
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2016

Data Mining in Financial Domain
Essam R. Al-Mansouri
Worcester Polytechnic Institute

Sean J. Amos
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Al-Mansouri, E. R., & Amos, S. J. (2016). Data Mining in Financial Domain. Retrieved from https://digitalcommons.wpi.edu/mqp-
all/781

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/212977497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/781?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/781?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F781&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Using Artificial Neural Networks and
Sentiment Analysis to Predict Upward

Movements in Stock Price

A Major Qualifying Project Submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree in Bachelor of Science in Computer Science

Submitted by:

Essam Al-Mansouri

Sean Amos

Date:

April 28th, 2016

Report Submitted to:

Professor Carolina Ruiz

Professor Hossein Hakim

Professor Michael Radzicki

This report represents work of WPI undergraduate students submitted to the faculty as
evidence of a degree requirement. WPI routinely publishes these reports on its website
without editorial or peer review. For more information about the projects program at

WPI, see http://www.wpi.edu/Aademics/Projects

 i

ABSTRACT
For this project, we explored the use of text mining, clustering, and machine learning

models to develop a system that combines technical and sentiment analysis to determine the

movement of a stock. The final result of our project is a system comprised of a novel sentiment

analysis used as input for the larger recurrent neural networks, each trained on a cluster of stocks

from the S&P 100. Experimental results show that our system can predict upward movements in

stock price over a 65-minute period with up to 77% accuracy for a specific cluster compared to

52% of randomly guessing for the same cluster.

 ii

ACKNOWLEDGEMENTS	

The following individual and institutions, in no particular order, have been tremendously

supportive throughout the duration of the project. We simply cannot thank them enough.

• Professor Carolina Ruiz of Worcester Polytechnic Institute for her tireless support and

feedback throughout the entire experience.

• Professors Hossein Hakim and Michael Radzicki of Worcester Polytechnic Institute

for lending us their time and knowledge of the financial market.

• Nicholas Bradford of Worcester Polytechnic Institute for his help with investigating

clustering techniques.

• Worcester Polytechnic Institute for the opportunity to work on a Major Qualifying

Project that has real world applications.

 iii

TABLE	OF	CONTENTS	

Abstract	..	i	

Acknowledgements	...	ii	

Table	of	Contents	...	iii	

Table	of	Figures	...	v	

Table	of	Tables	...	vi	

Executive	Summary	...	vii	

Background	..	vii	

Methodology	...	vii	

Findings	&	Conclusion	...	viii	

1.	 Introduction	..	1	

2.	 Background	...	3	

2.1.	 Financial	Analysis	...	3	

2.1.1.	 Sentiment	Analysis	...	3	

2.1.2.	 Technical	Analysis	...	3	

2.2.	 Text	Mining	..	4	

2.3.	 Machine	Learning	..	5	

2.4.	 Clustering	&	Risk	Minimization	..	8	

3.	 Methodology	..	9	

3.1.	 Sentiment	Analysis	..	9	

3.1.1.	 Data	Collection	...	9	

3.1.2.	 Preprocessing	...	11	

3.1.3.	 Predicting	and	Training	..	12	

3.1.4.	 Post	processing	...	15	

3.1.5.	 Example	Sentiment	Analysis	Machine	..	16	

3.1.6.	 Evaluation	...	22	

3.2.	 Clustering	&	Risk	Minimization	..	23	

3.3.	 Neural	Network	...	23	

 iv

3.3.1.	 Features	&	Outputs	..	24	

3.3.2.	 Regularization	...	25	

3.3.3.	 Activation	function	...	25	

3.3.4.	 Training	&	Hyperoptimization	..	26	

4.	 Results	...	28	

4.1.	 Sentiment	Analysis	Results	..	28	

4.2.	 Clustering	...	31	

4.3.	 Neural	Network	Results	...	32	

5.	 Conclusion	&	Future	Work	...	35	

5.1.	 Future	Work	...	35	

6.	 Bibliography	..	37	

7.	 Appendices	..	42	

Appendix	A	 Source	Code	...	42	

Appendix	B	 List	of	Third	Party	Libraries	Used	..	43	

Appendix	C	 Example	RSS	Feed	Data	..	44	

Appendix	D	 Google	Historic	Price	Data	Format	...	45	

Appendix	E	 Yahoo	Historic	Price	Data	Format	..	46	

Appendix	F	 S&P	100	by	Cluster	...	47	

 v

TABLE	OF	FIGURES	

Figure 1 Accuracy by clusters .. viii	

Figure 2 Japanese Candlestick Chart [36] .. 3	

Figure 3 A Candlestick [37] .. 4	

Figure 4: A simple neural network with five inputs ... 5	

Figure 5 Example Long Short Term Memory Neural Network ... 6	

Figure 6 Dropout applied to connections between feed forward connections [12] 7	

Figure 7 Example DTW [35] .. 8	

Figure 8 First example article prediction vector ... 17	

Figure 9 First example article price vector ... 17	

Figure 10 Second example prediction vector .. 18	

Figure 11 Second example price vector .. 19	

Figure 12 Third example prediction vector .. 20	

Figure 13 Third example price vector ... 20	

Figure 14 Fourth example article prediction vector .. 21	

Figure 15 Fifth example article prediction vector ... 21	

Figure 16 Example graph of a weighted slice ... 22	

Figure 17: Dow Jones Index on 297 consecutive days (Left). Daily change of Dow Jones Index

on 297 consecutive days (Right) ... 24	

Figure 18 Accuracy by clusters ... 32	

Figure 19 Trading strategies over 5 year time .. 33	

 vi

TABLE	OF	TABLES	

Table 1 Neural network layers .. 26	

Table 2 Article distribution over days .. 28	

Table 3 0 threshold accuracy .. 29	

Table 4 0 threshold average profit % per trade ... 29	

Table 5 Optimized threshold values ... 30	

Table 6 Optimized accuracy ... 30	

Table 7 Optimized average profit % per trade .. 31	

Table 8 Neural network based prediction accuracy .. 32	

Table 9 Financial metric comparison .. 34	

 vii

EXECUTIVE	SUMMARY	

BACKGROUND	

 In today’s computerized world, everyone can quickly gain access to the financial market

and trade stocks or currencies from the comfort of their office or home through online brokers.

The internet has provided a level of accessibility to the average person that had been previously

confined to professional traders and investors. These traders, much like any trader, are

constantly analyzing the market and trying to predict the future value of a stock. All traders

must consider different types of the market information when they think about a trade. The first

is sentimental analysis or trying to understand how investors, consumers, or the world feel about

a company and use that to predict how a company’s stock will behave. On the other side we

have technical analysis which makes predictions based on historical price data or defined

company information. Unlike sentiment analysis predictions can be made based solely on the

formulaic understanding of historic price data and trade volume.

METHODOLOGY	

 The goal of our project was to design and implement a machine learning system that

would accurately predict whether a stock’s price would be higher 65 minutes into the future. To

achieve this our system utilized clustering over the stocks of the S&P 100, sentiment analysis,

and for each cluster a neural network that took as input date information, historic price data, and

a sentiment value from the sentiment analysis. This system was implemented in Python, utilizing

over external libraries focusing in machine learning, and natural language processing.

 The sentiment analysis that we used for the project is a machine learning technique that

utilizes stemmed bag-of-words models and weighted performance averages of stemmed words

from past news articles to predict the movement of a stock for the next 2.5 trading days. The

news articles and stock price data were collected from Google and Yahoo RSS feeds. The end

product was able to take a stock, and arbitrary date and time, and a timebar to produce a scalar

value indicating whether it thinks the stock will go up or down.

 We decided to cluster the stocks of the S&P 100 since it allows for risk minimizing

investments. However, early experiments showed that training and testing neural networks on

 viii

clusters of stocks performed better than if they were trained on all the stocks, adding an

additionally reason to cluster. Specifically, we used hierarchical agglomerative clustering

algorithm with Dynamic Time Warping (DTW) and weighted distance to cluster the stocks

 For the neural network we decided to use a recurrent neural network variant called Long

Short Term Memory (LSTM), which can handle problems with hundreds of time steps between

important events. This neural network serves as the main prediction system and takes as input

100 consecutive 65-minute stock price data points (date and time, open price, min price, max

price, close price, and volume) and the sentiment value. The actual price data is detrended, so

that it takes value lost or gained from each time step.

FINDINGS	&	CONCLUSION	

 We ran back testing of unseen data on the individual machines, the combination of the

two machines, and a strategy where it randomly decides to buy. Figure 1 shows that, in most

cases, across the 13 clusters our system and its components are able to outperform the random

strategy by a significant amount. The neural network with the sentiment value is able to achieve

accuracy up to 77% compared to the random strategy which only was able to get up to 62%

accuracy on a cluster. The results also show that the neural network with the sentiment value

does perform better than either of the individual components; even if just marginally better than

Figure 1 Accuracy by clusters

 ix

the neural network by itself. Therefore, we can say that our system achieved its goal of

accurately predicting upward stock movements. We remain confident in our system’s predictions

and optimistic about its potential use in future real world applications.

 1

1. INTRODUCTION	
In today’s computerized world, everyone can quickly gain access to the financial market

and trade stocks or currencies from the comfort of their office or home through online brokers.

The internet has provided a level of accessibility to the average person that had been previously

confined to professional traders and investors. The increase in non-professional traders and

investors has greatly impacted advancements in trading software. Popular electronic trading

platforms such as TradeStation allow traders to write and run custom programs that can

automatically enter or exit traders based on any specific programmed conditions [1].

Unfortunately, the financial market is always changing and evolving and as a

consequence, is extremely difficult to predict. Any fixed trading strategy is guaranteed to face

unfavorable market conditions and potentially suffer major losses. One study suggests that four

out of five of all day traders actually quit within the first two years and that only one out of every

100 traders consistently profit from trading [2].

Luckily, most popular trading platforms allow traders to write custom trading

applications that can be executed in a simulated trading environment. This allowed us to apply

statistical clustering and machine learning tools on decades of historical data to ultimately create

a system that can predict if a stock’s price will be higher approximately an hour into the future. 	

Most day traders trade based on technical analysis are based on analyzing a stock’s price

chart, looking for meaningful repeating patterns in the data that can be used to forecast market

conditions. However, not only do many of those patterns not actually have predictive properties,

many of them are so vaguely defined that it is practically impossible for a trader to consistently

recognize, and then the decision to buy or sell falls largely on intuition instead of data and

statistical analysis. A significant advantage to using statistical machine learning models that can

learn to trade is that we avoid make decisions based on unreliable human emotion and cognitive

bias.

For our project we wanted to use the advantages brought by statistical machine learning

models. More precisely, the goal of this project was to design and implement a machine learning

system that would accurately predict whether a stock’s price would be higher 65 minutes into the

future. To achieve this our system utilized clustering over the stocks of the S&P 100, sentiment

 2

analysis, and for each cluster a neural network that took as input date information, historic price

data, and a sentiment value from the sentiment analysis.

Experimental results of this system on five years of unseen 65 minute S&P100 stock data

show that our Long Short Term Memory (LSTM) neural networks can predict if a stock’s price

will be higher one hour later with up to 77% accuracy on several different stocks, an

approximately 25% improvement over baseline performance.

 3

2. BACKGROUND	

2.1. FINANCIAL	ANALYSIS	
Traders are constantly analyzing the market and trying to predict the future value of a stock.

There are different types of the market information that most traders consider before making a

trade. In this project, we will utilize technical and sentiment analysis to predict future value of

the top 100 leading stocks in the U.S (referred to as the S&P 100).

2.1.1. Sentiment	Analysis	

Many traders base their trades strictly on sentiment analysis. Sentiment analysis is the

process of trying to understand the sentiment of consumers, investors or traders and predicting

how that would affect the value of a stock. Company announcements, news articles, and even

rumors can have a profound effect on a company’s reputation and perceived value.

Unfortunately, information used in sentiment analysis can be very difficult to quantify.

2.1.2. Technical	Analysis	

Technical analysis is the process of analyzing historical stock data when predicting future

stock value. Unlike sentiment analysis, technical analysis uses strictly quantitative information,

such as past stock prices

and volume, to make

predictions about the

stock’s price in the

future.

Stock traders

commonly use Japanese

Candlestick charts,

Figure 2 ,when analyzing

historical stock data. Figure 2 Japanese Candlestick Chart [36]

 4

A candlestick chart presents price over time as a series of red

and green ‘candlesticks’ each presenting a specific period of

time. In an hourly candlestick chart, each candlestick is

constructed or formed over a 1 hour period.

A candlestick, Figure 3, shows information about the stock price

during the candlestick’s formation. The top and the bottom of

the candlestick’s wicks represents the highest and lowest price

during the bar’s formation. The real body of the bar represents

the opening price (price as soon as candlestick began forming)

and the closing price (price at the end of the 1 hour period).

2.2. TEXT	MINING	

Text mining is a complex task in which computer algorithms are used to process text and

to derive meaning or patterns from the text. In the process some form of natural language

processing is usually utilized to create a more appropriate understanding of the text. This is

combined with machine learning and statistical analysis to automatically discover patterns in the

data [3].

The use of text mining has been widely studied in the field of financial markets, but the

problem still remains very difficult. This problem has been approached in a number of ways. The

main one and the one used by this project, is the belief that articles, blogs, and tweets encompass

a sort of market sentiment towards a company. If there is a sudden surge of negative tweets or

articles about a company then the market will react accordingly and the value of the company’s

stock will decrease [4].

One research project looked at the arduous task of creating a lexicon, a list of words that

make up the language, based on a number of statistical functions. The researchers showed that

they were able to create such a lexicon and by classifying each word in a message as bullish or

bearish they were able to market trend up to 80% accuracy just using tweeter feeds as the input

[5]. Another researcher looked into experimenting with a number of linguistic representations of

news articles. They explored the use of Bag of Words (considering the multiset representation of

the text), Noun Phrases, and Named Entities as article representations that are given to a Support

Vector Machine (SVM), a learning algorithm. Using this system, they were able to get

Figure 3 A Candlestick [37]

 5

directional accuracy to be around 55%. The Noun Phrases performed the best for the textual

representation however the bag of words model faired only slight worse [6].

2.3. MACHINE	LEARNING	

It is near impossible to write a program that follows a set of hardcoded rules that can

adapt to the constantly changing market conditions. If we wanted to predict future stock prices

with hard coded rules, we might first try to find specific indicators or markers that foreshadow a

specific movement in the market in the past and then code software that makes predictions based

on those markers. However, even if our software performed well, our work would quickly be

rendered obsolete due to a changing market environment. The markers that foreshadow a specific

price movement can be very different in different market environments. This quickly becomes an

unsurmountable project when we consider that we would need to constantly search for new

useful markers to learn and for old obsoleted markers to unlearn and to update our software

accordingly.

Machine learning algorithms give computers the ability to learn, without being explicitly

hard coded, to solve a problem. Recent progress in training deep neural networks and recurrent

neural networks have made them excel at learning patterns and correlations in data even in

extremely noisy domains.

Artificial neural networks are machine

learning models comprised of connected

layers of computational units, referred to

as neurons, Figure 4. Each neuron’s

incoming connections have an assigned

weight that is learned through training on

example dataset. Training a network to

behave in a certain way usually consists

of giving the network a training example

input and comparing its output to our

actual desired output, and then slightly updating the network weights such that the network’s

output is more accurate in the future. Variants of the neural network model were able to

Figure 4: A simple neural network with five inputs

 6

outperform humans in playing games, reading handwritten text [7], recognizing faces [8], driving

cars [9], flying helicopters [10], and even diagnosing ill patients [11].

Recurrent neural networks refer to a type neural networks whose connections form a directed

cycle. This allows neurons to store an internal state or memory in a previous time step that

influences the network’s output at timestep t.

In this project we use a variant of a recurrent neural network called Long Short Term Memory

(LSTM). LSTMs are well suited to learn from experience when there are very long time lags of

unknown size between important events, which makes them especially attractive for applications

in the financial market.

Figure 5 Example Long Short Term Memory Neural Network

An LSTM unit has a forget gate f, input gate i, output

gate i and a memory cell C. The final output of the

neuron h is the cell’s output modulated by the output

gate o. These gates allows a network to learn what

values to store, forget or remember.

Unfortunately, despite recent improvements in neural networks and their proven

performance in multiple applications, training neural networks remains to be a difficult problem.

A major difficulty in training neural networks is the vanishing gradient problem. The vanishing

 7

gradient problem is a difficulty found in training that causes updates to the network’s weights to

be disproportionately small which can slow down training and reduce performance. The

exploding gradient problem is a similar difficulty which causes weight updates to sometimes be

disproportionately large which can also slow down training and reduce performance. Another

major difficulty in training is the problem of over fitting. An over fit network performs well on

examples it has been trained on, but performs poorly on new unseen data. To help minimize the

effect of the over fitting problem, we use different methods referred to as regularization methods.

Figure 6 Dropout applied to connections between feed forward connections [12]

Dropout is probably one of the most common regularization methods used in deep

networks today. Essentially, a percentage of neurons in a hidden layer are dropped (their output

changed to 0) on every training example. This helps the neural network learn to avoid over

fitting by forcing the network to learn redundant representations of the data. Each neuron is

forced to learn a useful representation that isn't dependent on only one or two other neurons. The

expected result is that the network generalizes better over the data because if only a handful of

the neurons misbehave, redundancy alleviates their effects. Regularizing RNNs by Stabilizing

Activations was the only regularization method that was specifically designed for recurrent

neural networks. It penalizes neurons for changing their values too wildly between one time step

and the next unless it improves performance. The intuition is that it reduces activation variance

and results in a more stable network that generalizes better.

 8

2.4. CLUSTERING	&	RISK	MINIMIZATION	

 In finance, an investment portfolio is an investor’s collection of investments. Portfolio

management is the decision making process in the selection of assets to invest in and the

allocation an investor’s resources to these investments. Portfolio management consists largely of

minimizing an investment portfolio’s risk to reward ratio. In this project we develop a

methodical and mathematical approach to select a diverse set of stocks by applying clustering

algorithms to financial data.

Clustering is the process of grouping a set of objects into groups or clusters based on their

similarity to each other, such that objects are most similar to the objects in their own cluster than

to objects in other clusters. One type of clustering is hierarchical agglomerative clustering which

is an approach that initially places each object in its own cluster then iteratively combines the

most similar clusters until all objects are in a single cluster.

Similarity between objects

can be measured a number of

ways. One possibility is through

the use of Dynamic Time

Warping, which is a method used

in speech recognition to measure

similarity between two sequences

to group audio of similar words

together, even if the speakers are

talking at different speeds.

Figure 7 Example DTW [35]

 9

3. METHODOLOGY	

 The goal of this project was to design and implement a machine learning system that

would accurately predict whether a stock’s price would be higher 65 minutes into the future. To

achieve this our system utilized clustering over the stocks of the S&P 100, sentiment analysis,

and for each cluster a neural network that took as input date information, historic price data, and

a sentiment value from the sentiment analysis.

 For our implementation language we chose to use Python. The readability and ease of use

of the language allowed for quick development time and multiple iterations throughout the

project. In addition, Python has an extensive suite of third party libraries for neural networks,

clustering, and natural language processing. We utilized these libraries to significantly lessen

the effort necessary for the complex tasks needed by this project. Our source code and third

party libraries for the implementation can be found in Appendix A and Appendix B,

respectively.

3.1. SENTIMENT	ANALYSIS	

 The sentiment analysis that we used for a project is a machine learning technique that

utilizes stemmed bag-of-words models and weighted performance averages of stemmed words

from past news articles to predict the movement of a stock for the next 2.5 trading days. The end

product is able to take a stock, and arbitrary date and time, and a timebar to produce a scalar

value. This scalar value represents the direction and confidence that the given stock will go up.

The actual confidence scale will depend on the post processing technique and potentially is

unbounded. A value of +.5 would indicate a high upward movement confidence while -.02

would indicate a low downward confidence. As a general note, times in this work are considered

continuous (e.g. 3:55 PM on a Friday + 5 minutes would then become 9:00 AM on a Monday).

3.1.1. Data	Collection	

 Our sentiment analysis machine requires articles about a specific company and the stock

price in order to make predictions and train from past data. In both cases Google and Yahoo

provide optimal APIs for collecting news articles by company and historic stock prices. To

ensure enough articles for large scale training we pull articles and prices for for each company on

the S&P 500. To collect articles, we made a call to both search engine’s Rich Site Summary

 10

(RSS) feed, a continuously updated list of relevant articles of format found in Appendix A. This

prevents the need for us to implement a web crawler to find not only the articles but also

determine the relevant company in the article. The calls we used are as follows:

http://finance.yahoo.com/rss/headline?s=[Stock_Ticker]
https://www.google.com/finance/company_news?q=[Exchange]:[Stock_Ticker]&output=rss

These RSS feeds, however, only contain a short description of the article and the link to the

actual web page. So once we have collected all RSS feed information, we can then make an

HTTP request to all previously unseen article pages. The raw HTML from these requests is then

stripped of unnecessary style and script tags using the BeautifulSoup module for Python. This is

done simply to decrease the size necessary to store this information, decreasing disk usage

~60%. This stripped down HTML, the web page URL, stock ticker, API type, RSS ID, and

publication date are stored in a relational database, in our case SQLite. This ensures that we do

not needlessly duplicate previously seen data and it allowed storage of base data over iterations

of the sentiment analysis machine.

 The collection of stock prices for companies was done in a similar manner. An HTTP

request was sent for each of the companies. The calls used are as follows:

http://chartapi.finance.yahoo.com/instrument/1.0/[Stock_Ticker]/chartdata;type=quote;range=15d/csv

https://www.google.com/finance/getprices?q=[Exchange]&x=[Stock_Ticker]&i=60&p=15d&f=d,c,h,l,o,v

Each call returned stock prices for the past 15 days in a format encompassing time, close, high,

low, open, and volume. Where the time is the start of a specific duration during the trading day,

open is the price of the stock at the start, close is the price of the stock at the end of the duration,

high is the highest price of the stock during that period, low is the lowest price during the period

and volume is the total number of shares bought and sold during the duration. However, the

exact format of these returns differ, as seen in Appendix B and Appendix C. The returns were

converted to the same data structure and then saved to a SQLite database, where the columns are

the stock ticker, the source, and the six features from before. To function properly, each time,

source, and ticker set has to be unique. If a row would violate this constrain, it would not be

added to the database. Also in the case of a stock split, or reverse stock split, the resulting prices

would be rebased around the original price to maintain consistent pricing.

 11

 We used only the Google stock pricing because it produced full minute bar data versus

Yahoo’s seemingly arbitrary 5-minute (approx.) timebar. Additionally, these data collections

were made between 10/12/2015 and 3/4/2016.

3.1.2. Preprocessing	

 In order to use each of the previously collected datasets we had to preprocess such that

the sentiment analysis machine can interpret the data. In the case of articles, we had to first

extract the article content from the stripped down HTML. In order to accomplish this, we used a

Python module called Newspaper. We constrained the size of the article to between 40 and 5000

words. If the article did not fit that criterion we rejected it. Additionally, we rejected the article if

it did not contain the associated company’s ticker or name.

Next, we tokenized each continuous alpha string in the article and filtered out those that

were not considered real words and those that are considered stop words (i.e. words that appear

too frequently in the English language to make meaningful difference between articles). Then for

each remaining word we created a bag of words model from the stem of that word. Stemming the

word means to create a possibly artificial root for similarly rooted words. This was accomplished

using the Snowball English stemmer found in the Natural Language Tool Kit for Python. This

stemmed bag of words is the representation of the article that is used by the sentiment machine.

The use of a bag of words model has been successfully deployed for sentiment analysis by

Schumaker and Chen [6]. To reduce the dimensionality, the stemming was employed.

Much like the articles, we could not directly use the stock pricing data in the machine

since each stock has a price that is not directly comparable to another stock price. Since we

predicted over an entire period of time, we said we only care about a range starting at some

arbitrary time and extending k minutes of trading into the future. Thus the closing stock price for

a specific company in this range could be represented by the following vector

c", c"$%, … , c"$'(%, c"$' . We can also write a vector as the percentage gained or lost since the

initial point in time,)*()*
)*

= 0,)*-.()*
)*

, … ,)*-/0.()*
)*

,)*-/()*
)*

. This puts the vector of different

stocks in a similar scale. We may also get a close approximation of this vector by instead taking

the partial surrounding average of every n points. So we end up with a vector that resembles the

following:

 12

0,
1*-20.-1*-2-1*-2-.

3 ()*
)*

, … ,
1*- 40. 20.-1*- 40. 2-1*- 40. 2-.

3 ()*
)*

,
1*-420.-1*-42-1*-42-.

3 ()*
)*

,

where 𝑘 = 𝑚𝑛. This vector will be known as the price vector, which is the vector that was used

when the stock price for a given range was requested. In this machine, a is the publication date or

that date brought into the first active trading period, m is set to 100 intervals (the price vector is

rather 101 dimensions), n is set 10 minutes, so each dimension in the vector is separated by 10

minutes, and k is 1000 or approximately 2.5 days worth of trading data. If for some reason there

isn’t enough data to fill the price vector, then anything that uses it must wait long enough for the

vector to be completely filled. Thus we can be assured that all price vectors are completely filled.

3.1.3. Predicting	and	Training	

 Since we have both data and the ability to parse that data into a usable form, we can now

use the machine to make predictions on an arbitrary article and train from that same article. First

we will define the mathematical representation and then describe the implementation of the

processes.

 Let us say that in the initial state of the machine the following is true:

∀	word ∶ 𝑤@ABC = 0
4
2$% = 0 %D% , this means for all words the value 𝑤@ABC starts as the 0 vector in 101

dimensions. Used as storage for what is known as the word vector.

∀	word ∶ 𝑐@ABC = 0, for all words the value 𝑐@ABC starts as 0. Count of times a document has word in it

∀	word ∶ 𝑡@ABC = 0, for all words the value 𝑡@ABC starts as 0. Count of all times word has appeared among

articles trained from so far.

𝐶 = 0, the total count of documents trained from so far.

Let us also define the components of an article in a stemmed bag of words model.

𝑁 = the total number of words in a document.

𝑆 = the set of all words in the article .

𝑛JKLM = the number of times a word appears in the article.

𝑃 = ℝ%D% the prediction vector calculated prior to training.

𝐴 = ℝ%D% the closing price vector of the article

We have fully defined all variables that are needed to describe the machine. However, we

need to define a function, or rather the possible composing functions, necessary for predictions.

 13

This function is known as term-frequency inverse-document-frequency (TF-IDF). This class of

function is used heavily in text mining to give higher weights to words that appear less

frequently in some body of articles and lower weights to words that appear in a particular article

[5]. Formally we define the functions as:

𝑇𝐹𝐼𝐷𝐹 word = 𝑇𝐹 word ∗ 𝐼𝐷𝐹 word , 𝑇𝐹 word = 𝑇𝐹% word , 𝑇𝐹V word 	

𝑇𝐹% word = WXYZ[
\

𝑇𝐹V word =
𝑛JKLMV

𝑛'V'∈^

𝐼𝐷𝐹 word = log 1 +
𝐶

1 + 𝑐@ABC

𝑇𝐹 word can either be 𝑇𝐹% word or 𝑇𝐹V word . We create a machine for both cases to

determine the optimal function.

With all this in mind we may finally define how to create a prediction for a given article.

Let us say that we are given some arbitrary article then the following calculates P, the prediction

vector for that article:

This is equivalent to the weighted average of word vectors for all words in the given article

where the weight is given by the TFIDF for that word.

𝑡𝑓𝑖𝑑𝑓(BoWA,𝑤𝑜𝑟𝑑): //Given a bag of words article and a word
 idf = log m1 + n

%$opqrs
t

 tf1 = BoWA. 𝑛JKLM / BoWA.𝑁 // option 1 term frequency
 //option 2 term frequency
 totalweight = 0

For wword in BoWA.S:
 totalweight += 𝑛JJKLMV
 tf2 = 𝑛JJKLMV / totalweight
 return tf1*idf
 // or return tf2*idf

makePrediction(BoWA): //Given a bag of words article

𝑃 = (0, 0, …, 0, 0) // start prediction vector as a 0 vector
For word in BoWA.S:

 𝑃 += 𝑤@ABC ∗ 𝑡𝑓𝑖𝑑𝑓(BoWA,𝑤𝑜𝑟𝑑)
 return P

 14

 Now let us formally define the steps necessary for training from an article. Note that

much like the TF function there are two possible training methods, one based on whether an

article contains a word and the other based on the total count of words in the article.

The only difference between the two training methods is how they calculate the word vector. The

first case is normal mean and the second is weighted mean based on the amount of times a word

appears in an article. Since there are two possible TF functions and two possible training

methods, we have four possible ways of choosing both. Thus we will have four different

machines that will be run.

 Keeping that in mind we constructed a system that allowed any of the four machines to

be run. A relational database, yet again SQLite, was created with a main table where each row is

contains an ID, stock ticker, publication date, stemmed bag of words, price vector, and the date

at which the price vector ends. In order to fill this table, we looped through all articles in the

article database creating a unique ID for each article based on its source URL and RSS ID,

preprocessing the stripped html in the first database, creating the price vector for the current

article, and then calculating where it would end.

 The database also contains a table made of stateful information about all models being

run against the current database. Each model is also given access to its own table in the database

to store information necessary to create, or fetch, prediction vectors. For our scheme it stores all

𝑤@ABC, 𝑐@ABC, 𝑡@ABC, and C in the stateful information as well as the time and id of last article

predicted or trained from. This is used to continue training in case it stops for any reason. In the

trainModel(BoWA): //Given a bag of words article
 //	BoWA. 𝐴 waits until A is filled

For word in BoWA.S:
 //update the word vectors
 𝑤@ABC =

Jpqrs∗opqrs$vAwx.y
npqrs$%

 //Option 1
 𝑤@ABC =

Jpqrs∗zpqrs$vAwx.y∗vAwx.Wpqrs
zpqrs$vAwx.Wpqrs

 //Option 2
 //update the word in article count
 𝑐@ABC = 𝑐@ABC + 1
 //update the total count
 𝑡@ABC = 𝑡@ABC + BoWA. 𝑛@ABC
 //update the total article count
 𝐶 = 𝐶 + 1

 15

additionally table each model stores the stock ticker, ID, publication date, the date at which the

price vector ends, and the prediction vector for the article with the corresponding ID.

 In order to actually make these predictions, we created two min heaps each composed of

all rows. Though, these two heaps really merge into a single min heap. The first heap is

dedicated to calculating the prediction vector and then writing them to the database. The second

heap is meant to handle training the machine. The heap value used by the first heap is the

publication date and the heap value for the latter is the end time of the price vector. We iterate

over the min of both of those and begin to predict or train. This ensures that at no time the

machine can cheat (i.e. predict using data that should not have been seen yet).

3.1.4. Post	processing	

 Having created a prediction for each article for a machine, we needed to map these

predictions to a scalar usable by both humans and the neural nets. In order to accomplish this, we

must first discuss how we may add prediction vectors starting at different times. If we have two

prediction vectors for any stocks, they must both start at some article publication date. Since the

prediction vectors are essentially time series we can plot the vectors starting at the publication

dates and extending for 1000 minutes. Suppose that these two interfere for some amount of time.

If we take the portions that overlap and then linearly shift both such that the beginning of each

port remains at 0 we can add the two prediction vectors to create a sliced prediction vector. This

sliced prediction vector is guaranteed to have between 0 and 101 dimensions. However, if we

wanted to restrict it to an exact range we would create a sliced prediction vector by adding a

prediction vector to a fake prediction vector with all 0 over the specified range. Thus producing

a sliced prediction vector of the specified range and values. Let us also define an active article

for a time and company. An article is active if for a specific range there is a sliced prediction

vector that can be created and that article is about the specific company / stock.

 With this in hand let us define four techniques that will convert from the raw prediction

vectors to a scalar. All these techniques are based on a linear regression’s slope for a regular or

scaled sliced prediction vector. Having the scalar based on the slope helps to mitigate potential

noise by taking into account the entire performance over 65 minutes. Additionally, all the linear

regressions go through the origin, which matches the 0 for the first dimension and ensures that

the higher dimensions have more weight in corresponding line.

 16

• Simple mean: The first technique and perhaps the most simplistic is to create an average

of all prediction vectors for active articles at the point at which the sentiment analysis

wants to be made for some time bar. That is add each prediction vector and divide by the

total count of active articles. Find the slope of this article with a fixed point at (0,0), using

linear regression. This slope will be the sentiment value.

• Weighted mean: The second technique is similar to the first, but using weighted means

instead. Where the weight is determined by the inverse of the time distance between the

prediction point and the publication of the article. This is to give higher weight to articles

that came out closer to the prediction point.

• Regression: The third technique is the mean of all slopes of all sliced prediction vectors

between the specified time. Again all lines must go through the origin.

• Classification: We classify an active article as good if the slope of the sliced prediction

vectors between the specified times is greater than a given threshold. Likewise, it is bad if

it is below a threshold and if it is in between thresholds it is considered neutral. The

scalar is produced by the count of good minus the bad divided by the addition of both.

This only works if there exists at least 1 good or bad article.

If for the specified range there are no active article to work with, or in the fourth’s case no

good or bad articles, then the system will merely return 0 stating it has no confidence either

way.

3.1.5. Example	Sentiment	Analysis	Machine	

Let us take a couple simplistic articles, describing different companies, to go through the

process of the machine. First let the machine be in the initial state as described where the vector

lengths will be 11 and intervals set at 10 minutes. Starting with the article given by “An up stock

is moving upward”. If we were to create the stemmed bag of words representation of this article

it would be {“up”:2, “stock”:1 “move”:1}; “up” and “upward” share the same stem and the other

two words are removed since they are stop words. Now we can try to make a prediction on that

article.

𝑃 = 𝑤JKLM ∗
𝑛@ABC
𝑁 ∗ log 1 +

𝐶
1 + 𝑐@ABC@ABC∈^

 17

word = "up" ∶ 	 0%% ∗
2
4 ∗ log 1 +

0
1 + 0 = 0%%

word = "stock" ∶ 	 0%% ∗
1
4 ∗ log 1 +

0
1 + 0 = 0%%

word = "move" ∶ 	 0%% ∗
1
4 ∗ log 1 +

0
1 + 0 = 0%%

𝑃 = 0%%

Figure 8 First example article prediction vector

As we can see the prediction for the first article is the zero vector which is to be expected since

all word vectors are still at their initial state. Now let us say that 100 minutes have passed so we

can obtain a full price vector.

𝐴 = (0, 0.5, 1.0, 1.5, 2.0, 2.0, 2.5, 3.0, 3.0, 3.0, 3.0)

Figure 9 First example article price vector

𝑤�� =
𝑤�� ∗ 𝑐�� + 𝐴

𝑐�� + 1
=
0%% ∗ 0 + 𝐴
0 + 1 = (0, 0.5, 1.0, 1.5, 2.0, 2.0, 2.5, 3.0, 3.0, 3.0, 3.0)

-0.5

-0.3

-0.1

0.1

0.3

0.5

0 10 20 30 40 50 60 70 80 90 100

Article	1	- Prediction	Vector

-0.5

0.5

1.5

2.5

3.5

0 10 20 30 40 50 60 70 80 90 100

Article	1	- Price	Vector

 18

𝑤�zKo' =
𝑤�zKo' ∗ 𝑐�zKo' + 𝐴

𝑐�zKo' + 1
=
0%% ∗ 0 + 𝐴
0 + 1 = (0, 0.5, 1.0, 1.5, 2.0, 2.0, 2.5, 3.0, 3.0, 3.0, 3.0)

𝑤�K�� =
𝑤�K�� ∗ 𝑐�K�� + 𝐴

𝑐�K�� + 1
=
0%% ∗ 0 + 𝐴
0 + 1 = (0, 0.5, 1.0, 1.5, 2.0, 2.0, 2.5, 3.0, 3.0, 3.0, 3.0)

𝑐�� = 1, 𝑐�zKo' = 1, 𝑐�K�� = 1, 𝑡�� = 2, 𝑡�zKo' = 1, 𝑡�K�� = 1	, 𝐶 = 1

 Now let the machine take the article “The company’s stock is upward bound” after the

training on article 2. The stemmed bag of words representation will be {“compani”:1, “stock”:1,

“up”:1, “bind”:1}. Which we will use to calculate a prediction for the article.

𝑤oK��"W� ∗
𝑛)A�����

𝑁 ∗ log 1 +
𝐶

1 + 𝑐)A�����
= 0%% ∗

1
4 ∗ log 1 +

1
1 + 0 = 0%%

𝑤�zKo' ∗
𝑛��A)�
𝑁 ∗ log 1 +

𝐶
1 + 𝑐��A)�

= 𝑤�zKo' ∗
1
4 ∗ log 1 +

1
1 + 1 = 𝑤�zKo' ∗ 0.1014

𝑤�� ∗
𝑛��
𝑁 ∗ log 1 +

𝐶
1 + 𝑐��

= 𝑤�� ∗
1
4 ∗ log 1 +

1
1 + 1 = 𝑤�� ∗ 0.1014	

𝑤��WM ∗
𝑛���C
𝑁 ∗ log 1 +

𝐶
1 + 𝑐���C

= 0%% ∗
1
4 ∗ log 1 +

1
1 + 0 = 0%%

𝑃 = 0.0, 0.1014, 0.2027, 0.3041, 0.4055, 0.4055, 0.5068, 0.6082, 0.6082, 0.6082, 0.6082

Figure 10 Second example prediction vector

As we can see since we have only trained on a single article the prediction is a simple scaling of

the price vector from the first article. Over time as individual words change and the machine

trains the scaling will become less apparent. Again let us say that the 100 minutes necessary for a

valid price vector have passed thus we can train the machine on the data.

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100

Article	2	- Prediction	Vector

 19

𝐴 = (0.0, 1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 0.0, −1.0, −2.0, −3.0)

Figure 11 Second example price vector

𝑤oK��"W� =
0%% ∗ 0 + 𝐴
0 + 1 = (0.0, 1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 0.0, −1.0, −2.0, −3.0)

𝑤��WM =
0%% ∗ 0 + 𝐴
0 + 1 = (0.0, 1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 0.0, −1.0, −2.0, −3.0)

𝑤�zKo' =
𝑤�zKo' ∗ 1 + 𝐴

1 + 1 = (0.0, 0.8, 1.5, 2.3, 2.5, 2.0, 1.8, 1.5, 1.0, 0.5, 0.0)

𝑤�� =
𝑤�� ∗ 1 + 𝐴

1 + 1 = 0.0, 0.8, 1.5, 2.3, 2.5, 2.0, 1.8, 1.5, 1.0, 0.5, 0.0

𝑐oK��"W� = 1, 𝑐��WM = 1, 𝑐�zKo' = 2, 𝑐�� = 2, 𝑡oK��"W� = 1, 𝑡��WM = 1, 𝑡�zKo' = 2, 𝑡�� = 3		

	𝐶 = 2

 Now let us consider a final article “The company is bound by upward moves .” The

article will have a stemmed bag of words {“compani”:1, “bind”:1, “up”:1, “move”:1}. And will

have the following prediction.

𝑤oK��"W� ∗
𝑛oK��"W�

𝑁 ∗ log 1 +
𝐶

1 + 𝑐oK��"W�
= 𝑤oK��"W� ∗

1
4 ∗ log 1 +

2
1 + 1

= 𝑤oK��"W� ∗ 0.173

𝑤��WM ∗
𝑛��WM
𝑁 ∗ log 1 +

𝐶
1 + 𝑐��WM

= 𝑤��WM ∗
1
4 ∗ log 1 +

2
1 + 1 = 𝑤��WM ∗ 0.173

𝑤�� ∗
𝑛��
𝑁 ∗ log 1 +

𝐶
1 + 𝑐��

= 𝑤�� ∗
1
4 ∗ log 1 +

2
1 + 2 = 𝑤�� ∗ 0.127

𝑤�K�� ∗
𝑛�A��
𝑁 ∗ log 1 +

𝐶
1 + 𝑐�A��

= 𝑤�K�� ∗
1
4 ∗ log 1 +

2
1 + 1 = 𝑤�K�� ∗ 0.173

-4

-2

0

2

4

0 10 20 30 40 50 60 70 80 90 100

Article	2	- Price	Vector

 20

𝑃 ≈ 0.0, 0.5, 1.1, 1.6, 1.7, 1.3, 1.0, 0.7, 0.3, −0.1, −0.5

Figure 12 Third example prediction vector

As we can see this new prediction vector takes into acount the effect of the two prior articles. To

finish the machine off let us again say that the 100 minutes necessary for a valid price vector

have passed thus we can train the machine on that data.

𝐴 = (0.0, 0.0, −0.5, −0.5, −1.0, −1.0, −1.5, −1.5, −2.0, −2.0, −2.0)

Figure 13 Third example price vector

𝑤oK��"W� =
𝑤oK��"W� ∗ 1 + 𝐴

1 + 1 = (0.0, 0.5, 0.8, 1.3, 1.0, 0.5, −0.3, −0.8, −1.5, −2.0, −2.5)

𝑤��WM =
𝑤��WM ∗ 1 + 𝐴

1 + 1 = (0.0, 0.5, 0.8, 1.3, 1.0, 0.5, −0.3, −0.8, −1.5, −2.0, −2.5)

𝑤�� =
𝑤�� ∗ 2 + 𝐴

2 + 1 = (0.0, 0.7, 1.2, 1.8, 1.7, 1.0, 0.2, −0.5, −1.3, −2.0, −2.7)

𝑤�K�� =
𝑤�K�� ∗ 1 + 𝐴

1 + 1 = 0.0, 0.3, 0.3, 0.5, 0.5, 0.5, 0.5, 0.8, 0.5, 0.5, 0.5

-1

-0.5

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70 80 90 100

Article	3	- Prediction	Vector

-3

-2

-1

0
0 10 20 30 40 50 60 70 80 90 100

Article	3	- Price	Vector

 21

𝑐oK��"W� = 2, 𝑐��WM = 2, 𝑐�K�� = 2, 𝑐�� = 3, 𝑡oK��"W� = 2, 𝑡��WM = 2, 𝑡�K�� = 2, 𝑡�� = 4		

	𝐶 = 3

 In order to produce values that may used more readily we must now employ the post

processing techniques. We will showcase the generally more complex weighted mean scheme.

We are given two arbitrary articles about the same company with the following prediction

vectors and publication information:

Released: Oct 12th 2015, 8:30 AM

𝑃¡ = 0.0, −0.5, −1.0, −1.0, 0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0

Figure 14 Fourth example article prediction vector

Released: Oct 12th 2015, 9:10 AM

𝑃¢ = 0.0, 0.5, 0.5, 0.0, 0.5, 1.0, 1.5, 1.5, 1.0, 1.0, 1.0

Figure 15 Fifth example article prediction vector

-1.5

-0.5

0.5

1.5

2.5

3.5

0 10 20 30 40 50 60 70 80 90 100

Article	4	- Prediction	Vector

-1.5

-0.5

0.5

1.5

2.5

3.5

0 10 20 30 40 50 60 70 80 90 100

Article	5	- Prediction	Vector

 22

As we can tell from the publication dates there are 60 minutes in which the two intersect, so if

we wanted to use the prediction vectors of both we would have to constrain our values within

that 60 minutes. So let us say we want to create a prediction value on Oct 12th 2015, 9:30 AM for

30 minutes into the future. We have to create the sliced prediction vector for that specific

timeframe. As described we take the same real time values from each prediction vector and then

rebase them.

𝑆𝑃¡ = 1.0 − 1.0, 2.0 − 1.0, 3.0 − 1.0,4.0 − 1.0 = (0.0, 1.0, 2.0, 3.0)

𝑆𝑃¢ = 0.5 − 0.5, 0.0 − 0.5, 0.5 − 0.5, 1.0 − 0.5	 = (0.0, −0.5, 0.0, 0.5)

Now to produce the sentiment

value we need to take the

weighed average of the two

sliced prediction vector with

weight based on their time since

publication.

1
∆𝑡V ∗ 𝑆𝑃

1
∆𝑡V

=

1
60 ∗ 60 V ∗ 𝑆𝑃¡ +

1
20 ∗ 60 V ∗ 𝑆𝑃¢

1
60 ∗ 60 V +

1
20 ∗ 60 V

= 0. , −0.35, 0.2, 0.75

Now we must run a linear regression on this considering. So the final prediction value for these

specfic paramaters would be 0.1643 which would indicate that the machine thinks that the

company’s stock value will go up.

3.1.6. Evaluation	

 In order to test the sentiment analysis machine, a sample of 1000 date times were chosen

from 10/12/2015 – 3/4/2016. Each time a random ticker from the S&P 100 was also chosen.

With a time bar of 65 minutes each of the 4 possible combinations of the model will be run with

the following 5 post processing techniques: mean, weighted mean, regression, classification for

y	=	0.1643x

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

0 0.5 1 1.5 2 2.5 3 3.5

Graph	of	Weighted	Slice

Figure 16 Example graph of a weighted slice

 23

good > 0 and bad < 0, and classification for good > .001 and bad < -.001. The best performing

scheme amongst the 20 possible will then be used as the input for the neural network.

3.2. CLUSTERING	&	RISK	MINIMIZATION	

A common technique used in risk minimization is investment diversification, which is the

investment in a diverse selection of assets that behave differently such that if a handful of the

investments lose some of their value, the return from other investments would compensate for

the losses.

In our search to find a diverse selection of stocks, we first used K-Means clustering, a

clustering algorithm which unfortunately does not work well with time series data (such as our

financial data). In our experience, K-Means with random initialization resulted in extremely

different clusters on every run with no consistent pattern. Instead, we used hierarchical

agglomerative clustering algorithm with Dynamic Time Warping (DTW) and weighted distance

to cluster stocks based on how similarly their prices have behaved in the past.

To determine the number of clusters in K-Means clustering, we used the Elbow method.

However, when performing hierarchical agglomerative clustering, we selected a number of

clusters such that each cluster had at least 2 stocks and the largest cluster had a maximum of 15

of the S&P 100 stocks to avoid training a single network on an overly large cluster due to

hardware limitations constraining our network’s size.

Although diversification was the initial motivation behind clustering, we found that our

neural networks performed better when trained on a cluster of stocks instead of only on a single

stock or on all S&P 100 stocks. Previous research also found that training a neural network on a

cluster improved performance [13]. We believe that training a neural network on the combined

data of a cluster of stocks helped our network in learning patterns that are consistently useful

when making predictions and helped avoid over fitting.

3.3. NEURAL	NETWORK	

 We decided to use a recurrent neural network variant called Long Short Term Memory

(LSTM) for our main prediction system. LSTM networks have been shown to be able to solve

 24

problems that have hundreds of time steps between important events. This was obviously a huge

deciding factor when compared to other neural networks which can have trouble learning

dependencies between events only twenty time steps apart.

3.3.1. Features	&	Outputs	

 Examples or instances were constructed as unique series of 100 consecutive candlesticks

from a stock’s 65 minute candlestick chart. Initially, each data point or time step in a series

consists of a candlestick’s high, low, open, and closing price, volume and date. To achieve

statistical stationarity, we difference the prices in the input features. A differenced time series

sometimes referred to as detrended time series) is computed as the differences between

consecutive observations.

As shown in Figure 17, differencing stabilizes the mean and variance of a time series,

which allows a neural network to learn a set of weights that are shared across time steps.

Differencing a time series is a technique that is used in training the state of the art neural network

in handwritten recognition and even proved useful in previous research that also attempted to

forecast stock prices [14].

At each time step, we also use binary features to represent the day of the week (3 inputs),

day of the month (5 inputs), month (4 inputs) and time of day (3 inputs) to represent the date. For

example, on the 6th of December, 6 (day of the month) is represented as 0b00110 and 12

Figure 17: Dow Jones Index on 297 consecutive days (Left). Daily change of Dow Jones Index on 297 consecutive days (Right)

 25

(month) is represented as 0b1100. We used binarized features for the discrete valued inputs

because binarized features are shown to be more robust to noise [15].

We train our system to predict if the closing price of a candlestick on a 65 minute time

chart will be higher than its opening price. The system makes a prediction after a new

candlestick starts to form. Our system has only a single sigmoid output. An output closer to 1

means that the system predicts that the closing price of the current candlestick is higher than the

opening price. The output can be interpreted as a confidence value, where a number really close

to 1 or 0 means that the system is very confident in its prediction.

3.3.2. Regularization	

 Initially, we regularized the network by using Dropout [16], by stabilizing activations

[17] and by decorrelating representations [18]. Unfortunately, unlike Dropout, regularization by

stabilizing activations and regularization by decorrelating representations had parameters that

were too costly for our hardware to optimize and slowed down training more than our timeline

could allow.

We also considered RNNDropout [19], a special variant of the Dropout regularization

method, which was designed specifically for LSTM. However, our system performed better with

traditional Dropout. Ultimately, we decided to use Dropout as our only regularization method.

3.3.3. Activation	function	

For this project we were initially using Rectified Linear Units [20]for all layers in the

neural network. A major problem with training deeper neural networks using back propagation is

vanishing or exploding error gradient. Rectified Linear Units (ReLU) do not suffer as greatly

from vanishing gradients as sigmoid or hyperbolic tangent sigmoid. However, the network would

sometimes start producing NaN (Not A Number) errors when using ReLU due to the network

producing incredibly large numbers. We had similar problems using Exponential Linear Units

[21]. Ultimately, we decided to use a standard hyperbolic tangent activation function.

 26

3.3.4. Training	&	Hyperoptimization		

We used 3 LSTM layers. The network consumes a time series of 100 time steps, each

consisting of 22 inputs to produce a single sigmoid (value between 0 and 1) prediction.

Due to hardware constraints, we limited the number of parameters of our network to

approximately 2 million parameters. Each cluster’s dataset consisted of 80,000 to 600,000

examples for training, 3,200 to 24,000 for validation, and 3,200 to 24,000 for testing. We use

mini batch gradient descent with nesterov momentum to train a new network on each cluster of

stocks. Nesterov momentum has been shown to significantly improve performance on multiple

tasks [22].

When training using batch gradient descent, a network is first evaluated on the entire set

of training examples before a single update is made to the network’s weights. However, when

training using mini-batch gradient descent, the network’s weights are updated after the network

is evaluated on only a small batch of training examples instead of the entire dataset. This training

method makes an assumption that the small batch of training examples are a good enough

representation of the entire dataset, such that the gradient of mini batch gradient descent and

batch gradient descent generally move the network in the same direction. Due to limited GPU

memory, the maximum batch size we could select was around 200. We ran one epoch with a

mini batch size of 200 and summed up the error gradients, then repeated it with batch sizes [1, 5,

10 .. 195] and compared the gradients, in an attempt to find a small batch size that has gradients

similar to the ‘true gradient’ (the gradient when using batch gradient descent). Ultimately, we

selected batch size 40 as a happy medium between frequent weight updates, time per epoch and

noise. Additionally, the gradient norm was scaled down if it was larger than 5 to mitigate the

effect of exploding gradient [23].

 Size Activation

Layer 1 400 tanh

Layer 2 400 tanh

Output 1 sigmoid
Table 1 Neural network layers

 27

We initialized our learning rate at 0.1 and after every training epoch we increased the

learning rate by 10% if performance on the validation set improves or reduced it by 50%

otherwise, down to a minimum of 1 * 10-8. This is a commonly used inexpensive method to find

a good learning rate. As for momentum, we arbitrarily selected the initial value 0.9.

 In an attempt to fight overfitting, if the network fails to improve its performance on the

validation set 10 times in a row, we restore the network’s weights to its previously best

performing weights and raise our batch size in increments of 20 up to our maximum batch size.

The intuition is that a larger batch size would reduce noise and help the network settle at a local

minima.

 28

4. RESULTS	

4.1. SENTIMENT	ANALYSIS	RESULTS	

During the period between 10/12/2015 and 3/4/2016 we were able to collect 294500

unique html articles from Google’s and Yahoo’s RSS feeds. Our preprocessing could

successfully extract the article content from 179400 of those html articles. On average each stock

was written about 2.37 times per day, including weekends, and 20.57 times per week. The exact

distribution of articles by day can be found in Table 2. Overall, these figures show that there are

substantial news articles for the sentiment machine to not only learn but also make predictions at

the daily rate.

 Additionally, we collected the historic stock price data during the same period,

10/12/2015 and 3/4/2016, by using Google’s finance API. During this interval the API provided

an average of 44300 points of minute bar data (time, opening price, minimum price, maximum

price, closing price, and volume) for each stock. In total, there were 22.15 million points of

minute bar data gathered during the collection period.

 To evaluate the accuracy of the sentiment value we created full predictions for the four

specified models and the following five post processing techniques: weighted mean, simple

mean, regression, classification with both thresholds set at 0.0, and classification with thresholds

set at 0.01 and -0.01 for good and bad articles, respectively. However, these post processing

methods return a scalar, so we us a trading strategy such that if a post process method’s return

value is above a threshold then we “should buy” the specified stock at the time.

Article	Percentage	by	Day	
Monday	 Tuesday	 Wednesday	 Thursday	 Friday	 Saturday	 Sunday	
18.37%	 19.91%	 19.68%	 18.92%	 15.11%	 3.72%	 4.29%	

Table 2 Article distribution over days

 29

 Table 3 shows the accuracy of a “should buy” command from the trading strategy for all

the different models with the different post processing functions. The threshold used in the

trading strategy is set to 0.0, stating that any post process return value above 0 should be bought.

Each scheme is better than a random trading strategy, i.e. a strategy where it randomly predicts

whether to buy. For the same times and stocks used in the evaluation of the sentiment value, the

random strategy was only accurate 51.5% of the time. Since we are dealing with finances, we

also wanted to look at the profitable of this strategy. Table 4 shows the average percentage profit

made for every “should buy” command, again with a 0.0 threshold. The random strategy

meanwhile had a profit of 0.01%. We can see that all all of the sentiment models perform better

than following a purely random strategy in some cases meagerly better and others significantly

better.

These results have shown the base case of the system, where if it might go up we trade on

it. However, we could improve the prediction results by selecting optimal thresholds (likely non

0.0) based on the first half, chronologically, of the evaluation data and then testing on the latter

“Should	Buy”	Accuracy	(0.0	Threshold)	
		 Term	Frequency	1	 Term	Frequency	2	
		 Train	1	 Train	2	 Train	1	 Train	2	
Weighted	Mean	 54.81%	 54.15%	 53.35%	 53.78%	
Simple	Mean	 55.41%	 55.63%	 54.65%	 55.20%	
Regression	 54.97%	 55.29%	 54.52%	 55.50%	
0.0	Classification	 55.00%	 53.42%	 55.10%	 54.98%	
0.01	Classification	 54.82%	 54.68%	 55.28%	 55.50%	

Table 3 0 threshold accuracy

“Should	Buy”	Profit	%	(0.0	Threshold)	
		 Term	Frequency	1	 Term	Frequency	2	
		 Train	1	 Train	2	 Train	1	 Train	2	
Weighted	Mean	 0.06%	 0.03%	 0.05%	 0.06%	
Simple	Mean	 0.12%	 0.11%	 0.12%	 0.11%	
Regression	 0.10%	 0.10%	 0.10%	 0.12%	
0.0	Classification	 0.10%	 0.10%	 0.11%	 0.11%	
0.01	Classification	 0.09%	 0.10%	 0.11%	 0.11%	

Table 4 0 threshold average profit % per trade

 30

half of the data. More specifically, we had to maximize accuracy while ensuring that there were

enough “should buy” orders, i.e. the “should buy” command should be issued no less than

approximately 20% of the time. The data used for optimization and the data used for testing was

pulled from times between 10/12/2015 and 12/12/2015 and between 12/12/2015 and 3/4/2016,

respectively. (Note all threshold values are scaled up by a factor of 100). The optimizations were

primarily done by hand, allowing human feel to choose optimal thresholds based on

experimental results.

“Should	Buy”	Thresholds	
		 Term	Frequency	1	 Term	Frequency	2	
		 Train	1	 Train	2	 Train	1	 Train	2	
Weighted	Mean	 0.0020	 0.0035	 0.0024	 0.0026	
Simple	Mean	 0.0050	 0.0052	 0.0040	 0.0046	
Regression	 0.0044	 0.0049	 0.0049	 0.0056	
0.0	Classification	 0.61	 0.72	 0.71	 0.72	
0.01	Classification	 0.60	 0.71	 0.71	 0.72	

Table 5 Optimized threshold values

“Should	Buy”	Accuracy	(Optimized	Threshold)	
		 Term	Frequency	1	 Term	Frequency	2	
		 Train	1	 Train	2	 Train	1	 Train	2	
Weighted	Mean	 59.63%	 57.75%	 61.48%	 59.84%	
Simple	Mean	 58.21%	 57.81%	 59.14%	 58.62%	
Regression	 58.33%	 56.06%	 60.00%	 55.22%	
0.0	Classification	 55.00%	 60.42%	 59.42%	 53.70%	
0.01	Classification	 55.42%	 62.50%	 59.21%	 53.52%	

Table 6 Optimized accuracy

 31

 Table 5 shows the optimal thresholds that we found. There is a distinct scale difference

between classification and the other post process methods, since classification is based on a -1 to

1 scale while the others are based on slope. Also, by looking at the optimal thresholds we can see

the regardless of the model chosen the optimal threshold for a post process method will be about

the same. The corresponding “should buy” accuracy and profit can be found in Table 6 and

Table 7.

As can be seen, these optimizations dramatically increase both the accuracy and the profit

of any combination of model and post process method. The optimized weighted mean performs

at the slightly best rate of 59%. Additionally, it can be argued that the weighted mean with the

first model, term frequency 1 and training method 1, would produce the best results since it has a

higher number of “should buy” commands. As such the weighted mean with term frequency 1

and training method 1 were used as input into the neural network, since the primary focus is

prediction accuracy.

However, the weighted mean has the lowest profitability, though it still beats a random

strategy. Therefore, it may not be the best candidate if used by itself. The simple mean and

regression techniques both perform at roughly 0.28% profit and 58% accuracy. So in general it

can be argued that these two methods would be preferred over the weighted mean.

4.2. CLUSTERING	

By running the hierarchical agglomerative clustering algorithm with Dynamic Time

Warping and weighted distance on 5 years of word of time series data we were able to cluster the

S&P 100 into the 13 clusters found in Appendix D. As expected a number of clusters contain

“Should	Buy”	Profit	%	(Optimized	Threshold)	
		 Term	Frequency	1	 Term	Frequency	2	
		 Train	1	 Train	2	 Train	1	 Train	2	
Weighted	Mean	 0.07%	 0.13%	 0.16%	 0.11%	
Simple	Mean	 0.31%	 0.30%	 0.26%	 0.26%	
Regression	 0.28%	 0.27%	 0.30%	 0.27%	
0.0	Classification	 0.19%	 0.22%	 0.22%	 0.23%	
0.01	Classification	 0.16%	 0.19%	 0.20%	 0.17%	

Table 7 Optimized average profit % per trade

 32

companies in the same sector. More surprising, however is the unequal size of the clusters. A

number of clusters only have two stocks

while a large portion of stocks are in clusters

with 10+ stocks. This would seem to indicate

that large portions of the S&P 100 follow

similar patterns.

4.3. NEURAL	NETWORK	RESULTS	

We ran back tests on unseen data,

spanning back up to 5 years, for the LSTM

neural networks by themselves and with

using sentiment values. Table 8 shows the

results of those tests. It is clear to see that the

sentiment value increases the accuracy of the

neural network, though marginally. Though

there is one cluster, #3, where the sentiment

value actually decreases the accuracy.

However, the advantage gained by using the

sentiment value far outweighs that small drawback.

“Should	Buy”	Accuracy	

Cluster	#	
Neural	
Network	

Neural	
Network	&	
Sentiment	
Analysis	

1	 72.80%	 72.90%	
2	 71.40%	 71.90%	
3	 74.70%	 74.60%	
4	 59.70%	 60.20%	
5	 58.20%	 58.50%	
6	 63.40%	 63.70%	
7	 60.50%	 60.70%	
8	 75.80%	 76.40%	
9	 67.50%	 67.90%	
10	 54.70%	 55.00%	
11	 51.40%	 51.40%	
12	 54.60%	 55.10%	
13	 55.10%	 55.20%	

Table 8 Neural network based prediction accuracy

Figure 18 Accuracy by clusters

 33

 Figure 18 shows a side by side comparison between the neural network, optimized

sentiment, the combination of the two, and the random strategy as defined as randomly deciding

whether to buy. With this comparison, it can be seen that the sentiment analysis should not be

used by itself since in comparison to the neural network based predictions it barely performs

better than the random strategy. We can also see that the neural network outperforms the random

strategy by an extremely large gap. The neural network with sentiment is accurate up to 77% in

comparison to the random strategy which is only accurate up to 62%

 While accuracy is important in investing, the key objective is to to make money. To that

end, we wanted to test the profitability of the system. The test uses a simple trading strategy that

buys short and sells long based solely on the prediction value of the system. Figure 19 shows the

result of that test over a five year period with unseen data with a $7.50 trading fee and $100000

principle account balance. In order to compare this to normal market conditions we looked at two

other indicators. The first is the “S&P 500” which is the average weighted stock price for stocks

on the S&P 500 during the same period. The second is the “Buy & Hold” strategy where instead

of buying and selling every 65 minutes it buys once at the beginning and the holds onto it for

five year period.

Figure 19 Trading strategies over 5 year time

 34

 At first glance this seems to performs extremely well, being an order of magnitude higher

than the “Buy & Hold” or “S&P 500.” However, to confirm this we must look at a financial

metrics for each to determine their actual performance. The first metric we should consider is the

net profit of each of the schemes. The second metric is the Sharpe Ratio which measures a risk-

adjusted return. More precisely, it is the the mean return in excess of some risk free base over the

volatility of the returns. For our purposes we used 5% annually as the risk free base. The next

metric is the max drawdown, which is defined as the highest percentage of money lost from one

point to another in the future. The final metric we considered was the value at risk, which is a

measurement of the financial risk for a system. Table 9 shows the values that we calculated for

each of the metrics. Looking at the net profit it clear that our system made an extremely large

amount in comparison to either of the two.

Net	Profit	 Sharpe	

Ratio	
Max	

Drawdown	
Value	at	
Risk	

Neural	
Network	 47463.39%	 0.245	 -11.51%	 0.38%	
Buy	&	
Hold	 255.32%	 0.019	 -44.92%	 1.15%	
S&P	500	 82.00%	 0.022	 -18.64%	 0.27%	

Table 9 Financial metric comparison

 35

5. CONCLUSION	&	FUTURE	WORK	

 Experimental results show our LSTM-based system performed incredibly well, predicting

whether stock prices will be higher 65 minutes into the future with up to ~77% accuracy on

entire clusters of stocks. In comparison, randomly predicting whether a stock would be higher

only achieves up to 62% accuracy. Results also show that the use of the sentiment value as an

input to the network marginally increases the accuracy of the neural network.

 As an experimental application of the system in the stock market, we developed a simple

trading strategy that longs or shorts a stock based on the system’s predictions. The strategy had a

Sharpe Ratio of 0.245, which indicates a higher expected return to risk ratio than both the “buy

& hold” and the “S&P 500.” Although a Sharpe ratio below 1 is still considered too small for

most traders [24], our simple trading strategy still significantly outperformed other strategies. We

remain confident in our system’s predictions and optimistic about its potential use in future real

world applications.

5.1. FUTURE	WORK	

 The bag of words model utilized by our sentiment analysis, is simplistic for the complex

task of text mining. A large amount of information, context mainly, is lost in the transformation

from article to bag of words. A more suitable representation that maintains the context of the

textual information could drastically increase the accuracy of the sentiment analysis and the

system as a whole. One possibility is a neural network based on fixed length feature

representations, which has been shown to outperform several textual representations [25].

Additionally, our sentiment analysis approach could be improved by adding a decay function,

such that gradually over time the system forgets the effects articles, making the word vectors a

weighted average with higher weight for articles recently released. This would be critical to a

long term system since words could change connotation depending on the market conditions.

 Hardware limitations were a huge factor in multiple aspects of this project. We did not

possess the computational power necessary to hyperoptimize the network’s input features,

hidden layers size, training parameters and regularization methods. Along with that, the chosen

timebar, 65 minutes, was used because it easily divided a trading day into equal section of time.

 36

In the future, an optimization should be made on the length of the timebar. Finally, we also

would have liked to experiment with boosting techniques for the neural network (e.g. [26]).

 Another key area where this system could be improved on is the use of the output value.

At this point, the system only produces a value between 0 and 1 representing how confident it is

that a stock will go up in the next 65 minutes. A trading system needs to use that value to make

decisions. From the results based on the optimal cluster, we made a substantial profit with even

an arguably simple trading system. Moving forward, a smarter trading system could easily

outperform the one we made.

 We also wished to test the system in a realistic setting. One way to test the real profitable

of the system could be to run it as a walk forward or paper trading system. Paper trading is a test

state where the system sells and buys but does not exchange money [27]. This minimum risk test

method has the benefit of being able to be run in real time, as if it was a real trading system.

Using this it would be possible to determine the true accuracy and profitability as a fully forward

looking system.

 37

6. BIBLIOGRAPHY	
	

[1] TradeStation, "TradeStation Platform," 2016. [Online]. Available:

http://www.tradestation.com/trading-technology/tradestation-platform. [Accessed 20 Apr

2016].

[2] B. M. Barber, Y.-t. Lee, Y.-j. Liu and T. Odean, "Do Day Traders Rationally Learn About

Their Ability," 2010.

[3] B. Yoon and Y. Park, "A text-mining-based patent network: Analytical tool for high-

technology trend," High Technology Management Research, vol. 15, no. 1, pp. 37-50, 2004.

[4] V. Kalyanaraman, S. Kazi, R. Tondulkar and S. Oswal, "Sentiment Analysis on News

Articles for Stocks," in Asia Modelling Symposium, 2014.

[5] N. Oliveira, P. Cortez and N. Areal, "Automatic Creation of Stock Market Lexicons for

Sentiment Analysis Using StockTwits Data," in IDEAS, New York City, 2014.

[6] R. P. Schumaker and H. Chen, "Textual Analysis of Stock Market Prediction Using

Breaking Financial News: The AZFinText System," ACM Trans. Inf. Syst., vol. 27, no. 12,

pp. 1-19, Feb 2009.

[7] A. Graves and J. Schmidhuber, "Offline Handwriting Recognition with Multidimensional

Recurrent Neural Networks," in Neural Information Processing Systems, 545-552, 2008.

[8] C. Lu and X. Tang, "Surpassing Human-Level Face Verification Performance on LFW with

GaussianFace," 20 Dec 2014. [Online]. Available: http://arxiv.org/abs/1404.3840.

[Accessed 12 Feb 2016].

[9] N. Lomas, "Google Says Its Self-Driving Cars Drive Better Than You," 12 May 2015.

[Online]. Available: http://techcrunch.com/2015/05/12/google-says-its-self-driving-cars-

drive-better-than-you/. [Accessed 12 Feb 2016].

 38

[10] A. Ng, "Stanford University Autonomout Helicopter," [Online]. Available:

http://heli.stanford.edu. [Accessed 12 Feb 2016].

[11] J. Dorrier, "Exponential Medicine: Deep Learning AI Better Than Your Doctor at Finding

Cancer," 11 Nov 2015. [Online]. Available:

http://singularityhub.com/2015/11/11/exponential-medicine-deep-learning-ai-better-than-

your-doctor-at-finding-cancer/. [Accessed 15 Feb 2016].

[12] V. Pham, T. Bluche, C. Kermorvant and J. Louradour, "Dropout improves Recurrent Neural

Networks for Handwriting Recognition," 10 Mar 2014. [Online]. Available:

http://arxiv.org/abs/1312.4569. [Accessed 20 Feb 2016].

[13] D. Enkea, M. Grauerb and N. Mehdiyevb, "Stock Market Prediction with Multiple

Regression, Fuzzy Type-2 Clustering and Neural Networks," in Complex Adaptive Systems,

Chicago, 2011.

[14] A. M. Rathera, A. Agarwala and V. Sastryb, "Recurrent neural network and a hybrid model

for prediction of stock returns," 11 Dec 2014. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0957417414007684. [Accessed 21 Feb

2016].

[15] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv and Y. Bengio, "Binarized Neural

Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1

or -1," 17 Mar 2016. [Online]. Available: http://arxiv.org/abs/1602.02830. [Accessed 16

Feb 2016].

[16] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and R. R. Salakhutdinov,

"Improving neural networks by preventing co-adaptation of feature detectors," 3 July 2012.

[Online]. Available: http://arxiv.org/abs/1511.07289. [Accessed 5 October 2015].

[17] D. Krueger and R. Memisevic, "REGULARIZING RNNS BY STABILIZING

ACTIVATIONS," in International Conference on Learning Representations, Caribe Hilton,

San Juan, 2016.

 39

[18] M. Cogswell, F. Ahmed, R. Girshick, L. Zitnick and D. Batra, "Reducing Overfitting in

Deep Networks by Decorrelating Representations," in International Conference on

Learning Representations, Caribe Hilton, San Juan, 2016.

[19] T. Moon, H. Choi, H. Lee and I. Song, "RNNDROP: A NOVEL DROPOUT FOR RNNS

IN ASR," 2015. [Online]. Available:

http://www.stat.berkeley.edu/~tsmoon/files/Conference/asru2015.pdf. [Accessed 2 October

2015].

[20] E. E. o. R. e. A. i. C. Network, "Xu, Bing ;Wang, Naiyan ; Chen,Tianqi; Li, Mu;," 27 Nov

2015. [Online]. Available: https://arxiv.org/abs/1505.00853. [Accessed 12 Apr 2016].

[21] D.-A. Clevert, T. Unterthiner and S. Hochreiter, "Fast and Accurate Deep Network

Learning by Exponential Linear Units (ELUs)," 22 Febuarary 2016. [Online]. Available:

http://arxiv.org/abs/1511.07289. [Accessed 23 Febuarary 2016].

[22] Y. Bengio, N. Boulanger-Lewandowski and R. Pascanu, "Advances in Optimizing

Recurrent Networks," 14 Dec 2012. [Online]. Available: http://arxiv.org/abs/1212.0901.

[Accessed 18 Feb 2016].

[23] R. Pascanu, T. Mikolov and Y. Bengio, "On the difficulty of training Recurrent Neural

Networks," 16 Feb 2016. [Online]. Available: http://arxiv.org/abs/1211.5063. [Accessed 23

Feb 2016].

[24] "Sharpe Ratio," [Online]. Available:

http://www.investopedia.com/terms/s/sharperatio.asp?o=40186&l=dir&qsrc=999&qo=inve

stopediaSiteSearch. [Accessed 12 April 2016].

[25] Q. Le and T. Mikolov, "Distributed Representations of Sentences and Documents," in

International Conference on Machine Learning, Bejing, 2014..

[26] R. E. Schapire, "Explaining AdaBoost," in Empirical Inference, Berlin, Springer Berlin

Heidelberg, 2013, pp. 37-52.

 40

[27] "Paper Trade," [Online]. Available: http://www.investopedia.com/terms/p/papertrade.asp.

[Accessed 20 April 2016].

[28] S. Bird, E. Loper and E. Klein, Natural Language Processing with Python, O’Reilly Media

Inc., 2009.

[29] S. Van der Walt, S. C. Colbert and G. Varoquaux, "The NumPy Array: A Structure for

Efficient Numerical Computation," Computing in Science & Engineering, vol. 13, no. 2, pp.

22 - 30, March 2011.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.

Prettenhofer, R. Weiss, V. Dubourg, V, J. erplas, A. Passos, D. Cournapeau, M. Brucher,

M. Perrot and E. Duchesnay, "Scikit-learn: Machine Learning in Python," JMLR, vol. 12,

pp. 2825-2830, 2011.

[31] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard,

D. Warde-Farley and Y. Bengio, Theano: new features and speed improvements, D. L. a. U.

F. L. N. 2. Workshop, Ed., NIPS, 2012.

[32] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D.

Warde-Farley and Y. Bengio, "Theano: a CPU and GPU Math Expression Compiler," in

Proceedings of the Python for Scientific Computing Conference, Austin, 2010.

[33] P. Uhr, J. Zenkert and M. Fathi, "Sentiment Analysis in Financial Markets," in IEEE

International Conference on Systems, Man, and Cybernetics, San Diego, 2014.

[34] M. Makrehchi, S. Shah and W. Liao, "Stock Prediction Using Event-based Sentiment

Analysis," in IEEE/WIC/ACM International Conferences on Web Intelligence (WI) and

Intelligent Agent Technology (IAT), Atlanta, 2013.

[35] "Dynamic time warping," American Pink, [Online]. Available:

http://america.pink/dynamic-time-warping_1339527.html. [Accessed 12 Nov 2015].

 41

[36] "Tutorial," [Online]. Available: http://www.tradersedgesystems.com/tutorials/. [Accessed

20 April 2016].

[37] "What is a Japanese Candlestick," [Online]. Available:

http://www.babypips.com/school/elementary/japanese-candle-sticks/what-is-a-japanese-

candlestick.html. [Accessed 20 April 2016].

 42

7. APPENDICES	

Appendix	A 	SOURCE	CODE	

The complete source code can be found at the following url:

https://github.com/sjamos/Financial-MQP-2015

However, the historic data we used cannot be included with the source due to copyright. We

could also not include any of the sentiment analysis data since the data sets were to large to fit

with the hosting site.

 	

 43

Appendix	B LIST	OF	THIRD	PARTY	LIBRARIES	USED	

• Python

o BeautifulSoup

o DateUtil

o FeedParser

o Lasagne

o Newspaper

o NLTK [28]

o NumPy [29]

o pyTZ

o Requests

o Sklearn [30]

o Theano [31] [32]

 44

Appendix	C EXAMPLE	RSS	FEED	DATA	

<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0">
 <channel>
 <title>News for Apple Inc. - Google Finance</title>
 <description>News for Apple Inc. - Google Finance</description>
 <link>http://www.google.com/finance?q=NASDAQ:AAPL&amp;client=news-
rss&amp;ei=VZghV4jQHIeB2Aab46iIAg</link>
 
 <item>
 <title>Apple Inc. (AAPL) Shares Tumble, Wiping Almost $50B Off Value Following Weak</title>
 <link>http://www.ibtimes.com/apple-inc-aapl-shares-tumble-wiping-almost-50b-value-following-
weak-first-quarter-2360439</link>
 <guid isPermaLink="false">tag:finance.google.com,cluster:52779096541869</guid>
 <pubDate>Wed, 27 Apr 2016 14:07:54 GMT</pubDate>
 <description>Investors jumped on an Apple stock-buying opportunity Wednesday, pulling the price
back from a more than 8 percent plunge since the company reported Tuesday its first quarterly sales drop
in 13 years and missed Wall Street</description>
 </item>
 …
 <item>
 <title>QQQ: Profit From Apple Inc.&#39;s Failure (AAPL)</title>
 <link>http://investorplace.com/2016/04/qqq-profit-from-apple-aapl-failure/</link>
 <guid isPermaLink="false">tag:finance.google.com,cluster:52779095972947</guid>
 <pubDate>Wed, 27 Apr 2016 15:11:15 GMT</pubDate>
 <description>Tech lovers beware. The generals are being taken out and shot one by one. And the
Nasdaq is suffering under the onslaught. First it was Netflix, Inc. (NFLX), then Microsoft Corporation
(MSFT) and Alphabet Inc (GOOG, GOOGL) bit the dust. And today Apple</description>
 </item>
 </channel>
</rss> 	

 45

Appendix	D GOOGLE	HISTORIC	PRICE	DATA	FORMAT	

 EXCHANGE%3DNASDAQ
MARKET_OPEN_MINUTE=570
MARKET_CLOSE_MINUTE=960
INTERVAL=60
COLUMNS=DATE,CLOSE,HIGH,LOW,OPEN,VOLUME
DATA=
TIMEZONE_OFFSET=-240
a1460035800,110.05,110.13,109.94,109.95,281703
1,109.8725,110.14,109.85,110.11,206135
2,109.96,110,109.87,109.87,140909
3,110.0096,110.17,109.92,109.96,178861
4,109.792,110,109.6,110,270163
5,109.83,109.98,109.76,109.792,203361
6,110.06,110.1,109.78,109.82,204226
7,110.245,110.27,110.03,110.05,225070
8,109.91,110.25,109.91,110.25,206933
9,109.73,109.94,109.7,109.91,291477
10,109.82,109.85,109.73,109.74,173793
11,109.88,109.89,109.79,109.813,126870
12,109.9,109.96,109.84,109.88,135006
13,109.8963,109.925,109.88,109.9,113565
14,109.9601,109.99,109.88,109.895,96487
15,109.895,109.96,109.88,109.96,124241
16,109.82,109.92,109.79,109.89,126239
17,109.66,109.8201,109.65,109.81,142667
18,109.64,109.75,109.64,109.67,148275
19,109.69,109.78,109.55,109.64,168302
...
365,104.36,104.36,104.33,104.35,129551
366,104.3767,104.41,104.35,104.3507,141661
367,104.32,104.42,104.32,104.38,134364
368,104.3024,104.32,104.28,104.32,101674
369,104.31,104.35,104.3,104.3099,139387
370,104.255,104.31,104.23,104.305,162050
371,104.24,104.29,104.23,104.255,203829
372,104.22,104.27,104.2,104.23,210616
373,104.1847,104.26,104.17,104.22,105913
374,104.1801,104.21,104.14,104.18,159327
375,104.211,104.23,104.16,104.19,126741
376,104.2001,104.24,104.16,104.21,197864
377,104.25,104.26,104.19,104.204,193759
378,104.265,104.27,104.21,104.25,152899
379,104.1889,104.27,104.18,104.26,181424
380,104.2101,104.28,104.1638,104.18,277427
381,104.1838,104.2562,104.1838,104.21,246361
382,104.22,104.24,104.18,104.18,207740
 	

 46

Appendix	E YAHOO	HISTORIC	PRICE	DATA	FORMAT	

 uri:/instrument/1.0/AAPL/chartdata;type=quote;range=15d/csv
ticker:aapl
Company-Name:Apple Inc.
Exchange-Name:NMS
unit:MIN
timezone:EDT
currency:USD
gmtoffset:-14400
previous_close:104.3500
range:20160407,1460035800,1460059200
...
range:20160427,1461763800,1461787200
Timestamp:1460035800,1461787200
values:Timestamp,close,high,low,open,volume
close:96.6000,112.3000
high:96.7900,112.3900
low:95.7000,112.2500
open:96.0000,112.2950
volume:0,17167400
1460036099,109.8900,110.1700,109.6000,109.9500,1748800
1460036340,109.8080,110.2700,109.7000,109.8900,1166600
1460036640,109.9100,109.9900,109.7900,109.8200,632600
1460036999,109.6600,109.9200,109.5500,109.8900,723300
1460037240,109.7250,109.7300,109.5800,109.6700,407100
1460037541,109.9200,109.9800,109.7201,109.7300,473800
1460037841,110.0500,110.1161,109.7801,109.9300,480500
1460038140,110.0450,110.1700,109.9800,110.0500,356500
1460038499,109.7500,110.0499,109.7500,110.0400,352700
1460038740,109.7800,109.8000,109.6450,109.7500,394200
...
1461786299,97.6159,97.7100,97.4400,97.4600,923800
1461786540,97.6900,97.8000,97.6100,97.6200,812600
1461786840,97.6250,97.7700,97.6200,97.6900,1058400
1461787199,97.8100,97.8200,97.6100,97.6300,2251300
1461787200,97.8200,97.8200,97.8200,97.8200,31700
 	

 47

Appendix	F S&P	100	BY	CLUSTER	

S&P	100	by	Cluster	
Company	 Symbol	 Sector	 Cluster	

Capital	One	Financial	 COF	 Financials	 1	
General	Motors	 GM	 Consumer	Discretionary	 1	
Johnson	&	Johnson	 JNJ	 Health	Care	 1	
The	Coca	Cola	Company	 KO	 Consumer	Staples	 1	
Lilly	(Eli)	&	Co.	 LLY	 Health	Care	 1	
MetLife	Inc.	 MET	 Financials	 1	
Nike	 NKE	 Consumer	Discretionary	 1	
PepsiCo	Inc.	 PEP	 Consumer	Staples	 1	
Philip	Morris	International	 PM	 Consumer	Staples	 1	

Schlumberger	Ltd.	 SLB	 Energy	 1	
Simon	Property	Group	Inc	 SPG	 Financials	 1	
AT&T	Inc	 T	 Telecommunications	

Services	
1	

Time	Warner	Inc.	 TWX	 Consumer	Discretionary	 1	
United	Parcel	Service	 UPS	 Industrials	 1	
Wells	Fargo	 WFC	 Financials	 1	
Bank	of	America	Corp	 BAC	 Financials	 2	
Celgene	Corp.	 CELG	 Health	Care	 2	
American	International	Group,	
Inc.	

AIG	 Financials	 3	

The	Bank	of	New	York	Mellon	
Corp.	

BK	 Financials	 3	

Berkshire	Hathaway	 BRK-B	 Financials	 3	
Cisco	Systems	 CSCO	 Information	Technology	 3	
Mastercard	Inc.	 MA	 Information	Technology	 3	
McDonald's	Corp.	 MCD	 Consumer	Discretionary	 3	
Mondelez	International	 MDLZ	 Consumer	Staples	 3	
Medtronic	plc	 MDT	 Health	Care	 3	
Morgan	Stanley	 MS	 Financials	 3	
QUALCOMM	Inc.	 QCOM	 Information	Technology	 3	
Raytheon	Co.	 RTN	 Industrials	 3	
Verizon	Communications	 VZ	 Telecommunications	

Services	
3	

Citigroup	Inc.	 C	 Financials	 4	
Exelon	Corp.	 EXC	 Utilities	 4	

 48

Facebook	 FB	 Information	Technology	 4	
General	Dynamics	 GD	 Industrials	 4	
Alphabet	Inc	Class	C	 GOOG	 Information	Technology	 4	
Goldman	Sachs	Group	 GS	 Financials	 4	
Texas	Instruments	 TXN	 Information	Technology	 4	
General	Electric	 GE	 Industrials	 5	
Monsanto	Co.	 MON	 Materials	 5	
Norfolk	Southern	Corp.	 NSC	 Industrials	 5	
PayPal	 PYPL	 Information	Technology	 5	
AbbVie	 ABBV	 Health	Care	 6	
American	Express	Co	 AXP	 Financials	 6	
Caterpillar	Inc.	 CAT	 Industrials	 6	
Comcast	A	Corp	 CMCSA	 Consumer	Discretionary	 6	
CVS	Caremark	Corp.	 CVS	 Consumer	Staples	 6	
Intel	Corp.	 INTC	 Information	Technology	 6	
Lowe's	Cos.	 LOW	 Consumer	Discretionary	 6	
Occidental	Petroleum	 OXY	 Energy	 6	
Pfizer	Inc.	 PFE	 Health	Care	 6	
Procter	&	Gamble	 PG	 Consumer	Staples	 6	
Southern	Co.	 SO	 Utilities	 6	
United	Health	Group	Inc.	 UNH	 Health	Care	 6	
Visa	Inc.	 V	 Information	Technology	 6	
Allergan	plc	 AGN	 Health	Care	 7	
Boeing	Company	 BA	 Industrials	 7	
Costco	Co.	 COST	 Consumer	Staples	 7	
EMC	Corp.	 EMC	 Information	Technology	 7	
Ford	Motor	 F	 Consumer	Discretionary	 7	
FedEx	Corporation	 FDX	 Industrials	 7	
Twenty-First	Century	Fox	Class	B	 FOX	 Consumer	Discretionary	 7	
Twenty-First	Century	Fox	Class	A	 FOXA	 Consumer	Discretionary	 7	
Gilead	Sciences	 GILD	 Health	Care	 7	
Alphabet	Inc	Class	A	 GOOGL	 Information	Technology	 7	
3M	Company	 MMM	 Industrials	 7	
Target	Corp.	 TGT	 Consumer	Discretionary	 7	
United	Technologies	 UTX	 Industrials	 7	
Home	Depot	 HD	 Consumer	Discretionary	 8	
Kinder	Morgan	 KMI	 Energy	 8	
Priceline.com	Inc	 PCLN	 Consumer	Discretionary	 8	

 49

Apple	Inc.	 AAPL	 Information	Technology	 9	
Accenture	plc	 ACN	 Information	Technology	 9	
Allstate	Corp	 ALL	 Financials	 9	
Anadarko	Petroleum	Corp	 APC	 Energy	 9	
BIOGEN	IDEC	Inc.	 BIIB	 Health	Care	 9	
Bristol-Myers	Squibb	 BMY	 Health	Care	 9	
Chevron	Corp.	 CVX	 Energy	 9	
Dow	Chemical	 DOW	 Materials	 9	
Emerson	Electric	Company	 EMR	 Industrials	 9	
Honeywell	Int'l	Inc.	 HON	 Industrials	 9	
International	Bus.	Machines	 IBM	 Information	Technology	 9	
Merck	&	Co.	 MRK	 Health	Care	 9	
Amazon.com	Inc	 AMZN	 Consumer	Discretionary	 10	
BlackRock	 BLK	 Financials	 10	
Colgate-Palmolive	 CL	 Consumer	Staples	 10	
ConocoPhillips	 COP	 Energy	 10	
The	Walt	Disney	Company	 DIS	 Consumer	Discretionary	 10	
Devon	Energy	Corp.	 DVN	 Energy	 10	
Oracle	Corp.	 ORCL	 Information	Technology	 10	
Union	Pacific	 UNP	 Industrials	 10	
Walgreens	Boots	Alliance	 WBA	 Consumer	Staples	 10	
Abbott	Laboratories	 ABT	 Health	Care	 11	
Amgen	Inc	 AMGN	 Health	Care	 11	
JPMorgan	Chase	&	Co.	 JPM	 Financials	 11	
Microsoft	Corp.	 MSFT	 Information	Technology	 11	
U.S.	Bancorp	 USB	 Financials	 11	
Du	Pont	(E.I.)	 DD	 Materials	 12	
Halliburton	Co.	 HAL	 Energy	 12	
Starbucks	Corp.	 SBUX	 Consumer	Discretionary	 12	
Lockheed	Martin	Corp.	 LMT	 Industrials	 13	
Altria	Group	Inc	 MO	 Consumer	Staples	 13	

	

	Worcester Polytechnic Institute
	Digital WPI
	April 2016

	Data Mining in Financial Domain
	Essam R. Al-Mansouri
	Sean J. Amos
	Repository Citation

	Microsoft Word - MQP - Rough Draft.docx

