
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2009

Robotic Research Platform for Locomotion
Through Granular Media
Brian C. Benson
Worcester Polytechnic Institute

Neal Keith Humphrey
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Benson, B. C., & Humphrey, N. K. (2009). Robotic Research Platform for Locomotion Through Granular Media. Retrieved from
https://digitalcommons.wpi.edu/mqp-all/2548

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2548&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2548&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2548&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2548&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/2548?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F2548&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Project Number: ME-KZS-0209

ROBOTIC RESEARCH PLATFORM FOR LOCOMOTION

THROUGH GRANULAR MEDIA

A Major Qualifying Project Report

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

in Mechanical Engineering

Robotics Engineering

by

Brian Benson

Neal Humphrey

______________________ ______________________

Date: 4/30/2009

 Approved:

Keywords: Prof. K. A. Stafford, Major Advisor

1. Robotic Snake

2. Sand-Swimming ________________________

3. Granular Media Prof. S. A. Koehler, Co-Advisor

2

Acknowledgements

We would like to thank the following people for their contribution to this project

Professor Ken Stafford, for his support and guidance. His unending dedication, supply of
ideas, and attention to both the big picture and small details greatly improved this project

Professor Stephan Koehler, for his interest in sand-swimming that led to the creation of
the project. His in-depth knowledge of all things sand-swimming was an invaluable
resource. In addition his guidance and eye for detail contributed to a much smoother
running project.

Ineos Nova LLC and Mark Price, for their very generous donation of 450 kg of
polystyrene pellets. This donation made the testing environment possible.

Brian and Cheryl Benson, for their assistance in creating the composite skin and
unending support.

Russell Morin, for his unmatched dedication in the printing of all of the snake’s rapid
prototyped parts. His incredibly fast turnaround times made the timely completion of this
project possible.

Professor Taskin Padir, for his help answering a seemingly endless stream of electrical
engineering questions.

3

Abstract

The motivation for this project is to provide a means to study the physics of sand-

swimming, which is a behavior seen in certain desert snakes. A biomimetic self-

contained scalable robotic snake was designed and built with the capability to move

below the surface of granular media. Its ability to match arbitrary traveling waveforms

while recording data for analysis makes it a first step towards understanding the physics

of sand-swimming through experimental studies.

4

Table of Contents

ACKNOWLEDGEMENTS .. 2

ABSTRACT ... 3

TABLE OF CONTENTS ... 4

LIST OF TABLES .. 5

LIST OF FIGURES .. 6

AUTHORSHIP ... 7

INTRODUCTION ... 9

MOTIVATION ... 9
OBJECTIVE ... 10

BACKGROUND RESEARCH .. 11

BIOLOGICAL SNAKE LOCOMOTION AND PHYSIOLOGY ... 11
SWIMMING IN GRANULAR MEDIA .. 17
PREVIOUS ROBOTS .. 18
ACTUATION TECHNOLOGIES .. 21
CONTROL METHODS ... 22
FUSED DEPOSITION MODELING ... 25

METHODOLOGY .. 26

PROJECT SCOPE .. 26
GENERAL DESIGN DECISIONS .. 30
PRELIMINARY TESTING ... 32
COMPONENT SELECTION AND DESIGN .. 39

VALIDATION .. 62

FINITE ELEMENT ANALYSIS .. 62
MOVEMENT TESTING .. 63

CONCLUSION ... 64

RECOMMENDATIONS .. 66

WORKS CITED .. 67

APPENDICES .. 68

APPENDIX A: TORQUE REQUIREMENT CALCULATIONS .. 68
APPENDIX B: GEAR REQUIREMENT CALCULATIONS .. 70
APPENDIX C: OPERATOR INSTRUCTIONS .. 74
APPENDIX D: PART DRAWINGS.. 76
APPENDIX E: BILL OF MATERIALS ... 88
APPENDIX F: MATLAB CODE ... 91
APPENDIX G: ONBOARD SOFTWARE CODE .. 96

5

List of Tables

TABLE 1: MANUFACTURING RESOURCES AVAILABLE ... 31
TABLE 2 SERVO COMPARISON .. 40
TABLE 3: HEXTRONIK HX12K SERVO SPECIFICATIONS .. 42
TABLE 4: GEAR OPTION COMPARISON (ITEMS IN BOLD ARE NOT STOCK) .. 43
TABLE 5: GEAR SAFETY FACTORS .. 44

6

List of Figures

FIGURE 1: SNAKE MOTIONS(HOWSTUFFWORKS) ... 12
FIGURE 2: WESTERN SHOVEL‐NOSED SNAKE (CHIONACTIS CHILOMINISCUS) TRACKS .. 13
FIGURE 3: SAND‐SWIMMING SNAKE TRACKS .. 14
FIGURE 4: SNAKE SKELETAL STRUCTURE(WORLDBOOK) .. 15
FIGURE 5: SNAKE SKIN(FLICKR) .. 16
FIGURE 6: HIROSE ... 18
FIGURE 7: HOOKE’S JOINT SNAKE ... 19
FIGURE 8: NILSSON’S UNIVERSAL SERPENTINE LINK ... 20
FIGURE 9: PAAP’S CABLE DRIVEN SNAKE .. 20
FIGURE 10: DOWLING’S ROBOTIC SNAKE ... 21
FIGURE 11: TORQUE ANALYSIS TESTING RIG ... 32
FIGURE 12: TORQUE TESTING EXPERIMENTAL SETUP ... 35
FIGURE 13: TORQUE TESTING EXPERIMENTAL PIVOT BRACKET ... 35
FIGURE 14: DEPTH VERSUS TORQUE REQUIRED TO PIVOT PVC PIPE THROUGH BEADS .. 36
FIGURE 15: THEORETICAL AND EXPERIMENTALLY DETERMINED TORQUE REQUIRED ... 38
FIGURE 16: HEXTRONIK HX12K SERVO .. 41
FIGURE 17: THUNDERPOWER 730MAH LIPOLY BATTERY ... 45
FIGURE 18: PROTO‐BOARD TESTING ... 45
FIGURE 19: VOLTAGE SENSE .. 46
FIGURE 20: POSITION FEEDBACK LOCATION ... 47
FIGURE 21: POSITION FEEDBACK CIRCUIT... 47
FIGURE 22: CURRENT SENSE CIRCUIT .. 48
FIGURE 23: ADDRESS SELECT ... 49
FIGURE 24: VOLTAGE REGULATOR CIRCUIT .. 49
FIGURE 25: POWER OFF SIGNAL .. 50
FIGURE 26: PCB LAYOUT .. 51
FIGURE 27: INITIAL VERTEBRA DESIGN CONCEPT ... 52
FIGURE 28: SECOND DESIGN ITERATION .. 53
FIGURE 29: FINAL DESIGN FRONT ISOMETRIC ... 54
FIGURE 30: FINAL DESIGN BACK ISOMETRIC ... 54
FIGURE 31: FINAL DESIGN SIDE .. 55
FIGURE 32: FINAL DESIGN BOTTOM .. 55
FIGURE 33: VERTEBRAE ASSEMBLY EXPLODED VIEW .. 56
FIGURE 34: HEAD ASSEMBLY EXPLODED VIEW .. 58
FIGURE 35: COMPOSITE SNAKE SKIN ... 59
FIGURE 36: MATLAB SNAKE WAVEFORM .. 60
FIGURE 37: POOR WAVEFORM ... 61
FIGURE 38: FEA ANALYSIS SAFETY FACTOR PLOT .. 63
FIGURE 39: COMPLETED SNAKE ... 64
FIGURE 40: COMPLETED SNAKE W/ SKIN ... 65
FIGURE 41: FIVE IDENTICAL LINKS CONNECTED ... 65

7

Authorship

ACKNOWLEDGEMENTS .. BB,NH

ABSTRACT ... BB,NH

INTRODUCTION

MOTIVATION BB, NH
OBJECTIVE BB, NH

BACKGROUND RESEARCH

BIOLOGICAL SNAKE LOCOMOTION AND PHYSIOLOGY BBERROR! BOOKMARK NOT DEFINED.
SWIMMING IN GRANULAR MEDIA BB
PREVIOUS ROBOTS BB
ACTUATION TECHNOLOGIES BB
CONTROL METHODS NH
FUSED DEPOSITION MODELING BB

METHODOLOGY ..

PROJECT SCOPE BB
GENERAL DESIGN DECISIONS BB
PRELIMINARY TESTING BB
COMPONENT SELECTION AND DESIGN BB, NH

VALIDATION ..

FINITE ELEMENT ANALYSIS BB
MOVEMENT TESTING BB

CONCLUSION ...BB

RECOMMENDATIONS ... NH

APPENDICES ..

APPENDIX A: TORQUE REQUIREMENT CALCULATIONS BB
APPENDIX B: GEAR REQUIREMENT CALCULATIONS BB
APPENDIX C: OPERATOR INSTRUCTIONS ERROR! BOOKMARK NOT DEFINED.
APPENDIX D: PART DRAWINGS BB
APPENDIX E: BILL OF MATERIALS BB,NH
APPENDIX F: MATLAB CODE NH
APPENDIX G: ONBOARD SOFTWARE CODE NH

8

ACKNOWLEDGEMENTS ... BB, NH

ABSTRACT .. BB, NH

TABLE OF CONTENTS ...

LIST OF TABLES ..

LIST OF FIGURES ..

AUTHORSHIP ...

INTRODUCTION ...

MOTIVATION ... BB,NH
OBJECTIVE ... BB,NH

BACKGROUND RESEARCH ..

BIOLOGICAL SNAKE LOCOMOTION AND PHYSIOLOGY ... 11
SWIMMING IN GRANULAR MEDIA .. BB
PREVIOUS ROBOTS .. BB
ACTUATION TECHNOLOGIES .. BB
CONTROL METHODS .. NH
FUSED DEPOSITION MODELING ... BB

METHODOLOGY ..

PROJECT SCOPE .. BB
GENERAL DESIGN DECISIONS .. BB
PRELIMINARY TESTING ... BB
COMPONENT SELECTION AND DESIGN .. BB,NH

VALIDATION ..

FINITE ELEMENT ANALYSIS .. BB
MOVEMENT TESTING .. BB

CONCLUSION ...BB

RECOMMENDATIONS ... NH

WORKS CITED ..

APPENDICES ..

APPENDIX A: TORQUE REQUIREMENT CALCULATIONS .. BB
APPENDIX B: GEAR REQUIREMENT CALCULATIONS .. BB
APPENDIX C: OPERATOR INSTRUCTIONS ... NH
APPENDIX D: PART DRAWINGS.. BB
APPENDIX E: BILL OF MATERIALS .. BB, NH
APPENDIX F: MATLAB CODE .. NH
APPENDIX G: ONBOARD SOFTWARE CODE ... NH

9

Introduction

Motivation
Snakes are among a select few species that achieve locomotion without the use of

external appendages. Nonetheless they are able to traverse a far greater variety of

environments than animals with appendages. A snake’s relatively thin and elongated

body allows it to be stealthy, highly mobile, and enables it to overcome obstacles that

other animals would find impossible. For example, snakes can travel over a variety of

surfaces, swim both on water’s surface and underneath, climb, jump, glide through air,

bridge large spans, burrow, and even swim through sand. In the field of robotics these

traits are highly desirable. Technologies related to robotics are continuing to advance and

as such the areas in which robotics are applicable continue to grow. Applications may

include research and surveillance of extreme environments, emergency response in

hazardous or confined environments as well as Lunar or Martian exploration. Therefore

research and development of robotic snakes holds much promise in the future where

conventional wheeled robots are unsuitable.

A robotic snake has the potential to be the ultimate method of locomotion in terms

of the variety of obstacles and environments it could traverse. Moreover, such a snake

can be easily and completely sealed inside a “skin” to the outside world. This would

allow it to navigate locations such as underwater or hazardous environments where

volatile chemicals are present. A snake is extremely low to the ground and therefore has a

uniquely low center of gravity. In addition to this a large proportion of the body

lengthwise is always in contact with the ground. This means that a robotic snake could

negotiate terrain with little chance rolling over or falling off. In addition the inherent

design of a robotic snake lends itself well to high redundancy. If one segment fails then

the remaining segments can continue to function and propel the snake forward at a

slightly reduced efficiency. Finally a robotic snake could have the ability to swim in

granular media, such as sand, similar to certain desert snakes, such as the Chionactis

Chilominiscus. Research of biological and robotic snakes that swim through water and

traverse solid surfaces has been performed over the past several decades; however there

10

has been minimal research on the physics underlying locomotion below the surface of

sand.

Objective

The goal of this project was to provide a means to fill the discussed gap in

research through the design and construction of a robotic snake capable of following

arbitrary traveling waveforms through granular media for the purpose of research. As

such the snake can be used to test various waveform sequences with the goal of achieving

locomotion, or swimming. Specifically this robotic snake was designed to assist the co-

advisor of this project, Assistant Professor Koehler at WPI, in his research of dense

granular flow (Koehler, 13). This goal was accomplished by designing and building a

robotic snake capable of following the shape of an arbitrary traveling wave in depths of

plastic beads at least 10 cm deep.

11

Background Research

Biological Snake Locomotion and Physiology

Locomotion

Snakes have perhaps one of the most unique methods of locomotion and it is often

perplexing to the casual observer how they can possibly move. Any type of motion

results from applying forces on the environment to create reaction forces (Hu, 2). In the

case of snakes, forces are applied at certain points on the terrain, called push points. One

primary gait is lateral (serpentine) undulation which is used by most sand-swimming

snakes. During undulation waves propagate down the length of the snake starting at the

head and finishing at the tail. In certain cases the amplitude of the sinusoidal wave

increases towards the back of the snake. Lateral undulation requires a minimum of three

contact points to result in forward movement; two to generate a force and a third to

balance the forces and move in the proper direction (Dowling, 15). All points on the

snake move continuously at the same speed and experience continuous sliding with the

ground. Under ideal conditions each point on the snake follows the point before it, so a

single path is used. Most animals choose their gaits based on the speed at which they

want to go. However snakes choose their gait based on what environment they want to

travel through. Therefore it can be concluded that because snakes use lateral undulatory

motion for movement through sand it is the most suitable method of locomotion

(Dowling, 20).

The efficiency of the snake is positively proportional to the length of the snake.

However there is a limit to the maximum efficiency as a function of snake length and it

has been found that the fastest snakes have a length no more than 10 to 13 times their

circumference. The shape of the wave that the snake produces is greatly dependent on its

environment and often changes in real time as a result to changing conditions (Bauchot,

64). However it has been shown that the curvature of the body is a key element of lateral

undulation and a snake pushes off the environment the greatest amount at points of

highest curvature change (Dowling, 19). Other gaits include skidding, side winding, and

straight or rectilinear progression, also shown in figure 1. However these gaits are not

12

applicable to sand swimming and therefore will not be discussed further. In some

situations such as in deserts and flat terrain there are no push-points for a snake using

lateral undulation and it is unknown how snakes are able to achieve the high speeds that

are observed. Robotic snakes with wheels have been able to approach the speed of

biological snakes on flat surfaces but it remains unexplained how snakes are able to

achieve such high efficiency (Hu, 3). In a numerical simulation using experimentally

obtained data a virtual snake is only able to travel at half the speed of actual snakes. This

means that the numerical simulations have omitted some important physical mechanism.

Experiments have shown that the ratio of forward friction and transverse friction have the

greatest effect on a snake’s speed. This property has been used effectively in robotic

snakes in which passive wheels were added to each segment in order to reduce the

forward friction while maintaining transverse (sideways) friction. In the numerical

simulation it was not until values comparable to a wheeled robotic snake were used that

comparable speed values for live snake speeds occur.

Figure 1: Snake Motions

(Howstuffworks)

13

Sand Dwelling Snakes

One theory as to the origins of snakes is that they are decedents of burrowing

lizards. As such, it is commonly believed that snake ancestors lived in muddy

environments and could burrow as well as swim. Certain modern snakes are successful

burrowers including the Typhlopidae and Leptotyphlopidae, both of which are from

primitive families, and some Aniliidae. These snakes are often less than three feet long,

have a small compact head whose tip is a soil-boring apparatus, and have no narrowing at

the neck. The Xenopeltis unicolor has a smooth textured skin which facilitates sand-

swimming by acting as a dry lubricant. This provides evidence that sand swimming

snakes may not rely heavily on anisotropic frictional forces. Another example of an

animal that is able to move through sand is the worm lizard. This animal is serpentine in

form and has cutaneous grooves or rings which make it look like a large worm. (Bauchot,

27). Other examples of sand-swimming snakes include the Glossy snake (Leptotyphlops

macrorhynchus), the Sand Boa (Eryx), sand snakes like the Lytorhynchus Diadema, the

Mexican Dwarf Python (Loxocemus), Colubers (Heterodon and Prosymna), Horned

Viper (Cerastes cerastes), Western Shovel-Nosed Snake (Chionactis Chilominiscus) and

Burrowing Viper (Atractaspididae). Figure 2 shows a western shovel-nosed snake

moving through the desert and figure 3 shows the tracks of a snake swimming a few

centimeters beneath the sand’s surface. The Sabulicole species which includes the

Lytorhynchus Maynardi lives in the sand rather than on it and has smooth keeled body

scales (Bauchot 132).

Figure 2: Western Shovel-Nosed Snake (Chionactis Chilominiscus) Tracks

14

Figure 3: Sand-Swimming Snake Tracks

General Physiology

A snake’s skeleton is unique in that it consists of at least 130 vertebrae each

capable of small movements (Bauchot, 27). This can be seen in figure 4. Each segment is

limited to between 15 and 20 degrees of movement side to side and only a few degrees up

and down. Any rotation between vertebrae is very limited and extension is prevented by

ligaments and muscles. This combination of small movements allows a python’s spine to

curve up to 60 degrees over 40 vertebrae. This information is critical in the development

of a robotic snake because it gives a starting point for the structure and powered motion

that may be necessary to imitate snake’s movement (Bauchot, 61). It also serves as an

example of a system where the combined action of many limited, simple components

results in great abilities. Mathematical analysis by Dowling (78) found that horizontal

15

angular movement of joints in a robotic snake and the aspect ratio of the length to the

width of each segment should be small. He found that joints between segments with the

ability to pivot more than +- 20 degrees are unnecessary. This is important to realize in

the design phase and matches the findings in biological snakes. The control methods that

biological snakes use is also worth taking note of. The spinal cord runs through the

vertebral canal and controls a number of motor functions on its own. This is important to

realize because it means that some of the snake’s motor control is decentralized (Bauchot,

19). This may be an important feature in any robotic snake.

Figure 4: Snake Skeletal Structure

(WorldBook)

Snake Skin

A snake’s skin plays a very important role in its locomotion. For most gaits a

snake’s body remains in constant contact with the ground, so in order to optimize

movement, a snake’s coefficient of friction is anisotropic, which means that depending on

the direction of movement the force acting on the snake per unit weight is different. This

is a result of the skin’s surface configuration. The skin is highly elastic and made up of

several layers (Dowling, 18). It is covered with scales whose backs are loose and partially

covered by the scales behind them. This can be seen in figure 5. Each scale’s geometry

and transverse distribution allow the snake to move forward with less friction then

16

backwards. Additionally on the microscopic level the scales are covered with tiny

indentations that create gliding tracks (Bauchot, 62). Tests show that sand skinks have a

forward coefficient of friction of .3 and a reverse coefficient of friction of 1.3 on wood.

These are dramatically different from one another and probably play a large role in

forward propulsion (Hu, 3). However the Xenopeltis has smooth skin and can also swim

through sand. Further experimentation is necessary to determine the role of the skin’s

frictional properties. Moreover, no studies have been performed on the role of skin

friction for sand-swimming.

After performing an extensive study of different types of skins such as bellows,

cable chains, flexible ducts, rubber, fabrics, and braided materials Dowling (85) decided

to use a Lycra spandex sleeve over a polyethylene-based braided sleeve that is often used

for wire protection.

Figure 5: Snake Skin

(Flickr)

17

Swimming in Granular Media

The physics of swimming in granular media is poorly understood because there is no

general theory for granular flow. Observations show that sand-swimming snakes employ

a lateral undulatory motion, similar to snakes swimming in water. Therefore it can be

concluded that there are some universal flow principals that are applicable to both

granular and hydrodynamics flows (Koehler, 2). Although rudimentary experiments have

shown that simple stroking strategies can result in granular swimming it is necessary to

include several mechanisms such as packing configuration and force chains that are not

present in hydrodynamics. Research has also shown that in particular cases viscous

approaches can serve as a guide for understanding granular swimming (Bzdega, 7).

Therefore it is assumed that on a very rudimentary level sand swimming can be modeled

as swimming at very low Reynolds number where viscous forces are dominant in

comparison to inertial forces (Bzdega, 1). Movement of snakes is supported by this when

looking at the Froude number. The Froude number is the ratio of the inertia to friction of

a snake. Using experimental data a Froude number of about .003 was calculated,

implying frictional forces dominate over inertial ones (Hu, 7). However there are

differences in high viscosity fluids and granular media. In granular media, forces are

propagated along force chains unlike fluids whose stresses vary smoothly in space. Also

there is no time reversibility in granular material as seen in viscous fluids. There is no

cohesion and often the density is non-uniform (Koehler, 7).

Amanton’s friction law states that the friction between dry sliding contacts is

independent of the speed and only depends on the contact pressure between surfaces.

Therefore the issue of swimming through granular media is quasi-static and has no

relation to the speed at which the swimming occurs. In other words the shape change will

directly affect the net displacement independent of the speed of the change. Another key

difference is that in granular media any previous movements will have a significant effect

on the next movement whereas for highly viscous fluids any movement is independent of

any previous movements (Bzdega, 4).

 Due to the differences in viscous fluids and granular media, comparisons can be

drawn between the two but one cannot be used to directly model the other. Currently the

18

only method to perform optimization studies is through molecular-dynamic type

simulations or through actual experiments (Koehler, 11).

Previous Robots

Hirose

 In the early 1970’s Hirose and Umetami worked on what they termed the Active

Cord Mechanisms or ACMs. These were snake-like mechanisms that could perform

lateral undulation. Hirose developed mathematical models of force and power as a

function of distance and torque along the curve followed by the snake and then compared

them to real snakes. He also developed models for the distribution of the

muscular/actuator forces along the body. His models closely matched real snakes. He

realized that snakes vary their weight distribution in order to optimize efficiency. Hirose

also studied the relationships between amplitudes and wavelengths along with friction

conditions. He built robotic snakes up to 20 segments in length. An example of one of

these can be seen in figure 6. Hirose’s work is probably the most complete research done

on snake locomotion (Dowling, (24).

Figure 6: Hirose

(Dowling, 22)

19

Ikeda and Takanashi

The Japanese electronics company NEC in 1995 announced that they were

developing a snake robot capable of entering the rubble typical of earthquakes and

explosions. The robot used an active universal join that was specifically designed for the

project. It was based on Hooke’s joint. The robot consisted of seven segments and is said

to be one of the best mechanical design for serpentine robots. It can be seen in figure 7.

This robot is a prime example of how well a robot can be designed for packaging and

modularity (Dowling 28).

Figure 7: Hooke’s Joint Snake

 (Dowling, 28)

Nilsson

 Martin Nilsson at the Swedish Institute for Computer Science in Sweden,

developed a universal serpentine link that allowed for roll-pitch-roll movement as shown

in figure 8. This was very unique and gave the joints high functionality. The robot was

able to wrap itself around a pole and then climb it by rotating its segments and using

them as wheels. However because this projects intent is sand swimming this functionality

is not necessary (Dowling, 29).

20

Figure 8: Nilsson’s Universal Serpentine Link

 (Dowling, 30)

Paap

 Karl Paap at GMD in Germany along with his group created a snake-like robot

that was actuated using a cable system in order to create the necessary curvature.

However issues related to the complicated cable system resulted in limited locomotion

(Dowling, 29). This snake can be seen in figure 9.

Figure 9: Paap’s Cable Driven Snake

 (Dowling, 30)

21

Dowling

 Dowling created a robotic snake consisting of 20 servos, two per link, allowing

for both vertical and horizontal motion. The goal of this snake was to do further research

into locomotion of snake robots. He sought to fill research gaps such as skin materials

and how different motions effect forward progression. After a broad range of actuation

techniques Dowling choose to use hobby servos for their simplicity and power-to-weight.

He ran into problems such as wiring, electrical noise between wires, and computer power

for simulation. His completed project is shown in figure 10. His work provided much

information, background, and lessons for setting the scope of this project (Dowling,

1...143).

Figure 10: Dowling’s Robotic Snake

 (Dowling, 83)

Actuation Technologies

 There are a number of technologies available for actuation in mobile robotics.

Each of which has its own set of benefits and limitations. Dowling (70) explored a

number of different technologies in 1997 including polymer gels, shape memory alloys,

piezoelectric devices, electrostriction devices, magnetostriction, micro-electro-

mechanical systems (MEMS), thermal actuators, and electro-magnetic motors. For this

application many of these are not practical given their technological limitations such as

magnitude of displacement. This is true for MEMS, magnetostriction, electrostriction

devices, and piezoelectric devices. Polymer gels are inadequate due to issues with

22

strength, response, fatigue life, thermal and electrical conductivity, efficiency, power, and

force densities. Thermal actuators are inappropriate because of the need to generate and

release large quantities of heat and their very low efficiency. Shape memory alloys such

as NiTiNOL are limited due to their short fatigue life and requirement of fast heat

dissipation. Additional technologies include pneumatics through the use of pistons or

bellows but the need for a constant air supply is limiting. Cable-driven system offer

unique possibilities but involve equally unique difficulties including range and size

requirements.

Finally electro-magnetic motors offer rotational actuation with a high power

density. A variety of different motor technologies exist including permanent magnet

direct current (pmdc) motors, brushless dc motors, stepper motors, alternating current

motors, and servo motors which are typically pmdc motors with built in closed-loop

control. These different types of motors come in a variety of different sizes and price

points. They are commonly used in commercial, hobby, and industrial products. Because

they are often mass produced they are optimal in terms of cost effectiveness and

redundancy. Additionally performance requirements have led to high power to

weight/size ratios. There are also many off the shelf components available for their

control.

Control Methods

The goal of this project was to build a robotic snake capable of closely

approximating arbitrary traveling waveforms which presents several challenges. These

include providing a user with the ability to develop a sequence of waveforms which are

transferred onto the robotic snake, and then have the snake perform the desired motion.

These challenges have many potential solutions. Available options range from having the

robot tethered with each joint controlled by a central computer, to wireless

communication with said computer and a distributed control system in the snake with

sensory feedback. The following will describe possible techniques for achieving this goal

and comment on their feasibility.

 A tether acts as a link to the robot to supply constant signals and power. This

would remove the requirement for batteries and resolve issues of power consumption.

23

However, a tether is not the most elegant solution as it would add parasitic drag and

generally interfere with the sand-swimming. Thus an un-tethered wireless version is

much more desirable but adds the complexity of batteries. Batteries require recharging

and lead to unavoidable downtime.

 In order to achieve wireless communications there are a variety of technologies

available. These technologies include 802.11b, 802.11g, and Bluetooth. 802.11b and

802.11g are both powerful wireless technologies. However, the amount of hardware and

setup needed to implement either one on the snake would be difficult. Also 802.11b and

802.11g use a range of frequencies, but do not change them on the fly. As a result it can

cause the wireless communication to fall victim to gaps, often called shadow fading, in

the spectrum created by the beads. The most readily available and easiest to use is

Bluetooth. This is an established and well-documented technology, making it simple and

easy to use. Bluetooth uses a technology call frequency hopping, where the frequency

through which it communicates constantly changes. This allows for much more robust

communication in an environment where shadow fading is a common occurrence.

Another advantage of using Bluetooth communication is that a variety of different

modems with high data rates are available at low prices. One key disadvantage of

Bluetooth is that with increasing separation between transmitter and receiver the data rate

drops and reliability degrades. The data rate is directly related to the distance and

medium the signal has to pass through. As the distance increases or the medium becomes

less transparent to radio waves the slower the data rate.

 This varying data rate introduces the problem of the user’s detailed commands

bottlenecking at the wireless transmission point. In order to solve this problem the

Bluetooth can be reserved for high level commands such as “begin test” or “stop” which

need to be transmitted fairly infrequently. Thus the robot will operate semi-

autonomously, and during down-time instructions can be downloaded and sensory

feedback data uploaded.

 In order for the robot to be able to interpret high level commands, execute the

desired motions, and remain scalable, distributed embedded processing is necessary. This

involves a master controller capable of controlling the local slave processors for each

segment. Dedicated processors for each segment will free up processing time, resulting in

24

more robust control and allowing for more complicated instructions and more

comprehensive sensory feedback from each of the servos.

 One option for controlling the movement of the snake is through a discrete

sequence of movements computed offline via MATLAB in terms of a lookup table which

is downloaded onto the master controller. The master controller would then communicate

with each slave processor and inform them of their sequence of moves. The moves would

be choreographed by the master processor by broadcasting which step or column the

snake is at. The slave processors would then move to the appropriate location as indicated

by the lookup table.

 Communication between the master and slave processors can be accomplished in

a variety of ways. One of these methods is serial communication. Serial is simple to use

and fairly robust. However, if used then if one link fails, then the rest will as well. This

can be avoided by creating an addressable serial, but much work would have to be done

to achieve such a result. Another option is I2C or Inter-Integrated Circuit. The

communication bus uses a clock and data line which can achieve speeds of up to four

Mbps. I2C also has an additional benefit of allowing the joint processors to hold the clock

line low putting communications on hold until the processor is ready to receive more

instructions. This ensures that data is not lost. However this has limited use during the

actual running of the motion because the robot should not stop completely if one of the

segments fails. Limitations of I2C include that number of links that can be included and

the data rate that can be achieved. While I2C can attain data rates of over four Mbps, it is

not as high as other technologies. Also, there is a limitation of the length of the cable that

is used for communication. This limit typically is a couple meters.

 Having distributed processing would allow for greater flexibility in resource

allocation. It would allow each slave processor to log servo current and position data. In

addition it could monitor the battery voltage to ensure it does not drop too low. This

would allow for post-experiment data analysis and the ability to use real-time closed loop

controls.

 In order to save development time and money, the slave processor has the option

of being designed identical to the master processor in terms of hardware. The only

difference between the master and slaves would be the population of a few additional

25

components on the circuit board and a different program. Many options for embedded

processing were explored. These include the PICAXE18X and dsPIC30F4013. Benefits

of the PICAXE include its small size and simplicity; however the PICAXE does not have

equivalent functionality when compared to other processers. It does not have on board

EEPROM and the number of external pins are limited. Strengths of the dsPIC30F4013

are its capabilities and power consumption. The dsPIC30F4013 is a powerful processor

that includes an ADC, hardware PWM generator, non-volatile memory, hardware I2C,

and hardware UART. However, it draws 120 mA of current while operating and as a

result runs at a fairly high temperature.

Fused Deposition Modeling (FDM)

 Due to the perceived modeling complexity of each snake robot segment, the

preferred method of manufacturing for the body of the robotic snake is through rapid

prototyping technology. Worcester Polytechnic Institute has a 1200ES fused deposition

modeler with a workspace of .254x.254x.305 meters. It has the ability to print using

ABSplus plastic in layer thicknesses of .01 or .013 inches with the Z axis being the least

accurate. A maximum deviation of .012 inches can be seen. This method of 3d printing

consists of extruding thermoplastic as a semi-molten filament which is deposited layer-

by-layer to build the prototype. It has been reported that the ABS prototypes have

demonstrated strengths 60-80% of typical injection molded ABS parts. FDM parts do not

change with time or environment exposure unlike processes like stereolithography and

PolyJet and can withstand temperatures up to 200 degrees F. In addition FDM parts can

be milled, drilled, tapped, and turned with little consideration (Grimm, 1...6). The largest

drawback with FDM parts is that they are anisotropic. The printing process results in

layers of materials. Depending on the orientation of the layers the printed parts will be

stronger in one direction then another so care must be taken in the design process to

account for this.

26

Methodology

Project Scope

 Background research provided the necessary information to appropriately set the

project scope. A thorough literature review of previous snake robots gave insight into

different challenges that snake robots encounter and how they can be overcome and

avoided. Understanding the physics of granular media allowed for a good understanding

of the requirements a sand-swimming robotic snake would need. A broad review of

actuation technologies gave a variety of options to provide mechanical power to the

snake. Determination of different options for control methods allowed for a realistic

approximation of what would be possible for this project. These prior steps allowed for a

set of assumptions to be drafted that dictated what the project objectives included and

didn’t include. These assumptions and objectives were as follows:

 Build a biomimetic robot that matches the basic qualities of a biological snake

with consideration to available resources.

 Snake skin and musculature are very specialized and highly refined. It is not

possible within the scope of this project to replicate it. However attempts will be

made to be reasonably accurate.

 The intent of this project is to create a scalable self-contained robotic snake

capable of being programmed to approximate an arbitrary traveling waveform. To

avoid locomotion interference wireless operation is desired. However due to

potential problems, such as power requirements or instruction transmission, the

snake may need to be tethered.

 All of this information in addition to the project objectives and assumptions allowed for

the creation of a specific set of project parameters and specifications.

27

Design Specifications

Design

• Modeled after the general anatomy of biological snakes.

• Minimum 12 segments

• Length of the body is less than 13 times the circumference of the snake

• Total length of snake should not exceed 1.82 meters (6 feet)

• Perform lateral undulatory motion at a depth of at least 15 cm (6 inches)

• Skin that keeps the granular media out of the moving joints without

restricting movement

• Self-contained (wireless) or minimal tether

• Scalable

• Commonality and modularity between each segment

• Minimum 30 minute run time

• Data Collecting

• Orientation

• Joint Angular Positions

• Torque

• Battery Voltage

Operation

• Must be safe to use for someone skilled and trained in its operation (pinch

points etc)

• Cannot use or require anything toxic or hazardous to anyone’s health

• Capable of being programmed or controlled easily such that motion

parameters are easily changed and recorded and are able to match those of

real snakes.

Manufacturability

• Commercially available materials

• Off the shelf component preference

• Manufactured using standard techniques

Resources

• Cost less than $2000

28

Design Specifications Discussion

 When trying to design something it is often best to look at what has been done in

the past and try to use that as a starting point to develop ideas. In this case the desired

robotic snake is intended to mimic its biological counterpart. For this reason it was

decided that the robotic version should imitate the general anatomy of biological snakes

as closely as possible.

 Biological snakes typically have upwards of 130 vertebrae which allow them

almost unparalleled flexibility. However given the resources of this project this would not

be reasonable to imitate. Therefore it was decided that because of scalability, building a

minimum number of segments would be appropriate. Two considerations had to be taken

into account when determining this minimum number of segments. These are the

minimum desired waveform, and resolution possible in the snake’s approximation. A

period and a half of a sine wave was determined to be the minimum form and in order to

achieve the desired resolution 4 segments per half period were necessary which meant

that 12 segments were required.

 Research has shown that the most locomotion efficient snakes have an overall

length of less than 10-13 times the snake’s circumference. In order to make the snake

manageable and able to be tested in available labs at Worcester Polytechnic Institute a

total snake length of less than 1.8 meters was necessary.

 Previous research has shown that sand-swimming snakes use a type of horizontal

undulatory motion when swimming. Therefore the snake needs at minimum to be able to

perform these same types of motions. In order to perform the required testing the robotic

snake needs to be able to swim at a depth of at least 15 cm (6 inches) to ensure that it

stays submerged throughout testing.

 Moving in granular media creates the challenge of requiring a sealed system to

keep the grains out of the moving mechanisms of the snake. To do this a skin of some

type is necessary. However the skin cannot overly restrict the movement of the snake.

For example greatly increasing the torque requirements of each segment or limiting the

snake’s range of motion is not desirable.

 The snake needs to be self-contained (i.e. wireless) because any types of tether

would interfere with the swimming motion and associated experimental results. In

29

addition the overall snake length necessary to perform swimming motions is unknown.

After experimentation it may be determined that there is an optimum length and

waveform for swimming. However this cannot be known until such experiments can take

place. Therefore the snake needs to be scalable so that it can operate with as few or as

many segments as desired. This requirement includes the ability to easily increase or

decrease the number of segments without any drastic changes to the snake. For example

having to add wires to the entire snake or modify a pre-existing segment in order to add

one more vertebrae would not be acceptable.

To increase the simplicity and scalability of the snake modular and identical

segments are necessary. The segments should be easy to put in and remove and the order

of the segments are should not affect the overall functionality of the snake.

This snake will be self-contained which typically means it will be battery

powered. However this introduces the problem of battery life. The end goal of the snake

is to perform experiments for research purposes. Therefore a minimum run time of 30

minutes is required.

In order to maximize the capability of the snake for research purposes it needs to

have data logging capability. The snake needs to be able to monitor and log the torque

required, position, and battery voltage for each segment. In addition the global orientation

of the snake is helpful.

The final snake needs to be safe to use and not cause injury in ordinary operating

conditions. Therefore it must be safe to use for someone skilled and trained in its

operation. Unnecessary pinch points, sharp edges etc are unacceptable. The snake cannot

use or require anything toxic or hazardous to anyone’s health.

The goal of the snake is to be used for research purposes. Therefore it needs to be

able to be operated by someone who is not intimately familiar with all of details of the

snake. They should be able to do all desired testing after sufficient training. Therefore the

snake should be capable of being programmed or controlled easily such that motion

parameters are easily changed and recorded and are able to match those of real snakes.

This project has limited resources in terms of budget, materials, and time.

Therefore it needs to be designed and constructed with commercially available materials

and components. Preference will be given to components that are off the shelf or require

30

minimum modification. In addition any and all manufacturing should require standard

techniques. This will allow future work on the snake to be performed with minimal effort.

 The limited budget to create the robotic snake is $2000. This means that each

segment should cost no greater than roughly $166.

General Design Decisions

The development of the project objective, background research, and design

parameters allowed for the general design decisions to be made. These decisions further

narrowed the project parameters and scope as to allow for initial design work to begin.

The first of these decisions was the actuation method. A variety of actuation

methods were explored in the initial background research. Each method had its particular

strengths and weaknesses relative to this particular application. Of all of the technologies

reviewed, electro-magnetic motors were chosen for their high power to weight and cost

ratio. A review of different motor types was performed and hobby servos were found to

be the best option. They offer the greatest functionality per size and cost of all of the

options. Typically electric motors rotate at speeds in excess of a thousand revolutions per

minute. However for this application much smaller speeds are required. Hobby servo

motors have a gear reduction built in. In addition they offer closed loop control. They

require only a steady voltage source, and signal wire for movement. Whereas other

options typically require a second circuit to control the voltage input to the motor in order

to control its speed. Since closed-loop control is necessary for the snake robot, an encoder

and the associated logic is needed.

There are countless manufacturing methods that would technically work for this

type of project. However, only a limited number of methods are practical given the scope

of this project. Methods that are most practical include standard machine tools such as

milling machines and lathes. This type of manufacturing typically involves taking larger

pieces of material and cutting away from it to get desired shapes. The second method is

using a sheet metal type approach in which the initial material is some sort of metal sheet,

which is then cut and bent to the desired shape. The final method is through the use of a

rapid prototyping machine. As discussed in the background research section Worcester

Polytechnic Institute now owns a fused deposition modeler. This technology allows for

31

nearly any type of shape to be “printed” in three dimensions using a heated abs plastic

filament. This in combination with an easily dissolvable support material allows for very

complicated shapes, including overhangs and hollow sections, to be created. After the

design of the desired component is completed in a solid modeling program such as

Solidworks it can be exported to the machine which then simply prints it. This method is

the fastest, easiest, and most flexible of all available solutions. Its only limitation is that

the printed abs plastic is only 60-80% the strength of standards injection molded abs and

much weaker then metal counterparts. A table was created to compare the different

resources available for this project.

Table 1: Manufacturing Resources Available

Resource Capability Time Required

Bridgeport Manual Mill Milling n/a

Manual Lathe Turning n/a

Various HAAS Mills CNC Milling n/a

Various HAAS Lathe’s CNC Turning n/a

Dimension 1200ES fused

deposition modeler

Rapid Prototyping 4 day turnaround time

Waterjet Cutting 2D shapes 3 weeks

Various hand tools etc n/a n/a

After a comparison of the available manufacturing resources available a decision was

made to use the rapid prototyping machine. The reasoning behind this decision is its ease

of use, speed, and unparalleled flexibility in respect to imposed design constraints.

To accomplish wireless control, Bluetooth technology was found to be ideal. It

was decided that wireless communication could be used for high level commands and

data transmission when speed isn’t as critical. This meant that the snake needed a master

controller capable of receiving commands from the computer and controlling slave

controllers for each segment. The master controller would take care of all low level

commands. This distributed control allowed for more redundancy, increased scalability,

and improved performance.

32

Preliminary Testing

Determining Required Torque

 Before servos could be selected to actuate each joint, the required torque at each

joint had to be known. The force required to move through granular material increases

linearly with depth. However the nature of granular media and flow is such that the

governing equations are limited in their accuracy due to the narrow number of parameters

that they take into account. For this reason a theoretical mathematical model was created

to calculate the required torque, and experimental testing was performed for comparison

and analysis.

Testing Methodology

 A testing methodology was created with the goal of having the results match the

final application as closely as possible. To do this a cylinder had to pivot and move

through granular media at various depths. This was accomplished with a custom testing

rig. The top view of the design can be seen in figure 11.

Figure 11: Torque Analysis Testing Rig

33

 The basic concept behind the design is that there is a rectangular container

capable of holding various depths of granular media. On the edge of this container is a

bearing block holding a shaft and pulley such that the pulley is parallel with the ground

plane. Attached to this pulley is an arm. A cylinder is then attached at the end of the arm.

The point of the arm is to move the cylinder away from the wall to reduce the wall

effects. A string is then fixed to the pulley and is attached to a force transducer. With this

testing rig the cylinder can be buried at various depths and rotated through the media by

pulling on the force transducer. The force transducer will output a force reading which

can then be converted into the required torque.

Theoretical Mathematical Model

A mathematical model was created to calculate the theoretical torque required for

the aforementioned testing rig. As a basis for the mathematical model the governing

equations for an object moving through granular media and basic moment definitions

were used. From these an equation was derived that allowed for the torque required at a

joint to be calculated as a function of depth.

Definitions:

 Derivations:

2

4

Where,

34

Experimental Testing

The testing rig was then built in order for experimental testing to be performed.

The container aspect of the rig was Poland Springs water container with the top cut off to

create an open top rectangular container. A square slot was then cut out of the side

roughly 10 cm up and a polyethylene bracket was attached with a matching slot. A

vertical hole running down the center of the bracket contained a .625mm pin that a pulley

and arm could rotate about. The arm was a 2.5 cm wide 1 mm thick piece of aluminum

10 cm long. The arm was screwed to a 28 mm diameter plastic pulley. Wrapped around

the pulley and secured with a screw was 30 cm of high strength braided string. At the end

of the arm a 6 cm diameter by 7 cm long piece of PVC piping was attached via two 6 mm

bolts. The ends of the PVC was then sealed using duct tape. The container was filled with

various depths of 6mm plastic beads with a density of 1g/cm^3. A Berkley digital tension

force gauge was then used to pull on the string and determine the torque required to begin

to pivot the PVC through the granular media. This experimental setup can be seen in

figure 12. The bracket and associated pulley and string can be seen in figure 13.

35

Figure 12: Torque Testing Experimental Setup

Figure 13: Torque Testing Experimental Pivot Bracket

36

Results and Analysis

 The results of the experimental testing can be seen in figure 14. As can be

seen a minimum of 5 tests were done per depth and five depths were tested. The tested

depths include 6.4, 8.9, 11.4, 14 and 19 cm, measured from the bottom of the PVC

cylinder.

Figure 14: Depth versus torque required to pivot PVC pipe through beads

As expected the results were linear. The torque required to move through the

material increases at a rate of 13.9 Newton meters per depth of a meter. Next the

theoretical required torque was calculated.

Using the derived equation and values used for experimental testing the

theoretical values were calculated for the experimental setup. This allowed for a direct

Depth versus Torque

y = 13.976x - 0.5198

-1

-0.5

0

0.5

1

1.5

2

2.5

3

0 0.05 0.1 0.15 0.2 0.25

Depth (m)

T
o

rq
u

e
(N

*m
)

Torque (NM)

Linear (Torque (NM))

37

comparison between theory and practice. This was done in MathCAD; the code for doing

so was as follows:

The theoretical and experimental results were then directly compared using

MathCAD’s graphing tools; this can be seen in figure 15.

Dia 2.5in 0.064m

Radiuspulley .55in 0.014m

Densityplastic 1 .64
gm

cm
3

x1 1in 0.025m

z2 z() z

x2 4in 0.102m

z1 z() z2 z() Dia

Torque th z()
Densityplastic g x2

2
x1

2

4
z2 z m()

2
z1 z m()

2

38

Figure 15: Theoretical and Experimentally Determined Torque Required

As can be seen the experimental results are far greater than the theoretical results.

A quantitative comparison showed that experimental is 5 times theoretical. This can be

attributed to a number of things. The first of which is the arm that attaches the cylinder

and the pulley. The theoretical model does not take the arm into account, although it does

have a very small cross-sectional area. Moving the arm requires additional torque to

displace the beads. Wall affects may also play a large role in the discrepancy. The walls

of the container act effectively as an infinite counterforce when the media pushes up

against it. This causes beads to have to move directly up rather than sideways. The

theoretical model assumes an infinitely large container. Finally the frictional forces

between the granular media are not taken into account in the theoretical model. It takes

only the displacement of the weight of the beads into account, not the shape, size, or

material of the grains. For example it has been found that larger grain sizes can result in

greater force required. Another hypothesis for the discrepancy is that the governing

0 0.05 0.1 0.15 0.2 0.25
0

0.3

0.6

0.9

1.2

Theoretical Torque Required (N*m)
Experimental Torque Required

Depth versus Required Torque

Depth (m)

R
eq

ui
re

d
T

or
qu

e
(N

*m
)

39

equation used for granular flow is only intended for modeling a flat surface, versus a

curved one as we are using.

Detailed calculations for the required torque can be found in appendix A.

Wireless Bluetooth Transmission Range

 One of the challenges this project faced was wireless communication with the

snake. Wireless Bluetooth technology was chosen as the best method to communicate

with the snake, but it had to be verified that the technology would in fact work as

intended. To do this a BlueSMIRF Gold Bluetooth Modem was purchased from

www.sparkfun.com. This was then placed in a 38L bucket filled with plastic beads. A

laptop was used to connect with the modem and connectivity was tested at various

ranges. A satisfactory signal was obtained at up to 6 meters through a .3 meter thick wall.

At a distance of 9.1 meters and 2 walls the connection was lost. From this testing it was

determined that the Bluetooth modem would be perfect for this application.

Component Selection and Design

 Component selection and design is always a very iterative process, as was true for

this project. As the design became more developed it led to certain parts working and

others requiring a second look. For the snake vertebrae the servo used to actuate each

joint was the alpha component. The alpha component is the part from which you base the

rest of the design. It can be changed, but it dictates the requirements of a majority of the

rest of the design. After choosing the servo the gearing was decided. Next the appropriate

batteries for each segment were selected. These parts set the overall size and shape of

each vertebra. From here the available space for the circuit board was known and that

could be laid out. Finally with all components selected and the general layout known the

wiring layout was developed and necessary changes to the design were made. This entire

process was extremely iterative with many parts of the design remaining fluid while the

finalized component selection was worked out.

Servos

 The primary criteria for selecting the servo was cost, size, and stall torque. Also

because this is a high torque application great preference was given to servos with metal

40

gears. The required joint torque at a depth of 10 cm or is .6 Newton meters (85 oz-in).

Servos typically come with the capability for either 90 or 180 degrees of rotation. To

achieve 45 degrees of rotation at each joint this meant that the maximum additional gear

reduction possible is 2:1 and 4:1 respectively. Servos are rated by their stall torque,

however this is the absolute maximum torque they can output. If an electric motor is run

at stall for too long it can overheat and fail. Therefore the maximum torque capability of

the servos was considered to be 75% of the rated stall torque. This meant that servos with

90 degrees of rotation need at minimum to be rated for a stall torque of .395 Nm and for

180 degrees of rotation .197 oz-in. Table 2 contains a list of servos reviewed and their

specifications.

Table 2: Servo Comparison

Model Range

(deg)

Stall Torque @

6V (Nm)

Cost

Max Joint

Torque (Nm)

$ Per

Nm

HexTronik

HX12K

180 0.97 $10.16

2.92

$3.48

HS-311

Standard

180 0.35 $8.99

1.04

$8.66

HS-475HB

Super Pro BB

180 0.54 $17.99

1.61

$11.17

HS-645MG

Ultra Torque

180 0.94 $39.99

2.82

$14.16

RS404PD 150 0.88 $31.99 2.19 $14.61

HS-225MG

Mighty Mini

180 0.47 $27.99

1.41

$19.82

HS-81MG

Micro

180 0.29 $23.49

0.88

$26.62

RS403PR 180 1.38 $119.99 4.15 $28.90

HS-85 MG+

Mighty Micro

180 0.34 $30.99

1.03

$30.10

HS-5085MG 180 0.42 $46.99 1.26 $37.15

41

S9402 Hi-

Speed MG BB

90 0.78 $74.99

1.18

$63.78

S9405 Hi-

Torque MG

BB

90 0.71 $69.99

1.06

$66.08

S3004

Standard Ball

Bearing

90 0.40 $39.90

0.60

$66.32

As can be seen in table 2 the servos are listed by their price per max joint torque. The best

deal is the HexTronik HX12K. It is 33% the cost of the next best deal and 4% the cost of

the least best deal. In other words the HexTronik is three times a better deal than any

other available servo looked at. In addition it is only about $1 more expensive then the

least expensive servo. Taking into account the 75% of stall torque limit, the max joint

torque available for the HexTronik HX12K is 2.92 Nm if a 4:1 reduction is used. This is

4.87 times the required torque, meaning that the snake can theoretically go to a depth of

.74 meters. The chosen servo can be seen in figure 16 and its specifications in table 4.

Figure 16: HexTronik HX12K Servo

42

Table 3: HexTronik HX12K Servo Specifications

Input 6V

Type Analog

Dimensions 1.57x1.5x.79”

Weight 1.98 oz

Gears Metal

Spline Futaba

Speed .13 sec/60 degrees

Stall Torque .974 Nm (138 oz-in)

Idle Current Under 20mA

Average Current 1000mA

Stall Current 2000mA

Gearing

 The previous servo selection allowed for the gear train analysis and selection to

begin. The chosen servo has sufficient torque so that a 4:1 reduction is not absolutely

necessary, however with greater the reduction comes better control and reduced battery

requirement. After much iteration in the design process it was determined that the largest

gear reduction possible within the space restrictions is 3.5:1. The limiting factor in gear

selection was the cost of gears. The high torque requirements for this application dictated

higher strength gears then would typically be used for servos. However the greater the

strength of the material used the more expensive the gears become. Initially a number of

gear options were researched in order to compare prices and determine suitable options.

A compilation of the gears researched can be found in table 4.

43

Table 4: Gear Option Comparison (Items in bold are not stock)

Type Material Pitch

Tooth

Count Price Part Number Source

Pinion Brass 48 15 $ 14.99 RSA48-FMG-15 www.servocity.com

Pinion Delrin 48 18 $ 3.08 RSA48-2FS-18 www.servocity.com

Driven Aluminum 48 80 $ 16.58 F48A76‐80 www.wmbirg.com

Driven Brass 48 60 $ 18.10 GBS‐48060‐10 www.smallparts.com

Driven Steel 48 80 $ 23.25 S10A6Z‐048H080 www.sdp‐si.com

Driven Delrin 48 72 $ 2.40 SPBD48-24-72 www.servocity.com

Driven Acetal 48 60 $ 3.45 GDS‐48060‐01 www.smallparts.com

Pinion Brass 32 16 $ 14.95 RSA32-FMG-16 www.servocity.com

Driven Steel 32 60 $ 27.36 S10A6Z-032H040 www.sdp‐si.com

Driven Delrin 32 60 $ 3.20 SPBD32-34-40 www.servocity.com

Driven Steel 32 60 $5.10 A 1C29‐Y32060 www.sdp‐si.com

It was found that all off-the-shelf metal gears were prohibitively expensive for the budget

of this project. Therefore it was initially decided that plastic gears would be the most cost

effective gearing option. In order to determine if this was possible a number of

calculations were performed to determine the tooth stress that would be acting on the

gears, and what materials would be reasonable given that stress. These calculations can

be found in appendix B. The results of these calculations are shown in Table 5. As can be

seen the only two acceptable safety factors are associated with the 32 pitch gears made of

either 2024 aluminum or steel. Plastic gears are not strong enough for this application and

so the initial plan had to be rethought. One of the important specifications of this project

is to ensure that it is rugged and will not fail prematurely. Therefore the safety factor of

3.272 is preferable. The cheapest off-the-shelf option is from www.sdp-si.com for a price

of $27.36 per gear. This is nearly three times the cost of each servo. In order to reduce the

cost gear stock was found. Gear stock is a shaft with gear teeth already cut along the

length of it. All that was required was to use a lathe in order to cut the gears off the gear

stock to obtain the desired width. This resulted in a total cost of $5.10 per gear, about

44

20% the cost of other options. For the pinion gear only one option was available. The

servo that the pinion gear attached to has a spline for its output shaft. In order to attach

the pinion gear needed to have a mating female spline. This requirement severely limited

the number of available options. The only gear meeting this requirement was from

www.servocity.com, it is a brass 16 tooth gear.

Table 5: Gear Safety Factors

Pitch Material Safety Factor

48 Delrin 0.116

48 2024 T6 Aluminum 0.291

48 Steel 0.485

32 Delrin 0.785

32 2024 T6 Aluminum 1.963

32 Steel 3.272

Batteries

 Battery selection was difficult due to the space restrictions imposed by the nature

of the cylindrical shape of the segments. The initial goal was to find a 6 volt battery with

at least 500mAh of capacity. Nickel cadmium and nickel metal hydride battery

chemistries were preferred for their cost, reliability, ease of use, and safety. However

cells of these types are typically rated for 1.2 volts. This means that to achieve 6 volts, 5

cells are necessary. After a thorough search it was found that meeting all three parameters

(capacity, voltage, and size constraint) would not be possible using these technologies.

Other technologies were then explored, primarily lithium polymer (LiPoly) batteries.

LiPoly batteries are known for their high power-to-weight and size ratio. They typically

have a rectangular form factor and each cell is rated at 3.7 volts. Therefore only two cells

are necessary which results in a combined voltage of 7.4 volts. This is higher than the

goal of 6 volts, however this increase in voltage will allow the servo to achieve 20%

more torque. Servos have been used extensively at slightly higher voltages then rated for

so this 1.4 volt increase should have no adverse affects on the daily use of the servo. The

battery chosen was the cheapest LiPoly battery available that met all of the requirements.

The battery was the ThunderPower 730mAH LiPoly Double Cell 2S 7.4V Prolite V2

45

Series purchased from www.robotmarketplace.com. It is rated for 14.6 amps continuous

and 29.2 amps burst. Its size is 55x33x9.5mm and it has a weight of 1.2 oz. This battery

can be seen in figure 17.

Figure 17: ThunderPower 730mAh LiPoly Battery

Circuit Board

The circuit board was designed to include the following features; voltage sense,

position sense, current sense, address selection, voltage regulation, and a power off

switch. Each was first simulated in Multisim, and then tested using proto-boards to verify

design and component attributes. These boards are shown in figure 18.

Figure 18: Proto-Board Testing

46

 In order to implement a voltage sense circuit, the battery voltage needed to be

converted to a value from 0 to 5V. Since the LiPoly batteries could not exceed a charge

of 9V, then the battery voltage was taken and divided by a factor of two using a voltage

divider. This would ensure that the battery voltage would be less than 5V but also give a

wide range of values from 0 to 10V to be inputted as the voltage supply. To protect the

microprocessor and increase the accuracy of the voltage divider a buffer was added

between the divider and the ADC input. The circuit is shown in figure 19.

Figure 19: Voltage Sense

 Because servos are being used, position feedback of each was potentially

available. Each servo consists of a motor with position feedback and a control loop that

will transform a pulse into a position. Since the servo already has a potentiometer on the

output shaft, it can be tapped in order to gain position feedback. The location of the

potentiometer output voltage is displayed in figure 20.

47

Figure 20: Position Feedback Location

 The actual location of the position feedback is on the small circuit board inside

the servo. The potentiometer takes two inputs, power and ground, and has one output,

position. Its output is located on the middle pin and its value ranges from 0 to 3.3V for a

full 180 degrees rotation. To collect this feedback a line was soldered to the middle wire

and then put through a buffer before being sent to the microprocessor’s ADC. The

position sense line is filtered using a 100 Hz low-pass filter. This was done to reduce the

input noise at the sampling frequency. See figure 21 for the feedback circuit.

Figure 21: Position Feedback Circuit

 To collect the torque information for each joint, current sensing was added to each

joint. To do this a sense resistor was added between the servo ground and the board

ground. This converts the current going through the servo and the resistor into a voltage

48

drop that can be measure. However, when the servo turns the other way the current can

be seen as negative. The ADC used cannot handle negative voltages. In order to account

for this, the current sense circuit consisted of the sense resistor output going into a non-

inverting amplifier. This allows the current to be represented by a positive voltage

always. A current of 0 Amps relates to an output value of 2.5V and the current range of -

5A to 5As is represented from 0 to 5V. The sense line was also filtered using a 100Hz

low-pass filter to reduce noise around the sampling frequency. The current sense circuit is

demonstrated in figure 22.

Figure 22: Current Sense Circuit

 Address selection was implemented in a relatively simple way. The

microprocessor has several general purpose input-output pins. A small dip switch was

used to either set the pin high or to disconnect them from Vdd. When disconnected a

pull-down resistor was used to ensure that the pins do not float and are driven to ground.

See figure 23.

49

Figure 23: Address Select

 Since the battery input was +7.4 Volts and all of the logic ran on 5 volts, a voltage

regulator was needed. The regulator chosen was Linear Technologies’ LT1763. The

conversion was only from 7.4 to 5 volts so a linear regulator would work with little noise.

The regulation circuit was built to the specifications that were given on the datasheet.

However, an additional snubber capacitor was added in order to reduce the voltage spikes

cause by the servo. The regulator and corresponding components are shown in figure 24.

Figure 24: Voltage Regulator Circuit

To conserve battery life, a power on and off switch was designed into the boards.

This was done using a MOSFET transistor. The transistor acted as a switch to disconnect

50

the logic and servo from the main power supply. The power on signal starts in the head

and travels down the snake turning on each joint using only one switch in the beginning.

See figure 25 for the schematic.

Figure 25: Power Off Signal

Once each component was designed and tested then the PCB board layout was

designed. Basic design layout conventions were followed. Signal traces have a width of

.012 inches while the power supplying the regulator and servo are .025 inches to account

for the increase in current. As a rule of thumb the top-layer traces are horizontal, while

the bottom layer traces are vertical. Also in addition to the circuits provided above, the

PCB also breaks out the necessary lines for servo control, LED control, serial

communication, and I2C communication. Figure 26 shows the PCB layout.

51

Figure 26: PCB Layout

 The microprocessor for each link was chosen to be the dsPIC30F4013. The

advanced capabilities and the ability to store data between power cycles make the

dsPIC30F4013 the best choice for this situation. Each link will communicate using I2C.

If serial was used then much time would be spent trying to create the functionality of I2C,

while using serial. The master processor will communicate to the user through Bluetooth.

The frequency hopping and the ease of use of Bluetooth make it the clear choice.

Vertebrae Design

 The component final selection allowed for the frame or body design of each

vertebra to be completed. This occurred in parallel with the product selection as both

processes were closely tied together. In order to best mimic a biological snake a

cylindrical shape was chosen. One of the main objectives in designing each vertebra was

that they had to connect and disconnect from each other easily such that the snake would

be scalable. After a few brainstorming sessions it was decided to have the driven gear be

directly attached to the back of each vertebra and have a dead (non-rotating) shaft on the

front of each vertebra. The shaft would go connect to a hitch on the front of each

vertebra. The hitch would consist of an extrusion at the top and bottom of the cylinder. At

52

the back of each vertebra there would be a bearing block containing a bushing. This

bearing block would hold the shaft and provide much of the strength between segments.

In addition to the bearing block the driven gear would be attached to the rear of the

vertebrae. This gear would have a bushing at its center point and provide additional

support for the connection between the segments. The front of each vertebra would then

have a window that would allow the driven gear of the next vertebra enter into the

vertebra and mesh with the pinion gear on the servo. The initial concept for this idea can

be found in figure 27.

Figure 27: Initial Vertebra Design Concept

 The initial design was very rudimentary but played a large role in acting as a

starting point from which to develop the final design. The next design iteration can be

seen in figure 28. As shown the front hitches have been refined. A hole has been added to

allow wires to pass between segments and initial compartments for the battery and circuit

board have been laid out. This particular picture shows the full gear attached to where the

dead shaft will be located, and not attached at it the rear. Notice that at the rear of the

vertebra a window to allow clearance for the driven gear is present, this was eliminated

the next design iteration.

53

Figure 28: Second Design Iteration

 The third design iteration resulted in the final design. This can be seen in figure

29, 30, and 31. This design incorporates many features critical to the assembly and

performance of the snake. The largest of which is that the gear has been modified such

that only the profile of the gear that is necessary is present. It attaches using two flat head

100 deg 8-32 machine screws. These are inserted from the bottom of the vertebrae

through a countersunk shelf, through the gear, and into a substantial extrusion. While this

design does put the screws in shear, it does so only partially. Because the gear will be

seeing a moment about its point of rotation at the center hole, it will want to rotate.

Therefore when the gear tries to turn it will be pushing into the vertebrae on one side, and

pulling on the other. The tolerances are such that all of the pushing force will be

transmitted directly into the body of the vertebrae, and pulling will be absorbed by the

frictional forces from the two shelves and the screw in shear. Other features include

additional mounting holes on each of the sides of the snake that allow attachments to be

added at a later date. There is a battery compartment accessible from the top of the snake.

The dead shaft is a press fit through both hitches. Shown in the side view of figure 31

there are clearance holes to allow for the assembly of the circuit board and a window to

allow for a screwdriver to be used to loosen the screw terminals to connect the pigtail

54

wire that runs between each segment. An exploded view of a vertebra can be found in

figure 33.

Figure 29: Final Design Front Isometric

Figure 30: Final Design Back Isometric

55

Figure 31: Final Design Side

Figure 32: Final Design Bottom

56

Figure 33: Vertebrae Assembly Exploded View

Head Design

 The head of the snake involved a number of unique challenges. The head had to

be shaped similar to a shovel-nosed snake yet contain the accelerometer, Bluetooth

modem, and controller, on/off switch, and have an easy way to gain access to the

internals. In order to meet all of these requirements sacrifices had to be made in the

overall shape of the head. A snake’s head comes to a point rather quickly, but this

severely limits the internal space available. Therefore the head was CADed to allow for

easy adjustments to the basic dimensions to have the most efficient use of space. The

head consisted of two main portions, the bottom base and a lid. A majority of the head

would not be covered with skin and therefore needed to remain sealed. In order to

accomplish this, the lid was designed so that it overlapped with a lip on the head base.

This lip also served the purpose of increasing the strength of the head. Four screws were

57

used to attach the lid to the base, two in the front and two in the rear. This low screw

count allows for fast access to the internals of the head.

 The head required a battery power source for the electronics. Because there

wasn’t a servo in the head a smaller battery could be used. The battery chosen was a

smaller version of the vertebrae battery, the ThunderPower 250mAH LiPoly Double Cell

2S 7.4 V Prolite V2 Series. A small compartment was designed in the rear bottom portion

of the head to hold the battery. A cover was designed to be placed over the battery and

secured with two 4-40 screws. On this cover was a threaded boss onto which the master

controller attached. The accelerometer board did not have any mounting points so a

unique solution had to be developed. A slotted bracket was designed in the front bottom

of the head that the board slid into, providing an easy assembly method and secure

mounting. Mounting the Bluetooth modem was accomplished using the same technique,

but in the top rear of the head. Two brackets and holes in the lid allow for the mounting

of LEDs to serve as status lights so that the current state of the snake is obvious. The

attachment method for the gear at the rear of the head is the same as all of the other

segments. A feature added for future work is a main power input placed in the bottom of

the head. Future projects may add the capability for the snake to charge itself, and this

power jack will be able to provide power to the entire snake. An exploded view of the

head can be seen in figure 34.

58

Figure 34: Head Assembly Exploded View

Skin

 The skin was one of the more unique challenges of this project. When a snake

forms a curve from a straight line the inner circumference becomes smaller than the outer

circumference. However when the snake then curves the opposite way that previously

smaller circumference becomes longer. This means if a standard type of material is used

such as cotton cloth then the skin will either bunch up or be pulled to tightly and restrict

the snake’s movement. To avoid this the snake’s skin needs to be flexible and self

correcting to this problem. After an extensive search expandable braided sleeving was

chosen as the ideal solution. This is a woven sleeve comparable to the Chinese finger-

trap toy, however it is designed for protecting wires. It is unique in that the strands that

make up the braid weave in a helical pattern. This in combination with the ability for the

sleeve to move relative to itself means that it is self correcting when the snake curves.

59

When one side gets shorter than the opposite the extra material simply slides to the

opposite side. This sleeve acts as a support to bridge the gaps between the segments but

does not have a fine enough weave to keep out the granular media and therefore seal the

snake. To seal the snake a spandex sleeve was used. The selected fabric was a 6 Oz 80%

nylon 20% spandex 4-way stretch fabric. This was purchased and then sewn together into

a tube the appropriate length. The seam was then glued with fabric glue in order to

increase its strength and longevity. This skin composite skin combination can be seen in

figure 35.

Figure 35: Composite Snake Skin

Software

 In Appendix F the MATLAB code used to control the snake is displayed. One of

the requirements for this research platform was to be able to develop an arbitrary

traveling waveform and be able to perform that motion using the snake. In order to do

this, the MATLAB symbolic toolbox was used. However the symbolic toolbox is only

supported for 32-bit MATLAB.

 Using this toolbox a program was created where the user can input the length of

each link, the waveform equation, and the desired resolution. When MATLAB is run it

displays the waveform generated along with the calculated snake joint angles. These

60

angles are then used to program the snake to perform the desired motion. MATLAB’s

graphics output is displayed in figure 36.

Figure 36: MATLAB Snake Waveform

 The method of waveform following used is this project is simple. Since the scope

of our projects was to allow for waveform following by the snake we needed a simple

method for following it. While is method is quick and easy in implementation there are

several drawbacks to using such a system. The first joint is placed at the beginning of the

waveform. From that joint a circle with the radius equal to the link length is calculated.

The intersection of the right side of that circle and the wave is the location of the second

joint. This is repeated for each joint until there are no more links.

 One of the major drawbacks from using this method is that this model does not

take into account the non-linearity of the snake joints. As a result, certain waveform

patterns cause it to create large amounts of error along with discontinuities of speed as

each link goes around the apex of the wave. Figure 37 shows once such waveform.

61

Figure 37: Poor Waveform

 The error of a particular fit can be described as the integral of the square of

difference between the waveform being followed and the wave created by the joint angles

and link lengths of the snake. Since the scope of the project is the design and construction

of the snake, more analysis of the waveform following and its implications are left for

future work.

Testing Bed

In order to perform the desired experimental studies a test bed was necessary. A

3x1.2x.6 meter “tub” was built using plywood and 2x4s as shown in figure 38. This bed

was then filled with 450 kg of granular media (polycrystal styrene). These plastic pellets

are small cylinders 3 mm in diameter and roughly 1-4mm in length. They have density of

1 g/cm^3 and were kindly provided by Ineos Nova LLC. The size and makeup of this tub

should allow for extensive testing to be performed for both straight line locomotion and

turning.

62

Figure 38: Testing Tub

Validation

Finite Element Analysis

 To ensure that the snake would not break during normal use a finite element

analysis was performed on the vertebrae unibody. This validated that the design would

indeed be strong enough for handling and normal operation. The primary analysis

performed was to ensure two things. That the end segment could be held with the rest of

the snake hanging orientated vertical and that the reaction forces between the segments

could not break the snake in half. The analysis was performed using Cosmos Works.

Restraints were set at the rear of the vertebra representing where the screws attach to the

vertebrae and at the pillow block where the shaft goes. Linear forces were then placed on

the two hitches. These were in line with the length of the vertebrae and their combined

force was set to 68.75 N. The force exerted by the weight of the snake is 30.5 N. The

reaction force between the two gears was calculated as follows:

tan

Where,

63

.

.
tan 20 68.78

Therefore only the reaction force needs to be analyzed. For material properties the lowest

documented yield strength for abs plastic was used and then multiplied by .6 to account

for the degraded strength due to the printing process. The software then analyzed the

safety factor as a function of location and plotted it as shown in figure 39. The lowest

safety factor was calculated to be 3.1 and is shown by the red points.

Figure 39: FEA Analysis Safety Factor Plot

Movement Testing

 In order to validate that the snake could indeed move through the granular media

as required tests were performed throughout the course of the project. Initially two

segments were built in order to validate that all parts would fit as expected. These were

then placed in a zip block bag to act as a skin and the joints were actuated using standard

hobby radio gear. The two joints were able to move without issue at a depth of .5 meters,

the deepest checked. As the snake neared completion testing was done with 6 segments at

a depth up to 15 cm with successful results.

64

Conclusion

 The project succeeded in producing a self-contained scalable robotic snake that is

able to move inside granular media. The snake consisted of eleven powered joints, in

addition to the head and tail segments. Testing was limited but functionality was shown

at depths of at least .15 meters. A user is able to use the custom MATLAB program to

create a lookup table and then wirelessly transfer that table to the snake via

HyperTerminal. Then using a series of commands in HyperTerminal the snake can be

commanded to execute the desired traveling waveform step by step or continuously. This

project incorporated a number of challenges with the primary one being limited

availability of time. With minimal additional work the snake will be fully capable of

acting as a research platform for future studies of swimming in granular media. Images of

the final snake robot can be seen in figures 40, 41, 42 and 43.

Figure 40: Completed Snake

65

Figure 41: Completed Snake w/ Skin

Figure 42: Five Identical Links Connected

Figure 43: The Snake Robot in the Testing Bed and a Real Snake in the Desert

66

Recommendations

Recommendations for future work on the robotic snake consist of waveform

evaluation, and both a hardware and software updates. The scope of this project was to

create a platform for research. In its current state, the robot could be used for research.

However, several improvements to the snake can increase both its effectiveness and

usability.

For hardware, an onboard charging circuit will greatly improve usability and will

allow for a much smoother transition between testing and charging. There is space on the

current board design for such a circuit to be implemented. In order to allow such a design,

there must also be another layer of isolation between the battery and circuit board that

will prevent that charging from affecting the main logic of each controller.

In addition to the charging circuit, we recommend that time be taken to look at the

interface between the battery and the circuit board and look into ways to both increase the

stability of the power line while under high current draw from the servo, and to increase

the protection for the board’s components. With these additions the snake will become

much more robust.

For software, a well defined interface between the user and the snake should be

created. Currently the software is such that it can be used for testing, but changing the

waveform requires wired manual transfer of the individual link’s lookup tables. A file

parser should be writing so that the user may download the position file through a

program like HyperTerminal.

Although that file parser will increase usability one of the greatest changes would

be to give the user access to the onboard EEPROM. This will allow for the user to collect

the data from the experiments along with storing different waveforms into the snake even

between power cycles.

With these changes the snake will be both far more robust and user friendly.

Implementation of these recommendations will greatly decrease the time between tests

along with increasing the overall effectiveness of the snake.

67

Works Cited

Bauchot, R. (2006). Snakes: A Natural History. New York, New York: Sterling
Publishing Co., INC.
Bzdega, M., Robertson, B. D., Soller, R., Huber, G., & Koehler, S. A. (June 24, 2008).
Swimming in granular media.
Dowling, K. (December 1997). Limbless Locomotion: Learning to Crawl with a Snake
Robot.
Flickr. (n.d.). Retrieved 04 30, 2009, from
http://farm2.static.flickr.com/1410/1069642779_c4d52d0aa2_o.jpg
Gray, J. (1946). The Mechanism of Locomotion in Snakes. Journal of Experimental
Biology , 23 (2), 101-120.
Gray, J., & Lissmann, H. W. (1949). The Kinetics of locomotion of the Grass-Snake.
Grimm, Todd, T.A. Grimm & Associates. (2003). Fused Deposition Modelling: A
technology Evaluation. Time Compression , II (2).
Howstuffworks. (n.d.). Retrieved 04 30, 2009, from
http://static.howstuffworks.com/gif/snake-motion.gif
Hu, D., Nirody, J., Scott, T., & Shelley, M. (April 5, 2008). Snakes on a plane: the
mechanics of slithering.
Koehler, S. (March 1, 2007). Research Proposal: Swimming In Granular Media.
Saito, M., Fukaya, M., & Iwasaki, T. (N.A.). Modeling, Analysis, and Synthesis of
Serpentine locomotion with a Multilink Robotic Snake.
WorldBook. (n.d.). Retrieved 04 30, 2009, from
http://www.worldbook.com/wb/images/content_spotlight/reptiles/internalorgans.gif

68

Appendices

Appendix A: Torque Requirement Calculations

69

70

Appendix B: Gear Requirement Calculations

71

72

73

74

Appendix C: Operator Instructions

Hardware Needed:

To wirelessly communicate with the robotic snake Bluetooth capability is necessary. This
can be achieved either through a USP Bluetooth Dongle or built-in Bluetooth module.

To program the processors a PIC programmer is needed. Either the MPLAB ICD 2 or a
PIC kit can be used.

Software Needed:

In order to program the processors MPLAB C30 is recommended. This can be acquired
directly through the Microchip site and has a free student version for use.

To communicate via Bluetooth BlueSoleil 6.4.249.0 or higher is suggested. It can be
acquired through http://www.bluesoleil.com/. It is free for 30 days, after that there is a
one time fee of 30 dollars.

For user commands HyperTerminal 7.0 is suggested and is freely available online.

To generate waveform 32-bit MATLAB must be used. Of the remote servers offered at
WPI only hutt.ece.wpi.edu is a 32-bit machine with 32-bit MATLAB.

Connections Description:

The following information assumes that the board is orientated such that the cut out is in
the top right hand corner as shown above.

(From Left to Right, Top to Bottom)

75

Battery: Dual Through-Hole Horizontal top left corner. Pins are BATTERY+,
BATTERY- .
The Servo Connecter: Only 3 Pin R/A header. Pins are Signal, Power, Ground

5v Power: Dual Through-Hole Vertical far left middle. Pins are 5v, Local GND

Terminal Block 7 Pos: 7 Through-Holes Horizontal left middle. Pins are SCL, SDA,
BATTERY-, VBUS, PON, CHARGE-, CHARGE+

PIGTAIL: 7 Through-Holes Vertical Far Right Middle. Pins are CHARGE+, CHARGE-,
PON, VBUS, BATTERY-, SDA, SCL

Serial connecter: 2 Pin vertical middle bottom right. Pins are U2RX, U2TX

Programming connector: 5 Pin R/A header Pins are PGC, PGD, GND, VDD, VPP

Basic Command Overview:
(replace X with number of choice)

PXX: Send current Joint to angle XX (from -26 to 26)

C: Run entire waveform table

W: Move to next step in waveform table

M: Communicate each link to move (current one does not)

AX: Get and output ADC value of ADC X (POS A0, Current A1, Voltage A2)

dsPIC Start Up:
To ensure the dsPIC is working it sends a U to the serial line when it is reset or
connected.

 Standard Startup:
Connect batteries, Power On, Connect via HyperTerminal, Check connection (i.e. U or
Echo of serial inputs), if connected begin.

If that fails most common problems are Bluetooth connection (green light means
connected , red means no), Low-Battery Ideal (7v+), and Power Switch.

When in doubt Reset everything and check for serial response (‘U’). If that fails try to
reprogram and connect.

Appendix D: Part Drawings

77

78

79

80

81

82

83

84

85

86

87

88

Appendix E: Bill of Materials

Bill of Materials

Category Part Part # Quantity
Cost per
Unit Total Cost Source Lead Time Order Receive Status

Mechanical

 Segment N/A 15
 $
‐ $ ‐ WPI 1 Week 12 12 C

Hektronix HXT12K
Servo N/A 12

 $
12.06 $ 144.72 www.unitedhobbies.com 2 Week 12 12 C

 Bronze Bearing 6391K122 14
 $
0.43 $ 6.02 McMaster 2 Days 14 14 C

 3/16" Dia 1' Shaft 88565K36 3
 $
7.14 $ 21.42 McMaster 2 Days 2 2 C

8‐32 SS 1/4" Cap
Screw 100pk 92196A190 1

 $
6.39 $ 6.39 McMaster 2 Days 1 1 C

 Nylon Bearing 5pk 6389K353 3
 $
2.70 $ 8.10 McMaster 2 Days 3 3 C

8‐32 SS Flat Head
50pk 93085A197 1

 $
8.52 $ 8.52 McMaster 2 Days 1 1 C

.02" THK Washer
25pk 93574A438 1

 $
7.81 $ 7.81 McMaster 2 Days 1 1 C

.024‐.038 THK
Washer 100pk 92141A009 1

 $
1.82 $ 1.82 McMaster 2 Days 1 1 C

100 Flat Head 8‐32
1/4" screw 90471A250 1

 $
7.55 $ 7.55 McMaster 2 Days 1 1 C

100 Pan Head 6‐32
3/16" screws 90272A143 1

 $
1.58 $ 1.58 McMaster 2 Days 1 1 C

100 Pan Head 4‐40
3/16" Screws 90272A105 1

 $
1.35 $ 1.35 McMaster 2 Days 1 1 C

Expandable
Sleeving 15' 9284K393 1

 $
14.53 $ 14.53 McMaster 2 Days 1 1 C

89

 Spandex Sleeving 4896 & 4225 1
 $
32.20 $ 32.20 www.spandexworld.com 2 Days 1 1 C

 Servo Gear 16T 32P
RSA32‐FMG‐
16 12

 $
14.95 $ 179.40 www.servocity.com 3 Days 12 12 C

 60T Gear
A 1C29‐
Y32060 1 83.88 $ 83.88 www.sdp‐si.com 3 Days 1 1 C

Electrical

 730mAh LiPoly 7.4V
LP‐TP730‐
2SJPL2 12

 $
22.99 $ 275.88

www.robotmarketplace.c
om

1.5
Weeks 12 12 C

 250mAh LiPoly 7.4V
LP‐TP250‐
2SJPL2 1

 $
12.99 $ 12.99

www.robotmarketplace.c
om 1 Week 1 1 C

10 ft Audio Cable,
22/4 Awg 71335K52 1

 $
1.21 $ 1.21 McMaster 2 Days 1 1 C

 Bluetooth Modem WRL‐00582 1
 $
64.95 $ 64.95 www.sparkfun.com 1 Week 1 1 C

 Battery Connectors
LXPHE0,
LXPHE4 1 60.23 $ 60.23

http://www.towerhobbies
.com/ 1 Week 1 1 C

 Power MOSFET
ZXMN4A06G
CT‐ND 15 1.26 $ 18.90 www.digikey.com 1 Week 15 15 C

 5v Linear Regulator 57M6063 15 3.76 $ 56.40 http://www.newark.com 1 Week 15 15 C

 Capacitors
10 uF POL
EIA7343 15 0.6 $ 9.00 http://digikey.com/ 1 Week 15 15 C

 .1 uF C0805 15 0.2 $ 3.00 http://digikey.com/ 1 Week 15 15 C

 .01uF C0805 15 0.2 $ 3.00 http://digikey.com/ 1 Week 15 15 C

 1uF C0805 30 0.2 $ 6.00 http://digikey.com/ 1 Week 30 30 C

 Resistors 10k R0603 200 0.06 $ 12.00 http://digikey.com/ 1 Week 200 200 C

 90.9k R0603 30 0.1 $ 3.00 http://digikey.com/ 1 Week 30 30 C

 1.5k R0603 30 0.1 $ 3.00 http://digikey.com/ 1 Week 30 30 C

.1 R0603
1/2W 15 0.2 $ 3.00 http://digikey.com/ 1 Week 15 15 C

 Processor
DSPIC30F401
3 15 7 $ 105.00

http://www.microchipdire
ct.com/ 1 Week 15 15 C

 OP‐AMP LM358 30 0.5 $ 15.00 http://digikey.com/ 1 Week 15 15 C

 DIP Switch

GH7321‐ND
M:90HBJ06P
T 15 1.73 $ 25.95

http://search.digikey.com
/scripts/DkSearch/dksus.d
ll?Detail&name=GH7231‐ 1 Week 15 15 C

90

ND

Terminal Block 7
Pos 277‐1278‐ND 15 4.5 $ 67.50

http://search.digikey.com
/scripts/DkSearch/dksus.d
ll?Detail&name=277‐
1278‐ND 1 Week 15 15 C

 H 2POS .1 STR TIN WM8072‐ND 30 0.21 $ 6.30

http://search.digikey.com
/scripts/DkSearch/dksus.d
ll?Detail&name=WM8072‐
ND 1 Week 30 30 C

 H 3POS .1 R/A TIN WM4101‐ND 15 0.36 $ 5.40

http://search.digikey.com
/scripts/DkSearch/dksus.d
ll?Detail&name=WM4101‐
ND 1 Week 15 15 C

 H 5POS .1 R/A TIN WM8099‐ND 15 0.57 $ 8.55

http://search.digikey.com
/scripts/DkSearch/dksus.d
ll?Detail&name=WM8099‐
ND 1 Week 15 15 C

 PCB Eagle Design 15
 $
30.00 $ 450.00

http://www.sunstone.com
/?gclid=CJPZ7OPGmJoCFZ
pM5QodRjko8w 1 Week 15 15 C

Test Bed

 Granular Material N/A 1
 $
‐ $ ‐ Ineos Nova 1 week 1 1 C

 TOTAL: $ 1,741.55

Appendix F: MATLAB Code

Traveling_Snake2.m

%traveling_snake2

%Waveform(function, numberoflinks, linklength, periods, startpoint,

endpoint, resolution)

%Waveform(13, .9, 1, 0, 10, .01);

clf

clc
clear all

clear, syms X;
Y = (1/2)*sin(X)

%Y = 2*cos(X) + sin(X)

%Y = cos(X^2)

counter = 1;
interations = 10;

linklength = .9;
numberoflinks = 13;

tablethetar = zeros(numberoflinks - 1, interations / .05);
tablethetad = tablethetar;

for i = interations: -.05: 0

 %[thetar thetad] = Waveform2(Y, 13, .9, 1, 0 + i, 10 + i, .01);

 [thetar thetad] = Waveform2(Y, numberoflinks, .9, 1.5, 0 + i, 13 +

i, .001);

 %[thetar thetad] = Waveform2(Y, numberoflinks, 1.8, 1.5, 0 + i, 25

+ i, .001);
 %[thetar thetad] = Waveform(Y, numberoflinks, 1.8, 1.5, 0 + i, 25 +

i, .01);

 tablethetar(:, counter) = thetar;

92

 tablethetad(:, counter) = thetad;
 counter = counter + 1;
end

tablethetar;

tablethetad
plotresults(linklength, tablethetar);

Waveform2.m

function [thetar thetad] = Waveform2(Y, numberoflinks ,linklength

,wavelength ,startpoint ,endpoint, resolution)

pointsperwavelength = ((endpoint-startpoint) / resolution) * (2/3);

conversion = wavelength / pointsperwavelength;

X = linspace(startpoint,endpoint,(endpoint-startpoint)/resolution);

y = eval(Y);
x = linspace(0,endpoint - startpoint,(endpoint-startpoint)/resolution);

A = ones(numberoflinks - 1,1);
B = zeros(numberoflinks - 1,1);

thetar = zeros(numberoflinks - 1,1);
theta = thetar;

for i = 1: 1: numberoflinks - 2
 if(i == 1)
 for j = 2: 1: (endpoint-startpoint)/resolution - 1

 if (((y(1,j) - y(1,1))^2 + (x(1,j) - x(1,1))^2) >=

linklength^2)

 nextx = j;
 break;

 end

 end

93

 else
 for j = A(i): 1: (endpoint-startpoint)/resolution - 1
 if(j > 1)

 if (((y(1,j) - y(1,A(i)))^2 + (x(1,j) - x(1,A(i)))^2)

>= linklength^2)

 nextx = j;

 break;
 end

 else

 if ((y(1,1)^2 + (x(1,1))^2) >= linklength^2)
 nextx = j;
 break;

 end

 end

 end
 end

 nextx;

 A(i + 1, 1) = nextx;

 B(i + 1, 1) = y(1,nextx + 1);

end

B(1,1) = y(1,1);

figure(1)
plot(x,y);

hold on

A(:,1);
C(:,1) = x(1, A(:,1));
B(:,1);

plot(C(:,1),B(:,1),'--rs','color', [1 0 0]);
axis([0 (endpoint-startpoint) -5 5]);

hold off

for i = 1: numberoflinks - 2

 theta(i, 1) = atan((B(i + 1, 1) - B(i, 1))/(C(i + 1, 1) - C(i, 1)));
 if(i ~= 1)

 thetar(i, 1) = theta(i , 1) - theta(i-1, 1);

94

 else
 thetar(i, 1) = theta(i);
 end

end
thetad = thetar * 57.3;

PlotResults.m

function [] = plotresults(linklength, thetar);

theta = zeros(size(thetar,1),size(thetar,2));

pointsx = theta;
pointsy = pointsx;

for i = 1: size(thetar,2)

 for j = 1: size(thetar, 1)

 if(j ~= 1)
 theta(j, i) = thetar(j, i) + theta(j - 1,i);

 else

 theta(j, i) = thetar(j , i);

 end

 end

end

theta;

for i = 1: size(theta,2)
 for j = 2: size(theta, 1)

 pointsx(j, i) = linklength * cos(theta(j - 1,i)) + (pointsx(j -

1,i));

 pointsy(j, i) = linklength * sin(theta(j - 1,i)) + (pointsy(j -

1,i));
 end

end

figure(2)

for i = 1: size(theta, 2)
 plot(pointsx(:,i),pointsy(:,i),'--rs','color', [1 0 0]);
 axis([0 13 -5 5]);

95

 drawnow
end

Orientation.m

function [alpha beta gamma] = Orientation(Fx, Fy, Fz)

Fr = (Fx^2 + Fy^2 + Fz^2)^1/2;

Ufx = Fx/Fr;

Ufy = Fy/Fr;
Ufz = Fz/Fr;

alpha = acos(Fx);

beta = acos(Fy);

gamma = acos(Fz);

96

Appendix G: Onboard Software Code

Main.c

/*

 *@author Neal Humphrey

 *Main.c

 */

#define THIS_IS_STACK_APPLICATION

#include "WPIO.h"

// C30 and C32 Exception Handlers

// If your code gets here, you either tried to read or write

// a NULL pointer, or your application overflowed the stack

// by having too many local variables or parameters declared.

char string_buffer[16];

char number[10];

double* data_table;

char pos = 0;

char neg = 0;

char dataflag = 0;

char pos_val = 0;

long adc0_val = 0;

long adc1_val = 0;

long adc2_val = 0;

char data_flag = 0;

unsigned int data_elements = 0;

unsigned int buf_index = 0;

unsigned int table_index = 0;

//test

//unsigned int inputSignal[16];

volatile unsigned int * adcPtr;

97

unsigned int* iPtr;

unsigned int inputSignal[16];

long long waveform_index = 0;

double step_table[] = {-14.42160824,-15.56138443,-16.63714973,-17.67178029,-18.64946752,-

19.55963753,-20.42103069,-21.22182343,-21.95479251,-22.62692801,-23.23138724,-

23.78250945,-24.26631091,-24.69085014,-25.05025482,-25.35080436,-25.592543,-

25.77228381,-25.89482087,-25.95770475,-25.96419331,-25.91428895,-25.80773373,-

25.64589103,-25.42868137,-25.15753344,-24.83206941,-24.45501795,-24.02441543,-

23.54079341,-23.00407071,-22.41925353,-21.77778917,-21.08923873,-20.35026292,-

19.56821795,-18.7302271,-17.84433195,-16.91880348,-15.93972359,-14.91638372,-

13.85068684,-12.74554072,-11.60122577,-10.42268004,-9.200169388,-7.948310381,-

6.658900588,-5.358472879,-4.014726802,-2.656922734,-

1.289827267,0.094593125,1.480585882,2.874171617,4.257283021,5.63875909,6.998671382,8.

348660457,9.667383974,10.96456462,12.22256207,13.43686101,14.61870332,15.73824294,16

.81736682,17.84185135,18.80918055,19.71017541,20.56145188,21.34395456,22.06663188,22.

72848747,23.33058841,23.86490897,24.33927975,24.75364425,25.10770519,25.39418832,25.

62623452,25.79657365,25.90933944,25.96273956,25.95974623,25.90035833,25.78442283,25.

61316842,25.38754418,25.10763969,24.77341498,24.38484211,23.94517399,23.45232977,22.

91078894,22.31251639,21.667098,20.97050885,20.22323414,19.4259058,18.58706951,17.692

77276,16.7514088,15.77375881,14.743324,13.67087356,12.55863362,11.40911647,10.213412

07,8.985516792,7.728890933,6.44726621,5.1315021,3.785021114,2.438877672,1.057072138,-

0.328606209,-1.713079768,-3.105259332,-4.486116187,-5.864498203,-7.235181297,-

8.579349317,-9.892427762,-11.18320245,-12.43413406,-13.64161094,-14.80241911,-

15.92526069,-16.99526873,-18.01029822,-18.95847321,-19.85901003,-20.70014182,-

21.47245222,-22.18483459,-22.83679847,-23.42800313,-23.95197129,-24.41597384,-

24.81996429,-25.15938695,-25.4399674,-25.65832863,-25.81907908,-25.92226307,-

25.96617999,-25.95370473,-25.88483267,-25.75950353,-25.57884828,-25.34391144,-

25.05468619,-24.71113385,-24.31601285,-23.86767907,-23.36618221,-22.81162712,-

22.20923844,-21.55537189,-20.85040662,-20.09485057,-19.28936201,-18.4347715,-

17.54048388,-16.59151532,-15.59717443,-14.5691305,-13.48998744,-12.37145053,-

11.20472379,-10.01494487,-8.782166263,-7.521249509,-6.223093875,-4.90400872,-

3.568347362,-2.207018041,-

0.824207407,0.561623833,1.945396265,3.33602702,4.728421533,6.103481461,7.456274324,8.

795623655,10.11642875,11.3877074,12.63179449,13.84416259,14.99670537,16.11075991,17.

17159014,18.16661178,19.11559589,20.00613612,20.82815154,21.59919442,22.30126705,22.

9428517,23.5169016,24.03107661

98

};

/*globals*/

 BYTE INpacketArray[248];

 BYTE NOWpacketArray[248];

 int servoPos[NUM_SERVOS];

 BOOL processing;

 long i;

 BOOL running;

 char idxDat[239];

 int idxDatLen;

 int packetSize;

 int rxPacketIndex;

 BOOL packetReady;

 long range_0=0;

 long range_1=0;

 long sonic_1;

 long sonic_0;

 char sensors[8];

/*globals*/

#define MAX_ANGLE 57

#define US_PER_DEGREE 11.666666666

#define USER_ANGLE_TO_DEGREE 3.157894736

#define DRIVE_SERVO_NUM 3

#define MAX_ADC_VALUE 4096

#define MAX_ADC_mVOLTAGE 5000

#define ADC_mVOLTAGE_PER_VALUE 1.220703125

#if defined(__C30__)

 void _ISR __attribute__((__no_auto_psv__)) _AddressError(void)

 {

 Nop();

 Nop();

 }

 void _ISR __attribute__((__no_auto_psv__)) _StackError(void)

 {

99

 Nop();

 Nop();

 }

#endif

void __attribute__((interrupt,auto_psv)) _U2RXInterrupt(void) {

 BYTE read;

 while(!DataRdyUART2()){

 }

 read = ReadUART2();

 if(read != 'M' && read != 'U'){

 WriteUART2((unsigned int)read);

 }

// UpdateRangeFinder();

 switch (pos){

 case 0:

 if(read == 'P'){

 pos = 1;

 neg = 0;

 #if defined(SERVO_DEBUG)

 WriteUART2((unsigned int)read);

 #endif

 }

 if(read == 'W'){

 waveForm(step_table, waveform_index);

 if(waveform_index < TABLE_SIZE)

 waveform_index = waveform_index + 1;

 else

 waveform_index = 0;

 //WriteUART2((unsigned int) 10);

100

 //WriteUART2((unsigned int) 13);

 }

 if(read == 'C'){

 int i = 0;

 waveForm(step_table, 0);

 DelayMs(750);

 for(i = 0; i < TABLE_SIZE; i++){

 waveForm(step_table, i);

 WriteUART2((unsigned int) 'W');

 //DelayMs(300);

 }

 WriteUART2((unsigned int) 10);

 WriteUART2((unsigned int) 13);

 }

 if(read == 'A'){

 pos = 5;

 //UpdateRangeFinder();

 }

 if(read == 'D'){

 pos = 6;

 }

 if(read == 'M'){

 for(i = 0; i < TABLE_SIZE; i++){

 WriteUART2((unsigned int) 'W');

 DelayMs(25);

 }

 }

 break;

 case 1:

 if(read == '-'){

 neg = 1;

 #if defined(SERVO_DEBUG)

101

 WriteUART2((unsigned int)read);

 #endif

 }

 else {

 pos_val = ((int)read - 48) * 10;

 pos = 2;

 #if defined(SERVO_DEBUG)

 WriteUART2((unsigned int)read);

 #endif

 }

 break;

 case 2:

 pos_val = pos_val + ((int) read - 48);

 pos = 0;

 #if defined(SERVO_DEBUG)

 WriteUART2((unsigned int)read);

 WriteUART2((unsigned int)pos_val);

 #endif

 //setServo(DRIVE_SERVO_NUM, pos_val);

 setAngle(DRIVE_SERVO_NUM, pos_val);

 WriteUART2((unsigned int) 10);

 WriteUART2((unsigned int) 13);

 break;

 case 5: // ADC

 if(read == '0'){

 adc0_val = GetADC(0);

 #if defined(ADC_DEBUG)

 WriteUART2((unsigned int)read);

 #endif

102

 WriteUART2((unsigned int)58);

 WriteUART2((unsigned int)32);

 itoa(adc0_val, &string_buffer[0]);

 putsUART2((unsigned int*)&string_buffer[0]);

 WriteUART2((unsigned int)58);

 WriteUART2((unsigned int)32);

 adc0_val = adc_Val_to_mVoltage((unsigned

int)adc0_val);

 itoa((int)adc0_val, &string_buffer[0]);

 putsUART2((unsigned int*)&string_buffer[0]);

 WriteUART2((unsigned int) 10);

 WriteUART2((unsigned int) 13);

 }

 if(read == '1'){

 adc1_val = GetADC(1);

 #if defined(ADC_DEBUG)

 WriteUART2((unsigned int)read);

 #endif

 WriteUART2((unsigned int)58);

 WriteUART2((unsigned int)32);

 itoa(adc1_val, &string_buffer[0]);

 putsUART2((unsigned int*)&string_buffer[0]);

 WriteUART2((unsigned int)58);

 WriteUART2((unsigned int)32);

 adc1_val = adc_Val_to_mVoltage((unsigned

int)adc1_val);

103

 //test

 //adc1_val = 12345;

 itoa((int)adc1_val, &string_buffer[0]);

 putsUART2((unsigned int*)&string_buffer[0]);

 WriteUART2((unsigned int) 10);

 WriteUART2((unsigned int) 13);

 }

 if(read == '2'){

 adc2_val = GetADC(2);

 #if defined(ADC_DEBUG)

 WriteUART2((unsigned int)read);

 #endif

 WriteUART2((unsigned int)58);

 WriteUART2((unsigned int)32);

 itoa((int)adc2_val, &string_buffer[0]);

 putsUART2((unsigned int*)&string_buffer[0]);

 WriteUART2((unsigned int)58);

 WriteUART2((unsigned int)32);

 adc2_val = adc_Val_to_mVoltage((unsigned

int)adc2_val);

 itoa(adc2_val, &string_buffer[0]);

 putsUART2((unsigned int*)&string_buffer[0]);

 WriteUART2((unsigned int) 10);

 WriteUART2((unsigned int) 13);

 }

 pos = 0;

 break;

 }

104

 IFS1bits.U2RXIF = 0; //Clr UART_Rx interrupt flag

}

void __attribute__((interrupt,auto_psv)) _U1RXInterrupt(void) {

 IFS0bits.U1RXIF = 0; //Clr UART_Rx interrupt flag

}

void __attribute__((interrupt,auto_psv)) _T1Interrupt(void) {

 //TimeoutPacket();

 IFS0bits.T1IF = 0;

 /*

 putsUART2(itoa(GetADC(0), number, DECIMAL));

 putsUART2(",");

 putsUART2(itoa(GetADC(1), number, DECIMAL));

 putsUART2("\r\n");

 */

 TMR1 = 0x0000;// reset timer;

}

void setAngle(unsigned char number, double value){

 if (neg == 1){

 value = (value * -1);

 }

 setServo(number, (value + (MAX_ANGLE/2)) * USER_ANGLE_TO_DEGREE);

}

void setServo(unsigned char number, double value){

 if(value < 0)

 value = 0;

 unsigned int timedelay = (value * US_PER_DEGREE);

 if (timedelay > 2000)

 timedelay = 2000;

105

 #if defined(SERVO_DEBUG)

 WriteUART2((unsigned int) timedelay / 10);

 #endif

 switch (number){

 case 2:

 // SERVO2_IO = 1;

 // Delay10us(60);

 // Delay10us(timedelay / 10);

 // Delay1us(timedelay % 10);

 // ServoOff(2);

 // DelayMs(20);

 break;

 case 3:

 SERVO3_IO = 1;

 Delay10us(60);

 Delay10us(timedelay / 10);

 Delay1us(timedelay % 10);

 ServoOff(3);

 DelayMs(20);

 break;

 case 15:

 SERVO15_IO = 1;

 Delay10us(60);

 Delay10us(timedelay / 10);

 Delay1us(timedelay % 10);

 ServoOff(15);

 DelayMs(20);

 break;

 }

}

void waveForm(double * step_table, long step_index){

 setAngle(DRIVE_SERVO_NUM, step_table[step_index]);

}

106

double adc_Val_to_mVoltage(int adc_value){

 return adc_value * ADC_mVOLTAGE_PER_VALUE;

}

/***

* Function: void itoa(unsigned int Value, char *Buffer)

*

* PreCondition: None

*

* Input: Value: Unsigned integer to be converted

* Buffer: Pointer to a location to write the string

*

* Output: *Buffer: Receives the resulting string

*

* Side Effects: None

*

* Overview: The function converts an unsigned integer (16 bits)

* into a null terminated decimal string.

*

* Note: None

**/

void itoa(unsigned int Value, char *Buffer)

{

 unsigned char i;

 unsigned int Digit;

 unsigned int Divisor;

 enum {FALSE = 0, TRUE} Printed = FALSE;

 if(Value)

 {

 for(i = 0, Divisor = 10000; i < 5; i++)

 {

 Digit = Value/Divisor;

 if(Digit || Printed)

 {

 *Buffer++ = '0' + Digit;

 Value -= Digit*Divisor;

107

 Printed = TRUE;

 }

 Divisor /= 10;

 }

 }

 else

 {

 *Buffer++ = '0';

 }

 *Buffer = '\0';

}

/*globals*/

 BYTE INpacketArray[248];

 BYTE NOWpacketArray[248];

 int servoPos[NUM_SERVOS];

 BOOL processing;

 long i;

 BOOL running;

 char idxDat[239];

 int idxDatLen;

 int packetSize;

 int rxPacketIndex;

 BOOL packetReady;

/*globals*/

#define RELEASE

int main(void){

 rxPacketIndex = 0;//set index to zero so first byte received goes into position 0 of buffer

 processing = FALSE; //processing blocking flag

 running = FALSE;//initialize to no output on all pins

108

 packetReady = FALSE;//the flag for processing packet. must be poller as it will be set

asyncronuslly

 InitializeBoard();

 packetSize = 0;

 strcpy(idxDat, "Generic Servo controller. 8 bits precision.\n");

 idxDatLen = strlen(idxDat);

DelayMs(500);

WriteUART2(85);

while (1){

}

/*

 while(1){

 if (packetReady){

 ProcessPacket();

 packetReady = FALSE;

 }

//servo control code

#if defined(RELEASE)

 if (running){

#endif

 allOn(0);

 //run minimal .75 ms pulse

 DelayPreServo();

 //loop 255 times and turn off all servos as thier set position is equal to the

loop counter

 half = NUM_SERVOS/2;

 for (y=0;y<256;y++){

 for (x=0; x < 8 ;x++){

 if (servoPos[x] == y){

 ServoOff(x);

 }//turn off if it is time to turn off

 }//check all servo positions

 //add the delay each loop

109

 DelayIncServo();

 }

//split the outputs into 3 sections

 allOn(1);

 DelayPreServo();

 for (y=0;y<256;y++){

 for (x=8; x < 17 ;x++){

 if (servoPos[x] == y){

 ServoOff(x);

 }//turn off if it is time to turn off

 }//check all servo positions

 //add the delay each loop

 DelayIncServo();

 }

//Last part, might be full of dummies

 allOn(2);

 DelayPreServo();

 for (y=0;y<256;y++){

 for (x=17; x < NUM_SERVOS ;x++){

 if (servoPos[x] == y){

 ServoOff(x);

 }//turn off if it is time to turn off

 }//check all servo positions

 //add the delay each loop

 DelayIncServo();

 }

//end servo pulses

 for (y=0;y < NUM_SERVOS;y++){

 ServoOff(y);

 }

 //add post servo pulse delay

 DelayMs(23);

#if defined(RELEASE)

 }

#endif

//END servo control code

110

 }//while 1

*/

return(0);

}//Main

/*

 *Straight forward setting output pins to logic high in 3 blocks

 */

void allOn(int section){

 //1us delays added because of bizare output, pin going high for 50ns then going low. If

other cause for this

 //is found then these can be removed, however the rest of the timeings will need to be

adjusted accordingly.

 if (section == 0){

// SERVO0_IO = 1;

// Delay1us(1);

// SERVO1_IO = 1;

// Delay1us(1);

// SERVO2_IO = 1;

// Delay1us(1);

 SERVO3_IO = 1;

 Delay1us(1);

 SERVO4_IO = 1;

 Delay1us(1);

 SERVO5_IO = 1;

 Delay1us(1);

 SERVO6_IO = 1;

 Delay1us(1);

 SERVO7_IO = 1;

 Delay1us(1);

 }

 if (section == 1){

 SERVO8_IO = 1;

 Delay1us(1);

111

 SERVO9_IO = 1;

 Delay1us(1);

 SERVO10_IO = 1;

 Delay1us(1);

 SERVO11_IO = 1;

 Delay1us(1);

 SERVO12_IO = 1;

 Delay1us(1);

 SERVO13_IO = 1;

 Delay1us(1);

 SERVO14_IO = 1;

 Delay1us(1);

 SERVO15_IO = 1;

 Delay1us(1);

 SERVO16_IO = 1;

 Delay1us(1);

 }

 if (section == 2){

 SERVO17_IO = 1;

 Delay1us(1);

 SERVO18_IO = 1;

 Delay1us(1);

 SERVO19_IO = 1;

 Delay1us(1);

 SERVO20_IO = 1;

 Delay1us(1);

 SERVO21_IO = 1;

 Delay1us(1);

 SERVO22_IO = 1;

 Delay1us(1);

 SERVO23_IO = 1;

 Delay1us(1);

 SERVO24_IO = 1;

 Delay1us(1);

 SERVO25_IO = 1;

 Delay1us(1);

 }

112

}

/*

 *Turn off pins one at a time FIXME and make the servo IO a struct so iteration over it can

happen.

 */

void ServoOff(int servo){

 switch (servo){

 case 0:

 //SERVO0_IO = 0;

 break;

 case 1:

 //SERVO1_IO = 0;

 break;

 case 2:

 //SERVO2_IO = 0;

 break;

 case 3:

 SERVO3_IO = 0;

 break;

 case 4:

 SERVO4_IO = 0;

 break;

 case 5:

 SERVO5_IO = 0;

 break;

 case 6:

 SERVO6_IO = 0;

 break;

 case 7:

 SERVO7_IO = 0;

 break;

 case 8:

 SERVO8_IO = 0;

 break;

 case 9:

 SERVO9_IO = 0;

113

 break;

 case 10:

 SERVO10_IO = 0;

 break;

 case 11:

 SERVO11_IO = 0;

 break;

 case 12:

 SERVO12_IO = 0;

 break;

 case 13:

 SERVO13_IO = 0;

 break;

 case 14:

 SERVO14_IO = 0;

 break;

 case 15:

 SERVO15_IO = 0;

 break;

 case 16:

 SERVO16_IO = 0;

 break;

 case 17:

 SERVO17_IO = 0;

 break;

 case 18:

 SERVO18_IO = 0;

 break;

 case 19:

 SERVO19_IO = 0;

 break;

 case 20:

 SERVO20_IO = 0;

 break;

 case 21:

 SERVO21_IO = 0;

 break;

114

 case 22:

 SERVO22_IO = 0;

 break;

 case 23:

 SERVO23_IO = 0;

 break;

 case 24:

 SERVO24_IO = 0;

 break;

 case 25:

 SERVO25_IO = 0;

 break;

 default:

 break;

 }

}

/*

 *This function initializes all the controle regesters and sets initial values of variables and

 *tristates.

 */

void InitializeBoard(void)

{

// for (i=0;i<SENSOR_BYTES;i++){

// sensors[i]=0;

// }

 InitADC();

 #if defined(__dsPIC30F4011__)

 PWMCON1 = 0x0000;//disable pwm on all pins

 OVDCON = 0x0000;//disable pwm on all pins

 FLTACON = 0x0000;//disable pwm on all pins

 #endif

 #if defined(__dsPIC30F4013__)

 //

 #endif

 //Timer timeout for serial receive. Interrupts every 15ms.

115

 T1CONbits.TON = 1; //timer on

 T1CONbits.TSIDL = 1;

 T1CONbits.TCKPS = 1;

 PR1 = 0xffff;

 T2CONbits.TON = 1; //timer on

 T2CONbits.TSIDL = 1;

 T2CONbits.TCKPS = 2;

 PR2 = 0xffff;

 //initialize the servo positions to center

 int i;

 for (i=0;i<NUM_SERVOS;i++){

 servoPos[i]=INIT_VALUE;

 }

 // SERVO pins to outputs

 //SERVO0_TRIS = 0;

 //SERVO1_TRIS = 0;

 //SERVO2_TRIS = 0;

 SERVO3_TRIS = 0;

 SERVO4_TRIS = 0;

 SERVO5_TRIS = 0;

 SERVO6_TRIS = 0;

 SERVO7_TRIS = 0;

 SERVO8_TRIS = 0;

 SERVO9_TRIS = 0;

 SERVO10_TRIS = 0;

 //SERVO11_TRIS = 0;

 //SERVO12_TRIS = 0;

 SERVO13_TRIS = 0;

 SERVO14_TRIS = 0;

 SERVO15_TRIS = 0;

 SERVO16_TRIS = 0;

 SERVO17_TRIS = 0;

 SERVO18_TRIS = 0;

 SERVO19_TRIS = 0;

116

 SERVO20_TRIS = 0;

 SERVO21_TRIS = 0;

 SERVO22_TRIS = 0;

 SERVO23_TRIS = 0;

 //SERVO24_TRIS = 0;

 //SERVO25_TRIS = 0;

 T2CONbits.TON = 0; //timer on

 T2CONbits.TSIDL = 1;

 T2CONbits.TCKPS = 2;

 PR2=0xFFFF;

 SONIC0_TRIS = 0;

 SONIC1_TRIS = 0;

 SONIC_INT0_TRIS = 1;

 SONIC_INT1_TRIS = 1;

 POSITION_SENSE_TRIS = 1;

 CURRENT_SENSE_TRIS = 1;

 VOLTAGE_SENSE_TRIS = 1;

//serial port 2 setup

 UART2TX_TRIS = 0;

 UART2RX_TRIS = 1;

 U2MODE = 0x8000; // Set UARTEN. Note: this must be done before

setting UTXEN

//RX interupt enabled

 U2STA = 0x8400; // UTXEN set

 #define CLOSEST_UBRG_VALUE2

((GetPeripheralClock()+8ul*BAUD_RATE2)/16/BAUD_RATE2-1)

 #define BAUD_ACTUAL2 (GetPeripheralClock()/16/(CLOSEST_UBRG_VALUE2+1))

 #define BAUD_ERROR2 ((BAUD_ACTUAL2 > BAUD_RATE2) ? BAUD_ACTUAL2-

BAUD_RATE2 : BAUD_RATE2-BAUD_ACTUAL2)

 #define BAUD_ERROR_PRECENT2

 ((BAUD_ERROR2*100+BAUD_RATE2/2)/BAUD_RATE2)

 #if (BAUD_ERROR_PRECENT2 > 3)

 #warning UART frequency error is worse than 3%

117

 #elif (BAUD_ERROR_PRECENT2 > 2)

 #warning UART frequency error is worse than 2%

 #endif

 U2BRG = CLOSEST_UBRG_VALUE2;

//Enableing Interupts

 IFS1bits.U2RXIF = 0;

 IEC1bits.U2RXIE = 1; //Enable UART Rx receive interrupt

 //IPC6bits.U2RXIP = 3;

 IEC0bits.T1IE = 1;//endble timer 1 interupt.

#if defined(USE_UART1)

 //serial port 1 setup

 UART1TX_TRIS = 0;

 UART1RX_TRIS = 1;

 U1MODE = 0x8000; // Set UARTEN. Note: this must

be done before setting UTXEN

 //RX interupt enabled

 U1STA = 0x8400; // UTXEN set

 #define CLOSEST_UBRG_VALUE1

((GetPeripheralClock()+8ul*BAUD_RATE1)/16/BAUD_RATE1-1)

 #define BAUD_ACTUAL1

(GetPeripheralClock()/16/(CLOSEST_UBRG_VALUE1+1))

 #define BAUD_ERROR ((BAUD_ACTUAL1 > BAUD_RATE1) ?

BAUD_ACTUAL1-BAUD_RATE1 : BAUD_RATE1-BAUD_ACTUAL1)

 #define BAUD_ERROR_PRECENT11

 ((BAUD_ERROR1*100+BAUD_RATE1/2)/BAUD_RATE1)

 #if (BAUD_ERROR_PRECENT1 > 3)

 #warning UART frequency error is worse than 3%

 #elif (BAUD_ERROR_PRECENT1 > 2)

 #warning UART frequency error is worse than 2%

 #endif

 U1BRG = CLOSEST_UBRG_VALUE1;

 //Enableing Interupts

 IFS0bits.U1RXIF = 0;

 IEC0bits.U1RXIE = 1; //Enable UART Rx receive interrupt

 IPC2bits.U1RXIP = 3;

118

#endif

//Roomba Init

 //WriteUART1(128);

 //WriteUART1(130);

 SONIC1_IO = 1;

}

void UpdateRangeFinder(void){

 if (ADCBUF0 >0){

 range_0 = (ADCBUF0);//scaled to produce distance in 100th of an inch

 }

 else

 range_0 = 65000;

 if (ADCBUF1 >0){

 range_1 = (ADCBUF1);//scaled to produce distance in 100th of an inch

 }

 else

 range_1 = 65000;

 WriteUART2((unsigned int)58);

 WriteUART2((unsigned int)32);

 itoa(range_0, &string_buffer[0]);

 putsUART2((unsigned int*)&string_buffer[0]);

 WriteUART2((unsigned int)58);

 WriteUART2((unsigned int)32);

 range_0 = adc_Val_to_mVoltage((unsigned int)range_0);

 itoa((int)range_0, &string_buffer[0]);

 putsUART2((unsigned int*)&string_buffer[0]);

 WriteUART2((unsigned int) 10);

119

 WriteUART2((unsigned int) 13);

 sensors[0]=((char)((range_0 & 0xFF00) >>8));

 sensors[1]=((char)(range_0 & 0x00FF));

 sensors[2]=((char)((range_1 & 0xFF00) >>8));

 sensors[3]=((char)(range_1 & 0x00FF));

 sensors[4]=((char)((sonic_0 & 0x0F00) >>8));

 sensors[5]=((char)(sonic_0 & 0x00FF));

 sensors[6]=((char)((sonic_1 & 0x0F00) >>8));

 sensors[7]=((char)(sonic_1 & 0x00FF));

}

 /**/

ADC.c

#include "WPIO.h"

int GetADC(int chan){

 if (chan == 0)

 return ADCBUF0;

 else if (chan == 1)

 return ADCBUF1;

 else if (chan == 2)

 return ADCBUF2;

 return -1;

}

void InitADC(void){

 AD1CHS = 0x0007; //enable ADC0

 AD1PCFG = 0xFFF8; //enable ADC0

 // ADC

 AD1CON1 = 0x04E4; // Turn on, auto sample start, auto-convert, 12

bit mode (on parts with a 12bit A/D)

120

 AD1CON2 = 0x0404; // AVdd, AVss, int every 2 conversions, MUXA

only, scan

 AD1CON3 = 0x1003; // 16 Tad auto-sample, Tad = 3*Tcy

 AD1CSSL = 0x0007; // scan range finders

 ADCON1bits.FORM = 0; // Output in Integer Format

 ADCON1bits.ADON = 1; // Start the ADC module

 ADCBUF0 = 0;

 ADCBUF1 = 0;

 ADCBUF2 = 0;

}

UART.c

#define __UART_C

#include "WPIO.h"

#if defined(STACK_USE_UART)

#if defined(__C30__) // PIC24F, PIC24H, dsPIC30, dsPIC33

/***

* Function Name : putsUART2 *

* Description : This function puts the data string to be transmitted *

* into the transmit buffer (till NULL character) *

* Parameters : unsigned int * address of the string buffer to be *

* transmitted *

* Return Value : None *

***/

void putsUART2(unsigned int *buffer)

{

 char * temp_ptr = (char *) buffer;

 /* transmit till NULL character is encountered */

121

 if(U2MODEbits.PDSEL == 3) /* check if TX is 8bits or 9bits */

 {

 while(*buffer != '\0')

 {

 while(U2STAbits.UTXBF); /* wait if the buffer is full */

 U2TXREG = *buffer++; /* transfer data word to TX reg */

 }

 }

 else

 {

 while(*temp_ptr != '\0')

 {

 while(U2STAbits.UTXBF); /* wait if the buffer is full */

 U2TXREG = *temp_ptr++; /* transfer data byte to TX reg */

 }

 }

}

/**

* Function Name : getsUART2 *

* Description : This function gets a string of data of specified length *

* if available in the UxRXREG buffer into the buffer *

* specified. *

* Parameters : unsigned int length the length expected *

* unsigned int *buffer the received data to be *

* recorded to this array *

* unsigned int uart_data_wait timeout value *

* Return Value : unsigned int number of data bytes yet to be received *

**/

unsigned int getsUART2(unsigned int length,unsigned int *buffer,

 unsigned int uart_data_wait)

{

 unsigned int wait = 0;

 char *temp_ptr = (char *) buffer;

122

 while(length) /* read till length is 0 */

 {

 while(!DataRdyUART2())

 {

 if(wait < uart_data_wait)

 wait++ ; /*wait for more data */

 else

 return(length); /*Time out- Return words/bytes to be read */

 }

 wait=0;

 if(U2MODEbits.PDSEL == 3) /* check if TX/RX is 8bits or 9bits */

 buffer++ = U2RXREG; / data word from HW buffer to SW buffer */

 else

 temp_ptr++ = U2RXREG & 0xFF; / data byte from HW buffer to SW buffer */

 length--;

 }

 return(length); /* number of data yet to be received i.e.,0 */

}

/***

* Function Name : DataRdyUart2 *

* Description : This function checks whether there is any data *

* that can be read from the input buffer, by *

* checking URXDA bit *

* Parameters : None *

* Return Value : char if any data available in buffer *

***/

char DataRdyUART2(void)

{

 return(U2STAbits.URXDA);

}

123

/***

* Function Name : BusyUART2 *

* Description : This returns status whether the transmission *

* is in progress or not, by checking Status bit TRMT *

* Parameters : None *

* Return Value : char info whether transmission is in progress *

***/

char BusyUART2(void)

{

 return(!U2STAbits.TRMT);

}

/***

* Function Name : ReadUART2 *

* Description : This function returns the contents of UxRXREG buffer *

* Parameters : None *

* Return Value : unsigned int value from UxRXREG receive buffer *

***/

unsigned int ReadUART2(void)

{

 if(U2MODEbits.PDSEL == 3)

 return (U2RXREG);

 else

 return (U2RXREG & 0xFF);

}

/***

* Function Name : WriteUART2 *

* Description : This function writes data into the UxTXREG, *

* Parameters : unsigned int data the data to be written *

* Return Value : None *

***/

124

void WriteUART2(unsigned int data)

{

 if(U2MODEbits.PDSEL == 3)

 U2TXREG = data;

 else

 U2TXREG = data & 0xFF;

 while(U2STAbits.UTXBF);

}

/***

* Function Name : putsUART1 *

* Description : This function puts the data string to be transmitted *

* into the transmit buffer (till NULL character) *

* Parameters : unsigned int * address of the string buffer to be *

* transmitted *

* Return Value : None *

***/

void putsUART1(unsigned int *buffer)

{

 char * temp_ptr = (char *) buffer;

 /* transmit till NULL character is encountered */

 if(U1MODEbits.PDSEL == 3) /* check if TX is 8bits or 9bits */

 {

 while(*buffer != '\0')

 {

 while(U1STAbits.UTXBF); /* wait if the buffer is full */

 U1TXREG = *buffer++; /* transfer data word to TX reg */

 }

 }

 else

125

 {

 while(*temp_ptr != '\0')

 {

 while(U1STAbits.UTXBF); /* wait if the buffer is full */

 U1TXREG = *temp_ptr++; /* transfer data byte to TX reg */

 }

 }

}

/**

* Function Name : getsUART1 *

* Description : This function gets a string of data of specified length *

* if available in the UxRXREG buffer into the buffer *

* specified. *

* Parameters : unsigned int length the length expected *

* unsigned int *buffer the received data to be *

* recorded to this array *

* unsigned int uart_data_wait timeout value *

* Return Value : unsigned int number of data bytes yet to be received *

**/

unsigned int getsUART1(unsigned int length,unsigned int *buffer,

 unsigned int uart_data_wait)

{

 unsigned int wait = 0;

 char *temp_ptr = (char *) buffer;

 while(length) /* read till length is 0 */

 {

 while(!DataRdyUART1())

 {

 if(wait < uart_data_wait)

 wait++ ; /*wait for more data */

 else

 return(length); /*Time out- Return words/bytes to be read */

126

 }

 wait=0;

 if(U1MODEbits.PDSEL == 3) /* check if TX/RX is 8bits or 9bits */

 buffer++ = U1RXREG; / data word from HW buffer to SW buffer */

 else

 temp_ptr++ = U1RXREG & 0xFF; / data byte from HW buffer to SW buffer */

 length--;

 }

 return(length); /* number of data yet to be received i.e.,0 */

}

/***

* Function Name : DataRdyUART1 *

* Description : This function checks whether there is any data *

* that can be read from the input buffer, by *

* checking URXDA bit *

* Parameters : None *

* Return Value : char if any data available in buffer *

***/

char DataRdyUART1(void)

{

 return(U1STAbits.URXDA);

}

/***

* Function Name : BusyUART1 *

* Description : This returns status whether the transmission *

* is in progress or not, by checking Status bit TRMT *

* Parameters : None *

* Return Value : char info whether transmission is in progress *

***/

127

char BusyUART1(void)

{

 return(!U1STAbits.TRMT);

}

/***

* Function Name : ReadUART1 *

* Description : This function returns the contents of UxRXREG buffer *

* Parameters : None *

* Return Value : unsigned int value from UxRXREG receive buffer *

***/

unsigned int ReadUART1(void)

{

 if(U1MODEbits.PDSEL == 3)

 return (U1RXREG);

 else

 return (U1RXREG & 0xFF);

}

/***

* Function Name : WriteUART1 *

* Description : This function writes data into the UxTXREG, *

* Parameters : unsigned int data the data to be written *

* Return Value : None *

***/

void WriteUART1(unsigned int data)

{

 if(U1MODEbits.PDSEL == 3)

 U1TXREG = data;

 else

 U1TXREG = data & 0xFF;

 while(U1STAbits.UTXBF);

128

}

#endif

#endif //STACK_USE_UART

/***

 *

 * UART access routines for C18 and C30

 *

 * FileName: UART.c

 * Dependencies: Hardware UART module

 * Processor: PIC18, PIC24F, PIC24H, dsPIC30F, dsPIC33F

 * Compiler: Microchip C30 v3.01 or higher

 * Microchip C18 v3.13 or higher

 * HI-TECH PICC-18 STD 9.50PL3 or higher

 * Company: Microchip Technology, Inc.

 *

 * Software License Agreement

 *

 * Copyright (C) 2002-2008 Microchip Technology Inc. All rights

 * reserved.

 *

 * Microchip licenses to you the right to use, modify, copy, and

 * distribute:

 * (i) the Software when embedded on a Microchip microcontroller or

 * digital signal controller product ("Device") which is

 * integrated into Licensee's product; or

 * (ii) ONLY the Software driver source files ENC28J60.c and

 * ENC28J60.h ported to a non-Microchip device used in

 * conjunction with a Microchip ethernet controller for the

 * sole purpose of interfacing with the ethernet controller.

 *

 * You should refer to the license agreement accompanying this

 * Software for additional information regarding your rights and

129

 * obligations.

 *

 * THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT

 * WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT

 * LIMITATION, ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A

 * PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL

 * MICROCHIP BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR

 * CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, COST OF

 * PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY OR SERVICES, ANY CLAIMS

 * BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE

 * THEREOF), ANY CLAIMS FOR INDEMNITY OR CONTRIBUTION, OR OTHER

 * SIMILAR COSTS, WHETHER ASSERTED ON THE BASIS OF CONTRACT, TORT

 * (INCLUDING NEGLIGENCE), BREACH OF WARRANTY, OR OTHERWISE.

 *

 *

 * Author Date Comment

 *~~

 * Howard Schlunder 4/04/06 Copied from dsPIC30 libraries

 * Howard Schlunder 6/16/06 Added PIC18

**/

ISR.c

#include "WPIO.h"

BYTE sonSel = 0;

void __attribute__((interrupt,auto_psv)) _T2Interrupt(void) {

 if (sonSel == 0){

 SONIC1_IO = 0;

 SONIC0_IO = 1;

 sonSel = 1;

 }else{

 SONIC1_IO = 1;

 SONIC0_IO = 0;

 sonSel = 0;

 }

 IFS0bits.T2IF = 0;

}

130

void __attribute__ ((interrupt,auto_psv)) _INT2Interrupt(void)

{

 extern long sonic_1;

 IFS1bits.INT2IF = 0;

 if ((INTCON2bits.INT2EP == 0)&&(SONIC_INT1_IO == 1)){

 SONIC1_IO = 0;

 //SONIC1_IO = 0;

 TMR2 = 0x0000;

 INTCON2bits.INT2EP = 1;

 sonSel = 1;

 }

 else if((INTCON2bits.INT2EP == 1)&&(SONIC_INT1_IO == 0)) {

 SONIC0_IO = 1;

 sonic_1 = TMR2;

 //SONIC1_IO = 1;

 INTCON2bits.INT2EP = 0;

 }

}

void __attribute__ ((interrupt,auto_psv)) _INT1Interrupt(void)

{

 extern long sonic_0;

 IFS1bits.INT1IF = 0;

 if ((INTCON2bits.INT1EP == 0)&&(SONIC_INT0_IO == 1)){

 SONIC0_IO = 0;

 //SONIC1_IO = 0;

 TMR2 = 0x0000;

 INTCON2bits.INT1EP = 1;

 sonSel = 0;

 }

 else if ((INTCON2bits.INT1EP == 1)&&(SONIC_INT0_IO == 0)){

 SONIC1_IO = 1;

 sonic_0 = TMR2;

 //SONIC1_IO = 1;

131

 INTCON2bits.INT1EP = 0;

 }

}

Delay.c

/***

 *

 * General Delay rouines

 *

 * FileName: Delay.c

 * Dependencies: Compiler.h

 * Processor: PIC18, PIC24F, PIC24H, dsPIC30F, dsPIC33F, PIC32

 * Compiler: Microchip C32 v1.00 or higher

 * Microchip C30 v3.01 or higher

 * Microchip C18 v3.13 or higher

 * HI-TECH PICC-18 STD 9.50PL3 or higher

 * Company: Microchip Technology, Inc.

 *

 * Software License Agreement

 *

 * Copyright (C) 2002-2008 Microchip Technology Inc. All rights

 * reserved.

 *

 * Microchip licenses to you the right to use, modify, copy, and

 * distribute:

 * (i) the Software when embedded on a Microchip microcontroller or

 * digital signal controller product ("Device") which is

 * integrated into Licensee's product; or

 * (ii) ONLY the Software driver source files ENC28J60.c and

 * ENC28J60.h ported to a non-Microchip device used in

 * conjunction with a Microchip ethernet controller for the

 * sole purpose of interfacing with the ethernet controller.

 *

 * You should refer to the license agreement accompanying this

 * Software for additional information regarding your rights and

 * obligations.

132

 *

 * THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT

 * WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT

 * LIMITATION, ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A

 * PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL

 * MICROCHIP BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR

 * CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, COST OF

 * PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY OR SERVICES, ANY CLAIMS

 * BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE

 * THEREOF), ANY CLAIMS FOR INDEMNITY OR CONTRIBUTION, OR OTHER

 * SIMILAR COSTS, WHETHER ASSERTED ON THE BASIS OF CONTRACT, TORT

 * (INCLUDING NEGLIGENCE), BREACH OF WARRANTY, OR OTHERWISE.

 *

 *

 * Author Date Comment

 *~~

 * Nilesh Rajbharti 5/9/02 Original (Rev 1.0)

 **/

#define __DELAY_C

#include "WPIO.h"

void DelayMs(WORD ms)

{

 unsigned char i;

 while(ms--)

 {

 i=4;

 while(i--)

 {

 Delay10us(25);

 }

 }

}

void DelayPreServo(void)

133

{

 unsigned char i;

 i=4;

 while(i--)

 {

 Delay10us(13);

 }

}

void DelayIncServo(void)

{

 Delay1us(2);

}

void Delay10us(DWORD dwCount)

{

 volatile DWORD _dcnt;

 _dcnt = dwCount*((DWORD)(0.00002/(3.0/GetInstructionClock())/10));

 while(_dcnt--);

}

void Delay1us(DWORD dwCount)

{

 while(dwCount--);

}

Complier.h

/***

 *

 * Compiler and hardware specific definitions

 *

134

 * FileName: Compiler.h

 * Dependencies: None

 * Processor: PIC18, PIC24F, PIC24H, dsPIC30F, dsPIC33F, PIC32

 * Compiler: Microchip C32 v1.00 or higher

 * Microchip C30 v3.01 or higher

 * Microchip C18 v3.13 or higher

 * HI-TECH PICC-18 STD 9.50PL3 or higher

 * Company: Microchip Technology, Inc.

 *

 * Software License Agreement

 *

 * Copyright (C) 2002-2008 Microchip Technology Inc. All rights

 * reserved.

 *

 * Microchip licenses to you the right to use, modify, copy, and

 * distribute:

 * (i) the Software when embedded on a Microchip microcontroller or

 * digital signal controller product ("Device") which is

 * integrated into Licensee's product; or

 * (ii) ONLY the Software driver source files ENC28J60.c and

 * ENC28J60.h ported to a non-Microchip device used in

 * conjunction with a Microchip ethernet controller for the

 * sole purpose of interfacing with the ethernet controller.

 *

 * You should refer to the license agreement accompanying this

 * Software for additional information regarding your rights and

 * obligations.

 *

 * THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT

 * WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT

 * LIMITATION, ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A

 * PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL

 * MICROCHIP BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR

 * CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, COST OF

 * PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY OR SERVICES, ANY CLAIMS

 * BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE

 * THEREOF), ANY CLAIMS FOR INDEMNITY OR CONTRIBUTION, OR OTHER

135

 * SIMILAR COSTS, WHETHER ASSERTED ON THE BASIS OF CONTRACT, TORT

 * (INCLUDING NEGLIGENCE), BREACH OF WARRANTY, OR OTHERWISE.

 *

 *

 * Author Date Comment

 *~~

 * Howard Schlunder 10/03/2006 Original, copied from old Compiler.h

 * Howard Schlunder 11/07/2007 Reorganized and simplified

 **/

#ifndef __COMPILER_H

#define __COMPILER_H

// Include proper device header file

#if defined(__18CXX) || defined(HI_TECH_C)

 // All PIC18 processors

 #if defined(HI_TECH_C) // HI TECH PICC-18 compiler

 #define __18CXX

 #include <htc.h>

 #else // Microchip C18 compiler

 #include <p18cxxx.h>

 #endif

#elif defined(__PIC24F__) // Microchip C30 compiler

 // PIC24F processor

 #include <p24Fxxxx.h>

#elif defined(__PIC24H__) // Microchip C30 compiler

 // PIC24H processor

 #include <p24Hxxxx.h>

#elif defined(__dsPIC33F__) // Microchip C30 compiler

 // dsPIC33F processor

 #include <p33Fxxxx.h>

#elif defined(__dsPIC30F__) // Microchip C30 compiler

 // dsPIC30F processor

 #include <p30fxxxx.h>

#elif defined(__PIC32MX__) // Microchip C32 compiler

 #if !defined(__C32__)

 #define __C32__

 #endif

136

 #include <p32xxxx.h>

 #include <plib.h>

#else

 #error Unknown processor or compiler. See Compiler.h

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

// Base RAM and ROM pointer types for given architecture

#if defined(__C32__)

 #define PTR_BASE DWORD

 #define ROM_PTR_BASE DWORD

#elif defined(__C30__)

 #define PTR_BASE WORD

 #define ROM_PTR_BASE WORD

#elif defined(__18CXX)

 #define PTR_BASE WORD

 #define ROM_PTR_BASE unsigned short long

#endif

// Definitions that apply to all compilers, except C18

#if !defined(__18CXX) || defined(HI_TECH_C)

 #define memcmppgm2ram(a,b,c) memcmp(a,b,c)

 #define strcmppgm2ram(a,b) strcmp(a,b)

 #define memcpypgm2ram(a,b,c) memcpy(a,b,c)

 #define strcpypgm2ram(a,b) strcpy(a,b)

 #define strncpypgm2ram(a,b,c) strncpy(a,b,c)

 #define strstrrampgm(a,b) strstr(a,b)

 #define strlenpgm(a) strlen(a)

 #define strchrpgm(a,b) strchr(a,b)

 #define strcatpgm2ram(a,b) strcat(a,b)

#endif

137

// Definitions that apply to all 8-bit products

// (PIC18)

#if defined(__18CXX)

 #define __attribute__(a)

 #define FAR far

 // Microchip C18 specific defines

 #if !defined(HI_TECH_C)

 #define ROM rom

 #define strcpypgm2ram(a, b) strcpypgm2ram(a,(far rom char*)b)

 #endif

 // HI TECH PICC-18 STD specific defines

 #if defined(HI_TECH_C)

 #define ROM const

 #define rom

 #define Nop() asm("NOP");

 #define ClrWdt() asm("CLRWDT");

 #define Reset() asm("RESET");

 #endif

// Definitions that apply to all 16-bit and 32-bit products

// (PIC24F, PIC24H, dsPIC30F, dsPIC33F, and PIC32)

#else

 #define ROM const

 // 16-bit specific defines (PIC24F, PIC24H, dsPIC30F, dsPIC33F)

 #if defined(__C30__)

 #define Reset() asm("reset")

 #define FAR __attribute__((far))

 #endif

 // 32-bit specific defines (PIC32)

 #if defined(__C32__)

 #define persistent

138

 #define far

 #define FAR

 #define Reset() SoftReset()

 #define ClrWdt() (WDTCONSET =

_WDTCON_WDTCLR_MASK)

 #define Nop() asm("nop")

 #endif

#endif

#endif

Delay.h

/***

 *

 * General Delay rouines

 *

 * FileName: Delay.h

 * Dependencies: Compiler.h

 * Processor: PIC18, PIC24F, PIC24H, dsPIC30F, dsPIC33F, PIC32

 * Compiler: Microchip C32 v1.00 or higher

 * Microchip C30 v3.01 or higher

 * Microchip C18 v3.13 or higher

 * HI-TECH PICC-18 STD 9.50PL3 or higher

 * Company: Microchip Technology, Inc.

 *

 * Software License Agreement

 *

 * Copyright (C) 2002-2008 Microchip Technology Inc. All rights

 * reserved.

 *

 * Microchip licenses to you the right to use, modify, copy, and

 * distribute:

 * (i) the Software when embedded on a Microchip microcontroller or

 * digital signal controller product ("Device") which is

139

 * integrated into Licensee's product; or

 * (ii) ONLY the Software driver source files ENC28J60.c and

 * ENC28J60.h ported to a non-Microchip device used in

 * conjunction with a Microchip ethernet controller for the

 * sole purpose of interfacing with the ethernet controller.

 *

 * You should refer to the license agreement accompanying this

 * Software for additional information regarding your rights and

 * obligations.

 *

 * THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT

 * WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT

 * LIMITATION, ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A

 * PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL

 * MICROCHIP BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR

 * CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, COST OF

 * PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY OR SERVICES, ANY CLAIMS

 * BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE

 * THEREOF), ANY CLAIMS FOR INDEMNITY OR CONTRIBUTION, OR OTHER

 * SIMILAR COSTS, WHETHER ASSERTED ON THE BASIS OF CONTRACT, TORT

 * (INCLUDING NEGLIGENCE), BREACH OF WARRANTY, OR OTHERWISE.

 *

 *

 * Author Date Comment

 *~~

 * Nilesh Rajbharti 5/9/02 Original (Rev 1.0)

 * Nilesh Rajbharti 6/10/02 Fixed C18 ms and us routines

 * Howard Schlunder 4/04/06 Changed for C30

 **/

#ifndef __DELAY_H

#define __DELAY_H

#include "Compiler.h"

#include "HardwareProfile.h"

#if !defined(GetInstructionClock)

 #error GetInstructionClock() must be defined.

#endif

140

#if defined(__C30__) || defined(__C32__)

 void Delay10us(DWORD dwCount);

 void DelayMs(WORD ms);

 void Delay1us(DWORD dwCount);

 void DelayPreServo(void);

 void DelayIncServo(void);

#endif

#endif

GenericTypeDef.h

/***

 *

 * Generic Type Definitions

 *

 * FileName: GenericTypeDefs.h

 * Dependencies: None

 * Processor: PIC18, PIC24F, PIC24H, dsPIC30F, dsPIC33F, PIC32

 * Complier: Microchip C18, C30, C32

 * HI-TECH PICC-18

 * Company: Microchip Technology, Inc.

 *

 * Software License Agreement

 *

 * The software supplied herewith by Microchip Technology Incorporated

 * (the "Company") is intended and supplied to you, the Company's

 * customer, for use solely and exclusively with products manufactured

 * by the Company.

 *

 * The software is owned by the Company and/or its supplier, and is

 * protected under applicable copyright laws. All rights are reserved.

 * Any use in violation of the foregoing restrictions may subject the

 * user to criminal sanctions under applicable laws, as well as to

141

 * civil liability for the breach of the terms and conditions of this

 * license.

 *

 * THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES,

 * WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED

 * TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

 * PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT,

 * IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR

 * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

 *

 *

 * Author Date Comment

 *~~

 * Nilesh Rajbharti 07/12/04 Rel 0.9

 * Nilesh Rajbharti 11/24/04 Rel 0.9.1

 * Rawin Rojvanit 09/17/05 Rel 0.9.2

 * D Flowers & H Schlunder 08/10/06 Much better now (1.0)

 * D Flowers & H Schlunder 09/11/06 Add base signed types (1.1)

 * D Flo, H Sch, et. al 02/28/07 Add QWORD, LONGLONG, QWORD_VAL (1.2)

 * Bud Caldwell 02/06/08 Added def's for PIC32

 **/

#ifndef __GENERIC_TYPE_DEFS_H_

#define __GENERIC_TYPE_DEFS_H_

typedef enum _BOOL { FALSE = 0, TRUE } BOOL; // Undefined size

#ifndef NULL

#define NULL 0//((void *)0)

#endif

#define PUBLIC // Function attributes

#define PROTECTED

#define PRIVATE static

typedef unsigned char BYTE; // 8-bit unsigned

typedef unsigned short int WORD; // 16-bit unsigned

142

typedef unsigned long DWORD; // 32-bit unsigned

typedef unsigned long long QWORD; // 64-bit unsigned

typedef signed char CHAR; // 8-bit signed

typedef signed short int SHORT; // 16-bit signed

typedef signed long LONG; // 32-bit signed

typedef signed long long LONGLONG; // 64-bit signed

/* Alternate definitions */

typedef void VOID;

typedef char CHAR8;

typedef unsigned char UCHAR8;

/* Processor & Compiler independent, size specific definitions */

// To Do: We need to verify the sizes on each compiler. These

// may be compiler specific, we should either move them

// to "compiler.h" or #ifdef them for compiler type.

typedef signed int INT;

typedef signed char INT8;

typedef signed short int INT16;

typedef signed long int INT32;

typedef signed long long INT64;

typedef unsigned int UINT;

typedef unsigned char UINT8;

typedef unsigned short int UINT16;

typedef unsigned long int UINT32; // other name for 32-bit integer

typedef unsigned long long UINT64;

typedef union _BYTE_VAL

{

 BYTE Val;

 struct

 {

 unsigned char b0:1;

 unsigned char b1:1;

 unsigned char b2:1;

143

 unsigned char b3:1;

 unsigned char b4:1;

 unsigned char b5:1;

 unsigned char b6:1;

 unsigned char b7:1;

 } bits;

} BYTE_VAL, BYTE_BITS;

typedef union _WORD_VAL

{

 WORD Val;

 BYTE v[2];

 struct

 {

 BYTE LB;

 BYTE HB;

 } byte;

 struct

 {

 unsigned char b0:1;

 unsigned char b1:1;

 unsigned char b2:1;

 unsigned char b3:1;

 unsigned char b4:1;

 unsigned char b5:1;

 unsigned char b6:1;

 unsigned char b7:1;

 unsigned char b8:1;

 unsigned char b9:1;

 unsigned char b10:1;

 unsigned char b11:1;

 unsigned char b12:1;

 unsigned char b13:1;

 unsigned char b14:1;

 unsigned char b15:1;

 } bits;

} WORD_VAL, WORD_BITS;

144

typedef union _DWORD_VAL

{

 DWORD Val;

 WORD w[2];

 BYTE v[4];

 struct

 {

 WORD LW;

 WORD HW;

 } word;

 struct

 {

 BYTE LB;

 BYTE HB;

 BYTE UB;

 BYTE MB;

 } byte;

 struct

 {

 WORD_VAL low;

 WORD_VAL high;

 }wordUnion;

 struct

 {

 unsigned char b0:1;

 unsigned char b1:1;

 unsigned char b2:1;

 unsigned char b3:1;

 unsigned char b4:1;

 unsigned char b5:1;

 unsigned char b6:1;

 unsigned char b7:1;

 unsigned char b8:1;

 unsigned char b9:1;

 unsigned char b10:1;

 unsigned char b11:1;

145

 unsigned char b12:1;

 unsigned char b13:1;

 unsigned char b14:1;

 unsigned char b15:1;

 unsigned char b16:1;

 unsigned char b17:1;

 unsigned char b18:1;

 unsigned char b19:1;

 unsigned char b20:1;

 unsigned char b21:1;

 unsigned char b22:1;

 unsigned char b23:1;

 unsigned char b24:1;

 unsigned char b25:1;

 unsigned char b26:1;

 unsigned char b27:1;

 unsigned char b28:1;

 unsigned char b29:1;

 unsigned char b30:1;

 unsigned char b31:1;

 } bits;

} DWORD_VAL;

#define LSB(a) ((a).v[0])

#define MSB(a) ((a).v[1])

#define LOWER_LSB(a) ((a).v[0])

#define LOWER_MSB(a) ((a).v[1])

#define UPPER_LSB(a) ((a).v[2])

#define UPPER_MSB(a) ((a).v[3])

typedef union _QWORD_VAL

{

 QWORD Val;

 DWORD d[2];

 WORD w[4];

 BYTE v[8];

146

 struct

 {

 DWORD LD;

 DWORD HD;

 } dword;

 struct

 {

 WORD LW;

 WORD HW;

 WORD UW;

 WORD MW;

 } word;

 struct

 {

 unsigned char b0:1;

 unsigned char b1:1;

 unsigned char b2:1;

 unsigned char b3:1;

 unsigned char b4:1;

 unsigned char b5:1;

 unsigned char b6:1;

 unsigned char b7:1;

 unsigned char b8:1;

 unsigned char b9:1;

 unsigned char b10:1;

 unsigned char b11:1;

 unsigned char b12:1;

 unsigned char b13:1;

 unsigned char b14:1;

 unsigned char b15:1;

 unsigned char b16:1;

 unsigned char b17:1;

 unsigned char b18:1;

 unsigned char b19:1;

 unsigned char b20:1;

 unsigned char b21:1;

 unsigned char b22:1;

147

 unsigned char b23:1;

 unsigned char b24:1;

 unsigned char b25:1;

 unsigned char b26:1;

 unsigned char b27:1;

 unsigned char b28:1;

 unsigned char b29:1;

 unsigned char b30:1;

 unsigned char b31:1;

 unsigned char b32:1;

 unsigned char b33:1;

 unsigned char b34:1;

 unsigned char b35:1;

 unsigned char b36:1;

 unsigned char b37:1;

 unsigned char b38:1;

 unsigned char b39:1;

 unsigned char b40:1;

 unsigned char b41:1;

 unsigned char b42:1;

 unsigned char b43:1;

 unsigned char b44:1;

 unsigned char b45:1;

 unsigned char b46:1;

 unsigned char b47:1;

 unsigned char b48:1;

 unsigned char b49:1;

 unsigned char b50:1;

 unsigned char b51:1;

 unsigned char b52:1;

 unsigned char b53:1;

 unsigned char b54:1;

 unsigned char b55:1;

 unsigned char b56:1;

 unsigned char b57:1;

 unsigned char b58:1;

 unsigned char b59:1;

148

 unsigned char b60:1;

 unsigned char b61:1;

 unsigned char b62:1;

 unsigned char b63:1;

 } bits;

} QWORD_VAL;

#endif //__GENERIC_TYPE_DEFS_H_

HardwareProfile.h

/***

 *

 * Hardware specific definitions

 *

 * FileName: HardwareProfile.h

 * Dependencies: None

 * Processor: PIC18, PIC24F, PIC24H, dsPIC30F, dsPIC33F, PIC32

 * Compiler: Microchip C32 v1.00 or higher

 * Microchip C30 v3.01 or higher

 * Microchip C18 v3.13 or higher

 * HI-TECH PICC-18 STD 9.50PL3 or higher

 * Company: Microchip Technology, Inc.

 *

 * Software License Agreement

 *

 * Copyright (C) 2002-2008 Microchip Technology Inc. All rights

 * reserved.

 *

 * Microchip licenses to you the right to use, modify, copy, and

 * distribute:

 * (i) the Software when embedded on a Microchip microcontroller or

 * digital signal controller product ("Device") which is

 * integrated into Licensee's product; or

 * (ii) ONLY the Software driver source files ENC28J60.c and

 * ENC28J60.h ported to a non-Microchip device used in

 * conjunction with a Microchip ethernet controller for the

 * sole purpose of interfacing with the ethernet controller.

149

 *

 * You should refer to the license agreement accompanying this

 * Software for additional information regarding your rights and

 * obligations.

 *

 * THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT

 * WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT

 * LIMITATION, ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A

 * PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL

 * MICROCHIP BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR

 * CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, COST OF

 * PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY OR SERVICES, ANY CLAIMS

 * BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE

 * THEREOF), ANY CLAIMS FOR INDEMNITY OR CONTRIBUTION, OR OTHER

 * SIMILAR COSTS, WHETHER ASSERTED ON THE BASIS OF CONTRACT, TORT

 * (INCLUDING NEGLIGENCE), BREACH OF WARRANTY, OR OTHERWISE.

* Author Date Comment

 *~~

 * Howard Schlunder 10/03/06 Original, copied from Compiler.h

 **/

#ifndef __HARDWARE_PROFILE_H

#define __HARDWARE_PROFILE_H

#define WPIO

//#define DEBUG

#if defined(DEBUG)

#endif

// Set configuration fuses (but only once)

#if defined(THIS_IS_STACK_APPLICATION)

 #if defined(__dsPIC30F__)

 // dsPICDEM 1.1 board

 //_FOSC(XT_PLL16)

 // XT Osc + 16X PLL

150

 _FOSC(FRC_PLL16) // Internal Osc + 16X PLL

 _FWDT(WDT_OFF)

 _FBORPOR(MCLR_EN & PWRT_64 & PBOR_ON & BORV_45)

 #endif

#endif // Prevent more than one set of config fuse definitions

// Clock frequency value.

// This value is used to calculate Tick Counter value

#if defined(__dsPIC30F__)

 // dsPIC30F processor

 #define GetSystemClock() (117920000ul) // Hz

 #define GetInstructionClock() (GetSystemClock()/4)

 #define GetPeripheralClock() GetInstructionClock()

#endif

#if defined(WPIO)

 #if defined(__dsPIC30F4011__)

 #define SERVO0_TRIS (TRISEbits.TRISE0)

 #define SERVO0_IO (PORTEbits.RE0)

 #define SERVO1_TRIS (TRISEbits.TRISE1)

 #define SERVO1_IO (PORTEbits.RE1)

 #define SERVO2_TRIS (TRISEbits.TRISE2)

 #define SERVO2_IO (PORTEbits.RE2)

 #define SERVO3_TRIS (TRISEbits.TRISE3)

 #define SERVO3_IO (PORTEbits.RE3)

 #define SERVO4_TRIS (TRISEbits.TRISE4)

 #define SERVO4_IO (PORTEbits.RE4)

 #define SERVO5_TRIS (TRISEbits.TRISE5)

 #define SERVO5_IO (PORTEbits.RE5)

 #define SERVO6_TRIS (TRISFbits.TRISF6)

 #define SERVO6_IO (PORTFbits.RF6)

 #define SERVO7_TRIS (TRISDbits.TRISD2)

 #define SERVO7_IO (PORTDbits.RD2)

151

 #define SERVO8_TRIS (TRISDbits.TRISD3)

 #define SERVO8_IO (PORTDbits.RD3)

 #define SERVO9_TRIS (TRISDbits.TRISD1)

 #define SERVO9_IO (PORTDbits.RD1)

 #define SERVO10_TRIS (TRISBbits.TRISB8)

 #define SERVO10_IO (PORTBbits.RB8)

 #define SERVO11_TRIS (TRISBbits.TRISB7)

 #define SERVO11_IO (PORTBbits.RB7)

 #define SERVO12_TRIS (TRISBbits.TRISB6)

 #define SERVO12_IO (PORTBbits.RB6)

 #define SERVO13_TRIS (TRISBbits.TRISB5)

 #define SERVO13_IO (PORTBbits.RB5)

 #define SERVO14_TRIS (TRISBbits.TRISB4)

 #define SERVO14_IO (PORTBbits.RB4)

 #define SERVO15_TRIS (TRISBbits.TRISB3)

 #define SERVO15_IO (PORTBbits.RB3)

 #define SERVO16_TRIS (TRISEbits.TRISE8)

 #define SERVO16_IO (PORTEbits.RE8)

 #define SERVO17_TRIS (TRISCbits.TRISC14)

 #define SERVO17_IO (PORTCbits.RC14)

 #define SERVO18_TRIS (TRISCbits.TRISC13)

 #define SERVO18_IO (PORTCbits.RC13)

 #define SERVO19_TRIS (TRISCbits.TRISC15)

 #define SERVO19_IO (PORTCbits.RC15)

 #define SERVO20_TRIS dummy

 #define SERVO20_IO dummy

 #define SERVO21_TRIS dummy

 #define SERVO21_IO dummy

 #define SERVO22_TRIS dummy

 #define SERVO22_IO dummy

 #define SERVO23_TRIS dummy

152

 #define SERVO23_IO dummy

 #define SERVO24_TRIS dummy

 #define SERVO24_IO dummy

 #define SERVO25_TRIS dummy

 #define SERVO25_IO dummy

 #elif defined(__dsPIC30F4013__)

 //#define SERVO0_TRIS (TRISBbits.TRISB0)

 //#define SERVO0_IO (PORTBbits.RB0)

 //#define SERVO1_TRIS (TRISBbits.TRISB1)

 //#define SERVO1_IO (PORTBbits.RB1)

 //#define SERVO2_TRIS (TRISBbits.TRISB2)

 //#define SERVO2_IO (PORTBbits.RB2)

 #define SERVO3_TRIS (TRISBbits.TRISB3)

 #define SERVO3_IO (PORTBbits.RB3)

 #define SERVO4_TRIS (TRISBbits.TRISB4)

 #define SERVO4_IO (PORTBbits.RB4)

 #define SERVO5_TRIS (TRISBbits.TRISB5)

 #define SERVO5_IO (PORTBbits.RB5)

 #define SERVO6_TRIS (TRISBbits.TRISB8)

 #define SERVO6_IO (PORTBbits.RB8)

 #define SERVO7_TRIS (TRISCbits.TRISC15)

 #define SERVO7_IO (PORTCbits.RC15)

 #define SERVO8_TRIS (TRISCbits.TRISC13)

 #define SERVO8_IO (PORTCbits.RC13)

 #define SERVO9_TRIS (TRISCbits.TRISC14)

 #define SERVO9_IO (PORTCbits.RC14)

 #define SERVO10_TRIS (TRISAbits.TRISA11)

 #define SERVO10_IO (PORTAbits.RA11)

 #define SERVO11_TRIS (TRISDbits.TRISD9)

 #define SERVO11_IO (PORTDbits.RD9)

 #define SERVO12_TRIS (TRISDbits.TRISD3)

153

 #define SERVO12_IO (PORTDbits.RD3)

 #define SERVO13_TRIS (TRISBbits.TRISB9)

 #define SERVO13_IO (PORTBbits.RB9)

 #define SERVO14_TRIS (TRISBbits.TRISB10)

 #define SERVO14_IO (PORTBbits.RB10)

 #define SERVO15_TRIS (TRISBbits.TRISB11)

 #define SERVO15_IO (PORTBbits.RB11)

 #define SERVO16_TRIS (TRISBbits.TRISB12)

 #define SERVO16_IO (PORTBbits.RB12)

 #define SERVO17_TRIS (TRISDbits.TRISD0)

 #define SERVO17_IO (PORTDbits.RD0)

 #define SERVO18_TRIS (TRISDbits.TRISD1)

 #define SERVO18_IO (PORTDbits.RD1)

 #define SERVO19_TRIS (TRISFbits.TRISF0)

 #define SERVO19_IO (PORTFbits.RF0)

 #define SERVO20_TRIS (TRISFbits.TRISF1)

 #define SERVO20_IO (PORTFbits.RF1)

 #if defined(USE_UART1)

 #define SERVO21_TRIS

 (TRISFbits.TRISF6)

 #define SERVO21_IO

 (PORTFbits.RF6)

 #define SERVO22_TRIS

 (TRISDbits.TRISD8)

 #define SERVO22_IO

 (PORTDbits.RD8)

 #define SERVO23_TRIS

 (TRISDbits.TRISD2)

 #define SERVO23_IO

 (PORTDbits.RD2)

 #define SERVO24_TRIS dummy

154

 #define SERVO24_IO dummy

 #define SERVO25_TRIS dummy

 #define SERVO25_IO dummy

 #else

 #define SERVO21_TRIS

 (TRISFbits.TRISF2)

 #define SERVO21_IO

 (PORTFbits.RF2)

 #define SERVO22_TRIS

 (TRISFbits.TRISF3)

 #define SERVO22_IO

 (PORTFbits.RF3)

 #define SERVO23_TRIS

 (TRISFbits.TRISF6)

 #define SERVO23_IO

 (PORTFbits.RF6)

 #define SERVO24_TRIS

 (TRISDbits.TRISD8)

 #define SERVO24_IO

 (PORTDbits.RD8)

 #define SERVO25_TRIS

 (TRISDbits.TRISD2)

 #define SERVO25_IO

 (PORTDbits.RD2)

 #endif

 #elif defined(__dsPIC30F3014__)

 //#define SERVO0_TRIS (TRISBbits.TRISB0)

 //#define SERVO0_IO (PORTBbits.RB0)

 //#define SERVO1_TRIS (TRISBbits.TRISB1)

 //#define SERVO1_IO (PORTBbits.RB1)

 //#define SERVO2_TRIS (TRISBbits.TRISB2)

 //#define SERVO2_IO (PORTBbits.RB2)

 #define SERVO3_TRIS (TRISBbits.TRISB3)

 #define SERVO3_IO (PORTBbits.RB3)

 #define SERVO4_TRIS (TRISBbits.TRISB4)

155

 #define SERVO4_IO (PORTBbits.RB4)

 #define SERVO5_TRIS (TRISBbits.TRISB5)

 #define SERVO5_IO (PORTBbits.RB5)

 #define SERVO6_TRIS (TRISBbits.TRISB8)

 #define SERVO6_IO (PORTBbits.RB8)

 #define SERVO7_TRIS (TRISCbits.TRISC15)

 #define SERVO7_IO (PORTCbits.RC15)

 #define SERVO8_TRIS (TRISCbits.TRISC13)

 #define SERVO8_IO (PORTCbits.RC13)

 #define SERVO9_TRIS (TRISCbits.TRISC14)

 #define SERVO9_IO (PORTCbits.RC14)

 #define SERVO10_TRIS (TRISAbits.TRISA11)

 #define SERVO10_IO (PORTAbits.RA11)

 //#define SERVO11_TRIS (TRISDbits.TRISD9)

 //#define SERVO11_IO (PORTDbits.RD9)

 //#define SERVO12_TRIS (TRISDbits.TRISD3)

 //#define SERVO12_IO (PORTDbits.RD3)

 #define SERVO13_TRIS (TRISBbits.TRISB9)

 #define SERVO13_IO (PORTBbits.RB9)

 #define SERVO14_TRIS (TRISBbits.TRISB10)

 #define SERVO14_IO (PORTBbits.RB10)

 #define SERVO15_TRIS (TRISBbits.TRISB11)

 #define SERVO15_IO (PORTBbits.RB11)

 #define SERVO16_TRIS (TRISBbits.TRISB12)

 #define SERVO16_IO (PORTBbits.RB12)

 #define SERVO17_TRIS (TRISDbits.TRISD0)

 #define SERVO17_IO (PORTDbits.RD0)

 #define SERVO18_TRIS (TRISDbits.TRISD1)

 #define SERVO18_IO (PORTDbits.RD1)

 #define SERVO19_TRIS (TRISFbits.TRISF0)

156

 #define SERVO19_IO (PORTFbits.RF0)

 #define SERVO20_TRIS (TRISFbits.TRISF1)

 #define SERVO20_IO (PORTFbits.RF1)

 #if defined(USE_UART1)

 #define SERVO21_TRIS

 (TRISFbits.TRISF6)

 #define SERVO21_IO

 (PORTFbits.RF6)

 #define SERVO22_TRIS

 (TRISDbits.TRISD8)

 #define SERVO22_IO

 (PORTDbits.RD8)

 #define SERVO23_TRIS

 (TRISDbits.TRISD2)

 #define SERVO23_IO

 (PORTDbits.RD2)

 #define SERVO24_TRIS dummy

 #define SERVO24_IO dummy

 #define SERVO25_TRIS dummy

 #define SERVO25_IO dummy

 #else

 #define SERVO21_TRIS

 (TRISFbits.TRISF2)

 #define SERVO21_IO

 (PORTFbits.RF2)

 #define SERVO22_TRIS

 (TRISFbits.TRISF3)

 #define SERVO22_IO

 (PORTFbits.RF3)

 #define SERVO23_TRIS

 (TRISFbits.TRISF6)

 #define SERVO23_IO

 (PORTFbits.RF6)

157

 //#define SERVO24_TRIS

 (TRISDbits.TRISD8)

 //#define SERVO24_IO

 (PORTDbits.RD8)

 //#define SERVO25_TRIS

 (TRISDbits.TRISD2)

 //#define SERVO25_IO

 (PORTDbits.RD2)

 #endif

 #else

 #define SERVO0_TRIS dummy

 #define SERVO0_IO dummy

 #define SERVO1_TRIS dummy

 #define SERVO1_IO dummy

 #define SERVO2_TRIS dummy

 #define SERVO2_IO dummy

 #define SERVO3_TRIS dummy

 #define SERVO3_IO dummy

 #define SERVO4_TRIS dummy

 #define SERVO4_IO dummy

 #define SERVO5_TRIS dummy

 #define SERVO5_IO dummy

 #define SERVO6_TRIS dummy

 #define SERVO6_IO dummy

 #define SERVO7_TRIS dummy

 #define SERVO7_IO dummy

 #define SERVO8_TRIS dummy

 #define SERVO8_IO dummy

 #define SERVO9_TRIS dummy

 #define SERVO9_IO dummy

 #define SERVO10_TRIS dummy

 #define SERVO10_IO dummy

 #define SERVO11_TRIS dummy

 #define SERVO11_IO dummy

158

 #define SERVO12_TRIS dummy

 #define SERVO12_IO dummy

 #define SERVO13_TRIS dummy

 #define SERVO13_IO dummy

 #define SERVO14_TRIS dummy

 #define SERVO14_IO dummy

 #define SERVO15_TRIS dummy

 #define SERVO15_IO dummy

 #define SERVO16_TRIS dummy

 #define SERVO16_IO dummy

 #define SERVO17_TRIS dummy

 #define SERVO17_IO dummy

 #define SERVO18_TRIS dummy

 #define SERVO18_IO dummy

 #define SERVO19_TRIS dummy

 #define SERVO19_IO dummy

 #define SERVO20_TRIS dummy

 #define SERVO20_IO dummy

 #define SERVO21_TRIS dummy

 #define SERVO21_IO dummy

 #define SERVO22_TRIS dummy

 #define SERVO22_IO dummy

 #define SERVO23_TRIS dummy

 #define SERVO23_IO dummy

 #define SERVO24_TRI dummy

 #define SERVO24_IO dummy

 #define SERVO25_TRI dummy

 #define SERVO25_IO dummy

 #endif

 #define UART2TX_TRIS (TRISFbits.TRISF5)

 #define UART2TX_IO (PORTFbits.RF5)

 #define UART2RX_TRIS (TRISFbits.TRISF4)

 #define UART2RX_IO (PORTFbits.RF4)

 #if defined(USE_UART1)

159

 #define UART1TX_TRIS (TRISFbits.TRISF3)

 #define UART1TX_IO (PORTFbits.RF3)

 #define UART1RX_TRIS (TRISFbits.TRISF2)

 #define UART1RX_IO (PORTFbits.RF2)

 #endif

#endif

 #define SONIC0_TRIS (TRISDbits.TRISD2)

 #define SONIC0_IO (PORTDbits.RD2)

 #define SONIC1_TRIS (TRISDbits.TRISD3)

 #define SONIC1_IO (PORTDbits.RD3)

 #define SONIC_INT0_TRIS (TRISDbits.TRISD8)

 #define SONIC_INT0_IO (PORTDbits.RD8)

 #define SONIC_INT1_TRIS (TRISDbits.TRISD9)

 #define SONIC_INT1_IO (PORTDbits.RD9)

 #define POSITION_SENSE_TRIS (TRISBbits.TRISB0)

 #define POSITION_SENSE_IO (PORTBbits.RB0)

 #define CURRENT_SENSE_TRIS (TRISBbits.TRISB1)

 #define CURRENT_SENSE_IO (PORTBbits.RB1)

 #define VOLTAGE_SENSE_TRIS (TRISBbits.TRISB2)

 #define VOLTAGE_SENSE_IO (PORTBbits.RB2)

 // Some A/D converter registers on dsPIC30s are named slightly differently

 // on other procesors, so we need to rename them.

 #define ADC1BUF0 ADCBUF0

 #define AD1CHS ADCHS

 #define AD1CON1 ADCON1

 #define AD1CON2 ADCON2

 #define AD1CON3 ADCON3

 #define AD1PCFG ADPCFG

 #define AD1CSSL ADCSSL

 #define AD1IF ADIF

 #define AD1IE ADIE

160

 #define _ADC1Interrupt _ADCInterrupt

#endif

UART.h

/***

 *

 * UART access routines for C18 and C30

 *

 * FileName: UART.h

 * Processor: PIC18, PIC24F, PIC24H, dsPIC30F, dsPIC33F

 * Compiler: Microchip C30 v3.01 or higher

 * Microchip C18 v3.13 or higher

 * HI-TECH PICC-18 STD 9.50PL3 or higher

 * Company: Microchip Technology, Inc.

 *

 * Software License Agreement

 *

 * Copyright (C) 2002-2008 Microchip Technology Inc. All rights

 * reserved.

 *

 * Microchip licenses to you the right to use, modify, copy, and

 * distribute:

 * (i) the Software when embedded on a Microchip microcontroller or

 * digital signal controller product ("Device") which is

 * integrated into Licensee's product; or

 * (ii) ONLY the Software driver source files ENC28J60.c and

 * ENC28J60.h ported to a non-Microchip device used in

 * conjunction with a Microchip ethernet controller for the

 * sole purpose of interfacing with the ethernet controller.

 *

 * You should refer to the license agreement accompanying this

 * Software for additional information regarding your rights and

 * obligations.

161

 *

 * THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT

 * WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT

 * LIMITATION, ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A

 * PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL

 * MICROCHIP BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR

 * CONSEQUENTIAL DAMAGES, LOST PROFITS OR LOST DATA, COST OF

 * PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY OR SERVICES, ANY CLAIMS

 * BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE

 * THEREOF), ANY CLAIMS FOR INDEMNITY OR CONTRIBUTION, OR OTHER

 * SIMILAR COSTS, WHETHER ASSERTED ON THE BASIS OF CONTRACT, TORT

 * (INCLUDING NEGLIGENCE), BREACH OF WARRANTY, OR OTHERWISE.

 *

 *

 * Author Date Comment

 *~~

 * Howard Schlunder 6/16/06 Original

**/

#ifndef __UART_H

#define __UART_H

#include "Compiler.h"

#include "HardwareProfile.h"

#if defined(__C30__) // PIC24F, PIC24H, dsPIC30, dsPIC33

 void putsUART2(unsigned int *buffer);

 unsigned int getsUART2(unsigned int length,unsigned int *buffer,unsigned int

uart_data_wait);

 char DataRdyUART2(void);

 char BusyUART2(void);

 unsigned int ReadUART2(void);

 void WriteUART2(unsigned int data);

162

 void putsUART1(unsigned int *buffer);

 unsigned int getsUART1(unsigned int length,unsigned int *buffer,unsigned int

uart_data_wait);

 char DataRdyUART1(void);

 char BusyUART1(void);

 unsigned int ReadUART1(void);

 void WriteUART1(unsigned int data);

#endif

#endif

WPIO.h

#include <string.h>

#include <stdlib.h>

#include "GenericTypeDefs.h"

#include "Compiler.h"

#include "HardwareProfile.h"

#include "UART.h"

#include "Delay.h"

#include <stdlib.h>

#define NUM_SERVOS 26

#define INIT_VALUE 140

#define Nop() {__asm__ volatile ("nop");}

#define ClrWdt() {__asm__ volatile ("clrwdt");}

#define Sleep() {__asm__ volatile ("pwrsav #0");}

#define Idle() {__asm__ volatile ("pwrsav #1");}

#define StreamSizeIndex 3

#define WASPheaderSize 4

#define BAUD_RATE2 (115200)

//#define BAUD_RATE1 (57600) // bps

//#define BAUD_RATE1 (9600) // bps

#define BAUD_RATE1 (115200) // bps bluetooth baud

#define STACK_USE_UART

#define DECIMAL 10

#define TABLE_SIZE 200

163

void InitializeBoard(void);

void ProcessPacket(void);

void allOn(int);

void ServoOff(int);

int GetADC(int chan);

void InitADC(void);

void __attribute__((__interrupt__)) _ADCInterrupt(void);

void CheckPacket(void);

void TimeoutPacket(void);

void setServo(unsigned char number, double value);

void setAngle(unsigned char number, double value);

void waveForm(double * step_table, long step_index);

double adc_Val_to_mVoltage(int adc_value);

void itoa(unsigned int Value, char *Buffer);

//test adc

#define FOSC 7372800

#define PLL 16

#define FCY FOSC*PLL/4

#define NUMSAMP 256

//NOTE: The actual sampling rate realized may be 7998.698 Hz

// due to a small round off error. Ensure you provide the

// true sampling rate to dsPICworks if you are trying to plot

// the sampled or filtered signal.

#define SAMPLINGRATE 8000

#define SAMPCOUNT (FCY/SAMPLINGRATE)+1

//end test

void UpdateRangeFinder(void);

	Worcester Polytechnic Institute
	Digital WPI
	April 2009

	Robotic Research Platform for Locomotion Through Granular Media
	Brian C. Benson
	Neal Keith Humphrey
	Repository Citation

	Microsoft Word - Project_Paper_v_4.7.docx

