
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2016

Deep Q-Learning for Humanoid Walking
Alec Jeffrey Thompson
Worcester Polytechnic Institute

Nathan Drew George
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Thompson, A. J., & George, N. D. (2016). Deep Q-Learning for Humanoid Walking. Retrieved from https://digitalcommons.wpi.edu/
mqp-all/719

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F719&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F719&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F719&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F719&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/719?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F719&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/719?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F719&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Deep Q-Learning for Humanoid Walking

Submitted by:

Alec Thompson, Nathan George

Project Advisors:

Professor Michael Gennert, Professor Joseph Beck

April 28, 2016

i

Abstract
Existing methods to allow humanoid robots to walk suffer from a lack of adaptability to

new and unexpected environments, due to their reliance on using only higher-level motion

control with relatively fixed sub-motions, such as taking an individual step. These conventional

methods require significant knowledge of controls and assumptions about the expected

surroundings. Humans, however, manage to walk very efficiently and adapt to new environments

well due to the learned behaviors. Our approach is to create a reinforcement learning framework

that continuously chooses an action to perform, by utilizing a neural network to rate a set of joint

values based on the current state of the robot. We successfully train the Boston Dynamics Atlas

robot to learn how to walk with this framework.

ii

Acknowledgements
 We would like to thank Professor Gennert and Professor Beck for guiding us in

understanding our project, giving feedback when necessary, and helping us reach realistic goals.

We would like to thank Batyrlan Nurbekov for working with us in shaping our original Q-

learning and Neural Network framework. We would also like to thank the member of the WPI

Humanoid Research Lab for helping us learn to interface with Atlas, start the real robot, and

guide us in understanding parts of our project.

iii

Authorship
Section Writer Editor

Abstract All All

Acknowledgements All All

Chapter 1: Introduction Nathan George All

Chapter 2: Background All All

2.1: Boston Dynamics Atlas Nathan George All

2.2: Walking with

Humanoid Robots

Nathan George All

2.3: Robot Operating System Alec Thompson All

2.4: Robotic Learning All All

2.4.1: Q-Learning All All

2.4.2: Neural Networks Alec Thompson All

2.4.3: Software Alec Thompson All

Chapter 3: Procedure All All

3.1: Our Approach Alec Thompson All

3.2: Design Phases Alec Thompson All

3.3: Framework All All

3.3.1: Atlas I/O Layer Nathan George All

3.3.2: Q-Learning Layer Nathan George All

3.3.3: Neural Network Layer Alec Thompson All

3.4: High-Level Design All All

3.4.1: Action Representation Nathan George All

3.4.2: State Representation Nathan George All

3.4.3: Exploration Alec Thompson All

3.4.4: Issuing Commands Nathan George All

3.4.5: Reward Calculation Nathan George All

3.5: Mixed Level Design All All

3.5.1: State Representation Alec Thompson All

3.6: Low Level Design All All

iv

3.6.1: Action Representation Nathan George All

3.6.2: State Representation Nathan George All

3.6.3: Action Selection Alec Thompson All

3.6.4: Exploration Alec Thompson All

3.6.5: Issuing Commands Nathan George All

3.6.6: Reward Calculation Nathan George All

3.6.7: Parallelization of

Neural Network Updates

Alec Thompson All

Chapter 4: Results Alec Thompson All

4.1: Q-Learning Framework Alec Thompson All

4.2: High Level

Implementation

Alec Thompson All

4.3: Mixed Implementation Alec Thompson All

4.4: Low Level

Implementation

Alec Thompson All

Chapter 5: Future Work All All

Chapter 6: Conclusion Nathan George All

v

Table of Contents

ABSTRACT ... I

ACKNOWLEDGEMENTS .. II

AUTHORSHIP .. III

TABLE OF CONTENTS .. V

TABLE OF FIGURES ... VII

TABLE OF EQUATIONS... VIII

CHAPTER 1: INTRODUCTION .. 1

CHAPTER 2: BACKGROUND .. 2

2.1: BOSTON DYNAMICS ATLAS.. 2
2.2: WALKING WITH HUMANOID ROBOTS .. 3
2.3: ROBOT OPERATING SYSTEM .. 3
2.4: ROBOTIC LEARNING ... 3

2.4.1: Q-Learning .. 4
2.4.2: Neural Networks .. 8
2.4.3: Software ... 9

CHAPTER 3: PROCEDURE .. 11

3.1: OUR APPROACH ... 11
3.2: DESIGN PHASES .. 11
3.3: FRAMEWORK ... 12

3.3.1: Atlas I/O Layer .. 12
3.3.2: Q-Learning Layer .. 14
3.3.3: Neural Network Layer .. 16

3.4: HIGH-LEVEL DESIGN .. 18
3.4.1: Action Representation .. 18
3.4.2: State Representation .. 19
3.4.3: Exploration ... 19
3.4.4: Issuing Commands ... 20
3.4.5: Reward Calculation .. 20

3.5: MIXED-LEVEL DESIGN .. 21
3.5.1: State Representation .. 21

3.6: LOW-LEVEL DESIGN ... 22
3.6.1: Action Representation .. 22
3.6.2: State Representation .. 22
3.6.3: Action Selection .. 22
3.6.4: Exploration ... 23
3.6.5: Issuing Commands ... 24
3.6.6: Reward Calculation .. 24
3.6.7: Parallelization of Neural Network Updates .. 27

CHAPTER 4: RESULTS ... 28

4.1: FRAMEWORK ... 28
4.2: HIGH-LEVEL IMPLEMENTATION .. 28
4.3: MIXED-IMPLEMENTATION .. 29
4.4: LOW-LEVEL IMPLEMENTATION... 29

CHAPTER 5: FUTURE WORK ... 31

vi

CHAPTER 6: CONCLUSION .. 32

REFERENCES ... 33

APPENDICES... 34

APPENDIX A .. 34
Pseudocode for Deep Q-Learning as implemented in Playing Atari with Deep Reinforcement Learning 34

vii

Table of Figures
FIGURE 1: JOINT SYSTEM OF ATLAS .. 2
FIGURE 2: EXAMPLE MAP WITH INTERCONNECTED ROOMS, INCLUDING PATH COSTS... 5
FIGURE 3: INITIAL Q-MATRIX .. 5
FIGURE 4: INITIAL R-MATRIX ... 6
FIGURE 5: FINAL Q-MATRIX ... 6
FIGURE 6: REPRESENTATION OF A NEURAL NETWORK – SOURCE: HTTPS://COMMONS.WIKIMEDIA.ORG/WIKI/USER_TALK:GLOSSER.CA 8
FIGURE 7: FLOWCHART OF Q-LEARNING FRAMEWORK ... 12
FIGURE 8: IO SERVER FLOWCHART .. 13
FIGURE 9: COMPONENTS OF THE Q-LEARNING SERVER .. 15
FIGURE 10: HIGH-LEVEL REWARD .. 21
FIGURE 11: EXAMPLE OF ITERATIVE CONSTRUCTION OF LOW LEVEL ACTION .. 23
FIGURE 12: COMPOSITION OF REWARD FOR LOW-LEVEL TRAINING ... 27
FIGURE 13: HIGH-LEVEL PHYSICAL TEST RESULTS ... 28
FIGURE 14: LOW-LEVEL TRAINING PERFORMANCE ... 30

viii

Table of Equations
EQUATION 1: THE Q-EQUATION ... 4
EQUATION 2: Q-EQUATION EVALUATING MOVING TO STATE 5 FROM STATE 1 .. 6
EQUATION 3 .. 7
EQUATION 4: GRADIENT EQUATION FOR ATARI Q-LEARNING .. 7
EQUATION 5: COST EQUATION .. 17
EQUATION 6: LOSS EQUATION... 17
EQUATION 7: UPDATE BY GRADIENT DESCENT .. 18
EQUATION 8: SIMULATED ANNEALING ENERGY ... 20
EQUATION 9: PROBABILITY OF SELECTING NEW ACTION .. 20
EQUATION 10: TIME REWARD CALCULATION .. 24
EQUATION 11: DISTANCE REWARD CALCULATION ... 24
EQUATION 12: ANGLE REWARD CALCULATION ... 25
EQUATION 13: GRADUAL REWARD COMPUTATION .. 25
EQUATION 14: STABILITY REWARD COMPUTATION .. 25
EQUATION 15: JOINT ANGLE REWARD CALCULATION ... 26
EQUATION 16: JOINT TORQUE REWARD CALCULATION ... 26

1

Chapter 1: Introduction
Many control systems for humanoid walking need to model the kinematics for multiple

joints, use path planning algorithms for obstacle avoidance, trajectory optimization to avoid

singularities, and possibly model a dynamic system for force-torque control. While for simpler

robots, these methods are very effective, when the number of joints increase, the complexity

makes the modelling become less accurate. It is also hard to adapt the systems to new

environments because the motion must be pre-planned. Even with Simultaneous Localization

and Mapping (SLAM), the motion the robot takes to advance its position is pre-planned. For

most of these systems, they need exteroceptive sensor information, information about the

environment, to adjust the robot path plans.

Instead of thinking as the robot as an entity to model and control, we propose to view the

robot as an agent with multiple possible actions it could take, with the goal of maximizing a

reward it is given. This reward is to move a certain distance, assumedly, by walking. Reward

maximization is a common approach in the area of reinforcement learning. Previously, even

attempting such a method as reinforcement learning for robots would be impossible as the

number of possible actions—the action space—of the robot is too large, even if discretised; but

with the advancement in processing with Graphical Processing Units (GPUs), such methods are

plausible.

With this approach for humanoid walking, the input into the system is some sensor data,

and the output is a set of joint angles that, at a particular moment in time, would advance the goal

of walking. Now, simply choosing the best action replaces complicated control systems. We also

do not need to model or analyze exteroceptive sensor data; we only need to pass it and

proprioceptive data, information about the robot, into the system.

2

Chapter 2: Background

2.1: Boston Dynamics Atlas
Atlas is a humanoid robot given to WPI by the DARPA Robotics Challenge (DRC). WPI

worked with Carnegie Mellon University (CMU) to develop a software system capable of doing

challenging disaster recovery-based tasks, including walking over rubble, drilling, turning a

door, turning a valve, and climbing up stairs [1] [2].

Wall power and a generator through a power conversion module power Atlas. Atlas also

has wireless emergency and wired hard stops in case the robot performs undesired motions. For

perception hardware, Atlas has a MultiSense-SL head, equipped with illuminators, stereo-vision

cameras, and LIDAR; an IMU; and attachable hands. Internally, the robot has a 1 degree of

freedom (DoF) neck, 6 DoF arms, 6 DoF legs, and a 3 DoF back [3], as depicted in Figure 1.

Figure 1: Joint System of Atlas

The legs, back, shoulders, and elbows are hydraulically activated, and the wrists and neck

utilize electric motors [3]. Of these degrees of freedom, 15 are necessary for walking – both legs

and the back.

3

2.2: Walking with Humanoid Robots
The task of walking for robots has always been an interesting and challenging problem.

The majority of robotic frameworks, up to this point, have been wheel-based, as motors spin

circularly. Walking, on the other hand, involves moving many muscles at various speeds and

angles synchronously. Such a task is hard to mimic in a robot because humans do not fully

understand the details of our gait. There have been successful attempts at humanoid walking; but

the majority of attempts are isolated to flat terrain with awkward stepping patterns to minimize

the chance of falling over.

Usually, these attempts try to keep the robot statically stable—at any point in time, if

power to a humanoid robot was cut, the robot would not fall over. This is because the robot

constantly keeps its center of gravity in the center. Humans, though, walk dynamically; when we

walk, we assume that future movements of our body will prevent us from falling over. For

example, humans lean forward when walking to maximize efficiency. Gravity propels us forward

instead of just muscle movement; but if we suddenly stopped moving our joints, we would fall

over.

One of the goals with our project is to learn how to walk dynamically. Currently,

implementing statically stable systems for humanoid robots seem challenging enough. To bypass

this, we look to how human infants walk—by trial and error. It seems they learn to walk by

trying over and over; and eventually, after many attempts, they finally find the muscle memory

that appears to work. We hope a similar strategy works with humanoids as well.

2.3: Robot Operating System
Robot Operating System (ROS) is an open source library covering almost all aspects of

robot software, from drivers to control algorithms. It provides a framework to handle control of a

robot’s subsystems at both high and low levels and is the software that runs the Atlas robot [4].

2.4: Robotic Learning
Robot learning is a term used to describe concepts involving both robotics and machine

learning. Machine learning is taking data, usually large quantities, discovering patterns in the

data, and learning how to best utilize those patterns. Usually, using software involves taking

input and producing output; while such tasks speed up processes, it does produces work similar

4

to what a human could do with a vast amount of time. Learning, on the other hand, aims to

produce output that a human could not figure out.

Our project is based on the subfield of reinforcement learning that has an agent, or

system, learn using a reward system. A critic, or an algorithm, determines which action is most

optimal to perform in a specific environment based on various attributes that the final state of the

agent should have. In our case, we want our agent Atlas to be in a final state of having walked a

few steps without having fallen over. We will accomplish this using a Q-learning framework

with a neural network to pick the specific actions.

2.4.1: Q-Learning
Q-learning is a reinforcement learning technique; and as mentioned previously,

reinforcement learning tries to learn the best decisions in an environment based on some reward

function. What makes Q-learning unique is that it aims to incorporate the traditional concepts of

machine learning with newer ones. Q-learning essentially tries to find a state-action pair that will

get an agent closer to its goal by not only incorporating current data but also data from the past to

support hypotheses into the future. A state is how the environment currently is situated. An

action is what an agent would do to change its orientation in the environment.

One example of Q-learning is illustrated through a door-based problem. It finds its

current state-action pair by finding Q values for every possible state-action pair. If the state-

action domain is too large, the domain would have to be discretized in some way. A Q value for

a specific state-action pair is found by adding its previous Q value (the R value) to a learned

constant multiplied by a future state-action pair—a state-action pair that logically follows from

the current state-action pair—that has the highest current Q value already, as visible in Equation

1.

Equation 1: The Q-Equation

𝑄(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛) = 𝑅(𝑠𝑡𝑎𝑡𝑒, 𝑎𝑐𝑡𝑖𝑜𝑛) + 𝛾 ∗ 𝑀𝑎𝑥[𝑄(𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒, 𝑎𝑙𝑙 𝑎𝑐𝑡𝑖𝑜𝑛𝑠)]

For example, suppose we have rooms that can only access other rooms, specified by

forward arrows, as visible in Figure 2.

5

Figure 2: Example map with interconnected rooms, including path costs

Our ultimate goal is to get from state 2 to state 5 in the shortest amount of actions. To do

so, we need to find Q values for all states, states 0-5. At the start, all Q values are initialized to

zero and the R values are specified by the number next to the rays of the room diagram above

(Figure 3, Figure 4). The ray values can also be specified by an R matrix.

Figure 3: Initial Q-matrix

6

Figure 4: Initial R-matrix

We can start with state one. Its possible actions are moving to state 3 and state 5. One is

chosen randomly, which we can say is state 5 (Equation 2).

Equation 2: Q-Equation evaluating moving to state 5 from state 1

𝑄(1,5) = 𝑅(1,5) + 0.8 ∗ 𝑀𝑎𝑥[𝑄(5,1), 𝑄(5,4), 𝑄(5,5)] = 100 + 0.8 ∗ 0 = 100

The R value for (1,5) is 100. The learned constant is .8. The highest Q value among (5,1),

(5,4), and (5,5) is 0. One might think (5,5) should give a value of 100 because going from state

(5,5) has a reward of 100; but this is for the R matrix only. The Q matrix is still initialized to

zero. Therefore, the equation leads to a final value of Q(1,5) = 100.

After multiple iterations for every state-action pair and after normalizing the learned

values, the Q matrix converges, as depicted in Figure 5.

Figure 5: Final Q-Matrix

7

Then, using just this Q matrix, we can see that the best state-action list we can choose is

(2,3), (3,1) or (3,4), and (1,5) or (4,5) [5].

This example differs slightly from an implementation that makes use of a neural network,

for example when applied to a few Atari games such as Pong, Breakout, and Space Invaders.

This Q-learning algorithm is based on a replay memory, or a set of experiences. An experience is

the current state, current action, current reward for that action, and next state produced from the

current action. For a chosen number of episodes—iterations of the algorithm—either choose an

action with probability ϵ for some random small value or choose 𝑎𝑡 using Equation 3.

Equation 3

𝑎𝑡 = 𝑚𝑎𝑥𝑎𝑄
∗(𝜙(𝑠𝑡), 𝑎; 𝜃)

In this equation Q* is the optimal action-value function that tries to find a future action

that will optimize the reward, 𝜙(𝑠𝑡) is the pre-processed RGB color data from the simulation,

essentially the state of the game, a is an action, and theta consists of the weights for a neural

network. In this case, the Q-network can be optimized by minimizing a series of loss functions

for each iteration i. The action is then executed in an Atari simulation so that the reward

can be calculated and next image xt+1 can be made. Then the next state st+1 is created by storing

the current state, current action, and next image. The next pre-processing of the data is stored

from the next state. An experience is now created by storing the current pre-processing, current

action, current reward, and next pre-processing. (The pre-processing data are essentially the

states.) The reward output y is then calculated and a step of gradient descent is taken to change

the weights for the Q-network.

Equation 4: Gradient equation for Atari Q-Learning

∇𝜃𝑖𝐿𝑖(𝜃𝑖) = 𝔼𝑠,𝑎~𝜌(⋅);𝑠′~𝜀 [(𝑟 + 𝛾
𝑚𝑎𝑥 𝑄
𝑎′

(𝑠′, 𝑎′; 𝜃𝑖−1) − 𝑄(𝑠, 𝑎; 𝜃𝑖)) ∇𝜃𝑖𝑄(𝑠, 𝑎; 𝜃𝑖)]

In Equation 4 ∇𝜃𝑖 is the gradient of the current weights, 𝔼𝑠,𝑎~𝜌(⋅);𝑠′~𝜀 is the floor function

to apply to the estimation of the value of the action-state mapping, r is the reward, γ is a learned

8

constant,
𝑚𝑎𝑥 𝑄
𝑎′

(𝑠′, 𝑎′; 𝜃𝑖−1) is the optimal future Q value, and 𝑄(𝑠, 𝑎; 𝜃𝑖) is the current Q value.

The pseudocode for the Q-learning algorithm for Atari is found in Appendix A.

2.4.2: Neural Networks
While the Q-learning framework decides which action will be taken next, a neural

network helps figure out correlations between input and possible actions. A neural network,

conceptually adapted from the connections of neurons in the brain, can be used to approximate

almost any multiple-input function. The nodes, similar to neurons, are connected by links,

similar to synapses, of differing weights that simulate how important each connection is. These

nodes are then arranged into layers, with a minimal neural network containing only an input

layer and an output layer. The variant of neural networks that we are using is the deep neural

network, which includes one or more hidden layers in between the input and output layers. These

layers perform additional transformations on the input, and allow the network to approximate a

wider range of increasingly complex functions [6]. A graphical rendition of a simple neural

network is in Figure 6.

Figure 6: Representation of a neural network – Source: https://commons.wikimedia.org/wiki/User_talk:Glosser.ca

https://commons.wikimedia.org/wiki/User_talk:Glosser.ca

9

In the above rendition, the input data (in this case, three numeric values) would be passed

into the input nodes. Then, with each connection, the value is multiplied by a weight and has a

bias added. Each input to the hidden layer is summed. The hidden layer than applies the same

process to generate the output values.

These can be used in many areas, from computer vision, such as handwriting recognition,

to robot control as proposed in this paper. In the case of handwriting recognition, the input is an

image of a number or a letter, and the output is a guess as to which number or letter the neural

network thinks it is.

Neural networks are trained by either running them through labelled training data for a

supervised neural network, or by running the network through training or actual data and then

evaluating the resultant state with a reward function. The result of the action taken is then back-

propagated through the network using a gradient descent, which is the derivative of some cost

function, generally the difference between the output and the expected value from the labelled

data or reward function. The ultimate goal is to minimize the cost function, meaning that the

neural network’s output for a given input matches the reward or data label for the given input [7].

Whether using a utility function or labelled data to fuel the backpropagation error setting,

a neural network is designed to be a structure that can learn the importance of particular features

of a dataset [8]. Its strength lies in that it operates on continuous data, meaning that even if the

network has not been trained on a particular input, if the input is close to values it was trained on,

then the output will be close to the output for the trained values.

Neural networks do have flaws – there is a risk of overtraining, where the network learns

to become too specialized, and performs poorly on situations it has not been trained on.

Additionally, deep neural networks are more difficult to train – the more layers the network

possesses, the more difficult is to back-propagate updates to the earlier layers. It also is

computationally expensive when run on a typical general purpose processor, though using

graphics processing units (GPUs) alleviates this somewhat.

2.4.3: Software
To handle the neural network, we use the Python library Theano. This library adds

features for implementing efficient neural networks by creating symbolic functions that can then

be compiled into heavily optimized platform appropriate code. It represents the neural networks

as a large multivariable function, which it then can compile at runtime into CUDA, allowing the

10

neural network computations to be performed on NVidia graphics cards, and provides

performance far better than even hand-crafted C code designed specifically for optimal

performance [9].

11

Chapter 3: Procedure

3.1: Our Approach
Our approach to implementing a learning system for the Atlas robot is focused on

coupling the Q-Learning algorithm described in Chapter 2.4.1 with a deep neural network to

estimate the Q-value of a given action from a particular state of the robot. A reward function is

applied to calculate the reward for the selected action, and update the network. This allows the

network to be trained directly with a simulation of the robot, and allows it to be run without

human interaction, or tedious collection and labelling of data. Implementing these features will

be done incrementally, with increasing complexity. With each increase in complexity, the neural

network will be trained in simulation, and then tested on the physical robot.

3.2: Design Phases
The first step of implementing the learning system is to handle a high-level representation

of the states of the robot and use high-level actions already created from previous teams. This

will include identifying the state representations and actions necessary to walk, such as stepping

and turning. The states are simplified to representations such as which leg is forward. In this

process, the necessary software components will be implemented so that future modifications

will be easier. Once the system is created, it will be trained using the Darpa Robotics Challenge

(DRC) simulator and then tested on the physical robot. This phase will serve to test our

implementation of the framework and ensure that the neural network can learn in a reasonable

timeframe.

The second phase will be to maintain the high-level actions, but switch to using a lower

level view of the state space – it will consist of values such as joint angles and angular velocities

instead of high-level abstractions such as leg position. The framework we develop in the first

phase is intended to be flexible enough that this step should be a simple modification of the

components used for the high-level state representation, meaning most of the time spent in this

phase will be training the new network in the simulator. Again, once simulator training is

complete, we will test the system on the physical robot. This phase will determine whether the

network is capable of extracting the necessary features from the low-level representation.

12

The final phase is to change the actions used. Instead of abstract commands such as “step

forward with the left leg”, the program will be directly changing the position of joints. This will

again, have a strong foundation from the software framework established in the first two phases,

but will likely require substantially more training due to the massively increased number of

actions.

3.3: Framework
Our implementation has three primary components. The first is our interface with Atlas

(I/O Layer), which will construct a state from the robot’s sensors, and request actions to perform

from the second component, the Q-learning layer. The Q-learning layer determines the best

action by submitting each possible action to the neural network, and selecting the best rated one.

The selected action is then handed back to the I/O Layer to be performed. The third and final

layer is the neural network, which estimates how beneficial an action is, and learns from the

results of performing an action. The components interact as specified in Figure 7.

Figure 7: Flowchart of Q-learning framework

3.3.1: Atlas I/O Layer
The I/O Layer serves to act as our interface between the Q-Learning algorithm and the robot. It

handles state calculation and sending the selected actions. This layer makes use of 5 classes, and

runs an overall command loop for the framework, as depicted in Figure 8. The classes used are

described below.

13

Figure 8: IO Server Flowchart

3.3.1.1: Action Requester

The action requester handles issuing an action request to the Q-learning layer, and

receiving the response. The request contains the current state of the robot, and the response

contains the action to be performed by the robot.

14

3.3.1.2: Command Generator

The command generator converts the selected action to a ROS message that can be

handled by the robot.

3.3.1.3: End Control

The end control interface handles the programs end conditions, such as the robot reaching

the goal, or falling over. It also ensures that a final update to the neural network is made before

the program exits.

3.3.1.4: Loop Control

The loop control handles when the main logic loop of the I/O Layer runs. This could

either act like a timer interrupt flag, or handle various conditions ranging from internal state

information (such as an action completing) to external environmental information.

3.3.1.5: Q-Updater

The Q-Updater interface issues updates to the Q-Learning Layer, including information

about the current and previous state, as well as the action performed.

3.3.1.6: State Listener

The state listener handles listening to all necessary ROS topics to gather state

information, as well as performing any computations necessary to generate more abstract state

information. To enable this, it also requires a function to update the listener based on the

previous action performed.

3.3.2: Q-Learning Layer
From a more abstract view, the learning algorithm is composed of two main parts:

sending an action to the node interfacing with atlas and updating the neural network. When a

state is passed to the learning algorithm, it chooses the most appropriate action for atlas to

perform based on the data in the current state. To prevent just picking the most optimal action

every time, resulting in a local maximum, a random action is chosen with a small chance.

Otherwise, as long as the robot has not fallen over, the node calls the neural network to find the

Q values for all actions. It then returns to the interfacing node the action with the highest Q

value.

The other job of the Q-learning node is to update the neural network after the action is

performed in the simulator. The node passes the current state, recent actions, the current

15

performed action, and the reward to the neural network to update its weights between every

node.

Eight subclasses are created when instantiating the Q-learning server. These classes are

depicted in Figure 9, and described below.

Figure 9: Components of the Q-learning Server

3.3.2.1: Action Generator

The action generator is used as a source of possible actions to select from, and is used by

the action selector, explorer, q-requester, safeguard, and neural network updater to retrieve lists

of possible actions.

3.3.2.2: Action Selector

The action selector receives action requests from an action requester, and handles the

requests by selecting the next action to perform. It utilizes a Q-requester, an explorer, and a

safeguard to accomplish this. The selected action is returned to the action requester in the I/O

Layer.

3.3.2.3: Explorer

The explorer is used to override the neural networks selected actions and prevent the

learning algorithm from getting stuck in a local maximum by exploring other, untried actions.

The methods of exploration are dependent on the specific implementation.

16

3.3.2.4: Neural Network Updater

The neural network updater handles everything necessary to issuing updates to the neural

network. After receiving an update request from the Q-updater interface, the neural network

updater packages together the received states and action, alongside the list of possible future

actions generated by an action generator, and a reward computed by a reward generator. It then

sends this package to the Neural Network Layer.

3.3.2.5: Q-Requester

The Q-requester is used by the action selector to evaluate the possible actions that could

be performed, and issue requests to the neural network to compute each action’s Q-value.

3.3.2.6: Reward Generator

The reward generator is used by the neural network updater to compute the actual benefit

of the action performed.

3.3.2.7: Safeguard

A safeguard is used to override actions that are known to be dangerous, such as stepping

twice in the row with the same leg. It is intended to be used when running the framework on a

physical robot, to prevent falls that could lead to damage to the robot, while still notifying the

operator that either the neural network or exploration selected a dangerous action. It is not

intended to be used in simulation.

3.3.2.8: State Converter

The state converter translates the various state information messages used by ROS to a

vector of single-precision floating point numbers usable by a Theano neural network.

3.3.3: Neural Network Layer
 The neural network will serve two purposes – estimating the values of an action from a

given state, and updating the network based on the action performed and the reward calculated.

This makes it integral to the learning process.

3.3.3.1: Overall Service

 The main functional component is a ROS service, meaning it will handle service requests

from other ROS nodes. The service will respond to two types of service calls – Q requests and

update requests. Q requests take the state of the robot and the action that is being estimated, and

17

returns the Q value, which is the estimate of the utility of that action given the state. The update

request will take in the reward calculated for the action performed, it’s previous state, the

aforementioned action, as well as the current state and all possible actions from the state, and

update the network. Both of those are handled in the neural network class.

3.3.3.2: Neural Network

This class is where Theano is used to implement the two actions – getting a Q estimate,

and the update process. For the former, the process is relatively simple – a vector consisting of

the elements of the state and action is passed into the neural network, and a one-element vector is

output, consisting of the estimated utility of the action.

The latter is a bit more complex. It requires calculating a cost based on the action

performed and the possible future actions, and propagating the gradient of the cost across the

network to update the weights and biases. The first step of this is calculating the cost, using

Equation 5.

Equation 5: Cost equation

𝑐𝑜𝑠𝑡 = 𝑙𝑜𝑠𝑠 + 𝐿1∑𝜃𝑤 + 𝐿2∑𝜃𝑤
2

In this equation, the cost is the sum of the loss function, along with two additional

parameters, 𝐿1 and 𝐿2. They are regulation values, that allow the gradient descent on the network

to vary in speed depending on the contents of the network – 𝐿1 regulates the sum of the weights,

and 𝐿2 regulates the sum of the squares of the weights, where in this case, 𝜃𝑤 are the weights

(the multiplicative values in the network). The loss function itself is shown in Equation 6, and is

recognizable from the loss function used in “Playing Atari with Deep Reinforcement Learning.”

Equation 6: Loss equation

𝑙𝑜𝑠𝑠 = (𝑟 + 𝛾 ∗ 𝑚𝑎𝑥𝑄(𝑠′𝑖, 𝑎
′
𝑖, 𝜃) − 𝑄(𝑠

′
𝑖−1, 𝑎

′
𝑖−1, 𝜃))

2

In this equation, 𝑟 is the reward for state and action 𝑖 − 1, 𝑚𝑎𝑥𝑄 is the maximum Q

value for all possible actions at the next state, and 𝑄 is the estimated utility for the previous state

and action performed. The value 𝛾 is a multiplier to account for uncertainty inherent in

18

estimating future actions, and is generally set at 0.5. However, for terminal states where the robot

has either reached the goal or fallen, 𝛾 is set to 0 to account for the fact that there are no possible

future actions from those states. This also prevents the

During the gradient descent step, the derivative of the cost is taken in terms of each

weight (𝜃𝑤) and bias (𝜃𝑏) in the neural network, and they are updated by Equation 7.

Equation 7: Update by gradient descent

𝜃𝑤,𝑏𝑖 = 𝜃𝑤,𝑏𝑖−1 − 𝛿 ∗
𝑑 𝑐𝑜𝑠𝑡

𝑑𝜃𝑤,𝑏

This defines that the updated value of 𝜃𝑤,𝑏, at each step 𝑖 of the learning process, where

𝜃𝑤,𝑏 is each weight and bias in the neural network. The gradient is multiplied by a learning rate,

𝛿, which limits the speed at which the values can be changed. This reduces the impact of outlier

results.

This implementation is flexible enough that it can support creation of any layered neural

network of any size, provided that each layer on links to the preceding and following layers, and

every node in a layer links to every node in preceding in following layers. This means that the

network is not suited for some other deep network designs, such as convolutional neural

networks [6].

3.4: High-Level Design
Our high-level implementation was designed as a trial for the q-learning framework, to

both ensure that the learning system functioned and test the training automation. The framework

fits most closely to that presented above, and all events occur synchronously – the robot must

wait for an action to finish to continue on, and it must wait for the neural network update to

complete to select a new action.

3.4.1: Action Representation
 The high-level actions consist of six actions created by the existing number-of-steps path

planner, which generates a static walk path consisting of the requested number of steps, plus one

additional step to bring the robot’s feet back together. We are able to generate a single step

action be requested a 1-step path, and deleting the extra step to a single motion. This enables us

19

to have negative sequences of actions, such as stepping twice in a row with the same leg, that

would not be possible if we didn’t isolate a single step. These actions are represented by an

integer ID, which is used to identify the action to the command generator and neural network.

 The first two actions are variants of stepping forward with the left and right leg, creating

by deleting the second step of the two-step sequence generated when a single step is requested.

This leaves the initial step out of the path.

 The next two actions are the other half of the first two actions – stepping with the back

left forward to bring the feet together, created by removing the first step of the plan. These steps

have slightly different behavior in how the weight is shifted, but otherwise function similarly to

the first two actions.

 The final two actions are an entire two-step sequence, but configured to turn left and right

respectively, by approximately ten degrees.

3.4.2: State Representation
 The low-level state is similarly abstracted. The state representation consists of the

distance to the goal, the angle the robot is facing away from the goal, whether the robot has

fallen, and a simple representation of the foot position. This is made up of two values, one for

each foot, where the value is zero if the foot is behind the other foot, and 1 if it is in front. When

both feet are in line with each other, both values are zero. The state also includes the last three

actions performed, as the robot falling can occur due to sequences of up to three actions.

Including the past three actions allows the network to identify the correlation of those sequences

of actions with falling.

3.4.3: Exploration
 Exploration in the high-level implementation utilizes two methods – epsilon-greedy and

simulated annealing.

 Epsilon-greedy (or 휀-greedy) is used for near-random exploration. A random value

between zero and one is generated, and if it is less than some value 휀, then a random action is

selected instead of the action selected by the neural network.

 Simulated annealing is an optimization process based on annealing in metals [10]. The

process selects an option, and then predicts a future state based on the option. A random new

option is then selected, and another future state is predicted. An energy level is computed for

20

each of these states, and compared. In this implementation, the energy is computed by Equation

8 if the new action selected does not cause the robot to use a dangerous action.

Equation 8: Simulated annealing energy

𝐸 = {
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑔𝑜𝑎𝑙

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
+
|𝑎𝑛𝑔𝑙𝑒 𝑡𝑜 𝑔𝑜𝑎𝑙|

𝜋
∗ 2 𝑖𝑓 𝑛𝑜𝑡 𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠

3 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 If the new action is dangerous, for example, if the last action performed was to step out

with the left leg, and the new action is to do the same, then the energy is the maximum possible

value of the energy equation – three.

Then, with some probability, the new option is selected. At the start of the process, the

‘temperature’ is high, and selecting a new option is very likely. As the process cools, a larger

difference in energy between the two possible future states is required, unless the new state has a

lower energy than the predicted state for the previously selected action. This process can be run

for whatever number of iterations is desired, and allows the robot to vary between taking a

‘perfect’ path, directly toward the goal when using a high number of iterations, and exploring

other paths by using a low number of iterations.

Equation 9: Probability of selecting new action

𝑃 = {
1.0 𝑖𝑓 𝐸(𝑛𝑒𝑤 𝑠𝑡𝑎𝑡𝑒) < 𝐸(𝑜𝑙𝑑 𝑠𝑡𝑎𝑡𝑒)

𝑒
−(𝐸(𝑛𝑒𝑤 𝑠𝑡𝑎𝑡𝑒)−𝐸(𝑜𝑙𝑑 𝑠𝑡𝑎𝑡𝑒))

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

3.4.4: Issuing Commands
 Commands are generated using the number-of-steps generator, using the ID of the

selected action to determine the parameters to pass to the step generator, and which step to

delete. A new action command is generated and sent once the previous action is completed.

3.4.5: Reward Calculation
To update the neural network, a reward must be calculated, so that the neural network’s

weights can be adjusted so the output is closer to the reward. In our high-level approach, we use

a tiered system. If the robot is not facing toward the goal, the change in the angle toward the

21

goal is used as the reward, with a decrease in the magnitude of the angle being better. If the angle

toward the goal is small enough, the change in the distance toward the goal is used. This

prioritizes the robot turning toward the goal, allowing the robot to take actions to turn toward the

goal, even if they require the distance to the goal to increase. This is depicted in Figure 10Error!

Reference source not found..

Figure 10: High-level Reward

3.5: Mixed-Level Design
The mixed-level phase did not change much from the high-level implementation. The

only change that occurred was how the state was represented.

3.5.1: State Representation
 The mixed-level implementation utilizes a low-level representation of the state. The

distance to the goal, the angle away from the goal the robot is facing, whether or not the robot

has fallen, and the previous three actions performed are carried over from the high level state.

The position of the feet is replaced with less abstract information – the position, velocity and

acceleration and motor torque of each Atlas’s 30 joints. Additionally, the center of mass and

22

center of pressure are used, alongside the size coordinates making up the robot’s support

polygon. The absolute position and velocity of the both feet are also used, along with values

representing the contact state – whether or not each foot is on the ground.

3.6: Low-Level Design
The low-level phase brought the most radical changes. Action representations are

changed to handle direct joint commands, and the exploration methods have been modified, as

the more complex state predictions brought about by this make simulated annealing less

desirable. Additionally, our method of issuing commands and reward calculation has been

updated accordingly.

3.6.1: Action Representation
 The largest challenge for choosing a method of action representation was the size of the

action space. Our initial designs called for using discrete joint angles for each action, but this

would have led to 1015 actions if we only used 10 discrete angles for each of the 15 necessary

joints. This was far too large. Instead, we opted to treat actions as specifying a change in joint

angle by a fixed value. This allowed us to collapse the action space down to 315 actions – with

each joint having the option of either increasing, decreasing, or maintaining the angle.

 This also allowed us to encode the action into a 32-bit unsigned integer. Each of the 15

joints is allocated two bits, and two bits are unallocated. A value of A value of 0b00 for a bit pair

signals to keep the joint angle the same, a value of 0b01 indicates the angle should be increased

by 5% of the joint’s range of motion, and a value of 0b10 corresponds to a decrease in angle of

5% of the joint’s range of motion. When passed to the neural network, these values are converted

to 0, 1, and -1 respectively.

3.6.2: State Representation
 The different action structure necessitated a change to the number of past actions stored

in the state. The amount is changed from the three used by the high-level and mixed-level

implementation to 10. Based on the 2Hz command rate, this gives the neural network

information about the past five seconds of runtime.

3.6.3: Action Selection
 Another difficulty brought about by the size of the action space was action selection. We

cannot feasibly evaluate the benefit of performing all 315 actions. That would take slightly less

23

than two hours using the computer we have available. Instead, we iteratively construct an action

one joint at a time. For each joint, we evaluate the three possible actions – increase, decrease, or

maintain. We then select the highest rated action, and continue on with the next joint, adding

onto the final action from the first joint. This allows us to select a decent action with only 45

values being passed through the neural network, instead of over 14 million. To fully represent all

the paths possible to reach each of the possible actions, we use a randomly generated joint order.

An example of the process is depicted below in Figure 11.

𝐽𝑜𝑖𝑛𝑡 0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 →

01 → 𝑞 = 0.2
00 → 𝑞 = −0.1
10 → 𝑞 = 0.3

𝐽𝑜𝑖𝑛𝑡 1: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 10 →

01 10 → 𝑞 = 0.25
00 10 → 𝑞 = −0.05
10 10 → 𝑞 = −0.15

⋮

𝐹𝑖𝑛𝑎𝑙 𝑎𝑐𝑡𝑖𝑜𝑛: 10 00 01 01 00 00 10 10 01 10 00 00 10 01 10

Figure 11: Example of iterative construction of low level action

3.6.4: Exploration
Like the high-level and mixed-level implementations, we have two methods of

exploration available. The first is epsilon-greedy, which is described in Chapter 3.4.3. The

second is shaping.

 While epsilon-greedy works, it faces a major issue – the size of the action space. There

are over 14 million possible actions that can be performed, and only a handful that will be

successful in a given state. While the probability of discovery of this successful actions

approaches 1 given sufficient time, time is not something we had an abundance of. Using an

epsilon of 0.75, this method is capable of exploring approximately 2% of the possible actions per

week. That is not sufficient to learn sufficiently fast.

 Shaping is a method where we feed the simulation a set of pre-generated actions. This

can allow us to selectively explore known successful actions to train and direct the neural

network toward a path that works. Additionally, small mutations of the shaping actions can be

24

performed to explore while still performing actions that are close to those that work. This

presents the opportunity for optimization of the shaping actions.

 The shaping actions are recorded by running the number-of-steps planner on the physical

robot, and recording the joint states the robot passes through. These are then converted to a series

of actions.

3.6.5: Issuing Commands
 Commands are issued to set specific joint states, computed by applying the changes

specified by the action to the current joint state. The timing of the commands is what differs from

the high and mixed-level implementations. For this implementation, we do not want to allow the

robot to pause between actions, as this delay could prove dangerous if the robot finishes an

action in an unstable state that the next action could recover from. To prevent this, actions are

published at a constant 2Hz rate, with each new action overriding the last.

3.6.6: Reward Calculation
The reward is calculated by incorporating several factors. The first value checked is

whether the robot has fallen. If so, the reward is set to a minimum value, the negative of the

maximum possible reward. This ensures a large difference between actions that lead to a fall and

those that don’t.

The highest weighted portion of the reward is time-based, with a constantly decreasing

value as time passes, to encourage the robot to choose a sequence of actions that brings it to the

goal faster. This is determined by subtracting an amount from an initial reward, with values set to

be consistent with the fixed 10-minute length of training, as shown in Equation 10.

Equation 10: Time reward calculation

𝑡𝑖𝑚𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 = 60.0 + (−0.1 ∗ 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠)

The next two components are carried over from the low-level and mixed-level reward

calculation – the distance and angle to the goal. These are determined by Equation 11 and

Equation 12.

25

Equation 11: Distance reward calculation

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 =
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑔𝑜𝑎𝑙

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
∗ 15

Equation 12: Angle reward calculation

𝑎𝑛𝑔𝑙𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 =
2𝜋 − 𝑎𝑛𝑔𝑙𝑒 𝑡𝑜 𝑔𝑜𝑎𝑙

2𝜋
∗ 15

Following is a component to ensure gradual and smooth movement, by rewarding the

robot for not moving joints in alternating directions without a command to maintain the current

joint angle in between. This is described in Equation 13, where 𝑁 is the number of joints that

switch from an increase command to a decrease command, or vice versa.

Equation 13: Gradual reward computation

𝑔𝑟𝑎𝑑𝑢𝑎𝑙 𝑟𝑒𝑤𝑎𝑟𝑑 = 15 − 𝑁

 Next is a component based on whether the robot is statically stable. Unlike the earlier

phases, we do not want an extremely low reward when the robot is not statically stable, as that

would preclude the possibility of the robot learning how to dynamically walk. Instead, we only

want to slightly discourage instability, so while it will try to remain statically stable, a faster

route that utilizes dynamic walking is possible. Stability is calculated using the support polygon,

the location of the center of mass, and W. Randolph Franklin’s PNPoly algorithm, which allows

for fast computation of whether a point is inside of a polygon [11]. The reward is determined by

Equation 14.

Equation 14: Stability reward computation

𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑟𝑒𝑤𝑎𝑟𝑑 = {
15 𝑖𝑓 𝑠𝑡𝑎𝑏𝑙𝑒
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 The final two components are to discourage actions that could damage the robot, either

by a limb trying to move beyond its bounds, or a joint exerting more force than it is capable of,

26

potentially damaging the hydraulics, motor, or structure. These are computed using Equation 15

and Equation 16.

Equation 15: Joint angle reward calculation

𝑗𝑜𝑖𝑛𝑡 𝑎𝑛𝑔𝑙𝑒 𝑟𝑒𝑤𝑎𝑟𝑑

= 15 −∑

{

𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖 − 𝑎𝑛𝑔𝑙𝑒𝑖

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑠𝑖𝑧𝑒𝑖
𝑖𝑓 𝑎𝑛𝑔𝑙𝑒𝑖 < 𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖

𝑎𝑛𝑔𝑙𝑒𝑖 − 𝑢𝑝𝑝𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑠𝑖𝑧𝑒𝑖

𝑖𝑓 𝑎𝑛𝑔𝑙𝑒𝑖 > 𝑢𝑝𝑝𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

14

𝑖=0

Equation 16: Joint torque reward calculation

𝑗𝑜𝑖𝑛𝑡 𝑡𝑜𝑟𝑞𝑢𝑒 𝑟𝑒𝑤𝑎𝑟𝑑

= 15 −∑

{

𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖 − 𝑡𝑜𝑟𝑞𝑢𝑒𝑖

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑠𝑖𝑧𝑒𝑖
𝑖𝑓 𝑡𝑜𝑟𝑞𝑢𝑒𝑖 < 𝑙𝑜𝑤𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖

𝑡𝑜𝑟𝑞𝑢𝑒𝑖 − 𝑢𝑝𝑝𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑠𝑖𝑧𝑒𝑖

𝑖𝑓 𝑡𝑜𝑟𝑞𝑢𝑒𝑖 > 𝑢𝑝𝑝𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

14

𝑖=0

Each of these rewards is then summed, which produces the weighting specified in Figure

10. The final value is then scaled so that the maximum and minimum possible rewards are 0.25

and -0.25 respectively. This prevents the cost equation from increasing to a sufficiently high

value where it would exceed the bounds of a single-precision floating point number. If that

occurs, all values in the neural network end up being converted to the python NaN value, causing

the network become useless.

27

Figure 12: Composition of reward for low-level training

3.6.7: Parallelization of Neural Network Updates
 The final change to allow repeated action publications was the separation of neural

network updates into a separate process. This allows reward calculation and updates to occur

simultaneously with selection and execution of actions. However, there is a downside to this.

Because the neural network is updated in a separate process, we cannot have the updated

network made available to the simulation iteration that updated it. Instead, it continues using the

original, non-updated network for the duration of simulation. When the next cycle of simulation

happens, the updated network is loaded from file. However, this is a non-issue, as badly

performing simulation cycles will end quickly due to the robot falling over, so the updated

network is available quickly. When the simulation performs well, the updated network is not

needed immediately, so it is not an issue that it is not immediately available.

0% 5% 10% 15% 20% 25% 30% 35%

Angles within Bounds

Torques within Bounds

Statically Stable

Gradual Transitions

Distance to Goal

Angle to Goal

Shorter Time

Low-level Reward

28

Chapter 4: Results
This project was successful, though not all of our goals were accomplished due to time

restraints.

4.1: Framework
 We successfully implemented and tested our framework with both our low-level

and high-level implementations. Both of those phases proved to have different enough

requirements to demonstrate the flexibility of the framework’s application to different q-learning

problems. While we did not test the framework with the mixed-level implementation due to time

restraints, we are confident that it would be able to meet the challenges posed by that phase of

the project.

4.2: High-Level Implementation
 Our high-level implementation proved to be a complete success. We trained the

neural network in simulation for two weeks by assigning the robot random goals on a 20-meter

square grid centered around the robot’s start position. After the two weeks of training, the neural

network has been updated 50,000 times, so we proceeded to test the network on the physical

robot. For the physical tests, we enabled the ‘safe mode’ flag, which causes the robot to select

the next best action if a dangerous action that is known to cause the robot to fall is selected. This

served to protect the robot, but also alert us of any negative choices made by the artificial

intelligence. The results of our 5 trials on the physical robot are listed below in Figure 13.

Trial Reached Goal Number of Dangerous Actions Attempted

1 Yes 1

2 Yes 0

3 Yes 0

4 Yes 0

5 Yes 0

Figure 13: High-level physical test results

The only failure that occurred during the testing was on the second action performed on

the first trial run. The neural network update following that action prevented this from occurring

in the future, and all subsequents tests proceeded successfully and without incident.

29

4.3: Mixed-Implementation
The mixed-level implementation was less successful. While the robot quickly learned to

turn toward the goal during simulation, it faced difficulties picking up on which foot was

currently forward, and would therefore run into issues when it reached the point where it should

walk toward the goal. We halted simulation after approximately 175,000 updates to the neural

network, as the low-level implementation was ready to train, and we wished to maximize the

amount of time the low-level implementation had to train.

4.4: Low-Level Implementation
This phase again faced difficulties with time constraints. Our initial efforts to use only

epsilon-greedy exploration was unsuccessful because of this. One week of training was only

sufficient to cover 2% of the action space, and did not lead to any of the small handful of actions

that would not lead to the robot immediately falling over.

Shaped actions were implemented to assist with this. Our initial set of shaped actions

were recorded from the number-of-steps step generator in the simulator. This faced several

issues, as the simulator introduces exaggerated hip oscillations in multi-step sequences. These

were unfortunately captured by the recording method. Despite the oscillations, shaping quickly

allowed the robot to progress beyond immediately falling over, as the network was introduced to

that small handful of actions. This can be seen in the small increase in the number of actions

performed before falling in Figure 14.

To further improve the shaping, and avoid the hip oscillation issue present in the

simulator, we recorded actions from the number-of-steps generator on the physical robot. This

brought a further improvement to the learning process, allowing the robot to fully shift the

weight to its left leg in simulation. This can be seen in the large increase in the number of actions

performed before falling in Figure 14.

30

Figure 14: Low-level training performance

 In addition to the changes in the number of actions before falling in Figure 14, two

significant changes can be seen in the average reward per trial, at approximately trial 500 and

trial 2500. These were changes to the reward calculation, that better differentiated between

different benefits for actions.

 However, despite the large increase brought on by shaping, it was insufficient to allow

Atlas to learn how to walk completely using direct joint control. After switching to the physical

recordings, the robot was able to fully shift its weight to the left leg, but then fell once it

attempted to precede further. This is likely due to the action representation’s fixed angle change

percentage. The constant change of 5% is likely insufficient to represent the state changes the

step generator brings the robot through with complete accuracy. These inaccuracies would then

compound, leading the robot to fall.

 Despite this failure, the framework proved itself, as did the learning capabilities of the

neural network. Shaping took effect extremely quickly, and the learned actions were repeated

when exploration was disabled. Even though it failed to move on beyond shifting its weight, it is

likely that sufficient time spent training would allow the robot to learn how to walk completely.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000 7000 8000

A
ve

ra
ge

 R
ew

ar
d

 p
er

 T
ri

al

N
u

m
b

er
 o

f
A

ct
io

n
s

P
er

fo
rm

ed
 B

ef
o

re
 F

al
lin

g

Trial

Training Performance

Number of Actions Performed Average Reward

31

Chapter 5: Future Work
 The framework established in this project presents several areas for possible future work,

both in the realm of walking, and in other areas amenable to the Q-learning algorithm.

Within the realm of walking, one potential project is the modification of the existing low-

level framework to better take advantage of shaping. Using shaping as the primary exploration

method greatly alleviates the issues prevented by an extremely large action space, as only a

relatively small proportion have to be explored. Changing the action representation to handle

distinct joint angles, or alternatively, continuous angles, would be rewarding path of research, as

they could better represent the joint angles the existing step generators bring the robot through.

Another potential path of research would be to expand the sensors used by the Q-learning

algorithm to incorporate other data, such as feedback from the robot’s visual system and LIDAR,

or the knowledge of ground height. These could enable the learning algorithm to be applied to

path planning, or enable walking over more complex terrain than flat ground.

Other methods of interacting with the world than walking also present opportunities. Our

framework is design to be used with most, if not all, tasks involving Atlas for which Q-learning

is applicable. It could be used for learning manipulation and object recognition, especially if

sensor data from the robot’s stereoscopic camera and LIDAR are incorporated.

A final path of research, that is applicable to improving training time for any Q-learning

task, would be to explore the idea of using distributed computing for training, by running many

simultaneous simulations using either multiple physical machines, or by utilizing cloud-based

virtual machines such as Amazon Web Services.

32

Chapter 6: Conclusion
Our goal was to have a humanoid robot learn how to walk, and with our high-level

implementation, Atlas successfully learned the proper sequence of actions to walk. Our low-level

implementation is working in simulation but needs significantly more training time to learn the

appropriate action sequences. It also needs additional modification to run on the physical robot,

as the topic used to publish commands from the field compute to the robot. However, both of

these tasks proved the strength of the Q-learning framework we developed, opening many paths

for future research. These can range from expanding the flexibility of the low-level walking

method, to incorporating other sensory information to learn path planning, or even applying the

framework to other tasks such as manipulation.

33

References

[1] "WPI-CMU DARPA Robotics Challenge Team," Worcester Polytechnic Institute, 2015.

[Online]. Available: http://drc.wpi.edu. [Accessed 16 December 2015].

[2] "DARPA Robotics Challenge," Defense Advanced Research Projects Agency, 2015.

[Online]. Available: http://www.theroboticschallenge.org/. [Accessed 16 December 2015].

[3] Boston Dynamics, "Boston Dynamics Atlas Robot Software and Control Manual," 2013.

[4] "About ROS," Open Source Robotics Foundation, 2015. [Online]. Available:

http://www.ros.org/about-ros/. [Accessed 15 December 2015].

[5] J. McCullock, "A Painless Q-Learning Tutorial," Mnemosyne_Studio, 2012. [Online].

Available: http://mnemstudio.org/path-finding-q-learning-tutorial.htm. [Accessed 29

October 2015].

[6] Y. Bengio, "Learning Deep Architectures for AI," Foundations and Trends in Machine

Learning, vol. 2, no. 1, pp. 1-127, 2009.

[7] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhouke,

P. Nguyen, T. N. Sainath and B. Kingsbury, "Deep Neural Networks for Acoustic Modeling

in Speech Recognition," IEEE Sginal Processing Magazine, pp. 82-97, November 2012.

[8] M. Forouzanfar, H. R. Dajani, V. Z. Groza, M. Bolic and S. Rajan, "Comparison of Feed-

Forward Neural Network training algorithms for oscillometric blood pressure estimation,"

in 4th International Workshop on Soft Computing Applications, 2010.

[9] "Theano at a Glance," Deep Learning, 15 December 2015. [Online]. Available:

http://deeplearning.net/software/theano/introduction.html. [Accessed 15 December 2015].

[10] S. Kirkpatrick, C. D. Gelatt Jr. and M. P. Vecchi, "Optimization by Simulated Annealing,"

Science, vol. 220, no. 4598, pp. 671-680, 1983.

[11] W. R. Franklin, "PNPoly - Point Inclusion in Polygon Test," 21 January 2014. [Online].

Available: https://www.ecse.rpi.edu/~wrf/Research/Short_Notes/pnpoly.html. [Accessed

March 2016].

[12] "The Human Balance System | Vestibular Disorders Association," [Online]. Available:

http://vestibular.org/understanding-vestibular-disorder/human-balance-system. [Accessed

11 October 2015].

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra and M.

Riedmiller, "Playing Atari With Deep Reinforcement Learning," in NIPS Deep Learning

Workshop, 2013.

34

Appendices

Appendix A

Pseudocode for Deep Q-Learning as implemented in Playing Atari with Deep

Reinforcement Learning

	Worcester Polytechnic Institute
	Digital WPI
	April 2016

	Deep Q-Learning for Humanoid Walking
	Alec Jeffrey Thompson
	Nathan Drew George
	Repository Citation

	tmp.1535548689.pdf.mG0Iu

