
Worcester Polytechnic Institute
Digital WPI

Interactive Qualifying Projects (All Years) Interactive Qualifying Projects

March 2016

Visualization for Finite Element Method Education
Stephen J. Kelly
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/iqp-all

This Unrestricted is brought to you for free and open access by the Interactive Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Interactive Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Kelly, S. J. (2016). Visualization for Finite Element Method Education. Retrieved from https://digitalcommons.wpi.edu/iqp-all/642

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@WPI

https://core.ac.uk/display/212977203?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F642&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/iqp-all?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F642&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/iqp?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F642&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/iqp-all?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F642&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/iqp-all/642?utm_source=digitalcommons.wpi.edu%2Fiqp-all%2F642&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Worcester Polytechnic Institute

Interdisciplinary Qualifying Project

Visualization for Finite Element Method Education

Authors:
Donald Bourque
Stephen Kelly

Date: December 4, 2013
Advisor: Prof. Nima Rahbar

Abstract

In this project, common practices for visualizing scientific data were studied. In
addition, the science of cognition and data display was reviewed. The results
of this investigation was applied to augment a Civil Engineering introductory
course on Finite Element Method at WPI. Software enhancements allowed three
dimensional visualization for simulation of engineering structures. The research
on cognition and data graphics was used to improve understanding of these vi-
sual aids. The plotting function, developed in MATLAB and Julia environments
during the course of this project, can help all students visualize the results of
their numerical codes.

i

Contents

1 Introduction 1

2 Literature Review 1
2.1 The Theory of the Finite Element Method 1
2.2 Visual Cognition . 2
2.3 Data Representation . 2
2.4 Data Interpretation . 4
2.5 Scientific Visualization . 4

3 Programming Languages in Scientific Computing 4
3.1 MATLAB . 4
3.2 GNU Octave . 5
3.3 Scilab . 6
3.4 R . 6
3.5 Python . 7
3.6 Julia . 8
3.7 Review Conclusion . 9

4 Results and Discussion 10
4.1 MATLAB Plotting Modifications 10
4.2 Julia Implementation . 12
4.3 Future Work . 16

4.3.1 IPython Multi-User Support 16
4.3.2 IJulia for Coursework . 17

5 Conclusion 17

ii

List of Figures

1 The MATLAB graphical user interface. 5
2 The Octave graphical user interface. 6
3 The Scilab graphical user interface. 7
4 A demo of the IPython notebook. 8
5 Visual performance benchmarks. 10
6 Initial Truss Visualization . 11
7 Initial Deformed Truss Visualization 12
8 3D Simple Truss Visualization . 13
9 3D Simple Truss Example . 14
10 3D Simple Truss FEA Data . 15
11 Output of the Truss FEM code in IJulia. 16

List of Tables

1 Representational Frameworks for Shape Information 2
2 Performance benchmarks. 9

iii

1 Introduction

Visualization is an integral part of conveying scientific data. In the educational
process, visualization serves a key role in illustrating objectives and results,
increasing the connection and understanding of course topics. With the growth
of computing technology in the past few decades, it has become increasingly
more feasible to perform numerical analysis and generate intricate and dynamic
visuals.

An important numerical method in engineering has been the Finite Element
Method, often abbreviated FEM. When this technique is applied to solve prob-
lems it is called Finite Element Analysis, or FEA.[1] These abbreviations will
be used throughout this paper. Finite Element Analysis is used extensively to
study structures and materials. WPI offers courses in mechanics of materials
which study the analytical construction and modeling of engineering problems.
These courses traditionally blend many problem solving techniques. [2] We will
start by considering the cognitive aspects of these courses, particularly on the
visualization of computational results.

The objective is to further understand the role that visualization plays in
the educational process of the Finite Element Method. We will be focusing on
the final aspect of visually presenting the resulting numerical data. In order to
accomplish this we will survey the literature relevant to the role of visualization
in education. The literature will span cognitive science to graphics design. After
building a collection of cognitive considerations, we will look at varying software
packages. It is important to note that the great diversity in numerical software
leads to many considerations.

2 Literature Review

2.1 The Theory of the Finite Element Method

FEA traces its roots back to the work of Richard Courant, with his paper Varia-
tional methods for the solution of problems of equilibrium and vibrations, which
established the theoretical basis for the method.[3] In this seminal work, he lays
out the mathematical framework for reducing a problem existing on a boundary
into a variational problem existing on a discrete mesh. This method for solv-
ing partial differential equations drew on many previous techniques by earlier
mathematicians. A variational problem is concerned with the minimization and
maximization of integrals of unknown functions. An integral of an unknown
function is called a “functional”. In most systems, Hooke’s law applies, thus
creating a linear system if all properties are uniform. In most natural systems,
the properties are non-uniform, and therefore non-linear. Klaus-Jurgen Bathe’s
book on non-linear FEM elaborates on the differences from linear problems and
numerical techniques available for such systems.[4]

Many of the courses concerned with material mechanics and Finite Element
Analysis at WPI are taught for linear systems. This makes the material ac-
cessible to the students and presumes a knowledge of basic linear algebra. In
addition, students are taught how to construct problems from an analytical
symbolic representation into a discrete problem for computation. As such, we
will carry this consideration into our analysis of software packages.

1

Table 1: Representational Frameworks for Shape Information
Name Purpose Primitives
Images Represent continuous

color intensity.
Discrete hue and satura-
tion values

Sketches Geometry and organiza-
tion of color intensity
changes.

Boundaries (lines), paths,
and discontinuities.

2.5D sketch Describe orientation, field
of view, and depth of sur-
faces

Surfaces, depth, and dis-
continuities.

3D model Describe orientation of
shapes and volumes in a
hierarchical manner

Meshes, axes, and shape
primitives

2.2 Visual Cognition

A significant portion of this project will consist of refining the visual elements
used in an educational process. Multiple books were found to be of great use
in understanding the cognitive reactions people have to visual representations.
Robert Solso’s book, Cognition and the Visual Arts helped in understanding
both the cognitive and psychological effects visuals can have on the mind.[5]
While the book is ultimately a treatise on how cognition can be easily under-
stood through the visual arts, the material still proves relevant to our study. In
particular, Solso starts with an explanation of a cognitive information processing
model, establishing a lens through which we can understand how reactions arise
from observation. This model is validated through analysis of both the physical
structure of the human eye and the physics of light. A historical account of
artistic techniques is presented which helps develop the reader’s understanding
of cognitive aspects of arts as they were developed.

David Marr was a neuroscientist who pioneered studies in vision and informa-
tion processing. His posthumously published work, Vision: A Computational
Investigation into the Human Representation and Processing of Visual Infor-
mation [6] discusses a framework for extracting shape information from images.
This framework, summarized in Table 1, offers a valuable perspective on how
information can be encoded in images. The presented hierarchy is helpful for
understanding the representational difficulties with imagery. Marshall McLuhan
describes this as the difference between ”hot and cool” media. [7] In this case,
a ”hot” media is one which engages the viewer’s senses in a way that allows
analytic understanding of a scene. A ”cool” media is one which gives the user a
passive experience. This can be illustrated further in the context of a 3D scene.
A ”hot” 3D scene would allow camera movement (panning and tilting) which
allows the user to gain perspective. A cold scene is one which does not allow
this movement, which means the user has a more passive experience with the
information.

2.3 Data Representation

Edward Tufte’s seminal work, The Visual Display of Quantitative Information
serves to illustrate the role accurate portrayals plays in perception of data.[8] In

2

particular, Tufte’s thesis is that data cannot be absorbed from data graphics,
rather graphics serve best to show relations between data. This is a worthy
consideration for our project. Not only should all graphics generated by the
software we use present the data in such a way that allows for a proper in-
terpretation of the data, but all graphics should also promote the viewer to
compare different levels of the data. Tufte lays out and describes many guide-
lines for doing exactly this in two of the sections in his book; one on graphical
practice and one on graphical integrity.

Tufte’s section on graphical practice is about how data can be represented.
A time-series plot is the most common graphic used today as it is particularly
efficient and effective at presenting information when the passage of time is
important.[8] For instance, businesses and affairs in economics, statistics, and
meteorology will often use time-series plots to track recent and long-term trends,
predict future states and behaviors of the data, and lastly to present this in-
formation in an easily understood manner to colleagues, co-workers, and the
public.

Another powerful method is discussed is the use of data graphics. Due to the
modern advancement of technology, computerized graphics can hold tremendous
amounts of data. This method powerfully encourages pattern abstraction by
allowing the viewers to have an broad look at the information. The viewers
can compare and contrast similarities and difference among the data points and
take away meaningful conclusions that would be impossible for other methods
to portray. There is no other method for the display of statistical information
that is as powerful as a data graphic.[8]

Tufte’s section on graphical integrity is about how to accurately represent
the data to allow for a proper interpretation of the data. For instance, a graphic
will not distort the information if the visual representation of the data is consis-
tent with the numerical representation.[8] This is rather clear, but graphics are
constantly between manipulated to sway how the data is interpreted, causing
false conclusions which usually are to benefit some group or cause. Tufte dis-
cusses guidelines on graphical integrity, especially when considering perspective
with 3D graphics. These precautions and guidelines are important in order to
maintain a proper interpretation of the data among the viewers.[9]

Leland Wilkson’s The Grammar of Graphics draws significant inspiration
from Tufte’s work, but coalesces the details into a more technically relevant
manual. [10] This monograph introduces the idea of a syntactic structure under-
lying the design of graphics for visualizing data. The syntax is what ultimately
forms the grammar of the implementation. This idea is valuable towards our
work, since it allows us to create extemporaneous environments for data pre-
sentation. Wilkison’s work is also useful to our study since the approach is
textual. Throughout the book, he develops pseudo-codes that can translate
into other programming languages. In fact, it his proposed workflow has been
implemented in multiple programming languages including, R, Python, Julia,
and C. His work is qualified by experience writing an object-oriented graphic
system for a commercial company. It should be noted that The Grammar of
Graphics centers mostly of the display of datasets in two dimensions, however
these ideas are extensible to 3 dimensions.

3

2.4 Data Interpretation

Until relatively recently in human history the communication of quantitative
data resided in tables. In 1786, a Scottish economist named William Play-
fair, published his ”Commercial and Political Atlas” which is widely thought to
be the first use of diagrams to convey data.[11] In particular, his goal was to
lengthen the impression the data had on the reader. J.H. Lambert used graph-
ics to show the relation between two data sets. We can draw two immediate
benefits from graphical representations. First, they are significantly more im-
pressionable on the reader. Second, graphics show relations between data not
readily evident with other representations.

We can uncover two important considerations for education from these two
benefits of graphics. We know that the interpretation must be invariant among
each reader, and that it should encourage the students to inspect the relations
between the different layers of the data. This requires simplicity and a complete
understanding of all quantities and measures. [12]

2.5 Scientific Visualization

Many works have been published in the past two decades about scientific and
computer visualization. Around the early 1990’s 3D graphics became practical
to use on a personal computer. Thus, many scientists now had more tools
for displaying data aside from traditional 2D methods. The blossoming of 3D
graphics helped grow many industries. Helen Wright makes very clear there
is a distinct difference between computer graphics and computer visualization,
saying that visualization is an interactive process to understand what produced
the data, rather than the means of presentation.[13]

3 Programming Languages in Scientific Com-
puting

Scientific computing environments vary with language structure and develop-
ment ecosystems. In this section we will explore different scientific computing
packages and describe their relevance to FEM education. The compiled list
was selected for both the accessibility to a novice programmer and community
provided libraries. There are many programming languages available, and even
more which are domain specific to FEA. As such, we recognize that the com-
puting language is a vehicle for generating results and graphics. This review
will help establish some considerations in choosing a computing environment.

3.1 MATLAB

MATLAB is a proprietary software package and language developed by The
MathWorks, Inc. The standard environment allows for numerical and graphical
programming.[14] The programming language was innovative when introduced
in 1984 due to an interface with high performance linear algebra libraries written
in FORTRAN such as LINPACK, and now LAPACK.[15] MATLAB features an
interpreter for mathematical operations which makes this possible. The notion
of an interpreted language for mathematics was pioneering at the time, and has

4

Figure 1: The MATLAB graphical user interface.

lead to much of the market dominance MATLAB experiences today. 1 The
language syntax and structure is designed for vector and tensors as the main
primitives, which aids in representational brevity for FEA software.

As of this writing in 2014, WPI Computing and Communications Center
provides support and network installations for MATLAB on campus. The Sci-
entific/Engineering Software Applications (SESA) group at WPI also teaches
courses multiple times per term on MATLAB from the introductory to advanced
levels.

The MathWorks has developed extensive libraries for scientific and engi-
neering applications. In addition the community contributes code through the
MATLAB file exchange.2 The MATLAB development environment provides a
graphical user interface (GUI) and extensive support for 2D and 3D graphics.
Figure 1 shows the MATLAB user interface.

3.2 GNU Octave

GNU Octave is a interpreted language for numerical computing. It is released
as free and open source software under the GNU GPL.[16] The language is very
similar in structure to MATLAB and the language developers treat incompati-
bility with MATLAB as a bug. [17] The most recent release in December of 2013
introduced compatibility with a graphical user interface. This significantly im-
proves the user experience and makes the environment more conducive to rapid
prototyping. [18] A screenshot is shown in Figure 2.

The Octave language is often cited as a free alternative to MATLAB. This
is possible because it leverages many of the same underlying libraries. While
Octave is compelling due to the cost, there are some drawbacks, particularly
in usability and performance. The developers are actively working to address

1http://www.sagemath.org/talks/2007-05-18-maple_mathematica_matlab_magma/

survey.pdf
2http://www.mathworks.com/matlabcentral/fileexchange/

5

Figure 2: The Octave graphical user interface.

these issues. Usability is being improved with the aforementioned GUI and
performance is being improved with a Just-In-Time compilation technique.3

3.3 Scilab

Scilab is an open source computing environment for scientific and engineering
computations. It is released by an academic consortium under the CeCILL
license which is compatible with the GNU GPL.4 The associated language is
designed for numerical computing and shares many similarities to MATLAB,
and Octave. This leads to some possibilities for compatibility. The developers
are actively trying to build open and license-free standards for scientific com-
puting. This has led to significant popularity within European universities.[19]
Figure 3 shows the user interface. Scilab is in direct competition with Octave, as
it seeks to displace MATLAB with a free alternative. This is a common theme
that will be developed later in this paper.

3.4 R

R is an open source scripting language designed for statistical computing. While
the language and libraries are not generally oriented towards FEM, the language
implementation and graphics packages can serve as reference implementations
for open source scientific computing. 5

The computing language R uses a package known as ”ggplot2” to cre-
ate graphics. The library is based off of the aforementioned Grammar of
Graphics.[20] As such, we could expect the plotting package to produce effective
and accurate visuals given proper arguments. However many of the libraries,
and equally the community, built around R are focused towards statistical com-
puting. The language features first-class data containers which are analogous

3http://www.gnu.org/software/octave/doc/interpreter/JIT-Compiler.html
4http://opensource.org/licenses/CECILL-2.1
5http://www.r-project.org/

6

Figure 3: The Scilab graphical user interface.

to objects. It also features vectors and vectors operations for improving code
performance. RStudio is an IDE which provides easy interface to ggplot2 and
package repositories. 6. R is gaining popularity in recent years as a numerical
computing environment.

3.5 Python

Python should be noted as distinct in our list as it is designed for systems
programming. This means the language was designed to interface with operating
systems and perform file manipulations. As a systems language, Python can
harness tools for documentation and library creation. The language was first
release in 1991 by Guido van Rossum.[21]

The Scientific Python 7 project provides high performance utilities and ser-
vices for numerical and scientific computing projects. In addition, all these
projects are open source and have companies willing to provide support and
consultation. Companies well known and respected are Enthought and Con-
tinuum Analytics. Notable software under this project is NumPy, MatplotLib,
and IPython. NumPy provides wrappers for high performance vector opera-
tions, through LAPACK and OpenBLAS wrappers. This is similar to the other
languages mentioned here.

Matplotlib is an extensive visualization suite capable of 2D and 3D graphics.[22]
The facilities Matplotlib provides are highly comparable to MATLAB. IPython
is a web-based tool for running Python notebooks. [23] It allows for multiple
media representations within a single document. The notebook allows a user
to render LaTeX, Markdown, and images. In addition the cell-based utilities
allows code to be run and debugged effectively. Figure 4 shows a demonstration
of the various media utilities available. The development team has decoupled
the notebook platform from the language run in the cells by the kernel. They

6https://www.rstudio.com/
7http://www.scipy.org/

7

Figure 4: A demo of the IPython notebook.

also have an extensive roadmap for development which will be discussed in later
sections.

3.6 Julia

Julia is a programming language first released in early 2012 by a group of de-
velopers from MIT. The language targets technical computing by providing a
dynamic type system with near-native code performance. This is accomplished
by using three concepts: a Just-In-Time (JIT) compiler to target the LLVM
framework, a multiple dispatch system, and code specialization.[24] The syntac-
tical style is similar to MATLAB and Python. The language implementation
and many libraries are available under the permissive MIT license.8

Benchmarks have shown Julia can consistently perform within a factor of
two of native C and FORTRAN code.9 This is enticing for a Finite Element
Analysis and numerical computation, as the code abstraction can grow organi-
cally without performance penalty. In fact, the authors of Julia call this balance
a solution to the “two language problem”. The problem is encountered when

8http://opensource.org/licenses/MIT
9http://julialang.org/benchmarks

8

Table 2: Performance benchmarks.

abstraction in a high-level language will disproportionately affect performance
unless implemented in a low-level language.

The visualization tools available within the Julia ecosystem are weak as of
this writing in Spring of 2014. There are promising projects that show this
might not be the case in the future. In particular, four Google Summer of Code
projects for Julia have been funded by Google to allow student developers to
work on visualization tools.10

While the language is in active development, it has been designed to take
advantage of code written in other languages. Julia has bindings using LLVM for
Python, C, and Fortran. A polyglot environment is not conducive to uniform
structure and comprehensibility, it allows stable code to be used from other
languages. Notably, MatplotLib is accessible from Julia.

Recent developments to the IPython notebook have allowed other languages
to interface with the rendering framework. The Julia community has created a
version called IJulia that is compatible with IPython. Professor Steven J. John-
son at MIT has compiled a compelling demonstration of the facilities available
with IJulia11.

3.7 Review Conclusion

Our analysis of the available programming languages lead us to the following
conclusions. First and foremost, there are many excellent languages for numer-
ical computing. Language choice has many aspects. In order to find a good
direction in which to proceed, we need to focus on our target audience.

Many of the computations that will be done in the FEA courses at WPI
will be low on resources. Performance is not an immediate concern, but it
provides an avenue for technique scalability and experimentation. The Julia
community created performance benchmarks using various numeric program-
ming languages. 12 The results can be seen in Table 2. A visual representation
is given in Figure 5. The graph is particularly insightful, as it shows the dispar-
ity in performance between many languages relative to native C performance.
Julia provides fairly consistent performance relative to all other languages, while
FORTRAN is remarkably superior for some computations. This illustrates why
most linear algebra libraries are written in FORTRAN and C.

To conclude, we would like to address the development environments around
each language. The screenshots in Figures, 1, 2, and 3 appear remarkably

10http://www.google-melange.com/gsoc/project/details/google/gsoc2014/simon_

danisch/5757334940811264
11http://nbviewer.ipython.org/url/jdj.mit.edu/~stevenj/IJulia20Preview.ipynb
12http://nbviewer.ipython.org/url/julialang.org/benchmarks.ipynb

9

Figure 5: Visual performance benchmarks.

similar. Each development team followed a similar paradigm for interfacing
through a Read Evaluate Print Loop (REPL). In MATLAB, Scilab, and Octave
they provide the REPL in addition to variable display, command history, and a
file browser. This general paradigm is excellent for experimentation. MATLAB,
due to its availability and training support at WPI campus, was thus chosen
as the primary programming language for development in this project. Julia,
due to its comparable performance and recent emergence in the opensource
community, was also chosen for experimental development in this project.

4 Results and Discussion

Given our understanding of the proper practice of graphics, we are left with the
question of the proper representation of FEA information. The Matrix Anal-
ysis of Finite Element Structures course at WPI examines trusses and beams
- two common problems in the Finite Element field. Through the study of
FEA, students formulate element stiffness matrices for 2D and 3D trusses and
beams. Applied forces cause reactions and deflections of the elements, and this
is information that could be greatly benefited by a data graphic.

4.1 MATLAB Plotting Modifications

At first, the code for MATLAB visualization of the trusses and beams could only
handle 2D structures since 3D visualizations in MATLAB are not easily done.
An example of a 2D truss with the original code can be seen in Figure 6. The
visuals used for the boundary conditions of the truss elements follow standard

10

Figure 6: Initial Truss Visualization

graphical practices in engineering and an applied force vector is visualized at
node 3.

The resulting deflections of the truss members are shown in Figure 7 with
the original truss shown in blue and the deformed truss shown in red. The use
of color in a graphic can be a very effective means of visually distinguishing
commonalities between the represented data. In this example, the use of color
is very intuitive and promotes understanding of the visual.

The 2D visualization code was expanded to plot 3D trusses as well as exhibit
other added features that promote comprehension and provide more information
on the data. The boundary conditions of the undeformed 3D truss can be seen
in Figure 8 and the undeformed and deformed 3D trusses can be seen in Figure
9. The force vector in Figure 8 has been made red to stand out from the truss
and the color of the undeformed truss members has been changed to black. Now,
color is used in the deformed truss in Figure 9 to show whether the members are
in tension (red) or compression (blue). An accompanying legend insures proper
interpretation of the color usage.

A large part of the reasoning behind developing better visualization capa-
bilities in this project was to encourage the students to draw meaningful con-
nections between the topics discussed in class, the Finite Element code they’ve
been writing, and the resulting visual graphic. By comparing the 3D truss ex-
ample figures, one would expect that the red force vector in Figure 8 would
push node 4 by some amount in the force vector’s general direction. It could
also be reasoned that the truss members 1 and 2 could become compressed

11

Figure 7: Initial Deformed Truss Visualization

while truss member 3 becomes extended. All of this logic can be confirmed by a
visualization generated by correct code. Inconsistencies between the produced
graphic and an expected result would prove that either the student’s code is
not correct or that the underlying concepts taught by the course are not fully
understood. Visualizations can be used by the students to easily verify whether
their reaction calculations make sense.

4.2 Julia Implementation

During the review of the MATLAB plotting function, some idiosyncracies were
noticed with the MATLAB language. In particular it became difficult to design
user interfaces. We were also driven by the cognitive and user experience aspects
of the MATLAB experience to find an alternative. Some outside work lead to
the use of IJulia. This environment was very excellent to present both equations,
code, and visuals in a single document.

We started to port some basic Finite Element computation code over to
Julia. For the most part, syntactic differences were the main challenge. The
Julia manual has some through observations on the differences from other lan-
guages.13 Some additional obstacles were slightly more grammatical. Julia’s
JIT compiler requires variables be preallocated. In MATLAB this is a perfor-
mance optimization, however in Julia it is a requirement. The process of porting
the code strengthened our understanding of the operations involved.

13http://julia.readthedocs.org/en/latest/manual/noteworthy-differences/

12

Figure 8: 3D Simple Truss Visualization

13

Figure 9: 3D Simple Truss Example

14

Figure 10: 3D Simple Truss FEA Data

15

Figure 11: Output of the Truss FEM code in IJulia.

After the numerical computation porting was complete, visual utilities had
to be made. Fortunately Julia includes many plotting utilities. One of the most
advanced is PyPlot, which is a wrapper for MatplotLib, a plotting utility written
in Python. The function calls to MatplotLib are very similar to MATLAB. [25]
Again, this made the porting process very easy.

4.3 Future Work

4.3.1 IPython Multi-User Support

The Sloan Foundation granted funding of 1.15 million USD for about two years
of development to IPython.14 With this funding the development team decided
to target 4 releases every 6 months. This started with a 1.0 release in August
2013, followed by a 2.0 release in April 2014. The grant objectives are as follows:
refinement of the IPython notebook through interactive utilities and various
export formats (LaTeX, PDF, HTML, Presentations), support for languages
other than Python, and support for multiuser notebooks.15 With the release of
version 2.0, all of these goals except for multiuser support have been realized.

In addition, these changes are to support a pilot of an applied statistics
course at Stanford. The 3.0 release of IPython will preview initial support for
multiuser notebooks. The developers state that the environment will map one-

14http://ipython.org/sloan-grant.html
15https://github.com/ipython/ipython/wiki/Roadmap:-IPython

16

to-one to a Linux host. This means integration with the WPI Unix accounts
should be straight forward. A student might login with Shibboleth and an
IPython notebook would start in their account (/home/user/ipython).16 As
with most open-source and pro bono projects, the development is driven by
the needs of the users. As such, IPython is being developed to suit university
coursework in the 2014-15 academic year.

4.3.2 IJulia for Coursework

With the PyCall package, Julia and IJulia can take advantage of all improve-
ments to the IPython environment. The roadmap for IPython is compelling,
and will enrich the user experience with IJulia. Courses in numerical and high
performance computing have been taught using Julia at MIT, Cornell, Stan-
ford, Pennsylvania State, and Western University Canada.17 While this pales
in comparison the amount of courses taught with MATLAB, open computing
ecosystems are clearly gaining momentum. At the end of this summer we believe
the facilities available in Julia and IPython will meet and exceed those available
in MATLAB.

Early adoption of IJulia in coursework will both be challenging and enriching.
Most of the challenge lies in establishing infrastructure and course material. The
similarities between MATLAB and Julia, along with the roadmap of IPython
make these less concerning. On the other hand, the student only stands to gain
from the switch to an open source and web-based computation environment. A
free language, both in license and cost, lets the student apply their skills outside
of corporate and academic organizations without financial concern. In addition,
web notebooks mean a student does not have to invest in an expensive computer
to complete homework assignments.

5 Conclusion

The study of visualizing scientific data has lead to the development of utilities
all students can leverage for their courses. Our exploration of computing tech-
nologies lead us to possibilities for future improvements in the coursework. In
this project, common practices for visualizing scientific data were studied. In
addition, the science of cognition and data display was reviewed. The results
of this investigation was applied to augment a Civil Engineering introductory
course on Finite Element Method at WPI. Software enhancements allowed three
dimensional visualization for simulation of engineering structures. The research
on cognition and data graphics was used to improve understanding of these vi-
sual aids. The plotting function, developed in MATLAB and Julia environments
during the course of this project, can help all students visualize the results of
their numerical codes.

16https://github.com/ipython/ipython/wiki/IPEP-33A-Multiuser-support-in-the-notebook
17http://julialang.org/teaching/

17

References

[1] T. J. Hughes, The finite element method: linear static and dynamic finite
element analysis. Courier Dover Publications, 2012.

[2] J. J. Rencis and H. T. Grandin, A New Approach to Mechanics of Materials:
An Introductory Course With Integration of Theory, Analysis, Verification
and Design, p. 3–10. American Society of Mechanical Engineers, 2005.

[3] R. Courant, “Variational methods for the solution of problems of equilib-
rium and vibrations,”

[4] K.-J. Bathe, Finite element procedures. Klaus-Jurgen Bathe, 2006.

[5] R. Solso, Cognition and the visual arts. Cambridge, Mass: MIT Press,
1994.

[6] D. Marr and A. Vision, “A computational investigation into the human
representation and processing of visual information,” WH San Francisco:
Freeman and Company, 1982.

[7] M. McLuhan, Understanding Media: The Extensions of Man. New Amer-
ican Library, 1964.

[8] E. Tufte, The visual display of quantitative information. Cheshire, Conn:
Graphics Press, 2001.

[9] M. Zachry and C. Thralls, “An interview with edward r. tufte,” Technical
Communication Quarterly, vol. 13, no. 4, 2004.

[10] L. Wilkinson, The grammar of graphics. Springer, 2005.

[11] I. Spence and H. Wainer, “Who was playfair,” Chance, vol. 10, no. 1,
pp. 35–37, 1997.

[12] B. Victor, “An ill-advised personal note about “media for thinking the
unthinkable”.”

[13] H. Wright, Introduction to scientific visualization. London: Springer, 2007.

[14] S. Attaway, MATLAB: A practical introduction to programming and prob-
lem solving. Elsevier, 2012.

[15] C. Moler, “Matlab incorporates lapack.” http://www.mathworks.com/

company/newsletters/articles/matlab-incorporates-lapack.html,
2000.

[16] “GNU General Public License.” http://opensource.org/licenses/

GPL-3.0.

[17] J. W. Eaton, D. Bateman, and S. Hauberg, Gnu octave. Free Software
Foundation, 1997.

[18] J. S. Hansen, GNU Octave: Beginner’s Guide: Become a Proficient Octave
User by Learning this High-level Scientific Numerical Tool from the Ground
Up. Packt Publishing Ltd, 2011.

18

[19] S. L. Campbell, J.-P. Chancelier, and R. Nikoukhah, Modeling and Simu-
lation in SCILAB. Springer, 2006.

[20] H. Wickham, ggplot2: elegant graphics for data analysis. Springer Publish-
ing Company, Incorporated, 2009.

[21] “General Python FAQ — Python v2.7.6 documentation.” https://docs.

python.org/2/faq/general.html.

[22] S. Tosi, Matplotlib for Python developers: build remarkable publication qual-
ity plots the easy way. Packt Publishing Ltd, 2009.

[23] F. Pérez and B. E. Granger, “IPython: a system for interactive scientific
computing,” Computing in Science and Engineering, vol. 9, pp. 21–29, May
2007.

[24] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman, “Julia: A fast dy-
namic language for technical computing,” arXiv preprint arXiv:1209.5145,
2012.

[25] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in
Science & Engineering, vol. 9, no. 3, pp. 0090–95, 2007.

19

	Worcester Polytechnic Institute
	Digital WPI
	March 2016

	Visualization for Finite Element Method Education
	Stephen J. Kelly
	Repository Citation

	tmp.1535739129.pdf._Rc26

