
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

June 2014

Listening to Optical Spectra
Luke Cullen Goodman
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Goodman, L. C. (2014). Listening to Optical Spectra. Retrieved from https://digitalcommons.wpi.edu/mqp-all/1128

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DigitalCommons@WPI

https://core.ac.uk/display/212974797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/1128?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1128&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Listening to Optical Spectra

Luke Goodman

May 2014

A Major Qualifying Project Report:

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Luke Goodman

Date: May 2014

Approved:

Professor Richard Quimby, Advisor

This report represents the work of one or more WPI undergraduate students.

Submitted to the faculty as evidence of completion of a degree requirement.

WPI routinely publishes these reports on its web site without editorial or peer review

Contents

Abstract

1 Introduction 1

2 Objectives 5

2.1 Goals . 5

2.2 Essential Program Capabilities . 6

2.2.1 Observation . 6

2.2.2 Manipulation . 8

3 Theory 10

3.1 Matrices and Arrays in MATLAB . 10

3.1.1 Array Operators . 10

3.1.2 Bit Depth . 11

3.2 Vector Scaling . 12

3.3 Wave Superposition . 12

3.4 Optical Reflectance Spectrum . 13

3.5 Sound Waves . 13

3.6 Binning . 14

3.7 Frequency Shift Algorithm . 15

4 Methodology and Results 17

4.1 Physical Apparatus . 17

4.2 MATLAB . 18

4.2.1 Development of the Program . 18

4.2.2 Final Program . 30

5 Conclusion 32

2

Appendix A

Appendix B

Appendix C

Bibliography

List of Figures

1.1 A graphical comparison of light reflection off of two leaves. The red line is a

healthy leaf, the blue an unhealthy leaf. 1

1.2 A graphical comparison of light reflection off of two paper towels. The red

line is a clean paper towel, the blue a stained paper towel. 2

2.1 The physical layout used to observe objects. A light source isolated from

directly illuminating the spectrometer radiates light onto an object. The

reflected light is measured by a spectrometer, which sends measurements of

the reflectance to a computer. 6

2.2 The order of actions to be taken by the program from data input through

sound output. 8

2.3 The form of each matrix containing the measured amplitude at each observed

wavelength. 9

3.1 A plot of measured amplitude versus corresponding wavelength. 13

3.2 A binned plot of measured amplitude versus corresponding wavelength. . . . 15

4.1 The physical layout used to observe objects. A light source isolated from

directly illuminating the spectrometer radiates light onto an object. The

reflected light is measured by a spectrometer, which sends measurements of

the reflectance to a computer. 17

4.2 The sum of eight harmonic sine waves. 21

4.3 A nonlinear reduction designed to emphasize spectral peaks and minimize the

effects of background signals. 23

4.4 A histogram made to bin the spectral data. 24

4.5 A graph of the binned values from the binning algorithm. 25

4.6 A graph of the binned amplitudes for the notes output by the tonec.m command. 26

4.7 A comparison of the binned values from the benchmark reflectance(red) and

the IUT reflectance (green). 27

4

4.8 The ratio of the IUT reflectance divided by the benchmark reflectance. . . . 28

4.9 The frequency shift induced by the diference between the IUT reflectance and

the benchmark reflectance. 29

4.10 The ratio of the IUT reflectance divided by the benchmark reflectance. . . . 30

4.11 A graphical comparison of light reflection off of two leaves.. 31

Abstract

Industrial mass production of goods requires individual inspection of each produced item

to ensure adherence to quality standards. The processes of inspection can vary from fully

automated systems to hiring workers to manually inspect each item. While these approaches

are entirely valid, a hybrid system could be designed to capitalize upon the strengths of each.

The process of evolution has optimized human senses to interact with their environment,

while technology has provided increasingly powerful tools for observation. This project

developed a system by which the reflected light off of an object can be used to create an

aural representation of the properties of the object. By listening to the created sounds,

discrepancies between the expected and observed reflectance are discerned as intuitively

noticeable dissonance. The system developed thus allows observation of subquality items

with minimal dedicated attention.

1. Introduction

The goal of this project is to convert an optical spectrum into an audio signal. The core

motivation of this transformation is the appropriate utilization of basic human senses. Visual

processing, while adept at many things, is inferior to aural processing at recognizing minor

differences. While a graphical or other visual representation of spectral information may elu-

cidate a significant amount of information, an audio representation of the same information

could provide a faster, more intuitive understanding of the composite nature of a given signal.

Through the naturally self-optimizing course of evolution, life has developed keen abilities

governing interaction with and observation of its surroundings. These senses are individually

capable of assessing specific aspects of the environment and cooperate to provide a compre-

hensive assessment. In humanity, the dominant sense is visual. As a result, reliance upon

optically conveyed information is often assumed to be the optimal method of intuitive ob-

servation; for comparisons such as that of Figure 1.1, visual appraisal can yield significant

information about the circumstances being observed.

Figure 1.1: A graphical comparison of light reflection off of two leaves. The red line is a
healthy leaf, the blue an unhealthy leaf.

1

Figure 1.2: A graphical comparison of light reflection off of two paper towels. The red line
is a clean paper towel, the blue a stained paper towel.

As demonstrated in Figure 1.2, not all comparisons are visually compelling. While there

are differences in the spectra of light reflected from the compared objects, they are difficult

to percieve simply through graphing. Here, the visual approach is of marginal efficacy at

best. However, subtle differences such as those present in this graph become readily apparent

when presented aurally.

From the global existence of music, it can be assumed that the difference between notes

is readily apparent to the human ear. The modern vocal and inner ear apparatuses were first

exhibited 1.5 million years ago in Homo ergaster and evidence of musical instruments dates

back at least 40 thousand years to the Upper Paleolithic [1]. In this time, humanity has

gained the ability to distinguish between notes of different frequency and to interpret chords

comprised of individual notes of precisely varied frequencies relative to each other. Varied

among cultures is the structure of these notes which creates a desireable chord, but within

a given musical paradigm, the presence of notes not within the desired chord structure gives

way to noticeable discordance.

In Western music, a D Major chord (comprised of notes D, F#, and A) will sound pleas-

ant, but with the addition of an A#, the chord becomes dissonant. An even more drastic

effect is observed with the addition of a note with a frequency which does not exist within

the framework provided by the musical scale. This same D Major chord (comprised of fre-

quencies 294Hz, 370Hz, and 440Hz) will be greatly disrupted by the addition of a tone of

475Hz, which lies between A# and B.

2

Unaided perception of notes at relatively similar frequencies is easily made possible from

beat frequencies, a resultant tone generated by interference between two sound waves of

different frequencies. This is described by the following equation:

fbeat = |f1 − f2|

Musicians can tune instruments using only their ears by listening to the beat frequency

generated by the approach of their instrument to a desired reference tone. This implies

an inherent ability to distinguish between any pair of frequencies, limited by the following

restrictions:

20Hz < [f1, f2] < 20kHz

These frequency restrictions specify that the frequencies being compared are within the

audible range of the unaided ear. It is important to note that beat frequencies below 20Hz

may be detected; beat frequencies are an envelope function about the component frequen-

cies. The applicable utility of this lies with the ability to superimpose two audio spectra,

one corresponding to the expected optical input frequency and the other conforming to a

changing input. As an example, in a scenario involving the inspection of objects intended

to be uniform, a baseline audio spectrum could be created to correspond to an ideal object.

This constant signal could then be superimposed with a time-dependent signal from a pro-

gressing source of produced objects. Ideally, a listener would hear only the baseline audio

spectrum if the object being inspected is within acceptable parameters, while an unaccept-

able result would produce a noticeable beat frequency. Notably, the human brain does not

require physical interaction between soundwaves to observe beat frequencies. Binaural beats

are envelope functions identical to beat frequencies which are observed when one ear hears

sound of frequency f1, while the other ear hears sound of frequency f2. In this case, the

superposition of the waves occurs entirely within the brain.

This project creates a chord utilizing a frequency shift dependent upon the observed

items. If an observer’s attention must be drawn to the observed items, the frequencies com-

prising the chord are shifted by a degree determined by the optical nature of the items.

If the frequency shift is small, the observer may detect it by noticing the beat frequencies

generated by the simultaneous presence of similar notes. With a larger shift, discordance

becomes noticeable, guaranteeing that any frequency shift will be intuitively observeable.

Automated optical inspection is commonly utilized in quality control for printed circuit

boards. Similar to this project, these inspection systems make use of a light source, optical

3

sensors (image cameras), and assessment programming to verify the accuracy of the circuitry

[2]. However, these systems are designed for a more specialized use, and thus use imaging for

comparison. This project seeks to compare the spectral reflection from objects and provide

the comparison as sound for the user to interpret, rather than making a boolean comparison

based on established criteria.

4

2. Objectives

2.1 Goals

The primary focus of this project is to provide a new interface to compare two objects.

Specifically, this will be accomplished by two fundamental elements. First, the ability must

be established to observe the objects being compared. In this case, this will be accomplished

by using a USB650 Red Tide Spectrometer[3] to measure the reflected light off of the objects.

This will be performed using fixed conditions; among all measurements being compared,

identical program settings and physical setups will be used.

The second component to be implemented will be the comparison. This includes the

mathematical manipulations necessary to create soundwaves from optical spectra. The am-

plitudes of individual notes in the soundwaves will be defined by the intensity of the corre-

sponding optical spectra; the frequencies of the notes will be harmonics defining an arbitrary

chord, with the addition of a frequency shift defined by the difference between the optical

spectra. By way of this frequency shift, spectral discrepancies will establish either disso-

nance or beat frequencies, calling attention to variances in the reflectance and enabling an

intuitive aural monitoring system. If no discrepancy exists, the created soundwave will form

the original unaltered chord.

By way of these operations, the pursued goal of this project may be realized: to design

and implement an aural interface for intuitive industrial inspection. The inherent human

ability to distinguish subtle differences in sounds is a crucial factor in designing an aural

system to exhibit comparisons. With such a system, an inspector could simultaneously

listen to the sound output of this sytem and primarily focus on an entirely separate task,

yet retain the ability to quickly respond to a discrepancy in the sound output.

Upon inception of the project, several goals were put forth; using sound to indicate

optical observations can be applied to a wide range of opportunities. One such goal, which

5

was considered for implementation, was using different tones to represent different colors

observed in an individual’s surroundings. This was not implemented due to time and scope

constraints, but may be considered for future development. A plausible application would

be tonal differentiation between objects and locations for the blind.

2.2 Essential Program Capabilities

In order to meet the goals established for this project, several key aspects must be prop-

erly enacted. The project can be broken down into two distinct components, one focusing

on observation of the objects being compared and the other focusing on manipulation of the

data thus acquired.

2.2.1 Observation

The physical setup for this project, as shown in Figure 2.1, is to be held constant within

comparisons; any two objects being compared must be illuminated by identical light sources,

held at identical distances from the spectrometer, and compared along the same wavelength

range. While comparisons between variable orientations may yield further information, they

also add mathematical complexity to data analysis and may change the origin of reflectance

discrepancies. In the interest of focusing analysis on the reflection from the object, and not

on the object’s environment, the physical orientation is to be held as a constant.

Figure 2.1: The physical layout used to observe objects. A light source isolated from directly
illuminating the spectrometer radiates light onto an object. The reflected light is measured
by a spectrometer, which sends measurements of the reflectance to a computer.

6

The computer must then store the measurements made by the spectrometer such that the

data detailing the reflectance can be recalled and utilized. For the purpose of implementing

this system in an industrial setting, the process of storing the data would be fully automated

to take measurements at a precisely defined rate. For prototyping, however, automation is

unnecessary.

7

2.2.2 Manipulation

Once the reflectance data has been saved to the computer, it will be retrieved by a

program which will create the desired sound waveforms. The process, shown in Figure 2.2,

will build soundwaves from the supplied data.

Figure 2.2: The order of actions to be taken by the program from data input through sound
output.

First, the program will have to create a matrix (of the form defined in Figure 2.3) of the

reflectance spectrum from the benchmark file; the benchmark object is the standard against

which all inspected objects will be compared. Next, the reflectance spectrum of the item

under test (IUT) file will be used to create a matrix. This file is the reflectance data from

the object being inspected; in an industrial setting, the file would automatically be utilized,

8

logged, and replaced with the next IUT file.

λ(nm) A

350 a0

351 a1

352 a2

353 a3

354 a4

355 a5

356 a6

357 a7

358 a8

359 a9

360 a10

...

Figure 2.3: The form of each matrix containing the measured amplitude at each observed
wavelength.

After the matrices are created, they will be used to create musical chords. The length

of each matrix, containing the reflectance amplitude at each wavelength in the measured

spectrum, will be used to determine the number of notes in the chords to be created. For

each note to be created, a bin (binning is described in detail in Section 3.6) will be generated

corresponding to a section of the spectrum. The average value of the reflectance amplitudes

in each bin will become the amplitude of the corresponding note in the chord. The bench-

mark chord will be played as such, but the IUT chord will first be altered to exhibit any

discrepancies between the two reflected spectra. The notes in the chord will, for any bins

which do not conform to the spectrum, be frequency shifted to induce a beat frequency. The

chord will then be played.

9

3. Theory

Mathematics is heavily utilized in computer programming. The majority of this project

involved matrix manipulation and algorithm development in MATLAB, a programming lan-

guage meant for mathematical operations. For a full understanding of the details of the

operation of the code, the following concepts are crucial.

3.1 Matrices and Arrays in MATLAB

In MATLAB, an m by n matrix A is an array of values arranged in m columns and n

rows. An array can be manually written between a pair of brackets using commas to separate

rows. All rows in an array must be of the same magnitude.

[a1 a2 a3 a4 ... an, b1 b2 b3 b4 ... bn, c1 c2 c3 c4 ... cn, ...]

creates the matrix:
a1 a2 a3 a4 ... an

b1 b2 b3 b4 ... bn

c1 c2 c3 c4 ... cn

...

Any individual value can be accessed using the form A(i, j).

3.1.1 Array Operators

Colon Operator

To access a specific set of values within the matrix, the form

B = A(ia : ib , jc : jd)

will create a matrix B containing all values which are contained in rows ia through ib and

10

also contained in columns jc through jd. Here, the colon operator is used to define a range

of values. This can be used in two ways.

1 : 10 = [1 2 3 4 5 6 7 8 9 10]

. To specify an array with nonunit spacing, a second colon operator will define the amount

by which to increment.

0 : 10 : 100 = [0 10 20 30 40 50 60 70 80 90 100]

Element-by-Element Operators

An important notation in MATLAB is the element-by-element operator. By appending

a period to the front of an arithmetic operator, in the form A .∗ B, each element A(i, j) will

be multiplied by the corresponding element at B(i, j). This allows arithmetic operations to

be performed on one matrix by another matrix of identical dimensions while retaining the

original dimensions m by n of each matrix.

3.1.2 Bit Depth

Several MATLAB commands utilized in this project incorporate bit depth. This value

specifies the precision of each value in an array by defining the number of bits used to store

the number. A value of bit depth 8 has 28 = 256 possible values, while a value of bit depth

16 has 216 = 65, 536 possible values. High quality audio can have a bit depth as high as 24,

which has 224 = 16, 777, 216 possible values. By increasing the bit depth of values at a fixed

decimal place, the precision increases exponentially.

11

3.2 Vector Scaling

In the context of this project, the commands sound(y) and soundsc(y) operate on an

m by 1 column vector y. Both write this as a waveform to the soundcard. The sound(y)

command sound creates a sound which clips all elements of magnitude greater than one. The

soundsc(y) command linearly scales the column vector y to fit between −1 and 1 before

writing the waveform to the soundcard.

This linear scale can be replicated using the following algorithm in MATLAB:

B = (2 . ∗ A − min(A(:)) − max(A(:))) ./ (max(A(:)) − min(A(:))))

The min(M) and max(M) commands find the maximum and minimum values, respectively,

within the matrix M upon which they operate. This algorithm writes a new column vector

B where each element Bi is determined by the following expression:

Bi =
Ai − Amin − Amax

Amax − Amin

3.3 Wave Superposition

Summing waves in MATLAB is a trivial operation; MATLAB assumes matrix addition

is element-by-element, thus the summation of two matrices of identical dimensions is written

as A = B + C. Matrix addition is used in this project to superimpose multiple sine waves

of varying frequencies, creating a composite wave.

12

3.4 Optical Reflectance Spectrum

The input data for this project was the spectrum of the light reflected off of various

objects. These spectra were saved as 2 by n arrays; the first column, data array(:, 1),

is a list of the wavelengths at which reflectance was measured and the second column,

data array(:, 2), is a list of the measured amplitude corresponding to each wavelength.

Figure 3.1: A plot of measured amplitude versus corresponding wavelength.

3.5 Sound Waves

The output data of this program is a soundwave created using the reflectance spectrum

in the input data. The soundwave is an arbitrarily chosen chord, which contains harmonic

frequencies of each note in the chord. The number of harmonics included in the chord is

13

determined by the number of wavelengths measured in the reflectance spectrum; for a range

of less than 400nm, twelve notes are selected, while for a range of 400nm or greater, twenty-

four notes are selected. The amplitudes are determined by binning the optical spectrum.

3.6 Binning

One of the most crucial aspects of this project is the creation of a soundwave from

an optical spectrum. However, as seen in Figure 3.1, the number of discrete wavelengths

measured will most likely be far larger than the number of notes selected for the produced

chord. Binning is the process by which the values stored in a large array are used to create a

smaller array. The larger array is divided into segments, or bins ; each bin is then averaged,

and the average value is written to the smaller array. The larger array in this application is

the optical spectrum and the smaller array is a matrix containing the respective amplitudes

of each note to be contained in the soundwave. This array is an intermediate stage before

the soundwave is created.

14

Figure 3.2: A binned plot of measured amplitude versus corresponding wavelength.

3.7 Frequency Shift Algorithm

In order for the generated soundwave to announce the presence of discrepancies between

the benchmark item and the IUT, an algorithm was written to shift the frequencies of the

notes in the chord based on the discrepancies. In the chord corresponding to the benchmark

item, the notes in the chosen chord are unaltered. In the IUT chord, each note frequency is

shifted by the following operation:

shiftednotei = notei ∗
〈ratio〉
ratio(i)

where ratio is the resulting matrix of dot division between the binned arrays of the compared

15

spectra and ratio(i) represents an individual value in the array

〈ratio〉 =

〈 [
b1 b2 b3 b4 b5 b6 b7

]
[
a1 a2 a3 a4 a5 a6 a7

]〉 =
b1 + b2 + b3 + b4 + b5 + b6 + b7
a1 + a2 + a3 + a4 + a5 + a6 + a7

ratio(i) =
bi
ai

Here the IUT reflectance is given by the array
[
b1 ... bn

]
and the benchmark reflectance

is given by the array
[
a1 ... an

]
. The choice to divide the IUT reflectance by the bench-

mark reflectance is arbitrary, as is the choice to divide 〈ratio〉 by ratio(i). The frequency

shift would continue to function if either or both were inverted.

For each bin, this multiplies the corresponding note frequency by the average ratio of the

IUT reflectance to the benchmark item reflectance. This is then divided by the specific bin’s

ratio of the IUT reflectance to the benchmark reflectance. If the ratios are not the same,

this is indicative of a discrepancy in the reflected spectra and the corresponding notes in the

IUT chord are subjected to a frequency shift. Thus, frequency shifting is induced in the case

bi
ai
6= b1 + b2 + b3 + b4 + b5 + b6 + b7
a1 + a2 + a3 + a4 + a5 + a6 + a7

and is proportional to
ai(b1 + b2 + b3 + b4 + b5 + b6 + b7)

bi(a1 + a2 + a3 + a4 + a5 + a6 + a7)

This is a sensible result, as any multiplicative factor must be unitless. If the spectra

are identical in value, the notes remain unchanged. Additionally, if the spectra vary by a

constant factor, the notes remain unchanged. This ensures that a frequency shift will only

be induced if the shape of the spectra differ.

16

4. Methodology and Results

4.1 Physical Apparatus

The physical setup for this project, as shown again in Figure 4.1, used a light source

isolated from directly illuminating the spectrometer to shine upon the object being inspected.

The light reflected off of the object entered a nearby fiber-optic cable which delivered the light

to the spectrometer. The position of the object being inspected, the ambient environment,

and the proximity and orientation of each piece of equipment was kept identical among all

measurements being compared. Additionally, the light source was kept the same among all

comparisons. The spectrometer was observed to have non-zero amplitudes for the observed

wavelengths even when there was no light input; this background was corrected for in the

program written by subtracting the amplitude intensity measured when the spectrometer

input was blocked with a cap.

Figure 4.1: The physical layout used to observe objects. A light source isolated from directly
illuminating the spectrometer radiates light onto an object. The reflected light is measured
by a spectrometer, which sends measurements of the reflectance to a computer.

The reflection spectra were measured using a USB650 Red Tide Spectrometer [3]. This

17

spectrometer functions in the range [350nm - 1000nm]. The measured reflection spectra

were interpreted and saved to the computer using Logger Pro [4]. This computer data logger

saved spectral data based on the parameters given. Time averaging of data, the spectral

range observed, and sensitivity to light amplitude could all be adjusted using Logger Pro.

4.2 MATLAB

The program outlined previously was written in MATLAB over the course of the project.

Initial work was not intended to provide a usable product, but rather to establish familiar-

ity with the basic concepts governing the structure, notation, and vocabulary of MATLAB.

From the outset, all work was intended to gradually move towards the completion of the

final program. Over time, as familiarity was built and advanced concepts became more

accessible, the programs written were able to achieve this. A particularly noteworthy dis-

covery was tonec.m [5], a function written by Professor Kevin Donohue of the University of

Kentucky; this function, shown in Appendix A, greatly facilitated the development of the

project by streamlining the process of creating soundwaves. Additionally, the documentation

provided by Mathworks [6] provided examples and explanations which further accelerated

the development of the programs.

4.2.1 Development of the Program

The individual test programs written, fully and sequentially shown in Appendix B, ad-

vanced from the most basic concepts up to the concepts driving the final iteration of the

program. All programs were fully commented such that the purpose of the test was apparent.

The first program of twenty-five tested manual creation of soundwaves as well as the

utility of the sound(y, Fs, bits) command, which sends an audio signal y to the soundcard

of the computer at sample rate Fs with bit depth bits; bit depth indicates the precision of

the values in signal y. The program was successful, generating a sound corresponding to the

manually written waveform y.

y = repmat([1 0 -1 0], 1, 10000);

sound(y,2000,16)

The second program used a template program found in the Mathworks documentation

[6] to generate a square wave. The number of cycles of the wave, the length of each cycle,

and the percentage of each cycle in which the wave was set to a high value were all manually

18

chosen. This wave was then sent to the soundcard using the sound(y) command; in this

case, where the function is not supplied with either Fs or bits, they are set to default values

of 8192Hz and 8-bit depth, respectively.

RESOLUTION = 20; %whatever is appropriate

DUTYCYCLE = .73; %e.g. 73% on, 27% off

NUMBEROFCYCLES = 180; %as appropriate

basepulse = ones(1,RESOLUTION);

squarepulse = basepulse;

squarepulse(floor(DUTYCYCLE * RESOLUTION) + 1 : end) = 0;

wavetrain = repmat(squarepulse, 1, NUMBEROFCYCLES);

y = wavetrain;

sound(y);

The third and fourth programs focused on writing and reading data to and from comma

separated value (.csv) files using csvwrite(filename, M) and csvread(filename), where

M is the matrix to be written to the file.

csvwrite(’csvtest1.dat’,m);

type csvtest1.dat;

Upon discovering that the data saved by Logger Pro was not saved as .csv files, the fifth

program was written to replicate the results of the third using the proper .txt files. The

command used was dlmread(filename, delimiter, range); specifying the delimiter ’\t’

allowed the program to correctly parse the spectral data.

M = dlmread(’dec3a.txt’, ’\t’, 1,1);

Test programs six and seven were designed to normalize a matrix before using sound(y,

Fs, bits to write the matrix to the soundcard. While intended to normalize the wavefunction

between negative one and one, the algorithm used was incorrect and did not accomplish its

goal.

normM = M./max(M);

finalnormM = normM.*2.-1;

syntaxtestM = M./max(M).*2-1;

19

finalM = repmat(finalnormM,1,100);

Program eight used sin(X) to generate a sine wave of the elements of x, which was then

written to the soundcard using sound(y, Fs).

x = 0:0.01:100*pi;

A = repmat(sin(x),1,20);

sound(A,200000);

The ninth program used soundsc(y, Fs) to normalize and write to the soundcard a

sine wave created at a chosen frequency and samplerate. Where sound(y) clipped values of

magnitude greater than one, soundsc(y) normalizes the values to fit between negative one

and one before writing to the soundcard.

testFreq = 440;

samplerate=8192;

t = [0:1: 4*samplerate];

soundsc(sin(testFreq/samplerate*t*2*pi),samplerate);

Program ten created sine waves of chosen frequencies and added them before writing the

resultant chord to the soundcard using soundsc(y).

Freq1 = 554;

freq1 = 547;

Freq2 = 659;

Freq3 = 831;

samplerate=8192;

t = [0:1: samplerate];

Db = sin(Freq1/samplerate*t*2*pi);

Db1 = sin(freq1/samplerate*t*2*pi);

E = sin(Freq2/samplerate*t*2*pi);

Ab = sin(Freq3/samplerate*t*2*pi);

chord = Db + E + Ab;

chord2 = Db1 + E + Ab;

soundsc(chord);

20

soundsc(chord2);

Program eleven created sine waves at each note in an octave, wrote them to the soundcard

using soundsc(y), and then saved each sine wave to a data file using csvwrite(filename,

M). Program twelve accessed these files. These programs were intended to test the concept

of saving sound data to permanent files. By using these files as a reference, rather than

repeatedly generating the sine waves for each use, later programs would save processing

time. Also saved were the maximum and minimum values of each sine wave for later use in

normalizing.

Nmax = max(A&Bb&B&C&Db&D&Eb&E&F&Gb&G&Ab)

Nmin = min(A&Bb&B&C&Db&D&Eb&E&F&Gb&G&Ab)

Program thirteen was an attempt to normalize the sine waves before saving them to fur-

ther reduce processing time. However, the normalization algorithm was unsuccessful, caused

the program to fail, and was removed.

The fourteenth program created eight sine waves at harmonic frequencies, summed them

together, and both plotted them with plot(M) and wrote them to the soundcard using

soundsc(y).

Figure 4.2: The sum of eight harmonic sine waves.

21

The fifteenth program was written to test the tonec.m function using csvwrite(filename,

tonec(frequency, time, samplerate)) to save the waveform and soundsc(tonec([frequency1,

... , frequencyn], time, samplerate)) to generate a chord of chosen frequencies.

sound(tonec(440,1,10000));

soundsc(tonec([28,55,110,220,440,880,1760,3520],1,10000));

The sixteenth program used a noise reduction algorithm to minimize the effect of non-

zero background measurements. This method of background reduction was removed in the

twentieth program in favor of a preferable method; this algorithm introduced an undesireable

nonlinear distortion to the array.

Bi =
Ai ∗ |Ai|
Amax

spectrum in = dlmread(’dec3a.txt’, ’\t’, 1,1);

all = dlmread(’’dec3a.txt’, ’\t’’, 1, 0);

t = all(1:end,1);

noiseless = spectrum in.*abs(spectrum in)/max(abs(spectrum in));

plot(t,noiseless,’r-’,t,spectrum in,’b-’);

axis tight;

22

Figure 4.3: A nonlinear reduction designed to emphasize spectral peaks and minimize the
effects of background signals.

The seventeenth and eighteenth programs investigated methods for binning the input

spectrum data. First attempted was the hist(Y, nbins) command; the resulting plot failed

to carry any of the desired information and created a histogram graph rather than an array.

This approach was abandoned in favor of the binning algorithm detailed in section 3.6. The

binning algorithm successfully created an array storing the averaged values of the spectrum

data array and determined the number of bins using the size of the spectrum data array.

bin locations = [450,500,550,600,650,700,750,800,850];

hist(noiseless,bin locations);

23

Figure 4.4: A histogram made to bin the spectral data.

[M,N] = size(t)

if M < 700

bin num = 7;

else

bin num = 14;

end

bin = round(M./bin num)

k = 0;

for i = 1:bin num

finale array(i,1) = i;

index=i-1;

k = index*bin+1;

finale array(i,2) = mean(noiseless(k:(k+bin)));

end

noiseless finale(:,1) = 1:bin num;

noiseless finale(:,2) = finale array(:,2).*abs(finale array(:,2))...

/max(abs(finale array(:,2)));

24

plot(noiseless finale(1:7,1),noiseless finale(1:7,2))

Figure 4.5: A graph of the binned values from the binning algorithm.

Program nineteen was a proof-of-concept test to create a soundwave using spectrum

data saved in a file using the dlmread(filename, delimiter, range) command in program

five, the noise reduction algorithm in program sixteen, the binning algorithm from program

eighteen, the tonec([frequency1, ... , frequencyn], time, samplerate)) command from

program fifteen, and the soundsc(y) command from program nine. This program success-

fully created a chord.

Program twenty replicated the efforts of program nineteen, but removed the noise reduc-

tion algorithm from the sixteenth program to remove nonlinear distortion.

25

Figure 4.6: A graph of the binned amplitudes for the notes output by the tonec.m command.

The twenty-first program replaced the previous noise reduction algorithm with a linear

background reduction. New data was used, including a measurement of the background

readings from the spectrometer when all light input was blocked. This background was

linearly subtracted from the spectrum data.

spectrum in = dlmread(’Spectrometer Data\jan24e.txt’, ’\t’, 1,1);

all = dlmread(’Spectrometer Data\jan24e.txt’, ’\t’, 1, 0);

t = all(1:end,1);

background = dlmread(’Spectrometer Data\jan24 background.txt’, ’\t’, 1, 1);

a=find(background, t(1));

b=find(background, t(end));

background adj = background(a:b);

spectrum out = spectrum in - background adj;

The twenty-second program created a chord using the benchmark spectrum data and a

second chord using the IUT data. The notes in the IUT chord were frequency shifted using

the algorithm

shiftednotei = notei ∗ (1 + constant ∗ (binIUT − binb))

26

This algorithm was later found to be inferior to the method described in Section 3.7. By

comparing the absolute value of reflected intensities, this algorithm produced a false negative

where the reflection spectra differ in overall intensity, but are proportional.

weight = 1 - 10*final array1(:,2) + 10*final array2(:,2);

weighted = weight .* notes

plot(final array1(:,1),final array1(:,2), ’r’);

hold;

plot(final array2(:,1),final array2(:,2), ’g’);

Figure 4.7: A comparison of the binned values from the benchmark reflectance(red) and the
IUT reflectance (green).

Twenty-third and twenty-fourth programs continued to investigate algorithms to induce

frequency shift. The twenty-third was an incremental step towards the twenty-fourth, in

which the final frequency shift algorithm was introduced.

shiftednotei = notei ∗
〈ratio〉
ratio(i)

= notei ∗
ai(b1 + b2 + b3 + b4 + b5 + b6 + b7)

bi(a1 + a2 + a3 + a4 + a5 + a6 + a7)

27

from test23 weighting.m:

ratio = final array2(:,2) ./ final array1(:,2)

weight = 1 + ratio(:) - mean(ratio(:));

weighted = weight .* notes

testing = spectrum out2(:,1) ./ spectrum out1(:,1);

plot(t(:,1),testing(:,1), ’r’);

from test24 newweight.m:

ratio = final array2(:,2) ./ final array1(:,2)

weight = mean(ratio(:)) ./ ratio(:);

weighted = weight .* notes

testing = spectrum out2(:,1) ./ spectrum out1(:,1);

plot(t(:,1),testing(:,1), ’r’);

Figure 4.8: The ratio of the IUT reflectance divided by the benchmark reflectance.

The twenty-fifth program manually wrote two arrays to be compared; these arrays were

manipulated to test if the frequency shift was functioning in all cases. When one array was

a multiple of the other

A = c. ∗B

28

where c was a constant, no frequency shift was observed. If one array could not be represented

as a multiple of the other, a frequency shift was observed. This demonstrated the success of

the frequency shift algorithm.

spectrum in1 = [5,9,11,25,9,5];

background adj = [1,1,1,1,1,1];

spectrum out1 = spectrum in1 - background adj;

bin num = 6;

notes = [294, 370, 440, 587, 740, 880]’;

spectrum in2 = [3,5,6,13.5,5,3];

spectrum out2 = spectrum in2 - background adj;

ratio = spectrum out2(:) ./ spectrum out1(:)

weight = mean(ratio(:)) ./ ratio(:)

weightednotes = weight .* notes

soundsc(tonec([weightednotes,spectrum out2(:)], 1, 10000));

testing = spectrum out1(:) ./ spectrum out2(:)

plot(testing(:), ’g’);

Figure 4.9: The frequency shift induced by the diference between the IUT reflectance and
the benchmark reflectance.

29

The first attempt at writing a final program, final1.m, used the frequency shift algorithm

in program twenty-two, and was later replaced with final2.m, which uses the successful

frequency shift algorithm.

weight = 1-sensitivity*final array1(:,2)+sensitivity*final array2(:,2)

weighted = weight .* notes

Figure 4.10: The ratio of the IUT reflectance divided by the benchmark reflectance.

4.2.2 Final Program

After successfully testing multiple approaches and programs, two final programs were

written to accomplish all goals set for the project. final1.m, while functional, was replaced

by final2.m, which contains a better algorithm of determining the frequency shift, shown in

section 3.7, in the IUT chord as well as a more flexible system for determining the wave-

length range; the minimum wavelength measured by the spectrometer is saved as a variable,

rather than as a constant. The algorithm determining the frequency shift was altered such

that it would compare the relative spectra rather than comparing the absolute spectra. By

comparing the absolute spectra, two identical objects could be interpreted as different if

one reflects a greater quantity of light than the other, even if the relative amplitudes by

wavelength are the same. The newer algorithm compares the relative amplitudes among one

object to the relative amplitudes among another, revealing discrepancy only if the objects

30

reflect wavelengths in differing proportions.

The program final2.m incorporates results directly from the developmental programs.

The spectral data was imported using the dlmread(filename, delimiter, range) command

from test5. The soundsc(y, Fs) came from test9 and the tonec(f, INT, Fs) command

was first tested in test15. The if/else statement used to choose the number of bins and the

for loop used to bin the spectral data both came from test18. The background reduction

was developed in test21 and the frequency shift algorithm was created in test24.

Figure 4.11: A graphical comparison of light reflection off of two leaves..

Examples of the soundwaves created by the final program are provided as supplemen-

tal files and correspond to Figure 4.11. The red line is the spectrum data used to create

healthyleaf.wav and the blue line is the spectrum data used to create unhealthyleaf.wav.

31

5. Conclusion

The overarching goal of this project was to create an aural interface for intuitive industrial

inspection. In order for this interface to be created, a physical system was devised to acquire

reflection spectra corresponding to the items being inspected and a MATLAB program was

written to create sounds communicating the nature of the reflections.

By announcing the presence of spectral discrepancies as audible beat frequencies, the

system developed in this project relegates the inspection process from a conscious act to an

intuitive act. With this interface in place, a worker could focus on an entirely unrelated

task, yet retain the ability to observe items of substandard quality. By removing the need

for dedicated attention to inspection and instead relying upon the inherent ability to detect

beat frequencies and dissonance, this system can greatly increase inspection efficiency and

facilitate multitasking among workers.

An aural inspection system derived from optical reflectance would be of great utility in

any inspection process in which a variance in reflectance corresponds to decreased value of

the item. Particularly, consumable products provide a vast market for application. Expired

or otherwise tainted food would be easily discerned due to the decay process and different

foods would be easily separable. Other applications are equally viable; this system can be

applied to wide variety of scenarios.

Going forward with this project, future work should be considered to test the inspection

system in an industrial setting. The spectrum input should be automated in further devel-

opment and a graphical user interface should be implemented to increase market appeal.

While this project has built a framework for a radical new inspection system, aesthetic and

experimental development should be pursued to bring it to market.

32

Appendix A

tonec.m

33

1

function [v, t] = tonec(f,int,fs)
% This function will create a series of samples at sampling rate
% FS for a duration of INT seconds at frequencies in the first column
% of vector F in Hertz. The second column of F will be the weight for
% each tone. If a second column is not given then an equal scaling
% will be given to each tone.
%
% [v, t] = tonec(f,int,fs)
%
% The output is a row vector V containing the sampled points
% T is an optional output and is the time axis assoicated with V.
%
% Written by Kevin D. Donohue (donohue@engr.uky.edu) 6/2003

[r, c] = size(f); % Check dimension of f
% Ensure frequency values are in different rows
if c > 2 % if not transpose
 f = f';
 [r, c] = size(f);
end

% Check to see if coefficients for frequenies are provided
if c == 1 % If not set them = to one
 f(:,2) = ones(length(f),1);
end

t = [0:fix(fs*int)-1]/fs; % Create time axis
v = zeros(size(t)); % initialize vector to accumulate multiple tones
for k=1:r
 v = v + f(k,2)*sin(2*pi*t*f(k,1)); % Create sampled tone signal
end

Error using tonec (line 16)
Not enough input arguments.

Published with MATLAB® 7.14

Appendix B

Test Code Written Throughout the Project

35

% test1 sound.m

% goal: basic test of sound

% y = load \\filepath

y = repmat([1 0 -1 0], 1, 10000);

sound(y,2000,16)

36

1

% test2_square_wave.m
% goal: create square wave

%--
% found on mathworks.com
RESOLUTION = 20; %whatever is appropriate
DUTYCYCLE = .73; %e.g. 73% on, 27% off
NUMBEROFCYCLES = 180; %as appropriate
basepulse = ones(1,RESOLUTION);
squarepulse = basepulse;
squarepulse(floor(DUTYCYCLE * RESOLUTION) + 1 : end) = 0;
wavetrain = repmat(squarepulse, 1, NUMBEROFCYCLES);
%--

y = wavetrain;
sound(y);

Published with MATLAB® 7.14

1

% test3_csv.m
% goal: import and/or write .csv file

% to write: csvwrite(filename,M)
% to write: csvwrite(filename,M,row,col)

m = [3 6 9 12 15; 5 10 15 20 25; ...
 7 14 21 28 35; 11 22 33 44 55];

csvwrite('csvtest1.dat',m);
type csvtest1.dat;

% to import: M = csvread(filename);
% to import: M = csvread(filename,row,col);
% to import: M = csvread(filename,row,col,csvRange);

A = csvread('csvtest1.dat');

3,6,9,12,15
5,10,15,20,25
7,14,21,28,35
11,22,33,44,55

Published with MATLAB® 7.14

1

% test4_csv.m
% goal: write m by 2 matrix to a .csv file

% to write: csvwrite(filename,M)
% to write: csvwrite(filename,M,row,col)

m = [3 6; 9 12; 15 5; 10 15; 20 25; ...
 7 14; 21 28; 35 11; 22 33; 44 55];

csvwrite('csvtest2.csv',m);
type csvtest2.csv;

% success? compare vs spectral output

3,6
9,12
15,5
10,15
20,25
7,14
21,28
35,11
22,33
44,55

Published with MATLAB® 7.14

1

% test5_txt.m
% goal: input .txt from spectrometer
% goal: save only desired numbers in a matrix

% M = dlmread(filename, delimiter, range)

M = dlmread('dec3a.txt', '\t', 1,1);

Published with MATLAB® 7.14

1

% test6_txt.m
% goal: normalize and transpose matrix imported from .txt

M = transpose(dlmread('dec3a.txt', '\t', 1,1));

normM = M./max(M);

finalnormM = normM.*2.-1;

syntaxtestM = M./max(M).*2-1;

tf = isequal(finalnormM,syntaxtestM);

Published with MATLAB® 7.14

1

%test7_sound.m
% play .txt direct using sound

M = transpose(dlmread('dec3a.txt', '\t', 1,1));

normM = M./max(M);

finalnormM = normM.*2.-1;

finalM = repmat(finalnormM,1,100);

sound(finalM, 10000);

Published with MATLAB® 7.14

1

% test8_sound.m
% goal: generate and play a sinewave

x = 0:0.01:100*pi;

A = repmat(sin(x),1,20);

sound(A,200000);

Published with MATLAB® 7.14

1

% test9_sine.m
% goal: import desired frequency
% play corresponding sine wave at default sample rate

testFreq = 440;

% discovered soundsc() scales sound to fit -1 to 1 range
% no need to manually normalize

% remember: default sample rate is 8192 Hz
samplerate=8192;

t = [0:1: 4*samplerate];

soundsc(sin(testFreq/samplerate*t*2*pi),samplerate);

Published with MATLAB® 7.14

1

% test10_sum_sine.m
% goal: import desired frequencies
% play sum of corresponding sine waves at default sample rate

Freq1 = 554;
freq1 = 547;
Freq2 = 659;
Freq3 = 831;

% discovered soundsc() scales sound to fit -1 to 1 range
% no need to manually normalize

% remember: default sample rate is 8192 Hz
samplerate=8192;

t = [0:1: samplerate];

Db = sin(Freq1/samplerate*t*2*pi);
Db1 = sin(freq1/samplerate*t*2*pi);
E = sin(Freq2/samplerate*t*2*pi);
Ab = sin(Freq3/samplerate*t*2*pi);

chord = Db + E + Ab;
chord2 = Db1 + E + Ab;

soundsc(chord);
soundsc(chord2);

Published with MATLAB® 7.14

1

% test11_reference_list.m
% create a reference list of all notes A -> G
clc;
clear all;
samplerate = 8192;
nBits = 8;
t = [0:1: samplerate];

FreqA = 440;
FreqBb = 466;
FreqB = 494;
FreqC = 523;
FreqDb = 554;
FreqD = 587;
FreqEb = 622;
FreqE = 659;
FreqF = 699;
FreqGb = 740;
FreqG = 784;
FreqAb = 831;

A = sin(FreqA/samplerate*t*2*pi);
Bb = sin(FreqBb/samplerate*t*2*pi);
B = sin(FreqB/samplerate*t*2*pi);
C = sin(FreqC/samplerate*t*2*pi);
Db = sin(FreqDb/samplerate*t*2*pi);
D = sin(FreqD/samplerate*t*2*pi);
Eb = sin(FreqEb/samplerate*t*2*pi);
E = sin(FreqE/samplerate*t*2*pi);
F = sin(FreqF/samplerate*t*2*pi);
Gb = sin(FreqGb/samplerate*t*2*pi);
G = sin(FreqG/samplerate*t*2*pi);
Ab = sin(FreqAb/samplerate*t*2*pi);

Nmax = max(A&Bb&B&C&Db&D&Eb&E&F&Gb&G&Ab)
Nmin = min(A&Bb&B&C&Db&D&Eb&E&F&Gb&G&Ab)

chord = Db + E + Ab;
soundsc(chord, samplerate,nBits);
soundsc(A,samplerate,nBits);
soundsc(Bb,samplerate,nBits);
soundsc(B,samplerate,nBits);
soundsc(C,samplerate,nBits);
soundsc(Db,samplerate,nBits);
soundsc(D,samplerate,nBits);
soundsc(Eb,samplerate,nBits);
soundsc(E,samplerate,nBits);
soundsc(F,samplerate,nBits);
soundsc(Gb,samplerate,nBits);
soundsc(G,samplerate,nBits);
soundsc(Ab,samplerate,nBits);

2

csvwrite('note_A.dat',A);
csvwrite('note_Bb.dat',Bb);
csvwrite('note_B.dat',B);
csvwrite('note_C.dat',C);
csvwrite('note_Db.dat',Db);
csvwrite('note_D.dat',D);
csvwrite('note_Eb.dat',Eb);
csvwrite('note_E.dat',E);
csvwrite('note_F.dat',F);
csvwrite('note_Gb.dat',Gb);
csvwrite('note_G.dat',G);
csvwrite('note_Ab.dat',Ab);

csvwrite('samplerate.dat',samplerate);
csvwrite('nBits.dat',nBits);

Nmax =

 1

Nmin =

 0

Published with MATLAB® 7.14

1

% test12_reference_list.m
% use reference list
clc;
clear all;

samplerate = csvread('samplerate.dat');
nBits = csvread('nBits.dat');

A = csvread('note_A.dat');
Bb = csvread('note_Bb.dat');
B = csvread('note_B.dat');
C = csvread('note_C.dat');
Db = csvread('note_Db.dat');
D = csvread('note_D.dat');
Eb = csvread('note_Eb.dat');
E = csvread('note_E.dat');
F = csvread('note_F.dat');
Gb = csvread('note_Gb.dat');
G = csvread('note_G.dat');
Ab = csvread('note_Ab.dat');

chord = Db + E + Ab;

soundsc(chord,samplerate,nBits);

Published with MATLAB® 7.14

1

% test13_prenormalize.m
%goal: repeat reference list with normalized initial sine waves
clc;
clear all;
samplerate = 8192;
nBits = 8;
t = [0:1: samplerate];

FreqA = 440;
FreqBb = 466;
FreqB = 494;
FreqC = 523;
FreqDb = 554;
FreqD = 587;
FreqEb = 622;
FreqE = 659;
FreqF = 699;
FreqGb = 740;
FreqG = 784;
FreqAb = 831;

A = sin(FreqA/samplerate*t*2*pi);
Bb = sin(FreqBb/samplerate*t*2*pi);
B = sin(FreqB/samplerate*t*2*pi);
C = sin(FreqC/samplerate*t*2*pi);
Db = sin(FreqDb/samplerate*t*2*pi);
D = sin(FreqD/samplerate*t*2*pi);
Eb = sin(FreqEb/samplerate*t*2*pi);
E = sin(FreqE/samplerate*t*2*pi);
F = sin(FreqF/samplerate*t*2*pi);
Gb = sin(FreqGb/samplerate*t*2*pi);
G = sin(FreqG/samplerate*t*2*pi);
Ab = sin(FreqAb/samplerate*t*2*pi);

csvwrite('note_A.dat',A);
csvwrite('note_Bb.dat',Bb);
csvwrite('note_B.dat',B);
csvwrite('note_C.dat',C);
csvwrite('note_Db.dat',Db);
csvwrite('note_D.dat',D);
csvwrite('note_Eb.dat',Eb);
csvwrite('note_E.dat',E);
csvwrite('note_F.dat',F);
csvwrite('note_Gb.dat',Gb);
csvwrite('note_G.dat',G);
csvwrite('note_Ab.dat',Ab);

csvwrite('samplerate.dat',samplerate);
csvwrite('nBits.dat',nBits);

Published with MATLAB® 7.14

1

% test14_harmonic.m
% goal: make a harmonic and test frequency shift

clc;
clear all;

samplerate = 100000;
nBits = 8;
t = [0:1: samplerate];
A1 = sin(28/samplerate*t*2*pi);
A2 = sin(55/samplerate*t*2*pi);
A3 = sin(110/samplerate*t*2*pi);
A4 = sin(220/samplerate*t*2*pi);
A5 = sin(440/samplerate*t*2*pi);
A6 = sin(880/samplerate*t*2*pi);
A7 = sin(1760/samplerate*t*2*pi);
A8 = sin(3520/samplerate*t*2*pi);

harmonic = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8;
%soundsc(harmonic, samplerate, nBits);
plot(harmonic);

Published with MATLAB® 7.14

1

% test15_tonec.m
% goal: test tonec.m

csvwrite('tonectest.dat', tonec(440,1,10000));
sound(tonec(440,1,10000));
soundsc(tonec([28,55,110,220,440,880,1760,3520],1,10000));

Published with MATLAB® 7.14

1

% test16_threshold.m
% main goal: begin to develop intelligent binning system for input data
% goal: determine signal/noise threshold in spectral data

spectrum_in = dlmread('dec3a.txt', '\t', 1,1);
all = dlmread('dec3a.txt', '\t', 1, 0);
t = all(1:end,1);
noiseless = spectrum_in.*abs(spectrum_in)/max(abs(spectrum_in));
plot(t,noiseless,'r-',t,spectrum_in,'b-');
axis tight;

Published with MATLAB® 7.14

1

% test17_hist.m
% main goal: begin to develop intelligent binning system for input data
% goal: investigate binning of data using hist command

spectrum_in = dlmread('dec3a.txt', '\t', 1,1);
all = dlmread('dec3a.txt', '\t', 1, 0);
t = all(1:end,1);
noiseless = spectrum_in.*abs(spectrum_in)/max(abs(spectrum_in));

bin_locations = [450,500,550,600,650,700,750,800,850];

hist(noiseless,bin_locations);

Published with MATLAB® 7.14

1

% test18_for.m
% main goal: begin to develop intelligent binning system for input data
% goal: investigate binning of data using iterative for loop

clc;
clear all;

spectrum_in = dlmread('dec3a.txt', '\t', 1,1);
all = dlmread('dec3a.txt', '\t', 1, 0);
t = all(1:end,1);
noiseless = spectrum_in.*abs(spectrum_in)/max(abs(spectrum_in));

[M,N] = size(t)

if M < 700

 bin_num = 7;

else

 bin_num = 14;

end

bin = round(M./bin_num)
k = 0;
for i = 1:bin_num
 finale_array(i,1) = i;
 index=i-1;
 k = index*bin+1;
 finale_array(i,2) = mean(noiseless(k:(k+bin)));
end

noiseless_finale(:,1) = 1:bin_num;
noiseless_finale(:,2) = finale_array(:,2).*abs(finale_array(:,2))...
 /max(abs(finale_array(:,2)));

plot(noiseless_finale(1:7,1),noiseless_finale(1:7,2))

M =

 521

N =

 1

bin =

2

 74

Published with MATLAB® 7.14

1

% test19_datatosound.m
% goal: create sound using tonec from input data

clc;
clear all;

spectrum_in = dlmread('dec3a.txt', '\t', 1,1);
all = dlmread('dec3a.txt', '\t', 1, 0);
t = all(1:end,1);
noiseless = spectrum_in.*abs(spectrum_in)/max(abs(spectrum_in));

[M,N] = size(t)

if M < 700

 bin_num = 7;
 notes = [294, 330, 349, 392, 440, 466, 523]'

else

 bin_num = 14;
 notes = [294, 330, 349, 392, 440, 466, 523, 587, 659,...
 699, 784, 880, 932, 1047]'

end

bin = round(M./bin_num)
k = 0;
for i = 1:bin_num
 final_array(i,1) = i;
 index=i-1;
 k = index*bin+1;
 final_array(i,2) = mean(noiseless(k:(k+bin)));
end

noiseless_final(:,1) = 1:bin_num;
noiseless_final(:,2) = final_array(:,2).*abs(final_array(:,2))...
 /max(abs(final_array(:,2)));

soundsc(tonec([notes,final_array(:,2)], 1, 10000));
soundsc(tonec([notes,noiseless_final(:,2)], 1, 10000));

M =

 521

N =

 1

2

notes =

 294
 330
 349
 392
 440
 466
 523

bin =

 74

Published with MATLAB® 7.14

1

% test20_nobackgroundreduction.m
% goal: create sound using tonec from input data

clc;
clear all;

spectrum_in = dlmread('dec3a.txt', '\t', 1,1);
all = dlmread('dec3a.txt', '\t', 1, 0);
t = all(1:end,1);

[M,N] = size(t)

if M < 200

 bin_num = 7;
 notes = [294, 330, 349, 392, 440, 466, 523]'

else

 bin_num = 14;
 notes = [294, 330, 349, 392, 440, 466, 523, 587, 659,...
 699, 784, 880, 932, 1047]'

end

bin = round(M./bin_num)
k = 0;
for i = 1:bin_num
 final_array(i,1) = i;
 index=i-1;
 k = index*bin+1;
 final_array(i,2) = mean(spectrum_in(k:(k+bin)));
end

soundsc(tonec([notes,final_array(:,2)], 1, 10000));
plot(final_array(1:7,1), final_array(1:7,2));

M =

 521

N =

 1

notes =

 294

2

 330

 349
 392
 440
 466
 523
 587
 659
 699
 784
 880
 932
 1047

bin =

 37

Published with MATLAB® 7.14

1

% test21_properbackgroundreduction.m
% goal: create sound using tonec from input data

clc;
clear all;

spectrum_in = dlmread('Spectrometer Data\jan24e.txt', '\t', 1,1);
all = dlmread('Spectrometer Data\jan24e.txt', '\t', 1, 0);
t = all(1:end,1);

background = dlmread('Spectrometer Data\jan24 background.txt', '\t', 1, 1);

a=find(background, t(1));
b=find(background, t(end));

background_adj = background(a:b);

spectrum_out = spectrum_in - background_adj;

[M,N] = size(t)

if M < 200

 bin_num = 7;
 notes = [294, 330, 349, 392, 440, 466, 523]'

else

 bin_num = 14;
 notes = [294, 330, 349, 392, 440, 466, 523, 587, 659,...
 699, 784, 880, 932, 1047]'

end

bin = round(M./bin_num)
k = 0;
for i = 1:bin_num
 final_array(i,1) = i;
 index=i-1;
 k = index*bin+1;
 if k+bin < size(spectrum_out)
 final_array(i,2) = mean(spectrum_out(k:(k+bin)));
 else
 final_array(i,2) = mean(spectrum_out(k:end));
 end
end

soundsc(tonec([notes,final_array(:,2)], 3, 10000));
%plot(final_array(1:bin_num,1), final_array(1:bin_num,2));

%goal: create sound using tonec from input data

2

clc;
clear all;

spectrum_in = dlmread('Spectrometer Data\jan24f.txt', '\t', 1,1);
all = dlmread('Spectrometer Data\jan24f.txt', '\t', 1, 0);
t = all(1:end,1);

background = dlmread('Spectrometer Data\jan24 background.txt', '\t', 1, 1);

a=find(background, t(1));
b=find(background, t(end));

background_adj = background(a:b);

spectrum_out = spectrum_in - background_adj;

[M,N] = size(t)

if M < 200

 bin_num = 7;
 notes = [294, 330, 349, 392, 440, 466, 523]'

else

 bin_num = 14;
 notes = [294, 330, 349, 392, 440, 466, 523, 587, 659,...
 699, 784, 880, 932, 1047]'

end

bin = round(M./bin_num)
k = 0;
for i = 1:bin_num
 final_array(i,1) = i;
 index=i-1;
 k = index*bin+1;
 if k+bin < size(spectrum_out)
 final_array(i,2) = mean(spectrum_out(k:(k+bin)));
 else
 final_array(i,2) = mean(spectrum_out(k:end));
 end
end

soundsc(tonec([notes,final_array(:,2)], 3, 10000));
%plot(final_array(1:bin_num,1), final_array(1:bin_num,2));

%goal: create sound using tonec from input data

clc;
clear all;

3

spectrum_in = dlmread('Spectrometer Data\jan24h.txt', '\t', 1,1);
all = dlmread('Spectrometer Data\jan24h.txt', '\t', 1, 0);
t = all(1:end,1);

background = dlmread('Spectrometer Data\jan24 background.txt', '\t', 1, 1);

a=find(background, t(1));
b=find(background, t(end));

background_adj = background(a:b);

spectrum_out = spectrum_in - background_adj;

[M,N] = size(t)

if M < 200

 bin_num = 7;
 notes = [294, 330, 349, 392, 440, 466, 523]'

else

 bin_num = 14;
 notes = [294, 330, 349, 392, 440, 466, 523, 587, 659,...
 699, 784, 880, 932, 1047]'

end

bin = round(M./bin_num)
k = 0;
for i = 1:bin_num
 final_array(i,1) = i;
 index=i-1;
 k = index*bin+1;
 if k+bin < size(spectrum_out)
 final_array(i,2) = mean(spectrum_out(k:(k+bin)));
 else
 final_array(i,2) = mean(spectrum_out(k:end));
 end
end

soundsc(tonec([notes,final_array(:,2)], 3, 10000));
%plot(final_array(1:bin_num,1), final_array(1:bin_num,2));

M =

 651

N =

 1

4

notes =

 294
 330
 349
 392
 440
 466
 523
 587
 659
 699
 784
 880
 932
 1047

bin =

 47

M =

 651

N =

 1

notes =

 294
 330
 349
 392
 440
 466
 523
 587
 659
 699
 784
 880
 932
 1047

bin =

5

 47

M =

 651

N =

 1

notes =

 294
 330
 349
 392
 440
 466
 523
 587
 659
 699
 784
 880
 932
 1047

bin =

 47

Published with MATLAB® 7.14

1

% test22_staincomparison.m
% goal: create sound using tonec from input data

clc;
clear all;

sensitivity = 5;

spectrum_in = dlmread('Spectrometer Data\jan31f.txt', '\t', 1,1);
all = dlmread('Spectrometer Data\jan31f.txt', '\t', 1, 0);
t = all(1:end,1);

background = dlmread('Spectrometer Data\jan24 background.txt', '\t', 1, 1);

a=find(background, t(1));
b=find(background, t(end));

background_adj = background(a:b);

spectrum_out = spectrum_in - background_adj;

[M,N] = size(t)

if M < 400

 bin_num = 12;
 notes = [73, 87, 110, 147, 175, 220, 294, 349, 440, 587, 699, 880]'

else

 bin_num = 24;
 notes = [37, 44, 55, 73, 87, 110, 147, 175, 220, 294, 349, 440, 587,...
 699, 880, 1175, 1397, 1760, 2349, 2794, 3520, 4699, 5588, 7040]'

end

bin = round(M./bin_num)
k = 0;
final_array1 = zeros(2,bin_num);

for i = 1:bin_num
 final_array1(i,1) = i;
 index=i-1;
 k = index*bin+1;
 if k+bin < size(spectrum_out)
 final_array1(i,2) = mean(spectrum_out(k:(k+bin)));
 else
 final_array1(i,2) = mean(spectrum_out(k:end));
 end
end

2

clc;
clear all;

spectrum_in = dlmread('Spectrometer Data\jan31g.txt', '\t', 1,1);
all = dlmread('Spectrometer Data\jan31g.txt', '\t', 1, 0);
t = all(1:end,1);

background = dlmread('Spectrometer Data\jan24 background.txt', '\t', 1, 1);

a=find(background, t(1));
b=find(background, t(end));

background_adj = background(a:b);

spectrum_out = spectrum_in - background_adj;

[M,N] = size(t)

if M < 200

 bin_num = 7;
 notes = [294, 330, 349, 392, 440, 466, 523]'

else

 bin_num = 24;
 notes = [37, 44, 55, 73, 87, 110, 147, 175, 220, 294, 349, 440, 587,...
 699, 880, 1175, 1397, 1760, 2349, 2794, 3520, 4699, 5588, 7040]'

end

bin = round(M./bin_num)
k = 0;
final_array2 = zeros(2,bin_num);
for i = 1:bin_num
 final_array2(i,1) = i;
 index=i-1;
 k = index*bin+1;
 if k+bin < size(spectrum_out)
 final_array2(i,2) = mean(spectrum_out(k:(k+bin)));
 else
 final_array2(i,2) = mean(spectrum_out(k:end));
 end
end

weight = 1 - 10*final_array1(:,2) + 10*final_array2(:,2);
weighted = weight .* notes

soundsc(tonec([notes,final_array1(:,2)], 1, 10000));
soundsc(tonec([weighted,final_array2(:,2)], 1, 10000));
plot(final_array1(:,1),final_array1(:,2), 'r');
hold;

3

plot(final_array2(:,1),final_array2(:,2), 'g');

M =

 651

N =

 1

notes =

 37
 44
 55
 73
 87
 110
 147
 175
 220
 294
 349
 440
 587
 699
 880
 1175
 1397
 1760
 2349
 2794
 3520
 4699
 5588
 7040

bin =

 27

M =

 651

N =

 1

4

notes =

 37
 44
 55
 73
 87
 110
 147
 175
 220
 294
 349
 440
 587
 699
 880
 1175
 1397
 1760
 2349
 2794
 3520
 4699
 5588
 7040

bin =

 27

weighted =

 1.0e+03 *

 0.0345
 0.0410
 0.0510
 0.0675
 0.0806
 0.1019
 0.1368
 0.1627
 0.2107
 0.2832
 0.3452
 0.4381
 0.5855
 0.6978
 0.8800

5

 1.1751

 1.3973
 1.7605
 2.3501
 2.7956
 3.5221
 4.7022
 5.5913
 7.0453

Current plot held

Published with MATLAB® 7.14

1

% test23_weighting.m
% goal: devise proper weighting system

% clear ALL the things
clc;
clear all;

% manually set sensitivity to differences between input spectrum and
% expected spectrum
% sensitivity = 5;

% calls file chosen as expected value for comparison with dynamic
% readings
% creates individual arrays for each column
spectrum_in1 = dlmread('Spectrometer Data\feb18a.txt', '\t', 1,1);
all = dlmread('Spectrometer Data\feb18a.txt', '\t', 1, 0);
t = all(1:end,1);

% this block establishes the dark readings of the spectrometer and removes
% the background from the spectrum
background = dlmread('Spectrometer Data\feb18_background.txt', '\t', 1, 1);

a=find(background, t(1));
b=find(background, t(end));
background_adj = background(a:b);

spectrum_out1 = spectrum_in1 - background_adj;

% determines size of spectrum and sets size of audio spectrum
[M,N] = size(t)

if M < 400
 bin_num = 12;
 notes = [73, 93, 110, 147, 185, 220, 294, 370, 440, 587, 740, 880]'

else
 bin_num = 24;
 notes = [37, 46, 55, 73, 93, 110, 147, 185, 220, 294, 370, 440, 587,...
 740, 880, 1175, 1475, 1760, 2349, 2960, 3520, 4699, 5920, 7040]'
end

% sets bin size, initializes vectors
bin = round(M./bin_num)
k = 0;
final_array1 = zeros(2,bin_num);

% creates binned array with average values of input spectrum
% this array corresponds to the ideal input spectrum
for i = 1:bin_num
 final_array1(i,1) = i;
 index=i-1;
 k = index*bin+1;

2

 if k+bin < size(spectrum_out1)
 final_array1(i,2) = mean(spectrum_out1(k:(k+bin)));
 else
 final_array1(i,2) = mean(spectrum_out1(k:end));
 end
end

q = 1;
while q;

 % calls file given once per second by the spectrometer
 % spectrometer needs to always output same file name
 spectrum_in2 = dlmread('Spectrometer Data\feb18b.txt', '\t', 1,1);
 spectrum_out2 = spectrum_in2 - background_adj;

 % creates binned array with average values of input spectrum
 % this array corresponds to the dynamic input spectrum
 k = 0;
 final_array2 = zeros(2,bin_num);
 for i = 1:bin_num
 final_array2(i,1) = i;
 index=i-1;
 k = index*bin+1;
 if k+bin < size(spectrum_out2)
 final_array2(i,2) = mean(spectrum_out2(k:(k+bin)));
 else
 final_array2(i,2) = mean(spectrum_out2(k:end));
 end
 end

 % introduces frequency shift where the dynamic spectrum differs from
 % the ideal spectrum
 %weight = zeros(size(notes));

 ratio = final_array2(:,2) ./ final_array1(:,2)

 weight = 1 + ratio(:) - mean(ratio(:));

 weighted = weight .* notes

 testing = spectrum_out2(:,1) ./ spectrum_out1(:,1);

 plot(t(:,1),testing(:,1), 'r');
 %hold;
 %plot(1:bin_num, weight, 'b');

 %plot(t(:,1),spectrum_out1(:,1),'r');
 %hold;
 %plot(t(:,1),spectrum_out2(:,1),'b');

3

 % stops while loop so I don't crash matlab again
 q = q - 1;
end

M =

 651

N =

 1

notes =

 37
 46
 55
 73
 93
 110
 147
 185
 220
 294
 370
 440
 587
 740
 880
 1175
 1475
 1760
 2349
 2960
 3520
 4699
 5920
 7040

bin =

 27

ratio =

 1.3295
 1.3295
 1.3296
 1.3300

4

 1.3304
 1.3306
 1.3301
 1.3356
 1.3479
 1.3303
 1.2756
 1.1870
 1.0657
 0.9540
 0.9187
 0.9191
 0.9241
 0.9282
 0.9313
 0.9335
 0.9354
 0.9372
 0.9485
 0.9455

weighted =

 1.0e+03 *

 0.0444
 0.0552
 0.0660
 0.0876
 0.1116
 0.1320
 0.1764
 0.2230
 0.2679
 0.3528
 0.4238
 0.4649
 0.5491
 0.6096
 0.6938
 0.9268
 1.1708
 1.4042
 1.8815
 2.3773
 2.8339
 3.7917
 4.8437
 5.7391

5

Published with MATLAB® 7.14

1

% test24_newweight.m
% goal: devise proper weighting system

% clear ALL the things
clc;
clear all;

% manually set sensitivity to differences between input spectrum and
% expected spectrum
% sensitivity = 5;

% calls file chosen as expected value for comparison with dynamic
% readings
% creates individual arrays for each column
spectrum_in1 = dlmread('Spectrometer Data\feb18a.txt', '\t', 1,1);
all = dlmread('Spectrometer Data\feb18a.txt', '\t', 1, 0);
t = all(1:end,1);

% this block establishes the dark readings of the spectrometer and removes
% the background from the spectrum
background = dlmread('Spectrometer Data\feb18_background.txt', '\t', 1, 1);

a=find(background, t(1));
b=find(background, t(end));
background_adj = background(a:b);

spectrum_out1 = spectrum_in1 - background_adj;

% determines size of spectrum and sets size of audio spectrum
[M,N] = size(t)

if M < 400
 bin_num = 12;
 notes = [73, 93, 110, 147, 185, 220, 294, 370, 440, 587, 740, 880]'

else
 bin_num = 24;
 notes = [37, 46, 55, 73, 93, 110, 147, 185, 220, 294, 370, 440, 587,...
 740, 880, 1175, 1475, 1760, 2349, 2960, 3520, 4699, 5920, 7040]'
end

% sets bin size, initializes vectors
bin = round(M./bin_num)
k = 0;
final_array1 = zeros(2,bin_num);

% creates binned array with average values of input spectrum
% this array corresponds to the ideal input spectrum
for i = 1:bin_num
 final_array1(i,1) = i;
 index=i-1;
 k = index*bin+1;

2

 if k+bin < size(spectrum_out1)
 final_array1(i,2) = mean(spectrum_out1(k:(k+bin)));
 else
 final_array1(i,2) = mean(spectrum_out1(k:end));
 end
end

q = 1;
while q;

 % calls file given once per second by the spectrometer
 % spectrometer needs to always output same file name
 spectrum_in2 = dlmread('Spectrometer Data\feb18b.txt', '\t', 1,1);
 spectrum_out2 = spectrum_in2 - background_adj;

 % creates binned array with average values of input spectrum
 % this array corresponds to the dynamic input spectrum
 k = 0;
 final_array2 = zeros(2,bin_num);
 for i = 1:bin_num
 final_array2(i,1) = i;
 index=i-1;
 k = index*bin+1;
 if k+bin < size(spectrum_out2)
 final_array2(i,2) = mean(spectrum_out2(k:(k+bin)));
 else
 final_array2(i,2) = mean(spectrum_out2(k:end));
 end
 end

 % introduces frequency shift where the dynamic spectrum differs from
 % the ideal spectrum
 %weight = zeros(size(notes));

 ratio = final_array2(:,2) ./ final_array1(:,2)

 weight = mean(ratio(:)) ./ ratio(:);

 weighted = weight .* notes

 testing = spectrum_out2(:,1) ./ spectrum_out1(:,1);

 plot(t(:,1),testing(:,1), 'r');
 %hold;
 %plot(1:bin_num, weight, 'b');

 %plot(t(:,1),spectrum_out1(:,1),'r');
 %hold;
 %plot(t(:,1),spectrum_out2(:,1),'b');

3

 % stops while loop so I don't crash matlab again
 q = q - 1;
end

M =

 651

N =

 1

notes =

 37
 46
 55
 73
 93
 110
 147
 185
 220
 294
 370
 440
 587
 740
 880
 1175
 1475
 1760
 2349
 2960
 3520
 4699
 5920
 7040

bin =

 27

ratio =

 1.3295
 1.3295
 1.3296
 1.3300

4

 1.3304
 1.3306
 1.3301
 1.3356
 1.3479
 1.3303
 1.2756
 1.1870
 1.0657
 0.9540
 0.9187
 0.9191
 0.9241
 0.9282
 0.9313
 0.9335
 0.9354
 0.9372
 0.9485
 0.9455

weighted =

 1.0e+03 *

 0.0315
 0.0391
 0.0468
 0.0620
 0.0790
 0.0934
 0.1249
 0.1566
 0.1845
 0.2498
 0.3278
 0.4190
 0.6226
 0.8767
 1.0827
 1.4451
 1.8042
 2.1433
 2.8509
 3.5842
 4.2535
 5.6671
 7.0547
 8.4159

5

Published with MATLAB® 7.14

1

% test25_testarrays.m
% goal: usable final product!!!!

% clear ALL the things
clc;
clear all;

% manually set sensitivity to differences between input spectrum and
% expected spectrum
% sensitivity = 5;

% calls file chosen as expected value for comparison with dynamic
% readings
% creates individual arrays for each column
% spectrum_in1 = dlmread('Spectrometer Data\feb18a.txt', '\t', 1,1);
% all = dlmread('Spectrometer Data\feb18a.txt', '\t', 1, 0);
% t = all(1:end,1);

spectrum_in1 = [5,9,11,25,9,5];

% this block establishes the dark readings of the spectrometer and removes
% the background from the spectrum
% background = dlmread('Spectrometer Data\feb18_background.txt',...
% '\t', 1, 1);
%
% a=find(background, t(1));
% b=find(background, t(end));
% background_adj = background(a:b);

background_adj = [1,1,1,1,1,1];

spectrum_out1 = spectrum_in1 - background_adj;

% determines size of spectrum and sets size of audio spectrum
% [M,N] = size(t)
%
% if M < 400
% bin_num = 12;
% notes = [73, 93, 110, 147, 185, 220, 294, 370, 440, 587, 740, 880]'
%
% else
% bin_num = 24;
% notes = [37, 46, 55, 73, 93, 110, 147, 185, 220, 294, 370, 440,...
% 587, 740, 880, 1175, 1475, 1760, 2349, 2960, 3520, 4699, 5920, 7040]'
% end
bin_num = 6;
notes = [294, 370, 440, 587, 740, 880]';

% sets bin size, initializes vectors
% bin = round(M./bin_num)
% k = 0;
% final_array1 = zeros(2,bin_num);

2

% creates binned array with average values of input spectrum
% this array corresponds to the ideal input spectrum
% for i = 1:bin_num
% final_array1(i,1) = i;
% index=i-1;
% k = index*bin+1;
% if k+bin < size(spectrum_out1)
% final_array1(i,2) = mean(spectrum_out1(k:(k+bin)));
% else
% final_array1(i,2) = mean(spectrum_out1(k:end));
% end
% end

% plays D major chord with harmonics varying based on signal
soundsc(tonec([notes,spectrum_out1(:)], 1, 10000));

q = 1;
while q;

 % calls file given once per second by the spectrometer
 % spectrometer needs to always output same file name
 % spectrum_in2 = dlmread('Spectrometer Data\feb18b.txt', '\t', 1,1);

 spectrum_in2 = [3,5,6,13.5,5,3];

 spectrum_out2 = spectrum_in2 - background_adj;

 % creates binned array with average values of input spectrum
 % this array corresponds to the dynamic input spectrum
% k = 0;
% final_array2 = zeros(2,bin_num);
% for i = 1:bin_num
% final_array2(i,1) = i;
% index=i-1;
% k = index*bin+1;
% if k+bin < size(spectrum_out2)
% final_array2(i,2) = mean(spectrum_out2(k:(k+bin)));
% else
% final_array2(i,2) = mean(spectrum_out2(k:end));
% end
% end

 % introduces frequency shift where the dynamic spectrum differs from
 % the ideal spectrum

 ratio = spectrum_out2(:) ./ spectrum_out1(:)

 weight = mean(ratio(:)) ./ ratio(:)

 weightednotes = weight .* notes

 % plays D major chord with harmonics varying based on signal and with
 % frequency shift introduced to provide audible warning of differences

3

 % between the dynamic and ideal spectra
 soundsc(tonec([weightednotes,spectrum_out2(:)], 1, 10000));

 % plots graphs of ideal vs dynamic spectrum so I know what the heck's
 % going on
 testing = spectrum_out1(:) ./ spectrum_out2(:)

 plot(testing(:), 'g');

 % stops while loop so I don't crash matlab again
 q = q - 1;
end

ratio =

 0.5000
 0.5000
 0.5000
 0.5208
 0.5000
 0.5000

weight =

 1.0069
 1.0069
 1.0069
 0.9667
 1.0069
 1.0069

weightednotes =

 296.0417
 372.5694
 443.0556
 567.4333
 745.1389
 886.1111

testing =

 2.0000
 2.0000
 2.0000
 1.9200
 2.0000
 2.0000

4

Published with MATLAB® 7.14

1

% final1.m
% goal: usable final product!!!!

% clear ALL the things
clc;
clear all;

% manually set sensitivity to differences between input spectrum and
% expected spectrum
sensitivity = 5;

% calls file chosen as expected value for comparison with dynamic
% readings
% creates individual arrays for each column
spectrum_in1 = dlmread('Spectrometer Data\jan31f.txt', '\t', 1,1);
all = dlmread('Spectrometer Data\jan31f.txt', '\t', 1, 0);
t = all(1:end,1);

% this block establishes the dark readings of the spectrometer and removes
% the background from the spectrum
background = dlmread('Spectrometer Data\jan24 background.txt', '\t', 1, 1);

a=find(background, t(1));
b=find(background, t(end));
background_adj = background(a:b);

spectrum_out1 = spectrum_in1 - background_adj;

% determines size of spectrum and sets size of audio spectrum
[M,N] = size(t)

if M < 400
 bin_num = 12;
 notes = [73, 93, 110, 147, 185, 220, 294, 370, 440, 587, 740, 880]'

else
 bin_num = 24;
 notes = [37, 46, 55, 73, 93, 110, 147, 185, 220, 294, 370, 440, 587,...
 740, 880, 1175, 1475, 1760, 2349, 2960, 3520, 4699, 5920, 7040]'
end

% sets bin size, initializes vectors
bin = round(M./bin_num)
k = 0;
final_array1 = zeros(2,bin_num);

% creates binned array with average values of input spectrum
% this array corresponds to the ideal input spectrum
for i = 1:bin_num
 final_array1(i,1) = i;
 index=i-1;
 k = index*bin+1;

2

 if k+bin < size(spectrum_out1)
 final_array1(i,2) = mean(spectrum_out1(k:(k+bin)));
 else
 final_array1(i,2) = mean(spectrum_out1(k:end));
 end
end

% plays D major chord with harmonics varying based on signal
soundsc(tonec([notes,final_array1(:,2)], 1, 10000));

q = 1;
while q;

 % calls file given once per second by the spectrometer
 % spectrometer needs to always output same file name
 spectrum_in2 = dlmread('Spectrometer Data\jan31g.txt', '\t', 1,1);
 spectrum_out2 = spectrum_in2 - background_adj;

 % creates binned array with average values of input spectrum
 % this array corresponds to the dynamic input spectrum
 k = 0;
 final_array2 = zeros(2,bin_num);
 for i = 1:bin_num
 final_array2(i,1) = i;
 index=i-1;
 k = index*bin+1;
 if k+bin < size(spectrum_out2)
 final_array2(i,2) = mean(spectrum_out2(k:(k+bin)));
 else
 final_array2(i,2) = mean(spectrum_out2(k:end));
 end
 end

 % introduces frequency shift where the dynamic spectrum differs from
 % the ideal spectrum
 weight = 1-sensitivity*final_array1(:,2)+sensitivity*final_array2(:,2)
 weighted = weight .* notes

 % plays D major chord with harmonics varying based on signal and with
 % frequency shift introduced to provide audible warning of differences
 % between the dynamic and ideal spectra
 soundsc(tonec([weighted,final_array2(:,2)], 1, 10000));

 % plots graphs of ideal vs dynamic spectrum so I know what's
 % going on
 testing = spectrum_out2(:,1) ./ spectrum_out1(:,1);

 plot(t(:,1),testing(:,1), 'r');

 % stops while loop so I don't crash matlab again
 q = q - 1;
end

3

M =

 651

N =

 1

notes =

 37
 46
 55
 73
 93
 110
 147
 185
 220
 294
 370
 440
 587
 740
 880
 1175
 1475
 1760
 2349
 2960
 3520
 4699
 5920
 7040

bin =

 27

weight =

 0.9668
 0.9654
 0.9638
 0.9626
 0.9634
 0.9632
 0.9652
 0.9649
 0.9789

4

 0.9817
 0.9945
 0.9979
 0.9987
 0.9991
 1.0000
 1.0000
 1.0001
 1.0002
 1.0002
 1.0003
 1.0003
 1.0003
 1.0003
 1.0004

weighted =

 1.0e+03 *

 0.0358
 0.0444
 0.0530
 0.0703
 0.0896
 0.1060
 0.1419
 0.1785
 0.2154
 0.2886
 0.3680
 0.4391
 0.5863
 0.7394
 0.8800
 1.1751
 1.4752
 1.7603
 2.3496
 2.9608
 3.5211
 4.7006
 5.9217
 7.0427

5

Published with MATLAB® 7.14

Appendix C

Final Code

89

1

% goal: usable final product!!!!

% clear ALL the things
clc;
clear all;

% manually set sensitivity to differences between input spectrum and
% expected spectrum - inactive
% sensitivity = 1;

% sets the minimum wavelength measurable by the spectrometer
min_wavelength = 350;

% calls file chosen as expected value for comparison with dynamic
% readings
% creates individual arrays for each column
spectrum_in1 = dlmread('Spectrometer Data\feb18a.txt', '\t', 1,1);
all = dlmread('Spectrometer Data\feb18a.txt', '\t', 1, 0);
t = all(1:end,1);

% this block establishes the dark readings of the spectrometer and removes
% the background from the spectrum
background = dlmread('Spectrometer Data\BG600_1-2.txt', '\t', 1, 1);

a=t(1) - (min_wavelength - 1);
b=t(end) - (min_wavelength - 1);
background_adj = background(a:b);

spectrum_out1 = spectrum_in1 - background_adj;

% determines size of spectrum and sets size of audio spectrum
[M,N] = size(t);

if M < 400;
 bin_num = 12;
 notes = [73, 93, 110, 147, 185, 220, 294, 370, 440, 587, 740, 880]';

else
 bin_num = 24;
 notes = [37, 46, 55, 73, 93, 110, 147, 185, 220, 294, 370, 440, 587,...
 740, 880, 1175, 1475, 1760, 2349, 2960, 3520, 4699, 5920, 7040]';
end

% sets bin size, initializes vectors
bin = round(M./bin_num);
k = 0;
final_array1 = zeros(2,bin_num);

% creates binned array with average values of input spectrum
% this array corresponds to the ideal input spectrum
for i = 1:bin_num
 final_array1(i,1) = i;

2

 index=i-1;
 k = index*bin+1;
 if k+bin < size(spectrum_out1)
 final_array1(i,2) = mean(spectrum_out1(k:(k+bin)));
 else
 final_array1(i,2) = mean(spectrum_out1(k:end));
 end
end

% plays D major chord with harmonics varying based on signal
soundsc(tonec([notes,final_array1(:,2)], 1, 10000));

q = 1;
while q;

 % calls file given once per second by the spectrometer
 % spectrometer needs to always output same file name
 spectrum_in2 = dlmread('Spectrometer Data\feb18b.txt', '\t', 1,1);
 spectrum_out2 = spectrum_in2 - background_adj;

 % creates binned array with average values of input spectrum
 % this array corresponds to the dynamic input spectrum
 k = 0;
 final_array2 = zeros(2,bin_num);
 for i = 1:bin_num
 final_array2(i,1) = i;
 index=i-1;
 k = index*bin+1;
 if k+bin < size(spectrum_out2)
 final_array2(i,2) = mean(spectrum_out2(k:(k+bin)));
 else
 final_array2(i,2) = mean(spectrum_out2(k:end));
 end
 end

 % introduces frequency shift where the dynamic spectrum differs from
 % the ideal spectrum

 ratio = final_array2(:,2) ./ final_array1(:,2);

 weight = mean(ratio(:)) ./ ratio(:);

 weighted = weight .* notes;

 % plays D major chord with harmonics varying based on signal and with
 % frequency shift introduced to provide audible warning of differences
 % between the dynamic and ideal spectra
 soundsc(tonec([weighted,final_array2(:,2)], 1, 10000));

 %testing:
 plot(t(:), spectrum_out1(:), 'r');
 hold;
 plot(t(:), spectrum_out2(:), 'b');

3

 % stops while loop so I don't crash matlab again
 q = q - 1;
end

Current plot held

Published with MATLAB® 7.14

Bibliography

[1] Iain Morley. The Evolutionary Origins and Archaeology of Music. PhD thesis, Cambridge

University, 2003.

[2] Inc. ACI Technologies. Tech tips... automated optical inspection, December 2003.

[3] Ocean Optics Incorporated. Usb650 red tide spectrometer, 2012.

[4] Vernier Software & Technology. Logger pro 3: Quick reference guide, 2014.

[5] Kevin D. Donohue. tonec.m, June 2003.

[6] The Mathworks Incorporated. R2012a documentation, 2014.

93

	Worcester Polytechnic Institute
	Digital WPI
	June 2014

	Listening to Optical Spectra
	Luke Cullen Goodman
	Repository Citation

	tmp.1535548689.pdf.mOGvn

