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Abstract 

 To study the autonomous cars which have become an interesting topic among researchers, this 

project aims to implement a system that combines adaptive cruise control (ACC), trajectory generation, 

and trajectory tracking controller on a radio control car. To ensure high safety and performance, we 

implemented Control Lyapunov function (CLF) combined with control barrier function to achieve ACC. The 

implementation of ACC demonstrates that the car is able to drive at desired speed and keep a provably 

safe distance from the front car. The system uses minimum-jerk trajectory generation between waypoints, 

using cubic spline interpolation to generate a feasible trajectory and keep track of the desired trajectory. 

Trajectory tracking controller is constructed using CLF and input saturation constraints. It can keep track 

of the trajectory while still guaranteeing the converges. In order to help the car driving smoothly below- 

and above-average speed, a half-toroidal continuously variable transmission (CVT) is built and attached 

to the central shaft. The implementation shows that the car has wider range of speed and smoother 

acceleration in safe conditions. With the success of this project, future MQP teams will be able to test 

their own trajectory tracking controllers, speed control algorithms, and localization methods. 
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1 Introduction 

Twenty years ago, robotic cars that can autonomously function and communicate with humans 

were something coming from fantasy novels. Even ten years ago, driverless cars still only appeared on 

movies. A lot of people still joke about flying cars being commercially employed in 2017 just like the movie 

“Back to the Future.” On March 2004, the Defense Advanced Research Projects Agency (DARPA) held a 

Grand Challenge to find any driverless car that could finish a 150-mile course by itself [1]. Even though 

none of the participating cars finished the challenge, this had sparked an interest in autonomous cars for 

researchers and hobbyists. One year later, in October 2005, in the second Grand Challenge, five driverless 

cars successfully completed a 132-mile course, marking the first historical milestone in autonomous 

vehicles [2]. Years after that, research topics and developments related to the autonomous vehicles rode 

on a rising wave with a lot of vehicles making the roads for test trials. Now, in 2017, autonomous cars 

have become an expected reality. The Global Atlas of Autonomous Vehicles in Cities, a joint effort 

between Bloomberg Philanthropies and the Aspen Institute, shows that 53 cities across the globe are 

hosting tests on autonomous vehicles or thinking about hosting autonomous vehicles, as of October 2017 

[3]. Two thirds of that have been actually piloting autonomous vehicles among commercial cars. The major 

automotive companies have committed to creating fully autonomous vehicles and planning on releasing 

them as soon as possible, with Tesla in the aiming for 2018 [4]. A conservative prediction by David Galland, 

from Gallet/Galland Research, stated that 10 million self-driving cars will hit the road by 2020 [5], to show 

how sharp the rising trend of the autonomous vehicles really is. 

The autonomous vehicle from this project was motivated by the Autonomous Race Cars built by 

the engineering teams from University of Pennsylvania and Massachusetts Institute of Technology. Their 

idea was to create a racing competition similar to F1, but for autonomous race cars one tenth the size of 

their counterparts [6]. This competition would inspire more college students and professors to build and 

develop more advanced race cars to compete for the best. 

One other motivation for this project was looking into the behaviors of the autonomous vehicles by 

researching the algorithms, mechanics, and operating systems to build an autonomous car and actually 

building one. The public fear them to be dangerous and unreliable [7]. The team wishes to understand 

where the causes come from and why they are so. 

One last motivation came from the fact that most projects and researches on autonomous 

vehicles have been kept private and undisclosed by the government and automotive companies. The team 
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wished to share the software as well as hardware configurations of the car to fellow students from WPI 

or other colleges and other interested parties so that any people without proper facilities can study and 

research autonomous vehicles.  

This project aims to finish building an autonomous vehicle with basic functionalities; to 

understand the behaviors of the car; to study and apply the latest navigation, movement speed constraint, 

and localization algorithms; to test different combinations of various algorithms to make the car operate 

smoothly and safely; and to compare against other race cars to modify and adjust the car to have it on 

the same pace with the current developments from other colleges. 
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2 Background 

2.1 Autonomous Vehicles 

2.1.1 Autonomous Vehicle 

The way that people drive on the roads will soon change in a drastic way. So far, the term “driver” 

refers to the person sitting behind the wheel and actually controlling the vehicle. But soon the answer to 

the question “Who drives your car?” will be the car itself as artificial intelligence (or AI) and robotics 

components are growing popular and finding themselves into the automotive industries.  

Autonomous vehicles are those that require almost to no constant inputs and attention from the 

human drivers. They depend on various types of sensors, such as visual, motion, and orientation sensors, 

to scan for the surroundings as inputs; software program to process those inputs and decide a responsive 

course of actions; and hardware actuators and systems to execute the decisions. Technically, a finished 

product—a fully autonomous vehicle—can, without human intervention, navigate from the starting 

location to the destination on the roadways that are not modified for robotics technologies. 

Already there are no vehicles with full autonomy yet but only “semi-autonomy.” They range from 

brake assistance, such as gradual brake and sudden stop; from lane assistance, such as driving in-lane; to 

headlight assistance, such as automatic dimming or moving the headlights out of views of the cars from 

opposite direction. Major automotive companies are investing resources and capitals on fully 

autonomous vehicles that can drive safely. They are aiming to showcase their products to the markets in 

the near future, even as soon as 2018 [8]. 

From the perspective of the consumers, the expectations and receptions do not seem pessimistic. 

From a survey of Open Roboethics Institute, most people think autonomous vehicles will help reduce 

traffic congestion (81.5%) and accidents (64.2%) [9]. This comes as expected as an autonomous vehicle’s 

AI should be able to determine the most logical and efficient actions on the roads all the time. Also, nearly 

half the respondents to the survey say that they will pay $3,000 or more for a fully autonomous version 

of the same car. This shows that the consumers place the values from autonomous cars in high regards 

and expect a lot from them. 
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2.1.2 Autonomous 1/10 Race Cars 

University of Pennsylvania (or UPenn) wants to inspire the advancement of robotics course in 

colleges. That was why they promoted the F1/10 racing competition, resembling the renowned Formula 

One racing competition. The differences between the two competitions are that the F1/10 participating 

cars are one tenth the size of their counterparts, and that they are fully autonomous. The commonly 

suggested car from UPenn is the Traxxas Rally Radio Control Car, which is also similar to the one used for 

this project, Traxxas. UPenn includes the lectures and the suggested software and hardware 

configurations for anyone interested in participating or simply fascinated in robotics. 
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2.2 Continuously Variable Transmission 

Robotics products capable of moving, in general, accelerate, decelerate, and stop by changing the 

continuous signal that the program sends to the motor through the hardware systems that control all the 

intended executions of the program. The Racer car is not an exception. The speed control performs well 

at high speed, but suffers when it comes to low speed. The car’s motor has a built-in minimum speed limit, 

making it impossible for the program to execute low speed acceleration. The result of this is the hard 

jerking when the car starts running forward [10].  

2.2.1 Conventional Continuously Variable Transmission 

One of the solutions that can make the car start out slowly and gradually ram up the speed is to 

install a half-toroidal continuously variable transmission (or CVT) after the motor output to control the 

output speed through hardware constraints.  

As its name implies, the CVT shifts continuously in a stepless manner, resulting in the following 

benefits: a reduction of power consumption because the motor can operate under the most efficient 

conditions; smooth power delivery without any shift shock; and powerful acceleration because the 

motor’s power is delivered continuously with little loss of driving force during ratio changes. 

 

Figure 1: A Conventional Continuously Variable Transmission 

A CVT, in general, differ from traditional automatic transmission in they it does not have gears 

that provide steps between low- and high-speed oration. The gears are replaced by variable-size, cone-

shaped pulleys connected by a steel or composite drive belt. The flexible belt runs in a groove formed 
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between the insides of each pulley. One pulley is connected to the motor while the other is connected to 

the drive shaft. The diameter of each pulley is controlled by the software program, allowing the belt to 

ride lower or higher along the walls of the belt, thereby changing the gear ratio. Similar to how a bicycle 

chain moving up and down the gears, when the diameter of the drive pulley decreases and driven pulley 

increases, the transmission is in low gears to provide initial acceleration, and vice versa, when the 

diameter of the drive pulley increases and driven pulley decreases, the transmission is in high gears to 

maximize power usage. The nature of the CVT can increase the efficiency of power consumption by 

delivering an infinite number of smooth transitions from low to high. 

2.2.2 Half-Toroidal Continuously Transmission 

Although the belt drive CVT remains to be a considerable research interest among the mechanical 

design community and automotive industries, it falls short of the expectations given to it due to its poor 

endurance performance. People started looking at its successor: the half-toroidal CVT which has been 

being researched and improved since its first commercial debut in 1999 [11]. 

 

Figure 2: A Half-Toroidal Continuously Variable Transmission 

Figure 2 illustrates the components of a half-toroidal CVT. The CVT has a dual-cavity design that 

combines two sets of input/output disks and power rollers. One disk is connected to the motor while the 

other to the drive shaft. Two power rollers are mounted symmetrically to the center, inside the cavities, 

and serve to transmit the power between the input and output disks. Transmission ratio changes are 

accomplished by tilting the power rollers around the axis of rotation of the trunnions that support the 

rollers, executing smooth and continuous gear changes. The ratio of the radii of the circles traced by the 

contact points between the input/output disks and the power rollers corresponds to the tilting of the 

power rollers and also to the gear ratio. When the radius on the input disk is smaller than output, the 

input disc rotates faster than the output disc, putting the transmission in low gear. Conversely, when the 

radius on the output disk is smaller than input, the output disc rotates faster than the input, putting the 
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transmission in high gear [12].This allows an infinite number of ratio changes within a finite range, raising 

the power transmission efficiency to the maximum. 

Since a half-toroidal CVT has double the number of contact points between the disks and power 

rollers that transmit force, it is capable of handling higher levels of torque than a conventional CVT. It is 

different from a general friction drive unit in that it is the power transmission through the intermediary 

of the oil film and there is no direct contact among the rolling components. It is possible to increase the 

contact pressure to the limit the rolling component materials. This is why the transmissible torque from a 

half-toroidal CVT is larger than that of a conventional CVT. 
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2.3 Adaptive Cruise Control 

According to a report from U.S. Department of Transportation, there was an estimate of 

6,296,000 police-reported motor vehicle crashes, both fatal and non-fatal, in the United States in 2015 

[13]. In those crashes, about 2.44 million people were injured while 35,092 people were killed. A survey 

conducted by Department of Transportation from 2005 to 2007 pointed out that 94% of the vehicle 

crashes was related to the drivers while the remaining associated with the vehicles and environments 

[14]. The specific reasons include driver’s inattention, internal and external distractions, inadequate 

surveillance, speeding, misjudgment of distance, and sleeping. Although significantly improved compared 

to 2005, the number of vehicle crashes is starting to alarmingly rise back up over the last 5 years. 

2.3.1 Conventional Cruise Control 

A lot of inventions were researched to help improve the conditions outside and inside the vehicles 

in traffic. One of those major developments is the conventional cruise control (CCC) which made its debut 

in automobile industry in 1958 [15]. CCC automatically controls the velocity of the vehicle at a level set by 

the driver. As CCC reduces the driver’s fatigue from keeping track of the vehicle’s velocity, it quickly gained 

attention. The reduction in fuel consumption as a result of utilizing CCC also made it a standard nowadays 

to have some type of cruise control on a vehicle, as can be seen on a daily basis. 

 

Figure 3: Block diagram of a Cruise Control System 

Figure 3 models a typical cruise control system on most cars. Once a desired speed is received 

from the driver, the controller receives it as input and execute the computations and sends a signal to the 

actuator unit. The actuator is connected to the throttle valve and controls the throttle butterfly position 

according to the controller’s signal. Under the throttle control, the engine output the torque to the gears, 

rotating the wheels, and thus moving the car. The current speed of the car is then sent back to the 
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controller so that it can compute the next signal to send to the actuator. This way, even if the vehicle is 

moving uphill or downhill, the velocity will still stay unchanged. 

2.3.2 Adaptive Cruise Control 

One disadvantage of CCC is that it maintains a constant velocity regardless of traffic environments. 

The answer to that issue is adaptive cruise control (ACC) which is an extension of CCC. ACC first appeared 

on the Japanese market in 1995 [16]. ACC provides assistance to the drivers in the task of adjusting velocity 

and maintaining a desired distance from the vehicle in front by controlling the accelerator and the brakes. 

 

Figure 4: Block diagram of an Adaptive Cruise Control 

Figure 4 shows two additional units in the block diagram for CCC. ACC expands CCC on the ability 

to detect any vehicle ahead and sense the distance between the preceding vehicle and the current car. 

The information is then transmitted to a controller to process the data based on the implemented ACC 

algorithm on the system. If no vehicle is detected, the ACC algorithm will output a speed signal to the CCC 

that matches with the desired speed set by the driver. Otherwise, the ACC algorithm will compute the 

speed output to keep the minimum safe distance between the car and the vehicle ahead. The CCC 

controller will receive the signal and execute the procedures of a CCC system. 
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2.4 Control Lyapunov Function 

The problem of solving nonlinear control system remains one of the most challenging subjects in 

control theory. Nonlinear control problems can be solved by reducing them into Hamilton-Jacobi-Bellman 

partial differential equations, or Euler-Lagrange open-loop system [17]. But this method is not practical 

due to the efforts in finding the optimal solutions. Moreover, stabilizing a nonlinear system also poses 

another difficulty by itself. The theory proposed by Lyapunov successfully alleviated this problem, 

although there was not a proper procedure in how to apply that theory when it came out. After 

continuously extensive exploitations of the theory, a design started forming together that can stabilize 

general nonlinear control systems: control Lyapunov function or [18]. 

Consider a nonlinear system of the form: 

𝑥̇ = 𝑓(𝑥, 𝑢) 

Where 𝑥 ∈ ℝ𝑛is the state vector, 𝑢 ∈ ℝ𝑚 is the control vector, and 𝑓:ℝ+ × ℝ𝑛 → ℝ𝑚 is locally Lipschitz 

vector field. A control Lyapunov function (CLF) is a continuously differentiable, proper, positive definite 

function 𝑉:ℝ+ × ℝ𝑛 → ℝ+ such that: 

inf
𝑢∈𝒰0

{𝑉̇(𝑥, 𝑢)} ≤ 0 

Where 𝑉̇(𝑥, 𝑢) = 𝑉𝑥 ⋅ 𝑓(𝑥, 𝑢) ∀𝑥 ≠ 0 . If it is possible to make the derivative at every point by an 

appropriate choice of u, then the objective of finding a sufficient and necessary condition for the existence 

of a smooth CLF is completed and the system can be stabilized with a Lyapunov function under those 

control actions [19]. That means that if in each state the energy V can be reduced, then it is possible for 

the energy to be eventually reduced to zero, i.e., it is possible to bring the system to its equilibrium. 
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2.5 Control Barrier Function 

As autonomous systems in various forms start appearing in the market more often, the concerns 

for safety also rise up. There is no denying that these robotic systems should be restrained by some type 

of control scheme, which layouts the rules and limits of all possible behaviors of these systems during 

performance. In that regard, control barrier functions (CBF) are used to guarantee the adherence to the 

constraints due to their ability to establish invariance of sets, and their relationship to multi-objective 

control [20]. 

Consider an autonomous nonlinear system of the form: 

𝑥̇ = 𝑓(𝑥) 

Where 𝑥 ∈ ℝ𝑛 is the state with 𝑥(0) = 𝑥0 ∈ 𝕏0, 𝑢 ∈ ℝ𝑚 is the control input of the system, and 𝑓:ℝ𝑛 →

ℝ𝑛 is locally Lipschitz vector field. The solutions 𝑥 of the system are forward complete. A CBF 𝐵(𝑥) is a 

non-negative function with a small value for states far from a constraint and which grows to infinity as the 

state x approaches the boundary of a set that violates the constraint [21]. 

To find a suitable CBF, suppose that ℎ(𝑥) is a smooth function which encodes 𝑥 where ℎ:ℝ𝑛 →

ℝ. ℎ(𝑥) > 0 means the state satisfies the constraints whereas ℎ(𝑥) < 0 means the state violates them. 

The set of admissible states are defined as: 

𝒞 = {𝑥 ∈ ℝ𝑛: ℎ(𝑥) ≥ 0} 

𝜕𝒞 = {𝑥 ∈ ℝ𝑛: ℎ(𝑥) = 0} 

Int(𝒞) = {𝑥 ∈ ℝ𝑛: ℎ(𝑥) > 0} 

Where 𝒞 ⊂ ℝ𝑛, and 𝜕𝒞 is the boundary of the set 𝒞. A locally Lipschitz function 𝐵(𝑥): 𝐶 → ℝ is a CBF if 

its Lie derivatives ℒ𝑓𝐵(𝑥) and ℒ𝐺𝐵(𝑥) are locally Lipschitz and if there exist class 𝜅 functions 𝛼1, 𝛼2 and 

𝛾 > 0 such that ∀𝑥 ∈ Int(𝒞): 

1

𝛼1 (||𝑥||
𝜕𝒞

)
≤ 𝐵(𝑥) ≤

1

𝛼2 (||𝑥||
𝜕𝒞

)
 

inf
𝑢∈𝒰

[ℒ𝑓𝐵(𝑥) + ℒ𝐺𝐵(𝑥)𝑢 −
𝛾

𝐵(𝑥)
] ≤ 0 

By enforcing this condition, forward invariance of C can be guaranteed and constraint violation 

can be prevented. 
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3 Project Goals 

3.1 Basic Goals 

The following criteria were set for measuring the basic completion of this project: 

 The car can drive a straight line without speeding, 

 The car can follow a vehicle ahead without crashing, 

 The car can smoothly accelerate and decelerate, 

 The car can stay in-lane at a low speed (v<15 km/h), 

 Design and build the CVT. 

3.2 Desired Goals 

The following criteria were set for measuring the desired success of this project: 

 The car can drive a straight line at medium speed (15 km/h v<30 km/h), 

 The car can autonomously shift between low and high gears, 

 The car can switch lane safely and smoothly, 

 The car can drive smoothly at low speed with CVT. 

3.3 Stretched Goals 

The following criteria were set for measuring the overachievements of this project: 

 The car can drive a straight line at high speed (x30 km/h), 

 The car can switch between aggressive and cautious behaviors on traffic, 

 The car can recognize lanes in different lightings, weathers, and traffic conditions, 

 The car can use anti-lock braking system, 

 The car can compute the next state of behavior within 0.1 seconds, 

 Control and maintain the car’s speed condition with CVT. 
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4 Design and Analysis 

4.1 LIDAR Selection 

The car was originally built after Penn’s racer car project by a group of PhD students as described 

above. However, the old LIDAR was broken when we started working on this project. We then faced this 

problem of whether we should purchase the same model or a different one. 

We did some researches to find out the most common LIDAR sensors for academic uses, and then 

decided to choose Hokuyo UST-10X. Below (Figure 5) is the chart that compares three different LIDAR we 

have considered. 

 
Figure 5: Comparison between Different Types of LiDAR 

Type RPLIDAR A2 360° Laser 
Scanner 

 
(The cheapest fully-

functional LIDAR 
existed) 

Hokuyo 04LX-UG01 LIDAR 
 

(Previously owned one) 

Hokuyo UST-10LX LIDAR 
 

(Used by MIT’s RC Car) 

Figure 

  
 

Distance 
Range (m) 

0.15 – 6 0.2 – 5.6 0.06 – 10 

Angular 
Range 

(Degree) 

360 240 270 

Angular 
Resolution 
(Degree / 

count) 

0.45 - 1.35 
(Normal: 0.9) 

0.36 0.25 

Accuracy < 1.5m: 0.5 mm 
>1.5m: 1% of the 

distance 

<1m: ±30 mm; 
>= 1m: 3% of distance 

±40 mm 

Scan Rate 
(Hz) 

5 - 15 40 40 

Scan 
method 

Evenly mapped Evenly mapped Unevenly mapped 

Scan 
Figure 

 
 

Price $ 500 $ 1,100 $ 1,700 

Rate Not recommend for 
the project 

Good to use The best choice 
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4.2 High-Level Software Designs 

4.2.1 Localization 

Knowing its location in an area is crucial for an autonomous car. In this project, we implemented 

two methods to localize the car. In our first implementation, we used Gmapping together with AMCL 

(Adaptive Monte Carlo Localization) to generate a map of the hallway outside the CIBR lab and tested the 

localization there. In order to use Gmapping, we need LiDAR data and odometry data. The car does not 

have encoder attached to steering or driving motor. We installed two RPM sensors instead to record the 

shaft rotations. The sensor was connected to the end of the shaft. Since one full revolution of the shaft 

takes three full revolutions of the wheels, the accuracy was not good enough and it could not measure 

the steering angle. We used the data to calculate the translational speed of the car and feed it back to 

low-level controller. We then decided to use odometry provided by Zed camera which is calculated based 

on depth image.  

4.2.1.1 Transformation 

We used ROS Gmapping package to create the map. There are three things the package requires 

to run, LIDAR data, odometry, and transformation (TF). TF is a concept that has been used a lot in ROS. 

Basically TF is a tool that links all the coordinates together so we can easily calculate the relative position 

of one part of the robot to another. In this implementation, the odometry was provided by ZED camera, 

which was installed in front of the LIDAR. We need to provide the transform of coordinates in order to get 

precise map from Gmapping.  

There are some commonly used frames such as world frame, map frame, etc. There is no clear 

definition of what exactly these frames mean in some of the packages we used. We came up without own 

interpretations after some trials. Map frame is the frame that stays fixed. It can be considered as the 

frame of origin. Odometry frame is attached to the car. It forms a dynamic transform from the map frame. 

The ZED software would start publishing a TF when it is launched. We then swapped a few 

transform from map frame and added a transformation from ZED to LIDAR.  

The second method was to use Vicon motion capture system. Motion capture systems are widely 

used in movie industry, medical and engineering fields. The Vicon system uses multiple optical cameras 

to track the motions of markers to calculate their positions. The Vicon system is easy to use and provide 

very precise results. 
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4.2.2 Adaptive cruise control 

The first thing we need to consider in autonomous driving car is the safety. The car needs to drive 

safely within speed limit to avoid speeding and adapt front car’s speed to avoid crash. In this case we 

implemented adaptive cruise control theory. It is a method that combines the CBF and CLF through 

quadratic program(QP) [22]. CLF provides the soft constraint to make the car trying to reach the desire 

speed, and CBF provides the hard constraint to keep a safe distance to the front car and a comfortable 

acceleration and deceleration. In this case, we assume the road is straight and the car either driving 

forward or stop. The sensor needed for implementing this method is a 2D LiDAR with a RPM sensor. 

4.2.2.1 LIDAR Filter 

 
Figure 6: Left – LiDAR Full Range. Right – LiDAR Filtered Range 

Since ACC does not control steering, most of the data provided by our LiDAR with 270o range 

would be not be useful. For example, we would not want the car to stop if there’s an obstacle on its side. 

We also would not want to keep data of objects that are too far away. The main function of the LiDAR is 

to sense the distance between itself and the front vehicle. Due to this reason, we wrote a Python script 

to filter out all the unnecessary data. As can be seen in Figure 6, we only keep the data within a 40 cm by 

8 m rectangle in front of the origin. From the filtered range of data, we then select the minimum number 

to make sure the car would not crash into anything. 
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4.2.2.2 ACC Controller 

This method we used was first introduced in the article [22]. The goal of CLF and CBF here seem 

contradicting. CLF tried to make the car run faster, but CBF would prevent the car from speeding up under 

certain circumstances. The author solved this problem by introducing the softness constant sigma. This 

allowed the CLF to be more flexible so that it could work together with CBF. 

The controller we used was as following [22]. 

𝑢∗(𝑥, 𝑧) =      argmin    
1

2
𝐮𝑇𝐻𝑎𝑐𝑐𝐮 + 𝐹𝑎𝑐𝑐

𝑇 𝐮 

𝐮 = [
𝑢
𝛿𝑠𝑐

] ∈ ℝ2 

                                     (ACC QP) 

s. t.   𝐴𝑐𝑙𝑓𝐮 ≤ 𝑏𝑐𝑙𝑓           (CLF) 

   𝐴𝑐𝑏𝑓𝐮 ≤ 𝑏𝑐𝑏𝑓          (CBF) 

   𝐴𝑐𝑐𝐮 ≤ 𝑏𝑐𝑐    (CC) 

 

Since the car only drives in a straight line, we can consider a simple model: 

𝑚 ⋅
𝑑𝑣

𝑑𝑡
= 𝐹𝑤 − 𝐹𝑟, 

Where m is the mass of the car, 𝐹𝑤 is the wheel force and Fr is the resistance force. The CLF we used here 

is: 

𝑉 = 𝑦2, 

Where      𝑦 = 𝑣𝑐𝑎𝑟 − 𝑣𝑑𝑒𝑠𝑖𝑟𝑒𝑑 , 

and the derivative of V is:   

𝑉̇ = 2𝑦𝑦̇ 

Let  𝑥 = (𝑃𝑐𝑎𝑟, 𝑉𝑐𝑎𝑟) where 𝑃𝑐𝑎𝑟 is the cars position and 𝑉𝑐𝑎𝑟 is the car’s velocity. We can get the 

dynamics of the system: 

𝑥̇ = [

𝑉𝑐𝑎𝑟

−
1

𝑚
⋅ 𝐹𝑟

] + [
0
1

𝑚
] ⋅ 𝑢(𝑥, 𝑧) 

𝑧̇ = 𝑉𝑓𝑟𝑜𝑛𝑡 − 𝑉𝑐𝑎𝑟 

 

And the 𝐴𝑐𝑙𝑓 and 𝑏𝑐𝑙𝑓  as: 

𝐴𝑐𝑙𝑓 = [−
2𝑦

𝑚
𝐹𝑟(𝑦) + 𝑐 ⋅ 𝑦2, −1], 
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𝑏𝑐𝑙𝑓 = [
2𝑦

𝑚
] 

For the CBF, we can represent the function 𝐵(𝑥) as: 

𝐵(𝑥) =  − log (
ℎ(𝑥)

1 + ℎ(𝑥)
),  

𝑤ℎ𝑒𝑟𝑒 ℎ(𝑥) = 1.8𝑥, 𝑎𝑛𝑑 𝑥 = 𝑉𝑐𝑎𝑟 

Here ℎ(𝑥) is the function describing minimum safety distance, and it is proportional with the car’s 

velocity.  

Then we can get: 

𝐵̇(𝑥, 𝑧, 𝑢) =  𝑓𝑏(𝑥) + 𝑔𝑏(𝑥) ⋅ 𝑢, 

and 

𝑓𝑏(𝑥) =  −
1.8𝐹𝑟(𝑥) + 𝑚(𝑉𝑓𝑟𝑜𝑛𝑡 − 𝑉𝑐𝑎𝑟)

𝑚(1 − 1.8𝑉𝑐𝑎𝑟 + 𝑧)(−1.8𝑉𝑐𝑎𝑟 + 𝑧)
, 

𝑔𝑏(𝑥) =
1.8

𝑚(1 − 1.8𝑉𝑐𝑎𝑟 + 𝑧)(−1.8𝑉𝑐𝑎𝑟 + 𝑧)
. 

Thus we can get 𝐴𝑐𝑏𝑓 and 𝑏𝑐𝑏𝑓 as: 

𝐴𝑐𝑏𝑓 = [𝑔𝑏(𝑥)      0], 

       𝑏𝑐𝑏𝑓 = 𝑓𝑏(𝑥) +
𝛾

𝐵(𝑥,𝑧)
  

For the force constrain: 

𝐴𝑐𝑐 = [
1 0

−1 0
] 

            𝑏𝑐𝑐 = [
𝑐𝑎𝑚𝑔
𝑐𝑑𝑚𝑔] 

Where ca and cd are the constants for acceleration and deceleration.  

 We used quadratic program to calculate the output u as force: 

𝐴 = [

𝐴𝑐𝑙𝑓

𝐴𝑐𝑏𝑓

𝐴𝑐𝑐

] , 𝐵 = [

𝑏𝑐𝑙𝑓

𝑏𝑐𝑏𝑓

𝑏𝑐𝑐

 ] , 𝐻𝑎𝑐𝑐 = 2 [
1

𝑚2 0

0 𝑝𝑠𝑐

] , 𝐹𝑎𝑐𝑐 = −2 [
𝐹𝑟

𝑚2

0
], 

 

We can get the result as: 

𝑣𝑛𝑒𝑥𝑡 = 𝑣 + (
𝑢0

𝑚
) ∗ 𝛿𝑡 

 where 𝑚 is the mass of the car 

The resistance model of cars is usually determined with tests and measurements. In the paper it 

was determined empirically. Our car, however, had very different resistance model from common cars.  
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Testing the resistance model of the car was beyond the scope of this project. Eventually we tried a few 

reasonable models and stick with the one that suit the system the most. 
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4.2.3 Trajectory Generation & Trajectory Tracking Controller 

With the car able to drive with guaranteed safety, we also need algorithms that make the car 

follow a non-straight track. We divide the overall architecture into 4 layers: waypoint generator, trajectory 

generator, trajectory tracking controller, and low-level controller and actuator for the car. The waypoints 

generator provides a list of waypoints that the car plans to pass and its location as the starting point. The 

trajectory generator takes the list of waypoints and generate a smooth and feasible trajectory that allow 

the car to follow. The trajectory tracking controller takes one state from the trajectory and calculate the 

steering angle and speed for the car to achieve, and low level controller and actuator take the angle and 

speed and send the command to motor and servo. In this project, we focused on the trajectory generator 

and trajectory tracking controller. 

4.2.3.1 Trajectory generation 

In order to generate a smooth and concise trajectory, we used a trajectory generator called 

minimum-jerk trajectory generator. Jerk is the derivative of acceleration of the desired trajectory, 

affecting the control inputs and stabilization of the whole system [23]: 

 

𝑗(𝑡) =
𝑑𝑎⃗(𝑡)

𝑑𝑡
= 𝑎̇⃗(𝑡) =

𝑑2𝑣⃗(𝑡)

𝑑𝑡2
= 𝑣̈⃗(𝑡) =

𝑑3𝑟(𝑡)

𝑑𝑡3
= 𝑟(𝑡) 

Where 𝑎⃗ is acceleration, 𝑣⃗ is velocity, 𝑟 is position, and 𝑡 is time. 

The reason we use minimum jerk trajectory generator is we want to minimize the changing of 

acceleration along the reference trajectory. Thus, the car will not experience sudden spike in acceleration 

and deceleration.  

We use cubic interpolation splines to connect waypoints to generate a time-based trajectory with 

each desired state 𝑋𝑑 contains (𝑥, 𝑦, 𝜃, 𝑣, 𝜔), where 𝑥 and 𝑦 are the desired position, 𝜃 is the angle that 

the car should point to, 𝑣 is the desired linear velocity that the car should reach and 𝜃 is the angular 

velocity that car should reach. We created two cubic polynomials for 𝑥 and 𝑦 that were based on time: 

𝑎0𝑡
0 + 𝑎1𝑡

1 + 𝑎2𝑡
2 + 𝑎3𝑡

3 = 𝑓𝑥(𝑡) 

𝑏0𝑡
0 + 𝑏1𝑡

1 + 𝑏2𝑡
2 + 𝑏3𝑡

3 = 𝑓𝑦(𝑡) 

Where 𝑡 is time, 𝑎0, 𝑎1, 𝑎2, 𝑎3 and 𝑏0, 𝑏1, 𝑏2, 𝑏3 are constants that represent the trajectory. 

We use the speed to constrain the derivative of 𝑓𝑥(𝑡) and 𝑓𝑦(𝑡): 

𝜕𝑥0 ⋅ sin(𝜃) − 𝜕𝑦 ⋅ cos(𝜃) = 0 

𝜕𝑥0 ⋅ cos(𝜃) + 𝜕 ⋅ sin(𝜃) = 𝑣 
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4.2.3.2 Trajectory Tracking Controller 

In order to follow the trajectory smoothly and safely, we need a controller to control both the speed and 

the steering angle of the car. After our research, we found a paper that uses control Lyapunov function to 

build a trajectory tracking controller for UAV (unmanned aerial vehicle). The model we used for our 

controller is Dubins’ car model shown as Figure 7: 

 

Figure 7: Dubins' Car Model 

We can represent this model in equation shown as below: 

𝜕𝑥 = 𝑣 ⋅ cos(𝜃) 

𝜕𝑦 = 𝑣 ⋅ sin(𝜃) 

𝜕𝜃 =
𝑙

𝑣
⋅ tan(Φ) 

Where 𝑥 and 𝑦 are the car’s global coordinates, 𝜃 is the angle that car currently pointing to, 𝑣 is the car’s 

current velocity, Φ is the car’s steering angle, and 𝑙 is the length between the front wheel and back wheel. 

Then transform the tracking errors expressed in the inertial frame to the car’s frame, the error 

coordinates can be demoted as [24]: 

[

𝑥𝑒

𝑦𝑒

𝜃𝑒

] = [
cos(𝜃) sin(𝜃) 0

− sin(𝜃) cos(𝜃) 0
0 0 1

] [

𝑥𝑟 − 𝑥
𝑦𝑟 − 𝑦
𝜃𝑟 − 𝜃

] 

 

 

We followed the paper and get the result for the changing rate of error as: 
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𝑥̇̅0 =
𝜔𝑟𝑥2

𝜋1
+

𝑣𝑟 sin(𝑥0)

𝜋1
−

𝑥1
2

𝜋1
3 𝑣𝑟 sin(𝑥0) + 𝑚𝑢0 −

𝑥2

𝜋1
𝑢0 −

𝑥1𝑥2

𝜋1
3 𝑢1 

     𝑥̇1 = (𝜔𝑟 − 𝑢0)𝑥2 + 𝑣𝑟 sin(𝑥0) 

     𝑥̇2 = −(𝜔𝑟 − 𝑢0)𝑥1 + 𝑢1 

Where 

(𝑥̇̅0, 𝑥1, 𝑥2) ≜ (𝜃𝑒 , 𝑦𝑒 , −𝑥𝑒) 

 𝑢0 ≜ 𝜔𝑟 − 𝜔𝑐 , 𝑢1 ≜ 𝑣𝑐 − 𝑣𝑟 cos(𝑥0) 

𝑥0 =
𝑥̅0

𝑚
−

𝑥1

𝑚𝜋1
, 𝜋1 ≜ √𝑥1

2 + 𝑥2
2 + 1 

Then we can get the f and g function for our dynamic system as: 

𝑥̇ = 𝑓1(𝑡, 𝑥) + 𝑔1(𝑡, 𝑥)[𝑢0, 𝑢1]
𝑇 

Where 

𝑥 = [𝑥̅0, 𝑥1, 𝑥2]
𝑇 , 

𝑓1(𝑡, 𝑥) =

[
 
 
 
 
 
𝑥2

𝜋1
𝜔𝑟 +

1 + 𝑥2
2

𝜋1
3 𝑣𝑟 sin (

𝑥̅0

𝑚
−

𝑥1

𝑚𝜋1
)

𝑥2𝜔𝑟 + 𝑣𝑟 sin (
𝑥̅0

𝑚
−

𝑥1

𝑚𝜋1
)

−𝜔𝑟𝑥1 ]
 
 
 
 
 

 

𝑔1(𝑡, 𝑥) = [

𝑚 −
𝑥2

𝜋1
−

𝑥1𝑥2

𝜋1
3

−𝑥2 0
𝑥1 1

] 

We get the result 𝑢 = [𝑢0, 𝑢1]
𝑇 as: 

𝑢0 = sat(−𝜂𝜔𝑥̅0, 𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥) 

        𝑢1 = sat(−𝜂𝑣𝑥2, 𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥) 

Where 𝑢0 is angular acceleration, and 𝑢1 is linear acceleration. Here 𝜂 is a constant that both satisfies 

control Lyapunov function and saturation inputs [24].  

And the command output is:  

Φ = tan−1 (
(𝜔𝑟 − 𝑢0)𝑣 

𝑙
) 

𝑣 = 𝑣𝑐 − 𝑢1 

Where Φ is the steering angle, and 𝑣 is the car’s speed.  



 

- 22 - 

 

4.3 Low-Level Software Designs 

4.3.1 Low level motor control 

The RC car is originally controlled by a radio controller. It can send driving forward, reverse, left 

turn and right turn by encoding those commands to radio signal, then emit it to the RC car. The radio 

receiver on the car can decode the signal to two different channels of PWM signals, which are speed and 

steering respectively, to ESC. Finally, the ESC will translate the PWM signals to certain electrical power to 

drive the motors. The RC car signal control is shown in Figure 8.  

 

Figure 8: Diagram of RC Car signal control 

To control the motor in the customized speed, we need to hack into this process. By doing some 

research, we planned to emulate the PWM signals and control the ESC.  

We analyzed the encoded PWM signals from two channels, and found out that both of them has 

100 Hz frequency. The steering angle and speed are controlled by duty cycle: from 10% to 20%. When the 

duty cycle is 10%, it indicates the max reverse in driver and max left turn in steering, and when the duty 

cycle is 20%, it indicates the max forward in driver and max right turn in steering. In this range, the 

percentage of duty cycle is evenly mapped with corresponding driver and steering behaviors. By following 

this regulation, the corresponding duty cycle percentage of stall mode in driver and straight mode in 

steering is 15 percent. Based on all findings, we thought that the signal was easy to be duplicated and 

hacked using a low-cost microprocessor. 
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Figure 9: Diagram of RC Car signal control 

To enable the RC car that was controlled by either RC controller or the microprocessor, we 

embedded two switches so the signal sources can be easily switched. The final diagram signal control is 

shown in Figure 9. 

4.3.2 Choice of processor 

Having an NVIDIA TX2 Board, we decided to use it as the main processing unit. Although TX2 has 

capability to output the required PWM signal, we also equipped a Teensy 3.2 Board as an additional 

lower-level motor controller for the following reasons: 

 Make the system design clear by separating lower-level control and higher-level control, causing 

the system easier to be tested and debugged separately. 

 Decrease the risk. If the low-cost Teensy was broken or brunt, it wouldn’t impact the TX2, which 

costs much higher than Teensy. 

 Unify the protocol. The communication between Teensy and TX2 is through serial, which is 

supported by ROS serial package. This design saves extra works from transcript messages between 

different protocols. 

 Easy wiring. Since TX2 was mounted on the top layer of the RC car while the ESC was mounted on 

the second layer, putting the Teensy closer to ESC can make the wiring more elegant.  

4.3.3 Lower-level Controller 

Since our car is modified with ABS (Acrylonitrile butadiene styrene), LiDAR, Zed camera and TX2, 

the car is overweight and the original speed control can’t control the speed as expected. We used a PD 

controller to control the speed of the car.  
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4.4 Mechanical design 

4.4.1 Car Base Case and Material Choice 

4.4.1.1 Material 

Originally this car base case is made of Acrylic, which made this car vulnerable and so easy to be 

broken. Since this car case is already broken at some part, we decide to change the whole case that made 

out of ABS, based on the high tensile strength properties of ABS and availability of cutting in Washburn. 

 

Table 1 Table of ABS Material Properties [25] 

 

In Table 1, tensile strength of ABS is 23.0-49.0 MPa and modulus of elasticity is 2.10GPA average, 

which means this material is hard and high elasticity, in other words hard to break.  

4.4.1.2 Case design and CAD model 

We use SolidWorks to design the structure of Car case during the summer shown in Figure 10. 

Depend on the previous design of case, we came up with an ABS board that can stand the enough pressure 

and able to put every device that we need on it.  

Based on what we can get from market, we choose 0.28 thickness ABS board for our car case, 

which is totally enough for the elasticity and hardness. We design our case structure to put ZED camera, 

lidar and TX2 on. We choose this shape because of beauty and capability to put stuff and give enough 

space for chassis to put more staff. All the holes on the board is drilled hole for screw. All of manufacture 

are in Washburn with the Help of Loiselle, James T, who is the Sr Instruct Lab Technician in WPI. 
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Figure 10: Car Case Base Design Drawing 
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4.4.2 Transmission Design and Analysis 

4.4.2.1 CVT Original design inspiration and specs.  

Half toroidal continuously variable Transmission contain Four major parts, Input Disc, output 

disc, power roller and trunnion.  Our original design is based on those aspects and generated them in 

Solidworks. While the half-toroidal CVT has proven to be superior to traditional transmission system, for 

this type of CVT to display its unique advantages to their fullest extent, however, the design has to be 

made with the specifications that provide high efficiency while still satisfying the requirements for 

vehicle mount ability and durability. There have been many researches on the parameters of the half-

toroidal CVTs and constructing predicting models with these parameters. There have also been many 

studies and analyses on the efficiency of the toroidal CVTs. But there have only been a few researches 

conducted on figuring out the most optimal configurations of the half-toroidal CVTs to connect the 

models and the efficiencies together. The half-toroidal CVT and its control system for this project were 

built with the geometry given in the paper by Delkhosh et al [26]. The reference papers from this paper 

were also looked into to further the understanding of the paper’s model and the simulation used to 

construct it. 

 

Figure 11: CAD Original Design of CVT    

Figure 11 is our original CAD model design. All of those specs and dimensions we gain are from 

Delkhosh(2011) [26]. This paper maximizes efficiency by optimizing the radius, pressure angle and all the 

mechanical dimensions. The radius of edge in Power roller has to match input and output radius, which 

are 0.53 Inches, to have the most touching surface of power roller between input and output to have 
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enough friction surface. Trunnion matches the dimensions of Power roller as well. The center of Trunnion 

is exactly the turning center when we assemble them together to best match and reduce vibration.   

4.4.2.2 CVT Analysis and Calculations 

4.4.2.2.1 Analysis 

After our original design of half-toroidal CVT, we discuss with Professor Daniello. We need traction 

forces acting on the input and output to prevent them from splitting and sliding. Because there will be a 

large number of forces acting on the roller and disc surfaces due to high RPM input, approximately 6000 

RPM (Our input motor, Traxxas 3500R, Brushless motor). Those forces will definitely push the roller and 

input to other side, in other words they cannot hold in their original position.  If we only use outside box 

as holder to hold two discs, Acrylic box will definitely break. 

4.4.2.2.2 Calculation 

When we calculate the Traction force, there are two directions, one is normal, and other is Vertical 

direction. The important one is the vertical one, based on our design and specs of CVT, Vertical one is the 

forces that push input and output away from each other. In order to calculate the forces, first we need to 

know the Torque of our motor. Based on the engineering toolbox, we approximately calculate our Torque 

as  300 𝑁 ⋅ 𝑚𝑚, Rpm we use is 20,000 as input. The reason we use the large number of Rpm is Because 

we want to have enough traction forces for calculation purposes. We use the equations below to Calculate 

them. All of our specs are from Figure 12: 

𝑇𝑜𝑟𝑞𝑢𝑒 =
𝑃𝑜𝑤𝑒𝑟⋅9.547

𝑅𝑃𝑀
 [27] 

𝑇𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐹𝑜𝑟𝑐𝑒 =
𝑇𝑜𝑟𝑞𝑢𝑒

𝑅𝑎𝑑𝑖𝑢𝑠
 

𝑇𝑟𝑎𝑐𝑡𝑖𝑜 𝐹𝑜𝑟𝑐𝑒 = 𝜇 ⋅ 𝑇𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐿𝑜𝑎𝑑 

𝑁𝑜𝑟𝑚𝑎𝑙 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝐿𝑜𝑎𝑑 = sin(𝜃) ⋅ 𝑇𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐿𝑜𝑎𝑑 

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝐿𝑜𝑎𝑑 = cos(𝜃) ⋅ 𝑇𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐿𝑜𝑎𝑑 
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Figure 12: Engineering Drawing of CVT 
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Table 2 Calculations of Traction Force 

Torque(𝑁 ⋅ 𝑚𝑚) 360   
Traction 
force 

Traction 
load 

Normal 
direction 

vertical 
direction 

Torque of 
step motor 

load 
needed 

RPM 
(approximately) 20000 max 20.5011 20.5011 6.5860 19.4145   1.6465 

Power 
(approximately)  750 max lub 20.5011 68.3371 21.9534 64.7148   5.4883 

Rmax 17.56 min 50.0695 50.0695 49.3306 8.5704   12.3326 

Rmid 12.16 min lub 50.0695 166.8985 164.4353 28.5682   41.1088 

Rmin 7.19 mid 29.6053 29.6053 24.2067 17.0443   6.0517 

theta min 18.74 mid lub 29.6053 98.6842 80.6889 56.8144 5.2076 20.1722 

theta mid 54.85               

theta max 80.15         

rad min 0.3271         

rad mid 0.9573         

rad max 1.3988         

friction 
coefficient  
(no lubrication) 1         

friction 
coefficient 
(lubrication) 0.3         

roller diameter 10.91         

 

 

 

Based on those dimensions in Table 2, we calculate our Traction load needed for input and output 

shown in Table 2, which is in the chart around 6~20 N. In the chart, I assumed our material as Aluminum 

T6061. Metal to metal touch friction coefficient is 1 [28], from Engineering Toolbox without lubrication is 

0.3 as coefficient [28]. Specs of our motor, we use Traxxas website to get them [29].  

4.4.2.2.3 Analysis in ANSYS 

After our calculation process, we analyze them in ANSYS, we use static structural to analyze the 

whole part. Because of analyzing such a huge and complicated movement is not very suitable in ANSYS. 

We use static one instead to see where the maximum stress happens, and how much deformation there 
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will be. The forces we applied on the input and output are the traction forces that we calculated before, 

6 to 20 N, acting on the top surface on input and output. 

 

Figure 13: ANSYS Analysis of Deformation of CVT 

 
Figure 14: ANSYS Analysis of Equivalent Stress of CVT 

As we can see in the ANSYS analysis, deformation is totally not the problem. The Maximum 

equivalent stress happened at touching point of power roller between input and output. This exactly 

matches my hypothesis. With the help of ANSYS and my calculation, I finally can improve my design. 

4.4.2.3  CAD detailed and Final design. 

As I have mentioned before. We need traction forces. Spring is one of the best choice. We found 

one from MasterCarr. Maximum load and load by inches provide enough load we needed, which is 7.96 

lbs., and rate is 23.20 lbs./in. But if we add Spring directly, input and output cannot rotate. We need 
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another set of thrust bearings to let spring provide load, while input and output can rotate as well. We 

choose bearings from amazon with good quality and good price. Then in order to let power roller shaft 

and input and output shaft rotate smoothly, we add ball bearings, from amazon. Between shaft and ball 

bearings, and bearings and trunnion, we use press fit to hold them. And between shaft of power roller 

and trunnion, shaft of input and hole on output, I choose loose fit because I need them to have smooth 

rotation. Most importantly, we need box to hold my design, and for demonstration purposes as well. I 

choose acrylic as material for box, press fit for ball bearings and box. In order to assemble box together, 

we choose T-slot and screw and nut. Here is the specs and final version of CVT shown in Table 3 and Figure 

15. 

Table 3 CVT Specifications 

Input and Output Radius  0.53 inches 

Power roller Radius  0.53 inches 

Box dimension 2.63*2.9*2.15 

Gear ratio 0.625:1:1.25 

Material  Aluminum 

Box Material  Acrylic 

Traction force 10~20N 

Input motor  Traxxas 3350R 
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Figure 15: Improved CAD Model of CVT 
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4.4.3 Manufacture 

We manufacture all of our parts in Washburn and Anchor Labs. We gain the material parts directly 

from Washburn, Special thanks to Ian and James for Great help when Manufacturing. Power roller is 

manufactured by Lathe in Washburn, trunnion is manufacture by Minimill. For input and output disc, we 

ask anchor labs to manufacture for us. All the pics of manufacturing details are in Appendix. The press fit 

we are using RC1 [30], the loose Fit we are using RC3. for set screw we are using No. 8 screw. Here is our 

final product. 

 
Figure 16: Manufactured Prototype of CVT 

In Figure 16, front Disc is the input, back Disc is the output, two rollers one each side are power 

rollers. On the top are trunnions which have two green vex gears connect to two small black vex gears. 

Gear ratio on the top is 12:36. The motor that control the angle of power roller between input and output 

will be connect on one of the two shafts on the top. 

 

Figure 17 Left:  High Gear ratio; Middle: 1v1 Gear ratio; Right: Low Gear ratio  
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5 Results 

5.1 ACC Performance 

5.1.1 Simulated Result 

In order to test the performance of ACC controller, we simulated the situation with the conditions 

listed here. We made the desired velocity as 24m/s and made the front car’s velocity as 14m/s 

which is smaller than the desired velocity. We made the car start with the speed of 20m/s and the 

initial front car distance is set to 100 m. We simulate the situation in MATLAB and get the result 

shown as plot below. 

 

 
Figure 18: Plot of Simulated Distance Between RC Car and Front Car 

As can be seen in Figure 18, the simulation shows that the initial distance between the 

autonomous car and the car in front is 100m. As the autonomous car approaches, ACC changes the 

velocity output so that the distance gradually becomes 25m at the end. The slow starts around sixth 
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second and ends at fourteenth second. ACC system only needs 8 seconds to quickly adapt to the target’s 

velocity. 

 

Figure 19: Plot of Simulated Velocities 

Figure 19 verifies this notion. The car starts out at 20m/s and reaches the desired speed in around 

0.5 seconds. As the velocity stays at the limit from second 2 to second 6, that is when the distance between 

is still larger than the safe distance of the ACC. When a car comes into range, the RC car starts decelerate 

quickly at second 6 to match with the front car’s velocity at second 14. Given the front car’s velocity 

remain constant, the RC car’s velocity stays unchanged as well, and the distance between them stays 

constant, as seen in Figure 18: Plot of Simulated Distance Between RC Car and Front CarFigure 18. 

The simulation result shows that the car is able drive as the desired velocity when it has a very long 

distance to the front car. The car is able to decelerate and adapt its speed to the front car’s speed when 

it getting close to the front car. 
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5.1.2 Real World Testing Result 

We tested the car in our 1/10 car. We set the drag force and brake force for the ESC to 90%. We 

tested the car’s performance with a person walking at front with varying speed, and here is the result in 

Figure 20 and Figure 21.. 

 

 

Figure 20: Plot of Real-World Velocities 

Figure 20 shows the velocity of a person walking in front of the car and the velocity of the RC car. 

On average, the car’s velocity stays in-between the peaks of the person’s velocity. Because the 

measurements were taken when the sensor scanned the midpoint between the two legs, the plot has a 

lot of spikes and noises. Despite that, the adapted velocity was smooth and unaffected even by the drastic 

drop in velocity of the person. 

From a distance perspective in Figure 21, the RC car keeps a minimum distance with the front car, 

as can be seen in a constant small space between the blue line and red line. When the person speeds up 

and walk further away from the car, the car accelerates to the velocity limit until the person falls in the 

safe range. As the person slows down, the car decelerates to match the person’s speed as well. The drastic 

stop at the end happens because the person already comes too deep inside the safe range. The car then 

resumes the velocity as the person goes further a bit. 
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Figure 21: Plot of Real-World Distance Between RC Car and Front Car 

The car was able to successfully adapt to speed of the front car without collisions. If speed limit was 

lower than the front car speed, it would reach the maximum speed and stay there until the front car slows 

down. If the speed limit was higher than the front car speed, it would keep a safe distance from the front 

car. From the distance plot, we can see the real distance is always greater or equal to the safety minimum 

distance.  
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5.2 Line Tracking Performance 

5.2.1 Trajectory Generator 

The minimum-jerk trajectory generator was simulated using MATLAB. The result is shown in 

Figure 22: 

 

Figure 22: Trajectory Generated by Minimum Jerk Algorithm 

The starting point of this trajectory is at (0,0,0) and ending point at (10,3,0) with the format (x,y,z). 

The trajectory can be represented as shown below: 

𝑓𝑥(𝑡) = 𝑡 

𝑓𝑦(𝑡) = (0.09)𝑡2 + (−0.006)𝑡3 

Where 𝑓𝑥(𝑡) is the function that describes the x position while 𝑓𝑦(𝑡) describes the y position. As shown in 

the graph, the trajectory generated is very smooth and does not cause sudden changes of acceleration.  
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5.2.2 Trajectory Tracking Controller 

5.2.2.1 Simulation Result 

We simulated our controller in MATLAB with the referenced trajectory generated by minimum 

jerk. We calculated the 𝜂 by using parameters in Table 4: 

Table 4 Saturated Factors for Calculating 𝜂 

Symbol Description Value 

𝑉𝑚𝑖𝑛 Minimum Motor Speed 0.0 

𝑉𝑚𝑖𝑛 Maximum Motor Speed 10.0 

𝜔𝑚𝑎𝑥 Maximum Angular Speed 2.0 

𝛿𝑣 Maximum Speed Difference Between each state 0.05 

𝛿𝜔 Maximum Angular Speed Difference Between each state 0.25 

 

With the values above, we get values 𝜂𝜔 = 2.25 and 𝜂𝑣 = 0.775. In order to generate the trajectory 

that follows a designated path, those values are substituted into the controller: 

𝑢0 = sat(−𝜂𝜔𝑥̅0, 𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥) 

        𝑢1 = sat(−𝜂𝑣𝑥2, 𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥) 

If the car starts out at the same position as the desired path, the simulated car’s trajectory will 

turn out as followed: 
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Figure 23: Simulation of Desired Trajectory Compared to Actual Trajectory at the Same Starting Point 

As shown in Figure 23, the trajectory generated by the controller follows the desired path very 

closely and smoothly. The offset between the two trajectories are inconsiderable. Below are the plots of 

x and y positions of the car compared to the desired positions: 

 

Figure 24: Left – Simulation of Desired x Position Compared to Actual x Position 

Right – Simulation of Desired y Position Compared to Actual y Position 
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In Figure 24, the offsets between the x and y positions are larger than they seem Figure 23. This 

is because only a portion of the trajectory are shown and zoomed in. Even so, the linear and angular 

velocities of the car match very well with the expected values, as seen below. There is also a consistent 

offset between the car’s and expected values. This is the errors coming from the estimating nature of the 

controller which tries to follow a trajectory.  

 

Figure 25: Left – Simulation of Angular Speed 

Right – Simulation of Linear Speed 

When the starting position of the car and the starting position of the trajectory are the same, the 

car’s trajectory is very close to the referenced trajectory. The output is very smooth and the distance 

between desired coordinates and car’s coordinates are very small and does not have the sign of growing 

as the time increases. 

We also simulated the controller with the car starting at a different position from the trajectory 

starting point. The result is shown in Figure 26. 
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Figure 26: Simulation of Desired Trajectory Compared to Actual Trajectory at Different Starting Point 

The trajectory follows the desired path very well. It only takes 2 seconds for the trajectory to 

converge to the desired path. The offset between the two trajectories after second 4 is also 

inconsiderable. Below are the plots of x and y positions of the car and the desired positions: 

 

Figure 27: Left – Simulation of x Position 

Right – Simulation of y Position 
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In Figure 27, there is also a consistent offset here. The plot of y positions shows that the controller 

only needs less than 2 seconds to quickly find the correct direction and position to start following the 

desired path. Below are the plots of linear and angular velocities of simulated car and desired trajectory: 

 

Figure 28: Left – Simulation of Angular Speed 

Right – Simulation of Linear Speed 

Similar to Figure 25, the linear and angular velocities when the car starts at different position also 

try to approach the desired velocities and stick closely to the desired velocities. The trajectory shows that 

even the car is very far from the trajectory starting point, the car still able to run very smoothly and the 

error did not grow with the time increase.  

Since we expected the sensor for localization is not perfectly reliable, we test our controller with 

add-on random noise from -0.5m to +0.5m. 

 

Figure 29: Simulation of Desired vs Actual Trajectory at Different Starting Point with Noises 
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As shown in Figure 29, even with unreliable localization, the controller still converges. The error 

would not accumulate. 

Figure 30 shows that the trajectory generated by the controller converges after around 2.5 

seconds and follows the desired path very well. The random noises resemble the lightings, sounds, and 

other unexpected factors when real-life sensors work. The noises can also represent the errors from using 

rounded numbers in the localization algorithm. Despite all that, the controller’s trajectory stll turns out 

well. The offset error from the noises do not accumulate and overturn the output completely. Below are 

the plots of x and y positions of the car compared to the desired positions: 

 

Figure 30: Left – Simulation of x Position 

Right – Simulation of y Position 

In Figure 30, the x and y positions curves quickly converge and resemble the desired curves. The 

random noises do not affect much. When applied to real-life system, this can yield a satisfactory results 

as hardwares and firmwares often cause incompatibilities with each other and other technical issues that 

can shift the big picture of the project. 

The result clearly shows that the car still able to track the trajectory very well and generally 

smooth.  

We also tested some extreme condition with the car start from different angle from the trajectory 

starting point. Figure 31 shows the result of the controller when the car faces 90 degrees away from the 

starting angle. 
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Figure 31: Simulation of Desired vs Actual Trajectory with the Car Facing 90o Away From the Goal 

 Even though it still converges to the desired path and reaches the goal in the end, the trajectory 

generated by the controller still needs longer time in-between. This is because the car has to start at 90 

degree away from the expected start point. Taking this in to consideration, converging in around 6 seconds 

is a remarkable speed. Below are the plots of x and y positions of the car compared to the desired 

positions: 

 

Figure 32: Left – Simulation of x Position 

Right – Simulation of y Position 

Figure 31 shows the struggle of the controller when it tries hard to converge. The x position curve 

has always be a straight line from the starting point. But here it take more efforts to be straight. The y 

position curve has to make a drastic turn in order to take the shape of the desired curve.  
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Figure 33: Left – Simulation of Angular Speed 

Right – Simulation of Linear Speed 

In Figure 33, the linear velocity goes overshoot when it tries to quickly converges to the desired 

velocity. The angular velocity is smoother when it tries to converge. This is probably due to the car not 

able to make sharp turns, hence low angular velocity. The result shows that even the car is a little bit far 

from the desired trajectory, it still merges to the desired trajectory at about 6 second, and track the rest 

part of trajectory very well. 

Figure 34 shows the result when the car faces 180 degrees away from the trajectory starting 

direction: 

 

Figure 34: Simulation of Desired vs Actual Trajectory with the Car Facing 180o Away From the Goal 
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 Even thought the trajectory does not converge, the end point is very close to the desired end 

point. In fact, if the controller is given more time to simulate over a longer distance, the trajectory would 

eventually converge with the desired path. Compared to Figure 31, the controller has to double the efforts 

in order to compute the outputs every time it reachs a waypoint.   

 

Figure 35: Left – Simulation of x Position 

Right – Simulation of y Position 

In Figure 35, the x position curve succcessfully matches with the desired curve at the end, thought 

not accurately, the y position is not able to get close to the desired curve at the beginning, due to the 

starting angle.  

 

Figure 36: Left – Simulation of Angular Speed 

Right – Simulation of Linear Speed 



 

- 48 - 

 

As can be seen in Figure 36, the angular and linear velocity successfully got close to the desired 

curve. The controller has to drive away from the desired trajectory at first to make a 180 degree turn. If 

given more time, it will surely converge with the desired curve.  

From the result we got from simulation we can get the conclusion that, whether the car start with 

the same point as the trajectory the car’s trajectory will converge to desired trajectory very fast and very 

smooth. The controller is very robust.  

We also tested the controller with different saturated inputs. Figure 37 shows that different 

saturate inputs create different speed limits. The orange output does not reach the limit yet, hence its 

peak. The other two, however, have their outputs capped at 0.3 and 0.2, respectively, since their outputs 

exceed the limits.In return, the two outputs retain high speed output for longer time. This is because it 

takes more time for the car to reach the waypoint if it drives at low speed. 

 

Figure 37: Plot of Angular Speed Output with Different Saturate Inputs 

Figure 38 shows how the trajectory generated by the controller responds accordingly to the 

changes in the inputs. The blue trajectory corresponds to the slowest velocity output in Figure 37. It is 

also the slowest to converge but the smoothest. The orange trajectory makes the sharpest turn, which is 
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fairly difficult for our RC car and also dangerous in real life. But it takes the least amount of time to 

converge.  

 

 

Figure 38: Plot of Trajectory with Different Saturate Inputs 

 

All the outputs are strictly bounded by the saturated inputs. The trajectory will be smoother 

when the saturated inputs getting smaller, but it will take longer to merge to the reference trajectory. 

5.2.2.2 Real World Testing Result 

After all the simulation, we tested this controller on our RC car. We test its performance under 

VICON motion capture system and visualize the behavior in RViz. We use the starting position of the car 

as the starting point of trajectory and manually give the goal and let the car generate the trajectory 

automatically.  
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Figure 39: RViz Captures of Actual Trajectory (Red) vs Desired Trajectory (Green) 

The green line is the desired trajectory generated by minimum jerk trajectory and red line are the 

car’s actual trail. The test above shows the car can generate a smooth trajectory and follow it smoothly 

with very small error. We optimize the algorithm and found the car has the best performance when the 

whole system runs in 10 Hz. Since both of our localization cannot provide a stable and exact coordinates, 

we change the ending condition and made the car stop when it reaches the point that close to the desired 

goal and the angle is not much different from the desired pointing angle. After optimizing, we made the 

absolute error smaller than 10 cm and angle smaller than 10 degrees, which is also the ending condition. 

  



 

- 51 - 

 

5.3 CVT Performance 

 

Figure 40: Plot of Motor Output with vs without CVT Attached 

We measured Rpm of input and output by optical shaft encoder connected with Arduino. We gain 

our results in Figure 40  from encoder by Time and RPM, then plot them in Microsoft excel. As we can see 

in the graph, Orange line define motor original performance without CVT. Acceleration directly goes to 

6500 RPM in 0.2 secs approximately. This 6500 RPM is the minimum RPM input of our Traxxas High speed 

motor. The blue Line indicate the performance with CVT, when in Normal condition, Gear ratio 1:1, our 

RPM is 2000 RPM, in high gear, 2500 RPM, in low gear, 1300RPM. With our CVT, our acceleration and 

deceleration are smoothly and in safe conditions. Most importantly, there will be no spike when directly 

input motor speed.  
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6 Conclusion and Future Plans 

6.1 Discussion 

While theoretical researches and mathematical models are abundant, resources about concrete 

implementation are scarce and specific to various platforms. To bridge the gap between theories and real 

world applications can be complicated. An error can be raised from anywhere of the system, small as bad 

wire connection, or malfunction parts, they all can be difficult to debug. 

6.1.1 Localization 

Gmapping was one of the most commonly used methods to generate a map under ROS 

environment. However, we encountered some problems when using it. As shown in the previous section, 

the map we generated has some noises that were mistakenly considered as obstacles. This was due to the 

odometry data generated from ZED camera. Odometry from encoder would be more reliable compare 

with those from ZED.  

Vicon system generated very precise result compare to the first method we first implemented. It 

was not necessary to generate a map since the cameras only tracks the markers. The disadvantage with 

it was the testing filed being too small. With the physical limitations, the car could not follow a very jerky 

trajectory, which constrains the shape of testing trajectories. Using Vicon system also meant we could not 

test outdoor. 

6.1.2 Adaptive Cruise Control 

From the result, we can clearly find out that as long as the front distance is correctly provided by 

LiDAR, and the driving system is fully functional, the whole system will be very stable and robust. Even 

though, the safety is mathematically proved, this algorithm is still limited in some way. This algorithm can 

reflect and make decision within 0.025 seconds but it still cannot handle the lock-braking problem. An ABS 

(Anti-lock Braking System) should also applied to guarantee the braking efficiency. In addition, while the 

car is driving with a very high speed and an animal just jump out from the side of the road, the car does 

can make the braking decision very fast, but it doesn’t change the car’s actual braking distance.  

There were several attributes of the hardware itself that had significant influence on the 

performance. The first would be the choice of the motor. The driving system of the car was built for racing 
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purposes which means it could not drive smoothly under low speed. As described in the result section, 

the original motor would not move if low speed command was received. The way we were testing the 

algorithm was to have a person walking in front, which would require the car to run relatively slow to 

show the car can adapt to the person’s speed. In the first couple of tests, since the motor was too fast, 

the car would remain still till the person walks far away then suddenly speed up. Needless to say, the car 

would often violate the minimum safe distance. Changing to a low speed motor would significantly 

improve the overall performance. 

Braking was also an issue. During the tests, the car could not come to a fully stop when the person 

suddenly stops in high speed. We were able to change the drag brake constant of the ESC to 90 percent, 

but we couldn’t figure out how to use active brake. The motor and ESC were again built for racing 

purposes, not for academic studies. The documentation was vague and we didn’t get much help from 

their manufacturer. If other features of the motor would be needed, future MQP teams may want to 

continue exploring on this. 

In this project, we needed a lot of sensors and software packages. Each of them had different data 

type and protocols. To use them with ROS, proper software needed to be set up. This kind of software 

was usually written by the manufacture company or package maintainer. Sometimes it could be faulty 

and made the sensor unusable. The Lidar driver, for example, had some errors with the Ethernet protocol 

and could not launch the new Lidar properly. We had no choice but to borrow a Lidar of the old model 

(which uses USB instead of Ethernet) from another MQP team and waited for the maintainer to fix the 

errors. Two pieces of software that worked fine separately could rise problems when working together if 

they were not compatible with each other. These could fail the entire project even if the core algorithm 

works perfectly. 

6.1.3 Line Tracking 

The overall performance of this method that combines the minimum jerk trajectory generation 

and trajectory tracking controller using control lyapunov function with saturated inputs is very good. The 

control lyapunov function provided a converge guaranteed controller and make the whole system can 

handle very large error and disturbance. However, during the testing we found some part that can be 

improved with this method.  

The first part is the trajectory generation algorithm only take care of smoothness but did not take 

care of car’s physical feasibility. When the starting angle and ending angle have a large difference, the 

minimum jerk algorithm sometimes might generate a curve with very large yaw rate. However, since the 
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car has its physical speed and steering limitation, the car’s usually need to drive a large circle to reach the 

desired state.  

The second part is the controller cannot handle the situation when it needs to turn from –pi to pi. 

Normally, when the car is turning, it should be able to rotate to any angle from -180 to 180 freely. 

However, since we are using controller and matrix to calculate the result mathematically, the controller 

doesn’t know -180 degrees and 180 degrees are actually the same angle. When the reference trajectory 

need the car drive from -179 degrees to 179 degrees, the car only need to turn 2 degrees, but actually the 

car will turn 358 degrees, all the way from -179 to +179.  

The third part is the car right now can only follow a list of waypoints but cannot adapt the speed 

of the car flow. It cannot adapt its speed to the front car’s speed and cannot brake when front car brakes.  

For the first part, we found a trajectory generation method called minimum snap trajectory 

generation. Snap is the derivative of the jerk. It needs to use optimize function and inequalities to 

constraint the trajectory and make it feasible for the car’s physical structure. For the second part, we think 

that we can transform the position from global coordinates to car’s coordinates. Therefore, the car can 

never reach its blind point since it will always point to rear of the car. For the third part, since both ACC 

and trajectory tracking controller are based on control lyapunov function, the objective function in ACC 

can be replaced by the objective function implemented in trajectory tracking controller. Therefore, the 

car can not only follow a non-straight trajectory but also have barrier functions that provide hard 

constraints to guarantee safety.  Unfortunately, this is only a one-year project and we can only focus on 

some specific parts using our limited time. 

6.1.4 Half Toroidal Continuously Variable Transmission 

our results highly prove that our CVT can provide smooth acceleration and deceleration, there are 

still some problems we need to consider. First, due to manufacture tolerance issue, we cannot have very 

accurate and precise dimensions of all the roller and disc that we need. This will directly lead to the 

vibration of whole system. Secondly, our connection of encoder between output, input and motor are not 

precise as well. There are more vibrations The encoder we use sometimes cannot tolerate that high speed 

of RPM, if we can use more precise encoder we can have better results apparently. The total energy loss 

through the whole system is around 50% due to vibrations and encoder accuracy problems.  

Our material is aluminum and acrylic. Those material are not robust enough. In the future, we can 

change the input, output and power roller to stronger material, such as cast iron or alloy to have more 

accurate and precise results. The trunnion on the top we are using vex gear, gear ratio is 12:36, but due 
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the loose fit on the bottom of trunnion and acrylic material, the motion of turning is not smooth enough. 

If we can change gear to metal and switch the box material and trunnion to cast iron and aluminum, 

smooth motion of turning there will be. More importantly our vibration of whole system will be less.  

6.2 Possible Future Projects 

GPS based localization might be very useful to test the car outdoor. Wireless communications are 

needed to send command to the car. Router and batteries to power it could be one solution. Since GPS 

sensors usually have low precision, local localization could be helpful. 

It would be very exciting to see the car driving around the campus. Computer vison with extended 

Kalman filter would help with localizing the car in known map. With the algorithms we had, future MQP 

teams could combine ACC and trajectory tracking.  

Other motion planning algorithms could also be implemented on the car. If the car can drive 

outdoor on itself, the data collected could be used for neural network training. 

The car was built for racing purposes, which put limitations on customizing it. A platform that 

better suits our task could save a lot of work on hacking into the system and deal with all the 

incompatibilities. 

The Lidar sensor is very fragile and expensive. A protection mechanism is needed if testing the car 

in high speed or other risky situations. The Lidar sensor generates a lot of heat while operating. A heat 

sink or other heat reducing mechanisms are needed if plan to operate the Lidar for a long time. 

Zed camera needs a large USB bandwidth to achieve its highest performance. Even though it was 

connected with a USB 3.0 port, the Zed camera could not operate under its optimal performance. 

Improvements could help to make the best use of Zed camera.  
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6.3 Conclusion 

The goal of this project was to implement self-navigating and speed-control algorithms on the car 

and to build a prototype of the half-toroidal continuously variable transmission. In order to accomplish 

this, we researched the radio-control car, microcontroller units, processor platforms, sensors, and other 

related hardware in order to get the car run autonomously without any expectations. Then we researched 

lane keeping algorithm to get the car run parallel to a wall or a line. We researched ACC to get the car 

speed up if there are no obstacles ahead or slow down if there are. We researched localization to make 

the car be able to map an area and be aware of its position on the map. We researched trajectory tracking 

controller to make the car be able to plan the motions ahead on the map and follow them. We researched 

obstacle avoidance to get the car avoid obstacles on its path and resume the trajectory. We research CVT 

to make the car be able to drive normally at low speed.  With these ideas in mind, we designed a project 

that challenged us academically but also offers another view on the current situation of the lack of open-

source autonomous vehicle projects. Over the course of one academic year and a summer, the team went 

from ideas to reality, learning and solving issues along the way. 

We were able to successfully get the autonomous car up and running, to implement ACC, 

trajectory tracking controller, and to build a prototype of the CVT. We fulfilled all the basic goals except 

for driving straight. We were not able to reach the desired goals, unfortunately, due to unforeseen issues 

with hardware and software packages. 

This project has great potential to develop into a full-fledged development of a racer car that can 

drive at high speed competitively. With all the goals completed, we believe that the car can drive normally 

in a highway with aggressive or cautious styles or join a racing competitions. All in all, we have successfully 

laid a foundation system on the car for the future teams to test their own methods and algorithms, to 

expand on the goals of our project, and to explore the nature of the autonomous vehicles.  
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8 Appendix 

8.1 Appendix A: Bill of Materials 

 Lab property 
o Lidar (1700) 
o Zed (500) 
o RC car (400) 
o Tx2 (400) 
o Power Bank (150) 

 MQP Budget 
o Teensy (25*4) 
o USB Hub (40) 
o Cable (50) 
o SD card (40) 
o RPM sensor (20) 
o Rope (25*2) 
o CVT material (100) 
o Power Bank (150) 
o CVT manufacture (150) 
o New Motor (200) 
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8.2 Appendix H: Timeline 
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8.3 Appendix G: CAD Drawing 

Half Toroidal Continuously Variable Transmission CAD FINAL DRAWING 
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Half Toroidal Continuously Variable Transmission CAD ORGINAL DRAWING 
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