
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2011

The Shogun MIDI Control System
Benjamin Michael LaVerriere
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
LaVerriere, B. M. (2011). The Shogun MIDI Control System. Retrieved from https://digitalcommons.wpi.edu/mqp-all/3811

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/212977281?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3811&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3811&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3811&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3811&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/3811?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3811&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Project Number: mxc–0310

The Shogun MIDI Control System

A Major Qualifying Project Report
submitted to the Faculty of

Worcester Polytechnic Institute

in partial fulfillment of the requirements for the
Degree of Bachelor of Science

by
Ben LaVerriere

28 April 2011

Approved:

Professor Michael J. Ciaraldi, Advisor

This report represents work of a WPI undergraduate student submitted to the faculty

as evidence of a degree requirement. WPI routinely publishes these reports on its web

site without editorial or peer review. For more information about the projects

program at WPI, see http://www.wpi.edu/Academics/Projects.

Abstract

This report details the design and development of the Shogun MIDI control
system, which helps keyboardists send MIDI commands quickly and with
little possibility of error. Emphasis is given to the design choices made in the
course of this project, including the implementation of a custom configuration-
file syntax and parser. Also included in this report are an overview of relevant
MIDI concepts, suggestions for future work, and documentation for the entire
Shogun codebase.

Keywords: MIDI, Software, Design

Contents

1 Project Overview 1

2 Introduction to MIDI 5
2.1 MIDI Overview . 5

2.2 Shogun-specific MIDI Messages . 6

2.3 MIDI Programming Toolkits . 8

2.3.1 Preferred Toolkits . 8

2.3.2 Other Toolkits . 9

3 Existing Solutions 12

4 Features and Functionality 15

5 System Architecture 18
5.1 Data Flow . 18

5.1.1 Patchfiles . 18

5.1.2 Internal Representation . 22

5.2 MIDI Communication . 24

5.3 GUI . 25

6 Procedure 31
6.1 Technology Choices . 31

6.2 Development Process . 32

6.2.1 Phase 1: Boost and the STL 33

6.2.2 Phase 2: Qt . 33

6.3 Shogun as Cross-Platform Software 34

7 Future Work 37
7.1 Application Functionality . 37

7.1.1 Diagnostic Mode . 37

i

7.1.2 Patchfile Mode . 38

7.2 Syntax Extensions . 39

7.2.1 Custom MIDI Commands . 39

7.2.2 Bookmarks . 39

A Shogun Patchfile Context-Free Grammar 41
A.1 Notes . 41

A.2 Shogun Patchfile Syntax, version 1.0 42

B Sample Patchfiles 44

Bibliography 47

C Codebase Documentation 49

ii

List of Figures

2.1 MIDI messages used by Shogun . 7

3.1 The Genovation MIDI Patch Changer 13

4.1 Sample score annotated with patch changes 16

5.1 Shogun’s main interface . 26

5.2 Single-channel HUD . 27

5.3 Scalability of the Shogun GUI . 27

5.4 Shogun’s MIDI device selection dialog 28

5.5 Dynamic HUD layout . 29

7.1 Possible layout of a structured patchfile-editing interface. 38

iii

Source Code Listings

5.1 Shogun’s metadata tags (from Listing B.1) 20

5.2 Shogun’s MIDI definition tags (from Listing B.1) 20

5.3 Various ways of writing Shogun patchfile steps (from Listing B.1) 21

6.1 Shogun’s Qt project-definition file 35

B.1 test.shogun . 44

B.2 channels-13.shogun . 45

iv

Chapter 1

Project Overview

When Claude-Michel Schönberg composed Les Miserables, he created what
would become the longest-running musical of all time. When John Cameron
orchestrated Les Miserables, he created both a score for the ages and a logistical
challenge for keyboardists. The score calls for two keyboardists — nothing
unusual in the modern age of musical theatre — who originally would play
the show on the Yamaha DX7 synthesizer. However, the state of the art in
1983 meant that each keyboard only had enough memory to hold 32 distinct
voices, or patches, each corresponding to a particular type of sound. As a
result, each keyboard player would use two DX7s, stacked on top of each
other, to accommodate a full 64 patches each.

In modern productions, the problem of memory limitations has all but
evaporated, and keyboardists have little trouble programming or finding a
diverse collection of voices to use in Les Miserables. Newer keyboards present
a different complication, however. The DX7 could easily provide a set of 32

buttons on its front panel for quick patch-changing. A modern synthesizer, on
the other hand, could never provide a front-panel button for each of its voices,
as these number in the hundreds, if not thousands. For the modern theatrical
musician, the question becomes one of accessibility: how can a keyboardist
switch between a large number of presets with speed and accuracy?

Since a keyboard must provide some way of accessing its patches — usu-
ally a number pad or some similar device on the front panel — a daring key-
boardist could use the “native” patch-selection method during a live show.
For a show with a small number of keyboard sounds, this may work very
well. On the other hand, even if the show only uses a few patches, the key-
boardist may still make a mistake and end up playing an accordion part with

1

a gritty, loud synth patch.1

The possibility of making a mistake while changing patches is a very real
one, even for skilled musicians. Musical theatre orchestras often play in near-
darkness, and must adapt to fluctuating tempos, inaudible singers, and the
occasional skipped verse. Consequently, an important metric for any patch-
change solution is its ability to prevent accidental or incorrect patch changes.
Keyboardists, and to some degree keyboard manufacturers, have developed
a number of solutions to this problem over the years. Some of the more
promising options are discussed in Chapter 3.

The existing solutions to live patch-changes are not ideal for the musical-
theatre keyboardist. While the possibility of stepping through a sequence of
voices exists for some of these devices, many appear to have been designed
to provide quick random access to a set of sounds rather than sequential access.
A device that advertises “up to 100 voices” may be great for a keyboardist in
a Beatles tribute band, but a series of a hundred patch changes would only
cover the first act of Les Miserables at best.

The fact that many existing solutions require the performer to purchase
specialized hardware — particularly when that hardware is expensive and
has more features than simply changing patches — provided additional moti-
vation for the Shogun project. As discussed in Chapter 3, a solution that could
run on a wide variety of computers, operating systems, and so on would be
less expensive, more widely usable, and could potentially make it easier for
users to program their own lists of patch changes.

It was from these limitations that Shogun was born. At its core, Shogun is
a piece of software that sends patch-change messages, as defined previously
by the user, to one or more devices in real time. Specifically, Shogun reads
a list of patch changes from a file, which specifies an order for these data as
well as (optionally) some metadata about the file and its purpose. The user
then uses the Shogun interface (which includes keyboard controls as well as a
graphical interface) to navigate through the patch list, with each patch-change
selection being sent to the appropriate connected devices. The interface also
provides mechanisms for handling various exceptional situations: if the user
needs to jump to a particular voice out-of-sequence, for example.

Shogun was originally written as a hacked-together Python script that was
very closely tailored to the author’s particular equipment. While this system
provided a great increase in convenience, it was far from usable on a wide
range of synthesizers (or even generic MIDI devices) and there existed a great

1The author can neither confirm nor deny whether this example comes from personal expe-
rience.

2

deal of additional functionality that could be added to make the system more
intuitive and failure-resistant. Chapter 4 describes the current feature set of
the Shogun system, and explains the ways in which the current system is
more widely-usable than its shoddy predecessor.

A number of options for future development of the Shogun system also
exist, as discussed in Chapter 7. For example, Shogun will may eventually
provide some setup-testing functionality, allowing the user to verify that the
proper data are being sent to the appropriate device(s) in the system.

This paper will provide a brief overview of the Musical Instrument Digital
Interface (MIDI), the protocol used to communicate between the system run-
ning Shogun and the associated devices. Shogun only uses a limited subset
of MIDI, so at worst its users would only need a rudimentary knowledge of
the protocol. However, even this minimal amount of technical ‘wizardry’ may
be discouraging to some users; the Shogun system will include a method of
composing patch-change files that requires no MIDI knowledge beyond the
concept of assigning numbers to distinct patches.2

After discussing the basics of MIDI, this paper will review some of the
existing live-patch-change solutions in use today. These include commercial
products as well as custom-built systems; in each case, we will note both
the useful features of the solution as well as its shortcomings with regard
to Shogun’s intended purpose. Similarly, this paper will provide a survey
of the available programming toolkits that deal with MIDI data. As before,
this evaluation will consider both the advantages of each toolkit as well as its
appropriateness for Shogun in particular.3

Next, we will discuss some of the design challenges particular to the Shogun

project. These challenges include:

• the design of a user interface for time-critical use that prevents accidental
or erroneous input

• the design of a method of patch-file construction that both affords technically-
skilled users a high degree of flexibility and allows novice users to use the
system quickly and easily

• the balance between providing a flexible MIDI-enabled tool and creating a
bloated, frustrating piece of software.

2That is, patch 001 may correspond to “Acoustic Guitar,” patch 002 to “Flute,” and so on.
These values are defined for each synthesizer, either by the manufacturer or, in the case of custom-
programmed patches, by the user.

3‘Appropriateness’ in this case includes the author’s familiarity with the language in which
a toolkit is written, a factor which significantly affects the development process.

3

This material is followed by a discussion of Shogun’s internal data struc-
ture and functionality, and a review of the more salient features of the devel-
opment process. Finally, the various possibilities for future development are
described.

4

Chapter 2

Introduction to MIDI

While the MIDI protocol has been relatively successful, as protocols go, MIDI
software remains somewhat of a niche market. Because Shogun is, even in
this narrow context, a tool with a narrow focus, only a brief overview of
the MIDI protocol is required to understand Shogun’s functionality. In this
chapter, we discuss the fundamentals of MIDI communication, the specifics
of Shogun’s MIDI needs, and the particular MIDI messages used by Shogun.
The final portion of this chapter contains a survey of many MIDI program-
ming toolkits and libraries, along with a discussion of their applicability to
the Shogun project.

2.1 MIDI Overview1

The MIDI standard defines a protocol (and corresponding physical interface)
to enable communication between devices using a musical vocabulary. MIDI
was originally used to link synthesizers, sound generators, and similar de-
vices, and so the protocol can express many facets of a musical performance:
the pitch, volume, and duration of a note, for example, or more nuanced at-
tributes like vibrato.

However, because MIDI was developed in the context of electronic music,
rather than simply music in general, the protocol includes features that re-
late to the low-level mechanisms involved in configuring electronic musical
instruments as well as producing sound with them. For example, the desire
to produce a wide variety of sounds using a single device corresponds to the
part of the MIDI standard with which Shogun is primarily concerned: pro-

1The description of MIDI in this section is technically based on Rumsey (1990), although
nearly every book written about MIDI includes some variant of this material.

5

gram changes.2 According to the MIDI standard, a device should respond to
a ‘program change’ message by loading a different voice or waveform — in
other words, by changing the type of sound it produces. These sounds are
often predefined by the manufacturer of the device, but depending on the
type of device, may also be programmable by the user. It is important to note
that the actual sound data for a patch, be it a waveform with modulation, a
set of samples, or some other type of sound-storage, is neither generated nor
interacted with by MIDI data.3

A single MIDI device can send data to one or more of sixteen MIDI channels,
and devices may in turn “listen” on one or more channel as well. Consider a
musician with a MIDI-capable device that can produce many kinds of sounds
at once, and is able to respond to data on multiple MIDI channels. That mu-
sician could then connect multiple MIDI controllers4 to the sound-generating
device. If each controller is set up to send its data on a different MIDI channel,
the device will be able to assign a different sound to the notes played on each
controller.

2.2 Shogun-specific MIDI Messages

The particular MIDI messages used by Shogun are shown in Figure 2.1. Each
message defined by the MIDI specification consists of one status byte followed
by one or more data bytes. Status bytes always have a most-significant bit of 1,
while data bytes begin with 0. Bits 2–4 of a status byte indicate which status
is being sent, and the remaining four bits indicate which of the sixteen MIDI
channels is being addressed.

A program-change message (status 100) needs only one data byte, which
specifies which of the 128 available patches is to be loaded. The bank-change
message, in contrast, requires two data bytes. This is not because it has any
larger a selection space, but rather because “bank select” is one of the many
controllers defined in the MIDI standard.5 A wide variety of these controllers
exist, and status bytes beginning with 1011 simply indicate that some sort of

2Because of the conflicting use of the word “program” between software design and MIDI
communication — that is, whether “program” means a piece of software or a MIDI voice — I
shall avoid using “program” at all and favor “patch” or “voice” for the MIDI term and “system”
or “application” for the software concept.

3There is one exception to this statement: some devices can be triggered by MIDI to “dump”
their sound data for one or more patches over their MIDI OUT port. However, such an action is
not used frequently, and does not appear in the Shogun system.

4A MIDI controller is any device capable of producing and sending MIDI data.
5Note that the use of the term “controller” in this context is distinct from the previous use.

Here a “controller” is an internal, adjustable parameter in a MIDI device, not a piece of hardware
that generates MIDI data.

6

Figure 2.1: Bit-level diagram of those MIDI messages used by Shogun. Bits
indicating whether a byte is a status byte or a data byte are shown in gray
boxes, bits identifying a particular status byte in pink, and bits specifying a
channel number in green (with data nnnn).

control change will follow. The first data byte after a control-change status byte
specifies which controller will be modified, and then the next byte(s) specify
the particular data for that controller. Thus, to effect a bank change (controller
0), status byte 1011nnnn is followed by data byte 00000000 and then a byte to
specify which of the 128 available banks is to be loaded. (Here nnnn refers to
the four-bit MIDI channel specification present in each status byte.)

It may be worthwhile to note at this point a subtle detail of the MIDI stan-
dard, specifically, that a bank-change message alone should not result in any
audible change from the target device. Only when a device has received a
program-change message (optionally preceded by a bank-change message)
should it load the new sound or setting. To prevent users of Shogun from
either needing to know this subtlety of the MIDI standard or experiencing un-
expected results when stepping through a patchfile, Shogun’s patchfile syntax
and MIDI backend make it impossible to send an isolated bank-change mes-
sage. In other words, for each step, Shogun will always send a bank-change
message and a program-change message.

One final note: the bank-change message described above sends a byte that
will be used as the most-significant byte by the receiving device. A second
controller (#32) exists with which the least-significant byte can be specified, but
most MIDI devices of recent manufacture use only the MSB command. As

7

such, Shogun currently only supports bank changes with controller #0. The
ability to specify one or more custom bank-change commands may exist in a
future version of Shogun; such developments are discussed in Chapter 7.

2.3 MIDI Programming Toolkits

While MIDI programming remains somewhat of a niche market, the popular-
ity of the MIDI protocol itself has led to the development of a great number of
MIDI toolkits for a wide variety of programming languages. In this section,
we review some of these toolkits, indicating first those toolkits whose func-
tionality and documentation distinguished them as candidates for use in the
Shogun development process. Following the discussion of preferred toolkits
is a cursory discussion of a number of less-appropriate choices, including the
reasons for which they were discarded from consideration.

2.3.1 Preferred Toolkits

pyPortMidi http://alumni.media.mit.edu/~harrison/pyportmidi.html

pyPortMidi (Harrison, 2010) is a Python port of the cross-platform PortMidi
C/C++ library, which is described below. The original version of Shogun

(described in Chapter 1) used this library, and experience suggests that it is a
reasonably reliable toolkit. In addition, the library can be used on Windows,
Linux, and OS X systems, and the distribution package includes compiled
versions of the code for each of these platforms. One possible disadvantage of
this library is that its documentation (http://cratel.wichita.edu/cratel/
cratel%20pyportmidi) is minimal, and the project appears to have had no
significant development since 2008.

RtMidi http://www.music.mcgill.ca/~gary/rtmidi/

According to its documentation, RtMidi is “a set of C++ classes (RtMidiIn and
RtMidiOut) that provides a common API (Application Programming Inter-
face) for realtime MIDI input/output across Linux (ALSA), Macintosh OS X,
SGI, and Windows (Multimedia Library) operating system” (Scavone, 2011).
The library appears to remain under development — or perhaps “mainte-
nance” is more appropriate — with the most recent update being released
in January of 2010. The author provides not only class-, file-, and method-
level documentation, but also some well-written and comprehensive tutorials
showing potential uses of the toolkit. Because of the sufficient (and clear) func-
tionality and the excellent documentation, RtMidi was selected as the MIDI

8

library used in the Shogun project.

pyrtmidi http://trac2.assembla.com/pkaudio/wiki/pyrtmidi

pyrtmidi is a Python wrapper for RtMidi whose API is copied “near verbatim
from the C++ code” (Stinson, 2010). As such, a programmer can take advan-
tage of RtMidi’s pleasant documentation and functionality, while continuing
to develop in Python. Since Shogun was originally written in Python, this
approach did have some appeal. That being said, with RtMidi already being
such a strong library, I was concerned that adding another layer of abstrac-
tion/porting would be more likely to introduce complications than to improve
the programming experience.

PortMidi http://portmedia.svn.sourceforge.net/viewvc/portmedia/portmidi/

trunk/pm_common/portmidi.h?view=markup

PortMidi is one of the more well-known MIDI programming toolkits, and
is, with RtMidi, one of the two main choices for C/C++ MIDI programming
(PortAudio Developers, 2009). Cross-platform compilation is possible, and
PortMidi appears to provide the necessary MIDI features (and more) for the
Shogun system. However, after examining the documentation for both sys-
tems, and after reading a comparison of the two libraries (Capocasa, 2006), it
seems clear that RtMidi is not only an excellent library on its own, but it also
surpasses PortMidi for ease of use and performance.

jdksmidi http://github.com/jdkoftinoff/jdksmidi

Despite the presence of ‘JDK’ in the name, this library is a general-purpose
C++ MIDI toolkit. It appears to provide an ample feature set, placing it in the
same category as RtMidi and PortMidi with regard to functionality (Koftinoff,
2011). However, despite the README’s request that users “please see the

documentation in the subdirectory: docs,” I have been unable to find
any actual documentation. Source files appear to be minimally-commented,
so the in-place documentation does not make up for the missing docs folder.6

2.3.2 Other Toolkits

The following libraries have one or more characteristics or deficiencies that
make them less attractive for use in the Shogun project. As such, they are

6In fact, the developers provide a link that, they claim, contains documentation generated by
the Doxygen utility, but this link is currently broken.

9

listed here with minimal description, with focus being given to the reason for
their being discarded.

portmidizero http://gitorious.org/portmidizero/

portmidizero is “a simple ctypes wrapper for PortMidi in pure python,” but it
is also minimally-documented and therefore inferior to pyPortMidi, another
Python wrapper for PortMidi (enoki, 2009). That portmidizero requires a
platform-specific dynamic library for PortMidi, and that these libraries are
not packaged with the toolkit, make it even less attractive for this project.

pygame.midi http://www.pygame.org/docs/ref/midi.html

The Pygame project itself is well-established and widely used for Python mul-
timedia/game development (PyGame Developers, 2010). The MIDI module,
however, is simply a wrapper for the pyportmidi library, itself a Python port of
the PortMidi toolkit. If I want to use [py]PortMidi, I see no reason to include
another level of abstraction.

PyMidi http://hyperreal.org/~est/python/MIDI/

This Python library is designed solely for responding to MIDI input, and as
such cannot possibly meet the needs of the Shogun system (Tiedemann, 2000).

Python Midi Package http://www.mxm.dk/products/public/pythonmidi

This package is listed as “experimental” and cannot interface with MIDI ports
for realtime data sending or receiving (Max M, 2005). As with PyMidi, above,
this library cannot possibly satisfy the needs of the Shogun system.

javax.sound.midi http://download.oracle.com/javase/1.4.2/docs/api/javax/

sound/midi/package-summary.html

This toolkit appears to be the most prominent, if not the only, MIDI toolkit
for Java (Oracle, 2010). Possibly because of the “heaviness” of the JVM, Java
does not appear to be widely used for MIDI software, and I was unable to
find many non-trivial examples of the javax.sound.midi library in action. It
may not be the most concrete of reasons, but it seems that this library exists
so that Java can say it supports MIDI, not because there is great demand for
MIDI programming in Java.

C# MIDI Toolkit http://www.codeproject.com/KB/audio-video/MIDIToolkit.

aspx

10

A brief review of this and other documentation for the C# MIDI Toolkit sug-
gests that the toolkit itself is reliable and has been used by a number of projects
(Sanford, 2007). However, the package appears not to provide any dramati-
cally different or more usable features than other, similar libraries. Because I
do not currently have any significant familiarity with C#, I believe it would
be counterproductive to use this package when equivalent (or better) options
exist for languages with which I have already worked.

midi-dot-net http://code.google.com/p/midi-dot-net/

As with the C# MIDI Toolkit, this library seems reasonably useful, but requires
the use of a language and framework with which I am not familiar (Lokovic,
2009). The fact that there is no option for cross-platform porting only serves
to make it less attractive for use in the Shogun project.

CMU MIDI Toolkit http://www.cs.cmu.edu/~music/cmt/

This toolkit, while apparently very useful in its day, is self-professedly out-of-
date — an easy rejection (Dannenberg, 93).

MusicNoteLib http://gpalem.web.officelive.com/CFugue.html

As the name suggests, this C/C++ library deals only in MIDI notes, function-
ing as a “beautiful abstraction that lets you concentrate on. . . the Music [sic]
rather than worry about the MIDI nuances” (Palem, 2010). Because Shogun’s
main functionality involves non-note MIDI data, this library cannot serve the
needs of the project.

Arduino MIDI Library http://www.arduino.cc/playground/Main/MIDILibrary

As a point of interest, a later version of Shogun could possibly be developed
on the Arduino microcontroller platform (Best, 2011). Such a design could in-
corporate a custom physical interface, possibly based on the interface research
and design to be included in this project.

11

Chapter 3

Existing Solutions

Having existed since the early 1980s, the MIDI protocol has spawned all man-
ner of MIDI-enabled instruments, devices, and gadgets. As a result, the mod-
ern keyboardist does have a few options to achieve live patch changes with
greater convenience than manual entry. A brief survey of some of these sys-
tems will serve to demonstrate the need for a tool with Shogun’s functionality
by illustrating the shortcomings present in the existing solutions.

Probably the most frequently-mentioned live patch-change manager is the
Opcode Studio 5, a MIDI interface first manufactured in 1991 for the Macin-
tosh platform (Gallant, 2008; Peck et al., 2007). The Studio 5 has 15 MIDI IN
ports and 15 MIDI out ports, allowing for communication with up to 240 MIDI
channels, and could be programmed to send a wide variety of MIDI messages
according to user input. However, Opcode ceased manufacturing in 1999, and
those units that still exist were only designed to work with versions 7, 8, and
9 of the Macintosh OS — not the 10.* series currently in use. The functionality
of the Studio 5 remains highly desirable, but the impracticality of obtaining
and maintaining the system (including an appropriately old Macintosh) takes
it out of consideration for most musicians.

A few devices of more modern manufacture offer some of the same fea-
tures of the Studio 5. The Roland FC-300 is a hardware device that acts as
a multipurpose MIDI controller for keyboardists, and can be used to access
a set of predefined patches (Roland Corporation, 2007). However, this list is
limited to 100 entries, and the device’s interaction style seems more suited
to random repeated access than stepping through a long sequence of voices.
(The latter style of interaction requires less thought on the part of the user, and
is therefore preferable when dealing with a long sequence of patch changes.)
In addition, because the FC-300 is designed to provide a much wider range of

12

functionality than Shogun, it sells for around $400, putting it out of consider-
ation for many amateur or semiprofessional musicians.

The Genovation MIDI Patch Changer is probably the best commercially-
available solution to the problems Shogun seeks to solve. The form factor, as
shown in Figure 3.1, certainly reflects a dedication to the single purpose of
effecting patch changes. However, as with the FC-300, the number of prede-
fined patches that can be accessed sequentially (or randomly) is limited, here
to 100 entries (Genovation, 2010). Additionally, the process of programming
the Patch Changer appears quite complex, requiring some detailed knowledge
of MIDI and the use of a somewhat unattractive and forbidding interface.

Figure 3.1: The Genovation MIDI Patch Changer

Finally, for the daring “power” user, there exists the possibility of construct-
ing a custom MIDI-enabled device to enact live patch charges. The uCApp-
s/MIDIbox project provides a development platform for MIDI gadgets of all
sorts, including patch-changers (Klose, 2011). Similarly, the Arduino MIDI
library discussed in Chapter 2 could be used to develop a custom device to
accomplish Shogun’s goals.

If building a custom electronic device seems more promising than any ex-
tant device, however, why not simplify matters and create a custom software

13

solution? Even though the open-source hardware movement is growing and
thriving, a piece of software remains easier to distribute and, for most end
users, easier to implement than even the clearest and most detailed schemat-
ics.

If this software is suitably platform independent, it can avoid the fate of
the Studio 5, and if the project is open-source, development could continue
to adapt the software to any number of future platforms. A USB-to-MIDI
interface can be obtained relatively cheaply, as can a bare-bones laptop, if
needed. Such a system is within the reach of many musicians, and will be
sufficiently powerful to run Shogun.

14

Chapter 4

Features and Functionality

Because Shogun was created to address a particular need, it has always had
a relatively small feature set. The idea of simple software to serve a particular
purpose has been, and should continue to be, a key principle guiding Shogun’s
development.

MIDI communication is at the center of Shogun’s functionality. In particu-
lar, Shogun must be able to generate MIDI program-change and bank-change
messages and transmit these to a MIDI device driver to be output. (A de-
tailed discussion of these messages can be found in Chapter 2.) Additionally,
Shogun must be able to send these messages to any MIDI channel, and pro-
vide a convenient method by which users can specify to which channel each
message should be sent.

The operating system-level details of interacting with MIDI device drivers
can be handled by one of the many extant MIDI programming libraries. This
fact leaves Shogun the tasks of constructing the appropriate messages, ad-
dressing them to the specified channels, and of course providing syntax al-
lowing users to control these operations.

We call each set of MIDI messages to be sent by Shogun a step, and a se-
quence of these steps a patch list. Each step may address one or more MIDI
channels, and will be sent when indicated by the user. Therefore, Shogun

must allow users to navigate through a patch list in a few ways. Sequential
navigation is the most common case, and Shogun should allow users to ad-
vance one step at a time using either the graphical interface or the keyboard.
(The same is true, naturally, for navigating backwards one step at a time.) Be-
cause live theatre is replete with the unexpected, Shogun should also allow
users to jump to an arbitrary step in the patch list by its numeric position
in the sequence. (If it seems unusual to require users to know the ordinal

15

of each step, recall that most users will have already annotated their musical
scores with patch changes, and it is a simple task to number some or all of
these steps. An example of how users might annotate a score can be found in
Figure 4.1.)

Figure 4.1: A sample passage from a musical score, annotated with numbered
patch changes.

In the first version of Shogun, the available syntax corresponded directly to
the specific labels and properties of the author’s own keyboard. For example,
banks were addressed by the names provided on the keyboard itself — ‘A,’
‘B,’ ‘C,’ and so on — with a hard-coded ‘translation’ to numeric MIDI bank
values in the Shogun software. An important goal of this project has been that
Shogun should be usable on as many MIDI devices as possible, in compliance
with the MIDI standard. For example, meeting this goal requires a method of
specifying steps that is not device-specific but still allows for semantic richness
from the user’s perspective.

The simplicity of Shogun’s functionality should be reflected in its user in-
terface as well. Only those interface elements necessary to Shogun’s essential
functionality or for displaying the current MIDI system state should be allot-
ted screen space, and primacy should be given to those elements most useful
at a quick glance.

Many MIDI software applications include some variant on the “MIDI ana-
lyzer” functionality — the ability to monitor MIDI input, often with filtering
capabilities, as a diagnostic or troubleshooting tool. Since all of Shogun’s
primary functions are possible with MIDI output alone, it was decided that
a full MIDI analysis function would be outside Shogun’s purview. However,
it would be useful if Shogun could assist users in verifying that their MIDI

16

devices were properly connected for use with Shogun, and so a “diagnostic
mode” interface is intended for future development of the Shogun application
(and discussed in Chapter 7).

This concise set of operations should allow users to perform satisfactory
MIDI-network troubleshooting without overcomplicating Shogun itself.

17

Chapter 5

System Architecture

5.1 Data Flow

From the user’s perspective, the patch-change step is the atomic element of a
Shogun production. Each step represents one or more voices to be sent to one
or more MIDI devices. These steps, along with various metadata, are defined
in Shogun patchfiles, which are discussed in greater detail below in Section
5.1.1.

When the user loads a patchfile into Shogun, the textual data are parsed
into Shogun’s internal storage format, discussed in Section 5.1.2.

From that point, the user may step forward and backwards through the
sequence of steps as desired, or jump to an arbitrary step by number. At each
new step, Shogun sends the corresponding MIDI data to whichever MIDI out-
put device has been selected by the user. These data may be sent over a single
channel or over multiple channels, depending on the particular specification
for the step being accessed.

This chapter explores the various elements of Shogun’s implementation in
detail, including the Shogun patchfile syntax, internal data representation,
MIDI communication, and user interface.

5.1.1 Patchfiles

A Shogun patchfile, as far as the software itself is concerned, serves to de-
fine a set of MIDI commands. Although these commands have an inherent
sequentiality, they may also be accessed in arbitrary order. A full context-free
grammar specifying patchfile syntax can be found in Appendix A.

From the user’s perspective, the task of defining these MIDI commands

18

with a patchfile can be divided into three main goals. First, and most im-
portantly, the patchfile contains a series of lines defining all patch changes
in the production. These are the steps mentioned previously, and consist of
one or more MIDI bank- and program-change commands. Second, a patchfile
allows the user to assign semantic names to various MIDI banks, patches, and
bank-patch pairs. (In this report, and in much of the Shogun documentation,
a bank-patch pair will be referred to as a voice.) Finally, a patchfile allows
the user a convenient method of routing commands to particular MIDI chan-
nels, either as part of a bank, patch, or voice definition, or in the context of a
particular step.

Conceptually, we can differentiate three sections in a patchfile: metadata,
MIDI definitions, and steps. It is important to note, however, that in general
the Shogun parser does not require these sections to be separate. A MIDI
definition, for example, could occur between two patch-change steps without
necessarily resulting in invalid or indeterminate data. Specifics of Shogun’s
parsing process, including the ways in which it handles unclear or incorrect
input, are discussed below in Section 5.1.2.

In general, Shogun’s patchfile syntax has been designed with the intent
of being concise without becoming cryptic. The possibility of composing this
syntax in some existing format was considered, with the foremost option be-
ing eXtensible Markup Language (XML). However, even with the most com-
pact XML schema that was still easily comprehensible, formatting a patchfile
as XML resulted in a much longer patchfile than the minimal syntax now
used by Shogun. Additionally, the fact that XML has a very strict syntax also
means that it may be less than forgiving for users unfamiliar with the syntax.
Shogun’s own syntax can hardly claim the pedigree of XML, but the syntax
has been designed to be simple and easy to learn. In addition, the patchfile
parsing process is designed to ignore invalid input rather than “complaining”
about it.

Metadata are defined with hashtags of the form #tagname followed by a
double-quoted string. (In the current version of patchfile syntax, strings are
defined as “any string of alphanumeric characters, optionally including un-
derscores or spaces.” This definition may be too general to allow for future in-
ternationalization, and would therefore need to be revised in versions greater
than 1.0.)

Shogun defines four metadata fields: title, author, date, and syntax ver-
sion. The title, author, and date need not obey any particular format (note
in particular that any date format may be used), as these fields are provided
for human reference rather than machine parsing. The #version tag must be

19

followed by a version number, which is a positive integer optionally followed
by a decimal point and a single digit. The use of these tags is demonstrated
in Listing 5.1.

Listing 5.1: Shogun’s metadata tags (from Listing B.1)

4 #title "My Big Shogun Musical! "

5 #author "Ben LaVerriere"

6 #date "8 December 2010"

7 #version "1.0"

While Shogun’s metadata fields require double-quoted strings for values,
the MIDI definition tags require non-quoted values containing no white space.
This serves not only to distinguish the two sets of syntactic features, but also
to signify that data supplied in MIDI definition tags are used literally (as
integers, for example) by Shogun, not merely as text. The use of these tags is
demonstrated in Listing 5.2.

Listing 5.2: Shogun’s MIDI definition tags (from Listing B.1)

9 #defaultchannel 0

10

11 #bank orch 0

12 #bank synth 1

13

14 #voice cello 2 24

15 #voice piano 3 15

16 #voice flute 5 120 c2

Specifically, Shogun allows three types of MIDI definition: bank decla-
rations, voice declarations, and a default channel declaration. Let us first
consider the lengthiest of these definitions, the voice declaration. To assign
a semantic name to a MIDI bank-patch pair, the user writes #voice ⟨name⟩
⟨bank⟩ ⟨patch⟩. Here ⟨name⟩ is a string with no white space, ⟨bank⟩ may be
a previously-defined bank name or a MIDI-standard bank number, ⟨patch⟩ is
a non-negative integers as dictated by the MIDI standard, and ⟨channel⟩ is an
optional MIDI channel number prefixed with ‘c’.

All of Shogun’s MIDI definitions have syntax based on that of the voice

tag: the tag name is followed by the semantic name being assigned, which in

20

turn is followed by one or more data values. In addition, the specific order
of these data values (bank, patch, channel) is obeyed whenever these values
appear in a patchfile — in steps as well as definitions. As a result, we have the
#bank tag, for which only a name and a bank number must be supplied. Sim-
ilarly, the #defaultchannel tag, which specifies a MIDI channel to which to
send steps without an explicitly-specified channel, takes only a single number
as its datum.

Listing 5.3: Various ways of writing Shogun patchfile steps (from Listing B.1)

18 // just a voice name

19 cello

20

21 // voice name and internally-specified channel

22 flute

23

24 // voice name and channel number

25 piano c3

26

27 // bank name and patch number

28 orch 15

29

30 // bank name, patch number, and channel

31 orch 16 c2

32

33 // bank number and patch number

34 1 52

35

36 // bank number, patch number, and channel

37 2 49 c2

38

39 // multi-channel step

40 2 15 c1, 3 27 c2

Step specification, by dint of its role as the essential element of Shogun’s
functionality, is the most flexible portion of Shogun’s patchfile syntax. We can
easily derive all possible ways to specify a step by considering the necessary
and optional data for each step: each step must contain (in some form) a
bank specification and a patch specification, and each step may optionally

21

also include a channel specification. The bank specification may be expressed
as a number, a name, or as part of a named voice. The various permutations of
these options are shown in Listing 5.3, including the possibility of addressing
multiple channels in one step. As mentioned above, the values for banks,
patches, and channels always appear in the same order (as with definitions)
and channel numbers are always prefixed with a ‘c’.

Note that each comma-separated portion of a multi-channel step can take
any of the forms acceptable for a single-channel step. That is, in the same
patchfile shown in Listing 5.3, a step written as cello, flute, piano c3

would be perfectly valid.

5.1.2 Internal Representation

In this section, we discuss the most important aspects of Shogun’s internal
data structure. (For a detailed reference for these or any other aspects of
Shogun’s codebase, please refer to Appendix C.) These include the Shogun-
Reader class, which is used to parse patchfiles, and the ShogunShow class,
which represents a parsed patchfile. The ShogunMidiController class, which
abstracts a subset of RtMidi’s functionality for use within Shogun, is dis-
cussed in the next section.

ShogunReader

The ShogunReader class reads and parses a Shogun patchfile, producing a
ShogunShow object representing the patchfile’s contents.ShogunReader per-
forms a single pass of parsing on a patchfile.1 For each line in the patchfile
which is not empty, ShogunReader determines whether the line is a definition
(beginning with ‘#’), a comment (beginning with ‘//’), or a step. (The possi-
bility that a line does not represent valid input is handled by the definition-
and step-parsing portions of the routine.) After parsing is complete, the
populate() method of ShogunShow is called, which ensures that the Shogun-
Show is in “performance-ready” state and can be returned to the calling class.

The process of parsing a definition is relatively straightforward: determine
which type of definition is represented, parse the data appropriately, and
store the results in the ShogunShow. The metadata fields are all parsed in
the same manner, because their data are double-quoted strings, while #voice,
#bank, and #defaultchannel declarations have slightly different parsing rou-

1The choice of making ShogunReader a single-pass parser was not without its disadvantages.
Voice and bank names must be defined before they are used, although such definitions can occur
anywhere in the patchfile — including the line directly before the name’s first use.

22

tines based on their different data formats. If the definition tag beginning the
line does not correspond to any known Shogun syntax element, the line is
discarded without being processed. In general, the parser attempts to “ac-
cept” as much of a patchfile as possible, so that users will experience as few
disruptions to their performances as possible. (A possible extension to the
parser, adding a more strict parsing mode, is discussed in Chapter 7.)

To store a patch-change step, a slightly more complex process is needed.
First, because multiple devices (or rather, MIDI channels) may be addressed
on a single line, the line under consideration is split at all occurrences of the
comma (,) so that each patch change may be parsed individually. In this way,
a single invalid patch change in a multi-channel step does not invalidate the
entire line. For each of these single-channel patch changes, a new Shogun-
Voice is created containing the appropriate data. The ShogunVoices created in
this manner are added to a ShogunStep object, which not only stores the patch
changes to be sent but also tracks which MIDI channels are used by each step.
If a ShogunVoice does not specify a channel, the #defaultchannel is used; if
that value has not been defined by the user, Shogun uses its internal default
of 0.

ShogunShow

The ShogunShow class represents a fully-parsed Shogun patchfile, including
metadata, voice and bank definitions, and patch-change steps. Most of this
class’s methods are concerned with creating and modifying these data in un-
remarkable ways — getters and setters, primarily — but of particular interest
is the populate() method. Since Shogun’s users may wish (or need) to jump
to an arbitrary patch-change step during a performance, the application must
ensure that the result of arriving at a given step is the same regardless of the
step which was last accessed. In other words, if a user jumps from step 32

to step 50, every MIDI device connected to Shogun should have the same
bank and patch loaded as if the user had stepped sequentially through steps
33–49. It would obviously be inefficient to send all such “interstitial” MIDI
data when performing a jump-to-step operation. Instead, the populate()

method preemptively modifies the ShogunShow after it has been filled with
the parsed data, “carrying forward” each channel’s most recent value to sub-
sequent steps.

For example, consider the following sequence of patch changes:

23

Channel 0 Channel 1 Channel 2

1 15

1 16 1 20

1 17 1 37

1 18

1 19 1 38

If the user were to jump from the first step to the third step, the device
connected to channel 1 would not be sent any patch-change data, violating
the principle of “source-step ignorance” described above. Instead, we call
populate() on this sequence, and the following sequence results (with new
values indicated with plus signs):

Channel 0 Channel 1 Channel 2

1 15

1 16 1 20

1 17 + 1 20 1 37

1 18 + 1 20 + 1 37

1 19 + 1 20 1 38

Note that none of the values supplied by the user have been modified, and
that jumping from any step to any other step is equivalent to arriving at the
second step by moving one step at a time from the beginning of the sequence.
Additionally, each entry generated by populate() — that is, each entry not
originally supplied by the user — has the boolean member generated set to
true, so that Shogun can identify or recreate the original patchfile, if needed.2

For the steps in which a channel has not yet been used, populate() makes
no modifications for the unused channels, since these entries are effectually
undefined. At the beginning of the show, the devices on these channels may
take some default value, but neither that value nor any value Shogun could
supply would be useful or “intentional” in any way.

5.2 MIDI Communication

As discussed in Chapter 2, the RtMidi library provides a useful set of ab-
stractions for MIDI communication. Among the many abilities of this li-
brary, Shogun uses RtMidi to obtain a list of available MIDI output de-
vices, connect to one of those devices, and send multi-byte messages to that

2This functionality is not currently used by Shogun, since there is currently no need for
Shogun to generate patchfiles, but the minimal infrastructure needed to support it remains.

24

device. The ShogunMidiController class provides a convenient encapsula-
tion of only those features of RtMidi used by Shogun, including the abil-
ity to send a ShogunVoice or an entire ShogunStep automatically. None of
ShogunMidiController’s functions is terribly complex, but the simplification
of RtMidi’s functionalityit provides makes MIDI programming elsewhere in
Shogun more compact and functionally self-evident.

There are a few design decisions made with respect to MIDI communi-
cation. One of the more significant is that Shogun only uses a MIDI out-
put device, with no “talkback” on a corresponding input device. Since all of
Shogun’s primary functionality can be accomplished by sending MIDI data,
it was decided that including the ability to read incoming MIDI data added
unnecessarily complexity to the system.

A second MIDI-related design decision has already been discussed: the
#defaultchannel syntax element, and Shogun’s corresponding internal de-
fault MIDI channel. Though it is far from an official rule, it is common prac-
tice that MIDI communication uses channel zero unless otherwise specified,
and Shogun obeys this convention. The #defaultchannel tag is provided so
that users need not specify a single, non-zero channel number for each patch-
change step, but is optional so that users may also use the default-to-zero
convention if they desire.

5.3 GUI

Figure 5.1 shows Shogun’s main graphical user interface (GUI). In addition
to a menu bar, the main Shogun window has three primary divisions: the
top “information” area, the bottom “navigation” area, and the large “heads-
up display” area in the middle. In the information area, the title and author
of the currently-loaded patchfile are displayed for reference, along with the
current step number. (Technically, this number refers to the last step for which
MIDI data was sent.) The navigation area contains the “previous step” and
“next step” buttons, which navigate through the patch-change list one step at
a time, and the jump-to-step text box, which allows users to access steps in
arbitrary order by entering step numbers. Finally, the majority of the screen
has been devoted to a display of the current system state, as far as Shogun

can know it.
Shogun’s GUI was developed with a number of usability or user-experience

goals in mind. In particular, because of the constraints discussed in Chapter
1, Shogun’s GUI needed to be “minimal” in a variety of ways. Only those
elements necessary to Shogun’s functionality, or to showing the system state,

25

Figure 5.1: Shogun’s main interface, before any patchfile has been loaded.

should be granted valuable screen space, and these should be designed to
make the most useful or frequently-referenced information the easiest to dis-
cern. To that end, I developed a “heads-up display” GUI module, which
could be associated with a single MIDI channel and would display the salient
elements of that channel’s status.3 Specifically, as shown in Figure 5.2, each
heads-up display (HUD) displays the channel with which it is associated, the
name of the last voice sent to that channel, and the full bank-patch-channel
triad that was sent. (Shogun attempts to provide the most semantically-rich
name to the user for each HUD, but if no voice or bank name was declared,
the GUI will display the last-sent bank and patch numbers.) Each time a new
voice is sent to a channel, that channel’s HUD will be emphasized with a
thick, colored border.

The Shogun GUI has also been designed to be “scalable” in a few ways.
Every element of the interface has been assigned particular rules for resizing
as the overall available space for the GUI changes, with those elements most

3Recall, however, that because MIDI is a unidirectional protocol, and because Shogun is not
designed to monitor a MIDI input device, any manual changes effected on a device connected to
Shogun will not be reflected in this display.

26

Figure 5.2: Components of a single MIDI-channel HUD

useful for quick reference taking up the most space. (See Figure 5.3 for a
comparison of the interface at various sizes.) In particular, the HUDs are
instructed to take up as much space as possible, while the navigation buttons
are instructed to expand only in the horizontal direction.4

Figure 5.3: Demonstration of the Shogun GUI’s ability to adapt to a wide
range of screen sizes.

The GUI is also scalable with respect to the layout of the HUDs themselves.
Since most patchfiles will not use all sixteen MIDI channels, the process of
loading a patchfile triggers a dynamic layout method that adds only as many
HUDs as necessary for that particular patchfile. A specific layout for each
possible number of HUDs is predefined for Shogun, and each HUD is as-

4All GUI development for Shogun was done with a maximum window size of 800 × 400
pixels, the smallest commonly-used screen size for “netbook” computers (BariAngel, 2009), and
the interface can in fact scale to even smaller screens.

27

signed one of the channels used by the patchfile and placed onscreen accord-
ing to the appropriate layout, in ascending numerical order. This behavior is
demonstrated in Figure 5.5.

Figure 5.4: Shogun’s MIDI device selection dialog

A few guidelines for the user’s interaction with Shogun were also devel-
oped. One principle was that Shogun should prevent, as much as reasonably
practicable, any accidental or erroneous input, and should provide the ability
to quickly recover from such input if it occurs. The graphical interface, for
example, contains two large buttons, a text field, and a menu bar as its only
interactive elements. If the user intends to press the “next step” button, it
is difficult to hit the “previous step” button by mistake, because they are on
opposite sides of the screen. Similarly, the interface elements likely to be used
during a performance — the buttons and text field — are positioned at the
bottom of the screen, as far away from the menu bar as could be.

Another principle of Shogun’s interactivity is that as many actions as pos-
sible should be able to be performed with either the mouse or the keyboard,
as desired by the user. Thus, to move forward one step, the user can either
click the “next step” button, press the right-arrow key, or press the space bar.
In fact, with the exception of entering a step number (which can only be ex-
ecuted with some sort of keyboard or number pad), each action provided by
Shogun’s primary GUI can also be executed with the keyboard.

For completeness, we should also briefly mention Shogun’s MIDI output
device selection window, shown in Figure 5.4. This portion of Shogun’s in-
terface uses the ShogunMidiController to generate a list of available MIDI
output devices, which may be refreshed using the button in the upper right
of the window. “Business logic” is included that prevents the user from at-

28

Figure 5.5: Demonstration of the Shogun GUI’s dynamic layout system for a
variable number of HUDs.

29

tempting to select more than one device at once, or from selecting no device
at all (unless no devices are available). This window appears when Shogun

is launched, and may be accessed at any time through the MIDI menu item.

30

Chapter 6

Procedure

In this chapter, we review Shogun’s development process. Emphasis is given
to those parts of the process which will be of most use for future development
of the Shogun system.

6.1 Technology Choices

As discussed in Chapter 2, the choice of a MIDI programming toolkit was
one that required research and careful consideration. The selection of RtMidi
as Shogun’s MIDI toolkit meant that development would proceed in C++,
but a number of other technical elements remained to be decided. What tools
would be used to construct Shogun’s GUI, and would any additional libraries
be needed? This section addresses these choices, and then Section 6.2 explores
how the components fit together in the course of development.

There are three main external programming components that have been
part of the Shogun development process: the C++ Standard Template Library
(STL), selected libraries from the Boost project, and the Qt framework.

The STL is likely the most widely-used C++ library in use today. What
began as a library of container types written by Alex Stepanov went on to
become “the containers and algorithm framework of the ISO C++ standard
library” (Stroustrup, 2005). Because of its prevalence, the STL was a natural
choice for Shogun’s data structure libraries. The map and vector structures
were used particularly frequently.

In addition to classes from the STL, the Shogun development process in-
cluded various libraries from the Boost project. The Boost libraries are de-
signed to provide generic, widely-useful components for C++ programming

31

that complement both C++ itself and the STL. In particular, a selection of
Boost classes related to string manipulation, tokenizing, and so on proved
useful when building the ShogunReader class.

The Qt (pronounced “cute”) framework became the final third-party com-
ponent of the Shogun development project. Qt is a “cross-platform applica-
tion and UI framework [including] a cross-platform class library, integrated
development tools and a cross-platform IDE” (Nokia Corporation, 2010b).
Although Qt was originally selected only as a GUI toolkit, as development
progressed, more of the framework was integrated into Shogun’s codebase.

Another key element of the Qt framework is a tool called qmake, which
automatically generates Makefiles for Qt projects. This tool is a crucial part of
the Qt development process, and its functionality is best described by its own
manual:

qmake is a tool that helps simplify the build process for development
project across different platforms. qmake automates the generation of
Makefiles so that only a few lines of information are needed to create
each Makefile. qmake can be used for any software project, whether it is
written in Qt or not.

qmake generates a Makefile based on the information in a project
file. Project files are created by the developer, and are usually simple,
but more sophisticated project files can be created for complex projects.
qmake contains additional features to support development with Qt, au-
tomatically including build rules for moc and uic.1 qmake can also gener-
ate projects for Microsoft Visual studio without requiring the developer
to change the project file. (Nokia Corporation, 2010a)

6.2 Development Process

In retrospect, we can divide Shogun’s development into two phases. The
first of these was dedicated to the development of the functional, “back-end”
components of the system, while the second began with the addition of Qt as
GUI toolkit. Unexpectedly, incorporating Qt turned out to be a complex task
— more involved than simply referencing a few header files — and resulted
in a complete restructuring of the project and its compilation process.

In this section, we review those aspects of the development process that are
most relevant to future development of Shogun. Since many of the difficul-
ties that arose in this process were related to the compilation of the Shogun

1moc and uic are Qt’s Meta-Object Compiler and User Interface Compiler, respectively, which are
used to generate pure C++ from files containing various Qt extensions to the language.

32

application, particular emphasis is given to changes made in the compilation
process in the course of development.

6.2.1 Phase 1: Boost and the STL

As mentioned above, development of Shogun began with the data structures,
back-end algorithms, and other non-visual components. At this point, devel-
opment was conducted in the Eclipse integrated development environment
(IDE), using the C/C++ Development Tooling (CDT). Makefiles were gen-
erated automatically by the CDT, and the Minimalist GNU for Windows
(MinGW) environment’s port of g++ and related tools were used by Eclipse
for automated compilation.

Although the Eclipse CDT makes many aspects of C/C++ development
easier, the degree to which certain aspects of project management are ab-
stracted by the IDE occasionally made it difficult to determine the proper way
to change the project’s configuration. For example, when it first came time
to incorporate some of the STL data structures, it was difficult to determine
where to place the appropriate header files so that they would be on the build
path. Eventually, it was determined that taking every action through Eclipse’s
interface (rather than trying to manually add files to a folder) would be the
most efficient method of changing project configuration and would guarantee
that compilation would proceed properly.

6.2.2 Phase 2: Qt

When it came time to begin the development of Shogun’s GUI, it seemed
that incorporating Qt would be a relatively painless task. Not only did the Qt
project acknowledge that development with Qt was possible with the Eclipse
CDT, the project also provided a “Qt Eclipse Integration” plugin that ap-
peared to provide a wide range of features to assist with Qt development in
Eclipse. As a result, I assumed I could install the integration plugin, place the
Qt libraries in an appropriate location, adjust the configuration settings of the
Shogun Eclipse project, and continue developing as before.

This was not the case. Qt and the CDT each have their own way of storing
project settings, and these turn out to be just about as mutually incompatible
as possible. A Qt project is defined by a *.pro file, such as the one shown in
Listing 6.1. Note that these settings all relate to the source code itself, not the
development environment. By contrast, an Eclipse CDT project is defined by a
file called .cproject, which intermixes compilation unit definitions, Eclipse-
specific settings, and a wide range of other data. As a result, not only are

33

Eclipse CDT projects almost completely inextricable from Eclipse, but it is
impossible to “add” Qt to such a project.2 Instead, one must create a new
project, using the Qt integration plugin, that is defined from the start in Qt’s
style. That project will then have both Qt-style and Eclipse-style configuration
files.

This solution appeared to work for a while. The Qt integration plugin
kept the .pro file up to date, and building the project was successful. Soon,
however, it became evident that the Qt integration with Eclipse was less than
ideal. The Eclipse CDT seemed somewhat unwilling to “play nicely” with this
foreign compilation system, so to speak.

As a result, the development process continued not in Eclipse but in Qt’s
very own Creator IDE. Qt Creator proved to be a convenient and full-featured
development environment that served Shogun’s development needs very well,
not least because of its native support for Qt project files and qmake. At the
same time, a great deal of the existing Shogun code was “ported” to Qt. All
instances of std::strings were replaced with QStrings, which not only sim-
plified interaction with Qt-native methods but also effortlessly made Shogun

Unicode-compatible. Similarly, all STL and Boost containers were replaced
with their Qt counterparts, making it easier for future developers to find doc-
umentation for those data structures and taking advantage of Qt’s status as a
current and rapidly-developed software project.

6.3 Shogun as Cross-Platform Software

Since Shogun is intended to be cross-platform software, a few remarks are
in order on the topic of cross-platform portability and compilation. Before
making those remarks, however, it is important to note that none of these
claims have been tested — here we can only say that things should work, not
that they have been shown to do so.

Some components of the Shogun system are inherently cross-platform:
C++ is platform-agnostic at its core, and Qt has also been developed to be
cross-compilable. RtMidi provides preprocessor definitions (e.g. __WINDOWS_

MM__, __LINUX_ALSAEQ__) that allow it to be compiled for various combinations
of operating system (OS) and MIDI application programming interface (API)
(Scavone, 2011). (The examples cited here refer to the Windows Multimedia
Library and the Linux ALSA Sequencer.)

2It is also fairly difficult to find any definitive statement, either in official documentation or
elsewhere, that the CDT-to-Qt project conversion is strictly impossible, a fact which led me to
spend a great deal of time attempting such an impossible conversion.

34

Listing 6.1: Shogun’s Qt project-definition file

1 TEMPLATE = app

2 TARGET = shogun_qt

3 QT += core \

4 gui

5 HEADERS += RtError.h \

6 RtMidi.h \

7 ShogunMidiController.h \

8 ShogunBank.h \

9 ShogunShow.h \

10 ShogunStep.h \

11 ShogunVoice.h \

12 ShogunReader.h \

13 shogun_qt.h \

14 midiselectdialog.h \

15 keypresslistener.h \

16 miditestdialog.h \

17 mainpage.h

18 SOURCES += RtMidi.cpp \

19 ShogunMidiController.cpp \

20 ShogunBank.cpp \

21 ShogunShow.cpp \

22 ShogunStep.cpp \

23 ShogunVoice.cpp \

24 ShogunReader.cpp \

25 main.cpp \

26 shogun_qt.cpp \

27 midiselectdialog.cpp \

28 keypresslistener.cpp \

29 miditestdialog.cpp

30 FORMS += shogun_qt.ui \

31 midiselectdialog.ui \

32 miditestdialog.ui

33 RESOURCES +=

34 INCLUDEPATH +=

35 DEFINES += __WINDOWS_MM__ \

36 __RTMIDI_DEBUG__

37 LIBS += -lwinmm

35

When it comes to compilation, of course, the Windows-specific MinGW
tools are not cross-platform compatible. Since these serve as Windows ports
of the g++ compiler and related tools, however, any equivalent C++ compiler,
linker, etc. may be used. (Qt’s qmake also helps standardize the compilation
process across different platforms.)

If Shogun is eventually compiled and tested on other platforms, there will
no doubt be parts of the codebase found to be less platform-agnostic than they
were intended to be. Nonetheless, the adjustments necessary to make these
portions of the code truly cross-platform should still be fairly minimal, and
will promote a more stable Shogun overall.

36

Chapter 7

Future Work

A number of avenues exist for continued development of the Shogun system.
Some of these tasks involve the completion of functionality originally intended
for this release, while others represent possible additions of functionality.

7.1 Application Functionality

7.1.1 Diagnostic Mode

An interface for testing MIDI network communication was originally intended
for this release, but time constraints prevented this feature from being com-
pleted. A tentative GUI design for this feature exists in the current Shogun

codebase, and making that interface functional should be a relatively straight-
forward task.

For each MIDI channel, the diagnostic interface would allow the user to
perform three functions:

• to turn a single MIDI note on or off, testing whether MIDI communication
in general is possible on the specified channel, and that the appropriate
device is responding to MIDI data on that channel

• to send a patch-change command, ensuring that the target device is config-
ured to listen for and respond to patch-change messages1

• to send a bank-change command, ensuring that the target device is con-
figured to listen for and respond to bank-change messages, and that the
1Many MIDI-capable devices allow various filters to be applied to incoming or outgoing MIDI

data — for example, a synthesizer set up to respond to externally-generated note data may filter
out all MIDI control messages to avoid inadvertent modifications to its settings.

37

particular MIDI message sent by Shogun has the desired effect

7.1.2 Patchfile Mode

Because Shogun uses a custom syntax for its patchfiles, it may be convenient
for users to be able to edit patchfiles within the application. This could be as
simple as a text-editing environment with, perhaps, some manner of syntax
highlighting. If it was decided that a more structured editing environment
would be helpful, users could be presented with an interface like the wire-
frame shown in Figure 7.1. Such an interface could make it easier for new
users to construct a patchfile, while still allowing the patchfiles themselves to
be saved in plain text. (This last point is significant primarily because it is the
author’s belief that configuration files should always be manually editable.)

Figure 7.1: Possible layout of a structured patchfile-editing interface.

Additionally, the ShogunReader class could be expanded to support two
parsing modes: a strict syntax checking mode in addition to the current fault-
tolerant performance mode. In the former mode, errors in syntax would be
indicated to the user, who would also be provided with information about
the correct syntax for the situation in question. Shogun could even an ex-
isting spelling-checking library, possibly with a custom dictionary of Shogun

38

“syntax words,” to assist users to correct syntax errors that are merely typo-
graphical. The performance parsing mode, however, must still exist, so that
if a user loads a syntactically-incorrect patchfile, Shogun will deal with the
errors as gracefully as possible.

7.2 Syntax Extensions

7.2.1 Custom MIDI Commands

In Chapter 2 it was mentioned that the MIDI standard provides a second
bank-change controller (#32), which is rarely used and therefore currently
unsupported by Shogun. Since rare use is nonetheless some use, future de-
velopment for Shogun could include the ability for users to specify custom
bank-change commands — or indeed, custom MIDI commands in general —
for their devices. The MIDI standard also supports system-exclusive (SysEx)
messages, which allow specific devices or manufacturers to send and receive
arbitrary data over the MIDI line. It is not inconceivable that users may wish to
include SysEx messages in a Shogun patchfile, particularly if they are working
with older equipment that may require unusual control messages to change
voices.

The degree to which the sending of arbitrary MIDI data is supported should
be carefully considered, however, lest the Shogun interface or patchfile syn-
tax become prohibitively complex. For example, should users be allowed to
define a single alternate bank-change command per MIDI channel, or should
syntax exist for the definition and use of an arbitrary number of MIDI com-
mands at any point in the patchfile? Intuition suggests that any extensions
to Shogun’s patchfile syntax be as small as possible but, to paraphrase that
common misquotation of Einstein, no smaller.

7.2.2 Bookmarks

Early in the development of Shogun’s patchfile syntax, the idea of patchfile
bookmarks was considered. These would be syntactic elements that marked
particular locations in the sequence of patch-change steps, and to which users
could navigate quickly through Shogun’s GUI. (The hypothetical syntax
would have been something like @⟨bookmark name⟩.) This syntax was dis-
carded, however, for two reasons. First, the Shogun application already al-
lows users to jump to an arbitrary step by entering its sequence number, mak-
ing “bookmarking” possible simply by noting a few numbers on a scrap of
paper. Second, even if the patchfile syntax were to be modified to include

39

bookmarks, it was not evident how the Shogun GUI could accommodate a
method of accessing an arbitrary number of these bookmarks. An array of
buttons could become prohibitively crowded if each button stretched to fit the
available area, or else the user would need to scroll through a list of book-
marks if each entry was assigned some minimum amount of space regardless
of screen size. If a method of interaction for accessing bookmarks could be
developed that was both unobtrusive and easy to enact under Shogun’s en-
vironmental constraints as described in Chapter 1, then perhaps the syntax
could be extended to include bookmarks.

40

Appendix A

Shogun Patchfile Context-Free
Grammar

This document represents a formal specification of the syntax defining a valid
Shogun patchfile. Patchfiles obeying this syntax should be tagged with #version

1.0 (or #version 1, if preferred). The ShogunReader class is able to parse any
patchfile obeying this syntax correctly. ShogunReader makes an attempt to
deal as gracefully as possible with syntactically-invalid patchfiles by ignoring
invalid elements and parsing correct ones, but is not guaranteed to deliver
correct results for any part of a patchfile containing invalid syntax.

A.1 Notes

1. Text set in monospaced type represent literal characters to be included in
the patchfile. (All quotation marks in the grammar are set in this man-
ner.) Italicized text represents a textual description of a data member that is
clearer to express in this manner than with a formal grammar.

2. Elements with the “opt” subscript are optional. Rules containing optional
elements could be expanded into multiple rules to produce a more formal
grammar, but are here condensed for clarity.

3. Unless otherwise specified, any amount of whitespace may separate de-
fined elements without a change in meaning. At least one whitespace char-
acter must separate elements. Elements in ⟪double brackets⟫ must appear
on separate lines.

41

4. The ⟪MetaDate⟫ element does not enforce any sort of date format — this
field is intended for human reference, not machine parsing.

5. The elements ⟨VoiceName⟩ and ⟨BankName⟩ are used to promote syntactic
clarity within this document. All ⟨Name⟩ elements share a single names-
pace and follow the same rules of construction.

6. Because different MIDI devices implement the bank-change method incon-
sistently, it is the responsibility of the user to ensure that patchfiles contain
valid bank numbers. The Shogun application may provide some assistance
to this end in its troubleshooting mode.

7. The current definition of a ⟨String⟩ may present problems for users who
employ non-Latin character sets. This shortcoming may be resolved in a
future version of the standard.

8. Because they are immediately discarded in the parsing process, both blank
lines and comments have been eliminated from this grammar. Comments
must begin with //; there are no block comments.

9. There is currently no restriction in this grammar to prevent the construc-
tion of a PatchChangeStep of the form 2 14, 5 120, 2 36, in which each
individual PatchChange is addressed to the same channel (or to no chan-
nel at all). This action should trigger a warning when a patchfile is being
validated, but is not explicitly prevented because such an action will not
produce undesirable operation. Each patch change will be executed, in the
order specified, as a single step; the end result will simply be that the target
device has loaded the final specified voice.

A.2 Shogun Patchfile Syntax, version 1.0

⟨Patchfile⟩ → ⟨Metadata⟩opt ⟨Declarations⟩opt ⟨PatchChangeSteps⟩opt

⟨Metadata⟩ → ⟪MetaTitle⟫opt ⟪MetaAuthor⟫opt ⟪MetaDate⟫opt ⟪MetaVersion⟫
⟨Declarations⟩ → ⟪Declaration⟫ ∣ ⟨Declarations⟩ ⟪Declaration⟫
⟨PatchChangeSteps⟩ → ⟪PatchChangeStep⟫ ∣ ⟨PatchChangeSteps⟩ ⟪PatchChangeStep⟫

⟪MetaTitle⟫ → #title "⟨String⟩"
⟪MetaAuthor⟫ → #author "⟨String⟩"
⟪MetaDate⟫ → #date "⟨String⟩"
⟪MetaVersion⟫ → #version "⟨VersionNumber⟩"

42

⟪Declaration⟫ → ⟪VoiceDeclaration⟫ ∣ ⟪BankDeclaration⟫ ∣ ⟪DefaultChannelDeclaration⟫

⟪PatchChangeStep⟫ → ⟨PatchChange⟩ ∣ ⟨PatchChange⟩, ⟨PatchChangeStep⟩

⟨PatchChange⟩ → ⟪VoiceName⟫ ∣ ⟨VoiceName⟩ ⟨Channel⟩ ∣ ⟨BankName⟩
⟨PatchNumber⟩ ∣ ⟨BankName⟩ ⟨PatchNumber⟩ ⟨Channel⟩ ∣ ⟨BankNumber⟩ ⟨PatchNumber⟩
∣ ⟨BankNumber⟩ ⟨PatchNumber⟩ ⟨Channel⟩

⟨String⟩ → any string of alphanumeric characters, optionally including under-
scores or spaces

⟨VersionNumber⟩ → ⟨Integer⟩.⟨Digit⟩ ∣ ⟨Integer⟩
⟨Integer⟩ → any string of characters that represents a nonnegative integer
⟨Digit⟩ → a single numeric digit

⟪VoiceDeclaration⟫ → #voice ⟨VoiceName⟩ ⟨BankNumber⟩ ⟨PatchNumber⟩
⟨Channel⟩opt ∣ #voice ⟨VoiceName⟩ ⟨BankName⟩ ⟨PatchNumber⟩ ⟨Channel⟩opt

⟪BankDeclaration⟫ → #bank ⟨BankName⟩ ⟨BankNumber⟩
⟪DefaultChannelDeclaration⟫ → #defaultchannel ⟨ChannelNumber⟩

⟨VoiceName⟩ → ⟨Name⟩
⟨BankName⟩ → ⟨Name⟩
⟨Name⟩ → a string of non-whitespace characters without leading digits
⟨PatchNumber⟩ → a number in the range [0, 127] as per the MIDI standard
⟨BankNumber⟩ → ⟨Integer⟩
⟨Channel⟩ → c⟨ChannelNumber⟩
⟨ChannelNumber⟩ → a number in the range [0, 15] as per the MIDI standard

43

Appendix B

Sample Patchfiles

The patchfiles in this section represent valid Shogun patchfiles (according to
the grammar presented in Appendix A) that demonstrate a variety of fea-
tures of the syntax. Listing B.1 is a simple test case, exhibiting most syntactic
elements and variants, including an explicit listing of all possible types of
patch-change steps. Listing B.2 is designed for testing Shogun’s dynamic
HUD-layout system, by requiring thirteen channels in an otherwise-minimal
patchfile. Each possible HUD layout can be demonstrated by adding or re-
moving lines to this patchfile and loading it into Shogun.

Listing B.1: test.shogun

1 // test.shogun

2 // simple test case for shogun

3

4 #title "My Big Shogun Musical! "

5 #author "Ben LaVerriere"

6 #date "8 December 2010"

7 #version "1.0"

8

9 #defaultchannel 0

10

11 #bank orch 0

12 #bank synth 1

13

14 #voice cello 2 24

15 #voice piano 3 15

16 #voice flute 5 120 c2

44

17

18 // just a voice name

19 cello

20

21 // voice name and internally-specified channel

22 flute

23

24 // voice name and channel number

25 piano c3

26

27 // bank name and patch number

28 orch 15

29

30 // bank name, patch number, and channel

31 orch 16 c2

32

33 // bank number and patch number

34 1 52

35

36 // bank number, patch number, and channel

37 2 49 c2

38

39 // multi-channel step

40 2 15 c1, 3 27 c2

41

42 // "false positive" multi-channel step

43 3 58 c2,

44

45 // end test.shogun

Listing B.2: channels-13.shogun

1 // channels-13.shogun

2 // a very silly patchfile for demonstrating the dynamic layout

3 // of a large number of channel-HUDs

4

5 #title "My Big Shogun Musical! "

6 #author "Ben LaVerriere"

7 #date "8 December 2010"

8 #version "1.0"

45

9

10 #defaultchannel 0

11

12 #voice sine 2 24

13

14 sine c0

15 sine c1

16 sine c2

17 sine c3

18 sine c4

19 sine c5

20 sine c6

21 sine c7

22 sine c8

23 sine c9

24 sine c10

25 sine c11

26 sine c12

46

Bibliography

BariAngel. 2009. Monitor dei netbook: dimensioni a confronto. http://www.
eeepc.it/monitor-dei-netbook-dimensioni-a-confronto/.

Best, F. 2011. MIDI library. http://www.arduino.cc/playground/Main/

MIDILibrary.

Capocasa, C. 2006. Portable C++ MIDI libraries review. http:

//lists.linuxaudio.org/pipermail/linux-audio-dev/2006-February/

014829.html.

Dannenberg, R. 93. CMU MIDI toolkit. http://www.cs.cmu.edu/~music/

cmt/.

enoki. 2009. portmidizero. http://gitorious.org/portmidizero/.

Gallant, M. 2008. David Rosenthal — movin’ out, movin’ up. Keyboard
Magazine.

Genovation 2010. Genovation MIDI Patch Changer User Guide Preliminary v0.79

Ed. Genovation.

Harrison, J. 2010. pyPortMidi. http://alumni.media.mit.edu/~harrison/

pyportmidi.html.

Klose, T. 2011. Non-commercial DIY projects for MIDI hardware geeks. http:
//www.ucapps.de/.

Koftinoff, J. D. 2011. jdksmimdi. https://github.com/jdkoftinoff/

jdksmidi.

Lokovic, T. 2009. midi-dot-net. http://code.google.com/p/midi-dot-net/.

Max M. 2005. Python midi package. http://www.mxm.dk/products/public/

pythonmidi.

47

Nokia Corporation 2010a. qmake Manual. Nokia Corporation.

Nokia Corporation. 2010b. Qt — cross-platform application and UI frame-
work. http://qt.nokia.com/.

Oracle. 2010. javax.sound.midi. http://download.oracle.com/javase/1.4.

2/docs/api/javax/sound/midi/package-summary.html.

Palem, G. 2010. MusicNoteLib, the C++ music programming library. http:

//gpalem.web.officelive.com/CFugue.html.

Peck, D., SantiBanks, and fraz. 2007. Keyboard patch management
live. http://www.gearslutz.com/board/so-much-gear-so-little-time/

140452-keyboard-patch-management-live.html.

PortAudio Developers. 2009. PortMidi portable real-time MIDI library.
http://portmedia.svn.sourceforge.net/viewvc/portmedia/portmidi/

trunk/pm_common/portmidi.h?view=markup. PortMidi is part of the
PortAudio project <http://www.portaudio.com/>.

PyGame Developers. 2010. pygame.midi. http://www.pygame.org/docs/

ref/midi.html.

Roland Corporation 2007. FC-300 MIDI Foot Controller Owner’s Manual. Roland
Corporation.

Rumsey, F. 1990. MIDI Systems and Control. Butterworth & Co. (Publishers)
Ltd, Newton, MA, USA.

Sanford, L. 2007. C# MIDI toolkit. http://www.codeproject.com/KB/

audio-video/MIDIToolkit.aspx.

Scavone, G. P. 2011. The RtMidi tutorial. http://www.music.mcgill.ca/

~gary/rtmidi/.

Stinson, P. 2010. pyrtmidi. http://trac2.assembla.com/pkaudio/wiki/

pyrtmidi.

Stroustrup, B. 2005. The Design and Evolution of C++. Addison-Wesley, Boston,
MA, USA, 1–32. Extended foreword “C++ in 2005” from Japanese transla-
tion. <http://www2.research.att.com/~bs/DnE2005.pdf>.

Tiedemann, E. S. 2000. PyMidi. http://hyperreal.org/~est/python/MIDI/.

48

Appendix C

Codebase Documentation

The documentation on the following pages has been generated automatically
from the Shogun codebase (and its comments) with the Doxygen utility.

49

Shogun

Generated by Doxygen 1.7.2

Thu Apr 28 2011 03:46:15

Contents

1 The Shogun MIDI Control System 1
1.1 Compiling Shogun . 1
1.2 License . 2

2 Class Documentation 3
2.1 KeyPressListener Class Reference . 3

2.1.1 Detailed Description . 3
2.1.2 Member Function Documentation 3

2.1.2.1 eventFilter . 3
2.2 RtMidiIn::MidiMessage Struct Reference 4

2.2.1 Detailed Description . 4
2.3 MidiSelectDialog Class Reference . 6

2.3.1 Detailed Description . 7
2.4 MidiTestDialog Class Reference . 7

2.4.1 Detailed Description . 8
2.5 RtError Class Reference . 8

2.5.1 Detailed Description . 9
2.5.2 Member Enumeration Documentation 9

2.5.2.1 Type . 9
2.6 RtMidi Class Reference . 10

2.6.1 Detailed Description . 12
2.7 RtMidiIn Class Reference . 13

2.7.1 Detailed Description . 17
2.7.2 Constructor & Destructor Documentation 17

2.7.2.1 RtMidiIn . 17
2.7.3 Member Function Documentation 18

2.7.3.1 cancelCallback . 18
2.7.3.2 getMessage . 18
2.7.3.3 getPortName . 18
2.7.3.4 ignoreTypes . 18
2.7.3.5 openPort . 19
2.7.3.6 openVirtualPort . 19
2.7.3.7 setCallback . 19
2.7.3.8 setQueueSizeLimit . 19

2.8 RtMidiIn::RtMidiInData Struct Reference 20

ii CONTENTS

2.8.1 Detailed Description . 21
2.9 RtMidiOut Class Reference . 21

2.9.1 Detailed Description . 24
2.9.2 Constructor & Destructor Documentation 25

2.9.2.1 RtMidiOut . 25
2.9.3 Member Function Documentation 25

2.9.3.1 getPortName . 25
2.9.3.2 openPort . 25
2.9.3.3 openVirtualPort . 25
2.9.3.4 sendMessage . 26

2.10 shogun qt Class Reference . 26
2.10.1 Detailed Description . 29
2.10.2 Constructor & Destructor Documentation 29

2.10.2.1 shogun qt . 29
2.10.3 Member Function Documentation 29

2.10.3.1 changeStep . 29
2.10.3.2 event . 29
2.10.3.3 gotoStep . 29
2.10.3.4 layoutHUDs . 30
2.10.3.5 loadFile . 30
2.10.3.6 on nextStepButton clicked 30
2.10.3.7 on prevStepButton clicked 30

2.11 ShogunBank Class Reference . 31
2.11.1 Detailed Description . 31

2.12 ShogunMidiController Class Reference 31
2.12.1 Detailed Description . 33
2.12.2 Constructor & Destructor Documentation 33

2.12.2.1 ShogunMidiController 33
2.12.2.2 ∼ShogunMidiController 33

2.12.3 Member Function Documentation 34
2.12.3.1 connect . 34
2.12.3.2 getPorts . 34
2.12.3.3 send . 34
2.12.3.4 send . 35

2.13 ShogunReader Class Reference . 35
2.13.1 Detailed Description . 37
2.13.2 Member Function Documentation 37

2.13.2.1 extract bank . 37
2.13.2.2 extract declaration . 38
2.13.2.3 extract default . 38
2.13.2.4 extract voice . 38
2.13.2.5 read patchfile . 39
2.13.2.6 store definition . 39
2.13.2.7 store step . 39

2.14 ShogunSequence Class Reference . 40
2.14.1 Detailed Description . 40

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

CONTENTS iii

2.15 ShogunShow Class Reference . 41
2.15.1 Detailed Description . 42
2.15.2 Member Function Documentation 42

2.15.2.1 populate . 42
2.15.3 Member Data Documentation 42

2.15.3.1 seq . 42
2.16 ShogunStep Class Reference . 42

2.16.1 Detailed Description . 43
2.17 ShogunVoice Class Reference . 43

2.17.1 Detailed Description . 44

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

Chapter 1

The Shogun MIDI Control System

Author

Ben LaVerriere

This project stems from the author’s experience as a keyboardist playing for musical
theatre productions. Keyboardists in musical theatre often make use of a variety of syn-
thesized sounds, or "patches", over the course of a performance or even a single song.
Since the development of the modern synthesizer, there have been various ways to ac-
cess these patches, whether it be a series of buttons (appropriate for a small number of
options) or a number-pad interface (for systems with a wide variety of patches). For the
musical theatre keyboardist, however, patch changes need to be executed quickly and
without error; relying on the musician’s ability to push the right button or type the right
number is risky in this context.

Shogun addresses these concerns by providing a simple, compact interface that allows
a keyboardist (or any other person using MIDI devices) to send a series of patch-change
commands easily and in any order. Users may compose their own sequences of patch
changes, and navigate these lists sequentially or in random order, as desired.

For more information about the Shogun project, please contact the WPI Gordon Library
(http://wpi.edu/+library) for a copy of the report detailing Shogun’s devel-
opment.

1.1 Compiling Shogun

Compiling Shogun is most easily accomplished in the Qt Creator IDE. After ensuring
that a C++ compiler/linker and the Qt framework are installed on your system, open the
shogun_qt.pro project file in Qt Creator. If Qt Creator can find (or has been told
where to find) your compiler and the Qt binaries (particularly qmake), you should be

2 The Shogun MIDI Control System

able to build Shogun straight away.

1.2 License

Shogun: realtime MIDI patch-change control system Copyright (c) 2010, 2011 Ben
LaVerriere

Shogun is free software: you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

Shogun is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTIC-
ULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with Shogun.
If not, see <http://www.gnu.org/licenses/>.

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

Chapter 2

Class Documentation

2.1 KeyPressListener Class Reference

Protected Member Functions

• bool eventFilter (QObject ∗obj, QEvent ∗event)

2.1.1 Detailed Description

Definition at line 9 of file keypresslistener.h.

2.1.2 Member Function Documentation

2.1.2.1 bool KeyPressListener::eventFilter (QObject ∗ obj, QEvent ∗ event)
[protected]

Defines a custom event listener (specifically, the eventFilter() method) to be assigned
to all elements of the main Shogun interface. This listener ensures that left- and right-
arrow keypresses are received and the corresponding patch-change events are sent.

Definition at line 11 of file keypresslistener.cpp.

The documentation for this class was generated from the following files:

• keypresslistener.h

• keypresslistener.cpp

4 Class Documentation

2.2 RtMidiIn::MidiMessage Struct Reference

Public Attributes

• std::vector< unsigned char > bytes

• double timeStamp

2.2.1 Detailed Description

Definition at line 194 of file RtMidi.h.

The documentation for this struct was generated from the following file:

• RtMidi.h

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

2.2 RtMidiIn::MidiMessage Struct Reference 5

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

6 Class Documentation

2.3 MidiSelectDialog Class Reference

Collaboration diagram for MidiSelectDialog:

������������	�
�

���

����

�������������	�
���

��������������	�
���

�	�������

����������

��
��������
���
����

��
�������

�
��

���
��������
���
������

����
��������
���
������

����
���������

�����
�����

��
�������

�������

�������

���

���������

������������

�������������

�
����
����

���
���
����

�
��������	��
����

�����
���
�����

�����
���	����

���������	����

������	�� ���

��

������

!	���	�	"

!�
�������"

!���
�������"

�
����
����

�
��������	��
����

�����
���
�����

�����
���	����

���
���
����

!��������

!���������

!���
���

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

2.4 MidiTestDialog Class Reference 7

Public Slots

• void accept ()
• void refresh ()

Signals

• void MidiDeviceChanged (int device)

Public Member Functions

• MidiSelectDialog (QWidget ∗parent=0)

Private Attributes

• Ui::MidiSelectDialog ∗ ui
• ShogunMidiController ∗ smc

2.3.1 Detailed Description

Definition at line 12 of file midiselectdialog.h.

The documentation for this class was generated from the following files:

• midiselectdialog.h
• midiselectdialog.cpp

2.4 MidiTestDialog Class Reference

#include <miditestdialog.h>

Public Member Functions

• MidiTestDialog (QWidget ∗parent=0)

Private Attributes

• Ui::MidiTestDialog ∗ ui

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

8 Class Documentation

2.4.1 Detailed Description

Intended to provide a simple MIDI-network-testing interface.

Warning

This class and its user interface are currently non-functional. MIDI communication
does not occur, and there are some UI elements missing.

Definition at line 16 of file miditestdialog.h.

The documentation for this class was generated from the following files:

• miditestdialog.h
• miditestdialog.cpp

2.5 RtError Class Reference

Exception handling class for RtAudio & RtMidi.

#include <RtError.h>

Public Types

• enum Type {

WARNING, DEBUG_WARNING, UNSPECIFIED, NO_DEVICES_FOUND,

INVALID_DEVICE, INVALID_STREAM, MEMORY_ERROR, INVALID_PARAMETER,

DRIVER_ERROR, SYSTEM_ERROR, THREAD_ERROR }

Defined RtError types.

Public Member Functions

• RtError (const std::string &message, Type type=RtError::UNSPECIFIED)

The constructor.

• virtual ∼RtError (void)

The destructor.

• virtual void printMessage (void)

Prints thrown error message to stderr.

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

2.5 RtError Class Reference 9

• virtual const Type & getType (void)

Returns the thrown error message type.

• virtual const std::string & getMessage (void)

Returns the thrown error message string.

• virtual const char ∗ getMessageString (void)

Returns the thrown error message as a C string.

Protected Attributes

• std::string message_
• Type type_

2.5.1 Detailed Description

Exception handling class for RtAudio & RtMidi. The RtError class is quite simple but it
does allow errors to be "caught" by RtError::Type. See the RtAudio and RtMidi docu-
mentation to know which methods can throw an RtError.

Definition at line 18 of file RtError.h.

2.5.2 Member Enumeration Documentation

2.5.2.1 enum RtError::Type

Defined RtError types.

Enumerator:

WARNING A non-critical error.

DEBUG_WARNING A non-critical error which might be useful for debugging.

UNSPECIFIED The default, unspecified error type.

NO_DEVICES_FOUND No devices found on system.

INVALID_DEVICE An invalid device ID was specified.

INVALID_STREAM An invalid stream ID was specified.

MEMORY_ERROR An error occured during memory allocation.

INVALID_PARAMETER An invalid parameter was specified to a function.

DRIVER_ERROR A system driver error occured.

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

10 Class Documentation

SYSTEM_ERROR A system error occured.

THREAD_ERROR A thread error occured.

Definition at line 22 of file RtError.h.

The documentation for this class was generated from the following file:

• RtError.h

2.6 RtMidi Class Reference

An abstract base class for realtime MIDI input/output.

#include <RtMidi.h>

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

2.6 RtMidi Class Reference 11

Inheritance diagram for RtMidi:

������

�����	���

���������

������������

�����������

������������������

���������������

���������������

�������������

����������

�����������

���������

�������

������	���

�����������

������������

�����������

������������������

��������� ��!��

����������� ��!��

�������������

���������������

���������������

�����"������#�$������

�������%&�����

��������������

���������#���

������'��

�

��������'����

���������'����

�����������

�������������

������������������

���������������

���������������

��������������

���������#���

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

12 Class Documentation

Public Member Functions

• virtual void openPort (unsigned int portNumber=0, const std::string portName=std::string("RtMidi"))=0

Pure virtual openPort() function.

• virtual void openVirtualPort (const std::string portName=std::string("RtMidi"))=0

Pure virtual openVirtualPort() function.

• virtual unsigned int getPortCount ()=0

Pure virtual getPortCount() function.

• virtual std::string getPortName (unsigned int portNumber=0)=0

Pure virtual getPortName() function.

• virtual void closePort (void)=0

Pure virtual closePort() function.

Protected Member Functions

• void error (RtError::Type type)

Protected Attributes

• void ∗ apiData_
• bool connected_
• std::string errorString_

2.6.1 Detailed Description

An abstract base class for realtime MIDI input/output. This class implements some com-
mon functionality for the realtime MIDI input/output subclasses RtMidiIn and RtMidiOut.

RtMidi WWW site: http://music.mcgill.ca/∼gary/rtmidi/
RtMidi: realtime MIDI i/o C++ classes Copyright (c) 2003-2010 Gary P. Scavone

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

2.7 RtMidiIn Class Reference 13

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

Any person wishing to distribute modifications to the Software is requested to send
the modifications to the original developer so that they can be incorporated into the
canonical version.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Definition at line 46 of file RtMidi.h.

The documentation for this class was generated from the following files:

• RtMidi.h

• RtMidi.cpp

2.7 RtMidiIn Class Reference

A realtime MIDI input class.

#include <RtMidi.h>

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

14 Class Documentation

Inheritance diagram for RtMidiIn:

��������

����	
�����

������������

�������������

���	��������

���	������
��������

���������������

������������������

�������������

�����������
����

���������������

�����
�
�!�"�#������

��������$%	����

��������������

����������"���

������

&��	�����

&����������

&������!�����

���	��������

���	������
��������

�����������
����

���������������

�������������

&���������

&����������

&��������

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

2.7 RtMidiIn Class Reference 15

Collaboration diagram for RtMidiIn:

��������

����	
�����

������������

�������������

���	��������

���	������
��������

���������������

������������������

�������������

�����������
����

���������������

�����
�
�!�"�#������

��������$%	����

��������������

����������"���

������

&��	�����

&����������

&������!�����

���	��������

���	������
��������

�����������
����

���������������

�������������

&���������

&����������

&��������

��������''������������

��(
�
�

���������

��(
�
�#����

��������)����

������	
�

��*�����������

���	�����

��
������������

��
�����������

��
�������

��������
�!%��+

����������������

��	
�����

��������''�����������

���%���

������!���	

���������������

�������

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

16 Class Documentation

Classes

• struct MidiMessage
• struct RtMidiInData

Public Types

• typedef void(∗ RtMidiCallback)(double timeStamp, std::vector< unsigned char >
∗message, void ∗userData)

User callback function type definition.

Public Member Functions

• RtMidiIn (const std::string clientName=std::string("RtMidi Input Client"))

Default constructor that allows an optional client name.

• ∼RtMidiIn ()

If a MIDI connection is still open, it will be closed by the destructor.

• void openPort (unsigned int portNumber=0, const std::string Portname=std::string("RtMidi
Input"))

Open a MIDI input connection.

• void openVirtualPort (const std::string portName=std::string("RtMidi Input"))

Create a virtual input port, with optional name, to allow software connections (OS X
and ALSA only).

• void setCallback (RtMidiCallback callback, void ∗userData=0)

Set a callback function to be invoked for incoming MIDI messages.

• void cancelCallback ()

Cancel use of the current callback function (if one exists).

• void closePort (void)

Close an open MIDI connection (if one exists).

• unsigned int getPortCount ()

Return the number of available MIDI input ports.

• std::string getPortName (unsigned int portNumber=0)

Return a string identifier for the specified MIDI input port number.

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

2.7 RtMidiIn Class Reference 17

• void setQueueSizeLimit (unsigned int queueSize)

Set the maximum number of MIDI messages to be saved in the queue.

• void ignoreTypes (bool midiSysex=true, bool midiTime=true, bool midiSense=true)

Specify whether certain MIDI message types should be queued or ignored during in-
put.

• double getMessage (std::vector< unsigned char > ∗message)

Fill the user-provided vector with the data bytes for the next available MIDI message in
the input queue and return the event delta-time in seconds.

Private Member Functions

• void initialize (const std::string &clientName)

Private Attributes

• RtMidiInData inputData_

2.7.1 Detailed Description

A realtime MIDI input class. This class provides a common, platform-independent API
for realtime MIDI input. It allows access to a single MIDI input port. Incoming MIDI
messages are either saved to a queue for retrieval using the getMessage() function or
immediately passed to a user-specified callback function. Create multiple instances of
this class to connect to more than one MIDI device at the same time. With the OS-X
and Linux ALSA MIDI APIs, it is also possible to open a virtual input port to which other
MIDI software clients can connect.

by Gary P. Scavone, 2003-2008.

Definition at line 102 of file RtMidi.h.

2.7.2 Constructor & Destructor Documentation

2.7.2.1 RtMidiIn::RtMidiIn (const std::string clientName =
std::string("RtMidi Input Client"))

Default constructor that allows an optional client name.

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

18 Class Documentation

An exception will be thrown if a MIDI system initialization error occurs.

Definition at line 72 of file RtMidi.cpp.

2.7.3 Member Function Documentation

2.7.3.1 void RtMidiIn::cancelCallback ()

Cancel use of the current callback function (if one exists).

Subsequent incoming MIDI messages will be written to the queue and can be retrieved
with the getMessage function.

Definition at line 96 of file RtMidi.cpp.

2.7.3.2 double RtMidiIn::getMessage (std::vector< unsigned char > ∗ message)

Fill the user-provided vector with the data bytes for the next available MIDI message in
the input queue and return the event delta-time in seconds.

This function returns immediately whether a new message is available or not. A valid
message is indicated by a non-zero vector size. An exception is thrown if an error occurs
during message retrieval or an input connection was not previously established.

Definition at line 122 of file RtMidi.cpp.

2.7.3.3 std::string RtMidiIn::getPortName (unsigned int portNumber = 0) [virtual]

Return a string identifier for the specified MIDI input port number.

An exception is thrown if an invalid port specifier is provided.

Implements RtMidi.

2.7.3.4 void RtMidiIn::ignoreTypes (bool midiSysex = true, bool midiTime = true, bool
midiSense = true)

Specify whether certain MIDI message types should be queued or ignored during input.

By default, MIDI timing and active sensing messages are ignored during message input
because of their relative high data rates. MIDI sysex messages are ignored by default
as well. Variable values of "true" imply that the respective message type will be ignored.

Definition at line 114 of file RtMidi.cpp.

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

2.7 RtMidiIn Class Reference 19

2.7.3.5 void RtMidiIn::openPort (unsigned int portNumber = 0, const std::string Portname =
std::string("RtMidi Input")) [virtual]

Open a MIDI input connection.

An optional port number greater than 0 can be specified. Otherwise, the default or first
port found is opened.

Implements RtMidi.

2.7.3.6 void RtMidiIn::openVirtualPort (const std::string portName =
std::string("RtMidi Input")) [virtual]

Create a virtual input port, with optional name, to allow software connections (OS X and
ALSA only).

This function creates a virtual MIDI input port to which other software applications can
connect. This type of functionality is currently only supported by the Macintosh OS-X
and Linux ALSA APIs (the function does nothing for the other APIs).

Implements RtMidi.

2.7.3.7 void RtMidiIn::setCallback (RtMidiCallback callback, void ∗ userData = 0)

Set a callback function to be invoked for incoming MIDI messages.

The callback function will be called whenever an incoming MIDI message is received.
While not absolutely necessary, it is best to set the callback function before opening a
MIDI port to avoid leaving some messages in the queue.

Definition at line 77 of file RtMidi.cpp.

2.7.3.8 void RtMidiIn::setQueueSizeLimit (unsigned int queueSize)

Set the maximum number of MIDI messages to be saved in the queue.

If the queue size limit is reached, incoming messages will be ignored. The default limit
is 1024.

Definition at line 109 of file RtMidi.cpp.

The documentation for this class was generated from the following files:

• RtMidi.h

• RtMidi.cpp

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

20 Class Documentation

2.8 RtMidiIn::RtMidiInData Struct Reference

Collaboration diagram for RtMidiIn::RtMidiInData:

�������������������	�	

����

�����	��

���������

���������	��

�������

����������	��

�	���	�	

������	���	��

�����	���	��

�����	�	

�������������

����������	�	 !

������������������	��

������

�������	��

���������	�� !

����	��

Public Attributes

• std::queue< MidiMessage > queue
• MidiMessage message
• unsigned int queueLimit

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

2.9 RtMidiOut Class Reference 21

• unsigned char ignoreFlags

• bool doInput

• bool firstMessage

• void ∗ apiData

• bool usingCallback

• void ∗ userCallback

• void ∗ userData

• bool continueSysex

2.8.1 Detailed Description

Definition at line 206 of file RtMidi.h.

The documentation for this struct was generated from the following file:

• RtMidi.h

2.9 RtMidiOut Class Reference

A realtime MIDI output class.

#include <RtMidi.h>

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

22 Class Documentation

Inheritance diagram for RtMidiOut:

���������

�

�����������	

������������	

���������	

�����������	

����������������	

��������������	

�������������	

�������������	

������������	

������

���������

������������

������� ������

���������	

����������������	

��������������	

�������������	

�����������	

��������	

���������	

�������	

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

2.9 RtMidiOut Class Reference 23

Collaboration diagram for RtMidiOut:

���������

�

�����������	

������������	

���������	

�����������	

����������������	

��������������	

�������������	

�������������	

������������	

������

���������

������������

������� ������

���������	

����������������	

��������������	

�������������	

�����������	

��������	

���������	

�������	

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

24 Class Documentation

Public Member Functions

• RtMidiOut (const std::string clientName=std::string("RtMidi Output Client"))

Default constructor that allows an optional client name.

• ∼RtMidiOut ()

The destructor closes any open MIDI connections.

• void openPort (unsigned int portNumber=0, const std::string portName=std::string("RtMidi
Output"))

Open a MIDI output connection.

• void closePort ()

Close an open MIDI connection (if one exists).

• void openVirtualPort (const std::string portName=std::string("RtMidi Output"))

Create a virtual output port, with optional name, to allow software connections (OS X
and ALSA only).

• unsigned int getPortCount ()

Return the number of available MIDI output ports.

• std::string getPortName (unsigned int portNumber=0)

Return a string identifier for the specified MIDI port type and number.

• void sendMessage (std::vector< unsigned char > ∗message)

Immediately send a single message out an open MIDI output port.

Private Member Functions

• void initialize (const std::string &clientName)

2.9.1 Detailed Description

A realtime MIDI output class. This class provides a common, platform-independent API
for MIDI output. It allows one to probe available MIDI output ports, to connect to one
such port, and to send MIDI bytes immediately over the connection. Create multiple
instances of this class to connect to more than one MIDI device at the same time.

by Gary P. Scavone, 2003-2008.

Definition at line 248 of file RtMidi.h.

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

2.9 RtMidiOut Class Reference 25

2.9.2 Constructor & Destructor Documentation

2.9.2.1 RtMidiOut::RtMidiOut (const std::string clientName =
std::string("RtMidi Output Client"))

Default constructor that allows an optional client name.

An exception will be thrown if a MIDI system initialization error occurs.

Definition at line 147 of file RtMidi.cpp.

2.9.3 Member Function Documentation

2.9.3.1 std::string RtMidiOut::getPortName (unsigned int portNumber = 0) [virtual]

Return a string identifier for the specified MIDI port type and number.

An exception is thrown if an invalid port specifier is provided.

Implements RtMidi.

2.9.3.2 void RtMidiOut::openPort (unsigned int portNumber = 0, const std::string portName =
std::string("RtMidi Output")) [virtual]

Open a MIDI output connection.

An optional port number greater than 0 can be specified. Otherwise, the default or first
port found is opened. An exception is thrown if an error occurs while attempting to make
the port connection.

Implements RtMidi.

2.9.3.3 void RtMidiOut::openVirtualPort (const std::string portName =
std::string("RtMidi Output")) [virtual]

Create a virtual output port, with optional name, to allow software connections (OS X
and ALSA only).

This function creates a virtual MIDI output port to which other software applications can
connect. This type of functionality is currently only supported by the Macintosh OS-X
and Linux ALSA APIs (the function does nothing with the other APIs). An exception is
thrown if an error occurs while attempting to create the virtual port.

Implements RtMidi.

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

26 Class Documentation

2.9.3.4 void RtMidiOut::sendMessage (std::vector< unsigned char > ∗ message)

Immediately send a single message out an open MIDI output port.

An exception is thrown if an error occurs during output or an output connection was not
previously established.

The documentation for this class was generated from the following files:

• RtMidi.h

• RtMidi.cpp

2.10 shogun qt Class Reference

#include <shogun_qt.h>

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

2.10 shogun_qt Class Reference 27

Collaboration diagram for shogun_qt:

���������

	
��

	
���������

	
���������

	
�

	
�����

	
���

	
����������

�
�����������

�
������������

�
������������

�
����������

�
���������������������������

�
��������������������������

�
���� �����

�
������!"#��

�
������$���#��������

�
������$���#�������

	
�������

	
��%���!"#���

	
����� ������

������&����

	
����

	
�����

�
������&������

�
���������������

	
�����������������

	
�����������

	
�����

	
�������������������

	
��������������

	
�������'�����

	
����������������

�

����������

	
���

	
�����

	
�����

	
����

	
������

	
������

	
'����

	
��������

	
��������������

�
������������

�
�������������

�
���(������

�
���#�����

�
���)������

�
���*�������

�
���(������

�
���#�����

�
���)������

�
���*�������

�
���#������+��������

�
���*������

�
���������

�
��������

�
�������,��'���

�
���#������+��������

�
��*������

�
���*������

�
���������

�
���������

�
����������

�
���'��+��������

�
����'��+��������

�
���+���������

�
���������

�
��-���

�����

�����

������$���+�������

	
���������

	
���

�
������$���+���������

�
�������$���+���������

�
��+����������

�
���.�����

�
���������

�
������

�
������

���

&�$���/��

�
&�$���/����

�
�&�$���/����

�
����.����

�
�����.����

�
����*�����.����

�
���.��+������

�
���.��,�����

�
����$��������

	
��������-���

���

&�$���

0
���#����

0
����������

0
��������

�
����.����

�
����*�����.����

�
���.��+������

�
���.��,�����

�
�����.����

0
&�$�����

0
�&�$�����

0
����

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

28 Class Documentation

Public Slots

• void on_nextStepButton_clicked ()

• void on_prevStepButton_clicked ()

• void loadFile ()

• void updateHUD (int step)

• void selectMidiDevices ()

• void changeMidiDevice (int device)

Signals

• void stepChanged (int newStep)

• void stepChanged (QString newStep)

• void fileChosen ()

Public Member Functions

• shogun_qt (QWidget ∗parent=0)

• void changeStep (int increment)

• void gotoStep (int step)

Private Member Functions

• bool event (QEvent ∗event)

• void layoutHUDs (QVector< int > channels)

• bool eventFilter (QObject ∗obj, QEvent ∗event)

Private Attributes

• Ui::mainWindow ui

• int currentStep

• QString patchfile

• ShogunReader sr

• ShogunShow sshow

• ShogunMidiController smc

• bool fileLoaded

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

2.10 shogun_qt Class Reference 29

2.10.1 Detailed Description

Defines the main user interface for Shogun, including the dynamic heads-up-display,
patchfile parsing, etc.

Definition at line 31 of file shogun_qt.h.

2.10.2 Constructor & Destructor Documentation

2.10.2.1 shogun qt::shogun qt (QWidget ∗ parent = 0)

Constructor for the Shogun Qt interface. Also calls shogun_qt::selectMidiDevices to
prompt the user to select a MIDI output device immediately.

Definition at line 8 of file shogun_qt.cpp.

2.10.3 Member Function Documentation

2.10.3.1 void shogun qt::changeStep (int increment)

Moves an arbitrary number of steps forwards or backwards in the patch list, calling
shogun_qt::gotoStep() with currentStep + increment.

Parameters
increment The number of steps to advance. May be negative (to move backwards) or

zero (which will have no effect).

Definition at line 66 of file shogun_qt.cpp.

2.10.3.2 bool shogun qt::event (QEvent ∗ event) [private]

Ensures that all keypress events are captured by Shogun, so that navigation commands
(arrow keys, etc.) are process properly.

Definition at line 120 of file shogun_qt.cpp.

2.10.3.3 void shogun qt::gotoStep (int step)

Set a particular patchfile step as the "current" step, and emit the appropriate signals so
that UI elements are updated and MIDI data are sent.

Parameters
step The step (zero-indexed) to be set as the current step.

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

30 Class Documentation

Definition at line 76 of file shogun_qt.cpp.

2.10.3.4 void shogun qt::layoutHUDs (QVector< int > channels) [private]

Given a QVector containing the MIDI channels used in the loaded patchfile, lay out
the "heads-up display" UI elements corresponding to each channel. Uses a specific
pre-defined layout for each possible number of channels (one to sixteen, inclusive). If
fewer than one or more than sixteen channels are specified, the minimum or maximum
number of HUDs, respectively, will be included. (For the minimum case, a HUD corre-
sponding to the non-existant channel 0 is generated.)

Definition at line 140 of file shogun_qt.cpp.

2.10.3.5 void shogun qt::loadFile () [slot]

Prompts for a Shogun patchfile (using the native file browser) and calls ShogunReader::read_-
patchfile() on the chosen file. Also emits the appropriate singals to update the current
step and associated UI elements.

Definition at line 95 of file shogun_qt.cpp.

2.10.3.6 void shogun qt::on nextStepButton clicked () [slot]

Moves one step forwards in the patch list, calling shogun_qt::changeStep() with +1 as
argument.

Definition at line 53 of file shogun_qt.cpp.

2.10.3.7 void shogun qt::on prevStepButton clicked () [slot]

Moves one step backwards in the patch list, calling shogun_qt::changeStep() with -1 as
argument.

Definition at line 43 of file shogun_qt.cpp.

The documentation for this class was generated from the following files:

• shogun_qt.h

• shogun_qt.cpp

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

2.11 ShogunBank Class Reference 31

2.11 ShogunBank Class Reference

Public Member Functions

• ShogunBank (QString name, int number)

• QString getName () const

• int getNumber () const

• void setName (QString name)

• void setNumber (int number)

• const QString toString ()

Private Attributes

• QString name

• int number

2.11.1 Detailed Description

Definition at line 7 of file ShogunBank.h.

The documentation for this class was generated from the following files:

• ShogunBank.h

• ShogunBank.cpp

2.12 ShogunMidiController Class Reference

#include <ShogunMidiController.h>

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

32 Class Documentation

Collaboration diagram for ShogunMidiController:

����������	��
�����

�������
�

����

������������	��
�������

�������������	��
�������

����	����
���

���
���
���

�������
��

�������

�������

�
������

�

���
������
��

����
������
��

��������
��

���������
��

��������
������
��

���
���
	���
��

���
���
�����

������������

�����
�������

��

�
����

����� �
�!

�������
�!

�������
����!

��������
��

��������
������
��

���
���
	���
��

���
���
�����

���������
��

���
������

����
������

��������

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

2.12 ShogunMidiController Class Reference 33

Public Member Functions

• ShogunMidiController ()
• ∼ShogunMidiController ()
• bool isConnected ()
• std::map< int, QString > getPorts ()
• void connect (int port)
• void send (ShogunStep s)
• void send (ShogunVoice v)

Private Attributes

• bool connected
• RtMidiOut ∗ out

2.12.1 Detailed Description

Provides a subset of RtMidi’s functionality (taken primarily from the RtMidiOut class)
that represents those MIDI-related actions needed by the Shogun system.

Definition at line 18 of file ShogunMidiController.h.

2.12.2 Constructor & Destructor Documentation

2.12.2.1 ShogunMidiController::ShogunMidiController ()

Creates a new ShogunMidiController, which will not initially be connected to any MIDI
devices.

Exceptions

RtError

Definition at line 9 of file ShogunMidiController.cpp.

2.12.2.2 ShogunMidiController::∼ShogunMidiController ()

See also

RtMidiOut::∼RtMidiOut()

Note

By calling RtMidiOut’s destructor, this method ensures that any open MIDI device

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

34 Class Documentation

connections will be properly closed.

Definition at line 25 of file ShogunMidiController.cpp.

2.12.3 Member Function Documentation

2.12.3.1 void ShogunMidiController::connect (int port)

Connects to the specified MIDI output port.

Note

This method assumes that the calling method has an up-to-date listing of MIDI
devices (as provided by ShogunMidiController::getPorts()) so that the port name-
to-number correspondence is consistent.

Attention

If this ShogunMidiController is already connected to a MIDI device, this method
ends the existing connection and then attempts to create the new connection.

Parameters
port Integer representing a MIDI output port.

Definition at line 73 of file ShogunMidiController.cpp.

2.12.3.2 std::map< int, QString > ShogunMidiController::getPorts ()

Generates and returns a listing of available MIDI output devices. The number assigned
to each port may then be used as an argument to ShogunMidiController::connect().

Returns

A mapping of port numbers to their names (as supplied by the operating system)

Definition at line 41 of file ShogunMidiController.cpp.

2.12.3.3 void ShogunMidiController::send (ShogunVoice v)

Sends data to the currently-connected MIDI device to effect a specified patch change. A
bank-change message and a program-change message will always both be sent, since
the MIDI standard specifies that devices should only change banks when a program-
change message is received after a bank-change message.

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

2.13 ShogunReader Class Reference 35

If this ShogunMidiController is not currently connected to a MIDI output device, this
method has no effect.

Parameters
v A ShogunVoices to be sent to the currently-connected MIDI device.

Definition at line 111 of file ShogunMidiController.cpp.

2.12.3.4 void ShogunMidiController::send (ShogunStep s)

Sends all voices within the specified ShogunStep to the currently-connected MIDI de-
vice using ShogunMidiController::send().

If this ShogunMidiController is not currently connected to a MIDI output device, this
method has no effect.

Parameters
s A ShogunStep containing one or more ShogunVoices, to be sent to the

currently-connected MIDI device.

Definition at line 91 of file ShogunMidiController.cpp.

The documentation for this class was generated from the following files:

• ShogunMidiController.h

• ShogunMidiController.cpp

2.13 ShogunReader Class Reference

#include <ShogunReader.h>

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

36 Class Documentation

Collaboration diagram for ShogunReader:

���������	�

�����

��
�����

�����������	�
��

��
��	�����������

�����
��	�����������

�����
�������

���
����

�����
����	����
�������

�����
�����������

�����
����������

�����
����	��������

����������

�����

�������

�������

��	���

����
����

��������

�������

����������

��	�������������

��������������

���������������

����� ����
��

�����!�����

�����"������

�����#�
������

����� ����
��

�����!�����

�����"������

�����#�
������

�����!������$��������

���		#������

���		%�����

����%�����

�����%���&����
��

�����!������$��������

����#������

�����#������

����������

���		�����

����������

��������$��������

��	������$��������

�����$���������

������
�����

����'���

�����

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

2.13 ShogunReader Class Reference 37

Public Slots

• ShogunShow read_patchfile (QString file)

Private Member Functions

• void store_definition (QString line)
• void store_step (QString line)
• QString trim (QString s)
• QString extract_declaration (QString line)
• ShogunVoice extract_voice (QString line)
• ShogunBank extract_bank (QString line)
• int extract_default (QString line)

Private Attributes

• QString path
• ShogunShow result

2.13.1 Detailed Description

Reads a .shogun patchfile, and parses the file into Shogun’s internal data represen-
tation.

See also

ShogunShow, ShogunStep, ShogunVoice, ShogunBank

Definition at line 26 of file ShogunReader.h.

2.13.2 Member Function Documentation

2.13.2.1 ShogunBank ShogunReader::extract bank (QString line) [private]

Given a bank line from a patchfile, returns a ShogunBank containing the name and
number of the specified bank.

Parameters
line

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

38 Class Documentation

Returns

Definition at line 272 of file ShogunReader.cpp.

2.13.2.2 QString ShogunReader::extract declaration (QString line) [private]

Given a declaration line from a patchfile, extracts the value enclosed in quotation marks.

Parameters
line A line of the form declaration "this is the value"

Returns

In the example above, return ’this is the value’ (without quotation marks)

Definition at line 213 of file ShogunReader.cpp.

2.13.2.3 int ShogunReader::extract default (QString line) [private]

Given a defaultchannel line from a patchfile, returns the value supplied as the patchfile’s
default MIDI channel.

Parameters
line

Returns

The specified channel, or 0 if no valid channel number is specified.

Definition at line 295 of file ShogunReader.cpp.

2.13.2.4 ShogunVoice ShogunReader::extract voice (QString line) [private]

Given a voice line from a patchfile, constructs a ShogunVoice containing the bank, pro-
gram, and (if specified) channel of the voice.

Parameters
line

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

2.13 ShogunReader Class Reference 39

Returns

Definition at line 230 of file ShogunReader.cpp.

2.13.2.5 ShogunShow ShogunReader::read patchfile (QString file) [slot]

Reads in and parses a Shogun-format patchfile, and returns a ShogunShow represent-
ing the contents of that file. If the specified file path is not valid, an empty ShogunShow
will be returned.

Note

Because the file path passed to this message will always come from an operating-
system-native file selection dialog box, it is unlikely (but never impossible!) that the
specified path will be invalid.

Parameters
file A string representing a local path to a Shogun patchfile.

Returns

A ShogunShow containing the data specified by the patchfile.

Definition at line 19 of file ShogunReader.cpp.

2.13.2.6 void ShogunReader::store definition (QString line) [private]

Given a line that contains a definition, stores the data in the appropriate place (either as
metadata, a bank definition, or a voice definition). If the line does not represent a valid
definition, no action will be taken.

Parameters
line A QString containing a #[definition] statement

Definition at line 70 of file ShogunReader.cpp.

2.13.2.7 void ShogunReader::store step (QString line) [private]

Extracts one or more ShogunVoice entries from a patchfile "step" line, wraps these in a
ShogunStep, and stores this in the ShogunShow that will be returned by this Shogun-
Reader.

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

40 Class Documentation

This method will parse lines containing patch-change specifications as defined by the
Shogun patchfile grammar, which means the following formats will be accepted for each
patch change:

<voice name>
<voice name> <channel>
<bank name> <patch number>
<bank name> <patch number> <channel>
<bank number> <patch number>
<bank number> <patch number> <channel>

One or more such patch change may exist on each line, separated by commas. If the
line does not represent one or more valid patch changes, the invalid portions of the line
will be discarded and no action taken based on those declarations. (In other words, if
a line contains one valid patch-change specification and one invalid specification, the
valid specification will be stored, and no other action will be taken.)

Parameters
line The line from which a ShogunStep is to be constructed.

Definition at line 132 of file ShogunReader.cpp.

The documentation for this class was generated from the following files:

• ShogunReader.h
• ShogunReader.cpp

2.14 ShogunSequence Class Reference

#include <ShogunSequence.h>

2.14.1 Detailed Description

Represents a sequence of patch changes, which normally will have been read in from
a .shogun patchfile.

Definition at line 8 of file ShogunSequence.h.

The documentation for this class was generated from the following files:

• ShogunSequence.h
• ShogunSequence.cpp

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

2.15 ShogunShow Class Reference 41

2.15 ShogunShow Class Reference

#include <ShogunShow.h>

Public Member Functions

• QString getAuthor () const
• QString getDate () const
• QString getTitle () const
• QString getVersion () const
• void setAuthor (QString author)
• void setDate (QString date)
• void setTitle (QString title)
• void setVersion (QString version)
• void setDefaultChannel (int channel)
• void addVoice (ShogunVoice v)
• void addBank (ShogunBank b)
• bool isBank (QString bankname)
• int getBankNumber (QString bankname)
• int getDefaultChannel ()
• bool isVoice (QString voicename)
• ShogunVoice getVoice (QString voicename)
• ShogunStep getStep (int step)
• void addStep (ShogunStep s)
• void populate ()
• void enableChannel (int ch)
• void disableChannel (int ch)
• QVector< int > getChannels ()
• const QString toString ()
• int size ()

Private Attributes

• std::deque< ShogunStep > seq
• QString title
• QString author
• QString date
• QString version
• QMap< QString, ShogunVoice > voices
• QMap< QString, ShogunBank > banks
• bool channels [16]
• int defaultchannel

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

42 Class Documentation

2.15.1 Detailed Description

A ShogunShow contains all information present in a Shogun patchfile, and provides
access to this information to the main Shogun application. This includes sequential and
random access to steps in the sequence of patch changes, as well as information about
the banks, voices, and channels used in those steps.

Definition at line 21 of file ShogunShow.h.

2.15.2 Member Function Documentation

2.15.2.1 void ShogunShow::populate ()

Examines the entire ShogunShow and fills in each ShogunStep therein so that each
step contains data for every MIDI channel used in the show up to that point.

Definition at line 92 of file ShogunShow.cpp.

2.15.3 Member Data Documentation

2.15.3.1 std::deque<ShogunStep> ShogunShow::seq [private]

So, intuitively, I would want this to have getNextPatch, getPrevPatch, and so on. But
should this actually be sendNextPatch, etc? Probably not, or at least not exclusively,
since I might want to just get the patch and then get its name for use in the UI. Also, this
is just a data object - it shouldn’t touch MIDI.

However, dealing with multi-channel patches might be interesting. May need another
class, like ShogunStep, that contains a bunch of voices. (Is there such a thing as
throwing too many classes at the problem?)

Definition at line 66 of file ShogunShow.h.

The documentation for this class was generated from the following files:

• ShogunShow.h
• ShogunShow.cpp

2.16 ShogunStep Class Reference

Public Member Functions

• void addVoice (ShogunVoice v)
• bool usesChannel (int ch)

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

2.17 ShogunVoice Class Reference 43

• ShogunVoice getVoiceByChannel (int ch)

• const QString toString ()

Private Attributes

• QVector< ShogunVoice > voices
• bool channels [16]

2.16.1 Detailed Description

Definition at line 9 of file ShogunStep.h.

The documentation for this class was generated from the following files:

• ShogunStep.h

• ShogunStep.cpp

2.17 ShogunVoice Class Reference

Public Member Functions

• ShogunVoice (QString name, int channel, int bank, int program)

• ShogunVoice (QString name, int bank, int program)

• int getBank () const

• int getChannel () const

• int getProgram () const

• void setBank (int bank)

• void setChannel (int channel)

• void setProgram (int program)

• QString getName ()

• QString getOriginalName ()

• void setName (QString name)

• void setOriginalName (QString name)

• const QString toString ()

• const QString toStringShort ()

• bool isGenerated ()

• void markGenerated ()

• void markNotGenerated ()

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

44 Class Documentation

Private Attributes

• QString name
• QString originalName
• int channel
• int bank
• int program
• bool generated

2.17.1 Detailed Description

Definition at line 7 of file ShogunVoice.h.

The documentation for this class was generated from the following files:

• ShogunVoice.h
• ShogunVoice.cpp

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

Index

∼ShogunMidiController
ShogunMidiController, 33

cancelCallback
RtMidiIn, 18

changeStep
shogun_qt, 29

connect
ShogunMidiController, 34

DEBUG_WARNING
RtError, 9

DRIVER_ERROR
RtError, 9

event
shogun_qt, 29

eventFilter
KeyPressListener, 3

extract_bank
ShogunReader, 37

extract_declaration
ShogunReader, 38

extract_default
ShogunReader, 38

extract_voice
ShogunReader, 38

getMessage
RtMidiIn, 18

getPortName
RtMidiIn, 18
RtMidiOut, 25

getPorts
ShogunMidiController, 34

gotoStep
shogun_qt, 29

ignoreTypes
RtMidiIn, 18

INVALID_DEVICE
RtError, 9

INVALID_PARAMETER
RtError, 9

INVALID_STREAM
RtError, 9

KeyPressListener, 3
eventFilter, 3

layoutHUDs
shogun_qt, 30

loadFile
shogun_qt, 30

MEMORY_ERROR
RtError, 9

MidiSelectDialog, 6
MidiTestDialog, 7

NO_DEVICES_FOUND
RtError, 9

on_nextStepButton_clicked
shogun_qt, 30

on_prevStepButton_clicked
shogun_qt, 30

openPort
RtMidiIn, 18
RtMidiOut, 25

openVirtualPort
RtMidiIn, 19
RtMidiOut, 25

populate
ShogunShow, 42

46 INDEX

read_patchfile
ShogunReader, 39

RtError, 8
DEBUG_WARNING, 9
DRIVER_ERROR, 9
INVALID_DEVICE, 9
INVALID_PARAMETER, 9
INVALID_STREAM, 9
MEMORY_ERROR, 9
NO_DEVICES_FOUND, 9
SYSTEM_ERROR, 9
THREAD_ERROR, 10
Type, 9
UNSPECIFIED, 9
WARNING, 9

RtMidi, 10
RtMidiIn, 13

cancelCallback, 18
getMessage, 18
getPortName, 18
ignoreTypes, 18
openPort, 18
openVirtualPort, 19
RtMidiIn, 17
setCallback, 19
setQueueSizeLimit, 19

RtMidiIn::MidiMessage, 4
RtMidiIn::RtMidiInData, 20
RtMidiOut, 21

getPortName, 25
openPort, 25
openVirtualPort, 25
RtMidiOut, 25
sendMessage, 25

send
ShogunMidiController, 34, 35

sendMessage
RtMidiOut, 25

seq
ShogunShow, 42

setCallback
RtMidiIn, 19

setQueueSizeLimit
RtMidiIn, 19

shogun_qt, 26

changeStep, 29
event, 29
gotoStep, 29
layoutHUDs, 30
loadFile, 30
on_nextStepButton_clicked, 30
on_prevStepButton_clicked, 30
shogun_qt, 29
shogun_qt, 29

ShogunBank, 31
ShogunMidiController, 31

∼ShogunMidiController, 33
connect, 34
getPorts, 34
send, 34, 35
ShogunMidiController, 33

ShogunReader, 35
extract_bank, 37
extract_declaration, 38
extract_default, 38
extract_voice, 38
read_patchfile, 39
store_definition, 39
store_step, 39

ShogunSequence, 40
ShogunShow, 41

populate, 42
seq, 42

ShogunStep, 42
ShogunVoice, 43
store_definition

ShogunReader, 39
store_step

ShogunReader, 39
SYSTEM_ERROR

RtError, 9

THREAD_ERROR
RtError, 10

Type
RtError, 9

UNSPECIFIED
RtError, 9

WARNING
RtError, 9

Generated on Thu Apr 28 2011 03:46:15 for Shogun by Doxygen

	Worcester Polytechnic Institute
	Digital WPI
	April 2011

	The Shogun MIDI Control System
	Benjamin Michael LaVerriere
	Repository Citation

	tmp.1535548689.pdf.mJHDD

