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ABSTRACT 

 
HIV is a highly mutable virus that has become a global pandemic.  In order to prevent 

further spread of this disease a topical microbicide that is cheap and easy to administer and 

produce is necessary. Our project involved the extraction of the HIV drug Nevirapine from 

commercial tablets to encapsulate it inside glucan particles for mucosal delivery.  Glucan 

Particles (GP) are naturally internalized by macrophages and Langerhans cells thought to be the 

first cells to be HIV infected at mucosal sites. GP are hollow microparticles derived from baker’s 

yeast that can be used to absorb the Nevirapine into an encapsulated core.   To keep the drug 

trapped inside the core various synthetic strategies were evaluated to identify an effective 

formulation for future in vitro and in vivo testing. 
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BACKGROUND 
 

Since 1981, acquired immunodeficiency syndrome (AIDS) has been a pandemic affecting 

millions of people in countries all over the world.  Through years of research, scientists now 

know that "AIDS is caused by infection with a virus called human immunodeficiency virus 

(HIV)” (CDC).  HIV is a lentivirus, which is part of a larger group of viruses called retroviruses. 

Lentiviruses are categorized by the fact that they are slow to fully infect and thus take a long 

time to produce lasting negative side effects in the body.  HIV interacts with the primary cell 

surface receptor CD4+ to gain entry into white T cells. These cells are crucial to fighting off 

infections within the body, and when they are destroyed, the body is left vulnerable to other 

infections and diseases.  A person infected with HIV can carry the disease and never develop any 

serious side effects until the number of T cells with CD4+ receptors in their body has greatly 

decreased.  HIV is a very dangerous virus due to the fact that it can mutate readily, and one 

person can be infected with different strains of HIV at the same time.  HIV can only replicate 

within cells, and it directly attacks the immune system. Worldwide at the end of 2008, there were 

a reported 33.4 million people living with HIV/AIDS, and since 1981 more than 25 million 

people have died from this virus. 

 

Origin of HIV 

 HIV is thought to be originally derived from Simian Immunodeficiency Virus (SIV) 

based on the discovery that many strains of SIV have a very strong resemblance to known HIV 

strains.  SIV affects monkeys and it is believed to have crossed species through zoonosis, which 

is a viral transfer between humans and animals. This transfer could have occurred if a human had 

consumed an infected monkey or had blood transferred from an infected animal into an open cut 
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or wound. The exact means of zoonotic transmission is unknown, but there are many theories 

circulating as to how humans became infected with this virus. Nevertheless, researchers have 

concluded that the virus originated in West Central Africa between 1915 and 1940 (Korber et al., 

2000). 

 

Types of HIV 

The two known types of HIV are HIV-1, which is the version of the virus that is 

predominantly known worldwide, and HIV-2, which is uncommon except in West Africa.  

Although HIV-2 is less easily transmitted, both can be contracted through sexual contact, blood 

transfusion, or from mother to child during pregnancy, childbirth or breastfeeding.  Both HIV 

viruses are believed to cause AIDS, and after infection the two types are virtually 

indistinguishable.  

HIV-1 is categorized into four groups and these groups are believed to represent four 

separate transmissions of SIV to humans (Figure 1). The major type of HIV-1 is group M, and 

this group is then broken down into 9 subgroups. These subgroups are all genetically distinct 

from one another, and can even recombine together to create new hybrid viruses. When two 

subgroups mix and can be seen in more than one person they are known as Circulating 

Recombinant Forms (CRFs) of the virus. 

 
Figure 1: Different Levels of HIV Classification ("HIV types, subtypes, groups & 

strains”, 2010) 
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Worldwide, the different subtypes are very unevenly distributed, but the most widespread 

of all the types are A and C.  Subtypes A and C are most commonly seen in Africa and India. 

Type C has also caused the worst epidemics and is responsible for nearly half of all HIV 

infections worldwide.  Subtype B is the most common form of the virus found in the Americas 

and in Europe ("HIV types, subtypes, groups & strains, 2010). It is believed by scientists that 

more combinations and mutations of the disease will continue to appear and that the different 

subtypes will spread to new areas globally as the HIV epidemic continues. If this happens it will 

make preventing and possibly stopping the spread of HIV much more difficult. 

 

HIV-1 
As stated before, HIV needs to infect cells within a living organism in order to start the 

transcription process to replicate itself. Outside of a cell, an HIV particle measures about 0.1 

microns. In comparison to the CD4+ white blood cells that it infects, an HIV particle has one 

seventieth the diameter and is so small that it can only be imaged with an electron microscope.  

 
Figure 2: Diagram of the HIV Virus (Brinkhof, 2010) 
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A viral envelope, a matrix and a viral core are the three elements that make up the basic 

structure of an HIV particle (Figure 2). Each of these components are made of specific proteins, 

and these are integral to the way a particle is able to function and protect itself in the human 

body. The viral core is at the center of an HIV particle and is also known as a capsid. The capsid 

contains two copies of positive RNA that code for the nine genes associated with HIV. This core 

also contains a pol gene which consists of reverse transcriptase, integrase and protease, which are 

the three factors necessary for HIV replication. The matrix surrounds the viral core and is 

responsible for maintaining the stability of the virus. The protein that makes up the capsid is p24, 

and the matrix protein is p17, and both of these are part of the Gag polyprotein which provides 

the basic physical structure of the virus. The viral envelope is the outer layer of the HIV particle, 

and from this layer complex HIV proteins protrude to form what appear to be spikes on the 

surface of the particles. These protein spikes are made from gp120 and gp41. The other parts of 

HIV’s genome are three transctivators and three regulators (Figure 3). The transctivators are Tat, 

Rev, and Vpr, which work to enhance gene expression by increasing levels of transcription, and 

giving HIV a structure that can more easily overtake its host’s defenses.  The regulators are Vif, 

Nef and Vpu which disrupt antiviral activity, allow replication of the virus, and enhance virion 

release. (Jia, 2010). 

 

Figure 3:  Diagram of the HIV Genome. (Costin, 2007) 
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HIV infects CD4+ cells by using these glycoprotein spikes to bind to the CD4 and fuse to 

the cell membrane.  Once fusion occurs, the particle releases its contents into the cell where the 

HIV enzyme reverse transcriptase converts viral RNA to DNA.  The DNA formed is then spliced 

into the human DNA by integrase which is another HIV enzyme and becomes proviral DNA.  

When a cell that contains a provirus is activated, the human body treats the HIV infected genes 

the same as normal genes, and converts the DNA to mRNA which is then transported out of the 

cell and used as a blueprint to continue producing more HIV. The strands of mRNA contain 

complete copies of HIV genetic material, and long strands are hydrolyzed by protease to form 

shorter pieces which are all able to form more mature viral cores. Once this begins occurring in 

the body, more and more cells are infected, and unless HIV is diagnosed the immune system will 

continue to become more compromised. 

Two cells particularly important in HIV transmission are macrophages and Langerhans 

cells.  Both types of cells are the initial targets of HIV and provide an efficient way for HIV to 

access T cells. Macrophages are large cells derived from white blood cells that are found in 

many different types of tissue. Macrophages work by digesting foreign microorganisms and 

damaged cells. It has actually been stated that macrophages “form a reservoir of HIV-1 in 

infected persons” (Groot et al., 2008).  HIV can be stored in macrophages because the virus 

assembles itself into a sort of intracellular compartment, and in some instances this protects the 

virus from being attacked by antibodies. Langerhans cells are dendritic cells that that are located 

in epithelia. Langerhans cells characteristically cluster with numerous different types of T cells 

and this is thought to be the main reason explaining why such a small amount of HIV can 

quickly replicate enough to infect a whole immune system. The site where Langerhans cells and 

T cells interact creates the perfect atmosphere for explosive and rapid HIV production. HIV is 
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thought to move from mucosal tissue to lymph nodes through transmission by Langerhans cells 

as well. Both of these cells are key reasons why HIV is able to access T cells which, in turn 

drastically decreases the efficiency of the immune system against infection. Based on this 

knowledge, it seems that these are areas that it may be beneficial to halt future HIV infections. 

 

HIV Medications 

The main treatment option after infection with HIV is antiretroviral drug treatment.  

Advances in this area have allowed for infected individuals to maintain fairly normal lives as 

long as the HIV drugs are taken every day.  Antiretroviral drugs work to keep the amount of HIV 

in the body at a minimal level, which in turn decreases the amount of damage and slows the 

weakening of the immune system. Although the drugs work to prevent HIV damage, the exact 

time to start treatment is debated due to adverse side effects of the drugs. Generally it is believed 

that treatment should not begin until the later stages of HIV infection. A CD4 test measures the 

number of helper T cells in a sample of blood. A person uninfected with HIV will normally have 

between 500 and 1200 cells/mm3. Since HIV decreases the amount of CD4 in the blood, 

guidelines have been set up to determine exactly what levels of CD4 are considered dangerous 

enough to start treatment. It is recommended that antiretroviral treatment being once an infected 

individual reaches a level of CD4 under 350.  

There are five groups of antiretroviral medications and each is classified by the way they 

attack HIV.  Since HIV can mutate so easily treatment of HIV usually consists of combination 

therapy which involves taking more than one drug at a time.  Combination therapy largely 

reduces the rate of HIV resistance to the drugs. The two most common groups of HIV drugs are 

Nucleoside Reverse Transcriptase Inhibitors (NRTIs) and Non-Nucleoside Nucleoside Reverse 
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Transcriptase Inhibitors (NNRTIs), and both of these are available in most countries. Both 

NRTIs and NNRTIs interfere with reverse transcriptase which inhibits HIV from replicating 

within the cells. There are many combinations of drugs but both the World Health Organization, 

and American guidelines recommend the use of at least one NNRTI in treatment. The WHO 

states that the first line of treatment should be one NNRTI and 2 NRTIs. American guidelines 

recommend one NNRTI or a protease inhibitor in combination with two NRTIs. The other types 

of medication include Protease Inhibitors, Fusion Inhibitors and Co-Receptor Inhibitors. All of 

these interact with HIV in a way that limits interaction between the virus and healthy cells.  

These also are able to interfere with the conformation of the virus which slows down the rate it 

can infect healthy cells.  

 

Nevirapine  

One NNRTI that has been on the market since 1996 is Nevirapine. This drug was 

developed by Boehringer Ingelheim Pharmaceuticals, Inc. (Hargrave et al., 1991).  Nevirapine 

was the first NNRTI approved by the FDA, and is considered a breakthrough in HIV treatment. 

This drug works to lower the viral load, or the amount of HIV, that is present in the blood.  Like 

other NNRTIs, Nevirapine attaches itself to the reverse transcriptase and hinders the virus’ 

ability to reproduce. Specifically the drug binds to heterodimeric HIV-1 reverse transcriptase and 

disrupts the catalytic site of the enzyme. Nevirapine also prevents viral RNA from being changed 

to DNA which also halts replication.  By limiting the amount of HIV in the blood, this drug 

works to maintain the amount of CD4 cells in the body. Studies on Nevirapine have shown that 

90% of Nevirapine taken orally is absorbed into the body, and after initial absorption the drug is 

widely distributed to nearly every tissue in the body.  Nevirapine must be taken in combination 
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with other medications in order to ensure it usefulness. It is not fully known how HIV-1 

eventually becomes resistant to Nevirapine, but it is believed that a single mutation of the reverse 

transcriptase may be adequate for HIV to develop a high level of resistance. Also Nevirapine has 

no known effects against HIV-2. 

 

Albumin Binding Capabilities  

HSA or human serum albumin is produced in the liver, and is the most abundant protein 

in blood plasma. It is known for its ability to bind to ligands, which includes some drugs.  Due to 

this knowledge, HSA was tested and now there is conclusive evidence to prove that HSA can 

actually bind to certain HIV medications.  There is “clear cut evidence for the allosteric 

inhibition of anti-HIV drug binding to HSA.” HSA is made of single non-glycosylated chains 

that contain three homologous domains. The structural organization of the protein is what creates 

all the binding sites for ligands.  

 Although the combination therapy offered from many anti-HIV drugs has improved 

mortality rates, there is potential for a new way to administer these drugs. “One of the most 

important factors affecting the distribution and the free, active concentration of many 

administered drugs is binding affinity for HSA” (Fanalli et al., 2007).  The interactions of plasma 

proteins with anti-HIV drugs can drastically increase the efficiency of these drugs. It has been 

discovered that at concentrations used in therapy, Nevirapine binds to HSA and increases the 

affinity of heme, which is the site of oxygen binding, for HSA.  Since Nevirapine is “a small 

hydrophobic butterfly-shaped ligand” (Fanalli et al., 2007) its size doesn’t limit its preferential 

binding capabilities.  
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Studies of the binding ability of different anti-HIV drugs to plasma proteins have shown 

that Nevirapine binds with ~70% efficiency to Human serum albumin (HSA).  Proteins like HSA 

that are present in plasma have strong ligand binding capacity to different groups. HSA binds 

drugs non-specifically or by interaction at any of seven binding sites with different affinity.  In 

the case of Nevirapine, it has been found that it binds effectively to the FA7 site, which has been 

identified as a preferential binding site for bulky, heterocyclic molecules (Fanali et al., 2007). In 

order to prove that Nevirapine could bind to FA7, which is also known as Sudlow’s site I, a 

docking analysis was performed.  Nevirapine has the potential to act as an allosteric effector and 

this characteristic allows the Nevirapine to easily bind to HSA. 

 
Figure 4: Structure of Nevirapine  

 
AIDS Vaccines and HIV Microbicides 

Due to the high level of variance between each of the strains of HIV, the development of 

any type of vaccine has proven to be quite challenging. Other challenges affecting the progress 

of vaccine development include a lack of knowledge on exactly how to protect the immune 

system from the virus, as well as a lack of relevant animal models that would predict similar 

responses of a vaccine in humans. Due to these factors, scientists have also been trying to 

develop HIV microbicides, which are antimicrobial products that would prevent HIV 

transmission through sexual contact.  In order for microbicides to work, they would employ 

mechanisms that either kill or inactivate pathogens, strengthen the body’s defenses, block 
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infection by creating a barrier between the pathogen and target cells, or by preventing infection 

from spreading from infected cells to healthy ones (Microbicides, 2010) (Figure 5). 

 

Figure 5: Depictions of the Ways HIV Medications  
Halt HIV Replication (McCormack, 2001) 

 

Another benefit of an HIV microbicide is the potential to make it regularly available to 

the public. It is important to remember that “a microbicide will not be a ‘silver bullet’ for ending 

the epidemic, but rather another tool to add to existing prevention efforts”(Avert, 2010). 

Still, it is important to continue to search for any method whether it is a vaccine or microbicide 

that will be able to lower the rate the HIV pandemic is spreading.  

 

The Glucan Particle Delivery System 

Research has proven that “an important aspect of any new drug or vaccine formulation is 

a component that enhances its safety and efficacy by providing a delivery mechanism and, in the 

case of vaccines, by boosting the immune response to the antigen.” (Spiros et al., 1991).  β-

Glucans have been referred to as “biological response modifiers,” and are known for their ability 

to activate the immune system.  Applications of materials derived from glucans include the use 

of glucan particles (GP) for macrophage targeted drug delivery. (Chihara, 1992). 
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Glucan particles are hollow, porous, 2-4 µm spherical particles extracted from 

Saccharomyces cerevisia (Baker’s yeast). In order to prepare the β-Glucans, the yeast cell wall is 

treated so that the cell wall components and the soluble proteins within the yeast cell are 

removed (Figure 6). 

The glucan particles are composed primarily of β-1, 3-D-glucan and small amounts of, 

residual chitin. Encapsulation of payload molecules within glucan particles allows for protection 

and targeted delivery of the drug into cells with β-glucan cell surface receptors (dectin-1 and 

Complement Receptor 3 or CR3) such as macrophages, neutrophils and dendritic cells.(Brown, 

2001). This makes the glucan particles an efficient delivery vehicle to target cells in the immune 

system.  

Previous work has focused on developing methods to encapsulate macromolecular drugs 

(siRNA, DNA, proteins) inside glucan particles based on the “in situ layer-by-layer synthesis of 

electrostatically bound complexes caged within hollow yeast cell wall particles” as depicted in 

Figure 7 (Soto and Ostroff, 2008).  

The ability to protect and deliver drugs to macrophages, in addition to the immune 

boosting properties of glucan, makes glucan particles a suitable option to develop formulations 

containing HIV drugs as potential microbicides. The medication, in this case Nevirapine, would 

be packaged into a core inside the particle, and then would release the drugs once it was 

delivered into the body. The methods for obtaining a core that will not only contain the drug but 

release it back out is a process that in due time will hopefully be properly developed.  In the case 

of the cores made with Nevirapine. The drug would bind to a protein which would in turn bind to 

the tRNA. Various formulations using different glucan particle batches as well as different 
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substances in the core were used in order to accurately determine which ones were the most 

beneficial in trapping and releasing Nevirapine. 

 

 

Figure 6: Glucan Particles before and after removal of cell wall components (Yan et al., 2005) 

 

 

Figure 7: Yeast Glucan Particles Containing Various Cores (Soto and Ostroff, 2008) 
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PROJECT PURPOSE 

 

The effects of HIV/AIDS are far reaching, and at this point in time it seems that progress 

is being made but more must be done to ensure that the transmission of HIV is severely 

decreased.  Previous experiments using β-glucan particles have shown success in using this 

technology as a delivery vehicle for macromolecules (i.e. DNA, siRNA, proteins), and there is 

current interest to extend its use to delivery of small drug molecules.  

The main purpose of this project was to evaluate the use of glucan particles to 

encapsulate the anti-HIV drug Nevirapine. In order to successfully do this, it was first required 

that the drug was properly characterized and to evaluate the best conditions for trapping of 

Nevirapine within protein/tRNA nanoparticulate complexes. After conditions for Nevirapine 

trapping were identified, several assays were developed to measure the loading of the drug as 

part of a Nevirapine/protein/tRNA complex inside the glucan particles. After successful loading, 

the samples were examined in order to determine the release conditions from each GP nevirapine 

core formulation.  If these methods proved to work as expected, the goal would be to make sure 

the different formulations were not toxic to cells.  
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MATERIALS AND METHODS 
 
Materials: 

Reagents:  
Nevirapine (Viramune) 200 mg tablets (Boehringer Ingelheim, Ridgefield, CT). 
Ovalbumin (OVA) from chicken egg white, Bovine Serum Albumin (BSA), Human Serum 
Albumin (HSA), Ribonucleic acid from torula yeast, Type VI (tRNA), 25 kDa branched 
polyethylenimine (PEI), ethanol, acetic acid, and HPLC grade methanol were purchased from 
Sigma-Aldrich (Allenstown, PA) and used as received.  
Dulbecco’s Phosphate buffered saline (PBS) was obtained from Invitrogen (Carlsbad, CA). 
0.9% sodium chloride was purchased from Baxter Healthcare Corporation (Deerfield, IL) 
Glucan particles were available in Dr. Ostroff’s laboratory and were prepared according to 
previously published procedures (Soto and Ostroff, 2008) 
Stock solutions of OVA and BSA at 50 mg/mL in water  
Stock solution of Nevirapine at 10 mg/mL in acetic acid pH 2 
Stock solution of tRNA 1.5 mg/mL in 0.9% saline  
 
Equipment: 
Mortar with pestel,  
15 and 50 mL centrifuge tubes and 1.5 mL Eppendorf tubes 
Virtis lyophilizer (Virtis Company, Gardiner, NY)  
Nanosep 3 k Omega centrifuge filters (Pall Corporation, Ann Arbor, MI) 
96-well Costar plates with UV transparent flat bottom (Corning Inc., Corning, NY) 
Safire Tecan microplate reader (Tecan Group, Männedorf, Switzerland) 
 
Methods: 
 
Nevirapine Extraction 

The Nevirapine used throughout these experiments came from two different sources, 

which were either the pure compound or purified from commercial Viramune tablets. Since 

Nevirapine pills contain other compounds the Nevirapine had to be extracted and crystallized. 

The Nevirapine pill was crushed using a mortar and pestle and then weighed in a 50 ml 

centrifuge tube. Dilute acetic acid (50 mL, pH 2.4) was added to partially dissolve the pill. The 

sample was incubated 20 minutes, and then centrifuged for 20 min at 3,000 rpm.  The 

supernatant was collected and placed into a second 50 ml centrifuge tube. Acetic acid was added 
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again to the first tube, incubated at room temperature for 20 minutes and then centrifuged for 20 

min at 3,000 rpm as well. The second supernatant was transfer to another 50 mL tube. Both tubes 

containing the acetic acid extractions were frozen at -80⁰ C and lyophilized overnight. After the 

sample had completely dried, the Nevirapine was collected and weighed. In order to assess the 

purity, the compound was characterized by 1H-NMR, IR, and UV-Vis spectra. 

 

Binding to Different Albumin Proteins 

Stock solutions of OVA, HSA, and BSA at 50 mg protein/mL in PBS, and Nevirapine at 

17 mg/mL in HPLC grade methanol were prepared for this experiment. 1 mL of OVA-NEV, 

HSA-NEV, and BSA-NEV solutions were prepared by mixing 10 µL of Nevirapine solution 

(stock solution in MeOH) and 990 µL of 50 mg/mL protein solutions. Nevirapine control 

solution was prepared by mixing 10 uL of Nevirapine stock solution in methanol and 990 uL of 

PBS.  Additional a blank solution of 1% MeOH/99% PBS solution was prepared as control. 

The UV absorbance of stock solutions of Nevirapine, OVA, BSA, and HSA were 

measured as well as mixtures of Nevirapine with each of the albumin proteins (Nev-OVA, Nev-

BSA, and Nev-HSA).  250 µl of each solution was added to labeled 3k centrifugal ultrafiltration 

tubes. These samples were then centrifuged for 20 min at 3,000 rpm. The volume of the filtrate 

was measured and all the tubes were adjusted to the same final volume. Then 150 µl of each of 

the filtrates were transferred to a 96-well plate and the absorbance was measured at 315 nm.  

 After the absorbance had been taken, 250 µl of 1% MeOH/99% PBS solution was added 

to each of the tube, and then the samples were centrifuged through 3 k centrifugal filters at 3,000 

rpm for 20 minutes. The volume was measured, and then adjusted in all the tubes and then 150 

µl was transferred to a 96 well plate. The absorbance of each sample was taken again at 315 nm. 
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The protein/Nevirapine solution retained in the filter was also processed for measurement of 

Nevirapine absorption at 315 nm. 

 

Effect of tRNA-HSA polyplex formation on Nev-HSA binding 

Prior to beginning this experiment, fresh tRNA solutions were made in PBS at 

concentrations of 1 mg/mL, 5 mg/mL and 10 mg/mL. A sample of tRNA solution (750 µL) was 

added to a tube containing 250 µL of a HSA-Nevirapine sample. A control sample was prepared 

by adding PBS to another tube containing HSA-Nevirapine.  These tubes were incubated at room 

temperature for 20 minutes and then placed in a centrifuge for 5 minutes at 10,000 rpm. 250 µL 

of each solution was transferred to labeled 3k centrifugal filters and spun for 20 minutes at 3,000 

rpm. The filtrate was transferred and measured. Each filtrate was placed in a new Eppendorf tube 

and labeled “wash 1”. 250 µL of 1% MeOH in PBS was transferred to the 3k centrifugal tubes 

which were spun again for 20 minutes at 3,000 rpm again. The same process was repeated to 

transfer the filtrate and was labeled “wash 2” for each sample.  The volumes of all the tubes were 

adjusted to be the same volume and then 150 µL of the filtrate was placed in a 96-well plate. The 

absorbance was then taken at 315 nm to measure Nevirapine concentration. 

 

Loading of Nevirapine inside Glucan Particles 

Three methods were evaluated for trapping of Nevirapine within glucan particles. The 

first method required sequential loading of Nevirapine, protein and tRNA. The second approach 

consisted of co-loading a Nevirapine/protein mixture followed by trapping with tRNA. Finally, 

protein/tRNA cores were prepared in glucan particles and evaluated for Nevirapine binding. 
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- Method A. Sequential loading of core components: 

Prior to loading inside glucan particles, solutions of BSA and OVA were prepared in 

water with concentrations of 50 mg/mL. A 0.1M solution of acetic acid was prepared and the pH 

was adjusted to 2. This solution was used to prepare a 10 mg/mL Nevirapine solution. Empty 

glucan particles (5 mg) were used and 25 µL of the Nevirapine solution was added. Control 

samples were also set up using 25 µL of acetic acid and no Nevirapine. These samples were 

mixed and incubated for two hours at room temperature. After incubation, the samples were 

lyophilized over night. An additional 25 µL of acetic acid was then added to each sample, and 

then incubated for 1-2 hours (acetic acid push) and then the samples were again lyophilized 

overnight. 

 OVA or BSA (25 µL) was added to the samples. The serum albumins were allowed to 

penetrate the glucan particles for two hours on ice and then the samples were lyophilized. The 

samples were treated with 25 µL of water (water push), incubated for 2 hours at 4 C and 

lyophilized. 

 After this step the indicated amounts of tRNA were added to the tubes and then the 

particles were collected through centrifugation. The supernatants were also collected in labeled 

Ep-tubes and frozen for later analysis. The particles in the pellet were then re-suspended in 70% 

ethanol, sonicated then incubated for thirty minutes. The particles were washed three times with 

saline and then finally re-suspended in 1 mL of saline. The samples were sonicated, counted, and 

then adjusted to 1x10e8 particles/mL and stored at -20⁰ C. 
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- Method B. Co-loading of Nevirapine/protein mixture and subsequent trapping with tRNA 

A solution of HSA (495 μL of 50 mg/mL in PBS) and Nevirapine (5 μL of 17 mg/mL in 

methanol) was prepared and added to a sample of GP (5 μL of HSA/Nev mixture/mg particle). 

The mixture was thoroughly mixed and incubated for two hours at hours at 4 °C. tRNA (250 μL 

of  10 mg/mL) was added and the particles allowed to swell for 10 minutes, sonicated and then 

incubated at room temperature for an additional 30 min. The particles were collected by 

centrifugation, and the supernatants collected in labeled Eppendorf tubes and processed for 

measurement of unbound Nevirapine. Particle loading was carried out with sterile solvents and in 

sterile conditions to eliminate the sterilization step with 70% ethanol. Samples were finally 

washed three times with 0.9% saline, particle number counted with a hematocytometer, and 

particle dilutions were prepared with a concentration of 1x108 particles/mL and frozen 

 

 - Method C. Binding of Nevirapine to GP-protein/tRNA cores 

In this method protein/tRNA cores were first synthesized inside glucan particles and used 

for Nevirapine binding. A solution of HSA, BSA or OVA (50 mg/mL) was mixed with the 

particles (5 μL/ mg particles) and incubated for 2 hours at 4°C. The sample was lyophilized and 

5 μL of water/mg particles was added (water push step). The sample was incubated for an hour 

and lyophilized. A solution of tRNA (final protein: tRNA ratio of 15) was added to the particles, 

the sample was sonicated and incubated for 30 minutes. The GP-protein/tRNA cores were 

washed three times in 0.9% saline, counted and diluted to 1x108 particles/mL and stored frozen. 

An assay was set up to evaluate Nevirapine binding by titrating Nevirapine concentration from 0 

to 2.5 μg/mL. Samples were set up containing 10 μL of 1x108 particles/mL (1x106 particles), the 

Nevirapine solution in methanol and PBS to bring the final volume to 100 μL. The Nevirapine 

was prepared in methanol and the final concentration of methanol in the samples containing 
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particles was 1%. The samples were incubated at room temperature for 2 hours. Then the 

samples were centrifuged, and the supernatants carefully transferred to another tube and 

processed to measure unbound Nevirapine by UV absorption at 315 nm. UV assay for 

quantitative analysis of Nevirapine 

In all experiments, Nevirapine was quantified by measuring absorption at 315 nm of the 

unbound Nevirapine collected after separation from the particles by centrifugation. The 

Nevirapine removed from washing the particles was also quantified. The total amount of 

Nevirapine from the first supernatant and washes was used to indirectly estimate the percentage 

of Nevirapine bound within the particles. All samples measured by UV assay were processed by 

addition of spectrophotometric grade methanol to adjust the concentration of methanol to 90% 

v/v.  This allowed for precipitation of tRNA and proteins that would interfere with UV 

absorption measurements. The samples were centrifuged, and the supernatant transferred to 96-

well plates to measure the absorbance. In all experiments, control samples of PBS, tRNA, and 

proteins were also treated with methanol to assure that the interferents were being removed prior 

to the UV measurements.  

 

UV Assay for Quantitative Analysis of Nevirapine 

In all experiments, Nevirapine was quantified by measuring absorption at 315 nm of the 

unbound Nevirapine collected after separation from the particles by centrifugation. The 

Nevirapine removed from washing the particles was also quantified. The total amount of 

Nevirapine from the first supernatant and washes was used to indirectly estimate the percentage 

of Nevirapine loaded into the particles. All samples measured by UV assay were processed by 

addition of spectrophotometric grade methanol to adjust the concentration of methanol to 90% 

v/v.  This allowed for precipitation of tRNA and proteins that would interfere with UV 
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absorption measurements. The samples were centrifuged, and the supernatant transferred to 96-

well plates to measure the absorbance. In all experiments, control samples of PBS, tRNA, and 

proteins were also treated with methanol to assure that the interferents were being removed prior 

to the UV measurements.  

 

Evaluation of Nevirapine Release from GP-Nevirapine Formulations 

 In order to determine whether Nevirapine was being released from the protein/tRNA 

cores two primary methods were used. The first method used pepsin treatment to determine the 

amount of Nevirapine released. 100 μL of each sample being tested were transferred to labeled 

Ep-tubes. The samples were centrifuged and 90 μL of the supernatant were removed. 90 μL of 

pepsin was then added to the samples, and then the samples were sonicated and incubated 

overnight at room temperature. After the particles had been incubated, they were sonicated again, 

and 90 μL of the supernatant was transferred to another tube which was then centrifuged. 75 μL 

of the supernatants were transferred into a 96-well plate and the absorbance was measured at 315 

nm. The samples were also incubated in methanol, HCl, high salt concentrations and EDTA.  

 The second method for evaluating the Nevirapine release involved feeding the samples to 

3T3-D1 cells. This cell line is capable of phagocytosing glucan particles via the dectin-1 glucan 

receptor.10 μL of the samples of interest were added to 90 μL of saline. Samples containing 

empty particles as well as samples of pure saline were used as controls as well. Each sample was 

then mixed with 250 μL of DMEM and transferred to wells containing the 3T3-D1 cells. The 

cells were incubated overnight, and then the medium was collected in labeled Ep-tubes.  The 

remaining cells were then treated with trypsin and fixed with formalin. 
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Evaluation of GP-Nevirapine Toxicity to 3T3-D1 Cells 

 In order to evaluate Nevirapine toxicity, the release of the drug from the protein/tRNA 

cores in glucan particles was assessed. Cores that contained various formulations of Nevirapine, 

proteins and tRNA were fed to 3T3-D1 cells. 10 μL of the samples of interest were added to 90 

μL of saline. These were then combined with 250 μL of DMEM and transferred to wells 

containing the 3T3-D1 cells. The cells were incubated overnight and then the medium was 

collected, transferred to a new plate and then frozen. The remaining cells were then washed with 

PBS and fixed with formalin. 
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RESULTS 
 

Nevirapine Extraction 

Nevirapine was obtained from the commercial drug formulation Viramune by an acetic 

acid extraction. Nevirapine has high solubility in aqueous solutions at low pH, while most of the 

excipients are insoluble in aqueous solvents. The insoluble excipients include microcrystalline 

cellulose, lactose croscarmellose sodium, povidone, colloidal anhydrous silica, purified talc, and 

magnesium stearate which make up the pill.  Analysis of the extracted compound by NMR 

(Figure-8), IR, and UV-Vis demonstrated that the compound obtained was relatively pure, and 

suitable for use in the glucan particle encapsulation assays without further purification. 

Nevirapine was extracted from the commercial pills with a 99.6% yield. 

 
Figure 8: 1H -NMR of Nevirapine extracted from Viramune pills 

 

The 1H-NMR results (Figure 8) showed characteristic bands of Nevirapine which 

matched up with the results obtained from testing a known sample of Nevirapine.  Figure 9 also 

shows the UV/Vis spectra of Nevirapine in methanol. A maximum absorption peak at 280 nm 

was measured. Based on the peaks obtained from the NMR it is possible to identify which 

protons from the structure correspond with each chemical shift. Around 0.45 and 0.95 the shifts 

are caused by the CH groups on the cyclopropane. In the picture of Nevirapine (Figure 10) these 
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hydrogens, which are mirroring CH2 groups, are identified as 31, 32, 33, and 34. The next 

visible shifts occur at the methyl group around 2.1 and correspond with the hydrogens 27, 28, 

and 29. The final shift of interest from the NMR is at 3.2, and this corresponds with the final part 

of the cyclopropane group and is identified as H30. 

 
Figure 9: UV-Vis spectra of Nevirapine in methanol 

 
 
 

 
Figure 10: Nevirapine Structure With Labeled  

Hydrogens (Hannongbua et al., 2001) 
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Nevirapine Binding 

It is known that Nevirapine binds effectively to human serum albumin (HSA) (Bocedi et 

al., 2004). Encapsulation of proteins (OVA and BSA) within GPs has been achieved by 

formation of nanoparticulate cores assembled by electrostatic interactions between protein and 

tRNA (Soto and Ostroff, 2008).  Based on the developed protocols for protein encapsulation 

within GP and the ability of Nevirapine to bind HSA, it was decided to develop methods for 

Nevirapine encapsulation as part of a protein/tRNA core. The efficiency of Nevirapine binding to 

different albumin proteins and the effect of protein precipitation with tRNA on Nevirapine 

retention within the protein/nev complex was evaluated to determine optimal conditions (protein, 

nevirapine and tRNA concentrations) for GP loading. 

Mixtures of the different proteins with Nevirapine were filtered using 3 kDa centrifugal 

filters to separate unbound Nevirapine from the  protein/Nevirapine complex that is retained by 

the filter due to its high molecular weight. The absorbance of the processed filtrate and retentate 

was measured at 315 nm to quantify Nevirapine.  A wavelength of 315 nm was chosen for this 

assay as the Nevirapine presents a high absorption and protein or tRNA interference is minimal. 

Background absorption from the other core components is higher at 254 nm or at the maximum 

absorption wavelength of Nevirapine (280 nm). Additionally, absorption at 315 nm has been 

used in HPLC assays that are expected to be implemented to quantify Nevirapine bound to GP 

samples.  

The results shown in Figure 11 indicate that human serum albumin was most effective in 

binding the Nevirapine at 83%. Bovine serum albumin and ovalbumin also bound Nevirapine 

with 54% and 37% efficiency and were used for the preparation of GP-Nevirapine formulations. 
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Figure 11: Nevirapine Binding to Different Albumin Proteins. 

 

The second part of this experiment to optimize Nevirapine loading was the evaluation of 

tRNA interaction with the protein/Nevirapine complex. Specifically, tRNA was titrated to 

determine the optimal amount of tRNA required to precipitate the protein and retain the drug 

(Nevirapine) as part of the complex.     

The results (Figure 12) show that at low concentrations of tRNA (1 mg/mL) the amount 

of Nevirapine retained is greater than at the higher concentrations of tRNA.  At only 1 mg/mL 

tRNA the percent Nevirapine bound is almost 80% but when the tRNA concentration is 

increased to 5 mg/mL or 10 mg/mL, the percent bound is only around 40%, nearly half the 

amount as the lower concentration.  tRNA at lower concentrations do not form a precipitate with 

the proteins. Therefore, the lowest concentration of tRNA (1 mg/mL) capable to precipitate the 

protein is essential and will be extremely important once we load the drug into the glucan 

particles.      
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Figure 12: Effect of tRNA Concentration on Nevirapine  

Bound to the Nevirapine/HSA/tRNA Nanoparticle Complex. 
 
 

Nevirapine Loading into Glucan Particles 

As indicated in the previous section (Materials and Methods), three methods were 

evaluated for encapsulation of Nevirapine within glucan particles.  Essential to keeping the drug 

and the protein inside the glucan particle was the protein’s interaction with tRNA.  Since tRNA 

will precipitate the protein, the Nevirapine will remain bound as long as the tRNA concentration 

is kept low, around 1mg/mL, as discovered in the previous experiment.   

 In the first instance of the loading (method A), a 10 mg/mL sample of Nevirapine in 

acetic acid was used.  A half of the hydrodynamic volume (10 µL/mg GPs) of the Nevirapine 

solution was added to the glucan particles and allowed to incubate for two hours before it was 

frozen and lyophilized. Nevirapine was added twice to maximize drug loading before addition of 

the protein and final precipitation with tRNA.   

The amount of Nevirapine bound in the cores was indirectly determined by measuring the 

amount of unbound Nevirapine collected in the supernatant after particle centrifugation and 
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subsequent particle washings. Sequential loading of the core components (Method A) was used 

to prepare formulations of Nevirapine with OVA and BSA. 

 

Figure 13: Method B of Loading Protein/tRNA/Nevirapine  
Cores into Glucan Particles 

 

In the co-loading method (method B) solutions of HSA/Nevirapine were loaded into 

glucan particles followed by tRNA precipitation of the HSA/Nevirapine complex (Figure 13). 

The amount of Nevirapine bound was also quantified by measurement of the unbound 

Nevirapine in the supernatants. Figure 14 shows the results as percentage of Nevirapine trapped 

inside glucan particles for the best formulations obtained with each of the three albumin proteins. 

The results of the loading experiments were pretty conclusive.  It was determined that the glucan 

particle core that best trapped the Nevirapine was built using a Nevirapine-HSA-tRNA core.  

This core yielded a loading efficiency of 62%.  The BSA-tRNA core trapped the Nevirapine at 

41% and the OVA-tRNA core yielded 29% efficiency.  The results of this experiment are 

expected.  The HSA was the best for trapping the Nevirapine and this result was not surprising 

due to the fact that the HSA had the best binding efficiency with drug. 



32 
 

  
Figure 14: Nevirapine Loading in Glucan Particles 

 
 

Finally, Nevirapine binding was evaluated using GP-protein/tRNA formulations (Method 

C) (Figure 15). Nevirapine binding to these protein core formulations was evaluated by titrating 

the amount of Nevirapine incubated with a constant amount of particles (1x106 particles). The 

results shown in Figure 16 demonstrate that all particles containing a protein core efficiently 

bound Nevirapine. The negative controls (empty glucan particles or particles containing a 

tRNA/PEI core) show less Nevirapine binding as most the compound was removed after 

washing the samples. 

 

Figure 15: Method C of Loading Protein/tRNA/Nevirapine Cores into Glucan Particles 

0

10

20

30

40

50

60

70

GP-Nev/OVA/tRNAGP-Nev/BSA/tRNA GP-Nev/HSA/tRNA

%
 N

ev
ira

pi
ne

 tr
ap

pe
d



33 
 

  
Figure 16: Nevirapine Binding to GP-Protein/tRNA Formulation. 
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DISCUSSION 

 

Through our project we developed methods to successfully trap Nevirapine inside glucan 

particles.  Glucan particles have been efficiently used to encapsulate macromolecules like DNA 

and siRNA by formation of nanoparticulate materials assembled by electrostatic interactions 

between the anionic nucleic acids and cationic trapping polymers like polyethylenimine (PEI). 

There is a growing interest to extend the applicability of the glucan particle delivery technology 

to encapsulate small drug molecules. Our project was focused on the encapsulation of the HIV 

drug Nevirapine for the potential use of GP-Nevirapine formulations as a topical HIV 

microbicide.  Glucan particles have been used to trap protein molecules such as Ovalbumin and 

Bovine Serum Albumin (BSA) by formation of protein/tRNA nanoparticulate complex. It is also 

known that Nevirapine binds efficiently to albumin proteins, specifically to human serum 

albumin. Taking into consideration the binding ability of Nevirapine to HSA and the possibility 

of forming protein/tRNA cores within GP it was determined that the best approach to attempt 

trapping of Nevirapine is by formation of Nevirapine/albulimin-protein/tRNA cores. 

To assess the best conditions for formation of these cores, the binding of Nevirapine to 

different albumin proteins was measured by UV. As shown in Figure 10, HSA efficiently binds 

the drug confirming previous studies that have reported binding of Nevirapine to HSA with 70% 

higher efficiency. It was found that OVA and BSA also bind Nevirapine and subsequently these 

proteins were also evaluated for Nevirapine trapping inside GPs.  A critical step in the formation 

of Nev/protein/tRNA cores is the precipitation of the Nevirapine/protein complex upon addition 

of tRNA without significant loss of Nevirapine. Typically GP-protein/tRNA cores are prepared 

using a high ratio of protein: tRNA (1:10). However this high ratio of tRNA was found to 
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displace Nevirapine from the complex. The tRNA titration results (Figure 11) showed that a 

protein: tRNA ratio of 1 allows for effective precipitation of the protein/Nevirapine complex 

without significant loss of Nevirapine. A lower tRNA: protein ratio does not effectively forms a 

tRNA/protein precipitate.  

Loading of Nevirapine within GP and trapping into a tRNA/protein core was investigated 

by three methods. The first method was the sequential loading of the drug components. Efficient 

adsorption of payloads into glucan particles was achieved by soaking dry particles in half of the 

hydrodynamic volume of the particles. The wet sample is then lyophilized before addition of the 

next component of the core formulation. This method guarantees maximum adsorption of each 

component. The final compound added to this formulation is the trapping polymer (tRNA) that 

forms the stable nanoparticulate complex trapped within the particles. This method was applied 

to form Nevirapine/protein/tRNA cores with OVA and BSA. The results of Figure 12 show that 

the best formulations contain less than 50% of the input Nevirapine.  

In the second method, the drug and protein were co-loaded into the glucan particles and 

then tRNA was added to precipitate the protein/Nevirapine complex. In this method the 

lyophilization steps were not carried out as it is possible that the cycles of drying and re-

suspending the samples had a negative effect on Nevirapine solubility and its interaction with the 

re-dissolved protein resulting in poor Nevirapine retention inside the particles. This method 

allows for efficient trapping of the HSA/Nevirapine as shown in Figure 12.  

The final method evaluated to trap Nevirapine was the use of glucan particles containing 

a pre-formed protein/tRNA core. If the binding sites of the protein are still available after 

complex formation with tRNA, it should be possible to absorb the drug in a similar fashion to the 

LbL assembly of plasmid DNA or siRNA onto glucan encapsulated cationic cores. To guarantee 
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that Nevirapine would bind, the protein/tRNA cores were prepared using the minimum tRNA: 

protein ratio that allows for protein core formation. The results from Figure 13 show that the 

cores were effective in binding Nevirapine with more than 50% binding at different drug 

concentrations.  

 Three methods to successfully trap the Nevirapine have been developed and these 

methods need to be optimized.  For Methods A and B, the concentration of Nevirapine was 

constant the entire time.  The last loading experiment that built a protein-tRNA core and then 

allowed the Nevirapine to be absorbed was the only experiment where the concentration of 

Nevirapine was varied.  In order to optimize the loading, the concentration of Nevirapine should 

be varied.  It was discovered that the 2.5 µg of Nevirapine yielded a higher trapping efficiency 

than the 0.25 µg, but varying the concentrations will allow for the optimal concentration to get 

the best binding rate.   

 The amount of Nevirapine bound to the particles was indirectly determined by a UV 

assay. Characterization of the samples still requires optimization. The best method that will 

provide a direct measurement of bound Nevirapine is the use of HPLC. Different GP-Nevirapine 

formulations were processed to (1) facilitate release of the drug from the formulation by 

incubating the samples with pepsin to degrade the protein, different salt concentrations, pH, and 

solvents to release the drug from the cores, and (2) treatment of the whole particle sample with 

DMSO to dissolve the particles and analyze the final mixture by HPLC. Future work will focus 

on optimization of HPLC protocols to quantify total Nevirapine bound in GPs and Nevirapine 

release. In Figure 13, the only result that was slightly skewed from what was expected came 

from the cores that contained only glucan particles. Since there was no Nevirapine in the samples 

there shouldn’t have been any Nevirapine found when evaluated by UV spectrum. This could 
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have been caused by improper washing or inefficiency when washing the samples. This also 

proves that another method to quantitate the Nevirapine contents of the samples is necessary in 

order to properly examine the cores. 

Different GP-Nevirapine formulations were evaluated for toxicity effect on the murine 

fibroblast cell line NIH3T3-D1. Particles were fed at ratios of 1, 3.3, 10 and 33 particles/cell. 

After analyzing the results from this experiment, the Nevirapine formulations had no visible 

effects or toxicity on the cells.  
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FUTURE WORK 
 

 After performing experiments on Nevirapine extraction, binding, and loading, it is clear 

that this drug has the potential to be used to create a successful HIV microbicide. The methods 

developed have allowed for Nevirapine to be trapped inside HSA-tRNA cores with an optimal 

binding efficiency greater than 70%. In the future, the next step needed to continue progressing 

forward is a more in depth analysis of the samples by HPLC. The binding efficiency can be 

assessed in a much more exact manner through the use of HPLC. By creating a concentration 

gradient using samples containing known amounts of Nevirapine, it will be possible to determine 

exactly what is binding within the cores. Different concentrations of Nevirapine can also be used 

to optimize loading. The rate of Nevirapine released from the particles is also a key factor. If the 

Nevirapine is not properly released from the cores, then the Nevirapine may have trouble being 

delivered to macrophages and Langerhans cells, which is the ultimate goal of this microbicide. 

The rate needs to be determined in order to make sure that this is a viable method of preventing 

HIV infection. 
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APPENDIX A 
 

 
Tube HSA-Nevirapine µL Trapping 

Polymer 
µL 

1 250 PBS 750 
2 250 1 mg/ml tRNA 750 
3 250 5 mg/ml tRNA 750 
4 250 10 mg/ml tRNA 750 
1. Prepare the following mixtures:  
    10 uL of Nevirapine in MeOH + 990 uL PBS  
    1 mL of HSA-Nev solution by mixing 10 uL of Nevirapine solution (stock solution in 
MeOH) and 990 uL of protein solution 
    1, 5, and 10 mg/mL tRNA in PBS  
2.  Measure 250 uL of HSA-Nev. Add indicated amount of tRNA or PBS 
3.  Incubate 20 min at room temperature  
4. Centrifuge samples 5 min at 10 rpm  
5.  Transfer 250 uL of sample to labeled 3 k centrifuge filters 
6.  Centrifuge samples 20 min at 3000 rpm  
7.  Carefully transfer filtrate to labeled Ep tubes and measure total volume 
8.  Add 250 uL of 1%MeOH/99% PBS solvent mixture to each tube. 
     Centrifuge samples 20 min at 3000 rpm  
9.  Carefully transfer filtrate to labeled Ep tubes (wash 1) and measure total volume 
10.  Repeat steps 6-7 to collect wash#2  
11.  Adjust volumes of all Ep tubes to same final volume 
12. Transfer 100 uL to 96-well plate  
13. Measure Abs @ 315 and calculate % of unbound Nevirapine 

 
tube mg GP µL 0.1 M aa protein µL protein mg/ml tRNA µL tRNA 
1 5 0 50 mg/ml OVA 25 1.5 500 
2 5 0 50 mg/ml BSA 25 1.5 500 
3 5 25 50 mg/ml OVA 25 1.5 500 
4 5 25 50 mg/ml BSA 25 1.5 500 
1. Use 5 mg YGP in  Ep tubes  
2. Prepare 0.1 M acetic acid. Check pH and adjust to pH 2 
3. Prepare a 10 mg/mL solution of Nevirapine in acetic acid 
4. Add 25 uL of Nevirapine solution to GP. Add acetic acid to control samples. Mix w/blunt 
pipette tip until wet 
5. Incubate 2 hours at room temperature 
6. Freeze, lyophilize 
7. Add 25 uL 0.1 M acetic acid. Incubate 1-2 hours 
8. Freeze, lyophilize 
9. Prepare 50 mg/mL OVA in water, 50 mg/mL BSA in water 
10. Add 25 uL of OVA or BSA solution to GP-Nevirapine (5 uL 50 mg/mL OVA/BSA /mg 
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GPs) 
11. Mix w/blunt pipette tip until wet and allow OVA or BSA to penetrate GP for 2 hours on ice 
12. Freeze/lyophilize 
13.  Carry out water wash by adding 25 ul saline to tubes. Incubate 2 hrs 4C. 
14   Add indicated volume of tRNA at indicated concentration in  0.9% saline at 50C 
15.  Allow to swell for 10 minutes at 50C, sonicate to single particles, allow to coat for 20 
minutes 
16.  Collect particles by centrifugation.  Collect supers into labeled Ep-tubes.  Freeze for 
Nevirapine analysis 
17.  Wash 3X in 0.9% saline - resuspend by sonication - Collect supers into labeled Ep-tubes. 
Freeze for Nevirapine analysis 
18.  Resuspend in 70% ethanol - sonicate, incubate at least 30 min 
19.  Wash 3X in 0.9% saline - resuspend by sonication  Resuspend tubes in 1 ml saline  
20.  Sonicate, count, adjust aliquot to 1x10^8 particles/ml.   
21.  Store tubes at -20C 

 
Tube mg GP Loading solution µL mg/mL tRNA µL tRNA 
1 5 HSA-NEV 25 1 250 
2 5 HSA 25 1 250 
3 5 HSA-NEV 25 1 250 
4 5 HSA 25 1 250 
5 0 HSA-NEV 25 1 250 
6 0 HSA 25 1 250 
 
1.  Prepare a 0, 0.001, 0.01, and 0.1 mg/mL Nevirapine solution in PBS  
2.  Measure UV absorbance @ 315 nm of Nevirapine solutions before setting up experiment 
3.  Mix indicated amounts of PBS, Nevirapine and particles  
4.  Incubate samples for 1 hour    
5.  Centrifuge samples. Carefully transfer 90 uL of SN to 96-well plate  
6.  Add 90 uL of PBS to each tube. Sonicate sample, vortex and transfer to 96-
well plate       
7.  Measure UV absorbance @ 315 nm 
   
1. Prepare the following mixtures: 
    10 uL of Nevirapine in MeOH + 990 uL PBS 
    1 mL of OVA-Nev and BSA-Nev solutions by mixing 10 uL of Nevirapine solution (stock 
solution in MeOH) and 990 uL of protein solution 
2.  Measure UV absorbance @ 315 of stock solutions of mixtures of OVA/Nev, HSA/Nev, and 
BSA/Nev, and Nev solution in 1% MeOH 
3. Transfer 250 uL of indicated solutions to labeled 3 k centrifugal filters 
4.  Centrifuge samples 20 min at 3000 rpm 
5.  Carefully transfer filtrate to labeled Ep tubes and measure total volume 
6.  Add 250 uL of 1%MeOH/99% PBS solvent mixture to each tube. 
     Centrifuge samples 20 min at 3000 rpm 
7.  Carefully transfer filtrate to labeled Ep tubes (wash 1) and measure total volume 
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8.  Repeat steps 6-7 to collect wash#2 
9.  Adjust volumes of all Ep tubes to same final volume 
10. Transfer 100 uL to 96-well plate 
11. Measure Abs @ 315 and calculate % of unbound Nevirapine 
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