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Abstract 
This paper details the implementation of object manipulation and navigation capabilities for the 

KUKA youBot platform. Our system builds upon existing approaches taken from other robot 

platforms and the open source Robot Operating System, and extends these capabilities to the 

youBot, resulting in a system that can detect objects in its environment, navigate to them 

autonomously, and both pick up and place the objects with a simple user interface. This project is 

part of the larger Robot Autonomy and Interactive Learning Lab project to provide web-based 

control of the youBot to public users. 
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1 Introduction 
Our project was part of a larger ongoing research project headed by Professor Sonia Chernova. 

The goal of that project is to provide a remote interface to a KUKA youBot. The interface should 

allow easy to use tools for both autonomous and not autonomous navigation and simple object 

manipulation within the robots workspace. The workspace is a small room with various pieces of 

furniture and small objects for object manipulation pictured below. The overarching project also 

intends to make a simulated version of both the robot and the workspace available for 

experimentation. The purpose of this functionality is to allow robotic tasks to be crowd sourced. 

 

Figure : Picture of the workspace 

Our project satisfied the larger projects need for object manipulation and navigation by 

developing software for object manipulation based on object detection with a Kinect. It also 

combined those two capabilities with a simplified interface for the already existing navigation 

code. 
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2 Background 
To achieve our objectives, we built upon a collection of existing knowledge and implementation 

effort provided by the robotics community. In the sections to follow, we will briefly introduce 

the concepts and tools that the reader should be familiar with. These have been organized by two 

overarching themes: 

 Tools: existing hardware and software that we investigated for this project 

 Algorithms: the concepts employed by our software and how it produces useful results 

2.1 Tools 
In this section, we will briefly introduce each of the tools that we researched throughout the 

project: 

 The KUKA youBot, a 4-wheel mecanum drive robot with a small industrial manipulator 

 Robot Operating System (ROS), a robot software development framework and library 

collection 

 The Gazebo simulation environment 

 Tools related to vision processing and object detection 

 Tools related to arm operation and object manipulation 

Each of these will be discussed in the sections below. 

2.1.1 KUKA youBot 

We are using the KUKA youBot mobile manipulator, as shown in Figure . The KUKA youBot 

base uses an omnidirectional drive system with mecanum wheels. Unlike standard wheels, 

mecanum wheels consist of a series of rollers mounted at a 45° angle. This allows the robot to 

move in any direction, including sideways, which makes the robot much more maneuverable in 

tight areas.  
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Figure : The KUKA youBot 

The KUKA youBot is controlled by an onboard computer running a version of Ubuntu Linux. 

The youBot’s onboard computer has many of the features of a standard computer, including a 

VGA port to connect an external monitor, several USB ports for connecting sensors and other 

peripherals, and an Ethernet port for connecting the youBot to a network. 

Connected to the base of the youBot is a 5 degree-of-freedom arm. The arm is a 5 link serial 

kinematic chain with all revolute joints. The arm is sturdy and non-compliant, similar to 

KUKA’s larger industrial robot arms. The dimensions of each link of the arm, as well as the 

range of each joint are shown in Figure  below. The rotation of each joint in the youBot’s arm is 

measured by a relative encoder; therefore, users must manually move the arm to a home position 

before the arm is initialized. The youBot’s wrist is equipped with a two finger parallel gripper 

with a 2.3 cm stroke. There are multiple mounting points for the gripper fingers that users can 

choose based on the size of the objects to pick up.  
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Figure : Dimensions of the KUKA youBot arm [1] 

 

2.1.2 Robot Operating System (ROS) 

ROS (Robot Operating System) is an open source software framework for robotic development. 

The primary goal of ROS is to provide a common platform to make the construction of capable 

robotic applications quicker and easier.  Some of the features it provides include hardware 

abstraction, device drivers, message-passing, and package management [2]. ROS was originally 

developed starting in 2007 under the name Switchyard by the Stanford Artificial Intelligence 

Laboratory, but since 2008 it has been primarily developed by Willow Garage and is currently in 

its sixth release.   

The fundamental purpose of ROS is to provide an extensible interprocess communication 

framework which simplifies the design of distributed systems. The building blocks of a ROS 

application are nodes; a node is a named entity that can communicate with other ROS nodes on 

behalf of an operating system process. At this time, ROS provides support for nodes written in 

C++ and Python, and experimental libraries exist for a handful of other languages. 

There are three ways that nodes may communicate in a ROS environment: 

1. By publishing messages to a topic. 

2. By listening to messages published on a topic. 

3. By calling a service provided by another node. 

Messages represent data structures that may be transferred between nodes. Messages may 

contain any named fields; each field may be a primitive data type (e.g. integers, booleans, 

floating-point numbers, or strings), a message type, or an array of either type. ROS provides a 

mechanism for generating source code from text definitions of messages.  
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ROS topics represent named channels over which a particular type of message may be 

transferred. A topic provides one-directional communication between any number publishing 

and consuming nodes.  Figure  provides a visualization of a ROS graph; ovals represent nodes, 

and the directed arrows represent publish/subscribe relationships between nodes via a particular 

topic. 

 

Figure : Graph of ROS application 

A node that publishes to a topic is called a publisher. Publishers often run continuously in order 

to provide sensor readings or other periodic information to other nodes; however, it is possible to 

write a publisher that publishes a message only once.  

A node which listens to messages on a topic is called a subscriber. A subscriber specifies which 

topic it wants to listen to as well as the expected message type for the topic, and registers a 

callback function to be executed whenever a message is received. Similar to publishing a single 

message, a subscriber may instead block until a message is received if only a single message is 

required. 

 

Finally, a node may provide a service to other nodes. A service call in ROS resembles a remote 

procedure call workflow: a client node sends a request to the service provider node, a registered 

callback function in the service provider node performs the appropriate action(s), and then the 

service provider sends a response back to the client. 
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Since a service call is an exchange between one client node and one service provider node, they 

do not employ topics. Service request and response messages, however, are defined in a similar 

manner as standard messages, and they may include standard messages as fields. 

Any node can perform any combination of these actions; for example, a node could subscribe to 

a topic, call a service on a message it receives, and then publish the result to another topic. This 

allows a large amount of flexibility in ROS applications. ROS also allows applications to be 

distributed across multiple machines, with the only restriction that nodes which require hardware 

resources must run on a machine where those resources are available. More information about 

ROS including tutorials, instillation instructions, and package information can be found on their 

website: www.ros.org/wiki. 

2.1.3 Gazebo Simulator 

The Gazebo simulator [3] is a multi-robot simulator, primarily designed for outdoor 

environments. The system is compatible with ROS, making it a good choice for representing the 

robot’s environment. Gazebo also features rigid body physics simulation, allowing for collision 

detection and object manipulation. Finally, Gazebo allows for the simulation of robot sensors, 

allowing us to incorporate the Kinect’s full functionality and the overhead cameras into the 

simulation. 

 

Figure : Gazebo Simulation of youBot Environment 
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The room as it is envisioned in the final product is modeled in the Gazebo simulation. An 

example image of the simulation is included below. The flat images projected in the air represent 

the overhead cameras’ point of view, which is used in the web interface. Both the robot and arm 

are fully represented and capable of being manipulated within the simulation. All of the objects 

that the robot is expected to interact with in the room are also present and can be added and 

moved. Some of the more obvious objects present: 

 IKEA table 

 IKEA chest 

 Plastic cups 

 Stool 

As we determine what objects should be present in the environment based upon the design 

decisions that we make and the experience that we gain working with the robot, the gazebo 

simulation and the objects included have to be updated to reflect the changes.  

2.1.4 Vision 

We investigated a handful of tools to help us discover objects in our robot’s environment and 

produce suitable representations of them in software. These include: 

 The Microsoft Kinect, a structured-light 3D camera designed for the Xbox game console. 

 The Object Recognition Kitchen (ORK), an effort by Willow Garage to develop a 

general-purpose object detection and recognition library for ROS. 

 The Tabletop Object Detector, an object detection and recognition library for objects on 

tables 

 The Pont Cloud Library (PCL), a general purpose library for working with point cloud 

data structures 

Each of these will be introduced in the following sections. 

2.1.4.1 Microsoft Kinect 

The Microsoft Kinect is a consumer device originally designed by Microsoft as a peripheral for 

the Xbox game system. It was designed to compete against the motion-sensitive controller 

introduced by Nintendo for the Wii game system. 
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Figure : The Microsoft Kinect [4] 

The Microsoft Kinect is composite device which includes the following components: 

 A color digital camera 

 A structured-light infrared projector 

 An infrared digital camera 

 A microphone array 

 A tilt motor, which can adjust the pitch of the attached cameras and projector 

The Kinect derives depth information from an environment by projecting a grid of infrared 

points in a predictable pattern. The resulting projection on the environment is viewed by the 

integrated infrared camera and interpreted to produce depth information for each point. An 

example of this projection is illustrated in Figure . 

 

Figure : Microsoft Kinect IR Projection [5] 

This structured light approach poses challenges for objects particularly near and objects 

particularly far from the sensor. For objects closer than 0.8 meters, the projected points appear 

too closely together for the sensor to measure; this results in a short-range blind spot that can 

have implications for where the sensor is mounted, particularly for small robots. For objects 

farther than 4 meters, the projected points fade into the background. This maximum range is also 

adversely affected by the presence of infrared noise in the environment. As such, the Kinect’s 

range is significantly degraded outdoors. 
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To support game development, Microsoft has developed a software library for interpreting a 

human figure in this point cloud. This library allows users of the Microsoft tool chain for C++ 

and C# to easily discover human figures in an environment and measure determine the 3D 

position of the figure’s extremities.  

The impressive quality of the depth information produced by the Kinect and the Kinect’s low 

price make it a very attractive sensor for robotics research. As a result, a variety of open-source 

drivers have been developed for the Kinect which allow one to process the information produced 

by a Kinect as a cloud of points located in 3D space. In addition, some of these libraries also 

provide depth registration, wherein each depth point is annotated with the RGB color of that 

point in the environment. 

We have investigated the openni_camera [6] package for ROS. This package produces ROS 

point cloud message data structures which makes it easy to use a Kinect with many existing ROS 

packages and infrastructure. In addition, openni_camera also supports depth registration. 

2.1.4.2 Object Recognition Kitchen 

The Object Recognition Kitchen (ORK) is a tool chain for object recognition that is being 

developed by Willow Garage [7]. It is independent of ROS, although it provides an interface for 

working with ROS. The ORK is designed such that object recognition algorithms can be 

modularized; it implements a few different object recognition approaches, and provides an 

interface, called a pipeline, that new algorithms can conform to. Each pipeline has a source, 

where it gets data from, the actual image processing, and a sink, where the data is output. When 

performing object detection, the ORK can run multiple pipelines in parallel to improve results. 

The built-in pipelines are LINE-MOD, tabletop, TOD, and transparent objects. Tabletop is a 

ported version of the ROS tabletop object detector package. TOD stands for textured object 

detection and matches surfaces against a database of known textures. The transparent objects 

pipeline is similar to the tabletop object detector, but works on transparent objects such as plastic 

cups or glass.  

We were not able to successfully test the ORK in our environment; it appears that the project is 

under active development, but not yet complete. 

2.1.4.3 Tabletop Object Detector 

The tabletop object detector is a software library originally written by Willow Garage for its 

flagship research robot, the PR2 [8]. The purpose of this package is to provide a means of 

recognizing simple household objects placed on a table such that they can be manipulated 

effectively.  

Given a point cloud from a sensor, the tabletop object detector first discovers the surface of the 

table it is pointed at through a process called segmentation. Once the table surface has been 

discovered, the algorithm filters the original point cloud to remove all of the points that do not lie 
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directly above the surface of the table. Finally, the remaining points are clustered into discrete 

objects using nearest-neighbor clustering with a Kd-tree. 

This process produces a sequence of point clouds, one for each object. As an additional optional 

step, the tabletop object detector also provides rudimentary object recognition. Given a database 

of household object meshes to compare against, the tabletop object detector provides an 

implementation of iterative closest point (ICP), a relatively simple algorithm for registering a 

sensor point cloud against a model point cloud. If a point cloud successfully compares against a 

model in the database, the tabletop object detector also provides the more detailed model mesh as 

a part of the detection result. 

Although this package works well for the PR2 in a constrained environment, it has some 

noteworthy limitations: 

 It cannot detect objects on the floor, because it expects the presence of a table plane. 

 It is very sensitive to changes in perspective of an observed table. 

During our testing, we found that our Microsoft Kinect sensor must be positioned at just the right 

height and angle with respect to our IKEA children’s table in order for the tabletop object 

detector to properly detect the table. However, even when our table was successfully detected, 

the library was unable to detect the IKEA children’s cups that we placed upon it. 

It is worth noting that the tabletop object detector was originally designed to work with point 

clouds produced by computing the disparity between two cameras, and we chose to use a 

Microsoft Kinect instead; in addition, our IKEA children’s table and children’s cups are notably 

smaller than the standard rectangular table and household objects that the library was designed to 

work with. These factors likely influenced our results. 

2.1.4.4 Point Cloud Library (PCL) 

The Point Cloud Library (PCL) [9] is an open source project for image and point cloud 

processing.  PCL was originally developed by Willow Garage as a package for ROS; however, 

its utility as a standalone library quickly became apparent. It is now a separate project maintained 

by the Open Perception Foundation, and is funded by many large organizations. The PCL is split 

into multiple libraries which can be compiled and used separately. These include libraries 

include support for: filtering, feature finding, key point finding, registration, kd-tree 

representation, octree representation, image segmentation, sample consensus, ranged images, file 

system I/O and visualization. This project relies on reading and writing point clouds to files, 

point cloud visualization, downsampling point clouds using a filter, plane segmentation, and 

object segmentation using Euclidean Cluster Extraction.  Euclidean Cluster Extraction works by 

separating the points into groups where each member of a group is within a specified distance of 

at least one other member of the group. Figure  shows the result of plane segmentation removal 

and then Euclidean Cluster Extraction on a sample table scene. Note how the top of the table and 

floor have been removed and that different colored clouds represent separate clusters. 
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Figure : Result of PCL cluster extraction [10] 

PCL also provides tutorials and examples for most of its features allowing easy implementation 

and modification of the PCL algorithms. ROS package is also provided to allow convenient use 

of the PCL in a ROS node. This package provides functions for converting between ROS and 

PCL point cloud types and many other features.  

2.1.5 Arm  

To provide control over the youBot’s integrated 5-DOF arm, we focused on two ROS stacks: 

 The Arm Navigation stack [11] 

 The Object Manipulation stack [12] 

Originally developed for the PR2, these stacks comprise most of what is called the object 

manipulation pipeline. This pipeline provides a robot-independent set of interfaces, message 

types, and tools to help one implement common object manipulation actions for a particular 

robot.  

Each of the aforementioned stacks will be introduced in the sections to follow. 

2.1.5.1 Arm Navigation Stack 

The arm navigation stack was developed by Willow Garage to provide for the collision-free 

motion of a multiple degree of freedom robot arm. While only implemented originally for the 

PR2 robot arm, the stack was designed in such a way that it could be used for any arm, with the 

proper setup. Once that setup is complete, the stack handles collision avoidance, inverse 

kinematics, and publishes status updates on the arm’s progress. In order to move the arm to a 

given position and orientation, only a relatively simple message is required to set the arm’s goal. 

Once that is received, the stack plans a collision-avoiding route to the target location, and 

produces a set of joint positions to create a smooth path to the destination. 

Oddly enough, the arm navigation stack did not provide anything to actually run through that 

path. Despite this, we chose to use this stack for the built-in features, the relative ease to set up, 
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and the support for further arm tasks. As previously mentioned, the motion path that is created 

takes collisions, both with the arm itself and objects discovered in the environment, into account. 

That would be very difficult to program in a timely manner, sparing us significant development 

time. There were only two major sections of the program that had to be created for the arm 

navigation stack to operate properly: the above mentioned program to take the path and execute 

it, and a description of the arm to be used. The first was easy to create, and the second was 

generated based on the robot model, which made it simple to implement once the requirements 

were understood. Finally, the arm navigation stack is used by the PR2 to feed directly into 

picking up an object with one of its arms, so if we wished to also leverage that code, it would be 

of a great benefit to follow the same process. In fact, arm navigation actually contains both of the 

kinematics models used by the object manipulation stack below. 

We looked into a few other possible kinematics models and arm controllers, but none of them 

provided the level of functionality or support that the arm navigation stack did. The official 

KUKA youBot arm manipulation software was designed for a previous version of ROS, and had 

not been updated, in addition to not containing collision avoidance capabilities. Compared to all 

other options, the arm navigation stack provided the most useful features and the easiest 

implementation. 

2.1.5.2 Object Manipulation Stack 

The object manipulation stack provides the framework for picking up and placing objects using 

ROS. The stack is designed to be fairly robot independent, but requires some robot specific 

components to work properly. These robot specific components include a grasp planner, a 

gripper posture controller, an arm/hand description configuration file, and a fully implemented 

arm navigation pipeline. The object manipulation pipeline is fully implemented for the PR2 and 

some other robots, but not for the youBot.  

The object manipulation pipeline was designed to work either with or without object recognition. 

For unknown objects, the grasp planner must select grasp points based only on the point cluster 

perceived by the robot’s sensors. If object recognition is used, grasps for each item in the object 

database are pre-computed, and should be more reliable than grasps planned based only on a 

point cluster. 

There are two types of motion planners used by the object manipulation pipeline. The standard 

arm navigation motion planner is used to plan collision free paths. However, this motion planner 

cannot be used for the final approach to the grasp point since it will most likely think the grasp 

point will be in collision with the object being picked up. For the final grasp approach, an 

interpolated inverse kinematics motion planner is used, which will move the gripper linearly 

from the pre-grasp point to the final grasp point. 

The object manipulation pipeline also has the option of using tactile feedback both during the 

approach to the grasp point and during the lift. This is especially useful to correct errors when 
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executing a grasp that was planned based only on a partial point cluster. Unfortunately, the 

youBot does not have tactile sensors on its gripper. 

Picking up an object using the object manipulation pipeline goes through the following steps 

[12]: 

 The object to be picked up is identified using sensor data 

 A grasp planner generates set of possible grasp points for the object 

 Sensor data is used to build a collision map of the environment 

 A feasible grasp point with no collisions is selected from the list of possible grasps 

 A collision-free path to the pre-grasp point is generated and executed 

 The final path from the pre-grasp point to the grasp point is executed using an 

interpolated IK motion planner 

 The gripper is closed on the object and the object model is attached to the gripper 

 The object is lifted using the interpolated IK motion planner to a point where the collision 

free motion planner can take over 

2.1.6 tf 

tf is a ROS package used to keep track of multiple changing three dimensional coordinate 

frames. It provides tools for changing between any two coordinate frames that are being 

published. tf also allows multiple types of data to be transformed in this way including all types 

of ROS pointclouds, and points. The tf package provides tools for new transformations to be 

published easily using the sendTransform call or a static transform publisher node.  Finally it 

provides some tools such as view_frames and tf_echo for transform visualization and debugging 

[13]. 

2.1.7 YouBot Overhead Cameras 

The YouBot Overhead Camera stack provides autonomous navigation using an A* algorithm. It 

contains two sub packages, youBot overhead localization and youBot overhead vision. YouBot 

overhead localization implements the logic and classes for the navigation. It also provides a path 

planner server which takes x y coordinates as goals. The path planner then drives the robot until 

it reaches that point or another goal is received. The one problem with the path planner server is 

that the coordinates it takes in are in term of pixels relative to the camera images [14]. The 

youBot overhead vision serves mostly as a backend to the localization. It takes the overhead 

camera data and uses the user set calibration to perform color subtraction. This allows the stack 

to keep track of the robots position and orientation as well as find obstacles. It also provides the 

tools for creating the calibration [15]. 
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3 Objectives 
Our goal of providing an always-available online human-robot interaction laboratory poses a 

series of challenges. Operators should still be able to effectively control the robot regardless of 

the initial state of the environment the robot is in. In addition, our laboratory presents multiple 

surfaces that a user may wish to interact with objects on, each of which presents a surface of a 

unique size and height from the floor. 

This project’s goal was to satisfy these needs using a Microsoft Kinect mounted on our KUKA 

youBot’s arm. More specifically, the following objectives were identified: 

 The algorithm must be robust. Object discovery should work from most viewing angles 

of an object or surface, and should not be affected by the initial pose of the objects or the 

robot. Object discovery must also not be affected by the height or size of a viewed 

surface. 

 The algorithm must distinguish between objects and surfaces. Objects sitting on a 

surface, like the floor or a table, must be reported as distinct entities. 

 The algorithm must be able to identify surfaces that could support an object. The vision 

software must be able to identify suitable locations for placing previously-grasped 

objects. 

 Captures of discovered objects must be reasonably correct. Internal representations of 

discovered objects must be correct enough to allow for effective grasping with the 

youBot gripper. 

We searched for existing ROS packages that could discover objects given depth information, and 

found the tabletop_object_detector [8] package and the Object Recognition Kitchen [7]; 

unfortunately, neither of these packages proved robust enough to satisfy our requirements. As a 

result, we devised an algorithm that would satisfy our requirements and implemented it as a ROS 

stack. 

The following sections will discuss the methodology used to accomplish these objectives and 

how well the method works in our laboratory environment. 
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4 Methodology 

4.1 Kinect Object Detection 
Detecting objects and planes with the Kinect facilitated many of the other parts of the project, 

including picking up, placing, and moving toward objects. Since it was integral to many of the 

other systems this component was developed early in the project. There are a few main 

components to our object detection code.  

 

Figure : Object Detection class structure 

We organized the code so the main out-looking interface is the discover_object_server. The 

server takes in the constraints on what objects to find and the max slope of any planes to return. 

Originally we had the server read a single message from the pointcloud sensor topic. This caused 

a problem where the server would not recognize there was a pointcloud to read and subsequently 

crash. We then switched to having the server subscribed to the sensor topic and store the most 

recent point cloud. The first action the server takes after receiving a message is to convert the 

current point cloud to be relative to the base_footprint frame using tf. Next the server passes the 

new cloud, constraints and max plane incline to the extract_objects server. 

The extract_objects server takes those inputs and returns the objects and planes present in the 

input cloud that satisfy the constraints. This is performed using planar extraction and point 

clustering with a Kd-tree. More details on the extract_objects server and the algorithms used can 

be found in Paul Malmsten’s MQP report: Object Discovery wtih a Microsoft Kinect [16].  

The last step of the discover_object server is to add the discovered objects and planes to the 

collision environment. The collision environment is used by the arm_navigation to prevent the 

arm from hitting into objects. The server names all the found objects and planes and feeds them 

to the update_enviorment_server. Our environment server puts each of the named clouds into the 

planning environment which is checked later by the arm navigation.  
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The last aspect of our object detection is how we attached the Kinect to the robot.  Our first plan 

was to build a mount to place the Kinect well above the back of the robot. This allowed us a 

good view of both the floor and tables. However it forced us into one static viewing angle and 

the arm and the front of the robot also blocked our view of objects close to the front of the robot. 

Finally the mount blocked the overhead camera calibration and was prone to vibration. All of 

these made this mount impractical. Our next mount location was facing forward on the arm just 

behind the gripper. This allowed us to view different areas by moving the arm. The largest 

problem with this position is that most of the ways we oriented the arm to look at objects brought 

the Kinect to close to see. This was an especially large problem for viewing objects on tables. 

The location we finally settled on was the same position on the arm but facing backward. This 

allowed much better viewing distances and angles for both objects on tables and on the floor. 

4.2 Arm Navigation 

 

One of the early major goals of our project was to get the newly installed arm on the youBot 

moving. While the low level controls, such as direct joint control, existed, there was no inverse 

kinematic software for the arm. We took advantage of the ROS arm_navigation open source 

stack in order to create several levels of inverse kinematic calculators. Included with the 

arm_navigation stack, these kinematic tools varied from simply avoiding self-collision, to 

avoiding other detected obstacles in the environment. 

We decided to take advantage of the existing manipulation code developed within ROS, and 

implemented the arm_navigation stack. This stack was designed to generate the configuration 

files for the manipulator motion from the .urdf robot description file. A configuration wizard is 

included as a part of this stack, which allows for the selection of the joints that compose the 

arm.  A sample screenshot of the configuration wizard is displayed below, as run on the youBot. 

By selecting the links that make up the arm, the configuration wizard uses the physical robot 

description provided to generate the files it needs to calculate the forward and inverse kinematics 

for that arm.  
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Figure : Arm navigation planning description configuration wizard 

Once the arm’s configuration had been generated, we had access to several useful kinematic 

services. The most straightforward of these was constraint aware inverse kinematics, which 

allowed us to specify a goal pose, and returned a trajectory of all of the joints to reach that 

location. This service also avoids any path that would cause the arm to collide with itself. This 

was used in several places as a quick but robust method to generate arm joint trajectories. [17]  

 A level higher than that is the move arm package, which actually takes the physical environment 

into account as well as self-collision when planning the joint trajectory [18]. This is the most 

robust kinematic solver included in the arm_navigation stack, but also has the highest 

computational time among the movement options. Like the constraint aware inverse kinematics, 

a goal pose is specified as part of a MoveArmAction, and a set of joint trajectories is returned. In 

fact, the move arm package uses the constraint aware inverse kinematics, after adding constraints 

that signify the environmental obstacles. This particular kinematic solver is used heavily in the 

pickup and place actions, to position the arm in the pre-grasp or pre-place pose. 

Both of these kinematics solvers generate joint trajectories, an array of positions, velocities, and 

accelerations for all links in the arm to reach the desired location. To use this properly, the joint 

trajectories had to be sent to a joint trajectory action server, which essentially steps through the 

trajectory to move the arm properly. This ensures that the arm follows the path that the inverse 

kinematics solvers produced as closely as possible, as simply setting the joints to their final 
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configuration might cause them to collide with other links or environmental obstacles. Thus, a 

good joint trajectory action server is required to really take advantage of the features of 

youbot_arm_navigation. 

Once the arm configuration wizard was run and the arm_navigation code was able to be run, the 

system was functional, but somewhat buggy. A big chunk of the early issues stemmed from 

overly tight constraints on the orientation of the desired goal position. As the youBot arm is a 5 

degree of freedom arm, yaw is constrained by the x and y position of the goal, rather than being 

able to be set, as the arm_navigation code initially assumed. Once we wrote the code to calculate 

the yaw based on the desired position, the arm was able to reach all poses around the base.  

4.2.1 Other Components or Arm Navigation 

Arm navigation requires very few other services to run properly, as it is intended to be a low-

level calculation tool. Specifically, it requires an urdf model of the robot in order to run the 

configuration wizard on. This gives the arm navigation stack the physical data required to 

calculate the joint limits and positions. As the robot configuration that the urdf file contains is the 

one that the arm’s inverse kinematics will be calculated with, this model should be up to date and 

not change. If it does change, then the configuration wizard has to be run again, as we found out 

when we added the Kinect to the youBot arm. This resulted in bumping the Kinect against the 

robot frame until we ran the wizard on the updated urdf file. 

Once the arm navigation stack was implemented, actually calculating the paths to any given goal 

does not require any outside components. However, actually transitioning the trajectory into 

motion requires a trajectory action server, as mentioned above. 

4.3 Object Manipulation 
One of the primary goals of our project was giving the youBot the ability to pick up and place 

objects. The ROS object manipulation stack provides a framework for pick and place actions, 

including standardized message types for describing the object you want to pick up or a grasp to 

be performed [19]. We had to add several robot-specific components to get the object 

manipulation pipeline to work with the youBot, including a grasp planner and our 

implementation of the arm navigation stack discussed in section 4.2.  

4.3.1 Gripper Position Selection 

The standard gripper on the youBot consists of two parallel fingers with a range of 2.3 cm. There 

are three mounting points for the gripper’s fingers to which allow it to pick up a larger variety of 

objects.  

The first gripper position allows the gripper to close fully, with a range of 0 cm to 2.3 cm. This 

allows the youBot to grasp objects that are less than 2.3 cm wide, such as an Expo marker. This 

position also makes it possible to grasp objects such as cups or bowls by grasping the rim of the 

object.  
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The second gripper position gives the gripper a range of 2 cm to 4.3 cm. This allows the youBot 

to grasp most of the blocks and cylindrical objects in our environment as well as objects such as 

books when placed on end. This position has a larger variety of objects that can be grasps using 

standard external grasps, but no longer allows cups and bowls to be picked up by the rim. 

The third gripper position gives the gripper a range of 4 cm to 6.3 cm. This allows some larger 

objects to be grasped, but in this position the fingers are only connected with one screw, leaving 

them unstable which could result in inconsistent grasps.  

We decided to use the second gripper position for the youBot’s gripper, as seen below in Figure . 

This position gives us more options for objects to pick up than the other two, and does not have 

the stability problems of the third position. The first position would limit the graspable objects to 

very small objects and objects with rims. Grasping the rim of an object makes grasp planning 

more difficult, especially when using only a partial point cloud cluster to represent the object. 

Very small objects are also more difficult to find using object detection. We found that the 

second position gave us a good variety of objects that the youBot would be able to grasp, and 

also eliminated the problem of planning grasps for the rim of an object. 

 

Figure : The youBot's gripper 

4.3.2 Grasp Planning 

The object manipulation pipeline supports using two different types of grasp planners. If the 

model of the object you want to pick up is known, a set of good grasps for the object can be 

precomputed and stored in a database, using software such as the “GraspIt!” simulator [20]. A 

database grasp planner can then simply find the model in the database that matches the target 

object and use the precomputed grasps. However, this requires that every object in the robot’s 

environment has an accurate 3D model that grasps can be precomputed against. It also requires 
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accurate object recognition to choose the correct model that corresponds to the object you want 

to pick up.  

The second type of grasp planner plans grasps based on the point cloud cluster that represents the 

target object. This type of cluster grasp planner is more flexible than a database grasp planner 

since it does not require a 3D model of the object to be picked up or object recognition. The 

downside is that the point cloud cluster for an object as seen by the robot’s sensor is usually an 

incomplete representation of the object, which results in grasps that are generally less effective 

than the optimal grasps precomputed for the object’s model. For the youBot, since we did not 

have accurate models of the objects in our environment and did not have object recognition, we 

designed a cluster grasp planner. Even if we had object recognition and an effective database 

grasp planner, the cluster grasp planner can still be used when object recognition fails or for 

objects that are not in the database. 

4.3.2.1 Overhead Grasps 

For the first version of our youBot grasp planner, we focused on finding valid overhead grasps 

for an object. The grasp planner first uses a cluster bounding box service to calculate the 

bounding box for the object’s point cloud cluster. The bounding box is oriented such that the 

object’s x-axis is aligned with the direction of the largest point cloud variance. Each overhead 

grasp is located at the same point directly above the object’s origin. The vertical offset of the 

grasp is calculated using the height of the object, the gripper length, and the gripper offset from 

the center of the palm link. For both the x and y axes, if the bounding box dimension is within 

the gripper range, a grasp aligned with the axis as well as one rotated 180 degrees is added. This 

generates up to four possible overhead grasps for each object, each with the gripper aligned with 

the edges of the object’s bounding box. In addition to finding the grasp point for an object, the 

grasp planner also sets the approach and retreat distances for the grasp and sets the gripper 

postures required to pick up the object, which are based on the object’s width. An example the 

youBot picking up an object with an overhead grasp can be seen below in Figure . 
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Figure : The youBot picking up a rectangular block with an overhead grasp 

4.3.2.2 Angled Grasps 

While overhead grasps are effective for many objects, the range of the arm can be increased if 

angled grasps are also used. Angled grasps are also more likely to work on tables or other raised 

surfaces. Since the KUKA youBot’s arm is a five link serial manipulator with five degrees of 

freedom, it cannot reach any arbitrary six degree of freedom position and orientation. This raises 

problems when attempting to pick up objects with angled grasps. 

When developing a grasp planner that uses angled grasps, we first attempted to use the set of 

grasps aligned with either the x-axis or y-axis of the object for angles between -90° and 90° from 

vertical. However, these grasps were almost never reachable by the youBot’s 5 DOF arm. Our 

solution to this problem was to only use grasps that are aligned with the first joint of the robot 

arm. This constraint generates a set of grasps that are reachable by the 5 DOF arm. However, 

since the grasps are no longer aligned with the object’s axes, they are only effective for 

cylindrical objects. For this reason, we only compute these grasps if the ratio of the x and y 

dimensions of the object’s bounding box is below a certain threshold, in which case we assume 

the object is a cylinder. The yaw angle that is required for an angled grasp to be aligned with the 

first joint of the arm is calculated using the x and y position of the object relative to the first joint 

of the arm. To convert between coordinate frames for these calculations, we use the ROS tf 

package discussed in section 2.1.6 [13].  

 

Figure : The youBot picking up a cylindrical block with an angled grasp 
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4.3.3 Other Components Required for Object Manipulation 

The object manipulation pipeline requires some other robot-specific components in addition to a 

grasp planner and arm navigation to work with the youBot. 

4.3.3.1 Hand Description 

A hand description file is required for the object manipulation node to know the details about the 

youBot’s gripper. This file contains information including the arm name, the coordinate frames 

of the gripper and robot base, the joint names for both the gripper and arm, the links in the 

gripper that are allowed to touch the object, the link that objects are considered attached to when 

picked up, and the approach direction of the gripper. 

4.3.3.2 Grasp Hand Posture Execution Server 

The object manipulation node requires a server to control the posture of the gripper during a 

grasp. The object manipulator node sends an 

object_manipulation_msgs::GraspHandPostureExecutionGoal message to the grasp hand posture 

execution server when it needs the gripper to move. The server then converts this message to a 

brics_actuator::JointPositions message, which is used by the youBot’s drivers, and publishes it to 

move the gripper to the appropriate pose.   

4.3.3.3 List Controllers Server 

The object manipulator node also uses a service that lists the controllers in use and their statuses. 

Our list controllers server for the youBot will return the controllers for both the arm and the 

gripper, and will list them as running if at least one node is subscribed to the controller topic. 

4.3.3.4 Interpolated Inverse Kinematics 

Interpolated inverse kinematics is used when determining the approach and retreat trajectories 

for the grasp. We used the interpolated IK node from the experimental arm navigation stack [21] 

with minor changes to make it compatible with the inverse kinematics for the youBot arm.  

4.3.3.5 Joint Trajectory Adapter 

The object manipulator node uses publishes the joint trajectories to move the arm using a 

different message type than the youBot drivers expect. The object manipulator node uses 

pr2_controllers_msgs::JointTrajectoryAction messages, while the youBot drivers expect 

control_msgs::FollowJointTrajectoryAction messages. These messages both contain the 

trajectory to follow, however the control_msgs::FollowJointTrajectoryAction messages also 

allow you to specify tolerances for the trajectory. We created a simple adapter to convert 

between these message types to make the object manipulator node compatible with the youBot 

drivers. 

4.3.4 Object Placement 

The process of placing an object is very similar to picking up an object, only in reverse. To 

specify a place action we need to know the grasp that was used to pick up the object relative to 



Jenkel, Kelly, Shepanski   3/11/2013   28 

the object’s coordinate frame, and the location to place the object relative to the robot. If multiple 

place locations are specified, the first one that is feasible will be attempted.  

We created an object place location server that makes it easier to specify a place action. This 

server subscribes to the pickup action goal and result messages from the object pickup. The 

pickup action goal message includes information about the object that was picked up, while the 

pickup action result message includes the grasp that was used and whether or not the grasp was 

successful [22].                   

The grasp pose relative to the object is calculated by multiplying the inverse of the original 

object pose relative to the robot from the pickup action goal message with the grasp pose relative 

to the robot from the pickup action result message, using functions from the tf package [13]. This 

transformation is combined with the desired object pose to find the place location relative to the 

robot’s base frame. 

Our object place location server also calculates the height to place the object. When the server 

receives the pickup goal message for an object, it finds the support surface for the object in the 

collision environment, and uses it to calculate the object’s height above the surface. When an 

object is placed, its height is set to the height of the new support surface, plus the object offset 

above the previous surface calculated earlier, plus a small offset so the object will be dropped 

slightly above the surface. If a user specifies the height of the object in their call to the place 

location server, that object height will be used to place the object.  

4.3.4.1 Placement with Angled Grasps 

When placing an object that was picked up with an angled grasp, we need to constrain the place 

angle to align it with the first joint of the arm like we did when picking up the object. When 

placing with angled grasps, the transformation for the grasp relative to the object is rotated to 

counter to yaw of the original grasp. We then calculate the yaw of each place location using the 

desired x and y coordinates relative to the first joint of the arm. This creates a place location that 

is reachable by the 5 DOF arm when the two transformations are combined.  

4.4 Navigation 
The navigation portion of our project was intended to allow easy and accurate driving by both 

other processes and users. By easy we mean that the input into the program would be intuitive 

and simple to figure out. As discussed previously the youbot_overhead_vision and 

youbot_over_head_localization stacks provided good path planning and localization, but 

required calibration for the overhead cameras and simpler input for the navigation goals. 

Specifically we wanted to input meters relative to the robot instead of pixels relative to the 

overhead camera views. 
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4.4.1 Calibrating the Overhead Cameras 

The first step in calibrating the overhead cameras was to consider the lighting in the room. 

Previously the room was lit by the overhead fluorescent lights, however the camera mount is 

directly below the overhead lights so whenever a bulb burnt out the cameras would have to be 

moved and then recalibrated.  

 

Figure : Overhead camera mount 

To mitigate this we switched to using four light mounts in a rectangle, pictured below. This 

allowed us to replace burnt out bulbs without recalibrating.  

 

Figure : Overhead light setup 
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We tried three different types of bulbs to choose the best type of lighting. The types were: 26 

Watt 1750 Lumen CFLs, 15 Watt 750 Lumen indoor floodlights, and 19 Watt 950 Lumen GE 

Reveal CFLs. The main two concerns when deciding what lighting to use was the amount of 

glare the lights caused, and more importantly how close the color of the light was to white. The 

glare is important because it can drown out the rear two color markers, making navigation 

unreliable. The color matters because the entire room including the robot markers gets shaded 

the same color as the light making it harder to distinguish between the markers during color 

subtraction. A third factor was how even the light was across the room. Even lighting was useful 

because it means that the color change as much from location to location in the room 

The overhead florescent lights served as a good baseline for what we were looking for. They 

provided even white light. The only problems were the amount of glare and the overriding 

concern of the position of the lights.  

 

Figure : View from overhead camera using the original lighting 
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Figure : View from overhead camera using 1750 Lumen CFL bulbs 

Compared to the overhead cameras the 1750 Lumen CFL bulbs were worse in every aspect. 

From the picture it is obvious that the light has a large orange tint compared to the original 

lighting, also looking from the top left to middle of the frame there is a large difference in the 

brightness which is not ideal. Finally though it is not apparent from the image the CFL bulbs do 

cause around the same amount of glare as the overhead lights. 

 

Figure : View from overhead camera under indoor floodlights 

The indoor floodlights were an improvement on the 1750 Lumen CFL bulbs in both glare 

reduction and the evenness of the lighting. However they had the same problem of strongly 

tinted light, also while they reduced glare they were almost too dark to work well. 
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Figure : View from overhead cameras using 950 Lumen CFLs 

The 950 Lumen GE CFLs did cause uneven lighting. However the color of the light, while not as 

good as the original lighting, was an improvement over the other too replacement light sources. 

Additionally these lights caused less glare than both the original lighting and the 1750 CFL 

bulbs. In the end we selected these bulbs for the project over the other two because the color of 

the light was the primary consideration.  

After the lighting we performed two main steps to calibrate the overhead cameras, the first was 

calibrating cameras themselves with the guvcview utility and the second was to calibrate the 

color subtraction for the navigation stacks using the calibration application in the 

youbot_overhead vision package. The purpose of the camera calibration was to change the 

camera properties such as the frame rate, resolution, and camera output data type. We also used 

the camera calibration to change values like the brightness and contrast to make the images from 

the cameras similar for users and also to make the color subtraction more accurate. 
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Figure : View from bottom camera without calibration 
 

The major values we changed for the camera properties were the auto exposure and auto focus, 

as well as the resolution and output type. We set both the auto exposure and auto focus to false to 

prevent the exposure and focus from changing during operation and messing up the color 

subtraction calibration. We set the camera output YUYV and the resolution to 800X600 to 

integrate well with the ROS stacks. The other values were set through trial and error mostly to 

minimize glare and maximize the difference in color between the four markers on the robot base. 

One stumbling block in the calibration of the cameras is that they reset every time the computer 

is shut down. The simple solution is to remember to reload the calibration files, we were unable 

to find a way to automate this or keep the calibration through shut down. 

 

Figure :View from bottom camera after calibration 
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The calibration of the color subtraction is both more simple but also more time consuming. The 

first step in setting up for the calibration is to publish the images from the overhead cameras to 

ROS topics. This is also necessary to use the stack for actual navigation. We launch two 

usb_cam_node nodes from a launch file. The nodes read the video from /dev/video0 and 

/dev/video1 and publish to the ROS topics /logitech_9000_camera1 and 

/logitech_9000_camera2. The calibration tools and navigation both listen to these topics for the 

overhead camera information. The one problem with this method is the cameras can switch 

weather they are video0 or video1 whenever the computer is restarted. This is a problem because 

the youbot_overhead_vision stack is hardcoded so the camera1 topic always corresponds to the 

top camera. None of this is necessary in the simulated gazebo environment because it handles 

publishing the camera internally. 

The next step in the overhead navigation calibration was the color subtraction. The first step in 

the color subtraction was to subtract out the floor. However we tried two different ways of 

calibrating the location of the color markers. The first method we tried was to for each camera 

we moved the robot to four different positions. At each location we rotated the robot four times, 

90 degrees each time. At every position and orientation we calibrated the color of the markers on 

the robot. The other method we tried was to calibrate the markers at one position then drive the 

robot some distance and calibrate the markers again. We repeated this until we had good 

coverage of the room and the robot was consistently able to find its position after the drive 

without calibration. Second method resulted in a more robust calibration and was also easier to 

perform.  

4.5 Implementing a Better Interface 
  

The largest problem that we had with the existing youbot_overhead_localization stack was that 

the input for goal coordinates was in pixels relative to the overhead camera image. To improve 

this we wrote another ROS action serve to translate locations in meters to pixels and pass them 

on to the path planner.  This server is in the move_server.cpp file under the rail_movement 

package. At first we tried using the coordinate_conversion server provided in the overhead vision 

package. However we had problems with it returning incorrect output and switched to simply 

inverting the math used by the path planner to convert from pixels to meters. 

The other aspect we wanted to change about the overhead navigation system is that it took world 

coordinates as input for the goal point and we wanted to use coordinates relative to the robot. To 

accomplish this we changed the move_server to add a tf transform point cloud call. We also had 

to write a tf publisher to publish the transform between the robot base frame and the map 

coordinate frame for the transform call to work. We wrote the publisher to subscribe to the 

pose2d topic and publish that location as the transform from the map to the robot. This worked in 

simulation because there is no frame above the base_footprint. 
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Figure : Simulation robot tf tree 

On the real robot there is an additional /odom frame which prevents this approach because tf 

allows only one parent frame. 

 

Figure : Real robot tf tree 

Our solution was to publish the map frame as a separate tree with a robot frame. The robot frame 

is identical to the base_footprint frame in location but there is no connection between them. 
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Figure : Real robot tf with map frame 

The disadvantage of this approach is that it is not possible to directly convert from one of the 

other frames, such as the Kinect or arm, to the map frame. On the other hand it allowed the map 

frame to be above the robots, which makes sense conceptually, and was easy to implement.  
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5 Results 

5.1 Graspable Objects 
We tested the youBot’s ability to pick up the objects shown in Figure . For this test, we placed 

each object centered approximately 15 cm in front of the youBot, within overhead grasping 

range. Table  below shows the success rates for each of the objects tested. All of the objects 

chosen had sizes within the gripper’s range. Some objects, including the expo eraser and book, 

are only graspable when in certain orientations, since the dimension of some of their edges is too 

large for the youBot’s gripper. If the robot is being controlled remotely, and one of these objects 

falls into an orientation that is not graspable, the user will not be able to pick up the object or 

move it to a position that is graspable. Two of the objects tested were not successfully picked up 

by the youBot. The small wood block was too small to be found by the object detection, and 

therefore couldn’t be picked up. The screwdriver was partially picked up by the youBot three of 

five times, lifting the handle off the ground. However, the screwdriver slipped out of the gripper 

before it could be fully lifted. The average success rate for the objects tested, excluding the 

objects that were never successfully picked up, was 88%. During the failed pickups for these 

objects, the gripper was usually close to making a successful grasp, but was slightly off and hit 

the object during the approach. 

 

Figure : Objects used for the grasping tests 
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Table : Success Rates of Picking up Various Objects 

Object Attempts Successful 
Success 

% 
Notes 

Red Cylindrical Block 10 9 90% 
 

Yellow Rectangular Block  

(aligned with robot) 
5 5 100% 

 

Yellow Rectangular Block  

(rotated 90 degrees) 
5 5 100% 

 

Yellow Rectangular Block  

(rotated 45 degrees) 
5 4 80% 

 

Toy Can 5 4 80% 
 

Expo Eraser (on long 

edge) 
5 5 100% Not graspable when laid flat 

Expo Eraser (on short 

edge) 
5 3 60% Not graspable when laid flat 

Masking Tape (on end) 5 4 80% Not graspable when laid flat 

Small Book (on end) 5 5 100% Not graspable when laid flat 

Small Wood Block 3 0 0% 
Too small to be recognized by 

object detection 

Screwdriver 5 0 0% 

Lifted handle off ground 3 

times without a good enough 

grip to fully pick up 

 

5.2 Arm Workspace for Grasping 
We tested the workspace where the youBot can successfully pick up objects off the floor, and 

compared the workspace when using only overhead grasps to the workspace when angled grasps 

were allowed. For these tests we used the red cylindrical block, which is graspable by both 

overhead and angled gasps. The workspace for picking up objects is circular, centered at the first 

joint of the arm. Using overhead grasps, the block can be picked up at a distance of up to 31.5 

cm from the first joint of the arm. This corresponds to 18 cm from the edge of the robot if the 

object is centered in front of the youBot.  
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Next, we tested the workspace for picking up the same block using angled grasps. We found that 

the block could be picked up with angled grasps at a distance of up to 42.3 cm from the first joint 

of the arm. For objects centered in front of the robot, angled grasps increase the pickup range to 

28.8 cm from the front of the robot, which is a 60% increase over using only overhead grasps. 

Objects that are not cylindrical are only graspable using overhead grasps, limiting the maximum 

range that they can be picked up from  

The minimum range for picking up objects is depends on several factors, making it not well 

defined. For an object to be picked up, it needs to be visible by the Kinect and must be 

recognized by the object detection. If the object is too close to the robot, it may not be 

successfully recognized or may be combined with part of the robot by the object detection. The 

grasp must also be reachable without collision for a grasp to be attempted. The Kinect, which is 

mounted to the last link of the arm, would be in collision with the robot body during many of the 

grasps for objects very close to the robot. 

5.3 Table Pickup 
Picking up objects off a table or other elevated surface is more difficult than picking up objects 

off the floor. The increased height approaches the edge of the arm’s reachable workspace, 

making overhead grasps no longer reachable by the arm. Since table pickups need to use angled 

grasps, they are generally only effective for cylindrical objects, since the grasps must be aligned 

with the base of the youBot’s arm to be reachable. In addition to the grasp position being 

reachable, the approach and retreat must also have valid inverse kinematics solutions. We 

reduced the approach and retreat distances which makes them more likely to stay within the 

arm’s reachable workspace. It is also important that the table is correctly added to the collision 

environment to avoid attempting grasps that would cause the arm or Kinect to collide with the 

table. On the floor, grasps where the Kinect is below the arm are usually used. When picking up 

object off the table, grasps with the Kinect above the arm, like the one shown below in Figure , 

keep the Kinect away from the table. However, due to joint limit limitations, this Kinect position 

can only be achieved when the first joint of the arm is facing backwards, which limits the arm’s 

range. The Kinect cannot be in the position above the arm if the object is centered in front of the 

robot, since the first joint cannot rotate a full 360°. Object detection is also more difficult on 

tables. When we use the same arm position for the Kinect to look at the objects as we use for 

objects on the floor, the Kinect is too close to the object on the table to see it due to the sensor’s 

minimum range of approximately 0.8 m [23]. To overcome this problem, we added an arm 

position for table pickups that moved the Kinect farther from the object. With these 

modifications, the youBot can successfully grasp cylindrical objects off tables as shown in 

Figure . 
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Figure : The youBot picking up a block off a table 

5.4 Object Placement 
On the floor, the youBot can consistently place objects that were successfully picked up as long 

as the specified place location is reachable by the arm. Objects are released about 2 mm above 

the floor, which avoids collisions with the floor before releasing but is low enough so the block 

falls into the desired location without bouncing. The orientation for the object to be placed can 

be specified if the object was picked up with an overhead grasp. This is demonstrated in Figure , 

which shows the youBot after placing the yellow block at a 45° angle. For objects picked up with 

angled grasps, the place orientation cannot be specified. An example of the youBot placing an 

object that was picked up with an angled grasp can be seen in Figure . 

We could not get placement on tables to work correctly. Since the table is at the edge of the 

arm’s workspace, we were unable to find a place location that was reachable by the arm. 

Placement may be more effective on a lower table than the 29 cm table we used. Table 

placement may also be more effective if we removed the constraint that the object must be 

placed at the same orientation as it was picked up in. This would allow the object to be placed at 

an angle that is reachable by the gripper, but would place the object in an unstable orientation 

that would fall into an unpredictable position. Even though table placement does not work, 

objects picked up off a table can be placed in a different location on the floor. 
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Figure : The youBot after placing a block at a 45° angle 

 

 

Figure : The youBot placing a cylindrical object that was picked up with an angled grasp 

5.5 Kinect Calibration 
The calibration of the exact position and orientation of the Kinect sensor on the youBot’s arm 

plays a major role in the success of an object pickup. If the Kinect calibration is not accurate, the 

position of objects it detects will also not be accurate. When the youBot tries to pick up an 

object, it will miss if the Kinect calibration is incorrect, often hitting the object with the gripper 

during the approach to the grasp point. We calibrated the Kinect’s position manually, which does 

not result in an ideal calibration. Also, if the Kinect is bumped it may move slightly, which 
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changes the calibration. An accurate automatic method of calibrating the Kinect would solve 

these issues. One possible automatic calibration method would be to recognize a part of the 

robot’s base with a known position, and use its location as seen by the Kinect to set the 

calibration. Implementing some type of automatic calibration method is recommended for future 

work. 

5.6 Object Detection 
We measured the accuracy of the object detection code by placing a few of our objects at set 

positions and then recording the distance the Kinect detected them at. The first set of positions 

was a row two meters away from the robot, one directly in front of the robot and the other two 

.75 meters on either side. 

 

Figure : Far object detection test 

The second set of positions was similar to the first but only one meter away with the other two 

positions only half a meter away on either side. We put the positions on either side closed for the 

short distance because the Kinect’s field of vision narrows closer to the robot. 
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Figure : Close object detection test 

The Kinect was able to detect each type of object at each position but with a small error. The 

Kinect measured distances are shown in the table below. 

 

Table : Kinect Measured Object Distances 

Locations: Far Left Far Middle Far Right Near Left Near 

Middle 

Near Right 

 x(m) y(m) x(m) y(m) x(m) y(m) x(m) y(m) x(m) y(m) x(m) y(m) 

Actual 2 0.75 2 0 2 -.75 1 0.5 1 0 1 -0.5 

Soup Can: 2.04 0.84 2.04 0.06 2.08 -0.7 0.98 0.53 1.01 0.03 1.03 -0.46 

Red Block: 2.05 0.84 2.04 0.06 2.08 -0.69 0.98 0.53 1 0.03 1.04 -0.45 

Yellow 

Block: 

2.04 0.84 2.04 0.06 2.08 -0.7 0.98 0.53 1.01 0.03 1.04 -0.45 

 

Looking at the measurements we can see that the error for each position was almost constant for 

each of the different types of object at each position. Specifically the largest difference between 

the measurements for any two objects at any one position was only one centimeter. Another 

interesting aspect of the data is that the measurements for the y position were always skewed in 

the same direction. For example all the measured y positions for the far row were between .05 

and .09 meters to the left of the correct position. In the near row all the measured y positions 

were similarly offset but only varied from .03 to .05 meters. This indicates that the Kinect was 

taking correct measurements but our calibration of where the Kinect was facing was slightly off. 
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5.7 Navigation 
The goal of the navigation portion of our project was to provide accurate and reliable 

autonomous driving throughout the workspace. To quantify this we took two statistics, in the 

first we told the robot to drive one meter straight from a fixed point and recorded the actual 

distance driven. The second experiment was similar but instead of one fixed point we used 

locations throughout the room. 

The Average accuracy of the fixed one meter drive was .99 meters; however this is not the most 

telling statistic as the robot went both over and under shot the goal point. Far more informative is 

the standard deviation which was .03 cm. This tells that around 95 percent of the time the robot 

will be within 6cm of the goal point when driving in a single direction. This is a reasonable 

accuracy. The average when driving from different points was .96 and the standard deviation was 

.017.  While the standard deviation was lower it should be noted that is because the actual drive 

distances were clustered at slightly less than a meter. The overall result is that the navigation is 

reasonably accurate and works similarly well throughout the room. 

5.8 Combined 
We measured how well the navigation and arm worked with each other and the object detection 

with two tests. In the first we put the robot at a point and the object at another fixed point then 

instructed the robot to detect and move to the object. After the robot moved we measured the 

distance from the arm to the object and if the arm was able to pick up the object. The other test 

was similar but the robot and object’s position were varied to test if the results were similar 

throughout the workspace. 

In the first test the average resulting distance from the object was 27 cm and the standard 

deviation was 7 cm. Only one move out of five failed to reach a position where it could grab the 

object. That move resulted in a distance of 40 cm from the object. In the second test the average 

distance was 26 cm and the standard deviation was 8 cm. Similar to the first test only one of five 

failed to reach a position where it could grab the object. In that case it ended 41 cm away from 

the object. It is important to note that the goal for this test was not to reach exactly zero 

centimeters away as this would mean the object was under the base of the robot. Instead around 

20 to 30 centimeters was an ideal range. 
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6 Limitations and Future Work 

6.1 User Interface 
The system is currently operated almost exclusively from the command line, which is effective 

for development purposes, but needs to be made user-friendly for online use. For this reason, an 

interface between the online component and the code developed as part of this MQP is an 

important future work. Before the portions that we created can be used as part of the final 

product, a simplified user interface is required, one that is easily controllable over the web 

interface. 

6.2 Kinect Auto-Calibration 
One of the major difficulties and time sinks during our development periods was dealing with 

Kinect miscalibration. Even a small bump could upset the Kinect's position on the arm, creating 

discrepancies of several centimeters when determining the object locations. While this was not a 

major difficulty for the navigation control, due to the small gripper size, these errors made it 

almost impossible to actually grasp objects. As the arm has very little margin for error, the 

Kinect requires some method of self-calibration. During the project, we made due with manual 

calibration, by placing objects in front of the robot and using visualization software to determine 

where the Kinect saw the objects and changing the calibration numbers manually. 

An improved design should involve some known pattern that can be quickly used to calibrate the 

Kinect. Our suggested idea would be to place some kind of AR tag on the youBot's plate, and 

have the Kinect look at it upon startup to calibrate properly. This would help to maintain the 

arm's accuracy and ensure that pickup functionality is consistent. 

6.3 Better Navigation 
The current navigation code has some major issues that should be resolved to improve the entire 

system's functionality. The most glaring issue is the inability to select a facing direction at the 

desired destination. The youBot can make it to almost any point in the room, but there is no 

telling which direction the robot will be facing once it gets to that location. This leads to 

inconsistent results when attempting to pick up an object, as the robot may move close to the 

object, but be facing in a direction which does not allow the arm to actually reach the object, and 

there is no method to correct the orientation of the robot in the current implementation. As the 

robot's wheels are holonomic, there should be no issue with approaching a destination in any 

orientation, making the oversight particularly glaring. 

The youBot localization code can also be improved substantially. The system uses the overhead 

cameras to find colored markers on the corners of the youBot, which is used to determine the 

robot's position. The issue comes from the fact that the lighting is not entirely consistent, 

requiring frequent recalibration of the color detection. For this reason, the localization should be 
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revised to be more robust, possibly with the use of an AR tag to determine the robot's position. 

This could be the same AR tag used for the Kinect auto-calibration, to reuse the same systems. 

Another possibility might utilize better cameras to hopefully reduce the error caused by 

changing light conditions. 

6.4 Gripper Improvement 
The standard youBot gripper is extremely limited in its versatility, which greatly hampers 

number of applications for the system as a whole. With only 2.3 centimeters of travel, there is 

very little margin for error in grasping objects. Given the maximum size of 4.3 centimeters, the 

gripper cannot grab any large objects, and many of the small objects that it can pick up can be 

difficult to detect with the Kinect. There is also no force feedback within the system, making 

every grasp attempt a blind reach, and precluding the attempt to grab fragile objects. For this 

reason, it would be beneficial to redesign or otherwise improve the gripper mechanism. 

6.5 Power Connection 
The youBot requires some form of improved power and internet connection. The current system 

is tethered to the wall, with the cords laying on the ground. These are obviously obstacles for the 

youBot, and especially given the fact that the robot uses holonomic drive, they often run the risk 

of throwing off the youBot's odometry, not to mention the risk of getting pulled out of the wall 

and disconnecting the youBot. For this reason, a system needs to be developed to keep the cords 

off the ground and out of the youBot's path. We considered working on this during our project, 

but decided to focus on implementing the robot software architecture instead. 

6.6 Object Recognition 
A possible improvement to the youBot's pickup and place functionality would be to add the 

ability to perform object recognition rather than just object detection. This would require adding 

a library of the common 3D models that the youBot can pick up, and attempting to match the 

model to the objects detected by the Kinect. This would provide several benefits, such as being 

able to pre-process the most efficient grasps for that object, providing greater feedback to the 

user by specifying which object is detected, and allowing for better recognition of obscured 

objects. 



Jenkel, Kelly, Shepanski   3/11/2013   47 

7 Conclusion 
In this project we designed a system to allow for arm movement, navigation, and object 

manipulation for the youBot platform. To do this, we took advantage of existing ROS 

architecture that dealt with manipulation, and tailored it to the youBot's physical setup. By 

using these open source architectures, we were able to reduce our development time and 

focus on fine-tuning the robot's performance. We also modified the youBot hardware to 

include a Kinect and used this addition to perform accurate object manipulation. 

The arm movement code is robust, taking into account both self-collision and environmental 

hazards to avoid damaging the arm. The system has also been optimized towards the 

youBot's specific manipulator, by constraining the system to be consistent with the arm's 

own 5 degree of freedom constraints. Several methods of controlling the arm were 

implemented, from a simple prompt for a desired pose, to a virtual interactive marker, to an 

automated system that moves the arm towards detected objects. Finally, a set of often-used 

arm configurations was created, to allow for easy movement of the arm to positions that 

provide the Kinect with a useful field of view, or minimize the chance that the arm will block 

the overhead detection's view of the corner markers. 

The navigation system has been updated with an improved interface, in order to move 

based on the robot's local coordinates. Several systems were implemented to convert 

destinations detected locally by the Kinect into a drivable location in the world frame, 

despite major differences between the two systems. The lighting was also updated to be 

more consistent, improving system reliability, and the overhead cameras were calibrated 

accordingly. The navigation has also been connected with the object detection code, in 

order to provide for automated movement to a detected object. 

Object manipulation code was implemented, to pick up and place objects detected by the 

Kinect. This involved extensive customization of the ROS open source object manipulation 

code, to determine and evaluate grasps based on the Kinect's 3D images. The final system 

can pick up objects both on the floor and on table surfaces that the arm can reach. Once it 

picks up an object, the youBot can place it in any reachable location on the floor, in the 

same orientation that it was picked up in. A simple prompt-based interface was also created 

to allow for quick access to this functionality. 

All of these components were designed to function as a low-level control interface for the 

youBot as this project goes forward. While these functions are not at the point where they 

are easily accessible to a common user, they provide a solid framework on which to build a 

more complex system. This project took advantage of open source code and customized it 

to the youBot system, focusing on providing robust and consistent performance in these low 

level interfaces. 
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