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Abstract: 

Beamforming is an important technique in array signal processing and wireless 

communication systems. In this project, we investigate the Minimum Variance Distortionless 

Response (MVDR) beamforming technique and its implementation. The QR-RLS algorithm is 

chosen because of its advantages of numerical stability and systolic array architecture. The team 

successfully implemented the real-time beamforming of a linear array with 3 receiving antennas 

on a Xilinx Virtex-5 FPGA platform. Both the simulation and hardware implementation results 

are presented in this report.    
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Executive Summary: 

The project went about in three phases: theoretical background research, MATLAB 

simulation and implementation on the Xilinx System Generator Environment, and Xilinx EDK 

implementation of the architecture of the interface between a computer and the FPGA 

prototyping board of our choice, namely Virtex 5 LX110T [1].   

On the first phase, we learned the theoretical background of general derivation of 

adaptive beamforming algorithms, the variant adaptive beamforming algorithm of Minimum 

Variance Distortionless Response, and the efficient implementation of the MVDR algorithm on 

the hardware platform. As for the general adaptive beamforming algorithms, we learned the 

Recursive Least Squares adaptive signal processing algorithm, the Kalman Filtering Theory, and 

the way the special case of Kalman Filtering theory merges with the Recursive Least Squares 

algorithm to become the general QR decomposition adaptive beamforming algorithm. Finally, 

we studied the emergence of the MVDR beamforming algorithm from the QR decomposition 

adaptive beamforming algorithm.  

On the second phase, we simulated the algorithm on MATLAB, and move on to 

designing the MATLAB on the Xilinx System Generator Environment. The MATLAB 

simulation part went well after we put together the pieces of efficient implementation techniques, 

i.e., the systolic array approach, from the theoretical MVDR algorithm. We wrote a program on 

MATLAB that will simulate the MVDR beamforming for three antennas case. As for the 

implementation of the MATLAB model on the Xilinx System Generator environment, we were 

required to research on efficient hardware implementations of computationally expensive 

mathematical operations involved in the MVDR algorithm. We used the CORDIC algorithm for 



` 

8 
 

calculating the square-roots, and then Newton-Raphson method to calculate the divisions. 

Finally, we utilized the principle of code reuse as we designed the individual cells required for 

the systolic array approach, and the integrating cell units together as the systolic array in the end.    

On the third phase, using the Xilinx Embedded Development Kit (EDK) we designed the 

architecture for our PC to FPGA interface.  We designated the necessary interfaces for our 

design and built our software component around those interfaces.  Using the development 

environment we developed an application that would receive large sets of floating point data via 

an Ethernet interface from a host PC.  The received data would then be converted to fixed-point 

data format and stored within the Block RAM (BRAM), a type configurable memory module 

capable of storing varying amounts of data.  Once the data was stored it was verified via two 

methods.  One method required a standard output which would display what data was stored and 

where it was stored.  The second method required using the Xilinx Microprocessor Debugger 

(XMD) which allows you to halt a running application and review what has been stored in 

various memory controllers of the Virtex 5 Development Board.  Having used both methods we 

were able to verify the functionality of the software component of our design. 

In conclusion, we were able to complete the hardware and software components 

necessary for the completion of our entire project.  We were able to verify that the hardware 

component, the Systolic Array model generated via System Generator, worked flawlessly 

through a variety of tests that included individual block testing and test-bench waveform 

generations.  We were also able to verify that the software component, the PC to FPGA 

interaction, worked correctly by reading the data stored in memory after having sent data 

transmissions from the PC to the FPGA via an Ethernet connection.  Although we weren’t able 

to integrate the two components into a single design, it was proven that the functionality of each 
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individual component worked as expected if not better.  Therefore, if time wasn’t a factor and we 

were more knowledgeable in both the theoretical concepts and the software used we would have 

been able to generate an integrated design.  However, this shouldn’t be a cause for distress.  

Through our hard work we were able to prove theoretically that the concept of MVDR 

Beamforming is absolutely applicable in an FPGA environment.  With the current work that we 

have completed it sets a framework for future work in this area of study. 
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Chapter 1: 

Introduction 

 

Beamforming is a popular signal processing technique that has been widely used in 

applications such as radar, wireless communications, and biomedical ultrasounds.  Its main 

functionality is to help adjust the directionality of the transducer array when transmitting and 

receiving signals without actually having to physically change the direction of the array sensors.  

In order to perform this procedure, beamforming uses several smaller non-directional sensor 

arrays or antennae to simulate a larger directional antenna.  With the simulated directional sensor 

array, the receiving antenna is able take into account of outside interference created by other 

sources.  Being able to take into consideration of outside interference allows the receiving 

antenna to adapt accordingly and thus allows it to adjust the sensor array to one particular 

direction.  This in turn causes a drastic reduction in overall outside interference while also 

improving the overall signal reception, in short in improves the signal-to-noise ratio (SNR).  This 

signal processing technique also allows the transmitting antenna to better focus its signal at a 

receiver, which unlike an omni-directional transmitter which transmits its signal in all directions, 

results in a more focused signal distribution that does not interfere with other signal sources 

while also improving the signal reception at the receiving antenna.  Therefore, due to its 

popularity in a number of diverse and fascinating applications and its overall improvement as 

oppose to omni-directional antennae, we have chosen to take it upon ourselves to enhance our 

understanding and hopefully contribute knowledge to this area of study.   
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Since beamforming is computationally intensive, certain technologies must be utilized in 

order to obtain real-time results.  These technologies are usually separated into two categories: 

software based and hardware based techniques.  Beamformers which employ software 

processing, generally implemented on a digital signal processor, in order to obtain real-time 

results are flexible enough that they can be adapted to transmit and/or receive in various 

directions instantaneously.  In contrast, beamformers which employ dedicated hardware 

processing, such as Application-Specific Integrated Circuits (ASIC), are physically programmed 

to statically transmit and/or receive in a single direction at any given time.  Therefore, the overall 

goal for this project is to implement a real-time Minimum Variance Distortionless Response 

(MVDR) adaptive beamforming onto a Xilinx Virtex 5 Development Platform to test its 

applicability in field-programmable gate arrays (FPGAs).  MVDR is an adaptive beamforming 

algorithm which minimizes the average output power while setting the steering or “target” 

direction to unity.  As the MVDR algorithm continues to adapt the overall noise, which includes 

interference and white noise, is minimized, resulting in a maximized SNR output.  The reason 

why we wish to implement an adaptive beamforming algorithm onto an FPGA is due to its 

flexibility, reduced cost, and improved performance and data rate, as oppose to software or 

hardware processing, because it employs both hardware and software processing techniques.  Of 

course, due its popularity, implementation of a beamforming algorithm onto an FPGA platform 

has already been conducted by Chris Dick, a Chief DSP Architect from Xilinx [2].  However, 

because of some discrepancies and the lack of conclusive evidence to support their findings and 

results, we took it upon ourselves to conduct this study.   

The approach that we took for this project referenced Chris Dick’s experimental 

procedure [2].  First, we expanded our basic understanding of various mathematical techniques, 
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adaptive signal processing techniques, and most importantly adaptive beamforming algorithms.  

Second, after obtaining a firm grasp of adaptive beamforming and its key concepts, we simulated 

it in MATLAB, “a high-level technical computing language and interactive environment for 

algorithm development, data visualization, data analysis, and numeric computation” [3], to verify 

our understanding and to utilize it as a means to confirm the validity of our end result.  Having 

completed our MATLAB simulation, we moved on to building the bulk of our project in System 

Generator, a Xilinx tool which allows a user to design various digital signal processing (DSP) 

applications.  Since simulation alone is not enough to validate our implementation, we needed a 

way to test our beamforming algorithm in real-time on actual hardware.  In order to accomplish 

this task, we needed to interface the FPGA platform with a PC.  This was accomplished by using 

Xilinx’s Embedded Design Kit (EDK), a tool which enables the user to design an embedded 

processor system in a Xilinx FPGA development board.  After having completed the hardware 

and software components, we integrated the two components onto the Virtex 5 development 

board to test our implementation.  The results of our findings, our testing, the steps we took in 

order to reach our end result and more will be explained in later chapters with more extensive 

detail. 
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Chapter 2:  

Background 

 

This chapter discusses the theoretical background of beamforming algorithm. The 

organization of this chapter is as follows: First, it will present mathematical theory and 

techniques required for understanding of the algorithms presented. Second, it will briefly 

describe two classical adaptive signal processing algorithms, namely Recursive Least Square 

(RLS) Algorithm and Kalman Filtering Theorem, which are the theoretical roots of QR-RLS 

adaptive signal processing algorithm, from which classic beamforming algorithms emerged. 

Third, it will describe the general beamforming problem scenario. Finally, it will describe our 

focus beamforming algorithm, Minimum Variance Distortionless Response (MVDR) 

beamforming algorithm, which evolved directly from QR-RLS algorithm. 

 

2.1 Mathematical Theory and Techniques 

In this section, we will describe mathematical techniques which are heavily used in both 

the predecessor adaptive signal processing algorithms, and MVDR beamforming algorithm.   

2.1.1 QR Decomposition 

QR decomposition is a mathematical technique to decompose a matrix into its orthogonal 

and right triangular components. Its applications largely lie in solving Least Square Problems. In 
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“Matrix Computations,” by Golub and Van Loan [4], the QR decomposition is described as 

follows: 

Let m and n be any positive integer greater than 0. Given any m x n matrix A and m > n, the QR 

decomposition of A can be described as: 

𝑨 = 𝑸. 𝑹 (2.1.1.1) 

Equation: QR Decomposition 

Q is a unitary m x n matrix, i.e., 𝑸. 𝑸𝐻 = 𝐼, where I is identity matrix. R is m x n upper right 

triangular matrix. Equation 2.2.1.1 above can be written in partitioned form as follows: 

𝑨 = 𝑸. 𝑹 =  𝑸.  
𝑹𝟏

𝟎
 =   𝑸𝟏 𝑸𝟐 .  

𝑹𝟏

𝟎
 =  𝑸𝟏. 𝑹𝟏 

(2.1.1.2) 

Equation: QR Decomposition Partitioned Matrix Form 

where 𝑹𝟏 is n x n triangular matrix, where 𝑸𝟏 is m x n and 𝑸𝟐 is m x (m - n).  

2.1.2 Givens Rotation 

Givens Rotation is a mathematical technique to orthogonally transform a matrix by 

rotating it in respective plains. It is a powerful technique for zeroing out the selective elements of 

a matrix. Usually, Givens Rotation is a method of transformation for calculating QR 

decomposition. The matrix computation text [4] described Given Rotation as follows: 

The Givens Rotation matrix can be defined as: 

𝑮(𝑖 ,𝑗 ,𝜃) =  

 
 
 
 
 
 
 
1 … 1 … 1 … 1
⋮ ⋱ ⋮ ⋮ ⋮
1 … cos 𝜃 … sin 𝜃 … 1
⋮ ⋮ ⋱ ⋮ ⋮
1 … − sin 𝜃 … cos 𝜃 … 1
⋮ ⋮ ⋮ ⋱ ⋮
1 … 1 … 1 … 1 

 
 
 
 
 
 

 

Equation: Givens Rotation Matrix 

(2.1.2.1) 
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Basically, 𝑮(𝑖 ,𝑗 ,𝜃) is an identity matrix with the entries at i
th

 and j
th

 rows and columns replaced by 

the values of Sine and Cosine of the angle we wish to rotate the i
th

 and j
th 

dimensions of a matrix 

M by. Therefore, the matrix multiplication 𝑮(𝑖 ,𝑗 ,𝜃). 𝑴 represents a counter-clockwise rotation of 

the matrix M in (i, j) dimensions by θ radians. We can generalize this multiplication with 

following equation:   

𝑀𝑘 =  

cos 𝜃. 𝑀𝑖 −  sin 𝜃. 𝑀𝑗 , 𝑖𝑓 𝑘 = 𝑖 

cos 𝜃. 𝑀𝑗 +  sin 𝜃. 𝑀𝑖 , 𝑖𝑓 𝑘 = 𝑗 

𝑀𝑘 , 𝑖𝑓 𝑘 ! = 𝑖, 𝑗

 (2.1.2.2) 

Equation: Givens Rotation Element Update Calculations 

From above equation, we can see the insight that for clockwise rotation of matrix M, we just 

need to negate the Sine terms in the Givens Rotation matrix. Furthermore, we can see the insight 

that if the angle θ is equal to the angle between the two elements in (i, j) plane, the term 𝑀𝑘  

where k = i will be zeroed out. This property is used to apply Givens Rotation to zero out the 

desired elements in any full rank matrix M. Consequentially, to zero out the elements of choice 

in matrix M, we just need to move around the Cosine and Sine terms in the Givens Rotation 

matrix while keeping these terms in the form of a square. For an example 2 x 2 full rank matrix 

below, we can calculate desired Sine and Cosine terms using standard trigonometric properties as 

follows: 

 



` 

16 
 

 
cos 𝜃 sin 𝜃
−sin 𝜃 cos 𝜃

 .  
𝑎 𝑐
𝑏 𝑑

 =   
𝑎𝑢𝑝𝑑𝑎𝑡𝑒𝑑 𝑏𝑢𝑝𝑑𝑎𝑡𝑒𝑑

0 𝑐𝑢𝑝𝑑𝑎𝑡𝑒𝑑
  

𝑟 =   𝑎2 + 𝑏2 

cos 𝜃 =  
𝑎

𝑟
 

sin 𝜃 =  
𝑏

𝑟
 

(2.1.2.3) 

Equation: Givens Rotation Example 

 

With this property, Givens Rotation can be used to calculate the QR decomposition of matrix M 

by multiplying the matrix with a series of Givens Rotation matrices each of which will annihilate 

each element in lower or upper triangular portion of M, i.e., rotating counter-clockwise or 

clockwise, resulting in desired upper or lower triangular component of M. In this sense, the 

multiplication of the series of Givens Rotation matrices is the orthogonal matrix in QR 

decomposition. This can be summarizes as follows: 

𝑴 = 𝑸. 𝑹, 𝑤𝑒𝑟𝑒 

𝑸 =  𝑮1. 𝑮2. 𝑮3 ……  𝑮𝑖   

 𝑖 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑙𝑜𝑤𝑒𝑟 𝑜𝑟 𝑢𝑝𝑝𝑒𝑟 𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑚𝑎𝑡𝑟𝑖𝑥 

(2.1.2.4) 

Equation: QR Decomposition with Givens Rotation 

 

However, all of above Givens Rotation is only correct for real-valued matrices. For 

complex-valued matrices, we need some modifications in calculating Cosine and Sine values. In 

the paper “On Computing Givens Rotations Reliably and Efficiently” [5], the authors described 

the algorithm to calculate the Givens Rotation parameters of complex-valued matrices as 

follows: 
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Algorithm 2.1.2.1: Complex Givens Rotation Parameter Calculation 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥 − 𝑣𝑎𝑙𝑢𝑒𝑑 𝑚𝑎𝑡𝑟𝑖𝑥 =   
𝑓
𝑔
  

if g == 0 (also f == g == 0) 

Cosine θ = 1; 

Sine θ = 0; 
r = f; 

else if f == 0 (g != 0) 

Cosine θ = 0; 

Sine θ = sign (g’); 

r = f; 

else (f != 0 and g != 0) 

Cosine θ =
|𝑓|

 |𝑓|2 + |𝑔|2 ; 

Sine θ =
𝑠𝑖𝑔𝑛 𝑓 .𝑔′

 |𝑓|2 + |𝑔|2 ; 

r = sign (f). |𝑓|2 + |𝑔|2; 

 end if 

 

With this complex parameter calculation variant, Givens Rotation can now be applied to matrix 

problems involving complex-values, which will become apparently useful later in this report.  

2.1.3 Matrix Lemmas 

Matrix Lemmas are mathematical properties of matrices used in deriving the theorems 

that are the root of the beamforming problem. These lemmas are derived by Dr. Simon Haykin in 

his reputable text book “Adaptive Filter Theory” [6].  

The first lemma is Matrix Inversion Lemma. The Lemma states that for positive-definite 

I-by-I matrices A, B, positive-definite I-by-J matrix C and positive-definite J-by-I matrix D such 

that: 

𝑨 =  𝑩−1 + 𝑪𝑫−𝟏𝑪𝐻 (2.1.3.1) 

Equation: Matrix Inversion Lemma Equation 1 
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Then we can write the inverse of matrix A as: 

𝑨−1 =  𝑩 −  𝑩𝑪 𝑫 + 𝑪𝐻𝑩𝑪 −1𝑪𝐻𝑩 (2.1.3.2) 

Equation: Matrix Inversion Lemma Equation 2 

This lemma can be proved by multiplying Equation 2.1.3.1 with Equation 2.1.3.2, which yields 

an identity matrix I.  

The second lemma is matrix factorization lemma stated in [6], which states that for any J-

by-I matrices A and B, there exists a relationship: 

𝑨𝑨𝐻 = 𝑩𝑩𝐻 

𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓, 𝑩 = 𝑨𝜣 

𝑤𝑒𝑟𝑒, 𝜣𝜣𝑯 = 𝐈 

(2.1.3.2) 

Equation: Matrix Factorization Lemma 

Equation 2.1.3.2 proves the existence of orthogonal matrix Θ between any two J-by-I matrices 

where J is less than or equal to I.   

 

2.2 Adaptive Signal Processing Algorithms 

Filters employing adaptive signal processing algorithms self-adjust themselves to change 

the transfer function according to the optimization constraint of the algorithm. Thus, as opposed 

to normal filters, whose filter coefficients and transfer function behavior are fixed, adaptive 

filters changes their behaviors in accordance with changing environment to meet the functional 

requirements. There are several adaptive signal processing algorithms, as described in [6]. 

However, we will be describing two most important algorithms that became foundation of 

adaptive beamforming algorithms.  
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2.2.1 Recursive Least Square (RLS) Algorithm 

Recursive Least Square algorithm is an adaptive filtering algorithm employing method of 

least squares, which can estimate the filter coefficient at the current time step given only the least 

square estimated filter coefficient of previous time step. With its recursive nature, the algorithm 

is hence named Recursive Least Square (RLS) algorithm [6] described the algorithm in 

following steps: 

The tap-input vector at time step i is defined as: 

𝒖 𝑖 =   𝑢(𝑖) 𝑢(𝑖 − 1) … … 𝑢(𝑖 − 𝑀 + 1) 𝑇 (2.2.1.1) 

Equation: Tap-input Vector 

The tap-weight (coefficient) vector at time step n is defined as: 

𝒘 𝒏 =   𝑤0(𝑛) 𝑤1(𝑛) … … 𝑤𝑀−1(𝑛) 𝑇 (2.2.1.2) 

Equation: Tap-weight Vector 

The cost function for the RLS algorithm is defined as: 

б  𝑛 =   𝜆𝑛−𝑖|𝑒 𝑖 |2

𝑛

𝑖=1

 

𝑤𝑒𝑟𝑒, 𝑒 𝑖 =  𝑑 𝑖 −  𝒘𝑯(𝑛)𝒖(𝑖) 

(2.2.1.3) 

Equation: RLS Cost Function 

The optimum value for 𝒘𝑯 which the cost function б is minimized can be defined in normal 

equation form as follows: 

𝜱 𝑛 𝒘 𝑛 = 𝒛(𝑛) 

𝑤𝑒𝑟𝑒, 𝜱 𝑛 =   𝜆𝑛−𝑖𝒖 𝑖 𝒖 𝑖 𝐻
𝑛

𝑖=1

 

(2.2.1.4) 
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𝑎𝑛𝑑, 𝒛 𝑛 =   𝜆𝑛−𝑖𝒖 𝑖 𝒅∗ 𝑖 

𝑛

𝑖=1

  

Equation: RLS Optimization Constraints 

We can see that the last two equations can be re-written in recursive form as follows: 

𝜱 𝑛 = 𝜆𝜱 𝑛 − 1 +  𝒖 𝑛 𝒖 𝑛 𝐻   

𝒛 𝑛 =  𝜆𝒛 𝑛 − 1 +  𝒖 𝑛 𝒅∗(𝑛) 

(2.2.1.5) 

Equation: RLS Optimization Constraints in Recursive Form 

For the next step, we will use the Matrix Inversion Lemma presented in Section 2.1.3 to 

calculate the inverse of matrix 𝜱 𝑛  by setting 𝑨 = 𝜱−𝟏 𝑛 , 𝑩−1 =  𝜆𝜱 𝑛 − 1 , 𝑪 = 𝒖(𝑛), 

𝑫 = 1 in the first equation of Equation 2.2.1.5. Then, we get the expression: 

𝑷 𝑛 =  𝜆−1𝑷 𝑛 − 1 −  𝜆−1𝒌 𝑛 𝒖 𝑛 𝑯𝑷 𝑛 − 1  

𝑤𝑒𝑟𝑒, 𝑷 𝑛 =  𝜱−𝟏 𝑛  

𝑎𝑛𝑑, 𝒌 𝑛 =  
𝜆−1𝑷 𝑛 − 1 𝒖(𝑛)

1 +  𝜆−1𝒖 𝑛 𝑯𝑷 𝑛 − 1 𝒖(𝑛)
=  𝑷 𝑛 𝒖 𝒏 =  𝜱−𝟏 𝑛 𝒖 𝒏  

(2.2.1.6) 

Equation: RLS Parameters  

With the parameters, we can now calculate the expression for tap-weight (coefficient) 

vector from our constraint equation mentioned in Equation 2.2.1.4. By using the derived 

expressions for RLS parameters, we can derive the expression for the tap-weight vector as 

follows: 
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𝒘 𝑛 = 𝜱−𝟏 𝑛 𝒛 𝑛  

𝒘 𝑛 = 𝑷 𝑛 𝒛 𝑛  

𝒘 𝑛 =   𝜆𝑷 𝑛 𝒛 𝑛 − 1 +  𝑷 𝑛 𝒖 𝑛 𝒅∗ 𝑛  

𝒘 𝑛 =  𝑷 𝑛 − 1 𝒛 𝑛 − 1 −  𝒌 𝑛 𝒖 𝑛 𝑯𝑷 𝑛 − 1 𝒛 𝑛 − 1 

+  𝑷 𝑛 𝒖 𝑛 𝒅∗ 𝑛  

𝒘 𝑛 =  𝒘 𝑛 − 1 −  𝒌 𝑛 𝒖 𝑛 𝑯𝒘 𝑛 − 1 + 𝑷 𝑛 𝒖 𝑛 𝒅∗ 𝑛  

𝒘 𝑛 =  𝒘 𝑛 − 1 + 𝒌 𝑛 𝝃∗(𝑛)  

𝑤𝑒𝑟𝑒, 𝝃∗ 𝑛 = 𝑑 𝑛 −  𝒘𝐻(𝑛 − 1)𝒖(𝑛) 

(2.2.1.7) 

Equation: RLS Tap-weight Vector and Priori Estimation Error 

These derived parameters for RLS algorithm will found to be important in deriving the QR-RLS 

algorithm later.   

2.2.2 Kalman Filtering Algorithm 

Kalman filtering algorithm is another important adaptive signal processing algorithm. It 

also computes the results in the recursive manner, and its derivations were largely dependent on 

the state-space signal processing concepts. With its unique nature, Kalman filtering theory 

provided the framework spanning over the families of recursive least square adaptive signal 

processing algorithms. 

Here in this project, we are particularly interested in one variant of Kalman filter called 

Unforced Dynamic Model because it is directly related to the emergence of QR-RLS algorithm. 

We will omit the derivation of traditional Kalman filters in this report for the sake of brevity, and 

will focus mainly on the Forced Dynamic Model variant. For detailed derivation of traditional 

Kalman filter, it can be referred to [6].  
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Traditional Kalman filter has following parameters: 

𝑲 𝑛 =  𝑲 𝑛, 𝑛 − 1 −  𝑭 𝑛, 𝑛 + 1 𝑮 𝑛 𝑪  𝑛 𝑲 𝑛, 𝑛 − 1  

𝑮 𝑛 = 𝑭 𝑛 + 1, 𝑛 𝑲 𝑛, 𝑛

− 1 𝑪𝐻 𝑛  𝑪 𝑛 𝑲 𝑛, 𝑛 − 1 𝑪𝐻 𝑛 + 𝑸𝟐(𝑛) −𝟏 

𝜶 𝑛 =  𝒚 𝑛 −  𝑪 𝑛 𝒙(𝑛|𝑦𝑛−1) 

𝑤𝑒𝑟𝑒, 𝑪 𝑛  𝑖𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 

𝑎𝑛𝑑, 𝑭 𝑛, 𝑛 + 1  𝑖𝑠 𝑠𝑡𝑎𝑡𝑒 − 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 

(2.2.2.1) 

Equation: Kalman filter Parameters 

For the Unforced Dynamic Model variant, the process noise becomes zero, and the 

measuring noise becomes zero-mean white noise process with unit variance. Thus, some of the 

state-space parameters converge to constants and the parameters for the Kalman filter variant is 

derived as follows: 

𝑭 𝑛 + 1, 𝑛 =  𝝀
𝟏
𝟐𝐈, 𝑪 𝑛 = 𝒖𝐻 𝑛 ,         𝑸𝟐 𝑛 =  1 

𝑲 𝑛 =  𝜆−1𝑲 𝑛 − 1 −  𝜆−1/2𝒈 𝑛 𝒖 𝑛 𝑯𝑲 𝑛 − 1  

𝒈 𝑛 =  
𝜆−1/2𝑲 𝑛 − 1 𝒖 𝑛 

1 +  𝒖 𝑛 𝑯𝑲 𝑛 − 1 𝒖 𝑛 
 

𝜶 𝑛 =  𝑦 𝑛 −  𝒖𝐻 𝑛 𝒙(𝑛|𝑦𝑛−1) 

(2.2.2.2) 

Equation: Unforced Dynamic Kalman filter Parameters 

By manipulating the expressions obtained in Equation 2.2.2.2, we can finally obtain the 

parameters for Kalman Square-root Information filter parameters as follows: 
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𝒈 𝑛 = 𝜆−1/2𝑲−𝟏 𝑛 𝒖 𝒏  

𝑲−1 𝑛 = 𝜆𝑲−1 𝑛 − 1 +  𝒖 𝑛 𝒖 𝑛 𝐻   

𝑲−1 𝑛  𝒙 𝑛 + 1 𝑦𝑛 =  𝜆−1/2𝑲−1 𝑛 − 1 𝒙 𝑛 𝑦𝑛−1 + 𝜆−1/2 𝒖 𝑛 𝑦(𝑛) 

(2.2.2.3) 

Equation: Kalman Information Filter Parameters 

Then, by re-writing the term 𝑲−1 𝑛 =  𝑲−𝐻/2 𝑛 𝑲−1/2 𝑛 , and utilizing the matrix 

factorization lemma presented in Section 2.1.3 as well as, we can formulate the Kalman Square-

root Information filter into pre-array and post-array forms as follows: 

 
λ1/2𝐊−H/2(n − 1) λ1/2𝒖(𝑛)

𝒙𝐻 𝑛 𝑦𝑛−1 𝐊
−H/2(n − 1) 𝑦∗(𝑛)

𝟎𝑇 1

  Θ (n) =    

𝐊−H/2(n) 𝟎

𝒙𝐻 𝑛 + 1 𝑦𝑛 𝐊
−H/2(n) 𝛼∗ 𝑛 𝑟−1/2(𝑛)

λ1/2𝒖𝐻  𝑛  𝐊1/2(n) 𝑟1/2(𝑛)

  
(2.2.2.4) 

 

Equation: Kalman Square-root Information Filter Calculation 

We can use the Equation 2.2.2.4 to recursively calculate the Kalman Filter coefficients.  

 

2.2.3 QR-RLS Algorithm 

From Equation 2.2.1.6 and Equation 2.2.2.3, we can see the correspondence between the 

RLS algorithm, and Kalman Information Filter. By re-writing the term 

𝜱 𝑛 =  𝜱𝟏/𝟐 𝑛 𝜱𝑯/𝟐 𝑛 , and inventing the new term 𝐩  n =  𝜱
𝑯

𝟐 𝑛 𝐰 n =  𝜱−
𝟏

𝟐 𝑛 𝐳(n), 

we can represent the RLS algorithm in the pre-array and post-array from as we described the 

Kalman Information filtering algorithm earlier. 

 

  



` 

24 
 

 
λ

1

2𝚽
1

2(n − 1) 𝒖(𝑛)

λ
1

2𝐩H(n − 1) 𝑑(𝑛)

𝟎𝑇 1

  Θ (n) =   

 
 
 
 
 𝚽

1

2(n) 𝟎

𝐩H(n) 𝜉 𝑛 𝛾−
1

2(𝑛)

𝒖𝐻  𝑛  𝚽−
H

2 (n) 𝛾
1

2(𝑛)  
 
 
 
 

 

𝒘𝑯 𝑛 =  𝐩H(n)𝚽−
1
2(n) 

Equation 2.2.3.1: QR-RLS Algorithm 

The QR-RLS algorithm is used to solve the adaptive beamforming problem efficiently 

due to its recursive nature, and its efficient computational structure and numerical stability [6]. 

  

2.3 Adaptive Beamforming  

The adaptive beamforming problem is where the adaptive signal processing applications 

meet the spatial signal processing structures such as antenna arrays. By utilizing the adaptive 

signal processing algorithms such as QR-RLS algorithm while sampling the received signals 

with spatial antenna arrays, the technique ensures to keep the gain in the desired direction high 

while suppressing the received signals from interference sources. With the adaptive nature of the 

algorithm, the system’s transfer function will change according to the desired signal direction to 

get rid of the interference and ensure the desired signal.  

There are many variants of adaptive beamforming in general. However, for the purpose 

of the project, we will be looking at the receive beamforming utilizing the QR-RLS algorithm.  
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2.4 Minimum Variance Distortionless Response 

The Minimum Variance Distortionless Response (MVDR) Problem can be formulated as: 

𝑚𝑖𝑛
𝑤(𝑛)

  λ𝑛−𝑖|𝑒(𝑖)|2

𝑛

𝑖=1

 

where 𝑒 𝑖 = 𝒘𝐻 𝑛 𝒖 𝑖  𝑠𝑢𝑐 𝑡𝑎𝑡 𝒘𝐻 𝑛 𝒔 𝛳0 =  1 

(2.4.1) 

 

Equation: Minimum Variance Distortionless Response Problem Statement 

With the introduction of the constraint 𝒘𝐻 𝑛 𝒔 𝛳0 =  1, where 𝒔 𝛳0  is the steering 

vector for the antenna array, the optimization constraint becomes: 

𝒘 𝑛 =  
𝚽−1 n 𝒔 𝛳0 

𝒔𝐻 𝛳0 𝚽−1 n 𝒔 𝛳0 
 (2.4.2) 

Equation: MVDR Optimization Constraint  

By defining auxiliary vector as: 𝒂 𝑛 =  𝚽−1/2 n 𝒔 𝛳0 , we can re-write the weight vector, 

estimation error, and new estimation error term as follows: 

𝒘 𝑛 =  
 𝚽−H/2 n 𝒂 𝑛 

| 𝒂 𝑛  |2
 

𝒆 𝑛 =  
 𝒂𝑯 𝑛 𝚽−

1
2 n 𝐮(n)

| 𝒂 𝑛  |2
 

𝒆′ 𝑛 =  𝒂𝑯 𝑛 𝚽−
1

2 n 𝐮(n)   

(2.4.3) 

Equation: MVDR Parameters 

With the parameters of the MVDR problem defined, we can finally map MVDR problem to QR-

RLS and represent it in the pre-array and post-array as follows: 
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λ

1

2𝚽
1

2(n − 1) 𝒖(𝑛)

λ
1

2𝐚H(n − 1) 0

𝟎𝑇 1

  Θ (n) =   

 
 
 
 
 𝚽

1

2(n) 𝟎

𝐚H(n) −𝑒′ 𝑛 𝛾−
1

2(𝑛)

𝒖𝐻  𝑛  𝚽−
H

2 (n) 𝛾
1

2(𝑛)  
 
 
 
 

 

 

Equation: MVDR Calculation 

(2.4.4) 

After calculating the parameters via Equation 2.4.4, we can calculate the estimation error beam 

output by calculating as follows: 

𝑒 𝑛 =  
−(−𝑒′ 𝑛 𝛾−

1
2(𝑛)𝛾

1
2(𝑛))

 𝐚(𝑛) 2
 

(2.4.5) 

 

Equation: MVDR Estimation Error Calculation 

 

2.5 Chapter Summary 

We have successfully presented comprehensive and thorough material on the theoretical 

background of MVDR beamforming algorithm. The next chapter will present the implementation 

considerations for the MVDR algorithm on hardware, and the MATLAB simulation for the 

algorithm.  
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Chapter 3: 

MATLAB Simulation of Beamforming 

 

This chapter discusses the MATLAB simulation of the Minimum Variance Distortionless 

Response (MVDR) beamforming algorithm presented in Chapter 2. The chapter is organized as 

follows: Firstly, it will present the efficient implementation technique of the MVDR 

beamforming algorithm on hardware. Secondly, it will present the method used to simulate 

cycle-by-cycle hardware simulation on MATrix LABoratory (MATLAB) [7] environment. 

Thirdly, it will present the structural approach of the simulation program. Finally, it will present 

the simulation results.   

 

3.1 Efficient Implementation 

This section will present the efficient implementation technique for matrix computation-

based signal processing algorithms, namely Systolic Array Processor approach. This approach 

has been widely used in Very Large Scale Integrated Circuit (VLSI) implementation of signal 

processing algorithms.  

3.1.1 Systolic Array Processor 

As we can see from Chapter 2, the calculation of QR-RLS algorithm and its predecessor 

MVDR algorithm involves matrix multiplication which is a series of Givens Rotations. It is 

known that the serial implementations of matrix multiplication are usually inefficient and slow. 

Especially, for the real-time signal processing algorithms such as QR-RLS and MVDR 
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beamforming algorithms employing matrix computations. The situation calls for a more efficient 

method to reduce the computation time, and improve the throughput in matrix computations.  

In 1978, systolic array processors became proposed for VLSI signal processing systems 

by Kung and Leiserson in [8]. Systolic Array processor approach is a parallelized approach to 

many of matrix computations. In a systolic array system, there are individual processing cells 

arranged as a particular structure. Each individual cell of the system has its own processing 

functionality, and own local memory. Moreover, only adjacent cells are connected to each other, 

and there is no direct connection among the cells that are not adjacent.  

In this way, when data is fed into a systolic system, the processing cells at the front-end 

of the system will process the data, store the required data in their own local memory, and then 

forward resulting data to their adjacent cells in the system. The cells that received the forwarded 

data from the front-end cells will, in turn, process the data, store the required data, and forward 

their results to their adjacent cells. This processing and forwarding pattern is continued until the 

data flow reaches to the end of the system where the desired results are presented. In this way, 

the data processing flows through the whole system in a rhythmic manner, much like the blood 

pumping fashion of human heart. The system is thus named systolic array processor.    

3.1.2 Systolic Array Approach for MVDR 

In the MVDR algorithm presented in Equation 2.4.4, we can see that the resulting post-

array is a lower triangular matrix, and the matrix multiplication on the left-hand side is basically 

applying a series of givens rotations to the pre-array to annihilate the input vector u (n). From 

our derivations from Chapter 2, we can see that the number of elements in the input vector u (n) 

directly corresponds to the number of antennas in the MVDR beamforming scenario. To 

annihilate the elements of the input vector and set it to zero, we will need to apply a series of 
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Givens Rotations operations. The number of operations required is the same as the number of 

elements in the input because each Givens Rotation will annihilate exactly one entry in the input 

vector. Therefore, in general, MVDR beamforming algorithm with K input antennas will require 

K Givens Rotation operations in calculating the post-array.  

Fortunately, these Givens Rotation operations are highly parallelizable in computation 

because there is no data dependency between the Givens Rotation operation at one entry in the 

input vector and the Givens Rotation operation at the same entry for subsequent iterations. In 

short, the calculation of the Givens Rotation for a particular entry in the input vector does not 

need to wait for the results at other entries. Therefore, we can parallelize the Givens Rotation 

operations.   

 If we examine the Givens Rotation presented in Section 2.1.2, we can see that 

calculation of Givens Rotation involves two major steps. The first step is to calculate the rotation 

parameter Cosine and Sine values. The second step is to actually rotating the values by 

performing the vector dot product. However, notice that for each sequence of Givens Rotation to 

cancel out a corresponding entry in the pre-array, both the rotation parameter calculation phase 

and the rotation phase involves with only certain elements in the pre-array, and the remaining 

elements in the pre-array are unaffected. To make this point clearer, the step by step operation of 

one step of MVDR algorithm calculation for three inputs is presented below.    
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𝛷1,1

𝛷2,1

𝛷3,1

𝑎1

0

0
𝛷2,2

𝛷3,2

𝑎2

0

0
0

𝛷3,3

𝑎3

0

𝑢1

𝑢2
𝑢3

0
1  
 
 
 
 

 .  

𝑐𝑜𝑠
0
0
𝑠𝑖𝑛

0
1
0
0

0
0
1
0

−𝑠𝑖𝑛′
0
0

𝑐𝑜𝑠

   

𝛷′
1,1 =  𝛷1,1. 𝑐𝑜𝑠 +   𝑢1. 𝑠𝑖𝑛  

𝑢′1 =  𝛷1,1. (−𝑠𝑖𝑛∗) +  𝑢1. 𝑐𝑜𝑠 = 0 

𝛷′
2,1 =  𝛷2,1. 𝑐𝑜𝑠 +   𝑢2. 𝑠𝑖𝑛  

𝑢′2 =   𝛷2,1. (−𝑠𝑖𝑛∗) +  𝑢2. 𝑐𝑜𝑠   

𝛷′
2,2 =  𝛷2,2  

𝛷′
3,1 =  𝛷3,1. 𝑐𝑜𝑠 +   𝑢3. 𝑠𝑖𝑛  

𝑢′
3 =   𝛷3,1. (−𝑠𝑖𝑛∗) +  𝑢3. 𝑐𝑜𝑠  

𝛷′3,2 = 𝛷3,2 

𝛷′3,3 = 𝛷3,3 

𝑎′1 =  𝑎1. 𝑐𝑜𝑠 

𝑎′2 = 𝑎2 

𝑎′3 =  𝑎3 

𝛽′ =  𝑎1. (−𝑠𝑖𝑛∗) 

(3.1.2.1) 

Equation: First Iteration of the Step 
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𝛷′1,1

𝛷′2,1

𝛷′3,1

𝑎′1
𝛽′

0
𝛷′2,2

𝛷′3,2

𝑎′2
𝛽′

0
0

𝛷′3,3

𝑎′3
𝛽′

0
𝑢′2
𝑢′3
𝛽′

𝛽′  
 
 
 
 
 

 .  

1
0
0
0

0
𝑐𝑜𝑠

0
𝑠𝑖𝑛

0
0
1
0

0
−𝑠𝑖𝑛′

0
𝑐𝑜𝑠

   

𝛷′ ′1,1 =  𝛷′
1,1 

𝑢′′1 = 0 

𝛷′ ′2,1 = 𝛷′
2,1 

𝛷′ ′2,2 =  𝛷′2,2. 𝑐𝑜𝑠 +   𝑢′2. 𝑠𝑖𝑛   

𝑢′′2 =   𝛷′
2,2. (−𝑠𝑖𝑛′) +   𝑢′2. 𝑐𝑜𝑠 = 0 

 𝛷′′3,1 = 𝛷′3,1 

𝛷′′
3,2 =  𝛷′

3,2. 𝑐𝑜𝑠 +   𝑢′
3. 𝑠𝑖𝑛  

𝑢′′
3 =   𝛷′

3,2. (−𝑠𝑖𝑛∗) +   𝑢′3. 𝑐𝑜𝑠  

𝛷′′3,3 = 𝛷′3,3  

𝑎′′1 = 𝑎′1 

𝑎′′2 =  𝑎2. 𝑐𝑜𝑠 +   𝛽′ . 𝑠𝑖𝑛  

𝑎′′3 = 𝑎′3 

𝛽′′ = ( 𝑎′
2. (−𝑠𝑖𝑛∗) +   𝛽′ . 𝑐𝑜𝑠 ) 

(3.1.2.2) 

Equation: Second Iteration of the Step 
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𝑐𝑜𝑠
𝑠𝑖𝑛

0
0

−𝑠𝑖𝑛′
𝑐𝑜𝑠

   

𝛷′′ ′
1,1 =  𝛷′′1,1 

𝑢′′′1 = 0 

𝛷′′ ′2,1 = 𝛷′′
2,1 

𝑢′′′2 = 0 

𝛷′′′2,2 =  𝛷′′
2,2  

𝛷′′′3,1 = 𝛷′′3,1 

𝛷′′′3,2 =  𝛷′′3,2 

𝛷′′′3,3 =  𝛷′′
3,3 . 𝑐𝑜𝑠 +  𝑢′′3. 𝑠𝑖𝑛   

𝑢′ ′′3 =  𝛷′′
3,3 . (−𝑠𝑖𝑛∗) +  𝑢′′3. 𝑐𝑜𝑠   

𝑎′′′1 =  𝑎′′1 

𝑎′′′2 =  𝑎′′2 

𝑎′′′
3 =  𝑎′′

3. 𝑐𝑜𝑠 +  𝛽′′ . 𝑠𝑖𝑛  

𝛽′′′ = ( 𝑎′′
3. (−𝑠𝑖𝑛∗) +   𝛽′′ . 𝑐𝑜𝑠 ) 

(3.1.2.3) 

Equation: Third Iteration of the Step 
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 (3.1.2.3) 

Equation: Resulting Post-Array 
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From above calculations, we can see that the u-terms are required for calculating different update 

values for Φ and a. Thus, u-terms become the data being forwarded to the adjacent cells in a 

systolic system. On the other hand, the update calculations of Φ and a only needs Φ and a from 

previous Givens Rotation operation. Therefore, they become the locally stored values in the 

processing cells of a systolic system.  

 By putting them altogether, we got the systolic system implementation of MVDR algorithm as 

described in Equation 2.4.4 and Equation 2.4.5. This implementation follows the systolic 

implementation 2 as described in [6].  The system block diagram is as follows: 

 

Figure 3.2.1 1: Systolic Implementation of MVDR Algorithm 

The circle cells as found in the figure above will calculate the rotation parameters for Givens 

Rotations as described in Algorithm 2.1.2.1 with an additional computation of e (n) as: 

 

𝑒 𝑛 =  
−(−𝑒′ 𝑛 𝛾−

1
2(𝑛)𝛾

1
2(𝑛))

 𝐚(𝑛) 2
 (3.1.2.2) 

Equation: Beam-output Error Calculation 
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in the right-most circle cell labeled as “x.” The square cells are responsible for calculating the 

rotation of the matrix elements. In standard terminology, the circle cells are called Boundary 

Cells. In other words, the Cosine and Sine terms of the Algorithm 2.1.2.1 are calculated in the 

Boundary Cells. On the other hand, the square cells are called Internal Cells. The Internal Cells 

calculate the rotation of the entries, i.e., the matrix multiplication part of Algorithm 2.1.2.1.   

 

3.2 Hardware Behavioral Simulation on MATLAB 

We used MATLAB to simulate the MVDR beamforming algorithm implementation in 

Systolic Array Implementation 2.  

The challenges we found in writing a simulation script program in this manner on 

MATLAB was that all of the execution of the code on MATLAB are sequential while Systolic 

Array is parallelized algorithm of the MVDR algorithm. In general, we were required to find a 

way to make the sequential execution of MATLAB into parallel, independent execution of 

Boundary and Internal Cells on the Systolic System. In addition, we were required to meet the 

requirement of each of the cells in the system having its own local memory for storage of the 

values, i.e., the values of the elements of 𝜱 matrix and a matrix. Last but not least, we were also 

required to meet the cycle-by-cycle update of the values as if it were running on hardware.   

To meet these requirements, we created the vector arrays of storage on MATLAB for the 

storage of each type of cells respectively. And then, we created the external separate functions 

for functionality of Boundary and Internal Cells respectively. To mimic the independent 

executions of the cells, we called each Boundary and Internal Cell functions sequentially, i.e., 

starting with the Boundary cell (1, 1) in Figure 3.1.2.1 and going down row by row ending in the 

“x” cell, by passing the local storage of each cell to the function calls. Finally, to make the 
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system act on cycle-by-cycle update behavior, we created the global loop iterating the function 

calls above for the desired number of iterations.  

The flow control of the simulation program can be found as follows: 

 

Figure 3.2.1 2: Flow Control for the Simulation Program 
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3.3 Scenarios for Simulation 

The scenario for the simulation is as follows: 

 

 

Figure 3.3 1: Scenario for the Simulation 

We have three antennas, and the systolic array processor. We will have one desired signal 

source, and one interference signal source. Due to the channel, and the thermal heat in the 

equipment, there will be Additive White Gaussian Noise (AWGN) added at the receiving 

antenna. Therefore, the input values coming into the MVDR systolic array processor are 

mixtures of the desired signal, interference signal and the AWGN. 

We keep the Signal-to-Noise ratio (SNR) and Interference-to-Noise ratio (INR) as 

variables in the simulation. In this way, we can calculate different desired signal and interference 

signal strengths by following equations: 
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𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑆𝑖𝑔𝑛𝑎𝑙 𝑆𝑡𝑟𝑒𝑛𝑔𝑡 =  10 
𝑆𝑁𝑅
10

 
 

𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑆𝑖𝑔𝑛𝑎𝑙 𝑆𝑡𝑟𝑒𝑛𝑔𝑡 =  10 
𝐼𝑁𝑅
10

 
 

(3.3.1) 

Equation: Desired and Interference Signal Strength 

 

In addition, we can vary the desired signal direction and interference direction to play 

around with slightly different scenarios. The steering vector as mentioned in Chapter 2 is 

basically the vector of desired angle with phase delays.  

We synthesize the input data for the MVDR systolic array processor by multiplying the 

desired signal amplitude with the steering vector, doing the same for the interference signal 

amplitude, generating the normal Gaussian noise, and adding all of them together.    

 

3.4 Simulation Results 

We set the SNR to be 10, and INR to be 40. We set the desired angle to be -70 degrees, 

and the interference angle to be 30 degrees. Even though we can play around with a lot of 

combination for different settings here, we have decided that the readers can make educated 

guesses about the behavior of the algorithm when playing around with the parameters, and thus 

demonstrating everything here will not be relevant to the important points we are trying to 

present. For example, a reader can guess that decreasing the SNR while increasing the INR will 

worsen the performance as well as making the desired angle and interference angle so close to 

each other will make the algorithm fail as the algorithm will also filter out the desired signal. 
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Therefore, we will only keep one standard setting while we experiment on the important points 

of the algorithm when simulated on hardware behavior.  

Afterwards, we ran simulations on MATLAB with these settings in two different ways: 

floating point calculations versus hardware-style scaled calculation.  

3.4.1 Floating Point Calculations 

Since MATLAB uses double precision floating point numbers, we do not need to do 

anything for the floating point calculations. We just ran the program with the aforementioned 

settings. We ran the program, and analyzed the behavior with different number of iterations. We 

will discuss the performance with 10, 30, 50, 100, and 200 iterations. 

 

Figure 3.4.1 1: Floating Point 10 Iterations 

 

Here, we can see t hat the algorithm is not performing well yet, i.e., it has not fully 

converged to the final, converged value which is calculated via the one-step direct calculation of 

the MVDR algorithm, and presented with the Blue line in above figure. Nevertheless, we can see 
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that the algorithm met its goal of having the unit response at the desired angle and having a dip 

response at the interference angle.   

 

Figure 3.4.1 2: Floating Point 20 Iterations 

Here, we can still see that the algorithm still has not converged. But it does show some 

improvement over 10 more iterations especially in the dip between 0.6 and 0.8.  

 

Figure 3.4.1 3: Floating Point 50 Iterations 
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As we would expect, the algorithm showed a lot of improvement over 30 more iterations. 

There is a perfect match on the dip between 0.2 and 0.4. Also, we can see that the dip between 

0.6 and 0.7 is improved a lot better.  

 

Figure 3.4.1 4: Floating Point 100 Iterations 

Here, we can see that there is not much of improvement for 50 more iterations. We will 

iterate more to see if there will be any more improvement. 

 

 

Figure 3.4.1 5: Floating Point 200 Iterations 



` 

41 
 

Finally, after 200 iterations, the algorithm finally converged to its one-step direct 

calculation. We can see the step-wise improvement of the algorithm, as it is to be expected from 

the adaptive signal processing algorithm. 

3.4.2 Hardware Scaled Calculations 

On hardware, representing numbers in multiple precision floating-point numbers is 

expensive. Usually, this practice is avoided unless alternative is impossible. The numbers are 

represented in fixed-point format on typical DSP hardware. Since we would like to reduce the 

resource usage of our final design, we will simulate and analyze the behavior of the algorithm on 

limited resources.  

We can simulate this easily by scaling the input values by a factor of 2. This is because 

all of the values and calculations will be done in fixed point binary numbers. Since MATLAB 

uses double precision floating point numbers, we will need to divide the numbers by powers of 2 

to get the desired scaled values. In hardware, dividing by 2 is basically shifting the fixed point 

number to the right, which would not cost anything in terms of hardware resources. 

With the scaling of the data, there will be loss of precision, which can be modeled as a 

form of noise. However, since the MVDR algorithm is an adaptive algorithm, we expect it to be 

able to converge to the final value regardless of loss of precision at the expense of requiring 

more iteration to arrive at that point.   

Here, we will analyze the performance of the algorithm with different scaling factors, and 

determine the number of iterations required to be certain that algorithm converges.  

We will discuss our results from using the scaling factors of 2
-2

, 2
-5

, 2
-8

, and 2
-10

. We 

would expect that the first two scaling values would not require a lot of iterations whereas the 

last two will require a lot of iterations to get the algorithm to converge.   
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Figure 3.4.2 1: Fixed Point Scaling Factor 2
-2

 

For the scaling factor of 2
-2

, it did not take more than the normal floating point 

calculation converge require for convergence. In fact, it requires exactly the same number as the 

former case, where it requires 200 iterations to converge.  

 

Figure 3.4.2 2: Fixed Point Scaling Factor 2
-5
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For the scaling factor of 2
-5

, we start to see the change. We can see the jump of 700 

iterations from 200 to 900 iterations required to converge just by scaling three times more. We 

can expect a lot of exponentially growing behavior of the converging time. 

 

Figure 3.4.2 3: Fixed Point Scaling Factor 2
-8

 

For the scaling factor of 2
-8

, we can see that the iteration requirement exponentially grew 

as we expected. With this scaling factor, the algorithm required 30000 iterations to converge. 

With this behavior, we can see that the algorithm will require exponentially longer time with 

respect to the number of bits we shifted, i.e., the amount we scaled.  
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Figure 3.4.2 4: Fixed Point Scaling Factor 2-13 

Finally, with the scaling factor 2
-13

, we saw the iteration requirement of 500000.  

With these experimental results, we can conclude that the scaling of the inputs to reduce the 

hardware resource usage has its trade-off, especially when we are designing for the real-time 

processing.  

We will use these results into account when we design the hardware, and it is a really useful 

piece of information for the design process.  

 

3.5 Chapter Summary 

In this chapter, we presented the efficient implementation technique for MVDR 

beamforming algorithm and its simulation in the MATLAB, with different scenario and 

performance results.   
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Chapter 4: 

System Generator Model of Beamforming  

 

This chapter discusses the implementation process of beamforming model presented in 

previous chapters. Firstly, the chapter goes over the development environment we have chosen to 

implement the beamforming project, namely System Generator Environment [9] from Xilinx 

[10] design suite. Secondly, the chapter goes over the Xilinx System Generator Environment’s 

available libraries for Digital Signal Processing (DSP). Thirdly, it discusses about the translation 

of the beamforming model we implemented in MATLAB as discussed in the previous chapter 

into System Generator Model. Subsequent sections of the chapter describe the test 

methodologies we employed during the implementation process, the results of the simulation, 

and the system resource usage.   

  

4.1 Xilinx System Generator 

This chapter describes a brief background on Xilinx System Generator development 

environment for DSP systems, which we chose to implement our MATLAB model. Xilinx 

System Generator development environment employs visual programming paradigm for 

development of DSP systems on Field Programmable Gate Arrays (FPGAs) by interfacing 

between Xilinx libraries for programmable logic devices development and MATLAB’s visual 

programming interface Simulink.    

 



` 

46 
 

4.1.1 Xilinx Corporation 

Xilinx Corporation is founded in 1984, and it has headquarters in San Jose, California, 

United States of America. It is the world’s largest supplier of Complex Programmable Logic 

Devices (CPLDs), and is the inventor of Field Programmable Gate Arrays (FPGAs).  

Xilinx’s market spans over various programmable logic products including integrated 

circuits (ICs), software design tools, functionally predefined intellectual property (IP) cores, 

design services, customer training, field engineering and technical support. Xilinx sells both 

FPGAs and CPLDs for electronic equipment manufacturers in end markets such as 

communications, industrial, consumer, automotive and data processing. Two largest families of 

Xilinx FPGAs are Spartan Family and Virtex Family. Spartan family targets the low-power 

applications, and Virtex family usually targets the System-on-Chip (SoC) solutions.    

Xilinx ISE Design Suite is the Electronic Design Automation (EDA) product family 

featuring design and synthesis supporting Verilog or VHDL, place-and-route (PAR), verification 

and debug using ChipScope Pro tools, and manager for the bit files that are used to configure the 

chip (iMPACT).  

4.1.2 System Generator for DSP 

System Generator for DSP is part of Xilinx ISE design suite. The software provides 

visual programming interface for developing and prototyping high performance DSP systems on 

Xilinx FPGA families, enabling developers with little FPGA development experience to be 

productive on DSP hardware development.  

System Generator provides system level modeling and automatic code generation by 

aggregating with MATLAB and Simulink modeling environments. In this way, developers can 

build system models on MATLAB and Simulink environment, generate Verilog and VHDL code 

http://en.wikipedia.org/wiki/Verilog
http://en.wikipedia.org/wiki/VHDL
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from the models, and directly compile the generated code into the bit file. The abstraction to 

avoid directly dealing with low-level Register Transfer Level (RTL) Verilog or VHDL code 

reduces the system development time significantly. It also provides hardware co-simulations 

between MATLAB, Simulink and the hardware platform via Ethernet or Joint Tag Action Group 

(JTAG). Furthermore, hardware and software co-design of embedded systems is made possible 

by providing soft processor cores such as Xilinx Micro-Blaze which can be programmed ahead 

of time, and downloaded to the hardware platform.    

4.1.3 System Generator Libraries for DSP Design 

System generator adds the Xilinx Blockset libraries [11] to Simulink in addition to the 

normal Simulink libraries. There are three library sets added to the Simulink modeling 

environment. They are: 

1. Xilinx Blockset Library 

2. Xilinx Reference Blockset Library 

3. Xilinx Xtreme DSP Kit Library 

 

Xilinx Blockset Library provides the logic design building blocks that can be used to build 

complex systems in different categories as follows: 

1. Basic Elements 

2. Communication 

3. Control Logic 

4. DSP 

5. Data Types 

6. Index 
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7. Math 

8. Memory 

9. Shared Memory  

10. Tools 

Xilinx Reference Blockset Library provides the reference models of certain complex 

functionality design blocks. Usually, this library is meant to be used for rapid prototyping the 

systems, and the implementation of the functional blocks might not be optimal for particular 

design projects. This library provides following categories: 

1. Communication 

2. Control Logic 

3. DSP 

4. Imaging 

5. Math 

 

Xilinx Xtreme DSP Kit Library is designed for interfacing with the Digital-to-Analog 

Converters (DACs), Analog-to-Digital Converters (ADCs), External RAMs and Light Emitting 

Diodes (LEDs) on the hardware development platforms.    

 

The user interface for the System Generator DSP hardware modeling works exactly the same 

as Simulink modeling except for the fact that certain three rules must be followed to be able to 

generate the hardware description language code from the model directly. These specific rules 

are as follows: 



` 

49 
 

1. System Generator Token must be included for the top-level design. The options for code 

generation and hardware platform targeting can be selected from the options made 

available via the System Generator Token. System Generator Token is available in Basic 

Elements, Index and Tools categories.  

2. Xilinx Gateway-In and Gateway-Out blocks must be included in the top-level design. 

The Gateway-In blocks are responsible for casting the input data-type from MATLAB 

multi-precision floating-point into Xilinx’s fixed-point data-type. The Gateway-In blocks 

become the top-level inputs to the system when code is generated and synthesized. The 

Gateway-Out blocks are responsible for casting the output data-type from Xilinx fixed-

point to MATLAB’s multi-precision floating-point or output data-type of the hardware 

platform. The Gateway-Out blocks become the top-level data outputs of the system when 

code is generated and synthesized.  

3. Most important of all, only the functional blocks from the three Xilinx Blockset Libraries 

can generate the hardware description language code, and are synthesizable. 

 

With these rules in mind, any developer with basic understanding of digital logic design 

can model, and synthesize functional and high performance DSP or control systems.    
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4.2 Translation of MATLAB Simulation Model 

This chapter discusses about the process of translating the MATLAB simulation model of 

Minimum Variance Distortionless Response (MVDR) beamforming into System Generator 

model. There are some major challenges we faced along this process.  

4.2.1 Challenges  

To identify the major challenges for the implementation of the MATLAB model on 

System Generator, we first tried to directly implement the MATLAB model on System 

Generator environment. Then, we found some major challenges in terms of mathematical 

operations as well as in terms of design due to the limitations of the hardware platforms we had 

to work on.  

There were two major challenges in terms of mathematical operations during the 

translation process: square-root and division in calculating the Givens Rotation parameters as 

described in Algorithm 2.1.2.1. As simple and trivial the mathematical operations they may 

seem, hardware implementation algorithms for these mathematical operations are usually 

expensive in terms of hardware resources or execution time or storage space. We researched on 

clever mathematical tricks to overcome this challenge by computing the square-root and division 

in un-conventional ways.  

The big challenge in terms of design was resource usage. Most of the hardware platforms 

available for the project have limited resources on the FPGA one way or another, especially in 

terms of embedded multipliers and Look-Up Tables (LUTs). We tackled the resource limitation 

challenge by carefully designing the system components and system integration.  
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4.2.2 Solutions 

Square-root: 

For square-root operations, most of the solutions are based on the Look-Up Tables 

(LUTs). However, due to the unpredictability of the dynamic range of the data-input, we chose to 

calculate the square-root values by using the COordinate Rotation DIgital Computer (CORDIC) 

algorithm. CORDIC algorithm is an approximation algorithm usually used to calculate the 

trigonometric angles for vectors as well as the translation of component vectors into the 

magnitude and angle of the composite vector. For more details, please refer to [12]. Xilinx 

Blockset Library provides us with CORDIC IP block in DSP category [11]. In Translate mode of 

operation, the CORDIC IP block can receive two inputs as X and Y vector components in two-

dimensional plane, and output the magnitude and phase of the composite vector. The magnitude 

and phase of a vector can be described as: 

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =   𝑋2 + 𝑌2 

𝑃𝑎𝑠𝑒 = tan−1(
𝑌

𝑋
) 

(4.2.2) 

Equation: Magnitude and Phase of a Composite Vector 

Thus, the square-root operations as required by Algorithm 2.1.2.1 can be calculated as the 

magnitude portion of the vector translate process or CORDIC algorithm. Even though there is 

execution trade-off of the choice for CORDIC algorithm because it is an iterative algorithm, we 

found out that other alternatives would pose even more restrictions in calculation of the square-

root. Therefore, we decided to go with the CORDIC implementation of the square-root 

operation. The CORDIC blockset for System Generator can be seen in following figure: 
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Figure 4.2.2 1: Xilinx CORDIC Blockset 

Division: 

For the Division calculation, we faced a similar situation since most of the hardware 

calculations for division uses LUTs or use CORDIC algorithm. However, because of the 

unpredictable nature of the dynamic range of the data-inputs, we could not use LUT approach, 

and we could not use CORDIC approach because the CORDIC division method available on the 

CORDIC blockset was not suitable for our scenario. Therefore, we did some research into the 

available division algorithms, and we came up with the Newton-Raphson Division method, 

which is a low-iteration method to find division by first finding the reciprocal of the divisor my 

approximation, and multiplying the dividend and the reciprocal of the divisor. The method can 

be generically defined as follows: 

𝑥𝑛+1 =  𝑥𝑛 −  
𝑓(𝑥𝑛)

𝑓 ′(𝑥𝑛)
 (4.2.2.1) 

Equation: Newton’s Method 
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The method requires a function which converges to zero at 𝑓 𝑥 =  1
𝐷𝑖𝑣𝑖𝑠𝑜𝑟  by 

definition to find the reciprocal of the divisor. We choose such a function as 𝑓 𝑥 =  
1

𝑥
−

𝐷𝑖𝑣𝑖𝑠𝑜𝑟. By plugging into Equation 4.2.2.1, we get the expression: 

𝑥𝑖 = (2 − 𝐷𝑖𝑣𝑖𝑠𝑜𝑟 ∗ 𝑥𝑖) (4.2.2.2) 

Equation: Newton-Raphson Iteration Equation 

We can use Equation 4.2.2.2 for successive iteration of the Newton-Raphson method to 

find the reciprocal of the divisor.  To find the first approximate of the iteration, we can use the 

approximation equation:  𝑥0 =  𝑇1 −  (𝐷 ∗ 𝑇2) . Within the interval [0.5, 1], the constant T1 is 

calculated to be 2.9142 and the constant T2 is calculated to be 2. Therefore, the final expression 

for the first approximation iteration of the Newton-Raphson division technique can be derived as 

follows: 

𝑥0 =  2.9142 −  (𝐷 ∗ 2) (4.2.2.3) 

Equation: Newton-Raphson First Iteration 

For further and detailed information about Newton-Raphson Division process, please 

refer to [13]. With this technique, we can get a highly precise quotient within three iterations of 

New-Raphson technique.  

Resource Limitations: 

As for the resource limitations, we overcome the challenge by designing the boundary 

and internal cells to utilize the minimum number of multipliers possible by translating some of 

the implementation into serial instead of parallel as we did in MATLAB simulation. Also, we 

made global control logic instead of localized control logic because all of the boundary cells are 

the same and all of the internal cells are the same. In addition, we made the global unit of 

commonly used constants for boundary cells and internal cells. In this way, we not only reduced 
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the overuse of logic control blocks and constant blocks but also improved the cohesiveness of the 

design. Consequently, the use of LUTs are reduced with reduced number of the constants being 

used.   

4.2.3 Boundary Cell Design  

To design the boundary cell, we first break it up into several independent units which we can 

verify the functionality of as we move along. According to Algorithm 2.1.2.1, boundary cell is 

the most computationally intensive cell since there are calculations of square-root and division. 

We break up the boundary cell into individual units as follows: 

1. Square-root 

2. Reciprocal 

3. Multiplication 

Square-root: 

For the square-root operation, in our scenario, the input “f” as described by Algorithm 

2.1.2.1 will be always real-valued input, and the input “g” will always be complex value. In the 

actual system, the input “f” maps to the Phi value, and the input “g” maps to the complex input 

value to the top level, namely u_real and u_imag. Notice here that we will need to find the 

magnitude of the complex input first to calculate the whole square-root expression. To find the 

magnitude of a complex number is the same as finding the magnitude of the vector. Therefore, 

we can use another CORDIC block to calculate the magnitude of the complex input g. Therefore, 

the square-root unit is basically two cascaded CORDIC blocks in appropriate scaling and 

precision settings. The layout of the unit can be described as follows: 
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Figure 4.2.3 1: Square-root Calculation Unit 

Reciprocal: 

We used the Newton-Raphson division technique described in Section 4.2.2 to implement 

the reciprocal calculation. Basically, we implemented Equation 4.2.2.2 and Equation 4.2.2.3 in a 

unit, and the iteration logic is implemented by serially looping back the intermediate results to 

feed back into the block implementing Equation 4.2.2.2 for two times. In this way, we get our 

desired iteration of three on Newton-Raphson reciprocal finder to get the desired precision. The 

system layout can be seen as in following figure.  
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Figure 4.2.3 2: Newton-Raphson Reciprocal Calculating Unit 

 

Multiplication: 

Multiplication is done on the top-most level of the boundary cell. Here, we multiply the 

dividend by the reciprocal we calculated using the reciprocal unit. In following figure, the way 

the square-root calculating unit, the reciprocal unit, global control unit, and global constants unit 

along with a multiplier becomes the top-most level of boundary cell.  

 

Figure 4.2.3 3: Multiplication and Top-level Unit of Boundary Cell 
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In terms of latency, the boundary cell took 51 clock cycles to get results from one 

complete calculation. Majority of the latency was contributed by the two cascaded CORDIC 

units in square-root unit which has a lot of latency in trade off for the desired level of precision.  

4.2.4 Internal Cell Design  

For internal cell, the main concern that came up was resource limitation since the direct, 

parallel implementation of an internal cell will require twelve multipliers, totaling up to 72 

multipliers for the whole Systolic Array with three antenna case. Most of the accessible hardware 

platforms do not have that much resource in terms of multipliers, and the main goal of the 

internal cell design was to reduce the number of multipliers involved, by implementing the cell 

in serial instead of parallel. However, this way, new challenges are introduced because now, we 

will need to buffer the inputs and intermediate results. We utilized the block RAMs provided by 

Xilinx Blockset Library to buffer the input data and intermediate values. We used RAM blocks 

because there are plenty of distributed RAM blocks on the accessible hardware platforms, and 

the scenario calls for the use of RAM since the data will be read and written alternately. The rest 

of the unit was trivial because mathematical calculation in internal cell only involves 

multiplication and addition or subtraction. We put in the control logic units for controlling the 

address, read and write control signals for RAM blocks as well as the control unit for switching 

between addition and subtraction. After the condition checks, for the control units are functional, 

the whole system works. One notable thing is that internal cell does not have much independent 

individual units to test, and it is basically one large unit. In addition to the control signals, we 

also employed the global constants concept we used in designing the boundary cell to reduce the 

LUT usage.  The layout of the whole system can be found in following figure.  
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Figure 4.2.4 1: Top-level Unit of Internal Cell 

Even though the internal cell’s latency is not as much as 51 clock cycles, we sample and hold the 

outputs to release them only at the 51
st
 clock cycle to make the whole system run uniformly, and 

keep the synchronization mechanisms simple.   

4.2.5 System Level Integration 

As for the system level integration, we connected the input and output of the boundary 

and internal cells as described by the Systolic Array model in MATLAB. We used iterative 

debug and development process described in subsequent section to make sure that all of the 

system component units, i.e., boundary and internal cells, are working well with each other.  
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4.3 System Test Methodologies 

This section describes the test methodologies we employed for the development of the 

system. We followed the test-driven development process to make sure that individual pieces 

work as well as the whole system works.  

4.3.1 Unit Testing 

Unit testing is used extensively to build the system in terms of test-driven development 

process. We build the systems in terms of units which can be tested individually, and tested each 

unit before moving on. MATLAB and Simulink interface provided us with a lot of useful 

features to perform these unit tests easily. We can simply construct the input vectors in the 

MATLAB workspace, and import them into Simulink workspace to feed into the units we are 

testing. In addition, Simulink provides us with the feature to export the outputs of the unit in 

Simulink workspace to MATLAB workspace.    

In this way, we can make sure that each computational unit is working by putting it 

through test cases, and checking the answers against the pre-computed values for the calculation.  

4.3.2 Integration Testing  

Integration testing was required to make sure that each functional unit we developed and 

verified via unit testing are working and interfacing well with each other. The most important 

purpose of the integration testing was to find out about the timing errors between different units. 

The testing process starts by first two functionally verified units and making sure that there is no 

timing error and the two units are communicating and interfacing with each other in expected 

manner.  
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Similarly, we utilized the data import and export between MATLAB and Simulink to 

perform the initial integration testing. We put the gradually integrated system under 

comprehensive test cases to make sure that we got the step-by-step working system. After the 

whole system was put together via the iterative integration testing, we finally tested, and verified 

the whole system by generating the test-bench waveforms provided in the System Generator 

Token.   

4.3.3 Final System Results  

Based upon the observations about the required number of iterations we learned as 

described in Section 3.4, we expected that with the quantization of 2
-13

, it will take an extended 

period of time because. Therefore, we let our system run for approximately (50 ∗ 500000 =

25000000) 
 iterations. Then, we extracted the final Phi matrix and Auxiliary matrix values to 

calculate the final weights, and plotted them on spectrum plot to verify that we have the weights 

matching our expected system behavior.   
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Figure 4.3.3 1: Final System Test Result 

 

Here, for our system run, we got the desired direction at -0.7 radians, and interference 

direction at 0.3 radians. The blue plot was the spectrum plot for the adaptive weights from the 

values calculated with no precision loss on MATLAB model. The red plot was the results from 

the System Generator model. The System Generator result we got was not perfect and aligning 

with the MATLAB results because of the loss of precision in casting the values into the System 

Generator Model at Xilinx Gateway In blocks, and further precision loss in the process of 

calculating the adaptive values of Phi and Auxiliary matrix. However, the result did match with 

the behavior of the MATLAB simulation we had earlier.  
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4.5 Summary 

In summary, we described the steps we took toward building the System Generator 

Model of MVDR beamforming algorithm: we described and introduced the Xilinx System 

Generator Environment, described the hardware algorithms for creating the functional blocks for 

certain mathematical operations, described the development process of the System Generator 

model, and discussed about the results.    
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Chapter 5: 

PC to FPGA Interface 

 

As was previously stated, the overall goal of this project was to implement a real-time 

MVDR adaptive beamforming algorithm onto the Virtex 5 Development Platform.  In order to 

accomplish such a task we needed to build the hardware and software components 

simultaneously.  Having said this, this section will discuss the software component of the project; 

specifically, it will examine what elements were considered and used in the implementation of 

the PC to FPGA interface.   

 

5.1 Xilinx Embedded Development Kit (EDK) 

Our project required that we have a working PC to FPGA interface in order to verify that our 

MVDR adaptive beamforming algorithm was working accurately and in a real-time environment.  

Therefore, we needed an application that allowed us to design an embedded processor which 

allows us interact with the various hardware peripherals of the Virtex 5 Development Board.  

Among the provided Xilinx tools, we found that Xilinx’s Embedded Development Kit (EDK) 

was the most suitable application for this specific portion of the project because it allows us to 

“develop a complete embedded processor system for implementation in a Xilinx FPGA device” 

[14]. 

So what is EDK and how does it help us in implementing an interface between the PC and 

the FPGA?  Due to the complexity of embedded systems, EDK, a collection of applications and 
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Intellectual Properties (IP), was designed by Xilinx to help propel and simplify the integration of 

hardware and software components of the embedded design within an FPGA.  The collections of 

tools and IP include: 

 Xilinx Platform Studio (XPS) – a development environment that helps the user design the 

hardware component of their embedded processor system based on the Microblaze (MB) 

and PowerPC (PPC) processors.  To be more explicit, the XPS development tool allows 

the user to create and import hardware peripherals, manipulate the peripheral parameters 

to suit the user’s needs, and even includes the ability to generate and view the system 

block diagram and/or design report.  These tools and more are implemented into XPS to 

help facilitate the user’s development of the embedded system’s hardware component 

[14]. 

 Software Development Kit (SDK) – a complimentary development environment to the 

XPS helps facilitate the creation and verification of the software component of the 

embedded processor system through C/C++ software applications [14]. 

 Miscellaneous tools and IP: 

o Hardware IP for the Xilinx embedded processors 

o Drivers and libraries for the embedded software development 

o GNU compiler and debugger for C/C++ software development targeting the MB 

and PPC processors [14] 

In order to help facilitate the embedded processor system design, all the tools provided with 

EDK each contribute actively in all parts of the development process.  The following diagram 

shows the basic embedded design process performed in EDK. 
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Figure 5. 1: Basic Embedded Design Flow Process [14] 

 

5.2 I/O Interfaces 

The Virtex 5 Development Board has several I/O interfaces and among those interfaces 

three were considered as possible candidates for our PC to FPGA interaction.  Those three 

interfaces consisted of the following ports: RS-232 Serial Port, USB Port, and the Ethernet Port.  

Thus, we will discuss in moderate detail the different interfaces we took into consideration and 

explain as to why we chose one interface over the other two interfaces. 

5.2.1  RS-232 Serial Port (UART) 

The most simplistic and easy to implement among the PC to FPGA interfaces provided with 

the Virtex 5 Development board is the DB9, also known as the DE9, RS-232 serial connector.  

So what is a RS-232 serial connector?  Simply speaking, an RS-232 (Recommended Standard 

232) serial connector is a telecommunications standard for the communication between two or 
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more devices using single-ended binary serial data that was first introduced in 1962.  In 1969 

Electronics Industries Association (EIA) revised the RS-232 standards to include elements 

pertaining to electrical signal characteristics, pin characteristics, and various circuit interfaces of 

the RS-232 device [15].  However, the most interesting elements were the elements that were not 

defined by the standards, which include the following:  

 character encoding (i.e. American Standard Code for Information Interchange (ASCII)) 

 framing of characters in the data stream (bits/character, start/stop bits, parity) 

 error detection protocols and/or data compression algorithms 

 transmission bit rates 

Because these elements were not defined in the standards, a separate single integrated circuit 

called a Universal Asynchronous Receiver/Transmitter (UART), which converts parallel data to 

serial data, was needed for control over character format and transmission bit rates [15]. 

Having briefly reviewed RS-232, we will now briefly explain how the PC and the Virtex 

5 Development Board establish a connection through their respective serial ports and why or 

why not the RS-232 was chosen as our choice of PC-to-FPGA interface.  To establish a physical 

connection between the two devices a null modem, a physical link used to connect two host 

devices, was required because both the PC and Virtex 5 utilize serial ports that are wired as host 

devices.  In addition, because the FPGA only utilizes the transmit (TX) and receive (RX) data 

pins on the serial port, all the other RS-232 signals, such as hardware flow-control, are ignored 

and should be disabled [16].  To disable flow-control during communications with a PC, all one 

has to do is properly modify the settings of the PC’s terminal programming (the software 

medium/link) that is being used to communicate with the FPGA.  That being said, we opted not 

to choose the RS-232 interface because of two main reasons.  The first reason was because of its 
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relative simplicity and mediocrity in relative respect to an MQP, which we believe should utilize 

more complex designs and interfaces.  The second reason was because the maximum data rate 

that a serial port can operate at is 115200 Baud (bits per second), which we felt was too slow if 

we wanted a system which operated in real-time.   

5.2.2 USB vs. Ethernet 

 Since we decided on disregarding the RS-232 interface as a possible option due to its 

simplicity we were left with only two choices: USB interface and Ethernet interface.  Due to the 

fact that they were both equally complex we wanted a simple and quick answer in ascertaining 

which one would be the most suitable for our project.  In order to do this we looked into two 

different sources which we thought would give us a reasonable answer: (1) the Xilinx Forums 

and (2) the Xilinx example codes pertaining to USB/Ethernet to PC interface.  From the data we 

gathered from these two resources we were able to determine that Ethernet to PC interface would 

be the most suitable solution as compared to the USB to PC interface.  From what we found, the 

USB interface, although designed to be a host and peripheral device, has never been used to 

interact with the PC, only with keyboards and mice.  On the other hand, various people have 

used the Ethernet interface to interact with the PC to send and receive data, exactly what we 

needed.  Another reason, why we chose to shy away from the USB controller was because the 

USB and the System ACE controllers share the same data bus.  In the event that we plan to use 

the System ACE peripheral in future work we would need to revise our configurations to use the 

Ethernet peripheral as oppose to the USB peripheral.  Therefore, to decrease the amount of 

potential future work and because Ethernet interactions has already been determined as a viable 

solution, we decided to choose the Ethernet interface over the USB interface. 
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5.3 Lightweight IP (lwIP) 

In this project, we chose the Ethernet port as our PC to FPGA interface that was used to 

send data between the two devices.   In local area network (LAN), Ethernet is a physical medium 

that is used to facilitate the ongoing communication (frame/packet transmission) between two or 

more devices in a network.  TCP/IP (Transmission Control Protocol/Internet Protocol) was a 

protocol that defines how packets are to be transferred in a network.  TCP/IP, as the  main 

protocol within the Internet Protocol Suite, which consists of Application, Transmission, 

Internet, and Link, handles how data is transmitted between two devices through a set of 

predetermined rules.  However, because of amount of time we would have needed in order to 

learn TCP/IP protocol and the difficulty it would have been in designing and implementing the 

protocol within the Xilinx and Virtex 5 environment, we had to look into other alternatives.  

Instead of revisiting the possibilities of RS-232 and USB, we looked into predesigned TCP/IP 

networking stacks already available in EDK.  After researching Ethernet TCP/IP possibilities in 

the context of Xilinx software, we were able to find a simplified open-source implementation of 

the TCP/IP protocol stack designed for embedded systems called lightweight IP (lwIP) [17]. 

Originally developed by Adam Dunkels, lwIP is used by several manufacturers of 

embedded systems, such as Altera, Xilinx, Analog Devices, and Honeywell.  The lwIP TCP/IP 

implementation was designed to reduce resource usage while still having a full scale TCP, thus 

making lwIP suitable for embedded systems [18].  Similar to other implementations of TCP/IP, 

lwIP was based on the layered protocol design where each protocol is implemented as its 

individual component while having only a few functions acting as access points in the individual 

protocols.  However, there are some differences in the implementation of the TCP protocol in 

lwIP as oppose to standard TCP implementations which Dunkels found to be necessary in order 
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to improve processing speed and memory usage.  Unlike typical TCP standards, when 

authenticating the checksum of an incoming TCP packet and when de-multiplexing a packet, the 

TCP module must know the IP address of the source and destination.  Due to performance issues, 

the TCP module is already conscious of the IP header structure, thus it is able to extract 

necessary information by itself without the need of a function call [19]. 

Once we had determined that lwIP was the most suitable solution to our problem, we 

went about finding example applications that were already developed by Xilinx so as to ease the 

development time of our overall project.  We found the template design in Xilinx’s 

“LightWeight IP (lwIP) Application Examples” documentation sheet [20].  In this 

documentation, Xilinx states specifically that provided with EDK is the lwIP software 

customized specifically to run on Xilinx Embedded systems containing either MicroBlaze (MB) 

or PowerPC (PPC), which was exactly what we needed.  The documentation also described in 

moderate detail how we were to utilize the lwIP library in order to add networking capabilities to 

our design by providing several different applications: echo server, web server, TFTP server, and 

receive and transmit throughput tests.  In addition, each of these applications were available in 

both RAW and Socket mode, allowing us to determine which one was more suitable for our 

needs [20]. 

Having read through and tested the various applications in both modes, it was determined 

that the Echo Server in Socket mode was the most suitable and easy to understand.  So what is 

the echo server?  As the name states, it is simply a program that echoes back what was received 

through the network interface.  In the socket mode, the echo server has a main thread which 

continually listens on a specified echo server port, which in this case was port 7.  Assuming there 

are multiple connections from different computers, the echo server spawns a separate echo 
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service thread upon connection request, thus allowing it to communication with multiple devices.  

That being said, one must note that the socket mode provides a straightforward Application 

Programming Interface (API) that blocks on socket reads and writes until they have been 

completed.   Due to this, the socket API requires a multithreaded kernel (Xilinx’s kernel, 

xilkernel) which results in a slower performance and lower throughput as compared to the RAW 

socket mode [20]. 
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Chapter 6: 

Implementation and Integration 

 

6.1 Ethernet Interface 

Once we had decided to use the Ethernet interface for our PC to FPGA interactions and 

the echo server application as our template design we immediately began configuring the 

software necessary for PC to FPGA communications.  To begin we will look at the echo server 

developed by Xilinx that we based our entire Ethernet interface design on.  For a view of the 

entire software design of our Ethernet interface please refer to Appendix A.  For a view of the 

original echo server as well as the other lwIP example applications please refer to reference [20]. 

The software design contains two parts, the main code which sets up the various threads 

necessary for Ethernet communication and the echo server code which echoes back whatever 

input it had received via the network back through STDOUT, which is connected to the serial 

output.  Upon initialization of the system the program’s main code will display the IP address of 

the board as well as the various applications that the user can interact with, since we are only 

concerned with the echo server all other applications were removed.  After the preliminary setup 

has been completed the program creates a main thread that continually listens for a connection 

request on the specified echo server port.  Upon a request for connection, the program 

instantaneously generates an echo service thread while at the same time listening for additional 

connections at the echo port [20].  This is accomplished with the following code snippet: 
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while (1) { 

 /* Spawn a separate handler for each request */ 

 new_socket = lwip_accept(sock, (struct sockaddr *)&remote, &size); 

sys_thread_new(process_echo_request, (void*)new_socket, 

DEFAULT_THREAD_PRIO); 

} 

 

Having initiated an echo service thread a new socket descriptor is created and used as the service 

threads input.  The reason why this socket descriptor is important is because it is where the echo 

service thread will read received data [20].  The following snippet of code shows only the most 

important aspects of the receiving and echoing process: 

while (1) { 

 /* Read a maximum # of RECV_BUF_SIZE bytes from socket 

  destination and store them in recv_buf */ 

 n = read(socket, recv_buf, RECV_BUF_SIZE)) < 0) 

   

 /* Handle request: Echoes back input */ 

nwrote = write(socket, recv_buf, n)) < 0) 

} 

 

 Once the program was completed we tested its validity by connecting the PC to the 

Virtex 5 board via a cross-over Ethernet cable for data communications and connected the PC to 

Virtex 5 with a null modem serial cable for standard output.  The standard output is a necessary 

component in our testing phase because it provided us with another method of confirming the 

validity of the data stored in the BRAM aside from the Xilinx Microprocessor Debugger (XMD).  

To thoroughly test our software component (PC to FPGA interaction via Ethernet) we followed 

the following procedures: 

 

1. Connect the PC and Virtex 5 with an Ethernet and null modem cable. 

2. Establish a connection between the PC and FPGA using two HyperTerminal connections: 

a. HyperTerminal Connection 1 (Serial) uses the following settings: 

i. Connection Type: COM1 

ii. Bits per second (BPS): 9600 
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iii. Data bits: 8 Parity: None Stop Bits: 1 Flow Control: None 

 

b. HyperTerminal Connection 2 (Ethernet)  uses the following settings: 

i. Host Address: 192.168.1.10 – IP Address of the FPGA Board 

ii. Port Number: 7 – Echo Server Port Number 

iii. Connection Type: TCP/IP (Winsock) 

3. Run the software application via the Xilinx EDK XMD – enables the PC and FPGA to 

communicate with one another. 

4. Upon establishing a connection, send a text file containing test data from the PC 

(HyperTerminal) to the FPGA via TCP/IP (lwIP) connection. 

a. Stored within the test file was sixty real decimal numbers 

b. For actual implementation a minimum of twelve hundred real decimal numbers 

are to be used.  The reasoning behind this is because the Systolic Array 

implementation requires six inputs, two hundred sets of data per input. 

5. Upon data reception the data stored within BRAM will be outputted via standard output 

in both 32-bit and 64-bit hexadecimal value. 

6. After all the data has been sent and received the debugger is paused and the data within 

the BRAM is read in order to verify the results obtained from standard output. 

Through various tests using different sets of test data (i.e. positive and negative numbers and 

large and small numbers) we were able to verify that the data was properly stored within the 

BRAM upon reception over the network. 
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6.2 Integration 

 Now that we had both the software and hardware components working we had to 

integrate the two components into one design.  However, due to time constraints and various 

other issues we faced along the way we were unable to combine the two components into one 

design so as to verify if the complete system actually functioned properly.  Nevertheless, if we 

were to integrate the portions of the design together the following would be our approach: 

1. Create a Base System Builder (BSB) file containing the specifications particular to the 

Virtex 5 Development Board (i.e. Local Memory size, Processor configurations, and 

relative I/O interfaces). 

a. The specific I/Os necessary for the completion of our design that are available on 

the Virtex 5 are the following: DDR2 RAM, UART, Interrupt Controller, 

Ethernet, Timer, and System ACE. 

2. Create a project within the applications directory based off of the software component. 

3. Create a peripheral based off of the Systolic Array and integrate it to the entire project. 

The overall design would have looked similar to that of Figure 6.1 where the BRAM interfaces 

with Microblaze through a Local Memory Bus (LMB) and the various hardware peripherals 

including the Systolic Array interfaces with Microblaze via the Processor Local Bus (PLB).  As 

the brain of the entire operation, Microblaze is constantly processing the data that is being 

received through the Ethernet interface.  Once the data has been received via Ethernet, 

Microblaze instantly routes the data to the BRAM for storage and future use.  As the Systolic 

Array is ready to accept data for calculation it notifies Microblaze via a predetermined signal.  

When the signal is received Microblaze routes the data from the BRAM to the Systolic Array for 

processing and the result is routed back and stored within a different section of the BRAM.  
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Unfortunately, because of time constraints and our lack of knowledge with EDK and its 

peripheral creation system we were unable to successfully create a peripheral from our hardware 

component.  
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Figure 6.2 1: Overall Design 



` 

77 
 

Chapter 7: 

Conclusion 
 

 The organization of this section will be two-fold. Firstly, we will present the concluding 

remarks on the project, summarizing the approaches we took, challenges we went through and 

the results. Secondly, since our team is the pilot team in tacking the project of this nature from 

the undergraduate level, we shall state the recommendations based on our experiences for the 

future project team tackling the similar projects. This will specify the recommended course of 

the project phases and the features and system expansions that will be nifty to be added.   

 

7.1 Concluding Remarks 

 This section will focus on the remarks on the course of the project. Firstly, we will go 

over the remarks we have on the overall approach, and state the remarks on the major challenges 

we encountered along the way. Secondly, we will state the summary of the results of the project. 

7.1.1 Approach and Challenges 

 We approached the project in the order: learning the theoretical background on adaptive 

signal processing algorithms in general and MVDR beamforming algorithm, simulating the 

algorithm on MATLAB, building the units for the systolic array on the System Generator 

Environment, integrating the whole systolic array, and implementing the system on Xilinx Virtex 

5 prototyping board using Xilinx Embedded Development Kit (EDK). 
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 For learning the adaptive signal processing and beamforming algorithms, the major 

challenge we faced in is that the task requires a lot of mathematical background, i.e., from matrix 

computations to state space analysis. As a matter of fact, all of the text book resources available 

to learn the material from require a lot of mathematical maturity. The major challenge we 

encountered in this part of the project was due to the mathematically demanding nature of the 

problem statement of the MVDR beamforming algorithm. To sum up, it will be ideal to have a 

lot of background in mathematics to fully understand and appreciate the derivation of the 

algorithms. 

 As for MATLAB simulation part, we did not have much challenge apart from the 

challenges we faced while learning the algorithms. Once we could fully appreciate the 

algorithms, the MATLAB simulations went smoothly. The only other part where one would find 

challenging was the fixed-point simulation on the MATLAB, and anyone who has done a course 

or a project in digital signal processing would not find this intimidating.  

 As for building the units for the systolic array part, the major challenge we faced was 

finding the suitable hardware algorithms to perform expensive mathematical operations such as 

square-roots and divisions. These computation operations are usually implemented in hardware 

using the Look-up Table method. However, due to the hardware resource limitations on the 

available Field Programmable Gate Array processors, we were required to look into different 

alternatives. We learnt COordinate Rotation DIgital Computer method for finding square-roots, 

and Newton-Raphson method for performing divisions. These are the mathematical techniques 

that are usually used by the hardware designers but are rarely found in undergraduate 

curriculums. Thus, it posed some challenge in researching and finding the right algorithm for the 

implementation of these mathematical operations.   
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 As for the integration of the systolic arrays out of the units we built, the major challenge 

we faced was the timing synchronization among the units. We spent considerable amount of our 

time to make sure that the timing of data flowing through the systolic array. 

 As for the implementation of the system on the Virtex 5 board, the major challenge we 

faced was learning to use the Xilinx EDK environment in a limited amount of time. Again, 

integrating the FPGA-based processing systems on the FPGA platform utilizing the soft-core 

processors on EDK environment is a standard practice in industry, and there is no class in the 

curriculum that prepares for the skills required to perform the operation. Therefore, learning the 

material in a limited amount of time was a challenging task for us.  

7.1.2 Results 

 The results we got for the systolic processor core were decent as we described in Chapter 

4. The implementation got the criteria for the MVDR response for the fixed-point 

implementation.  

 As for the integration on the Virtex 5 prototyping board using the Xilinx EDK 

environment, we configured the EDK environment, and wrote the necessary programs for the 

data communications of data between the prototyping board and the computer as described in 

Chapter 6. We verified that we can send and receive the simulation data back and forth between 

the computer and the prototyping board.  
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7.2 Future Recommendations 

 The nature of the project is a mixture of Communication Theory, i.e., Minimum Variance 

Distortionless Beamforming, and Computer Engineering, i.e., implementation of the algorithm 

on Field Programmable Gate Arrays. 

 Thus, the project requires a lot of background in mathematical communication theory and 

a considerable amount of experience in logic design, system-level design and moderate amount 

of skills in high-level language programming. In addition, the knowledge of Xilinx EDK 

environment and soft-core processors as well as the hardware algorithms for performing 

computationally extensive computations will really help for success of the project.   

 Here, we will describe the recommended procedures for organizing the project as well as 

the additional features that will be eventually added to the project if more time permits.   

7.2.1 Organization of the Project 

 We organized the project in the following order: learning the theoretical background, 

simulating the algorithms on MATLAB, building the model on System Generator environment, 

and integrating the system on Xilinx EDK environment and Virtex 5 prototyping board. 

 We did have challenges for the individual parts of the project in the way we organized, 

and we overcame the majority of the challenges we faced. However, the major improvement that 

could have been done was in the integration on the Xilinx EDK and the prototyping board. The 

project organization would have been a lot more efficient if we organized in the way such that 

system generator model implementation and Xilinx EDK integration will go concurrently.        
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7.2.2 Additional Features 

 This section will describe the additional features that will be nifty to be added to our 

project, and the improvements on the system that will make it more robust, portable and power-

efficient. 

7.2.2.1 Direction Estimation Unit 

 One possible feature to be added to the system is directional estimation unit. This can be 

done by implementing the MUltiple SIgnal Classification (MUSIC) algorithm on the same 

FPGA core we implemented the system.  

 There are several literatures out there documenting about the implementation of the 

MUSIC algorithm on the FPGA platform. The most recent and comprehensive documentation on 

the implementation is: [21][22].    

7.2.2.2 Resource Reduction 

 Currently, our system still takes up a lot of resources on the Virtex 5 prototyping board 

we are using. Critically, we are still using a lot of multipliers available on the Virtex 5 FPGA, 

and as we know, multipliers are limited resource on most FPGA platforms. In addition, we are 

using a lot of Look-up Tables available on the Virtex 5 FPGA.  

 One possible further improvement of the system will be reducing the resource usage, 

especially the limited resource on the FPGA platforms, by employing clever computational 

tricks, and re-designing the layout of the system. We did considerable amount of work in re-

designing some parts of the boundary cells and internal cells into serial operations taking 

advantage of the latency we cannot avoid in our implementation of the system. In this way, we 

reduced the multiplier and Look-up Table usage to some extent. However, the system we came 
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up with still lacks the portability since it is still using a lot of multipliers that some of the low-

power FPGAs does not possess.   

7.2.2.4 Latency Reduction 

 In addition to the resource reduction, another possible feature to add on to the system will 

be the reduction of the latency of the system so that the system can run faster sampled signals. 

There is a design trade-off between the latency and resource usage, so decreasing one will 

probably increase the other.  

 However, there should be some ways of reducing the latency if there were not the time 

limitation. For example, we could find a better algorithm for finding the square-root in place of 

the CORDIC algorithm since most of the latency came from the CORDIC computation of the 

square-root.   

7.2.2.5 Theoretical Optimizations 

 In a recent publication on QR-RLS adaptive beamforming algorithm [23], the authors 

stated that there can still be further optimization for the numerical stability for the QR-RLS, and 

ultimately the MVDR beamforming algorithm. This is a possible future improvement if the 

candidates working on the QR-RLS-based beamforming algorithms.  
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