

picking up an item that fell on the floor, the hand grasps the item while the wrist supports the 

hand in a neutral position to maintain grip.   

Establishing, that the wrist portion of the team’s device is primarily used to support 

hand gestures, the wrist was supported as opposed to being actuated like the fingers.   

Needing some play for general movement the support must also prevent collapse under 

loading during rehabilitation or assistive tasks. To assure reliability and minimize the number of 

moving parts the wrist design incorporated an exoskeletal beam with hard stops to limit the 
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angle the wrist can bend.  On the top of the wrist the thin metal beam provides spring like 

support for the wrist.  Affixed to the surface of the metal beams are rows of trapezoids cut to a 

specified angle as seen below in Figure 5.1.14 and Figure 5.1.15.  This will allow the wrist to 

bend at a minimal angle, as mentioned in the design iteration chapter, with increasing 

resistance (provided by the surface mounted metal beam).  Once the wrist reaches its limit 

angle, the trapezoids will meet and provide the hard stops. 

 

Figure 5.1.14: Row of Trapezoids Placed on Top Surface of the Wrist 

 

 

Figure 5.1.15: Row of Trapezoids Mounted onto the Metal Beam Attached to the Wrist 
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5.1.3 Elbow Brace Design 

5.1.3.1 Stress Simulation 

The material used for the elbow brace design is primarily ABSplus-P430 printed with the 

Stratasys Dimension 3D printer. Assuming a tensile strength of 39 MPa [55], SimulationExpress 

studies were perform using Solidworks.  

Name  Type Min Max 
Stress  VON: von Mises Stress 183.022 N/m^2 

Node: 18365 
1.45295e+006 N/m^2 
Node: 20144 

 

 

Figure 5.1.16: Lateral Stress Simulation 

 

Figure 5.1.16 shows the results of the SimulationExpress study. In this simulation, the 

bottom curved surface of the part was considered fixed, while a total load of 75 N was applied 

to the interior back surface of the hollowed out space in the part. The force was applied in the 
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direction of the back of the part. This kind of loading is expected when the arm is fully 

extended. As is visible in Figure 5.1.16, the maximum stress reached is 1.4 MPa, which is 26 

times less than the tensile strength of the material.  

Name Type Min Max 

Stress VON: von Mises Stress 50.2279 N/m^2 
Node: 18373 

1.85059e+006 N/m^2 
Node: 8669 

 

Figure 5.1.17: Vertical Stress Simulation 

 

Figure 5.1.16 shows the results of another SimulationExpress study. In this simulation, 

the bottom curved surface of the part was considered fixed, while a total load of 75 N was 

applied to the holes through which the Dyneema pass. The force was applied in the direction of 

the top of the part. This kind of loading is expected when the arm is flexed at 90˚ while parallel 
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with the ground. As is visible in Figure 5.1.17, the maximum stress reached is 1.9 MPa, which is 

18 times less than the tensile strength of the material. 

5.1.3.2 Fabrication and Assembly 

The majority of the brace parts were printed using ABSplus-P430 on the Dimension 3D 

printer. As a result, the surface finishes of the parts were not ideal for sliding parts. In addition, 

features generated in Solidworks, such as threaded holes made using the Hole Wizard, did not 

propagate through to the STL models and were thus not printed. Therefore, the ball plunger 

block required modification post-printing. The first step was sanding all sides of the ball plunger 

block. This not only improved the surface finish but also removed enough material from the 

sides of the ball plunger such that it fit within the track.  

 

Figure 5.1.18: Modified Ball Plunger Blocks 

As visible in Figure 5.1.18, in addition to sanding the faces, the hole in the ball plunger 

block must be enlarged to accommodate the ball plunger. One side of the block was drilled to a 

1/8" diameter, while the other side was enlarged to 7/64". This allowed the side of the ball 
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plunger block with the larger hole to serve as a guide to more easily screw in the ball plunger. 

The narrower hole allowed the ball plunger to thread into the plastic. 

 

Figure 5.1.19: Ball Plunger Blocks with Ball Plungers Installed 

Figure 5.1.19 shows two ball plungers installed in two different ball plunger blocks. The 

threading allows the distance between the end of the ball plunger and the bottom of the ball 

plunger block. The distance is used to set the force with which the ball plunger traces its path 

on the membrane potentiometer. Once all of the ball plunger blocks were assembled, Dyneema 

was tied to the ball plungers, and the blocks were installed in the brace parts. 
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Figure 5.1.20: Assembled Brace Part 

Figure 5.1.20 shows the brace parts attached with rivets to segments of padded 

aluminum splint. After the aluminum splint was attached, Velcro was added by passing strips 

through the cutouts in the brace parts. The Velcro loops strip (fuzzy Velcro) was passed through 

the slots to spread the loading of the Velcro strip across the entire brace part as opposed to 

concentrating the force on the relatively thin printed rods. The ends of the Velcro loops strips 

were then either sewn into plastic loops or sewn to pieces of Velcro hooks (rough Velcro strip). 

Once all of the brace parts were assembled, the segments were temporarily tacked onto the 

neoprene sleeve using Welder adhesive. When the locations of the brace parts were finalized, 

they were loosely sewn into the Neoprene sleeve, allowing for minor position adjustments. 
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5.1.4 Actuation Platform Design 

One of the primary features of the device is the actuation of joints via non-local motors. 

The device is designed such that motors can actuate joints they are not directly adjacent to. 

Remote actuation is accomplished by housing the motors on a platform separate from the user 

with spools attached for winding cable in a Bowden system of cables. The cables connect to the 

joints being actuated causing them to move. The design of the Bowden system causes minimal 

force to be experienced along the length of the tubing while still causing actuation at the ends.  

A particular challenge faced by the design team is that both the hand and elbow 

projects done previously had used a backpack to house the motor units, though each project 

had a separate backpack. The difficulty was in fitting the motor units for both elbow and hand 

actuation, as well as the wrist. Due to the limitations of the project, the backpack design was 

ultimately deemed a lower priority than demonstrating functionality for such an early-stage 

prototype and converted into a tabletop platform for testing and demonstration of the 

actuation and sensors. The tabletop platform can be seen below in Figure 5.1.21. 
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Figure 5.1.21: Actuation Platform Top View 

This change would allow the team to develop a functioning prototype which could be 

easy to modify and maintain, without dedicating excessive resources to size compression. 

Regarding the mobility design goal, with further revising and optimizing of the design the motor 

units could be condensed to fit into a single backpack, but for the purposes of testing it was not 

seen as a priority. 

Given that they were adapted from separate projects, the fingers and elbow portions of 

the sleeve were adapted differently to the established design requirements. This separation 

was further supported by the fact that both sections have rather different requirements both in 

performance and durability. That is to say that the components powering actuation of the 

elbow and wrist must endure much greater forces and strains that those for the fingers. As a 

Elbor and Wrist Motor Units 

Finger Motor Units 
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result, the motor units used to actuate each were developed separately and ultimately 

resemble each other very little. 

5.1.4.1 Finger Motor Units 

Being that the fingers do not require a great force for actuation, relatively small motors 

were sufficient. The motors ultimately used were the Maxon Motors A-Max model, which 

operated at 36V and 5W for a nominal speed of 110 rpm’s. These motors were small, 

lightweight, and required power well within what the designed control system would be able to 

supply. Additionally, the high quality of the motors was such that they could be relied on for 

prototyping without breaking down or running into maintenance issues. An image of these 

motors can be seen below in Figure 5.1.22. 

 

Figure 5.1.22: Maxon Finger Motor 

The team decided that the materials located on the hand should be kept to a minimum 

to preserve the flexibility of the fingers. To this end it was decided that all methods of control 

for finger actuation should be located in the actuation platform with only the cables extending 

to the fingers. Electromagnetic clutches were added to the motor trains as a method of torque 

limiting. The clutches, which utilize electromagnets to variably press two discs together, allow 
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precision control over the torque being transmitted across it by controlling the voltage being 

applied across the electromagnet. By using a PWM controller one can produce a known 

maximum transmittable torque regardless of the force being output by the motors. This 

provided a simple method to exercise torque control on the actuation of the fingers. The 

clutches selected are by Ogura Industrial Corp., operate at 24 V, and are compact enough to 

comfortably fit into the motor units. A manufacturer’s photo of the selected clutch can be seen 

below in Figure 5.1.23. 

 

Figure 5.1.23: Clutch MIC-8NE 

 

Furthermore, in creating a comprehensive sensor suite for the software to be able to 

interpret, encoders were added to measure the position of the spools. However, due to the 

clutch causing the spools to not be permanently fixed to the motors, the encoder had to be 

attached to the spools, rather than the more traditional method of attaching them to the 

motor. The encoders selected were CUI Inc. Panel Mount Encoders which operated at 5V and 

produced 32 ticks per revolution of the attached shaft with x4 quatrature. Using an adapter, 

these encoders were attached to the end of the threaded rod, and so were linked directly to 
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the rotation of the spools. The encoders themselves were held onto the motor unit with an 

extension of the base motor block piece. An image of the encoders can be seen below in Figure 

5.1.24. The method for attaching the encoder to the motor unit can be seen below in Figure 

5.1.25. The encoders allowed for the sensor board to know the exact position of the spools, as 

well as what direction they are traveling. 

 

Figure 5.1.24: Encoder 

 

Figure 5.1.25: Encoder Attachment 
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Finally it was decided that the motor units would be best designed as modular units 

independent of each other. Previous projects had motors and spools attached and interwoven 

with the superstructure of the backpacks with varying degrees of complexity. Though this 

arrangement increased stability, it made the motor trains more difficult to revise and maintain. 

By designing each motor unit as a self-contained module, they would not be reliant on the 

superstructure of the actuator mounting platform to function, and therefore would require 

fewer changes to overall to revise later into the project, a critical feature for such an early-stage 

prototype. Taking advantage of the modular design, since the units were independent of the 

actuator mounting platform and each other, they could be easily removed if necessary with 

little interference to the other components. To this end, each motor unit was designed with a 

quick-release base featuring sliding tabs that interacted with opposing tabs on the motor 

mounting block to allow for the whole unit to be quickly slid in and out of place. Additionally, 

with the tensioning system mentioned earlier, modular units as described featuring the quick-

remove base would make it easier to access the lock-nut used for loosening the spools. 

Since overall the finger motor units would be subjected to relatively little force, and the 

nature of each unit was internally rather complicated, it was decided to create the base units 

using a 3D printer and ABS plastic. ABS, the same material that LEGO’s are made of, is easy to 

form into complex shapes using a 3D Printer, and is quite strong when hardened. The various 

components were held in place on this framework by using clamps formed from ABS. The 

clamps were held in place using simple hex-head screws fitting into threaded inserts on the 

opposing piece. The threaded inserts were held in with Loctite Thread Locker glue. An 
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annotated image of the finger motor units can be seen below in Figure 5.1.26: Annotated 

Finger Motor Train. An image of a completed finger motor train can be seen below in Figure 

5.1.27: Finished Finger Motor Train. 

 

Figure 5.1.26: Annotated Finger Motor Train 
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Figure 5.1.27: Finished Finger Motor Train 
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5.1.4.2 Elbow and Wrist Motor Units 

 

Figure 5.1.28: Annotated Final Elbow Module 

Figure 5.1.28 shows the final CAD model of the elbow motor unit along with the names 

of all the critical components. The parts for the elbow and wrist motor units were fabricated 

with the use of both manual methods and CNC assistance. All of the machined parts were 

made of aluminum. Most of the manufacturing that would have proved difficult to manually 

fabricate was performed on CNC mills and lathes. The difficult processes included turning the 

two threaded larger spools, the two smaller spools, and cutting the larger holes in the motor 

and bearing retainer blocks. The L-channel and Bowden retaining blocks were completed with 

the use of manual machine tools. The motor and bearing retaining blocks and spools all 

required additional manual machining to be completed. 

Encoder 

Spools 

Gearbox 

Motor 

Bearings 
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Figure 5.1.29: Assembled Elbow Motor Unit 

Figure 5.1.29 is a close-up view of the elbow motor unit. A 3/8” end mill on a manual 

mill was used to machine flat sections on each of the spools. The flat sections allowed for the 

machining of #4-40 tapped holes. These holes were then used to place machine screws for 

fixing the ends of the Dyneema cables. 

5.2 Electrical Subsystem 

As described in the previous chapter, the electrical system is divided into four different 

subsystems, each with its own custom printed circuit board (PCB). Each PCB has its own 

microcontroller, which is programmed for its specific tasks and includes specific components 

for each task. The Main board is directly connected with the other Sensor and Motor boards as 

well as a computer running Ubuntu. All PCBs were designed using the Altium Designer 10 
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software package by Altium Limited (Australia). The three developed PCBs can be seen below in 

Figure 5.2.1. A high-level functional diagram of these circuit boards and their communication 

with the computer was shown before in Figure 5.2. 
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Figure 5.2.1: Fully Assembled Printed Circuit Boards included in the Electrical Subsystem of the Exomuscular Sleeve. 
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5.2.1 Main Board 

The Main board, which is placed in the actuation platform of the device, is the master of 

the system, the one that requests data from other sub-systems, transfers the data from one 

sub-system to another, and communicates with the computer. The Main board consists of a 

PIC32MX795F512L chip, six 9-pin connectors for UART, battery lines, connectors for ISCP and 

USB, voltage regulators, and other general I/Os. PIC32’s UART interface is used to transfer data 

between each PCB while ICSP is used to program the PIC32 chip mounted on the Main board. 

Lastly, USB is used to transfer data from PIC32 to the computer. A high-level functional diagram 

of the Main board is shown below in Figure 5.2.2. The high-level Altium schematics and PCB of 

this board can be seen in Appendices A and B, respectively. 
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Figure 5.2.2: Main Board High-Level Functional Diagram and Fully Assembled PCB.
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5.2.2 Sensor Board 

The Sensor board is in charge of controlling all the sensors included at the glove. As 

mentioned before, there are 5 flex sensors and 5 force sensitive resistors located on the fingers, 

as well as 1 flex sensor on the wrist. The flex sensors are used to measure the angle of 

flexion/extension of the fingers and the wrist while the force sensitive resistors are used to 

measure the force applied by the fingertips. Since all of these sensors are located on the hand, 

the Sensor board is mounted on the forearm to ensure short communication lines dedicated for 

analog signals. The Sensor board includes a PIC32 chip, ICSP, USB and an UART. As in the Main 

board, ICSP is used to program the PIC32 microcontroller, USB is used to communicate to the 

computer and UART is used to communicate to the Main board. The Sensor board also includes 

the Wheatstone bridge sensor circuits with instrumentation amplifiers, Butterworth 2nd order 

low-pass filters, analog-to-digital converters (AD7927), and voltage regulators which were all 

discussed in detail in previous chapters. All the signals from the sensors come in from the 

connectors and are then fed to the sensor circuits. The signals are then conditioned using the 

low pass filters before feeding them to the ADC. Furthermore, the ADC has a built-in SPI 

interface, which is used to send the data to the PIC32 for signal processing. This board also 

controls the feedback LEDs. Since the LEDs chosen have built-in integrated circuits, SPI data are 

required to turn them on or off and to change colors. This board provides power, ground, clock 

and SPI data to the LEDs’ integrated circuits. Each of these steps can be seen as a single block in 

the high-level functional diagram of the Sensor board shown below in Figure 5.2.3. The high-

level Altium schematics and PCB of this board, along with enlarged pictures of the different 

components included in it can be seen in Appendices C and D.  
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Figure 5.2.3: Sensor Board High-Level Functional Diagram and Fully Assembled PCB. 
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5.2.2.1 Glove Sensors 

The final glove design includes a total of 10 sensors: 5 flex sensors to measure angle of 

flexion/extension of the fingers and 5 pressure sensors to measure force on fingertips. The five 

flex sensors are located on the knuckles of each one of the fingers. Additionally, the five 

pressure sensors are distributed among the fingers.  

Flex and pressure sensors are capable of changing their resistance as they are bent or 

pressed respectively. The more flex sensors are bent, the greater their resistance value. On the 

contrary, the more pressure sensors are pressed, the smaller their resistance value. The flex 

and pressure sensors included in the glove are set up in a Wheatstone Bridge circuit in order to 

obtain differential signals that are further amplified via instrumentation amplifiers, as shown 

below in Figure 5.2.4 and Figure 5.2.5.  

 

Figure 5.2.4: Wheatstone Bridge Setup for Flex Sensor 
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In this circuit, the input (V1 and V2) and output voltages (Vout) to/from the instrumentation 

amplifier are given by the following expressions: 

𝑉2 =  𝑉𝑐𝑐(
𝑅2

𝑅2 +  𝑅1
) 

𝑉1 =  𝑉𝑐𝑐(
𝑅𝑆𝑒𝑛𝑠𝑜𝑟

𝑅𝑆𝑒𝑛𝑠𝑜𝑟 +  𝑅3
) 

𝑉𝑜𝑢𝑡 = 𝐺 (𝑉1 −  𝑉2) 

Substituting the expressions of the input voltages V1 and V2 into the output voltage expression 

Vout, the following general equation is obtained: 

𝑉𝑜𝑢𝑡 = 𝐺 ×  𝑉𝑐𝑐(
𝑅𝑆𝑒𝑛𝑠𝑜𝑟

𝑅𝑆𝑒𝑛𝑠𝑜𝑟 +  𝑅3
−  

𝑅2

𝑅2 + 𝑅1
) 

For the case of flex sensors, the positive input for the instrumentation amplifier (V1) is 

the result of a voltage divider with a 25kΩ resistor and the flex sensor in series. The initial 

resistance of the flex sensor is 25kΩ with 25% tolerance. Similarly, the negative input for the 

instrumentation amplifier (V2) is the result of a voltage divider with 50kΩ and 45kΩ resistors in 

series. This voltage divider along with the 5V supply is about 2.37V (5V * 45Ω/95Ω). Ideally, V2 

would be 2.5V and the difference between V1 and V2 would represent the output signal. But the 

tolerance is very high for these sensors. Therefore, in order to account for such high tolerance, 

V2 is set to 2.37V instead of 2.5V, which was necessary to avoid negative Vout since the ADC 

cannot convert negative voltages. 
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Figure 5.2.5: Wheatstone Bridge Setup for Pressure Sensor 

 

 In this circuit, the input (V1 and V2) and output voltages (Vout) to/from the 

instrumentation amplifier are given by the following expressions: 

𝑉1 =  𝑉𝑐𝑐(
𝑅2

𝑅2 +  𝑅1
) 

𝑉2 =  𝑉𝑐𝑐(
𝑅𝑆𝑒𝑛𝑠𝑜𝑟

𝑅𝑆𝑒𝑛𝑠𝑜𝑟 + 𝑅3
) 

𝑉𝑜𝑢𝑡 = 𝐺 (𝑉1 −  𝑉2) 

Substituting the expressions of the input voltages V1 and V2 into the output voltage expression 

Vout, the following general equation is obtained: 

𝑉𝑜𝑢𝑡 = 𝐺 ×  𝑉𝑐𝑐( 
𝑅2

𝑅2 +  𝑅1
−  

𝑅𝑆𝑒𝑛𝑠𝑜𝑟

𝑅𝑆𝑒𝑛𝑠𝑜𝑟 +  𝑅3
) 
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For the case of pressure sensors, the negative input for the instrumentation amplifier 

(V2) is the result of a voltage divider with a 250kΩ resistor and the pressure sensor in series. The 

initial resistance of the pressure sensor is infinite and decreases to 250kΩ when force is applied. 

Similarly, the negative input for the instrumentation amplifier (V1) is the result of a voltage 

divider with 7.5kΩ and 100kΩ resistors in series. The result of this voltage divider along with the 

5V supply is about 4.65V (5V * 100Ω/107.5Ω). Ideally, V1 would be 5V and the difference 

between V1 and V2 would represent the output signal. But the resistance of pressure sensors 

changes from infinity to a certain value even with a slight touch. This change in resistance is 

monotonic and significant only after V2 drops down to 4.7V. Therefore V1 is set to 4.65V.  

The amplifier chosen was the AD8426 from Analog Devices, which has dual channel 

instrumentation amplifiers in one single chip. After testing the instrumentation amplifier, the 

voltage output results received were inconsistent with theoretical values. The sensors have 

high tolerance and resistors used were 5% tolerance and these are the reasons for the 

inconsistency. Data from the testing circuit are discussed in Results chapter and Appendix L. 

Therefore it was decided to use 1% tolerance resistors for circuits to improve design and get 

more accurate results. Furthermore digital pots were added to have variable gain and add 

flexibility to future implementations of the project. The digital potentiometer chosen for this 

application was the AD5262 from Analog Devices, which has 256 levels of resistance going up to 

50K𝛀. The gain for the instrumentation amplifier is given by following equation: 

𝐺𝑎𝑖𝑛 =  
49.4 𝑘 Ω 

𝑅𝑔
+ 1 

The circuits used for each sensor can be seen below in Figure 5.2.6 and Figure 5.2.7. 
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Figure 5.2.6: Flex Sensor Schematic 
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Figure 5.2.7: Pressure Sensor Schematic
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The Sensor board also includes a series of LEDs to provide visual feedback to the user 

regarding the completion of the assigned rehabilitative tasks. The LEDs utilized in this system 

are capable of emitting red, green and blue light with the use of a built-in Integrated Circuit (IC). 

The three colors are used to indicate the following three stages of progress: red representing 

the farthest from the desired goal, yellow representing closer to goal, and green representing 

the completion of the assignment by the reaching the desired goal (which will vary for each 

exercise). The chosen LED was WS2812 from Worldsemi. This LED only requires a power supply, 

ground and one data line (Din). LEDs are controlled by the SPI data which can be daisy-chained 

through Dout to control multiple LEDs. The circuits used for the LEDs can be seen below in 

Figure 5.2.8. 
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Figure 5.2.8: LED Schematic 
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5.2.2.2 Wrist and Elbow Sensors 

An additional flex sensor was placed on the wrist structure to measure the angle of 

flexion and extension of the wrist, just as it was done with the fingers. A set of four SEAs and 

one encoder-decoder coupling for position control was included in both the wrist and the 

elbow structures. The data collected from the SEAs included in this system are filtered using 

anti-aliasing low-pass filters during the analog sampling phase to reduce noise. The low-pass 

filters utilized for this application are active Butterworth filters of second order with cutoff 

frequency of 26 Hz. The purpose of using low-pass filters is to remove aliasing during analog 

sampling and to possibly remove the 60Hz power noise. Aliasing is a phenomenon that occurs 

when the sampling rate is not high enough or signal filtering is not appropriate, meaning that 

samples leave a “shadow” that overlaps/interferes with each other in their spectrum (see 

Figure 5.2.9).  
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Figure 5.2.9: Signal Aliasing 

 
The analog data are 

amplified in order to obtain a greater range of data from different resistor values. An 

operational amplifier was selected to ensure a high-impedance voltage follower since forward-

flowing current was strictly undesirable. The final setup selected for all the SEAs and the low-

pass filters can be seen below in Figure 5.2.10. 

 
Figure 5.2.10: Magnetic Series Elastic Actuators with 2nd order Low-Pass Filter 

 

Image retrieved from: 
http://www.eetimes.com/document.asp?doc_id=1255124 

http://www.eetimes.com/document.asp?doc_id=1255124
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5.2.2.3 Signal Conditioning 

Sensor data are sent for analog signal conditioning by the unity-gain 2nd order Sallen-Key 

Butterworth low pass filter, which was introduced in the previous chapter. A final low pass 

design was implemented based on the calculated cutoff frequency (25Hz) with standard 

resistor values to achieve the frequency as close as possible. An active filter was preferred 

because it requires smaller inventory of consisting components with better signal to noise ratio 

(SNR) than passive filters (see Figure 5.2.11 and Figure 5.2.12), which also increases common 

mode rejection ratio (CMRR) of the filter. The following calculations, which are based on 

transfer function of 2nd order unity gain Sallen-Key low pass filter [54], in order to determine 

the 25Hz cutoff frequency. A MATLAB code for evaluating and testing the transfer function can 

be found in Appendix L.  
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Figure 5.2.11: Sallen-Key Active Filter Frequency Response 

 

Figure 5.2.12: Passive Filter Frequency Response 
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Figure 5.2.13: Unity-gain, Second Order Sallen-Key Butterworth Low Pass Filter [58] 
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Pre-determining C1 = C2 and R1 = R2 in Figure 10 above, the equation became more simple. 

Evaluating it with resistor and capacitor values within the range recommended from the 

advisors yielded: 

C1 = C2 = 1𝑢𝐹 
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𝑅1 = 𝑅2 = 3.9𝑘𝛺 

5.2.3 Motor Board 

The Motor control board is located inside the actuation platform, along with the Main 

board. This board includes direct connection to 7 motors, 5 clutches, 7 encoder-decoder 

couplings, 4 motor drivers, 1 PWM driver, 8 series elastic actuators, 2 ADCs, 3 voltage 

regulators, 1 inter-board serial communication connector, and a PIC32 chip. 

The 7 motors are connected directly to quadrature encoders and each encoder has wires 

running from its two outputs to a 2-pin connector located on the board. The data obtained 

from the two encoders are then sent as input to the 2-channel decoder. The 8 decoders send 

the data to a PIC32 chip in parallel. Moreover, all 5 clutches, which are each attached to a 

transistor, obtain a PWM signal input (refer back to Figure 4.2.7) that is individually generated 

from the 16-channel PWM driver. The PWM driver is controlled through SPI from PIC32, with 5 

of its outputs going to the clutches and the remaining 7 being sent to the motor drivers. The 4 

motor drivers are used to drive the 7 motors since each driver is capable of driving two motors 

bidirectionally.  

.  

The PWM signals used to drive the motors are determined by a software control 

algorithm and the feedback obtained from the SEAs, the current limiting circuits and the 

encoders. The magnitude of the PWM signals is indicated by the desired current values sent 

through SPI from the PIC32 chip. The desired direction for motors is transmitted from the chip 

as well.  The PIC32 also sends enable signals to the motor drivers to select which motor to 
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drive. The motors receive supply voltages from the voltage regulator and the 36V battery, 

coming from the Main board through power lines using a UART connector. A switching 

regulator is used to regulate the 20V needed for the clutches, the elbow and the wrist motors. 

Another switching regulator is used for regulating 36V down to 5V for sensors and the logic 

circuits. Two linear voltage regulators are used to obtain 3V for the PIC32 and 2.5V for ADCs 

(see Figure 5.2.14 and Figure 5.2.15, respectively). 

 
Figure 5.2.14: Linear Voltage Regulator Circuit (3V) 

 

Figure 5.2.15: Linear Voltage Regulator Circuit (2.5V) 
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Each SEA circuit is made up of a soft-membrane potentiometer, a high-impedance 

voltage follower and a low pass filter. The analog output data from each sensor is sent to the 

ADC, which sends the data forward to the PIC32 through SPI. Another ADC is used to collect the 

current sense data from the motor drivers and send it to the PIC32. Each ADC is selected via its 

chip select, i.e. a digital input pin. The high-level functional diagram of the Motor board is 

shown below in Figure 5.2.16. The high-level Altium schematics and PCB of this board, along 

with enlarged pictures of the different components included in it can be seen in Appendices E 

and F. 
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Figure 5.2.16: Motor Board High-Level Functional Diagram and Fully Assembled PCB.
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5.2.4 Microcontroller 

The system consists of three different microcontrollers. Each of the three different PCBs 

include a microcontroller on it, which performs various tasks and communicates with the Main 

board while the Main board communicates with each of the other boards and the computer. 

The few key specifications required for the microcontroller were to be able to communicate 

with two different interfaces (UART and SPI) and have enough digital I/O pins. The 

PIC32MX795F512L was selected for this project since it is a very powerful microcontroller, 

which includes both UART and SPI communication interfaces. Moreover, this specific 

microcontroller was highly suggested by the advisors of this project. Another advantage of 

using this particular microcontroller was that the AIM Lab, where this project took place, 

already had sufficient libraries to utilize the PIC32 as well as a few PIC32 development boards. 

 

5.3 Software Architecture 

There are 4 major components that needed software written for them (see Figure 5.2). 

The Main, Sensor, and Motor boards as well as a computer running a Java interface to interact 

with the Main board. The Main board and computer are connected together via USB while the 

Motor, and Sensor boards are all directly connected to the Main board but are not directly 

connected to each other. These boards act as coprocessors for the Main board. 

5.3.1 Main Board Software Functionality 

The Main board retrieves sensor information from all the other boards as well as 

receiving commands and sending data from and to the computer. The Main board sends the 
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desired control commands to the Motor board, but it does not directly control the motors. It 

interprets the data received by the flex and pressure sensors, and then sends position, velocity 

and/or current control commands to the Motor board. It also designates when to initiate or 

stop a control instance running on the Motor board. 

5.3.2 Sensor Board Software Functionality 

The Sensor board runs a very simple “sample and send” loop. The system monitors for 

the synchronous signal from the Main board that dictates when to sample data. When a 

synchronization signal is high, the controller retrieves a predefined amount of samples from all 

the pressure and flex sensors through the external ADCs. After the data have been gathered, it 

is filtered by averaging the samples, and then the most recent result is stored waiting to be 

transferred to the Main board. The Sensor board has an interrupt on the UART communication. 

When data are received, the interrupt fires, the packet is decoded to determine whether to 

light up an LED to a certain color or to start/stop publishing sensor information to the Main 

board. 

5.3.3 Motor Board Software Functionality 

The Motor board receives requests from the Main board such as desired motor position 

or velocity control set points and implements that control loop. It maintains an array of 

ControlInstances, which represent the control system. The program cycles through the 

ControlInstances to update and actuate each one according to settings defined in the 

ControlInstance. The Motor board continuously updates the Main board, over UART at 500Hz, 

with encoder position, encoder velocity, electrical current, and series elastic position so that 

the Main board can interpret the data along with sensor readings from other boards, thus 



165 
 

enabling the correct control instance to be commanded back to the Motor board. When the 

Motor board receives a command, it determines the proper action to take among the following: 

creating a new control instance, updating an existing control instance, or removing an existing 

control instance. 

5.3.4 Inter-Board Software Communication Protocols 

The Main controller supplies a synchronization signal over UART to the rest of the 

coprocessor boards. This signal tells the coprocessors the rate at which to sample data from the 

sensors. UART communication is used to send data between the boards. The Main board is 

directly connected to all the other coprocessor boards, which in turn are not directly connected 

to one another.  

Asynchronous communication is used to communicate between the Main, Motor, and 

Sensor boards. Each communication packet and header between each board is customized to 

the data being sent between those boards. The packets and headers are not general, but 

instead specific to the data being sent.  

Data are encapsulated into packets to be sent between the boards. Each packet 

contains a header as well as the payload to be sent. The header contains metadata about the 

packet, which is mainly information that doesn’t need standard data types to be represented, 

such as in Table 5.3.1 below (e.g. the _opt variable only needs 3 bits to be represented fully). A 

list of options for the _opt variable for each packet can be found as #define macros in 

commonStructs.h under Appendix J. Any data that need standard data types to be stored are 

listed in the packet, not the header.  
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Communication from the Main board to the Motor board is outlined in Table 5.3.1 and 

Table 5.3.2 below while the implementation code is shown in Appendices G and I, respectively. 

Each packet sent from the Main board to the Motor board is a set of size 10 bytes—a two byte 

header and an eight byte body. The design of this communication protocol was largely based on 

the control system implementation explained below in Section 5.3.4.1. Since there is a control 

loop nested inside another, the Motor board only needs to receive control commands based on 

the information it has: encoder position, encoder velocity, electrical current ADC counts, and 

series elastic ADC counts. In Table 5.3.4 below, the MotorTxMainRxPacket shows that these 

sensor data are communicated to the Main board, where a decision is computed, and then the 

new desired control commands are sent to the Motor board. Sensor data are sent from the 

Motor board and the desired sensor readings for control are sent by the Main board. 

Table 5.3.1: MainTxMotorRxHeader 

Bit Field Description 

0-3 _id Motor to control for this control instance 

4-6 _opt Specifies whether to start/update, stop, or remove control instance, 
subscribe/unsubscribe to motor data 

7-10 _controlT
ype 

Type of control (ex: position, velocity, etc.) 

11-15 _aux Auxiliary unused bits reserved for future use 

 

Table 5.3.2: MainTxMotorRxPacket 

Bit Field Type Description 

0-15 header MainTxMotorRxHeader Header for this packet 

16-31 encoderPos int16_t Desired encoder position 
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32-47 encoderVel int16_t Desired encoder velocity 

48-63 currentAdc uint16_t Desired current limit 

64-79 seriesElasticAdc uint16_t Desired series elastic 

 

Communication from the Motor board to the Main board is outlined in Table 5.3.3 and Table 

5.3.4 below. 

Table 5.3.3: MotorTxMainRxHeader 

Bit Field Description 

0-3 _id Specifies which motor the data are associated with 

4-6 _opt Specifies whether an error occurred or it reached steady state 

7 _aux Auxiliary unused bits reserved for future use 

 

 

 

Table 5.3.4: MotorTxMainRxPacket 

Bit Field Type Description 

0-7 header MotorTxMainRxHeader Header for this packet 

8-23 encoderPos int16_t Measured encoder position 

24-39 encoderVel int16_t Measured encoder velocity 

40-55 currentAdc uint16_t Measured current in ADC counts 

56-71 seriesElasticAdc uint16_t Measured series elastic in ADC counts 

 

Communication between the Main board and Sensor board is outlined in Table 5.3.5 

through Table 5.3.7. Since the Sensor board only samples data and sends it to the Main board, 

the communication between the two is fairly simple. Table 5.3.5 describes the 
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MainTxSensorRxPacket data which are sent to the Sensor board. The Main board either 

commands the Sensor board to light the LEDs or to publish/unpublish data for a sensor set (e.g. 

flex and pressure sensor data for a specified finger).  

Table 5.3.5: MainTxSensorRxPacket 

Bit Field Description 

0-3 _id Identifier of motor-sensor set to either subscribe or command 

4 _s Set whether to subscribe/command or unsubscribe 

0b = unsubscribe 

1b = subscribe or command LED (For command LED, _id must be 1111b) 

5-7 _opt Set LED color 

 

 
Table 5.3.6: SensorTxMainRxHeader 

Bit Field Description 

0-3 _id Identifier of motor-sensor set 

5-7 _aux Auxiliary unused bits reserved for future use 

 

 

Table 5.3.7: SensorTxMainRxPacket 

Bit Field Type Description 

0-7 header SensorTxMainRxHeader Header for this packet 

8-23 flexAdc uint16_t Measured flex sensor value in ADC counts 

24-39 presAdc uint16_t Measured pressure sensor value in ADC counts 
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5.3.4.1 Main-Motor Board Control Loop 

The main idea is having simple peripheral boards, such as the Sensor board, running 

real-time control loops, while having the main logic and control processing taking place on the 

Motor and Main boards. The Main board sends out a synchronization signal to the peripheral 

boards and these boards respond with the measured values requested by the Main board. 

There are two control loops running, one on the Motor board and another one on the Main 

board, which encompasses the control loop of the Motor board. 

5.3.5 PC/Controller Communication Software 

A java framework specificially designed for the PIC32 was used to communicate between 

the PIC32 and a desktop computer. This works by defining the communication protocol as a set 

of remote procedure call (rpc) functions on the Main board, which dictates how many bytes, 

words, and ints the Main board will receive and send for each rpc function. Through the java 

framework on the desktop computer, and of these rpc functions can be called in which data will 

be sent from the desktop computer to the Main board, the function will be called to process 

the data and run other commands, and then the result will be set to the packet and sent back 

to the desktop computer. The communication protocol definition can be seen in Appendix G. 
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6. Results and Discussion 

The final prototype of the system (see Figure 6.1) allows for motorized flexion and 

extension of the fingers and the elbow, as well as the pronation and supination of the wrist. 

This third iteration of the system improved from the previous two by adding a modular motor 

units that can be easily removed and modified, a wrist support with trapezoid-shaped hard 

stops, and a detachable mechanism that allows the extension cables to be disengaged while 

dinning the device. Additional improvements were made in the design of more compact and 

comfortable elbow braces, more robust design of finger cable guides to prevent losses from 

glove elasticity, as well as more compact and workable design for cable tensioning.  

 

Figure 6.1: Exomuscular Sleeve Final Prototype 

Improvements were also made with the development of several PCBs for dedicated 

tasks, such as reading and interpreting sensor data, actuating and controlling the system, and 

communicating with the master computer. The system is capable of accurately collecting and 

interpreting sensor data. However, the control of the finger and elbow spools through the 

Motor board was not accomplished. One of the major issues the team encountered was the 

integration of the system, which took longer than expected, specially due to the many custom 

circuit boards and mechanical components that were developed with several iterations for each 
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(details offered in the following sections). A demonstration video of the system can be found at 

the following link: 

https://www.youtube.com/watch?v=Xs_7N57YGdU&feature=youtu.be   

6.1 Mechanical Subsystem 

6.1.1 Finger Actuation 

Reflecting on the mechanical oriented goals of this project, the final device achieved 

finger actuation, wrist pronation/supination and actuation of the elbow joint through an angle 

of 150 degrees. After successfully actuating the fingers on the glove in conjunction with the 

detachable cable connector on a team member’s hand, the glove was fitted onto a 

mannequin’s hand to demonstrate unaided actuation. The fingertip was then hooked up to a 

fish scale in order to measure the end effector force generated when the Bowden cable is 

pulled by the motor module spool.  The setup can be seen below in Figure 6.1.1. 

 

Figure 6.1.1: Force Setup 

https://www.youtube.com/watch?v=Xs_7N57YGdU&feature=youtu.be
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The force generated at the fingertip is function of the angle at which the finger is bent due to 

the geometry of the finger guides.  To analyze the force generation, two angles of the pointer 

finger were selected to measure the end effector force. 

Calculating the torque generated from the finger motors, the force on the fingertip were 

calculated based on the tension in the Bowden cables.  Inspecting the torque curve from the 

maxon motors specified in the final design section, the output force was calculated to be 0.8. 

Running the motor and Gear box combination at .4 amps and 32 volts, the pointer finger 

generated a force of 0.5 lbs. The kinematics are visualized below in Figure 6.1.2. 

 

Figure 6.1.2: Finger Kinematics 

 An unexpected outcome of the finger motor concerned the exact nature of the clutches 

in their position in the finger motor unit. As seen in Figure 5.1.23, one end of the clutch is a 

tooghed radial gear. In the fingwer motor units, the spools were designed with a mirrored 

recess that these teeth slotted into with a desired press fit. A press fit would allow the spools to 

be removed from the clutches without damaging them, but still prevent them from simply 

falling off. An unintended side effect of the press fit was that due to the sensitivity of the 

clutches, this spool tended to compress the plastic gear on the spool, tightening its grip on the 
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central shaft which was coupled to the other side. The effect of this was that whenever the 

spools were attached to the clutches, they were at least partially engaged from the squeezing 

effect of the press fit. The team therefore recommends that any future projects involving the 

clutches use a method other that a press fitting recess for coupling the spools to the clutches. 

6.1.2 Elbow Actuation 

Elbow actuation was somewhat successful. Early tests of the elbow motor determined 

that at no load, the motor required approximately 4 amps at 20 volts to turn over. Once the 

motor started moving, the current draw dropped to about 2 amps at 20 volts. This is likely a 

result from disassembling the motor, removing the lubrication, and replacing the lubrication 

with Royal Purple 013012 NLGI No. 2 High Performance Multi-Purpose Synthetic Ultra 

Performance Grease, which seemed more viscous than the original lubrication. Because the 

motor modules were not functional during testing, the motors were instead connected back to 

the cordless drill speed controllers and batteries for testing elbow actuation. 

During testing, the team determined that the motor with the original speed controller 

and battery was capable of actuation the elbow; however, during one of the tests, the 

Dyneema snapped. Even though the edges of the Bowden retainer on the motor unit were 

chamfered, the edges still caused the Dyneema to wear and eventually break after repeated 

actuation. When one of the flexion Dyneema cables snapped, the other cable was loaded 

excessively, and the PTFE tubing used for the Bowden on the intact cable buckled, rendering 

the motor unit ineffective for flexion. 
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Because of the high forces required to actuate the elbow, the Bowden system should 

have instead used Jagwire instead of PTFE tubing to prevent the possibility of buckling. Jagwire 

housing and steel cable would be met the high-force requirements for actuating the elbow.  

6.1.3 Wrist Actuation 

Full range of motion for wrist pronation and supination was achieved in the final design. 

However, torque outputs of the system were not measured. It is unlikely that the torque output 

of the system would have matched normal torque output of a human. The brace part just 

proximal of the wrist would begin sliding in the proximal direction of the forearm if attempts 

were made to match the output torque of a healthy individual.  

6.2 Electrical Subsystem 

6.2.1 Sensors 

Flex sensor circuits and pressure sensor circuits were bread-boarded and tested in order 

to verify their functionality (see Figure 6.2.1). The circuits used were presented in the previous 

chapter in Figure 5.2.4 and Figure 5.2.5. For flex sensor a module was created by the team to 

test the angle (see Figure 6.2.1). Two different sets of AD8426, resistors and flex sensors were 

tested separately. The data from these tests are available in Appendix L. The graph shown 

below summarizes the results of the tests.  
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Figure 6.2.1: Bread-Boarded Circuit for Calibration of Flex Sensors 

 

 

Figure 6.2.2: Flex Sensor Calibration (Output Voltage vs. Degree) 

In the graph above, “V1OUT” is the output result of tests done with the 1st set of components 

(shown in Appendix L), which had difference of 0.767V when bent from 0° to 80°. “V2OUT” is 
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the output result of tests done with the 2nd set of components (shown in Appendix L) which had 

difference of 0.852V when bent from 0° to 80°. 

6.2.2 Tests with ADCs and Digital Potentiometers 

ADCs and Digital-pots needed Serial Peripheral Interface (SPI) to communicate with the 

PIC32 micro-controller. These peripherals were tested using the PIC32 USB Starter Kit 

Development Board as seen in Figure 6.2.3. The ADC has several built in modes of operation 

which can be set from SPI. For the initial testing purpose, the mode chosen was a simple 

counter mode which keeps count of the previous channel and keeps looping around all 

channels. After successful implementation this mode, it was further modified to loop from zero 

to specific channel to loop around which was used in custom PCBs. The following bytes were 

sent to program the ADC for this specific mode: 

BYTE sendSetupADCByte1 = 0b01011111; 
sendSetupADCByte1 |= (channelEnd << 3); 
BYTE sendSetupADCByte2 = 0b10010000; 

 After programming the ADC, a potentiometer was used to determine if the ADC was 

able to read the correct voltage. The wiper of the potentiometer was connected to one ADC pin 

and it was observed that data sent out of the ADC was changing from 0 to 4095 as the 

potentiometer was turned. This result was expected because the wiper was changing values 

from ground to power rail without any other circuitry. 
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Figure 6.2.3: Bread-Boarded Circuit for testing the ADC using the PIC USB Starter Kit Development Board 

Similarly, the digital potentiometer was also tested using the PIC32 USB Starter Kit 

Development Board as seen in Figure 6.2.4. The digital potentiometer has 255 levels where 

byte value 0 sets it to 0Ω and byte value 255 sets it to 50 kΩ. To test the functionality of the 

Digi-Pot and a 51kΩ resistor was connected in series acros a 10V power supply. PIC32 was 

programmed to loop and increase the byte value by 1 at the end of every loop unless it was 

maximum value which was then reset to 0. The result was successful implementation of the 

code and can be observed in Figure 6.2.5. 
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Figure 6.2.4: Bread-Boarded Circuit for testing the Digi-Pot using the PIC USB Starter Kit Development Board 

 

 

Figure 6.2.5: Digi-Pot Output Response to Loop-Counting Functionality Test 
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6.2.3 LEDs 

WS2812 from Worldsemi were the chosen LEDs for visual feedback. Research confirmed 

that SPI could control these LEDs, but it was not simple SPI data that lights them up. These LEDs 

require PMW signals with specific high and low timings. About 0.35 μs high and 0.8 μs low 

PMW signal gets translated as code 0. About 0.7 μs high and 0.6 μs low PMW signal gets 

translated into code 1 (see Figure 6.2.6). Twenty-four of these codes are required to set a 

specific color for 1 LED. Having SPI clock period of 1.25 μs and sending 24 bit data will not work 

on this. For this LED to work with SPI, the clock speed has to be exactly 4 Mhz which gives clock 

period of 0.25μs. With this clock speed 5 bit code (10000) becomes logic 1 for LED and another 

5 bit code (11110) becomes logic 0 for LED. Therefore it needs 120 bits (5*24) of data at 4 Mhz 

to light up one LED. 

 

Figure 6.2.6: Required Duty Cycles for Logic 0 and 1 for the selected LEDs 

Code was successfully written for the PIC32 to operate these LEDs with their corresponding 

colors for feedback using SPI. A video demonstrating the LEDs changing color as pressure was 

exerted at the fingertips can be seen at the following link:  

https://www.youtube.com/watch?v=k4Ubl5CXWMM&feature=youtu.be  

https://www.youtube.com/watch?v=k4Ubl5CXWMM&feature=youtu.be
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6.2.4 External 16 Channel PWM Generator 

The selected TLC5940 16-channel external PWM generator by Texas Instruments (TI) was 

not the correct peripheral to interface with the clutches and motor drivers. This chip works by 

switching the ground on and off instead of switching the power on and off, which does not 

make it suitable for this application. The PWM outputs could not be directly connected to the 

motor driver and clutch, so custom circuitry was created to integrate the PWM generator to the 

motor drivers and clutches. There was also difficulty programing the device. TI created a 

programming flow chart to aid in writing a program to interact with the chip, which the team 

followed exactly and yet the chip could not be configured correctly. Research on this matter 

revealed that there is a library for Arduino to communicate with the TLC5940 which works, yet 

it contradicts programming guidelines stated in the TI flowchart.  

 A solution to this problem is to use PWM generator Integrated Circuits (ICs) that source 

current. These ICs don’t have nearly as many pins as the ground switching PWM generators, but 

this is not necessarily a problem. Since the Motor board concept consisted of a motor board 

and motor modules, the new PWM chips could be placed on the modules themselves. This new 

PWM generator also removes the need to have interfacing circuitry, which reduces the number 

of components. A suitable PWM generator would be the Toshiba TB62779FNG. 

6.2.5 Graphical User Interface 

A graphical user interface was created to display information from the Sensor board 

(see Figure 6.2.7). When one of the checkboxes are selected, a request is sent to the Main 

board, which sends a packet to the Sensor to publish the selected finger’s information. When 

“Begin Sampling” is selected, the computer polls the Main board which in turns command the 
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Sensor board to sample and send sensor data. This action runs in a new thread, which allows 

any finger to be selected or unselected to have the sensor board send data.  

 

Figure 6.2.7: Graphical User Interface 
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7. Future Work and Recommendations 

The exomuscular device designed for stroke rehabilitation was designed as a research 

platform to explore upper limb rehabilitation.  Incorporating previous designs for finger and 

elbow actuation, seven degrees of freedom are controlled by a modular motor system with the 

ability for position or torque control of the patient’s extremities.  

Significant design work was devoted to developing a system to detach the Bowden 

cables at the wrist. The detachable concept certainly aided in donning the device.  If the device 

was developed for a clinical system, connecting the detachable mechanism would have to be 

significantly easier than the current design.  The current iteration of the detachable mechanism 

requires the finger extension cables to be drawn out when the upper part of the mechanism is 

attached.  In Figure 7.1 below, the steps are listed during the attaching procedure. 

 

Figure 7.1: Steps to Operate Detachable Mechanism 

1. Draw out extension cables 

2. Place upper part on 
locating pins  

3. Let extension cables in and 
axles should mesh with pulleys 

4. Press upper part down fully 
and engage red latches 



183 
 

Ideally the upper half of the mechanism should snap on in one simple motion instead of 

placing it part way on and rotating the extension pulleys until the two halves line up.  The 

constant force springs keep the cables wound around the pulleys in both halves of the 

mechanism. Both halves require the constant tension to keep the cables lined up while the two 

halves are disconnected, but their orientation presents an interesting problem.  As shown in 

Figure 7.2 below if both the top and bottom pulleys are wound in to keep the constant tension 

they cannot be connected axially because there would not be any play for the cable to move in 

either direction. 

 

 

 

Figure 7.2: Pulley Mechanism 
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Our recommendation is to still include constant force springs to keep the extension 

cables wound on the bottom pulleys. On the top set of pulleys, the cables should be completely 

unwound and tensioned at the motor module end of the Bowden cable as in case B above.  This 

way the axles can be lined up and the detachable mechanism can be attached in one motion.   

Although the spools in the actuation platform are more accessible than previous 

designs, the spools still proved a little difficult to tension. Much more prototyping and 

researching is required for figuring out methods for cable actuation and cable management. 

The decreased sizes of the spools also meant much narrower acceptable tolerances. The 

narrower tolerances were especially noticeable on the elbow spool. When actuating quickly, 

the Dyneema would sometime pop off of the spools. This problem could be solved be 

increasing the height of the walls of the spool or by limiting the rate of actuation.  

An additional problem with using aluminum for the elbow motor housing was the edges 

of the aluminum in contact with the Dyneema. Although the edges were chamfered, they still 

caused unnecessary wear on the Dyneema, causing the Dyneema to snap in one instance of 

testing. This Dyneema to aluminum contact problem can be resolved by including plastic fittings 

in all the locations that the Dynnema might come into direct contact with an aluminum edge. 

An alternative solution would be to use steel cable and Jagwire for the Bowden part of the 

system. The steel cable could be coupled to Dyneema just before the cable would exit the 

Bowden and become exposed.  

Reducing the size of the actuation platform would also be ideal. This, however, will 

require more prototyping and testing of different ways of actuating the device through the use 
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of cables. For example, instead of using spools driven directly by motors, the size of the 

actuator might be reduced by using smaller motor with a worm gear and cam design.  

The Motor board can be modified to remove design weaknesses such as trace widths 

and electrical connectors, which are too small for the required amount of current flowing to 

operate the entire board. It is also recommended to pay close attention to ordering 

components with packages that exactly correspond to the footprints on the PCBs to avoid 

major on-board fixes. For connections, it came to our attention to consider appropriate wires 

for handling associated current. Having a correct and exact crimping tool is recommended in 

case of designing custom connector parts. Additional work is suggested in the software 

architecture to ensure it is real-time. It may be beneficial to move onto a device that is running 

a real-time operating system. This is important to ensure the tasks are scheduled properly 

especially when working with multiple devices.  
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Appendices 

A. Main Board Schematics 

 
Figure A.1: Main Board High-Level Schematic
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B. Main Board PCB 

 

Figure B.1: Main Board PCB, Altium Front View 
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Figure B.2: Main Board PCB, Altium Rear View 
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C. Sensor Board Schematics 

 

Figure C.1: Sensor Board High-Level Schematic 
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Figure C.2: Zoom-in of Flex Sensor Low-Pass Filters Included in the Sensors Board Schematic Displayed Above 

 

Figure C.3: Zoom-in of Pressure Sensor Low-Pass Filters Included in the Sensors Board Schematic Displayed Above 
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Figure C.4: Zoom-in of Flex Sensors Included in the Sensors Board Schematic 

 
Figure C.5: Zoom-in of Flex Sensors Included in the Sensors Board Schematic 
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D. Sensor Board PCB 

 

 

Figure D.1: Sensor  Board PCB, Altium Front View 
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Figure D.2: Sensor Board PCB, Altium Rear View 
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Figure D.3: Sensor Board PCB, Altium Front View (LEDS-section) 
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Figure D.4: Sensor Board PCB, Altium Rear View (LEDS-section) 
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Figure D.5: Sensor Board  PCB, Altium Front View (Flex and Pressure sensor connection section) 
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Figure D.6: Sensor PCB, Altium Rear View (Board  Flex and Pressure sensor connection section) 
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E. Motor Board Schematics 

 

 

Figure E.1: Motor Board High-Level Schematic 
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Figure E.2: Zoom-in of PIC32 Included in the Motor Board Schematic Displayed Above 
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Figure E.3: Zoom-in of Motor Drivers Included in the Motor Board Schematic 

 
Figure E.4: Zoom-in of Quadrature Encoders and DC Motor Encoders Included in  

 the Motor Board Schematic 
 

 

Figure E.5: Zoom-in of Series Elastic Actuators and Soft Potentiometers Included in the Motor Board Schematic
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Figure E.6: Zoom-in of PWM Drivers and ADCs Included in the Motor Board Schematic 
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F. Motor Board PCB 

 

Figure F.1: Motor Board PCB, Altium Front View 
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Figure F.2: Motor Board PCB, Altium Rear View 
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Figure F.3: Motor Board Modules PCB, Altium Front View 
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Figure F.4: Motor Board Modules PCB, Altium Rear View 
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G. Main Board Software 

a. Main Header File 

#ifndef MAINBOARD_H 
#define MAINBOARD_H 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
 
/***********************/ 
/*- Pragma Directives -*/ 
/***********************/ 
#ifdef USB_A0_SILICON_WORK_AROUND 
 #pragma config UPLLEN   = OFF       // USB PLL Enabled (A0 bit inverted) 
#else 
 #pragma config UPLLEN   = ON        // USB PLL Enabled 
#endif 
 
#pragma config FPLLMUL  = MUL_20        // PLL Multiplier 
#pragma config UPLLIDIV = DIV_2         // USB PLL Input Divider 
#pragma config FPLLIDIV = DIV_2         // PLL Input Divider 
#pragma config FPLLODIV = DIV_1         // PLL Output Divider 
#pragma config FPBDIV   = DIV_1         // Peripheral Clock divisor 
#pragma config FWDTEN   = OFF           // Watchdog Timer 
#pragma config WDTPS    = PS1           // Watchdog Timer Postscale 
#pragma config FCKSM    = CSDCMD        // Clock Switching & Fail Safe Clock Monitor 
#pragma config OSCIOFNC = OFF           // CLKO Enable 
#pragma config POSCMOD  = HS            // Primary Oscillator 
#pragma config IESO     = ON            // Internal/External Switch-over 
#pragma config FSOSCEN  = ON            // Secondary Oscillator Enable (KLO was off) 
#pragma config FNOSC    = PRIPLL        // Oscillator Selection 
#pragma config CP       = OFF           // Code Protect 
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#pragma config BWP      = OFF           // Boot Flash Write Protect 
#pragma config PWP      = OFF           // Program Flash Write Protect 
#pragma config ICESEL   = ICS_PGx2      // ICE/ICD Comm Channel Select 
#pragma config DEBUG    = OFF            // Background Debugger Enable 
 
 
 
/************************/ 
/*- Include Directives -*/ 
/************************/ 
#include "Bowler/Bowler.h" 
#include "commonLib.h" 
#include "commonUART.h" 
#include "commonTimer.h" 
 
 
 
/***********************/ 
/*- Macro Definitions -*/ 
/***********************/ 
//#define COMPUTER_UART   UART5 
//#define COMPUTER_UART_VECTOR _UART_5_VECTOR 
 
#define MAIN_SENSOR_UART  UART2 
#define MAIN_SENSOR_UART_VECTOR  _UART_2_VECTOR 
 
#define MOTOR_UART    UART4 
#define MOTOR_UART_VECTOR  _UART_4_VECTOR 
 
#define TEN_K_TIMER    3 
#define TEN_K_TIMER_VECTOR  _TIMER_3_VECTOR 
#define TEN_K_TIMER_CLEAR_FLAG INT_T3 
 
#define SYS_CLK_FRQ    (80000000ul) 
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#define BAUD_RATE    (9600) 
 
#define SENSOR_TRIS_LED   _TRISG12 
#define SENSOR_LED    _RG12 
 
#define MOTOR_TRIS_LED   _TRISG14 
#define MOTOR_LED    _RG14 
 
//#define SENSOR_TRIS_LED   _TRISD0 
//#define SENSOR_LED    _RD0 
// 
//#define MOTOR_TRIS_LED   _TRISD1 
//#define MOTOR_LED    _RD1 
 
//#define COMP_TRIS_LED   _TRISE1 
//#define COMP_LED    _RE1 
 
#define EXOARM_STORE_BUF_SIZE 10 
 
 
 
/*************************/ 
/*- Structures & Unions -*/ 
/*************************/ 
 
 typedef struct _FingerStore { 
  short int encoderPos; 
  short int encoderVel; 
  unsigned short int currentADC; 
  unsigned short int seriesElasticADC; 
  unsigned short int flexADC; 
  unsigned short int presADC; 
 } FingerStore; 
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 typedef struct _WristStore { 
  short int encoderPos; 
  short int encoderVel; 
  short int currentADC; 
  short int flexADC; 
 } WristStore; 
 
 typedef struct _ElbowStore { 
  short int encoderPos; 
  short int encoderVel; 
  unsigned short int currentADC; 
  unsigned short int seriesElasticADC; 
 } ElbowStore; 
 
 typedef struct _ExoArmStore { 
  FingerStore fingers[5]; 
  WristStore wrist; 
  ElbowStore elbow; 
 } ExoArmStore; 
 
 typedef struct _ExoArmStoreBuf { 
  unsigned char firstIndex; 
  ExoArmStore store[EXOARM_STORE_BUF_SIZE]; 
 } ExoArmStoreBuf; 
 
 
 typedef struct _Manager { 
  unsigned char sensorSub[7]; 
  unsigned char motorSub[7]; 
  unsigned char motorCtrl[7]; 
 
  MainTxSensorRxPacket sensorPkt[7]; 
  MainTxMotorRxPacket motorPkt[7]; 
 } Manager; 
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/*************************/ 
/*- Function Prototypes -*/ 
/*************************/ 
    void mainBoardInit(); 
 
    void initiateSelfTest(); 
 
    void mUpdate(Manager *m); 
 
    void addToStore(ExoArmStoreBuf storeBuf[EXOARM_STORE_BUF_SIZE], ExoArmStore *store); 
 
    void setMngrSensorSub(unsigned char id, unsigned char val); 
 
     
 
/***************/ 
/*- Variables -*/ 
/***************/ 
    volatile unsigned long tenKTimer; 
     
    volatile unsigned char sensorRecvBuf[SENSOR_TX_MAIN_RX_PACKET_SIZE]; 
    volatile unsigned char sensorRecvFlag; 
    volatile unsigned char sensorRecvCount; 
 
    volatile unsigned char motorRecvBuf[MOTOR_TX_MAIN_RX_PACKET_SIZE]; 
    volatile unsigned char motorRecvFlag; 
    volatile unsigned char motorRecvCount; 
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#ifdef __cplusplus 
} 
#endif 
 
#endif /* MAINBOARD_H */ 
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b. Main Source File 

#include "mainBoard.h" 
 
 
#define server_mode 
 
SensorTxMainRxPacket sensorPkt; 
ExoArmStore exoarmStore; 
Manager mngr; 
unsigned short int myA[7]; 
//unsigned char commanded = 0; 
//unsigned char commandedIndex = 0; 
 
void setMngrMotorSub(unsigned char id, unsigned char val) { 
    mngr.motorSub[id] = val; 
 
    MainTxMotorRxPacket pkt; 
    pkt.use.header._id = val; 
 
    commonUARTSendData(MOTOR_UART, pkt.stream, MAIN_TX_MOTOR_RX_PACKET_SIZE); 
} 
 
void getMngrMotorSub(unsigned char id, unsigned char val) { 
 
} 
 
unsigned char getSensorPktId() { 
    return sensorPkt.use.header._id; 
} 
 
void setMngrSensorSub(unsigned char id, unsigned char val) { 
//    commanded = 1; 
//    commandedIndex = id; 



222 
 

 
    mngr.sensorSub[id] = val; 
//    myA[id] = val; 
     
    MainTxSensorRxPacket pkt; 
    pkt.use.header._id = id; 
    pkt.use.header._opt = (val)?SEN_OPT_START:SEN_OPT_STOP; 
    pkt.use.header._col = 0; 
 
    commonUARTSendData(MAIN_SENSOR_UART, pkt.stream, MAIN_TX_SENSOR_RX_PACKET_SIZE); 
 
//    _RG12 = 1; 
} 
 
unsigned char getMngrSensorSub(unsigned char id) { 
    return mngr.sensorSub[id]; 
//    return myA[id]; 
} 
 
void setFlex(unsigned char id, unsigned short f) { 
    exoarmStore.fingers[id].flexADC = f; 
} 
 
unsigned short int getFlex(unsigned char id) { 
    return exoarmStore.fingers[id].flexADC; 
} 
 
void setPres(unsigned char id, unsigned short p) { 
    exoarmStore.fingers[id].presADC = p; 
} 
 
unsigned short int getPres(unsigned char id) { 
    return exoarmStore.fingers[id].presADC; 
} 
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short int getWristFlex() { 
    return exoarmStore.wrist.flexADC; 
} 
 
void main(void) { 
    SYSTEMConfig(SYS_FREQ, SYS_CFG_WAIT_STATES | SYS_CFG_PCACHE); 
 
     
 
 
    /***********************************/ 
    /** BEGIN - System Initialization **/ 
    /***********************************/ 
    SYSTEMConfig(SYS_CLK_FRQ, SYS_CFG_WAIT_STATES | SYS_CFG_PCACHE); 
 
    mainBoardInit(); 
 
     
 
     
    sensorPkt.use.header._id = 0; 
    RecvManager sensorRM; 
    commonUARTNewRecvManager(&sensorRM, SENSOR_TX_MAIN_RX_PACKET_SIZE, 5000); 
 
    MotorTxMainRxPacket motorPkt; 
    motorPkt.use.header._id = 0; 
    RecvManager motorRM; 
    commonUARTNewRecvManager(&motorRM, MOTOR_TX_MAIN_RX_PACKET_SIZE, 5000); 
 
    ExecTimer tenKExecTimer; 
    commonTimerNewExecTimer(&tenKExecTimer, &tenKTimer, 10); 
 
//    commonUARTInit(COMPUTER_UART, SYS_CLK_FRQ, BAUD_RATE); 
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    commonUARTInit(MAIN_SENSOR_UART, SYS_CLK_FRQ, BAUD_RATE); 
    commonUARTInit(MOTOR_UART, SYS_CLK_FRQ, BAUD_RATE); 
    commonTimerInit(TEN_K_TIMER, &tenKTimer, 1000, T2_PS_1_8); 
    /*********************************/ 
    /** END - System Initialization **/ 
    /*********************************/ 
 
 
 
    /***************************************************/ 
    /** BEGIN - Startup Interboard Communication Test **/ 
    /***************************************************/ 
    // wait some time to ensure all PICs are running 
    // before beginning test 
    commonTimerDelay(&tenKTimer, 25000); 
//    SENSOR_LED = LOW; 
//    MOTOR_LED = LOW; 
//    COMP_LED = LOW; 
//    SENSOR_LED = LOW; 
//    MOTOR_LED = LOW; 
    PORTGCLR = (BIT_12 | BIT_14); 
//    COMP_LED = LOW; 
    // _RD0 = 0; _RD1 = 0; _RD2 = 0; 
    // _RD0 = 0; _RD1 = 0; _RD2 = 0; 
 
 
    sensorRecvCount = 0; 
    motorRecvCount = 0; 
    initiateSelfTest(); 
 
    unsigned char motorTestId = 0, sensorTestId = 0; 
    BOOLEAN compTestFail = TRUE, motorTestFail = TRUE, sensorTestFail = TRUE; 
 
    ExecTimer breakTimer; 
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    commonTimerNewExecTimer(&breakTimer, &tenKTimer, 25000); 
 
     
    while (1) { 
 
        if (commonTimerExecEvery(&breakTimer, &tenKTimer) /*|| (!compTestFail && !motorTestFail && !sensorTestFail)*/) { 
            break; 
        } 
 
        /** Main Board <---> Sensor Board Connection Test **/ 
        if (sensorRecvFlag) { 
            sensorRecvFlag = FALSE; 
 
            unsigned char i; 
            for (i = 0; i < sensorRecvCount; i++) { 
                commonUARTRecvData(&sensorRM, &tenKTimer, &(sensorRecvBuf[i]), sensorPkt.stream); 
            } 
 
            sensorRecvCount = 0; 
        } 
 
        if (commonUARTTransferComplete(&sensorRM, &tenKTimer)) { 
            if (sensorPkt.use.header._id == sensorTestId) { 
                if (sensorPkt.use.header._id == 15) { 
                    sensorTestFail = FALSE; 
                } else { 
                    sensorTestId++; 
                    MainTxSensorRxPacket p; 
                    p.use.header._id = sensorTestId; 
                    commonUARTSendData(MAIN_SENSOR_UART, p.stream, MAIN_TX_SENSOR_RX_PACKET_SIZE); 
                } 
            } 
        } 
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        /** Main Board <---> Motor Board Connection Test **/ 
        if (motorRecvFlag) { 
            motorRecvFlag = FALSE; 
 
            unsigned char i; 
            for (i = 0; i < motorRecvCount; i++) { 
                commonUARTRecvData(&motorRM, &tenKTimer, &(motorRecvBuf[i]), motorPkt.stream); 
            } 
 
            motorRecvCount = 0; 
        } 
 
        if (commonUARTTransferComplete(&motorRM, &tenKTimer)) { 
            if (motorPkt.use.header._id == motorTestId) { 
                if (motorPkt.use.header._id == 15) { 
                    motorTestFail = FALSE; 
                }  
 
                motorTestId++; 
                MainTxMotorRxPacket p; 
                p.use.header._id = motorTestId; 
                commonUARTSendData(MOTOR_UART, p.stream, MAIN_TX_MOTOR_RX_PACKET_SIZE); 
            } 
        } 
    } 
 
    ExecTimer exit; 
    commonTimerNewExecTimer(&exit, &tenKTimer, 20000); 
 
    // test has failed 
    while (1) { 
 
        commonTimerDelay(&tenKTimer, 1000); 
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        //  if(compTestFail) { 
        //   COMP_LED = !COMP_LED; 
        ////   _RD0 = !_RD0; 
        //  } else { 
        //   COMP_LED = HIGH; 
        ////   _RD0 = 1; 
        //  } 
 
        if (motorTestFail) { 
            MOTOR_LED = !MOTOR_LED; 
            //   _RD1 = !_RD1; 
        } else { 
            MOTOR_LED = HIGH; 
            //   _RD1 = 1; 
        } 
 
        if (sensorTestFail) { 
            SENSOR_LED = !SENSOR_LED; 
            //   _RD2 = !_RD2; 
        } else { 
            SENSOR_LED = HIGH; 
            //   _RD2 = 1; 
        } 
 
        // test 
        if (commonTimerExecEvery(&exit, &tenKTimer)) { 
            if(!motorTestFail && !sensorTestFail) { 
 
            } else { 
                 
            } 
//            PORTGCLR = (BIT_12 | BIT_14); 
               _RD0 = 0; _RD1 = 0; _RD2 = 0; 
               _RD0 = 0; _RD1 = 0; _RD2 = 0; 
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//            SENSOR_LED = LOW; 
//            MOTOR_LED = LOW; 
//            COMP_LED = LOW; 
//            SENSOR_LED = LOW; 
//            MOTOR_LED = LOW; 
//            COMP_LED = LOW; 
            break; 
        } 
    } 
    /*************************************************/ 
    /** END - Startup Interboard Communication Test **/ 
    /*************************************************/ 
 
 
    /*********************************/ 
    /** BEGIN - Main Execution Loop **/ 
    /*********************************/ 
 
    /** Begin - Bowler Initialization **/ 
    Bowler_Init(); 
    char * dev = "NR Sample Serial Port"; 
    char * ser = "FF00FF00FF00"; 
    usb_CDC_Serial_Init(dev, ser, 0x04D8, 0x0001); 
    BowlerPacket Packet; //Declare a packet 
    addNamespaceToList((NAMESPACE_LIST *) getMainBoardNamespace()); 
    /** End - Bowler Initialization **/ 
 
//    ExoArmStoreBuf storeBuf[EXOARM_STORE_BUF_SIZE]; 
    commonUARTInit(MAIN_SENSOR_UART, SYS_CLK_FRQ, BAUD_RATE); 
    commonUARTInit(MOTOR_UART, SYS_CLK_FRQ, BAUD_RATE); 
    ExoArmStore exoarmStore; 
 
    ExecTimer sanityExecTimer; 
    commonTimerNewExecTimer(&sanityExecTimer, &tenKTimer, 10000); 
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    BOOLEAN recvAllSensors[7] = {0, 0, 0, 0, 0, 0, 0}; 
    sensorRecvCount = 0; 
    motorRecvCount = 0; 
    while (1) { 
         
         
        if (commonTimerExecEvery(&sanityExecTimer, &tenKTimer)) { 
//            MainTxSensorRxPacket p; 
//            p.use.header._id = 1; 
//            p.use.header._opt = SEN_OPT_SAMPLE_REQ; 
//            p.use.header._col = 0; 
// 
//            commonUARTSendData(MAIN_SENSOR_UART, p.stream, MAIN_TX_SENSOR_RX_PACKET_SIZE); 
            _RE1 = !_RE1; 
        } 
 
//        if(commanded) { 
//            commanded = 0; 
// 
//            MainTxSensorRxPacket p; 
//            p.use.header._id = commandedIndex; 
//            p.use.header._opt = SEN_OPT_START; 
// 
//            commonUARTSendData(MAIN_SENSOR_UART, p.stream, MAIN_TX_SENSOR_RX_PACKET_SIZE); 
//        } 
 
        /** Main Board <---> Sensor Board **/ 
        if (sensorRecvFlag) { 
            sensorRecvFlag = FALSE; 
 
            unsigned char i; 
            for (i = 0; i < sensorRecvCount; i++) { 
                commonUARTRecvData(&sensorRM, &tenKTimer, &(sensorRecvBuf[i]), sensorPkt.stream); 
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            } 
 
            sensorRecvCount = 0; 
        } 
 
        /** Main Board <---> Motor Board **/ 
        if (motorRecvFlag) { 
            motorRecvFlag = FALSE; 
 
            unsigned char i; 
            for (i = 0; i < motorRecvCount; i++) { 
                commonUARTRecvData(&motorRM, &tenKTimer, &(motorRecvBuf[i]), motorPkt.stream); 
            } 
 
            motorRecvCount = 0; 
        } 
 
        if (commonUARTTransferComplete(&sensorRM, &tenKTimer)) { 
 
            _RG14 = !_RG14; 
 
            // store received sensor data 
            unsigned char id = sensorPkt.use.header._id; 
 
            if (getMngrSensorSub(id)) { 
                _RG12 = !_RG12; 
                // just directly set the incoming data to the data store 
 
                if (id == WRIST_ID) { 
                    setFlex(id, sensorPkt.use.flexAdc); 
//                    exoarmStore.wrist.flexADC = sensorPkt.use.flexAdc; 
 
                } else { 
                    setFlex(id, sensorPkt.use.flexAdc); 
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                    setPres(id, sensorPkt.use.presAdc); 
//                    exoarmStore.fingers[id].flexADC = sensorPkt.use.flexAdc; 
//                    exoarmStore.fingers[id].presADC = sensorPkt.use.presAdc; 
                } 
// 
//                recvAllSensors[id]++; 
            } 
        } 
 
        if (commonUARTTransferComplete(&motorRM, &tenKTimer)) { 
            // store received motor data 
            unsigned char id = motorPkt.use.header._id; 
 
            if (mngr.motorSub[id]) { 
                if (id == ELBOW_ID) { 
                    exoarmStore.elbow.encoderPos = motorPkt.use.encoderPos; 
                    exoarmStore.elbow.encoderVel = motorPkt.use.encoderVel; 
                    exoarmStore.elbow.currentADC = motorPkt.use.currentAdc; 
                    exoarmStore.elbow.seriesElasticADC = motorPkt.use.seriesElasticAdc; 
                } else if (id == WRIST_ID) { 
                    exoarmStore.wrist.encoderPos = motorPkt.use.encoderPos; 
                    exoarmStore.wrist.encoderVel = motorPkt.use.encoderVel; 
                } else { 
                    exoarmStore.fingers[id].encoderPos = motorPkt.use.encoderPos; 
                    exoarmStore.fingers[id].encoderVel = motorPkt.use.encoderVel; 
                    exoarmStore.fingers[id].currentADC = motorPkt.use.currentAdc; 
                    exoarmStore.fingers[id].seriesElasticADC = motorPkt.use.seriesElasticAdc; 
                } 
 
                recvAllSensors[id]++; 
            } 
        } 
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//        unsigned char i; 
//        BOOLEAN allGood = TRUE; 
//        for (i = 0; i < 7; i++) { 
//            if (recvAllSensors[i] != 2 && (mngr.sensorSub[i] || mngr.motorSub[i])) { 
//                allGood = FALSE; 
//            } 
//        } 
// 
//        if (allGood) { 
//            addToStore(storeBuf, &tempStore); 
//        } 
        Bowler_Server(&Packet, FALSE); 
    } 
    /*******************************/ 
    /** END - Main Execution Loop **/ 
    /*******************************/ 
} 
 
void mNewManager(Manager *m) { 
    char i; 
    for (i = 0; i < 7; i++) { 
        m->sensorSub[i] = 0; 
        m->motorCtrl[i] = 0; 
        m->motorCtrl[i] = 0; 
    } 
} 
 
void mStop(Manager *m, unsigned char id) { 
    if (m->sensorSub[id]) { 
        m->sensorSub[id] = 0; 
        MainTxSensorRxPacket p; 
        p.use.header._id = id; 
        p.use.header._opt = SEN_OPT_STOP; 
        p.use.header._col = SEN_LED_OFF; 
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        commonUARTSendData(MAIN_SENSOR_UART, p.stream, MAIN_TX_SENSOR_RX_PACKET_SIZE); 
    } 
 
    if (m->motorSub[id] || m->motorCtrl[id]) { 
        m->motorSub[id] = 0; 
        m->motorCtrl[id] = 0; 
        MainTxMotorRxPacket p; 
        p.use.header._id = id; 
        commonUARTSendData(MOTOR_UART, p.stream, MAIN_TX_MOTOR_RX_PACKET_SIZE); 
    } 
} 
 
//void mStart(Manager *m, unsigned char id) { 
// if(m->sensorSub[id]) { 
// 
// } 
//} 
 
void mUpdate(Manager *m) { 
    unsigned char i; 
    for (i = 0; i < 7; i++) { 
        if (m->sensorSub[i]) { 
            MainTxSensorRxPacket p; 
            p.use.header._id = i; 
            //   p.use.header._opt = 
        } 
    } 
} 
 
void addToStore(ExoArmStoreBuf storeBuf[EXOARM_STORE_BUF_SIZE], ExoArmStore *store) { 
    if (storeBuf->firstIndex == 0) { 
        storeBuf->store[EXOARM_STORE_BUF_SIZE - 1] = *store; 
        storeBuf->firstIndex = EXOARM_STORE_BUF_SIZE - 1; 
    } else { 
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        storeBuf->store[storeBuf->firstIndex - 1] = *store; 
        storeBuf->firstIndex--; 
    } 
} 
 
void mainBoardInit() { 
    tenKTimer = 0; 
 
 
    unsigned char i; 
    for (i = 0; i < SENSOR_TX_MAIN_RX_PACKET_SIZE; i++) { 
        sensorRecvBuf[i] = 0; 
    } 
    sensorRecvFlag = FALSE; 
    sensorRecvCount = 0; 
 
 
 
    for (i = 0; i < MOTOR_TX_MAIN_RX_PACKET_SIZE; i++) { 
        motorRecvBuf[i] = 0; 
    } 
    motorRecvFlag = FALSE; 
    motorRecvCount = 0; 
 
 
    SENSOR_TRIS_LED = OUTPUT; 
    MOTOR_TRIS_LED = OUTPUT; 
    _TRISE1 = OUTPUT; 
    _RE1 = LOW; 
    SENSOR_LED = HIGH; 
    MOTOR_LED = HIGH; 
} 
 
void initiateSelfTest() { 



235 
 

    MainTxSensorRxPacket sP; 
    MainTxMotorRxPacket mP; 
//    MainTxComputerRxPacket cP; 
 
    sP.use.header._id = 0; 
    mP.use.header._id = 0; 
//    cP.use.header._id = 0; 
 
    commonUARTSendData(MAIN_SENSOR_UART, sP.stream, MAIN_TX_SENSOR_RX_PACKET_SIZE); 
    commonUARTSendData(MOTOR_UART, mP.stream, MAIN_TX_MOTOR_RX_PACKET_SIZE); 
} 
 
void __ISR(MAIN_SENSOR_UART_VECTOR, IPL2SOFT) IntUartSensorHandler(void) { 
    // is this an Rx interrupt? 
    if (INTGetFlag(INT_SOURCE_UART_RX(MAIN_SENSOR_UART))) { 
        while (UARTReceivedDataIsAvailable(MAIN_SENSOR_UART)) { 
            sensorRecvBuf[sensorRecvCount] = UARTGetDataByte(MAIN_SENSOR_UART); 
            sensorRecvCount++; 
        } 
        sensorRecvFlag = TRUE; 
        INTClearFlag(INT_SOURCE_UART_RX(MAIN_SENSOR_UART)); // clear RX interrupt flag 
    } 
 
    // We don't care about TX interrupt 
    if (INTGetFlag(INT_SOURCE_UART_TX(MAIN_SENSOR_UART))) { 
        INTClearFlag(INT_SOURCE_UART_TX(MAIN_SENSOR_UART)); // clear TX interrupt flag 
//        _RG14 = 1; 
         
    } 
 
//    _RE1 = 1 ; 
} 
 
void __ISR(MOTOR_UART_VECTOR, IPL2SOFT) IntUartMotorHandler(void) { 
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    // is this an Rx interrupt? 
    if (INTGetFlag(INT_SOURCE_UART_RX(MOTOR_UART))) { 
        while (UARTReceivedDataIsAvailable(MOTOR_UART)) { 
            motorRecvBuf[motorRecvCount] = UARTGetDataByte(MOTOR_UART); // get the received byte 
            motorRecvCount++; 
        } 
        motorRecvFlag = TRUE; // set the received byte flag 
        INTClearFlag(INT_SOURCE_UART_RX(MOTOR_UART)); // clear RX interrupt flag 
    } 
 
    // We don't care about TX interrupt 
    if (INTGetFlag(INT_SOURCE_UART_TX(MOTOR_UART))) { 
        INTClearFlag(INT_SOURCE_UART_TX(MOTOR_UART)); // clear TX interrupt flag 
    } 
} 
 
void __ISR(TEN_K_TIMER_VECTOR, ipl2) tenKTimerHandler(void) { 
    INTClearFlag(TEN_K_TIMER_CLEAR_FLAG); 
    tenKTimer++; 
} 
 
/*******************/ 
/*- Bowler stuff  -*/ 
/*******************/ 
 
#define initLed() _TRISD0 = OUTPUT;_TRISD1 = OUTPUT;_TRISD2 = OUTPUT; 
#define initButton()  _TRISD6  = INPUT;_TRISD7  = INPUT;_TRISD13 = INPUT;CNPUESET=0x00098000; 
#define isPressed() ( _RD6==0 || _RD7==0 || _RD13==0) 
#define setLed(a,b,c)  _RD0=a;_RD1=b;_RD2=c; 
 
//These are the call backs. Fill these in to catch custom packets. 
 
BYTE UserGetRPCs(BowlerPacket *Packet) { 
    return 0; 
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} 
 
BYTE UserPostRPCs(BowlerPacket *Packet) { 
    return 0; 
} 
 
BYTE UserCriticalRPCs(BowlerPacket *Packet) { 
    return 0; 
} 
 
BYTE SPITransceve(BYTE b) { 
    SpiChnPutC(2, b); // send data on the master channel, SPI1 
    Delay1us(10); 
    return SpiChnGetC(2); // get the received data 
} 
 
BYTE get(BYTE b) { 
    BYTE back = SPITransceve(b); 
    //Delay10us(60); 
    return back; 
} 
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c. Communication Protocol Source File 

#include "Bowler/Bowler.h" 
#include "commonLib.h" 
//#include "commonUART.h" 
#include "commonStructs.h" 
 
static const unsigned char cartNSName[]  = "exo.arm.*;0.3;;"; 
//volatile unsigned char buf; 
 
 
BOOL sampleAsyncEventCallback(BowlerPacket * Packet,BOOL (*pidAsyncCallbackPtr)(BowlerPacket *Packet)){ 
 
    // This gets called by the stack when the system is serviced. If you need to use async, 
    // fill the provided packet and push it 
    return FALSE; 
} 
 
BOOL setSensor(BowlerPacket *p) { 
    unsigned short int id = get16bit(p, 0); 
    unsigned short int s = get16bit(p, 2); 
 
    setMngrSensorSub(id, s); 
 
    set16bit(p, getMngrSensorSub(id), 0); 
} 
 
BOOL getSensor(BowlerPacket *p) { 
    set16bit(p, getFlex(THUMB_ID), 0); 
    set16bit(p, getPres(THUMB_ID), 2); 
 
    set16bit(p, getFlex(INDEX_ID), 4); 
    set16bit(p, getPres(INDEX_ID), 6); 
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    set16bit(p, getFlex(MIDDLE_ID), 8); 
    set16bit(p, getPres(MIDDLE_ID), 10); 
 
    set16bit(p, getFlex(RING_ID), 12); 
    set16bit(p, getPres(RING_ID), 14); 
 
    set16bit(p, getFlex(LITTLE_ID), 16); 
    set16bit(p, getPres(LITTLE_ID), 18); 
 
    set16bit(p, getWristFlex(), 20); 
    p->use.head.DataLegnth = 4 + (5*(2 + 2)) + 2; 
 
    MainTxSensorRxPacket pt; 
    pt.use.header._id = 1; 
    pt.use.header._opt = SEN_OPT_SAMPLE_REQ; 
    pt.use.header._col = 0; 
 
    commonUARTSendData(UART2, pt.stream, MAIN_TX_SENSOR_RX_PACKET_SIZE); 
} 
 
BOOL setMotorSub(BowlerPacket *p) { 
    unsigned short int id = get16bit(p, 0); 
//    unsigned short int  
} 
 
BOOL setMotorControl(BowlerPacket *p) { 
 
} 
 
BOOL getMotor(BowlerPacket *p) { 
 
} 
 
static RPC_LIST setSensorList={ BOWLER_POST,// Method 
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                                "SenS",//RPC as string, 4 bytes ONLY 
                                &setSensor,//function pointer to a packet parsinf function 
                                ((const char [3]){ BOWLER_I16,// from java to device 
                                                        BOWLER_I16,// 
                                   0}),// NULL TERMINATOR 
                                BOWLER_POST,// response method 
                                ((const char [2]){      BOWLER_I16, 
                                                        0}),// 
                                NULL //Termination 
}; 
 
static RPC_LIST getSensorList={ BOWLER_POST,// Method 
                                "SenG",//RPC as string, 4 bytes ONLY 
                                &getSensor,//function pointer to a packet parsinf function 
                                ((const char [1]){0}),// NULL TERMINATOR 
                                BOWLER_POST,// response method 
                                ((const char [12]){ BOWLER_I16,// from device to java 
                                                        BOWLER_I16, 
                                                        BOWLER_I16, 
                                                        BOWLER_I16, 
                                                        BOWLER_I16, 
                                                        BOWLER_I16, 
                                                        BOWLER_I16, 
                                                        BOWLER_I16, 
                                                        BOWLER_I16, 
                                                        BOWLER_I16, 
                                                        BOWLER_I16, 
                                   0}),// 
                                NULL //Termination 
}; 
 
// ONLY ONE OF THESE: static NAMESPACE_LIST bcsSample 
static NAMESPACE_LIST bcsSample ={ cartNSName,// The string defining the namespace 
                                NULL,// the first element in the RPC list 
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                                &sampleAsyncEventCallback,// async for this namespace 
                                NULL// no initial elements to the other namesapce field. 
}; 
 
static BOOL namespcaedAdded = FALSE; 
NAMESPACE_LIST * getMainBoardNamespace(){ 
 if(!namespcaedAdded){ 
                //POST 
                addRpcToNamespace(&bcsSample, &setSensorList); 
                addRpcToNamespace(&bcsSample, &getSensorList); 
                namespcaedAdded =TRUE; 
 } 
 
 return &bcsSample;//Return pointer to the struct 
} 
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H. Sensor Board Software 

a. Main Header File 

#ifndef SENSORBOARRD_H 
#define SENSORBOARRD_H 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
 
/***********************/ 
/*- Pragma Directives -*/ 
/***********************/ 
#ifdef USB_A0_SILICON_WORK_AROUND 
 #pragma config UPLLEN   = OFF       // USB PLL Enabled (A0 bit inverted) 
#else 
 #pragma config UPLLEN   = ON        // USB PLL Enabled 
#endif 
 
#pragma config FPLLMUL  = MUL_20        // PLL Multiplier 
#pragma config UPLLIDIV = DIV_2         // USB PLL Input Divider 
#pragma config FPLLIDIV = DIV_2         // PLL Input Divider 
#pragma config FPLLODIV = DIV_1         // PLL Output Divider 
#pragma config FPBDIV   = DIV_1         // Peripheral Clock divisor 
#pragma config FWDTEN   = OFF           // Watchdog Timer 
#pragma config WDTPS    = PS1           // Watchdog Timer Postscale 
#pragma config FCKSM    = CSDCMD        // Clock Switching & Fail Safe Clock Monitor 
#pragma config OSCIOFNC = OFF           // CLKO Enable 
#pragma config POSCMOD  = HS            // Primary Oscillator 
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#pragma config IESO     = ON            // Internal/External Switch-over 
#pragma config FSOSCEN  = ON            // Secondary Oscillator Enable (KLO was off) 
#pragma config FNOSC    = PRIPLL        // Oscillator Selection 
#pragma config CP       = OFF           // Code Protect 
#pragma config BWP      = OFF           // Boot Flash Write Protect 
#pragma config PWP      = OFF           // Program Flash Write Protect 
#pragma config ICESEL   = ICS_PGx2      // ICE/ICD Comm Channel Select 
#pragma config DEBUG    = OFF            // Background Debugger Enable 
 
#include "commonLib.h" 
#include "commonADC.h" 
#include "sensorBoardAcquire.h" 
//#include "commonSPI.h" 
#include "commonTimer.h" 
#include "commonUART.h" 
#include "LED.h" 
 
 
#define MAIN_UART    UART3 
#define MAIN_UART_VECTOR  _UART_3_VECTOR 
 
//#define MAIN_UART    UART2 
//#define MAIN_UART_VECTOR  _UART_2_VECTOR 
 
#define TEN_K_TIMER    2 
#define TEN_K_TIMER_VECTOR  _TIMER_2_VECTOR 
#define TEN_K_TIMER_CLEAR_FLAG INT_T2 
 
#define SYS_CLK_FREQ   80000000ul 
#define BAUD_RATE    9600 
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 void initSensorBoard(); 
 
/***************/ 
/*- Variables -*/ 
/***************/ 
 volatile unsigned long tenKTimer; 
 
    volatile unsigned char recvBuf[MAIN_TX_SENSOR_RX_PACKET_SIZE]; 
    volatile BOOLEAN recvFlag; 
 volatile unsigned char recvCount; 
 
 unsigned short int sampleCount; 
 
#ifdef __cplusplus 
} 
#endif 
 
#endif /* SENSORBOARRD_H */ 
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b. Main Source File 

#include "sensorBoard.h" 
 
 
void main() { 
// _RG14 = 1; 
 /***********************************/ 
 /** BEGIN - System Initialization **/ 
 /***********************************/ 
 SYSTEMConfig(SYS_FREQ, SYS_CFG_WAIT_STATES | SYS_CFG_PCACHE); 
 
 initSensorBoard(); 
 
 MainTxSensorRxPacket mainBrdPkt; 
 
 SensorTxMainRxPacket sendPkts[SENSOR_GROUPS]; 
 
 RecvManager mainRecvMngr; 
 commonUARTNewRecvManager(&mainRecvMngr, MAIN_TX_SENSOR_RX_PACKET_SIZE, 5000); 
 
 ExecTimer tenKExecTimer; 
 commonTimerNewExecTimer(&tenKExecTimer, &tenKTimer, 10); 
 
 SensorBoardStore store[SAMPLES]; 
 
 Manager pubMngr; 
 mNewManager(&pubMngr); 
 
  
 
 commonUARTInit(MAIN_UART, SYS_CLK_FREQ, BAUD_RATE); 
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// commonUARTInit(COMP_UART, SYS_CLK_FREQ, BAUD_RATE); 
 commonTimerInit(TEN_K_TIMER, &tenKTimer, 1000, T2_PS_1_8); 
 
 commonADCSetupSensorBoard(5, 5); 
 
 setupSPI_LED(); 
 /*********************************/ 
 /** END - System Initialization **/ 
 /*********************************/ 
 
  
 /***************************************************/ 
 /** BEGIN - Startup Interboard Communication Test **/ 
 /***************************************************/ 
// _TRISD1 = 0; _RD1 = 1; 
// _TRISD0 = 0; _RD0 = 1; 
 recvCount = 0; 
 while(1) { 
  if(recvFlag) { 
   recvFlag = FALSE; 
 
   unsigned char i; 
   for(i = 0; i < recvCount; i++) { 
    commonUARTRecvData(&mainRecvMngr, &tenKTimer, &(recvBuf[i]), mainBrdPkt.stream); 
   } 
 
   recvCount = 0; 
  } 
 
  if(commonUARTTransferComplete(&mainRecvMngr, &tenKTimer)) { 
   SensorTxMainRxPacket p; 
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   unsigned char id = mainBrdPkt.use.header._id; 
   p.use.header._id = id; 
   p.use.header._aux = 0; 
   p.use.flexAdc = 0; 
   p.use.presAdc = 0; 
 
//   _RD1 = !_RD1; 
   commonUARTSendData(MAIN_UART, p.stream, SENSOR_TX_MAIN_RX_PACKET_SIZE); 
 
   if(id == 15) { 
    break; 
   } 
  } 
 } 
 /*************************************************/ 
 /** END - Startup Interboard Communication Test **/ 
 /*************************************************/ 
 
 
 
 /*********************************/ 
 /** BEGIN - Main Execution Loop **/ 
 /*********************************/ 
 recvCount = 0; 
 while(1) { 
 
//  if(commonTimerExecEvery(&tenKExecTimer, &tenKTimer)) { 
   unsigned char i; 
   for(i = 0; i < SENSOR_GROUPS-1; i++) { 
    if(sendPkts[i].use.presAdc < 500) { 
     setLEDColor(i, 0); 
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    } else if(sendPkts[i].use.presAdc < 1000) { 
     setLEDColor(i, 1); 
    } else if(sendPkts[i].use.presAdc >= 1000) { 
     setLEDColor(i, 2); 
    } 
//    setLEDColor(i, 1); 
//    commonTimerDelay(&tenKExecTimer, 1); 
    int r = 0; 
    while(r<1000){ 
     r++; 
    } 
   } 
//  } 
 
   
  if(recvFlag) { 
   recvFlag = FALSE; 
 
   unsigned char i; 
   for(i = 0; i < recvCount; i++) { 
    commonUARTRecvData(&mainRecvMngr, &tenKTimer, &(recvBuf[i]), mainBrdPkt.stream); 
   } 
 
   recvCount = 0; 
  } 
 
  if(commonUARTTransferComplete(&mainRecvMngr, &tenKTimer)) { 
   unsigned char id = mainBrdPkt.use.header._id; 
   unsigned char opt = mainBrdPkt.use.header._opt; 
   unsigned char col = mainBrdPkt.use.header._col; 
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//   commonUARTSendByte(MAIN_UART, mainBrdPkt.stream[0]); 
 
 
   if(opt == SEN_OPT_SAMPLE_REQ) { 
    readSensors(store); 
    filterSensors(store, sendPkts); 
 
    mSend(&pubMngr, MAIN_UART, sendPkts); 
 
     
     
 
//    sampleCount++; 
 
//    if(sampleCount >= 10) { 
//     pmPublish(&pubMngr, UART1); 
//    } 
 
 
   } else if(id >= 0 && id <= WRIST_ID) { 
     if(opt == SEN_OPT_START) { 
     pubMngr.sensors[id] = 1; 
//      pmStartPublish(&pubMngr, id); 
    } else if(opt == SEN_OPT_STOP) { 
     pubMngr.sensors[id] = 0; 
//      pmStopPublish(&pubMngr, id); 
    } 
   } 
 
//   setLEDColor(id, col); 
  } 
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 } 
 /*******************************/ 
 /** END - Main Execution Loop **/ 
 /*******************************/ 
} 
 
void initSensorBoard() { 
 
 int i; 
 for(i = 0; i <  MAIN_TX_SENSOR_RX_PACKET_SIZE; i++) { 
  recvBuf[i] = 0; 
 } 
 recvFlag = FALSE; 
 recvCount = 0; 
 
 sampleCount = 0; 
 
// readSensorsFlag = FALSE; 
// readSensorChangeCount = 0; 
 
// _TRISG14 = 0; 
// _RG14; 
 
// _TRISD2 = 0; 
// _TRISD1 = 0; 
// _RD1 = 0; 
 
 // setup pin change interrupts 
 
// PORTSetPinsDigitalIn(IOPORT_D, BIT_7); 
// mCNOpen(CN_ON, CN16_ENABLE, CN16_PULLUP_ENABLE); 
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// pinChangeDummy = mPORTDRead(); 
// ConfigIntCN(CHANGE_INT_ON | CHANGE_INT_PRI_2); 
} 
 
// this interrupt is used to send/receive data to/from the main board 
// UART 2 interrupt handler 
// it is set at priority level 2 with software context saving 
void __ISR(MAIN_UART_VECTOR, IPL2SOFT) IntUartHandler(void) { 
    // is this an Rx interrupt? 
    if(INTGetFlag(INT_SOURCE_UART_RX(MAIN_UART))) { 
        while(UARTReceivedDataIsAvailable(MAIN_UART)) { 
            recvBuf[recvCount] = UARTGetDataByte(MAIN_UART); // get the received byte 
   recvCount++; 
        } 
  recvFlag = TRUE; // set the received byte flag 
        INTClearFlag(INT_SOURCE_UART_RX(MAIN_UART)); // clear RX interrupt flag 
    } 
 
    // We don't care about TX interrupt 
    if (INTGetFlag(INT_SOURCE_UART_TX(MAIN_UART))) { 
        INTClearFlag(INT_SOURCE_UART_TX(MAIN_UART)); // clear TX interrupt flag 
    } 
} 
 
void __ISR(TEN_K_TIMER_VECTOR, ipl2) Timer2Handler(void) { 
    // clear the interrupt flag 
    INTClearFlag(TEN_K_TIMER_CLEAR_FLAG); 
    tenKTimer++; 
} 
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c. Acquire Header File 

#ifndef ACQUIRE_H 
#define ACQUIRE_H 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
 
#include "commonStructs.h" 
 
#define SAMPLES 100 
#define SENSORS 11 
 
 
#define M_STOP 
 
 typedef struct _Manager { 
  unsigned char sensors[SENSOR_GROUPS]; 
 } Manager; 
 
    typedef struct _FingerStore { 
        unsigned short int flexAdc; 
        unsigned short int presAdc; 
    } FingerStore; 
 
    typedef struct _SensorBoardStore { 
        FingerStore thumb; 
        FingerStore index; 
        FingerStore middle; 
        FingerStore ring; 
        FingerStore little; 
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        unsigned short int wristFlexAdc; 
    } SensorBoardStore; 
 
 
 void readSensors(SensorBoardStore store[SAMPLES]); 
 
 void filterSensors(SensorBoardStore store[SAMPLES], SensorTxMainRxPacket *result); 
 
 
 
#ifdef __cplusplus 
} 
#endif 
 
#endif /* ACQUIRE_H */ 
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d. Acquire Source File 

#include "sensorBoardAcquire.h" 
 
void readSensors(SensorBoardStore store[SAMPLES]) { 
    // samples data from all the sensors multiple times 
    // pointer represents an array of SensorBoardStore 
    // use #define THUMB_ID, INDEX_ID, etc for array element locations 
    // in SensorBoardStore 
  
 unsigned short int dataFlex[8]; 
 unsigned short int dataPres[8]; 
 unsigned char i; 
 for(i = 0; i < SAMPLES; i++) { 
  commonADCReadAllFlex(4, dataFlex); 
  commonADCReadAllPres(4, dataPres); 
 
  store[i].thumb.flexAdc = dataFlex[0]; 
  store[i].thumb.presAdc = dataPres[4]; 
 
  store[i].index.flexAdc = dataFlex[1]; 
  store[i].index.presAdc = dataPres[5]; 
 
  store[i].middle.flexAdc = dataFlex[2]; 
  store[i].middle.presAdc = dataPres[0]; 
 
  store[i].ring.flexAdc = dataFlex[3]; 
  store[i].ring.presAdc = dataPres[1]; 
 
  store[i].little.flexAdc = dataFlex[4]; 
  store[i].little.presAdc = dataPres[2]; 
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  store[i].wristFlexAdc = dataFlex[5]; 
 } 
} 
 
void filterSensors(SensorBoardStore store[SAMPLES], SensorTxMainRxPacket *result) { // sensorPublishManager 
    // store is an array 
    // result is not an array 
 
    unsigned long sum[SENSORS]; 
 
    unsigned short int i; 
 for(i = 0; i < SENSORS; i++) { 
  sum[i] = 0; 
 } 
 
    for(i = 0; i < SAMPLES; i++) { 
        sum[THUMB_ID*2] += (unsigned long)(store[i].thumb.flexAdc); 
        sum[THUMB_ID*2+1] += (unsigned long)(store[i].thumb.presAdc); 
 
        sum[INDEX_ID*2] += (unsigned long)(store[i].index.flexAdc); 
        sum[INDEX_ID*2+1] += (unsigned long)(store[i].index.presAdc); 
 
        sum[MIDDLE_ID*2] += (unsigned long)(store[i].middle.flexAdc); 
        sum[MIDDLE_ID*2+1] += (unsigned long)(store[i].middle.presAdc); 
 
        sum[RING_ID*2] += (unsigned long)(store[i].ring.flexAdc); 
        sum[RING_ID*2+1] += (unsigned long)(store[i].ring.presAdc); 
 
        sum[LITTLE_ID*2] += (unsigned long)(store[i].little.flexAdc); 
        sum[LITTLE_ID*2+1] += (unsigned long)(store[i].little.presAdc); 
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        sum[WRIST_ID*2] += (unsigned long)(store[i].wristFlexAdc); 
    } 
 
 for(i = 0; i < SENSOR_GROUPS; i++) { 
  if(i != WRIST_ID) { 
   result[i].use.header._id = i; 
   result[i].use.flexAdc = (unsigned short int)(sum[i*2]/((unsigned long)SAMPLES)); 
   result[i].use.presAdc = (unsigned short int) (sum[i*2+1]/((unsigned long)SAMPLES)); 
  } else { 
   result[i].use.header._id = i; 
   result[i].use.flexAdc = (unsigned short int)(sum[i*2]/((unsigned long)SAMPLES)); 
  } 
 } 
} 
 
void mSend(Manager *m, unsigned char u, SensorTxMainRxPacket *p) { 
 unsigned char i; 
 for(i = 0; i < SENSOR_GROUPS; i++) { 
  if(m->sensors[i]) { 
   p[i].use.header._aux = 0; 
   commonUARTSendData(u, p[i].stream, SENSOR_TX_MAIN_RX_PACKET_SIZE); 
  } 
 } 
} 
 
void mNewManager(Manager *m) { 
 char i; 
 for(i = 0;i < SENSOR_GROUPS; i++) { 
  m->sensors[i] = 0; 
 } 
}  
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e. LED Header File 

#ifndef LED_H 
#define LED_H 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
 
#include "commonLib.h" 
 
#define sendByte1  0b10000100 
#define sendByte2  0b00100001 
#define sendByte3  0b00001000 
#define sendByte4  0b01000010 
#define sendByte5  0b00010000 
#define sendByte6  0b00001110 
#define sendByte7  0b10000000 
 
#define LED_SPI  (SPI_CHANNEL3) 
 
void setupSPI_LED(); 
void setColorRed(); 
void setColorGreen(); 
void setColorBlue(); 
void setColorYellow(); 
void setLedOff(); 
void setLEDColor(unsigned char id, unsigned char color); // takes in 0-4 for 5 fingers id. 0-2 for color id. 
 
#ifdef __cplusplus 
} 
#endif 
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#endif /* LED_H */ 
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f. LED Source File 

#include "LED.h" 
 
 
void setupSPI_LED(){ 
 SpiOpenFlags oFlags = SPI_OPEN_MODE8 | SPI_OPEN_MSTEN; 
 SpiChnOpen(LED_SPI, oFlags, 20); 
} 
 
void setLEDColor(unsigned char id, unsigned char color) { 
 
//  SpiChnPutC(LED_SPI, sendByte7); 
    switch(id){ 
         
        case(0b100) : {switch(color){ 
            case(0b00): setColorRed(); 
//                     setLedOff(); 
//                     setLedOff(); 
//                     setLedOff(); 
                     break; 
            case(0b01): setColorGreen(); 
//                     setLedOff(); 
//                     setLedOff(); 
//                     setLedOff(); 
                     break; 
            case(0b10): setColorBlue(); 
//                     setLedOff(); 
//                     setLedOff(); 
//                     setLedOff(); 
                     break; 
        }}break; 
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        case(0b11) : {switch(color){ 
            case(0b00): setLedOff(); 
                     setColorRed(); 
//                     setLedOff(); 
//                     setLedOff(); 
                     break; 
            case(0b01): setLedOff(); 
                     setColorGreen(); 
//                     setLedOff(); 
//                     setLedOff(); 
                     break; 
            case(0b10): setLedOff(); 
                     setColorBlue(); 
//                     setLedOff(); 
//                     setLedOff(); 
                     break; 
        }}break; 
        case(0b10) : {switch(color){ 
            case(0b00): setLedOff(); 
                     setLedOff(); 
                     setColorRed(); 
//                     setLedOff(); 
                     break; 
            case(0b01): setLedOff(); 
                     setLedOff(); 
                     setColorGreen(); 
//                     setLedOff(); 
                     break; 
            case(0b10): setLedOff(); 
                     setLedOff(); 
                     setColorBlue(); 
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//                     setLedOff(); 
                     break; 
        }}break; 
        case(0b01) : {switch(color){ 
            case(0b00): setLedOff(); 
                     setLedOff(); 
                     setLedOff(); 
                     setColorRed(); 
                     break; 
            case(0b01): setLedOff(); 
                     setLedOff(); 
                     setLedOff(); 
                     setColorGreen(); 
                     break; 
            case(0b10): setLedOff(); 
                     setLedOff(); 
                     setLedOff(); 
                     setColorBlue(); 
                     break; 
        }}break; 
        case(0b00) : {switch(color){ 
            case(0): setLedOff(); 
                     setColorRed(); 
                     setLedOff(); 
                     setLedOff(); 
                     break; 
            case(1): setLedOff(); 
                     setColorGreen(); 
                     setLedOff(); 
                     setLedOff(); 
                     break; 
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            case(2): setLedOff(); 
                     setColorBlue(); 
                     setLedOff(); 
                     setLedOff(); 
                     break; 
        }}break; 
    } 
 
} 
 
 
// sends data to turn off a color on LED 
void sendOffByte(){ 
    SpiChnPutC(LED_SPI, sendByte1); 
    SpiChnPutC(LED_SPI, sendByte2); 
    SpiChnPutC(LED_SPI, sendByte3); 
    SpiChnPutC(LED_SPI, sendByte4); 
    SpiChnPutC(LED_SPI, sendByte5); 
 
} 
 
// sends data to turn on a color LED 
void sendOnByte(){ 
 
    SpiChnPutC(LED_SPI, sendByte1); 
    SpiChnPutC(LED_SPI, sendByte2); 
    SpiChnPutC(LED_SPI, sendByte6); 
    SpiChnPutC(LED_SPI, sendByte4); 
    SpiChnPutC(LED_SPI, sendByte5); 
 
} 
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void sendOByte(){ 
 
    SpiChnPutC(LED_SPI, sendByte7); 
    SpiChnPutC(LED_SPI, sendByte7); 
    SpiChnPutC(LED_SPI, sendByte7); 
    SpiChnPutC(LED_SPI, sendByte7); 
    SpiChnPutC(LED_SPI, sendByte7); 
 
} 
 
void setColorRed(){ 
     sendOffByte();  //green if on 
     sendOnByte();   //red if on 
     sendOffByte();  //blue if on 
} 
 
void setColorGreen(){ 
     sendOnByte();  //green if on 
     sendOffByte();   //red if on 
     sendOffByte();  //blue if on 
} 
 
void setColorBlue(){ 
     sendOffByte();  //green if on 
     sendOffByte();   //red if on 
     sendOnByte();  //blue if on 
} 
 
void setColorYellow(){ 
     sendOByte();  //green if on 
     sendOByte();   //red if on 
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     sendOByte();  //blue if on 
} 
 
void setLedOff(){ 
        sendOffByte();  //green if on 
        sendOffByte();   //red if on 
        sendOffByte();  //blue if on 
} 
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I. Motor Board Software 

a. Main Header File 

#ifndef MOTORBOARD_H 
#define MOTORBOARD_H 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
 
/***********************/ 
/*- Pragma Directives -*/ 
/***********************/ 
#ifdef USB_A0_SILICON_WORK_AROUND 
 #pragma config UPLLEN   = OFF       // USB PLL Enabled (A0 bit inverted) 
#else 
 #pragma config UPLLEN   = ON        // USB PLL Enabled 
#endif 
 
#pragma config FPLLMUL  = MUL_20        // PLL Multiplier 
#pragma config UPLLIDIV = DIV_2         // USB PLL Input Divider 
#pragma config FPLLIDIV = DIV_2         // PLL Input Divider 
#pragma config FPLLODIV = DIV_1         // PLL Output Divider 
#pragma config FPBDIV   = DIV_1         // Peripheral Clock divisor 
#pragma config FWDTEN   = OFF           // Watchdog Timer 
#pragma config WDTPS    = PS1           // Watchdog Timer Postscale 
#pragma config FCKSM    = CSDCMD        // Clock Switching & Fail Safe Clock Monitor 
#pragma config OSCIOFNC = OFF           // CLKO Enable 
#pragma config POSCMOD  = HS            // Primary Oscillator 
#pragma config IESO     = ON            // Internal/External Switch-over 
#pragma config FSOSCEN  = ON            // Secondary Oscillator Enable (KLO was off) 
#pragma config FNOSC    = PRIPLL        // Oscillator Selection 
#pragma config CP       = OFF           // Code Protect 
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#pragma config BWP      = OFF           // Boot Flash Write Protect 
#pragma config PWP      = OFF           // Program Flash Write Protect 
#pragma config ICESEL   = ICS_PGx2      // ICE/ICD Comm Channel Select 
#pragma config DEBUG    = OFF            // Background Debugger Enable 
 
 
 
/************************/ 
/*- Include Directives -*/ 
/************************/ 
#include <stdio.h> 
#include <stdlib.h> 
//#include <stdint.h> 
#include "commonLib.h" 
#include "commonUART.h" 
#include "commonTimer.h" 
#include "controlManager.h" 
#include "pwmGeneratorDriver.h" 
#include "publishManager.h" 
#include "decoder.h" 
#include "digiPotDriver.h" 
 
/***********************/ 
/*- Macro Definitions -*/ 
/***********************/ 
#define initLed() _TRISD0 = 0;_TRISD1 = 0;_TRISD2 = 0; 
#define setLed(a,b,c)  _RD0=a;_RD1=b;_RD2=c; 
#define initMainLed()   _TRISG13 = 0; 
 
#define MAIN_UART   UART1 
#define MAIN_UART_VECTOR _UART_1_VECTOR 
 
#define TEN_K_TIMER    1 
#define TEN_K_TIMER_VECTOR  _TIMER_1_VECTOR 
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#define TEN_K_TIMER_CLEAR_FLAG INT_T1 
 
 
/*************************/ 
/*- Structures & Unions -*/ 
/*************************/ 
     
 
 
/*************************/ 
/*- Function Prototypes -*/ 
/*************************/ 
    void motorBoardInit(); 
 
 
/***************/ 
/*- Variables -*/ 
/***************/ 
    volatile unsigned char recvBuf[MAIN_TX_MOTOR_RX_PACKET_SIZE]; 
    volatile BOOL recvFlag; 
 volatile unsigned char recvCount; 
 
 volatile unsigned long tenKTimer; 
 
 
#ifdef __cplusplus 
} 
#endif 
 
#endif /* MOTORBOARD_H */ 
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b. Main Source File 

#include "motorBoard.h" 
 
 
void main() { 
 /***********************************/ 
 /** BEGIN - System Initialization **/ 
 /***********************************/ 
 SYSTEMConfig(SYS_FREQ, SYS_CFG_WAIT_STATES | SYS_CFG_PCACHE); 
 
 motorBoardInit(); 
 
    initMainLed(); 
    initLed(); 
 
    ControlInstanceManager cm; 
    cmNewControlManager(&cm); 
 
    MotorPublishManager pm; 
 pmNewManager(&pm); 
 
    RecvManager mainRecvMngr; 
    commonUARTNewRecvManager(&mainRecvMngr, MAIN_TX_MOTOR_RX_PACKET_SIZE, 5000); 
 
    MainTxMotorRxPacket mainBrdPkt; 
 
    ExecTimer tenKExecTimer; 
    commonTimerNewExecTimer(&tenKExecTimer, &tenKTimer, 10); // executes at 1,000 Hz 
 
    commonUARTInit(MAIN_UART, 80000000ul, 9600); 
    commonTimerInit(TEN_K_TIMER, &tenKTimer, 1000, T2_PS_1_8); 
//    _RG13 = 1; 
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 /*********************************/ 
 /** END - System Initialization **/ 
 /*********************************/ 
 
 
 /***************************************************/ 
 /** BEGIN - Startup Interboard Communication Test **/ 
 /***************************************************/ 
 recvCount = 0; 
 while(1) { 
  if(recvFlag) { 
   recvFlag = FALSE; 
 
   _RD0 = !_RD0; 
 
   unsigned char i; 
   for(i = 0; i < recvCount; i++) { 
    commonUARTRecvData(&mainRecvMngr, &tenKTimer, &(recvBuf[i]), mainBrdPkt.stream); 
   } 
 
   recvCount = 0; 
  } 
 
  if(commonUARTTransferComplete(&mainRecvMngr, &tenKTimer)) { 
   MotorTxMainRxPacket p; 
   unsigned char id = mainBrdPkt.use.header._id; 
   p.use.header._id = id; 
//   p.use.header._opt = 0; 
//   p.use.header._aux = 0; 
//   p.use.encoderPos = 0; 
//   p.use.encoderVel = 0; 
//   p.use.currentAdc = 0; 
//   p.use.seriesElasticAdc = 0; 
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//   _RD1 = !_RD1; 
   commonUARTSendData(MAIN_UART, p.stream, MOTOR_TX_MAIN_RX_PACKET_SIZE); 
 
   if(id == 15) { 
    break; 
   } 
  } 
 } 
 /*************************************************/ 
 /** END - Startup Interboard Communication Test **/ 
 /*************************************************/ 
 
// AD1PCFGSET = 0x0040; 
// AD1PCFGSET = 0x0080; 
// _TRISB7 = OUTPUT; 
// _TRISE8 = OUTPUT; 
// 
// _RB7 = HIGH; 
// _RE8 = HIGH; 
//// initDigiPots(); 
//// setDigiPot0(128); 
//// setDigiPot1(128); 
// 
// initPwmGeneratorDriver(); 
// 
//// int i = 0, j = 0; 
// while(1) { 
////  i++; 
////  j++; 
////  if(i > 1000) { 
////   i = 0; 
////  } 
////  if(j > 255) { 
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////   j = 0; 
////  } 
////  setDigiPot0(j); 
////  setDigiPot1(j); 
//  setAllGS(10); 
////  setGS(0, 50); 
//  updateGS(); 
// 
// } 
 
 
 /*********************************/ 
 /** BEGIN - Main Execution Loop **/ 
 /*********************************/ 
 recvCount = 0; 
    while(1) { 
//  updateGS(); 
   
        if(commonTimerExecEvery(&tenKExecTimer, &tenKTimer)) { 
    
        } 
 
        if(recvFlag) { 
            recvFlag = FALSE; 
 
   unsigned char i; 
   for(i = 0; i < recvCount; i++) { 
    commonUARTRecvData(&mainRecvMngr, &tenKTimer, &(recvBuf[i]), mainBrdPkt.stream); 
   } 
 
   recvCount = 0; 
        } 
 
        // received a packet from the main board 



272 
 

        if(commonUARTTransferComplete(&mainRecvMngr, &tenKTimer)) { 
   unsigned char id = mainBrdPkt.use.header._id; 
   unsigned char opt = mainBrdPkt.use.header._opt; 
   unsigned char ctrl = mainBrdPkt.use.header._controlType; 
 
   if(id == 15) { // execute update 
    cmStartInstance(&cm, &mainBrdPkt); 
   } else { // new publish/command requests 
    if(opt & MTR_OPT_START) { 
     if(opt & MTR_OPT_PUB) { 
      pmStartPublish(&pm, id); 
     } 
     if(opt & MTR_OPT_CTRL) { 
      cmStartInstance(&cm, &mainBrdPkt); 
     } 
    } else { 
     if(opt & MTR_OPT_PUB) { 
      pmStopPublish(&pm, id); 
     } 
     if(opt & MTR_OPT_CTRL) { 
      cmStopInstance(&cm, &mainBrdPkt); 
     } 
    } 
   } 
        } 
    } 
 /*******************************/ 
 /** END - Main Execution Loop **/ 
 /*******************************/ 
} 
 
void motorBoardInit() { 
 DDPCONbits.TROEN = 0; 
 DDPCONbits.JTAGEN = 0; 
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 int i; 
 for(i = 0; i <  MAIN_TX_MOTOR_RX_PACKET_SIZE; i++) { 
  recvBuf[i] = 0; 
 } 
    recvFlag = FALSE; 
 recvCount = 0; 
 
 tenKTimer = 0; 
} 
 
// this interrupt is used to send/receive data to/from the main board 
// UART 2 interrupt handler 
// it is set at priority level 2 with software context saving 
void __ISR(MAIN_UART_VECTOR, IPL2SOFT) IntUartHandler(void) { 
    // is this an Rx interrupt? 
    if(INTGetFlag(INT_SOURCE_UART_RX(MAIN_UART))) { 
        while(UARTReceivedDataIsAvailable(MAIN_UART)) { 
            recvBuf[recvCount] = UARTGetDataByte(MAIN_UART); // get the received byte 
   recvCount++; 
        } 
  recvFlag = TRUE; // set the received byte flag 
        INTClearFlag(INT_SOURCE_UART_RX(MAIN_UART)); // clear RX interrupt flag 
    } 
 
    // We don't care about TX interrupt 
    if (INTGetFlag(INT_SOURCE_UART_TX(MAIN_UART))) { 
        INTClearFlag(INT_SOURCE_UART_TX(MAIN_UART)); // clear TX interrupt flag 
    } 
} 
 
void __ISR(TEN_K_TIMER_VECTOR, ipl2) Timer2Handler(void) { 
    // clear the interrupt flag 
    INTClearFlag(TEN_K_TIMER_CLEAR_FLAG); 
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    tenKTimer++; 
} 
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c. PWM Generator Header File 

 /** 
 * @file pwmGeneratorDriver.h 
 * @author Jason Klein (jason.e.klein@wpi.edu) 
 *  
 * Driver to control the TLC5940. This implementation uses I/O built-in 
 * features on the PIC32MX795F512L. When using this driver, make sure the 
 * following built-in features are not being used by other parts of your 
 * program. If they are being used, check to see if there are conflicts with 
 * Timer, Output Compare, and SPI setup arguments are the same, or if not, 
 * change this driver to work. By default, the following are the built-in features used 
 * by this driver. 
 *  Timer 3 
 *  Timer 4 
 *  Output Compare 3 
 *  SPI 1 
 * 
 * Driver created using refrence programming flow chart provided by Texas 
 * Instruments: 
 * http://www.ti.com/lit/sw/slvc106/slvc106.pdf 
 * 
 * @bug  It works but only if the values assigned are between 0 and ~200 
 */ 
 
#ifndef PWMGENERATORDRIVER_H 
#define PWMGENERATORDRIVER_H 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
 
/***********************/ 
/*- Pragma Directives -*/ 
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/***********************/ 
 
 
     
/************************/ 
/*- Include Directives -*/ 
/************************/ 
#include "commonLib.h" 
 
 
 
/***********************/ 
/*- Macro Definitions -*/ 
/***********************/ 
/////////////////// DO NOT MODIFY 
#define DC_DATA_SIZE    12 
#define GS_DATA_SIZE    24 
 
#define BOOLEAN         unsigned char 
#define TRUE            1 
#define FALSE           0 
 
/////////////////// AS NEEDED, MODIFY ONLY THESE #define SETTINGS BELOW 
//#define TLC5940_SPI_CHANNEL (SPI_CHANNEL4) 
// 
//#define GSCLK_TRIS          (_TRISD3) 
//#define DCPRG_TRIS          (_TRISA2) 
//#define VPRG_TRIS           (_TRISB12) 
//#define XLAT_TRIS           (_TRISA9) 
//#define BLANK_TRIS          (_TRISA1) 
// 
//#define GSCLK_PIN           (_RD3) 
//#define DCPRG_PIN           (_RA2) 
//#define VPRG_PIN            (_RB12) 
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//#define XLAT_PIN            (_RA9) 
//#define BLANK_PIN           (_RA1) 
 
 // PIC32 ETHERNET STARTER KIT 
#define TLC5940_SPI_CHANNEL (SPI_CHANNEL1) 
 
#define GSCLK_TRIS          (_TRISD3) 
#define DCPRG_TRIS          (_TRISA2) 
#define VPRG_TRIS           (_TRISB12) 
#define XLAT_TRIS           (_TRISC2) 
#define BLANK_TRIS          (_TRISE5) 
 
#define BLANK_PIN           (_RE5) 
#define BLANK_HIGH   (mPORTESetBits(BIT_5)) 
#define BLANK_LOW   (mPORTESetBits(BIT_5)) 
#define BLANK_TOGGLE  (mPORTEToggleBits(BIT_5)) 
 
//#define GSCLK_TOGGLE  (mPORTDToggleBits(3)) 
//#define GSCLK_PIN   (3) 
 
#define GSCLK_PIN           (_RD3) 
#define DCPRG_PIN           (_RA2) 
#define VPRG_PIN            (_RB12) 
#define XLAT_PIN            (_RC2) 
 
 
#define GSCLK_OC_R   (OC3RS) 
 
// DMA - Direct Memory Access 
#define DMA3                (3) 
#define PWM_PERIOD          (40) 
#define CYCLE_ARRAY_SIZE    (sizeof(pwmDutyCycles)) 
 
#define DC_DATA_INITIAL_VALUE   (0xFF) 
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#define GS_DATA_INITIAL_VALUE   (0x00) 
 
 
 
/*************************/ 
/*- Structures & Unions -*/ 
/*************************/ 
 
 
 
/*************************/ 
/*- Function Prototypes -*/ 
/*************************/ 
    void initPwmGeneratorDriver(); 
 
    void initGSCLK(); 
    void initSCLK(); 
    void initDCPRG(); 
    void initVPRG(); 
    void initXLAT(); 
    void initBLANK(); 
 
    void setGS(unsigned char pin, unsigned short int value); 
    void setDC(); 
 
    void setAllGS(unsigned short int value); 
    void setAllDC(); 
 
    void updateDC(); 
    void updateGS(); 
 
 
 
/***************/ 
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/*- Variables -*/ 
/***************/ 
    BOOLEAN firstCycleFlag; 
    volatile unsigned long counterGSCLK; 
    unsigned long dataCounter; 
 
    unsigned short pwmDutyCycles[1];  // set to half of PWM_PERIOD 
                                                // to achieve a 50% duty cycle 
    unsigned char srcSize;   // number of bytes for each 
                                                // transfer 
    unsigned char cellSize; // size of (bytes) per transaction (16-bit PWM 
                                // values requires 2 bytes 
    unsigned char dstSize;  // size (bytes) of the destination (16-bit 
                                // OC3RS register) 
    unsigned short *volatile pDma3Dst; 
 
    unsigned short *pDmaSrc; 
 
    unsigned char dcData[DC_DATA_SIZE]; 
 
    unsigned char gsData[GS_DATA_SIZE]; 
 
 
 
#ifdef __cplusplus 
} 
#endif 
 
#endif /* PWMGENERATORDRIVER_H */ 
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d. PWM Generator Source File 

#include "pwmGeneratorDriver.h" 
 
void setMotor(unsigned char id, char direction, unsigned char power) { 
 switch(id) { 
 
 } 
} 
 
void initMotors() { 
  
} 
 
void initPwmGeneratorDriver() { 
    firstCycleFlag = TRUE; 
    counterGSCLK = 0; 
    dataCounter = 0; 
    pwmDutyCycles[0] = 20; 
    srcSize = CYCLE_ARRAY_SIZE; 
    cellSize = 2; 
    dstSize = 2; 
    pDma3Dst = (void *) &GSCLK_OC_R; 
    pDmaSrc = pwmDutyCycles; 
 
    int i; 
    for(i = 0; i < DC_DATA_SIZE; i++) { 
        dcData[i] = DC_DATA_INITIAL_VALUE; 
    } 
 
    setAllGS(GS_DATA_INITIAL_VALUE); 
 
 
 DDPCONbits.TROEN = 0; 
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 DDPCONbits.JTAGEN = 0; 
    GSCLK_TRIS = OUTPUT; 
    GSCLK_PIN = LOW; 
    initSCLK(); 
//    initDCPRG(); 
//    initVPRG(); 
    initXLAT(); 
    initBLANK(); 
 
    updateDC(); 
    initGSCLK(); 
    updateGS(); 
} 
 
void initGSCLK() { 
    // initialize to LOW 
    // Step #1 - open DMA channel_0 and channel_1 
    // Use channel chaining mode to start next channel when previous channel is finished 
    DmaChnOpen(DMA3, 0, DMA_OPEN_CHAIN_LOW); 
//    DmaChnOpen(DMA1, 0, DMA_OPEN_CHAIN_HI); 
 
 
    // Step #2 - setup DMA even triggers using TIMER 4 period match interrupt 
    DmaChnSetEventControl(DMA3, DMA_EV_START_IRQ(_TIMER_4_IRQ)); 
//    DmaChnSetEventControl(DMA1, DMA_EV_START_IRQ(_TIMER_4_IRQ)); 
 
 
    // Step #3 - setup the transfer pointers and transfer sizes 
    DmaChnSetTxfer(DMA3, pDmaSrc, pDma3Dst, srcSize, dstSize, cellSize); 
//    DmaChnSetTxfer(DMA1, pDmaSrc, pDma_1_Dst, srcSize, dstSize, cellSize); 
 
 
    // Step #4 - Configure the Output Compare channels for PWM mode using Timer3 
    // setup output compare channel #1 - RD3 
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    OpenOC3(OC_ON | OC_TIMER_MODE16 | OC_TIMER3_SRC | OC_PWM_FAULT_PIN_DISABLE, 0, 0); 
 
    // setup output compare channel #2 - RD4 
//    OpenOC4(OC_ON | OC_TIMER_MODE16 | OC_TIMER3_SRC | OC_PWM_FAULT_PIN_DISABLE, 0, 0); 
 
 
    // Step #5 - Configure Timer3 and Timer4 
    // Timer 3 generates 20ms period for PWMs 
    OpenTimer3(T3_ON | T3_PS_1_1, PWM_PERIOD); 
 
    // Timer4 generates 32ms triggers for DMA transfer 
    OpenTimer4(T4_ON | T4_PS_1_256, 10000); 
 
 
    // Step #6 - Enale DMA channel 0 to star the transfers. 
    // Channel chaining will take over automatically 
    DmaChnEnable(DMA3); 
} 
 
void initSCLK() { 
    // initialize to LOW 
    SpiOpenFlags oFlags = SPI_OPEN_MODE8 | SPI_OPEN_MSTEN; 
    SpiChnOpen(TLC5940_SPI_CHANNEL, oFlags, 800); 
} 
 
void initDCPRG() { 
    // initialize to LOW 
    DCPRG_TRIS      =   OUTPUT; 
    DCPRG_PIN       =   LOW; 
} 
 
void initVPRG() { 
    // initialize to HIGH 
    VPRG_TRIS    =   OUTPUT; 
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    VPRG_PIN   =   HIGH; 
} 
 
void initXLAT() { 
    // initialize to LOW 
    XLAT_TRIS    =   OUTPUT; 
    XLAT_PIN   =   LOW; 
} 
 
void initBLANK() { 
    // initialize to HIGH 
    BLANK_TRIS   =   OUTPUT; 
    BLANK_PIN  =   LOW; 
} 
 
void setGS(unsigned char pin, unsigned short int value) { 
    value = (value > 4095)?4095:value; 
    value = (value < 0)?0:value; 
 
    unsigned short i; 
    i = (pin * 12) / 8; 
 
    if(i * 8 == pin * 12) { 
        gsData[i] = 0x00; 
        gsData[i+1] &= ~(0b11110000); 
        gsData[i] = (unsigned char)(value >> 4); 
        gsData[i+1] |= (unsigned char)(value << 4); 
    } else { 
        gsData[i] &= ~(0b00001111); 
        gsData[i+1] = 0x00; 
        gsData[i] |= (unsigned char)(value >> 8); 
        gsData[i+1] = (unsigned char)(value); 
    } 
} 
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void setAllGS(unsigned short int value) { 
    char i; 
    for(i = 0; i < 16; i++) { 
        setGS(i, value); 
    } 
} 
 
void updateDC() { 
//    setPin(DCPRG_PIN, HIGH); 
//    setPin(VPRG_PIN, HIGH); 
 
    unsigned char *p = dcData; 
    int dump = 0; 
 
    while(p < dcData + DC_DATA_SIZE) { 
        SpiChnPutC(TLC5940_SPI_CHANNEL, *p++); 
        dump = SpiChnGetC(TLC5940_SPI_CHANNEL); 
        SpiChnPutC(TLC5940_SPI_CHANNEL, *p++); 
        dump = SpiChnGetC(TLC5940_SPI_CHANNEL); 
        SpiChnPutC(TLC5940_SPI_CHANNEL, *p++); 
        dump = SpiChnGetC(TLC5940_SPI_CHANNEL); 
    } 
 
    while(!SpiChnTxBuffEmpty(TLC5940_SPI_CHANNEL)); 
 
    pulsePin(XLAT_PIN); 
} 
 
void updateGS() { 
    if(VPRG_PIN == HIGH) { 
//        setPin(VPRG_PIN, LOW); 
    } 
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    counterGSCLK = 0; 
 
// BLANK_HIGH; 
// BLANK_LOW; 
//    setPin(BLANK_PIN, HIGH); 
// setPin(BLANK_PIN, LOW); 
// BLANK_TOGGLE; 
 pulsePin(BLANK_PIN); 
 pulsePin(XLAT_PIN); 
 
    unsigned char *p = gsData; 
    int dump = 0; 
 
    while(p < gsData + GS_DATA_SIZE && counterGSCLK < 4096) { 
        SpiChnPutC(TLC5940_SPI_CHANNEL, *p++); 
        dump = SpiChnGetC(TLC5940_SPI_CHANNEL); 
        SpiChnPutC(TLC5940_SPI_CHANNEL, *p++); 
        dump = SpiChnGetC(TLC5940_SPI_CHANNEL); 
        SpiChnPutC(TLC5940_SPI_CHANNEL, *p++); 
        dump = SpiChnGetC(TLC5940_SPI_CHANNEL); 
    } 
 
    while(!SpiChnTxBuffEmpty(TLC5940_SPI_CHANNEL)); 
 
//    setPin(BLANK_PIN, LOW); 
// pulsePin(XLAT_PIN); 
     
 
    if(firstCycleFlag) { 
        SpiChnEnable(TLC5940_SPI_CHANNEL, 0); 
        TRISDbits.TRISD10 = 0; 
//        PORTDbits.RD10 = 1; 
//        PORTDbits.RD10 = !PORTDbits.RD10; 
  mPORTDToggleBits(10); 
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        SpiChnEnable(TLC5940_SPI_CHANNEL, 1); 
    } 
 
    firstCycleFlag = FALSE; 
} 
 
void __ISR(_OUTPUT_COMPARE_4_VECTOR, ipl7) OC4_IntHandler (void) { 
//    IFS0CLR = 0x4000; 
    counterGSCLK++; 
    INTClearFlag(INT_OC3); 
} 
 
void __ISR(_TIMER_3_VECTOR, ipl2) Timer3Handler(void) { 
    // clear the interrupt flag 
    INTClearFlag(INT_T3); 
} 
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e. Digi-Pot Driver Header File 

#ifndef DIGIPOTDRIVER_H 
#define DIGIPOTDRIVER_H 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
 
#include "commonLib.h" 
 
//#define DIGI_LAT_TRIS           (_TRISG0) 
//#define DIGI_LAT_PIN   (_RG0) 
#define DIGI_0_CS_TRIS   (_TRISB5) 
#define DIGI_0_CS_PIN   (_RB5) 
#define DIGI_1_CS_TRIS   (_TRISA0) 
#define DIGI_1_CS_PIN   (_RA0) 
 
#define DIGI_POT_SPI   (SPI_CHANNEL2) 
 
void initDigiPot(); 
void setDigiPot0(BYTE value); 
void setDigiPot1(BYTE value); 
  
 
 
#ifdef __cplusplus 
} 
#endif 
 
#endif /* DIGIPOTDRIVER_H */ 
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f. Digi-Pot Driver Source File 

#include "digiPotDriver.h" 
 
void initDigiPots() { 
 SpiOpenFlags oFlags = SPI_OPEN_MODE16 | SPI_OPEN_MSTEN; 
 SpiChnOpen(DIGI_POT_SPI, oFlags, 20); 
 
 WORD setUpConAddr1 = 0b0100000001111111; 
 
// setPin(DIGI_LAT_TRIS, OUTPUT); 
 AD1PCFGSET = 0x0020; 
 setPin(DIGI_0_CS_TRIS, OUTPUT); 
 setPin(DIGI_1_CS_PIN, OUTPUT); 
 
 
// setPin(DIGI_LAT_PIN, HIGH); 
 setPin(DIGI_0_CS_PIN, HIGH); 
 setPin(DIGI_1_CS_PIN, HIGH); 
 
 
 
 
 
 setPin(DIGI_0_CS_PIN, LOW); 
  
 SpiChnPutC(DIGI_POT_SPI, setUpConAddr1); 
 SpiChnGetC(DIGI_POT_SPI); 
 
 while(!SpiChnTxBuffEmpty(DIGI_POT_SPI)); 
  
 setPin(DIGI_0_CS_PIN, HIGH); 
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 setPin(DIGI_1_CS_PIN, LOW); 
 
 SpiChnPutC(DIGI_POT_SPI, setUpConAddr1); 
 SpiChnGetC(DIGI_POT_SPI); 
 
 while(!SpiChnTxBuffEmpty(DIGI_POT_SPI)); 
 
 setPin(DIGI_1_CS_PIN, HIGH); 
} 
 
void setDigiPot0(BYTE value) { 
 WORD Byte1 = (0b0000000000000000 | value); 
 WORD Byte2 = 0b0000110000001111; 
 
 setPin(DIGI_0_CS_PIN, LOW); 
// setPin(DIGI_LAT_PIN, LOW); 
 
 //        SpiChnPutC(ADC_SENSOR_SPI, Byte1); 
 //        SpiChnGetC(ADC_SENSOR_SPI); 
 SpiChnPutC(DIGI_POT_SPI, Byte1); 
 //        SpiChnPutC(ADC_SENSOR_SPI, Byte2); 
 Byte2 = SpiChnGetC(DIGI_POT_SPI); 
 
 while(!SpiChnTxBuffEmpty(DIGI_POT_SPI)); 
 
// setPin(DIGI_LAT_PIN, HIGH); 
 setPin(DIGI_0_CS_PIN, HIGH); 
} 
 
void setDigiPot1(BYTE value) { 
 WORD Byte1 = (0b0000000000000000 | value); 
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 WORD Byte2 = 0b0000110000001111; 
 
 setPin(DIGI_1_CS_PIN, LOW); 
// setPin(DIGI_LAT_PIN, LOW); 
 
 //        SpiChnPutC(ADC_SENSOR_SPI, Byte1); 
 //        SpiChnGetC(ADC_SENSOR_SPI); 
 SpiChnPutC(DIGI_POT_SPI, Byte1); 
 //        SpiChnPutC(ADC_SENSOR_SPI, Byte2); 
 Byte2 = SpiChnGetC(DIGI_POT_SPI); 
 
 while(!SpiChnTxBuffEmpty(DIGI_POT_SPI)); 
 
// setPin(DIGI_LAT_PIN, HIGH); 
 setPin(DIGI_1_CS_PIN, HIGH); 
} 
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g. Control Manager Header File 

#ifndef CONTROLMANAGER_H 
#define CONTROLMANAGER_H 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
 
#include "commonLib.h" 
#include "commonStructs.h" 
 
 
#define MAX_CONTROL_INSTANCES   7 
 
#define THUMB_MOTOR_PIN     0 
#define THUMB_MOTOR_DIR     0 
#define THUMB_ENCODER_PIN   0 
#define THUMB_CURRENT_PIN   0 
#define THUMB_SER_EL_PIN    0 
 
#define THUMB_MOTOR_PIN     0 
#define THUMB_MOTOR_DIR     0 
#define THUMB_ENCODER_PIN   0 
#define THUMB_CURRENT_PIN   0 
#define THUMB_SER_EL_PIN    0 
 
 
    typedef struct _Motor { 
        unsigned char motorPin; 
        signed char direction; 
        unsigned char encoderPin; 
        unsigned char currentPin; 
        unsigned char seriesElasticPin; 



292 
 

    } Motor; 
 
    typedef struct _ControlInstance { 
        unsigned char controlType; 
        unsigned char status; 
        short int desiredEncoderPos; 
        short int desiredEncoderVel; 
        unsigned short int desiredCurrentAdc; 
        unsigned short int desiredSeriesElasticAdc; 
    } ControlInstance; 
 
    typedef struct _ControlInstanceManager { 
        unsigned char runningInstances; 
        unsigned char controlIndex[MAX_CONTROL_INSTANCES]; 
        ControlInstance controlInstances[MAX_CONTROL_INSTANCES]; 
        Motor motors[MAX_CONTROL_INSTANCES]; 
    } ControlInstanceManager; 
 
     
 
#ifdef __cplusplus 
} 
#endif 
 
#endif /* CONTROLMANAGER_H */ 
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h. Control Manager Source File 

#include "controlManager.h" 
#include "pwmGeneratorDriver.h" 
 
void cmNewControlManager(ControlInstanceManager *cm) { 
    cm->runningInstances = 0; 
} 
 
void cmNewControlInstance(ControlInstance *ci, MainTxMotorRxPacket *p) { 
    ci->controlType = p->use.header._controlType; 
    ci->status = 0; 
    ci->desiredEncoderPos = p->use.encoderPos; 
    ci->desiredEncoderVel = p->use.encoderVel; 
    ci->desiredCurrentAdc = p->use.currentAdc; 
    ci->desiredSeriesElasticAdc = p->use.seriesElasticAdc; 
} 
 
void cmExecControl(ControlInstanceManager *cm) { 
 
 unsigned char i; 
 for(i = 0; i < cm->runningInstances; i++) { 
  ControlInstance ci = cm->controlInstances[cm->controlIndex[i]]; 
 
  switch(ci.controlType) { 
   case 0: 
    if(ci.desiredEncoderPos > 0) { 
     setAllGS(ci.desiredEncoderPos); 
    } else if(ci.desiredEncoderPos < 0) { 
 
    } else { 
      
    } 
    break; 
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  } 
 } 
 
 updateGS(); 
} 
 
void cmInitMotors() { 
//    motors[0].motorPin = 0; 
    // ... 
 initPwmGeneratorDriver(); 
} 
 
void cmStartInstance(ControlInstanceManager *cm, MainTxMotorRxPacket *p) { 
    // check to see if existing instance is already running 
    unsigned char i; 
    unsigned char id = 0; 
    id = p->use.header._id; 
     
    for(i = 0; i < cm->runningInstances; i++) { 
        if(cm->controlIndex[i] == id) { // if instance is already running 
//            cm->controlInstances[id] = *ci; 
            cmNewControlInstance(&(cm->controlInstances[id]), p); 
            return; 
        } 
    } 
 
    // if none exists, create a new control instance 
    cm->controlIndex[cm->runningInstances] = id; 
    cm->runningInstances++; 
//    cm->controlInstances[id] = *ci; 
    cmNewControlInstance(&(cm->controlInstances[id]), p); 
} 
 
void cmStopInstance(ControlInstanceManager *cm, MainTxMotorRxPacket *p) { 
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    unsigned char i; 
    unsigned char id = 0; 
    id = p->use.header._id; 
    BOOL slideOver = FALSE; 
 
    for(i = 0; i < cm->runningInstances; i++) { 
        if(id == cm->controlIndex[i]) { 
            slideOver = TRUE; 
        } 
 
        if(slideOver) { 
            if(i+1 < cm->runningInstances) { 
                cm->controlIndex[i] = cm->controlIndex[i+1]; 
            } else { 
                cm->runningInstances--; 
                break; 
            } 
        } 
    } 
} 
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i. Publish Manager Header File 

#ifndef PUBLISHMANAGER_H 
#define PUBLISHMANAGER_H 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
 
#include "commonLib.h" 
#include "commonStructs.h" 
 
 typedef struct _MotorPublishManager { 
  unsigned char runningPublishers; 
        unsigned char publishIndex[MOTOR_GROUPS]; 
        MotorTxMainRxPacket packets[MOTOR_GROUPS]; 
 } MotorPublishManager; 
 
  
 
 
#ifdef __cplusplus 
} 
#endif 
 
#endif /* PUBLISHMANAGER_H */ 
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j. Publish Manager Source File 

#include "publishManager.h" 
 
void pmNewManager(MotorPublishManager *pm) { 
 pm->runningPublishers = 0; 
 unsigned char i; 
 for(i = 0; i < MOTOR_GROUPS; i++) { 
  pm->publishIndex[i] = 0; 
 } 
} 
 
void pmStartPublish(MotorPublishManager *pm, unsigned char id) { 
 unsigned char i; 
 
 if(pm->runningPublishers == 0) { 
  pm->publishIndex[0] = id; 
  pm->runningPublishers++; 
  return; 
 } 
 
 // check if id already exists 
    for(i = 0; i < pm->runningPublishers; i++) { 
        if(pm->publishIndex[i] == id) { 
            return; 
        } 
    } 
 
 // if not exists, add 
 // this keeps the indicies in order 
 for(i = 0; i < pm->runningPublishers; i++) { 
  if(id > pm->publishIndex[i]) { 
   unsigned char j; 
   for(j = i+1; j < pm->runningPublishers; j++) { 
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    pm->publishIndex[j+1] = pm->publishIndex[j]; 
   } 
 
   pm->publishIndex[i+1] = id; 
   pm->runningPublishers++; 
   break; 
  } 
 } 
} 
 
void pmStopPublish(MotorPublishManager *pm, unsigned char id) { 
 unsigned char i; 
 // check if there is an id to stop 
 for(i = 0; i < pm->runningPublishers; i++) { 
  if(pm->publishIndex[i] == id) { 
   unsigned char j; 
   pm->runningPublishers--; 
   for(j = i; j < pm->runningPublishers; j++) { 
    pm->publishIndex[j] = pm->publishIndex[j+1]; 
   } 
 
   break; 
  } 
 } 
} 
 
 
void pmPublish(MotorPublishManager *pm, unsigned char u) { 
 unsigned char i; 
    for(i = 0; i < pm->runningPublishers; i++) { 
        commonUARTSendData(u, pm->packets[pm->publishIndex[i]].stream, MOTOR_TX_MAIN_RX_PACKET_SIZE); 
    } 
} 
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J. Shared Libraries 

a. Common UART Header File 

/** 
 * @author Jason Klein (jason.e.klein@wpi.edu) 
 * 
 * Setup UART communication on the PIC32. When receiving, this implementation 
 * expects to receive a packet of a specific size on a regular basis. It is able 
 * to detect when a packet is not received and then perform some action on it. 
 * It uses struct RecvManager to ensure data is received in the specified time. 
 * A RecvManager is used for each UART connection. There should be equal numbers 
 * of UART connections used as RecvManagers used. 
 * 
 * @pre Requires a timer to be running. Start a timer with commonTimer.h 
 * 
 * @note  The timer can be used for other task and is not just dedicated 
 *    to run the UART RecvManager. It accounts for timer overflow. 
 */ 
 
#ifndef COMMONUART_H 
#define COMMONUART_H 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
 
 /************************/ 
 /*- Include Directives -*/ 
 /************************/ 
#include "commonConfig.h" 
#include "commonStructs.h" 
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 /*************************/ 
 /*- Function Prototypes -*/ 
 /*************************/ 
 /** 
  * Initializes a UART port 
  * 
  * @param uID    The UART ID of the port to initialize 
  * @param systemClock  The clock frequency of this microntroller 
  * @param desiredBaudRate The desirted baud rate for this port 
  */ 
 void commonUARTInit(UART_MODULE uID, unsigned long systemClock, unsigned long desiredBaudRate); 
 
 /** 
  * Sends a byte 
  * 
     * @param uID    The UART ID of the port to use 
     * @param c     The byte to send 
     */ 
 void commonUARTSendByte(UART_MODULE uID, const BYTE c); 
 
 /** 
  * Sends a byte array 
  * 
     * @param uID    The UART ID of the port to use 
     * @param data    The byte array to send 
     * @param size    The length of the byte array 
     */ 
 void commonUARTSendData(UART_MODULE uID, const BYTE *data, unsigned int size); 
 
 /** 
  * Sends a character of the corresponding byte 
  * 
     * @param uID    The UART ID of the port to use 
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     * @param c     The HEX value to send, must be 0-15 inclusive 
     */ 
 void commonUARTSendHexByte(UART_MODULE uID, const BYTE c); 
 
 /** 
  * Initializes a new struct RecvManager 
  * 
     * @param rm    The RecvManager to initialize 
     * @param bytesExpected  The number of bytes to expect in each packet 
     * @param timeout   The number of clock ticks in which a packet should be received 
     */ 
 void commonUARTNewRecvManager(RecvManager *rm, unsigned char bytesExpected, unsigned long timeout); 
 
 /** 
  * Clears the Receive Manger to await for another packet 
  *  
     * @param rm    The RecvManager to clear 
     */ 
 void commonUARTClearRecvManager(RecvManager *rm); 
 
 /** 
  * Checks to see if the entire packet has been received 
  * 
     * @param rm    The RecvManager to use 
     * @param timer    The timer incrementer 
     * @return     1 if transfer is complete, 0 otherwise 
  * 
  * @note     Must run in a loop 
     */ 
 BOOL commonUARTTransferComplete(RecvManager *rm, volatile unsigned long *timer); 
 
 /** 
  * Adds received bytes to an array 
  * 
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     * @param rm    The RecvManager to use 
     * @param timer    The timer incrementer 
     * @param dataByte   The data byte just received 
     * @param dataStream  The data array to add the byte to 
     */ 
 void commonUARTRecvData(RecvManager *rm, volatile unsigned long *timer, volatile unsigned char *dataByte, unsigned char 
*dataStream); 
 
#ifdef __cplusplus 
} 
#endif 
 
#endif /* COMMONUART_H */ 
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b. Common UART Source File 

 /** 
 * @author Jason Klein (jason.e.klein@wpi.edu) 
 * @param uID 
 * @param systemClock 
 * @param desiredBaudRate 
 */ 
 
#include "commonUART.h" 
 
void commonUARTInit(UART_MODULE uID, unsigned long systemClock, unsigned long desiredBaudRate) { 
    // Configure the device for maximum performance but do not change the PBDIV 
    // Given the options, this function will change the flash wait states, RAM 
    // wait state and enable prefetch cache but will not change the PBDIV. 
    // The PBDIV value is already set via the pragma FPBDIV option above.. 
//    SYSTEMConfig(systemClock, SYS_CFG_WAIT_STATES | SYS_CFG_PCACHE); 
 
    UARTConfigure(uID, UART_ENABLE_PINS_TX_RX_ONLY); 
    UARTSetFifoMode(uID, UART_INTERRUPT_ON_TX_NOT_FULL | UART_INTERRUPT_ON_RX_NOT_EMPTY); 
    UARTSetLineControl(uID, UART_DATA_SIZE_8_BITS | UART_PARITY_NONE | UART_STOP_BITS_1); 
    UARTSetDataRate(uID, systemClock, desiredBaudRate); 
    UARTEnable(uID, UART_ENABLE_FLAGS(UART_PERIPHERAL | UART_RX | UART_TX)); 
 
    // Configure UART_MODULE_ID RX Interrupt 
    INTEnable(INT_SOURCE_UART_RX(uID), INT_ENABLED); 
    INTSetVectorPriority(INT_VECTOR_UART(uID), INT_PRIORITY_LEVEL_2); 
    INTSetVectorSubPriority(INT_VECTOR_UART(uID), INT_SUB_PRIORITY_LEVEL_0); 
 
    // configure for multi-vectored mode 
    INTConfigureSystem(INT_SYSTEM_CONFIG_MULT_VECTOR); 
 
    // enable interrupts 
    INTEnableInterrupts(); 
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} 
 
void commonUARTSendByte(UART_MODULE uID, const BYTE c) { 
    while (!UARTTransmitterIsReady(uID)); 
 
    UARTSendDataByte(uID, c); 
 
    while (!UARTTransmissionHasCompleted(uID)); 
} 
 
void commonUARTSendData(UART_MODULE uID, const BYTE *data, unsigned int size) { 
    while(size) { 
        while (!UARTTransmitterIsReady(uID)); 
 
        UARTSendDataByte(uID, *data); 
 
        data++; 
        size--; 
    } 
    while (!UARTTransmissionHasCompleted(uID)); 
} 
 
void commonUARTSendHexByte(UART_MODULE uID, const BYTE c) { 
 switch(c) { 
  case 58: 
   commonUARTSendByte(uID, 'A'); 
   break; 
  case 59: 
   commonUARTSendByte(uID, 'B'); 
   break; 
  case 60: 
   commonUARTSendByte(uID, 'C'); 
   break; 
  case 61: 
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   commonUARTSendByte(uID, 'D'); 
   break; 
  case 62: 
   commonUARTSendByte(uID, 'E'); 
   break; 
  case 63: 
   commonUARTSendByte(uID, 'F'); 
   break; 
  default: 
   commonUARTSendByte(uID, c); 
   break; 
 } 
} 
 
void commonUARTNewRecvManager(RecvManager *rm, unsigned char bytesExpected, unsigned long timeout) { 
    rm->firstByteTime = 0; 
    rm->timout = timeout; 
    rm->timeoutTime = 0; 
    rm->overflow = FALSE; 
    rm->bytesExpected = bytesExpected; 
    rm->bytesReceived = 0; 
    rm->transferComplete = FALSE; 
} 
 
void commonUARTClearRecvManager(RecvManager *rm) { 
 rm->firstByteTime = 0; 
 rm->timeoutTime = 0; 
 rm->overflow = FALSE; 
 rm->bytesReceived = 0; 
 rm->transferComplete = FALSE; 
} 
 
BOOL commonUARTTransferComplete(RecvManager *rm, volatile unsigned long *timer) { 
    if(rm->transferComplete) { 
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//        commonUARTClearRecvManager(rm); 
  rm->transferComplete = FALSE; 
        return TRUE; 
    } 
 
    if(rm->bytesReceived) { 
        // did the timeout overflow? 
        if(rm->overflow) { 
            // did timer overflow and has is timer still below the timeout 
            if(!(*timer < rm->firstByteTime && *timer < rm->timeoutTime)) { // timeout limit has been exceeded 
                // took too long to receive data 
                rm->bytesReceived = 0; 
//                _RD1 = 0x1; 
            } 
        } else { 
            if(!(*timer < rm->timeoutTime)) { // timeout limit has been exceeded 
                // took too long to receive data 
                rm->bytesReceived = 0; 
//                _RD1 = 0x1; // turn LED on 
            } 
        } 
    } 
 
    return FALSE; 
} 
 
void commonUARTRecvData(RecvManager *rm, volatile unsigned long *timer, volatile unsigned char *dataByte, unsigned char *dataStream) { 
    // is this the first byte received? 
    if(!rm->bytesReceived) { //rm->bytesReceived == 0 
//        PORTDbits.w &= ~(0x1 | 0x2); // turn both LEDs off 
        rm->firstByteTime = *timer; // mark down time received 
        rm->timeoutTime = *timer + rm->timout; // mark down time stream should be received by 
 
//                rm->bytes[rm->bytesReceived] = UARTGetDataByte(UART_MODULE_ID); // get received byte 
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        dataStream[rm->bytesReceived] = *dataByte; // get received byte 
        rm->bytesReceived++; // increment received byte counter 
 
//  if(rm->bytesExpected == 1 && rm->bytesReceived == rm->bytesExpected) { 
//   rm->transferComplete = TRUE; 
//  } 
 
        // will the timeout time overflow because time received is near max variable value? 
        if(rm->timeoutTime > *timer) { 
            rm->overflow = FALSE; 
        } else { 
            rm->overflow = TRUE; 
        } 
    } else { // not the first byte received 
        // did the timeout overflow? 
        if(rm->overflow) { 
            // did timer overflow and has is timer still below the timeout 
            if(*timer < rm->firstByteTime && *timer < rm->timeoutTime) { 
                dataStream[rm->bytesReceived] = *dataByte; // get received byte 
                rm->bytesReceived++; 
            } else { // timeout limit has been exceeded 
                // took too long to receive data 
                rm->bytesReceived = 0; 
//                _RD1 = 0x1; 
            } 
        } else { 
            if(*timer < rm->timeoutTime) { 
                dataStream[rm->bytesReceived] = *dataByte; // get received byte 
                rm->bytesReceived++; 
            } else { // timeout limit has been exceeded 
                // took too long to receive data 
                rm->bytesReceived = 0; 
//                _RD1 = 0x1; 
            } 
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        } 
    } 
 
 if(rm->bytesReceived == rm->bytesExpected) { 
  // assign rm->bytes[] --> _Tx_RxPacket 
  // reset values of rBuf 
//            _RD0 = 0x1; 
  rm->transferComplete = TRUE; 
  rm->bytesReceived = 0; 
 } 
} 
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c. Common Timer Header File 

/** 
 * @author Jason Klein (jason.e.klein@wpi.edu) 
 * 
 * Timer functions designed to be simple to use on the PIC32. This code 
 * is used to execute a section of code at a desired frequency. 
 * 
 * @example 
 *    volatile unsigned long myIncrementer; // must be global 
 * 
 *    void main() { 
 *     ExecTimer myExecTimer; 
 *     commonTimerNewExecTimer(&myExecTimer, &myIncrementer, 1001); 
 * 
 *     commonTimerInit(2, &myIncrementer, 312, T2_PS_1_256); 
 * 
 *     while(1) { 
 *      if(commonTimerExecEvery(&myExecTimer, &myIncrementer)) { 
 *       // do something here aboue every 1 second 
 *      } 
 *     } 
 *    } 
 * 
 *    void __ISR(_TIMER_2_VECTOR, ipl2) Timer2Handler(void) { 
 *     INTClearFlag(INT_T2); // clear the interrupt flag 
 *     myIncrementer++; 
 *    } 
 * 
 * @TODO  Add improvement to account for overflow of the timer variable 
 */ 
 
#ifndef COMMONTIMER_H 
#define COMMONTIMER_H 
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#ifdef __cplusplus 
extern "C" { 
#endif 
  
/************************/ 
/*- Include Directives -*/ 
/************************/ 
#include "commonConfig.h" 
#include "commonStructs.h" 
 
 
 
/***********************/ 
/*- Macro Definitions -*/ 
/***********************/ 
#define BOOLEAN unsigned char 
#define TRUE 1 
#define FALSE 0 
 
 
 
/*************************/ 
/*- Function Prototypes -*/ 
/*************************/ 
 /** 
  * Initializes a new timer 
  * 
  * @param timer  The desired timer to use 
  * @param cmnTmr The global variable inside the ISR that is to be 
  *     incremented when the ISR fires 
  * @param period The period for this timer 
  * @param prescaler The prescaler for this timer 
  * 
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  * @example 
  *     volatile unsigned long myIncrementer; // must be global 
  *     commonTimerInit(1, &myIncrementer, 312, T2_PS_1_256); 
  *     // this example fires at about 1KHz 
  * 
  * @note   Calculation to determine the frequency: 
  *     frequency=(clock frequency)/(prescaler * period) 
  *     frequency=(80,000,000)/(256 * 312) 
  *     frequency = ~1001.6Hz 
         * 
         * @TODO                This function can be improved by converting it 
         *                      to a macro expansion 
  */ 
 void commonTimerInit(unsigned char timer, volatile unsigned long *cmnTmr, unsigned short int period, unsigned short int prescaler); 
 
 /** 
  * Creates a new ExecTimer, the struct ExecTimer is used in conjunction 
  * with commonTimerExecEvery() to execute a section of code a a specific frequency 
  *  
     * @param et  The ExecTimer to initialize 
     * @param cmnTmr The global variable inside the ISR that is to be 
  *     incremented when the ISR fires 
     * @param every  The number of increments to pass before 
  *     commonTimerExecEvery() returns true. 
  * 
  * @example   ExecTimer myExecTimer; 
  *     commonTimerNewExecTimer(&myExecTimer, &myIncrementer, 1001); 
  *     // this will initialize a struct and will execute every 
  *     // 1001 ticks or about 1Hz when building off the example 
  *     // in commonTimerInit() 
     */ 
 void commonTimerNewExecTimer(ExecTimer *et, volatile unsigned long *cmnTmr, unsigned long every); 
 
 /** 
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  * This is used to execute a section of code at a specific frequency. 
  * Used in conjuction with commonTimerInit() and commonTimerNewExecTimer() 
  * 
     * @param et  The ExecTimer to use that was initialized by 
  *     commonTimerNewExecTimer() 
     * @param cmnTmr The global variable inside the ISR that is to be 
  *     incremented when the ISR fires 
     * @return   1 if *cmnTmr exceeds et->timerSave 
  *     0 if not 
  * 
  * @example   if(commonTimerExecEvery(&myExecTimer, &myIncrementer)) { 
  *      // execute code here every ~1 second 
  *     } 
  * 
  * @note   must run in a loop 
     */ 
 BOOLEAN commonTimerExecEvery(ExecTimer *et, volatile unsigned long *cmnTmr); 
  
 /** 
  * Delays code execution for the given number of clock ticks 
     * @param cmnTmr The global variable inside the ISR that is to be 
  *     incremented when the ISR fires 
     * @param t   The number of increments to pass before code exection 
  *     continutes past this point 
     */ 
 void commonTimerDelay(volatile unsigned long *cmnTmr, unsigned long t); 
  
 
#ifdef __cplusplus 
} 
#endif 
 
#endif /* COMMONTIMER_H */ 
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d. Common Timer Source File 

#include "commonTimer.h" 
 
 
void commonTimerInit(unsigned char timer, volatile unsigned long *cmnTmr, unsigned short int period, unsigned short int prescaler) { 
    *cmnTmr = 1; 
 
 switch(timer) { 
  case 1: 
   // Configure Timer using PBCLK as input, prescaler 
   // Period matches the Timer frequency, so the interrupt handler will trigger 
   OpenTimer1(T1_ON | T1_SOURCE_INT | prescaler, period); 
 
   // Set up the timer interrupt with a priority of 2 
   INTEnable(INT_T1, INT_ENABLED); 
   INTSetVectorPriority(INT_TIMER_1_VECTOR, INT_PRIORITY_LEVEL_2); 
   INTSetVectorSubPriority(INT_TIMER_1_VECTOR, INT_SUB_PRIORITY_LEVEL_0); 
 
   // Enable multi-vector interrupts 
   INTConfigureSystem(INT_SYSTEM_CONFIG_MULT_VECTOR); 
   INTEnableInterrupts(); 
   break; 
  case 2: 
   // Configure Timer using PBCLK as input, prescaler 
   // Period matches the Timer frequency, so the interrupt handler will trigger 
   OpenTimer2(T2_ON | T2_SOURCE_INT | prescaler, period); 
 
   // Set up the timer interrupt with a priority of 2 
   INTEnable(INT_T2, INT_ENABLED); 
   INTSetVectorPriority(INT_TIMER_2_VECTOR, INT_PRIORITY_LEVEL_2); 
   INTSetVectorSubPriority(INT_TIMER_2_VECTOR, INT_SUB_PRIORITY_LEVEL_0); 
 
   // Enable multi-vector interrupts 
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   INTConfigureSystem(INT_SYSTEM_CONFIG_MULT_VECTOR); 
   INTEnableInterrupts(); 
   break; 
  case 3: 
   // Configure Timer using PBCLK as input, prescaler 
   // Period matches the Timer frequency, so the interrupt handler will trigger 
   OpenTimer3(T3_ON | T3_SOURCE_INT | prescaler, period); 
 
   // Set up the timer interrupt with a priority of 2 
   INTEnable(INT_T3, INT_ENABLED); 
   INTSetVectorPriority(INT_TIMER_3_VECTOR, INT_PRIORITY_LEVEL_2); 
   INTSetVectorSubPriority(INT_TIMER_3_VECTOR, INT_SUB_PRIORITY_LEVEL_0); 
 
   // Enable multi-vector interrupts 
   INTConfigureSystem(INT_SYSTEM_CONFIG_MULT_VECTOR); 
   INTEnableInterrupts(); 
   break; 
  case 4: 
   // Configure Timer using PBCLK as input, prescaler 
   // Period matches the Timer frequency, so the interrupt handler will trigger 
   OpenTimer4(T4_ON | T4_SOURCE_INT | prescaler, period); 
 
   // Set up the timer interrupt with a priority of 2 
   INTEnable(INT_T4, INT_ENABLED); 
   INTSetVectorPriority(INT_TIMER_4_VECTOR, INT_PRIORITY_LEVEL_2); 
   INTSetVectorSubPriority(INT_TIMER_4_VECTOR, INT_SUB_PRIORITY_LEVEL_0); 
 
   // Enable multi-vector interrupts 
   INTConfigureSystem(INT_SYSTEM_CONFIG_MULT_VECTOR); 
   INTEnableInterrupts(); 
   break; 
  case 5: 
   // Configure Timer using PBCLK as input, prescaler 
   // Period matches the Timer frequency, so the interrupt handler will trigger 
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   OpenTimer5(T5_ON | T5_SOURCE_INT | prescaler, period); 
 
   // Set up the timer interrupt with a priority of 2 
   INTEnable(INT_T5, INT_ENABLED); 
   INTSetVectorPriority(INT_TIMER_5_VECTOR, INT_PRIORITY_LEVEL_2); 
   INTSetVectorSubPriority(INT_TIMER_5_VECTOR, INT_SUB_PRIORITY_LEVEL_0); 
 
   // Enable multi-vector interrupts 
   INTConfigureSystem(INT_SYSTEM_CONFIG_MULT_VECTOR); 
   INTEnableInterrupts(); 
   break; 
 } 
} 
 
void commonTimerNewExecTimer(ExecTimer *et, volatile unsigned long *cmnTmr, unsigned long every) { 
    et->every = every; 
    et->timerSave = *cmnTmr + every; 
} 
 
BOOLEAN commonTimerExecEvery(ExecTimer *et, volatile unsigned long *cmnTmr) { 
    if(*cmnTmr == et->timerSave) { 
        et->timerSave = *cmnTmr + et->every; 
        return TRUE; 
    } 
    return FALSE; 
} 
 
void commonTimerDelay(volatile unsigned long *cmnTmr, unsigned long t) { 
 ExecTimer et; 
 commonTimerNewExecTimer(&et, cmnTmr, t); 
 
 while(1) { 
  if(commonTimerExecEvery(&et, cmnTmr)) { 
   break; 
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  } 
 } 
} 
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e. Common ADC Header File 

#ifndef COMMONADC_H 
#define COMMONADC_H 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
 
#include "commonConfig.h" 
#include "commonStructs.h" 
 
/***********************/ 
/*- Macro Definitions -*/ 
/***********************/ 
/////////////////// DO NOT MODIFY 
#define BOOLEAN         unsigned char 
#define TRUE            1 
#define FALSE           0 
 
/////////////////// AS NEEDED, MODIFY ONLY THESE #define SETTINGS BELOW 
#define ADC_SENSOR_SPI  (SPI_CHANNEL1) 
 
#define ADC_FLEX_CS_TRIS (_TRISA4) 
#define ADC_FLEX_CS_PIN  (_RA4) 
 
#define ADC_PRES_CS_TRIS (_TRISA5) 
#define ADC_PRES_CS_PIN  (_RA5) 
 
#define ADC_MOTOR_SPI  (SPI_CHANNEL1) 
 
#define ADC_SE_CS_TRIS  (_TRISD12) 
#define ADC_SE_CS_PIN  (_RD12) 
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#define ADC_CURR_CS_TRIS (_TRISC1) 
#define ADC_CURR_CS_PIN  (_RC1) 
 
 
 void commonADCSetupSensorBoard(unsigned char flexChannelEnd, unsigned char presChannelEnd); 
 
 void commonADCReadAllFlex(unsigned char channelEnd, unsigned  short int readData[8]); 
 unsigned short int commonADCReadFlex(unsigned char channelEnd); 
 
 void commonADCReadAllPres(unsigned char channelEnd, unsigned  short int readData[8]); 
 unsigned short int commonADCReadPres(unsigned char channelEnd); 
 
 
 
 void commonADCSetupMotorBoard(unsigned char seChannelEnd, unsigned char currChannelEnd); 
 
 void commonADCReadAllSe(unsigned char channelEnd, unsigned  short int readData[8]); 
 unsigned short int commonADCReadSe(unsigned char channelEnd); 
 
 void commonADCReadAllCurr(unsigned char channelEnd, unsigned  short int readData[8]); 
 unsigned short int commonADCReadCurr(unsigned char channelEnd); 
 
#ifdef __cplusplus 
} 
#endif 
 
#endif /* COMMONADC_H */  
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f. Common ADC Source File 

#include "commonADC.h" 
 
 
/***************************************/ 
/** BEGIN - Common ADC - Sensor Board **/ 
/***************************************/ 
void commonADCSetupSensorBoard(unsigned char flexChannelEnd, unsigned char presChannelEnd) { 
 BYTE recvByte1 = 0; 
 BYTE recvByte2 = 0; 
 
// setPin(ADC_FLEX_CS_TRIS, OUTPUT); 
// setPin(ADC_PRES_CS_TRIS, OUTPUT); 
 
 DDPCONbits.TROEN = 0; 
 DDPCONbits.JTAGEN = 0; 
 
 TRISACLR |= (BIT_4 | BIT_5); 
 
// setPin(ADC_FLEX_CS_PIN, HIGH); 
// setPin(ADC_PRES_CS_PIN, HIGH); 
 
 PORTASET |= (BIT_4 | BIT_5); 
 
 SpiOpenFlags oFlags = SPI_OPEN_MODE8 | SPI_OPEN_MSTEN; 
 SpiChnOpen(ADC_SENSOR_SPI, oFlags, 256); 
 
 
 // setup flex adc 
 BYTE setupByte1f = 0b11000011; 
 setupByte1f |= (flexChannelEnd << 2); 
 BYTE setupByte2f = 0b10010000; 
 



320 
 

 unsigned short int valf = commonADCReadFlex(flexChannelEnd); 
 
 setPin(ADC_FLEX_CS_PIN, LOW); 
 
 SpiChnPutC(ADC_SENSOR_SPI, setupByte1f); 
 recvByte1 = SpiChnGetC(ADC_SENSOR_SPI); 
 
 SpiChnPutC(ADC_SENSOR_SPI, setupByte2f); 
 recvByte2 = SpiChnGetC(ADC_SENSOR_SPI); 
 
 while(!SpiChnTxBuffEmpty(ADC_SENSOR_SPI)); 
 
 setPin(ADC_FLEX_CS_PIN, HIGH); 
 
 // setup pres adc 
 BYTE setupByte1p = 0b11000011; 
 setupByte1p |= (presChannelEnd << 2); 
 BYTE setupByte2p = 0b10010000; 
 
 unsigned short int valp = commonADCReadPres(presChannelEnd); 
 
 setPin(ADC_PRES_CS_PIN, LOW); 
 
 SpiChnPutC(ADC_SENSOR_SPI, setupByte1p); 
 recvByte1 = SpiChnGetC(ADC_SENSOR_SPI); 
 
 SpiChnPutC(ADC_SENSOR_SPI, setupByte2p); 
 recvByte2 = SpiChnGetC(ADC_SENSOR_SPI); 
 
 while(!SpiChnTxBuffEmpty(ADC_SENSOR_SPI)); 
 
 setPin(ADC_PRES_CS_PIN, HIGH); 
} 
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unsigned short int commonADCReadFlex(unsigned char channelEnd) { 
 BYTE sendByte1 = 0b01000011; 
 sendByte1 |= (channelEnd << 2); 
 BYTE sendByte2 = 0b10010000; 
 BYTE recvByte1 = 0; 
 BYTE recvByte2 = 0; 
 unsigned short int recvVal = 0; 
 
 setPin(ADC_FLEX_CS_PIN, LOW); 
 
 SpiChnPutC(ADC_SENSOR_SPI, sendByte1); 
 recvByte1 = SpiChnGetC(ADC_SENSOR_SPI); 
 
 SpiChnPutC(ADC_SENSOR_SPI, sendByte2); 
 recvByte2 = SpiChnGetC(ADC_SENSOR_SPI); 
 
 while(!SpiChnTxBuffEmpty(ADC_SENSOR_SPI)); 
 
 recvVal = recvByte1; 
 recvVal = recvVal << 8; 
 recvVal |= recvByte2; 
 
 setPin(ADC_FLEX_CS_PIN, HIGH); 
 
 return recvVal; 
} 
 
void commonADCReadAllFlex(unsigned char channelEnd, unsigned short int readData[8]) { 
 unsigned char i; 
 for(i = 0; i <= channelEnd; i++) { 
  unsigned short int data = commonADCReadFlex(channelEnd); 
  unsigned char id = (unsigned char)(data >> 12); 
  readData[id] = data & ~(0b1111000000000000); 
 } 
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} 
 
unsigned short int commonADCReadPres(unsigned char channelEnd) { 
 BYTE sendByte1 = 0b01000011; 
 sendByte1 |= (channelEnd << 2); 
 BYTE sendByte2 = 0b10010000; 
 BYTE recvByte1 = 0; 
 BYTE recvByte2 = 0; 
 unsigned short int recvVal = 0; 
 
 setPin(ADC_PRES_CS_PIN, LOW); 
 
 SpiChnPutC(ADC_SENSOR_SPI, sendByte1); 
 recvByte1 = SpiChnGetC(ADC_SENSOR_SPI); 
 
 SpiChnPutC(ADC_SENSOR_SPI, sendByte2); 
 recvByte2 = SpiChnGetC(ADC_SENSOR_SPI); 
 
 while(!SpiChnTxBuffEmpty(ADC_SENSOR_SPI)); 
 
 recvVal = recvByte1; 
 recvVal = recvVal << 8; 
 recvVal |= recvByte2; 
 
 setPin(ADC_PRES_CS_PIN, HIGH); 
 
 return recvVal; 
} 
 
void commonADCReadAllPres(unsigned char channelEnd, unsigned short int readData[8]) { 
 unsigned char i; 
 for(i = 0; i <= channelEnd; i++) { 
  unsigned short int data = commonADCReadPres(channelEnd); 
  unsigned char id = (unsigned char)(data >> 12); 
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  readData[id] = data & ~(0b1111000000000000); 
 } 
} 
/*************************************/ 
/** END - Common ADC - Sensor Board **/ 
/*************************************/ 
 
 
 
/**************************************/ 
/** BEGIN - Common ADC - Motor Board **/ 
/**************************************/ 
void commonADCSetupMotorBoard(unsigned char seChannelEnd, unsigned char currChannelEnd) { 
 BYTE recvByte1 = 0; 
 BYTE recvByte2 = 0; 
 
 setPin(ADC_SE_CS_TRIS, OUTPUT); 
 setPin(ADC_CURR_CS_TRIS, OUTPUT); 
 
 setPin(ADC_SE_CS_PIN, HIGH); 
 setPin(ADC_CURR_CS_PIN, HIGH); 
 
 SpiOpenFlags oFlags = SPI_OPEN_MODE8 | SPI_OPEN_MSTEN; 
 SpiChnOpen(ADC_MOTOR_SPI, oFlags, 256); 
 
 
 // setup flex adc 
 BYTE setupByte1s = 0b11000011; 
 setupByte1s |= (seChannelEnd << 2); 
 BYTE setupByte2s = 0b10010000; 
 
 unsigned short int valf = commonADCReadSe(seChannelEnd); 
 
 setPin(ADC_SE_CS_PIN, LOW); 
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 SpiChnPutC(ADC_MOTOR_SPI, setupByte1s); 
 recvByte1 = SpiChnGetC(ADC_MOTOR_SPI); 
 
 SpiChnPutC(ADC_MOTOR_SPI, setupByte2s); 
 recvByte2 = SpiChnGetC(ADC_MOTOR_SPI); 
 
 while(!SpiChnTxBuffEmpty(ADC_MOTOR_SPI)); 
 
 setPin(ADC_SE_CS_PIN, HIGH); 
 
 // setup pres adc 
 BYTE setupByte1c = 0b11000011; 
 setupByte1c |= (currChannelEnd << 2); 
 BYTE setupByte2c = 0b10010000; 
 
 unsigned short int valp = commonADCReadCurr(currChannelEnd); 
 
 setPin(ADC_CURR_CS_PIN, LOW); 
 
 SpiChnPutC(ADC_MOTOR_SPI, setupByte1c); 
 recvByte1 = SpiChnGetC(ADC_MOTOR_SPI); 
 
 SpiChnPutC(ADC_MOTOR_SPI, setupByte2c); 
 recvByte2 = SpiChnGetC(ADC_MOTOR_SPI); 
 
 while(!SpiChnTxBuffEmpty(ADC_MOTOR_SPI)); 
 
 setPin(ADC_CURR_CS_PIN, HIGH); 
} 
 
unsigned short int commonADCReadSe(unsigned char channelEnd) { 
 BYTE sendByte1 = 0b01000011; 
 sendByte1 |= (channelEnd << 2); 
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 BYTE sendByte2 = 0b10010000; 
 BYTE recvByte1 = 0; 
 BYTE recvByte2 = 0; 
 unsigned short int recvVal = 0; 
 
 setPin(ADC_SE_CS_PIN, LOW); 
 
 SpiChnPutC(ADC_MOTOR_SPI, sendByte1); 
 recvByte1 = SpiChnGetC(ADC_MOTOR_SPI); 
 
 SpiChnPutC(ADC_MOTOR_SPI, sendByte2); 
 recvByte2 = SpiChnGetC(ADC_MOTOR_SPI); 
 
 while(!SpiChnTxBuffEmpty(ADC_MOTOR_SPI)); 
 
 recvVal = recvByte1; 
 recvVal = recvVal << 8; 
 recvVal |= recvByte2; 
 
 setPin(ADC_SE_CS_PIN, HIGH); 
 
 return recvVal; 
} 
 
void commonADCReadAllSe(unsigned char channelEnd, unsigned short int readData[8]) { 
 unsigned char i; 
 for(i = 0; i <= channelEnd; i++) { 
  readData[i] = commonADCReadSe(channelEnd); 
 } 
} 
 
unsigned short int commonADCReadCurr(unsigned char channelEnd) { 
 BYTE sendByte1 = 0b01000011; 
 sendByte1 |= (channelEnd << 2); 
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 BYTE sendByte2 = 0b10010000; 
 BYTE recvByte1 = 0; 
 BYTE recvByte2 = 0; 
 unsigned short int recvVal = 0; 
 
 setPin(ADC_CURR_CS_PIN, LOW); 
 
 SpiChnPutC(ADC_MOTOR_SPI, sendByte1); 
 recvByte1 = SpiChnGetC(ADC_MOTOR_SPI); 
 
 SpiChnPutC(ADC_MOTOR_SPI, sendByte2); 
 recvByte2 = SpiChnGetC(ADC_MOTOR_SPI); 
 
 while(!SpiChnTxBuffEmpty(ADC_MOTOR_SPI)); 
 
 recvVal = recvByte1; 
 recvVal = recvVal << 8; 
 recvVal |= recvByte2; 
 
 setPin(ADC_CURR_CS_PIN, HIGH); 
 
 return recvVal; 
} 
 
void commonADCReadAllCurr(unsigned char channelEnd, unsigned short int readData[8]) { 
 unsigned char i; 
 for(i = 0; i <= channelEnd; i++) { 
  readData[i] = commonADCReadCurr(channelEnd); 
 } 
} 
/************************************/ 
/** END - Common ADC - Motor Board **/ 
/************************************/ 
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g. Common Configuration Header File 

#ifndef COMMONCONFIG_H 
#define COMMONCONFIG_H 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
 
#include <plib.h> 
 
 
// Configuration Bit settings 
// SYSCLK = 80 MHz (8MHz Crystal / FPLLIDIV * FPLLMUL / FPLLODIV) 
// PBCLK = 80 MHz (SYSCLK / FPBDIV) 
// Primary Osc w/PLL (XT+,HS+,EC+PLL) 
// WDT OFF 
// Other options are don't care 
 
/*******************************************************************/ 
/*  BEGIN - comment out when not building from project commonLibs  */ 
/*******************************************************************/ 
//#pragma config FPLLMUL  = MUL_20        // PLL Multiplier 
//#pragma config UPLLIDIV = DIV_2         // USB PLL Input Divider 
//#pragma config FPLLIDIV = DIV_2         // PLL Input Divider 
//#pragma config FPLLODIV = DIV_1         // PLL Output Divider 
//#pragma config FPBDIV   = DIV_1         // Peripheral Clock divisor 
//#pragma config FWDTEN   = OFF           // Watchdog Timer 
//#pragma config WDTPS    = PS1           // Watchdog Timer Postscale 
//#pragma config FCKSM    = CSDCMD        // Clock Switching & Fail Safe Clock Monitor 
//#pragma config OSCIOFNC = OFF           // CLKO Enable 
//#pragma config POSCMOD  = HS            // Primary Oscillator 
//#pragma config IESO     = ON            // Internal/External Switch-over 
//#pragma config FSOSCEN  = ON            // Secondary Oscillator Enable (KLO was off) 
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//#pragma config FNOSC    = PRIPLL        // Oscillator Selection 
//#pragma config CP       = OFF           // Code Protect 
//#pragma config BWP      = OFF           // Boot Flash Write Protect 
//#pragma config PWP      = OFF           // Program Flash Write Protect 
//#pragma config ICESEL   = ICS_PGx2      // ICE/ICD Comm Channel Select 
//#pragma config DEBUG    = OFF            // Background Debugger Enable 
/*******************************************************************/ 
/*  END - comment out when not building from project commonLibs    */ 
/*******************************************************************/ 
 
//#define GetPeripheralClock()  (SYS_FREQ/(1 << OSCCONbits.PBDIV)) 
//#define GetInstructionClock()  (SYS_FREQ) 
 
#define SYS_FREQ (80000000L) 
 
     
#define THUMB_ID 0 
#define INDEX_ID 1 
#define MIDDLE_ID 2 
#define RING_ID  3 
#define LITTLE_ID 4 
#define WRIST_ID 5 
#define ELBOW_ID 6 
 
#define BOOLEAN unsigned char 
#define TRUE 1 
#define FALSE 0 
 
#define OUTPUT  0 
#define INPUT  1 
 
#define HIGH  1 
#define LOW   0 
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#define SENSOR_GROUPS 6 
#define MOTOR_GROUPS 7 
 
#define pulsePin(pin)   pin=HIGH;pin=LOW; 
#define setPin(pin, value)  pin=value; 
 
//#define MAIN_SENSOR_UART  UART2 
//#define MAIN_SENSOR_UART_VECTOR  _UART_2_VECTOR 
 
#ifdef __cplusplus 
} 
#endif 
 
#endif /* COMMONCONFIG_H */ 
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h. Common Configuration Source File 

#ifndef COMMONLIB_H 
#define COMMONLIB_H 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
 
 
#include "commonConfig.h" 
 
 
 
#ifdef __cplusplus 
} 
#endif 
 
#endif /* COMMONLIB_H */ 
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i. Common Structures Header File 

/** @file commonStructs.h 
    @brief      Common Structures 
    @details    Structures used by more than one microcontroller 
    @author     Jason Klein - jason.e.klein@wpi.edu 
    @date       2013-2014 
 */ 
 
#ifndef COMMONSTRUCTS_H 
#define COMMONSTRUCTS_H 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
 
#include "commonLib.h" 
 
    // used by commonTimer 
    typedef struct _ExecTimer { 
        unsigned long timerSave; 
        unsigned long every; 
    } ExecTimer; 
 
    // used by commonUART 
    typedef struct _RecvManager { 
        unsigned long firstByteTime; 
        unsigned long timout; 
        unsigned long timeoutTime; 
        BOOL overflow; 
        unsigned char bytesExpected; 
        unsigned char bytesReceived; 
        BOOL transferComplete; 
    } RecvManager; 
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#define CMP_OPT_STR_SUB 0 
#define CMP_OPT_STP_SUB 1 
#define CMP_OPT_STR_CMD 2 
#define CMP_OPT_STP_CMD 3 
 
#define CMP_CT_POS_ENC 0 
#define CMP_CT_POS_FLX 1 
 
#define COMPUTER_TX_MAIN_RX_PACKET_SIZE 4 
 
 typedef struct __attribute__((__packed__)) _ComputerTxMainRxHeader { 
  unsigned _id:4; 
  unsigned _opt:2; // subscribe, unsubscribe, command, uncommand 
  unsigned _ctrlType:4; 
  unsigned _col:2; 
 } ComputerTxMainRxHeader; 
 
 typedef union _ComputerTxMainRxPacket { 
  unsigned char stream[COMPUTER_TX_MAIN_RX_PACKET_SIZE]; 
 
  struct { 
   ComputerTxMainRxHeader header; 
   short int encoderPos; 
  } use; 
 } ComputerTxMainRxPacket; 
  
 
#define MAIN_TX_COMPUTER_RX_PACKET_SIZE 5 
 
 typedef struct __attribute__((__packed__)) _MainTxComputerRxHeader { 
  unsigned _id:4; 
  unsigned _aux:4; 
 } MainTxComputerRxHeader; 
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 typedef union _MainTxComputerRxPacket { 
  unsigned char stream[MAIN_TX_COMPUTER_RX_PACKET_SIZE]; 
 
  struct { 
   MainTxComputerRxHeader header; 
   unsigned short int flexADC; 
   unsigned short int presADC; 
  } use; 
 } MainTxComputerRxPacket; 
 
 
//#define MTR_OPT_START  0 
//#define MTR_OPT_STOP  1 
//#define MTR_OPT_SUBSCRIBE2 
//#define MTR_OPT_UNSUBSCRIBE 3 
 
#define MTR_OPT_START  4 
#define MTR_OPT_STOP  0 
#define MTR_OPT_PUB   1 
#define MTR_OPT_CTRL  2 
 
#define MTR_CTRL_FLEX_POS 0 
#define MTR_CTRL_ENC_POS 1 
 
 
#define MAIN_TX_MOTOR_RX_PACKET_SIZE 10 
 
/*************************************************/ 
/*- Main Board --> Motor Board: Header & Packet -*/ 
/*************************************************/ 
    typedef struct __attribute__((__packed__)) _MainTxMotorRxHeader { 
        unsigned _id : 4; // #define XXXXX_ID 
        unsigned _opt : 3; //(start/update)/stop/remove/subscribe?/unsubscribe? 
        unsigned _controlType : 4; 



334 
 

        unsigned _aux : 5; 
    } MainTxMotorRxHeader; 
 
    typedef union _MainTxMotorRxPacket { 
        unsigned char stream[MAIN_TX_MOTOR_RX_PACKET_SIZE]; 
 
        struct { 
            MainTxMotorRxHeader header; 
            short int encoderPos; 
            short int encoderVel; 
            unsigned short int currentAdc; 
            unsigned short int seriesElasticAdc; 
        } use; 
    } MainTxMotorRxPacket; 
 
  
  
#define MOTOR_TX_MAIN_RX_PACKET_SIZE 9 
 
/*************************************************/ 
/*- Motor Board --> Main Board: Header & Packet -*/ 
/*************************************************/ 
    typedef struct __attribute__((__packed__)) _MotorTxMainRxHeader { 
        unsigned _id : 4; ///< Subset number 
        unsigned _opt : 3; // error, update, 
        unsigned _aux : 1; 
    } MotorTxMainRxHeader; 
 
    typedef union _MotorTxMainRxPacket { 
        unsigned char stream[MOTOR_TX_MAIN_RX_PACKET_SIZE]; 
 
        struct { 
            MotorTxMainRxHeader header; 
            short int encoderPos; 
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            short int encoderVel; 
            unsigned short int currentAdc; 
            unsigned short int seriesElasticAdc; 
        } use; 
    } MotorTxMainRxPacket; 
 
 
  
#define SEN_OPT_START  0 
#define SEN_OPT_STOP  1 
#define SEN_OPT_SAMPLE_REQ 2 
#define SEN_OPT_UPDATE  3 
 
#define SEN_LED_OFF   0 
#define SEN_LED_RED   1 
#define SEN_LED_BLUE  2 
#define SEN_LED_GREEN  3 
 
#define MAIN_TX_SENSOR_RX_PACKET_SIZE 1 
  
/**************************************************/ 
/*- Main Board --> Sensor Board: Header & Packet -*/ 
/**************************************************/ 
    typedef struct __attribute__((__packed__)) _MainTxSensorRxHeader { 
        unsigned _id    : 4; // 0b00 = thumb, ... 
        unsigned _opt : 2; // 0b00 = start, 0b01 = stop, 0b10 = update all, 0b11 = update individual 
  unsigned _col : 2; // 0b00 = off, 0b01 = red, 0b10 = blue, 0b11 = green 
    } MainTxSensorRxHeader; 
 
    typedef union _MainTxSensorRxPacket { 
        unsigned char stream[MAIN_TX_SENSOR_RX_PACKET_SIZE]; 
 
        struct { 
            MainTxSensorRxHeader header; 
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        } use; 
    } MainTxSensorRxPacket; 
 
 
 
#define SENSOR_TX_MAIN_RX_PACKET_SIZE 5 
 
/**************************************************/ 
/*- Sensor Board --> Main Board: Header & Packet -*/ 
/**************************************************/ 
    typedef struct __attribute__((__packed__)) _SensorTxMainRxHeader { 
        unsigned _id    :4; 
        unsigned _aux   :4; 
    } SensorTxMainRxHeader; 
 
    typedef union __attribute__((__packed__)) _SensorTxMainRxPacket { 
        unsigned char stream[SENSOR_TX_MAIN_RX_PACKET_SIZE]; 
 
        struct __attribute__((__packed__)) { 
            SensorTxMainRxHeader header; 
            unsigned short int flexAdc; 
            unsigned short int presAdc; 
        } use; 
    } SensorTxMainRxPacket; 
 
#ifdef __cplusplus 
} 
#endif 
 
#endif /* COMMONSTRUCTS_H */ 
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K. User Interface Software 

a. Exoarm User Interface Java File 

package exoarmui; 
 
import com.neuronrobotics.sdk.common.BowlerMethod; 
import com.neuronrobotics.sdk.ui.ConnectionDialog; 
import pic32.Pic32USB; 
 
 
 
public class ExoarmUI extends javax.swing.JFrame { 
     
    static Pic32USB p; 
    Thread t; 
    /** Creates new form Antenna */ 
    public ExoarmUI() { 
 p = new Pic32USB(); 
 t = new Thread(p); 
 boolean device = ConnectionDialog.getBowlerDevice(p); 
 System.out.println(device); 
  
  
  
 if(device) { 
      
     initComponents(); 
      
     p.setJTextField(0, jTextField7); 
     p.setJTextField(1, jTextField10); 
     p.setJTextField(2, jTextField3); 
     p.setJTextField(3, jTextField4); 
     p.setJTextField(4, jTextField13); 



338 
 

     p.setJTextField(5, jTextField14); 
     p.setJTextField(6, jTextField5); 
     p.setJTextField(7, jTextField6); 
     p.setJTextField(8, jTextField11); 
     p.setJTextField(9, jTextField12); 
 }    
    } 
     
    /** This method is called from within the constructor to 
     * initialize the form. 
     * WARNING: Do NOT modify this code. The content of this method is 
     * always regenerated by the Form Editor. 
     */ 
    // <editor-fold defaultstate="collapsed" desc="Generated Code">//GEN-BEGIN:initComponents 
    private void initComponents() { 
 
        jPanel2 = new javax.swing.JPanel(); 
        jTextField3 = new javax.swing.JTextField(); 
        jTextField4 = new javax.swing.JTextField(); 
        jTextField5 = new javax.swing.JTextField(); 
        jTextField6 = new javax.swing.JTextField(); 
        jTextField7 = new javax.swing.JTextField(); 
        jLabel12 = new javax.swing.JLabel(); 
        jLabel13 = new javax.swing.JLabel(); 
        jLabel14 = new javax.swing.JLabel(); 
        jTextField10 = new javax.swing.JTextField(); 
        jLabel15 = new javax.swing.JLabel(); 
        jCheckBox3 = new javax.swing.JCheckBox(); 
        jCheckBox2 = new javax.swing.JCheckBox(); 
        jCheckBox4 = new javax.swing.JCheckBox(); 
        jCheckBox5 = new javax.swing.JCheckBox(); 
        jCheckBox6 = new javax.swing.JCheckBox(); 
        jTextField11 = new javax.swing.JTextField(); 
        jTextField12 = new javax.swing.JTextField(); 



339 
 

        jTextField13 = new javax.swing.JTextField(); 
        jTextField14 = new javax.swing.JTextField(); 
        jButton4 = new javax.swing.JButton(); 
 
        setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE); 
        setTitle("Exoarm"); 
 
        jPanel2.setBorder(javax.swing.BorderFactory.createTitledBorder("Flex & Pressure Sensors")); 
 
        jTextField5.addActionListener(new java.awt.event.ActionListener() { 
            public void actionPerformed(java.awt.event.ActionEvent evt) { 
                jTextField5ActionPerformed(evt); 
            } 
        }); 
 
        jTextField7.addActionListener(new java.awt.event.ActionListener() { 
            public void actionPerformed(java.awt.event.ActionEvent evt) { 
                jTextField7ActionPerformed(evt); 
            } 
        }); 
 
        jLabel12.setText("Fingers"); 
 
        jLabel13.setText("Flex"); 
 
        jLabel14.setText("Pressure"); 
 
        jCheckBox3.setText("Thumb:"); 
        jCheckBox3.addActionListener(new java.awt.event.ActionListener() { 
            public void actionPerformed(java.awt.event.ActionEvent evt) { 
                jCheckBox3ActionPerformed(evt); 
            } 
        }); 
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        jCheckBox2.setText("Index:"); 
        jCheckBox2.addActionListener(new java.awt.event.ActionListener() { 
            public void actionPerformed(java.awt.event.ActionEvent evt) { 
                jCheckBox2ActionPerformed(evt); 
            } 
        }); 
 
        jCheckBox4.setText("Middle:"); 
        jCheckBox4.addActionListener(new java.awt.event.ActionListener() { 
            public void actionPerformed(java.awt.event.ActionEvent evt) { 
                jCheckBox4ActionPerformed(evt); 
            } 
        }); 
 
        jCheckBox5.setText("Ring:"); 
        jCheckBox5.addActionListener(new java.awt.event.ActionListener() { 
            public void actionPerformed(java.awt.event.ActionEvent evt) { 
                jCheckBox5ActionPerformed(evt); 
            } 
        }); 
 
        jCheckBox6.setText("Little:"); 
        jCheckBox6.addActionListener(new java.awt.event.ActionListener() { 
            public void actionPerformed(java.awt.event.ActionEvent evt) { 
                jCheckBox6ActionPerformed(evt); 
            } 
        }); 
 
        jTextField11.addActionListener(new java.awt.event.ActionListener() { 
            public void actionPerformed(java.awt.event.ActionEvent evt) { 
                jTextField11ActionPerformed(evt); 
            } 
        }); 
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        org.jdesktop.layout.GroupLayout jPanel2Layout = new org.jdesktop.layout.GroupLayout(jPanel2); 
        jPanel2.setLayout(jPanel2Layout); 
        jPanel2Layout.setHorizontalGroup( 
            jPanel2Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING) 
            .add(jPanel2Layout.createSequentialGroup() 
                .add(56, 56, 56) 
                .add(jPanel2Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.TRAILING) 
                    .add(jLabel12) 
                    .add(jCheckBox3) 
                    .add(jCheckBox2) 
                    .add(jCheckBox4) 
                    .add(jCheckBox5) 
                    .add(jCheckBox6)) 
                .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED) 
                .add(jPanel2Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING) 
                    .add(jPanel2Layout.createSequentialGroup() 
                        .add(17, 17, 17) 
                        .add(jLabel13) 
                        .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)) 
                    .add(jPanel2Layout.createSequentialGroup() 
                        .add(jPanel2Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING) 
                            .add(org.jdesktop.layout.GroupLayout.TRAILING, jPanel2Layout.createSequentialGroup() 
                                .add(jPanel2Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING, false) 
                                    .add(jTextField3) 
                                    .add(jTextField7, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 86, Short.MAX_VALUE)) 
                                .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 
Short.MAX_VALUE) 
                                .add(jLabel15)) 
                            .add(jPanel2Layout.createSequentialGroup() 
                                .add(jPanel2Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING) 
                                    .add(jPanel2Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.TRAILING, false) 
                                        .add(org.jdesktop.layout.GroupLayout.LEADING, jTextField5, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 85, 
Short.MAX_VALUE) 
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                                        .add(org.jdesktop.layout.GroupLayout.LEADING, jTextField11, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 1, 
Short.MAX_VALUE)) 
                                    .add(jTextField13, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 85, 
org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)) 
                                .add(0, 22, Short.MAX_VALUE))) 
                        .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED))) 
                .add(jPanel2Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.TRAILING, false) 
                    .add(org.jdesktop.layout.GroupLayout.LEADING, jTextField6) 
                    .add(org.jdesktop.layout.GroupLayout.LEADING, jTextField4) 
                    .add(org.jdesktop.layout.GroupLayout.LEADING, jPanel2Layout.createSequentialGroup() 
                        .add(26, 26, 26) 
                        .add(jLabel14)) 
                    .add(org.jdesktop.layout.GroupLayout.LEADING, jTextField14) 
                    .add(jTextField12) 
                    .add(jTextField10, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 99, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)) 
                .addContainerGap(21, Short.MAX_VALUE)) 
        ); 
        jPanel2Layout.setVerticalGroup( 
            jPanel2Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING) 
            .add(jPanel2Layout.createSequentialGroup() 
                .addContainerGap() 
                .add(jPanel2Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE) 
                    .add(jLabel12) 
                    .add(jLabel13) 
                    .add(jLabel14)) 
                .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED) 
                .add(jPanel2Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING) 
                    .add(org.jdesktop.layout.GroupLayout.TRAILING, jTextField7, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, 28, 
org.jdesktop.layout.GroupLayout.PREFERRED_SIZE) 
                    .add(jPanel2Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE) 
                        .add(jTextField10, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 
org.jdesktop.layout.GroupLayout.PREFERRED_SIZE) 
                        .add(jLabel15) 
                        .add(jCheckBox3))) 



343 
 

                .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED) 
                .add(jPanel2Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE) 
                    .add(jTextField3, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 
org.jdesktop.layout.GroupLayout.PREFERRED_SIZE) 
                    .add(jTextField4, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 
org.jdesktop.layout.GroupLayout.PREFERRED_SIZE) 
                    .add(jCheckBox2)) 
                .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED, 9, Short.MAX_VALUE) 
                .add(jPanel2Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE) 
                    .add(jCheckBox4) 
                    .add(jTextField13, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 
org.jdesktop.layout.GroupLayout.PREFERRED_SIZE) 
                    .add(jTextField14, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 
org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)) 
                .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED) 
                .add(jPanel2Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE) 
                    .add(jTextField5, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 
org.jdesktop.layout.GroupLayout.PREFERRED_SIZE) 
                    .add(jTextField6, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 
org.jdesktop.layout.GroupLayout.PREFERRED_SIZE) 
                    .add(jCheckBox5)) 
                .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED) 
                .add(jPanel2Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.BASELINE) 
                    .add(jCheckBox6) 
                    .add(jTextField11, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 
org.jdesktop.layout.GroupLayout.PREFERRED_SIZE) 
                    .add(jTextField12, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 
org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)) 
                .addContainerGap(7, Short.MAX_VALUE)) 
        ); 
 
        jButton4.setText("Begin Sampling"); 
        jButton4.addActionListener(new java.awt.event.ActionListener() { 
            public void actionPerformed(java.awt.event.ActionEvent evt) { 
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                jButton4ActionPerformed(evt); 
            } 
        }); 
 
        org.jdesktop.layout.GroupLayout layout = new org.jdesktop.layout.GroupLayout(getContentPane()); 
        getContentPane().setLayout(layout); 
        layout.setHorizontalGroup( 
            layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING) 
            .add(layout.createSequentialGroup() 
                .addContainerGap() 
                .add(layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING) 
                    .add(jPanel2, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE) 
                    .add(org.jdesktop.layout.GroupLayout.TRAILING, layout.createSequentialGroup() 
                        .add(0, 0, Short.MAX_VALUE) 
                        .add(jButton4))) 
                .addContainerGap()) 
        ); 
        layout.setVerticalGroup( 
            layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING) 
            .add(layout.createSequentialGroup() 
                .addContainerGap() 
                .add(jPanel2, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, 
org.jdesktop.layout.GroupLayout.PREFERRED_SIZE) 
                .addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE) 
                .add(jButton4) 
                .addContainerGap()) 
        ); 
 
        pack(); 
    }// </editor-fold>//GEN-END:initComponents 
 
    private void jCheckBox6ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jCheckBox6ActionPerformed 
        // INDEX 
 if(jCheckBox6.isSelected()) { 
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     p.subscribe(4); 
 } else { 
     p.unsubscribe(4); 
 } 
    }//GEN-LAST:event_jCheckBox6ActionPerformed 
 
    private void jCheckBox4ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jCheckBox4ActionPerformed 
        // MIDDLE 
 if(jCheckBox4.isSelected()) { 
     p.subscribe(2); 
 } else { 
     p.unsubscribe(2); 
 } 
    }//GEN-LAST:event_jCheckBox4ActionPerformed 
 
    private void jCheckBox2ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jCheckBox2ActionPerformed 
 // INDEX 
 if(jCheckBox2.isSelected()) { 
     p.subscribe(1); 
 } else { 
     p.unsubscribe(1); 
 } 
    }//GEN-LAST:event_jCheckBox2ActionPerformed 
 
    private void jCheckBox3ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jCheckBox3ActionPerformed 
 // THUMB 
 if(jCheckBox3.isSelected()) { 
     p.subscribe(0); 
 } else { 
     p.unsubscribe(0); 
 } 
    }//GEN-LAST:event_jCheckBox3ActionPerformed 
 
    private void jTextField7ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jTextField7ActionPerformed 
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        // TODO add your handling code here: 
    }//GEN-LAST:event_jTextField7ActionPerformed 
 
    private void jTextField5ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jTextField5ActionPerformed 
         
    }//GEN-LAST:event_jTextField5ActionPerformed 
 
    private void jTextField11ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jTextField11ActionPerformed 
        // TODO add your handling code here: 
    }//GEN-LAST:event_jTextField11ActionPerformed 
 
    private void jCheckBox5ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jCheckBox5ActionPerformed 
        // RING 
 if(jCheckBox5.isSelected()) { 
     p.subscribe(3); 
 } else { 
     p.unsubscribe(3); 
 } 
    }//GEN-LAST:event_jCheckBox5ActionPerformed 
 
    private void jButton4ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-FIRST:event_jButton4ActionPerformed 
        // TODO add your handling code here: 
// int data[] = p.readSensorBoard(); 
// jTextField7.setText(data[1] + ""); 
  
  
 t.start(); 
    }//GEN-LAST:event_jButton4ActionPerformed 
     
    /** 
     * @param args the command line arguments 
     */ 
    public static void main(String args[]) { 
        /* Set the Nimbus look and feel */ 
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        //<editor-fold defaultstate="collapsed" desc=" Look and feel setting code (optional) "> 
        /* If Nimbus (introduced in Java SE 6) is not available, stay with the default look and feel. 
         * For details see http://download.oracle.com/javase/tutorial/uiswing/lookandfeel/plaf.html  
         */ 
        try { 
            javax.swing.UIManager.LookAndFeelInfo[] installedLookAndFeels=javax.swing.UIManager.getInstalledLookAndFeels(); 
            for (int idx=0; idx<installedLookAndFeels.length; idx++) 
                if ("Nimbus".equals(installedLookAndFeels[idx].getName())) { 
                    javax.swing.UIManager.setLookAndFeel(installedLookAndFeels[idx].getClassName()); 
                    break; 
                } 
        } catch (ClassNotFoundException ex) { 
            java.util.logging.Logger.getLogger(ExoarmUI.class.getName()).log(java.util.logging.Level.SEVERE, null, ex); 
        } catch (InstantiationException ex) { 
            java.util.logging.Logger.getLogger(ExoarmUI.class.getName()).log(java.util.logging.Level.SEVERE, null, ex); 
        } catch (IllegalAccessException ex) { 
            java.util.logging.Logger.getLogger(ExoarmUI.class.getName()).log(java.util.logging.Level.SEVERE, null, ex); 
        } catch (javax.swing.UnsupportedLookAndFeelException ex) { 
            java.util.logging.Logger.getLogger(ExoarmUI.class.getName()).log(java.util.logging.Level.SEVERE, null, ex); 
        } 
        //</editor-fold> 
  
// Pic32USB p = new Pic32USB(); 
// boolean device = ConnectionDialog.getBowlerDevice(p); 
// System.out.println(device); 
// if(device) { 
//     initComponents(); 
//     ExoarmUI e = new ExoarmUI(); 
//     e.setVisible(true); 
// } 
  
  
        /* Create and display the form */ 
        java.awt.EventQueue.invokeLater(new Runnable() { 
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            public void run() { 
                new ExoarmUI().setVisible(true); 
            } 
        }); 
    } 
     
    // Variables declaration - do not modify//GEN-BEGIN:variables 
    private javax.swing.JButton jButton4; 
    private javax.swing.JCheckBox jCheckBox2; 
    private javax.swing.JCheckBox jCheckBox3; 
    private javax.swing.JCheckBox jCheckBox4; 
    private javax.swing.JCheckBox jCheckBox5; 
    private javax.swing.JCheckBox jCheckBox6; 
    private javax.swing.JLabel jLabel12; 
    private javax.swing.JLabel jLabel13; 
    private javax.swing.JLabel jLabel14; 
    private javax.swing.JLabel jLabel15; 
    private javax.swing.JPanel jPanel2; 
    private javax.swing.JTextField jTextField10; 
    private javax.swing.JTextField jTextField11; 
    private javax.swing.JTextField jTextField12; 
    private javax.swing.JTextField jTextField13; 
    private javax.swing.JTextField jTextField14; 
    private javax.swing.JTextField jTextField3; 
    private javax.swing.JTextField jTextField4; 
    private javax.swing.JTextField jTextField5; 
    private javax.swing.JTextField jTextField6; 
    private javax.swing.JTextField jTextField7; 
    // End of variables declaration//GEN-END:variables 
 
    private Runnable Pic32USB() { 
 throw new UnsupportedOperationException("Not supported yet."); //To change body of generated methods, choose Tools | Templates. 
    } 
}  
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b. Exoarm User Interface Form File 

<?xml version="1.0" encoding="UTF-8" ?> 
 
<Form version="1.3" maxVersion="1.5" type="org.netbeans.modules.form.forminfo.JFrameFormInfo"> 
  <Properties> 
    <Property name="defaultCloseOperation" type="int" value="3"/> 
    <Property name="title" type="java.lang.String" value="Exoarm"/> 
  </Properties> 
  <SyntheticProperties> 
    <SyntheticProperty name="formSizePolicy" type="int" value="1"/> 
    <SyntheticProperty name="generateCenter" type="boolean" value="false"/> 
  </SyntheticProperties> 
  <AuxValues> 
    <AuxValue name="FormSettings_autoResourcing" type="java.lang.Integer" value="0"/> 
    <AuxValue name="FormSettings_autoSetComponentName" type="java.lang.Boolean" value="false"/> 
    <AuxValue name="FormSettings_generateFQN" type="java.lang.Boolean" value="true"/> 
    <AuxValue name="FormSettings_generateMnemonicsCode" type="java.lang.Boolean" value="false"/> 
    <AuxValue name="FormSettings_i18nAutoMode" type="java.lang.Boolean" value="false"/> 
    <AuxValue name="FormSettings_layoutCodeTarget" type="java.lang.Integer" value="2"/> 
    <AuxValue name="FormSettings_listenerGenerationStyle" type="java.lang.Integer" value="0"/> 
    <AuxValue name="FormSettings_variablesLocal" type="java.lang.Boolean" value="false"/> 
    <AuxValue name="FormSettings_variablesModifier" type="java.lang.Integer" value="2"/> 
  </AuxValues> 
 
  <Layout> 
    <DimensionLayout dim="0"> 
      <Group type="103" groupAlignment="0" attributes="0"> 
          <Group type="102" attributes="0"> 
              <EmptySpace max="-2" attributes="0"/> 
              <Group type="103" groupAlignment="0" attributes="0"> 
                  <Component id="jPanel2" alignment="0" max="32767" attributes="0"/> 
                  <Group type="102" alignment="1" attributes="0"> 
                      <EmptySpace min="0" pref="0" max="32767" attributes="0"/> 
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                      <Component id="jButton4" min="-2" max="-2" attributes="0"/> 
                  </Group> 
              </Group> 
              <EmptySpace max="-2" attributes="0"/> 
          </Group> 
      </Group> 
    </DimensionLayout> 
    <DimensionLayout dim="1"> 
      <Group type="103" groupAlignment="0" attributes="0"> 
          <Group type="102" alignment="0" attributes="0"> 
              <EmptySpace min="-2" max="-2" attributes="0"/> 
              <Component id="jPanel2" min="-2" max="-2" attributes="0"/> 
              <EmptySpace max="32767" attributes="0"/> 
              <Component id="jButton4" min="-2" max="-2" attributes="0"/> 
              <EmptySpace max="-2" attributes="0"/> 
          </Group> 
      </Group> 
    </DimensionLayout> 
  </Layout> 
  <SubComponents> 
    <Container class="javax.swing.JPanel" name="jPanel2"> 
      <Properties> 
        <Property name="border" type="javax.swing.border.Border" editor="org.netbeans.modules.form.editors2.BorderEditor"> 
          <Border info="org.netbeans.modules.form.compat2.border.TitledBorderInfo"> 
            <TitledBorder title="Flex &amp; Pressure Sensors"/> 
          </Border> 
        </Property> 
      </Properties> 
 
      <Layout> 
        <DimensionLayout dim="0"> 
          <Group type="103" groupAlignment="0" attributes="0"> 
              <Group type="102" alignment="0" attributes="0"> 
                  <EmptySpace min="-2" pref="56" max="-2" attributes="0"/> 
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                  <Group type="103" groupAlignment="1" attributes="0"> 
                      <Component id="jLabel12" min="-2" max="-2" attributes="0"/> 
                      <Component id="jCheckBox3" min="-2" max="-2" attributes="0"/> 
                      <Component id="jCheckBox2" min="-2" max="-2" attributes="0"/> 
                      <Component id="jCheckBox4" min="-2" max="-2" attributes="0"/> 
                      <Component id="jCheckBox5" min="-2" max="-2" attributes="0"/> 
                      <Component id="jCheckBox6" min="-2" max="-2" attributes="0"/> 
                  </Group> 
                  <EmptySpace max="-2" attributes="0"/> 
                  <Group type="103" groupAlignment="0" attributes="0"> 
                      <Group type="102" alignment="0" attributes="0"> 
                          <EmptySpace min="-2" pref="17" max="-2" attributes="0"/> 
                          <Component id="jLabel13" min="-2" max="-2" attributes="0"/> 
                          <EmptySpace min="66" max="32767" attributes="0"/> 
                      </Group> 
                      <Group type="102" attributes="0"> 
                          <Group type="103" groupAlignment="0" attributes="0"> 
                              <Group type="102" alignment="1" attributes="0"> 
                                  <Group type="103" groupAlignment="0" max="-2" attributes="0"> 
                                      <Component id="jTextField3" max="32767" attributes="0"/> 
                                      <Component id="jTextField7" pref="86" max="32767" attributes="0"/> 
                                  </Group> 
                                  <EmptySpace max="32767" attributes="0"/> 
                                  <Component id="jLabel15" min="-2" max="-2" attributes="0"/> 
                              </Group> 
                              <Group type="102" attributes="0"> 
                                  <Group type="103" groupAlignment="0" attributes="0"> 
                                      <Group type="103" groupAlignment="1" max="-2" attributes="0"> 
                                          <Component id="jTextField5" alignment="0" pref="85" max="32767" attributes="0"/> 
                                          <Component id="jTextField11" alignment="0" pref="0" max="32767" attributes="0"/> 
                                      </Group> 
                                      <Component id="jTextField13" alignment="0" min="-2" pref="85" max="-2" attributes="0"/> 
                                  </Group> 
                                  <EmptySpace min="0" pref="22" max="32767" attributes="0"/> 



352 
 

                              </Group> 
                          </Group> 
                          <EmptySpace max="-2" attributes="0"/> 
                      </Group> 
                  </Group> 
                  <Group type="103" groupAlignment="1" max="-2" attributes="0"> 
                      <Component id="jTextField6" alignment="0" max="32767" attributes="0"/> 
                      <Component id="jTextField4" alignment="0" max="32767" attributes="0"/> 
                      <Group type="102" alignment="0" attributes="0"> 
                          <EmptySpace min="-2" pref="26" max="-2" attributes="0"/> 
                          <Component id="jLabel14" min="-2" max="-2" attributes="0"/> 
                      </Group> 
                      <Component id="jTextField14" alignment="0" max="32767" attributes="0"/> 
                      <Component id="jTextField12" max="32767" attributes="0"/> 
                      <Component id="jTextField10" alignment="1" min="-2" pref="99" max="-2" attributes="0"/> 
                  </Group> 
                  <EmptySpace pref="21" max="32767" attributes="0"/> 
              </Group> 
          </Group> 
        </DimensionLayout> 
        <DimensionLayout dim="1"> 
          <Group type="103" groupAlignment="0" attributes="0"> 
              <Group type="102" alignment="0" attributes="0"> 
                  <EmptySpace max="-2" attributes="0"/> 
                  <Group type="103" groupAlignment="3" attributes="0"> 
                      <Component id="jLabel12" alignment="3" min="-2" max="-2" attributes="0"/> 
                      <Component id="jLabel13" alignment="3" min="-2" max="-2" attributes="0"/> 
                      <Component id="jLabel14" alignment="3" min="-2" max="-2" attributes="0"/> 
                  </Group> 
                  <EmptySpace max="-2" attributes="0"/> 
                  <Group type="103" groupAlignment="0" attributes="0"> 
                      <Component id="jTextField7" alignment="1" min="-2" pref="28" max="-2" attributes="0"/> 
                      <Group type="103" groupAlignment="3" attributes="0"> 
                          <Component id="jTextField10" alignment="3" min="-2" max="-2" attributes="0"/> 
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                          <Component id="jLabel15" alignment="3" min="-2" max="-2" attributes="0"/> 
                          <Component id="jCheckBox3" alignment="3" min="-2" max="-2" attributes="0"/> 
                      </Group> 
                  </Group> 
                  <EmptySpace max="-2" attributes="0"/> 
                  <Group type="103" groupAlignment="3" attributes="0"> 
                      <Component id="jTextField3" alignment="3" min="-2" max="-2" attributes="0"/> 
                      <Component id="jTextField4" alignment="3" min="-2" max="-2" attributes="0"/> 
                      <Component id="jCheckBox2" alignment="3" min="-2" max="-2" attributes="0"/> 
                  </Group> 
                  <EmptySpace pref="9" max="32767" attributes="0"/> 
                  <Group type="103" groupAlignment="3" attributes="0"> 
                      <Component id="jCheckBox4" alignment="3" min="-2" max="-2" attributes="0"/> 
                      <Component id="jTextField13" alignment="3" min="-2" max="-2" attributes="0"/> 
                      <Component id="jTextField14" alignment="3" min="-2" max="-2" attributes="0"/> 
                  </Group> 
                  <EmptySpace max="-2" attributes="0"/> 
                  <Group type="103" groupAlignment="3" attributes="0"> 
                      <Component id="jTextField5" alignment="3" min="-2" max="-2" attributes="0"/> 
                      <Component id="jTextField6" alignment="3" min="-2" max="-2" attributes="0"/> 
                      <Component id="jCheckBox5" alignment="3" min="-2" max="-2" attributes="0"/> 
                  </Group> 
                  <EmptySpace max="-2" attributes="0"/> 
                  <Group type="103" groupAlignment="3" attributes="0"> 
                      <Component id="jCheckBox6" alignment="3" min="-2" max="-2" attributes="0"/> 
                      <Component id="jTextField11" alignment="3" min="-2" max="-2" attributes="0"/> 
                      <Component id="jTextField12" alignment="3" min="-2" max="-2" attributes="0"/> 
                  </Group> 
                  <EmptySpace pref="7" max="32767" attributes="0"/> 
              </Group> 
          </Group> 
        </DimensionLayout> 
      </Layout> 
      <SubComponents> 
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        <Component class="javax.swing.JTextField" name="jTextField3"> 
        </Component> 
        <Component class="javax.swing.JTextField" name="jTextField4"> 
        </Component> 
        <Component class="javax.swing.JTextField" name="jTextField5"> 
          <Events> 
            <EventHandler event="actionPerformed" listener="java.awt.event.ActionListener" parameters="java.awt.event.ActionEvent" 
handler="jTextField5ActionPerformed"/> 
          </Events> 
        </Component> 
        <Component class="javax.swing.JTextField" name="jTextField6"> 
        </Component> 
        <Component class="javax.swing.JTextField" name="jTextField7"> 
          <Events> 
            <EventHandler event="actionPerformed" listener="java.awt.event.ActionListener" parameters="java.awt.event.ActionEvent" 
handler="jTextField7ActionPerformed"/> 
          </Events> 
        </Component> 
        <Component class="javax.swing.JLabel" name="jLabel12"> 
          <Properties> 
            <Property name="text" type="java.lang.String" value="Fingers"/> 
          </Properties> 
        </Component> 
        <Component class="javax.swing.JLabel" name="jLabel13"> 
          <Properties> 
            <Property name="text" type="java.lang.String" value="Flex"/> 
          </Properties> 
        </Component> 
        <Component class="javax.swing.JLabel" name="jLabel14"> 
          <Properties> 
            <Property name="text" type="java.lang.String" value="Pressure"/> 
          </Properties> 
        </Component> 
        <Component class="javax.swing.JTextField" name="jTextField10"> 
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        </Component> 
        <Component class="javax.swing.JLabel" name="jLabel15"> 
        </Component> 
        <Component class="javax.swing.JCheckBox" name="jCheckBox3"> 
          <Properties> 
            <Property name="text" type="java.lang.String" value="Thumb:"/> 
          </Properties> 
          <Events> 
            <EventHandler event="actionPerformed" listener="java.awt.event.ActionListener" parameters="java.awt.event.ActionEvent" 
handler="jCheckBox3ActionPerformed"/> 
          </Events> 
        </Component> 
        <Component class="javax.swing.JCheckBox" name="jCheckBox2"> 
          <Properties> 
            <Property name="text" type="java.lang.String" value="Index:"/> 
          </Properties> 
          <Events> 
            <EventHandler event="actionPerformed" listener="java.awt.event.ActionListener" parameters="java.awt.event.ActionEvent" 
handler="jCheckBox2ActionPerformed"/> 
          </Events> 
        </Component> 
        <Component class="javax.swing.JCheckBox" name="jCheckBox4"> 
          <Properties> 
            <Property name="text" type="java.lang.String" value="Middle:"/> 
          </Properties> 
          <Events> 
            <EventHandler event="actionPerformed" listener="java.awt.event.ActionListener" parameters="java.awt.event.ActionEvent" 
handler="jCheckBox4ActionPerformed"/> 
          </Events> 
        </Component> 
        <Component class="javax.swing.JCheckBox" name="jCheckBox5"> 
          <Properties> 
            <Property name="text" type="java.lang.String" value="Ring:"/> 
          </Properties> 
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          <Events> 
            <EventHandler event="actionPerformed" listener="java.awt.event.ActionListener" parameters="java.awt.event.ActionEvent" 
handler="jCheckBox5ActionPerformed"/> 
          </Events> 
        </Component> 
        <Component class="javax.swing.JCheckBox" name="jCheckBox6"> 
          <Properties> 
            <Property name="text" type="java.lang.String" value="Little:"/> 
          </Properties> 
          <Events> 
            <EventHandler event="actionPerformed" listener="java.awt.event.ActionListener" parameters="java.awt.event.ActionEvent" 
handler="jCheckBox6ActionPerformed"/> 
          </Events> 
        </Component> 
        <Component class="javax.swing.JTextField" name="jTextField11"> 
          <Events> 
            <EventHandler event="actionPerformed" listener="java.awt.event.ActionListener" parameters="java.awt.event.ActionEvent" 
handler="jTextField11ActionPerformed"/> 
          </Events> 
        </Component> 
        <Component class="javax.swing.JTextField" name="jTextField12"> 
        </Component> 
        <Component class="javax.swing.JTextField" name="jTextField13"> 
        </Component> 
        <Component class="javax.swing.JTextField" name="jTextField14"> 
        </Component> 
      </SubComponents> 
    </Container> 
    <Component class="javax.swing.JButton" name="jButton4"> 
      <Properties> 
        <Property name="text" type="java.lang.String" value="Begin Sampling"/> 
      </Properties> 
      <Events> 
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        <EventHandler event="actionPerformed" listener="java.awt.event.ActionListener" parameters="java.awt.event.ActionEvent" 
handler="jButton4ActionPerformed"/> 
      </Events> 
    </Component> 
  </SubComponents> 
</Form> 
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c. PIC32 USB Java File 

package pic32; 
 
import com.neuronrobotics.sdk.common.BowlerAbstractDevice; 
import com.neuronrobotics.sdk.common.BowlerDatagram; 
import com.neuronrobotics.sdk.common.BowlerMethod; 
import java.nio.ByteBuffer; 
import java.util.logging.Level; 
import java.util.logging.Logger; 
import javax.swing.JTextField; 
 
/** 
 * 
 * @author jasonklein 
 */ 
public class Pic32USB extends BowlerAbstractDevice implements Runnable { 
 
    JTextField textFields[]; 
    short sensorBoardData[]; 
     
    public Pic32USB() { 
 sensorBoardData = new short[11]; 
 textFields = new JTextField[10]; 
    } 
     
    public void setJTextField(int i, JTextField f) { 
 this.textFields[i] = f; 
    } 
     
    public void subscribe(int id) { 
 Object[] args = send("exo.arm.*", 
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  BowlerMethod.POST, 
  "SenS", 
  new Object[]{(short)id, 1}, 5); 
    } 
     
    public void unsubscribe(int id) { 
 Object[] args = send("exo.arm.*", 
  BowlerMethod.POST, 
  "SenS", 
  new Object[]{(short)id, 0}, 5); 
    } 
     
    private synchronized short[] readSensorBoard() { 
 short[] data = new short[11]; 
  
 Object[] args = send("exo.arm.*", 
  BowlerMethod.POST, 
  "SenG", 
  new Object[]{}, 5); 
  
 System.out.println(args.length); 
  
 for(int i = 0; i < 11; i++) { 
//     data[i] = (Short)args[i]; 
//     data[i] = ByteBuffer.wrap(args[i]).getShort(); 
     data[i] = Short.parseShort(args[i] + ""); 
//     data[i] = (Integer)args[i]; 
 } 
  
 return data; 
    } 
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    @Override 
    public void onAsyncResponse(BowlerDatagram data) { 
 throw new UnsupportedOperationException("Not supported yet."); //To change body of generated methods, choose Tools | 
Templates. 
    } 
 
    @Override 
    public void run() { 
 while(true) { 
     try { 
  Thread.sleep(100); 
     } catch (InterruptedException ex) { 
  Logger.getLogger(Pic32USB.class.getName()).log(Level.SEVERE, null, ex); 
     } 
     sensorBoardData = readSensorBoard(); 
//     textFields[0].setText(sensorBoardData); 
     for(int i = 0; i < 10; i++) { 
  textFields[i].setText(sensorBoardData[i] + ""); 
     } 
 } 
    } 
} 
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L. Flex Sensors Test Data 

Degress V1 V2 diff Vout gain 

0 2.903 2.371 0.532 1.166 2.191729 

5 2.93 2.371 0.559 1.82 3.255814 

10 3.01 2.371 0.639 1.99 3.114241 

15 3.06 2.371 0.689 2.177 3.159652 

20 3.17 2.371 0.799 2.492 3.118899 

25 3.24 2.371 0.869 2.701 3.10817 

30 3.28 2.371 0.909 2.83 3.113311 

35 3.33 2.371 0.959 2.976 3.103233 

40 3.402 2.371 1.031 3.211 3.114452 

45 3.447 2.371 1.076 3.342 3.105948 

50 3.47 2.371 1.099 3.425 3.11647 

60 3.555 2.371 1.184 3.698 3.123311 

70 3.652 2.371 1.281 3.991 3.115535 

80 3.67 2.371 1.299 4.06 3.125481 

0 2.705 2.372 0.333 1.086 3.261261 

5 2.73 2.372 0.358 1.117 3.120112 

10 2.81 2.372 0.438 1.354 3.091324 

15 2.868 2.372 0.496 1.525 3.074597 

20 2.945 2.372 0.573 1.774 3.095986 

25 3.013 2.372 0.641 1.992 3.107644 

30 3.085 2.372 0.713 2.211 3.100982 

35 3.119 2.372 0.747 2.311 3.093708 

40 3.166 2.372 0.794 2.456 3.093199 

45 3.218 2.372 0.846 2.616 3.092199 

50 3.269 2.372 0.897 2.78 3.09922 

60 3.38 2.372 1.008 3.152 3.126984 

70 3.469 2.372 1.097 3.415 3.113036 

80 3.557 2.372 1.185 3.703 3.124895 
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M. MATLAB Code for Testing Low-Pass Filter Transfer Function 

 

%function Sallen_Key_2nd_LPF_Testing (R1, R2, C1, C2) 
function Sallen_Key_2nd_LPF_Testing (R, C) 

  
f = 0:0.1:1024; 
w = 2*pi*f; 
H = 1./(1+2*R*C*1j*w + (R^2)*(C^2)*((1j*w).^2));   % frequency response 
% when we make R1=R2=R, C1=C2=C 

  
plot(f,abs(H)) 
title('Sallen-Key 2nd LPF'); 
xlabel('Frequency (Hz)'); 
ylabel('Amplitude'); 
return 
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