
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

May 2007

Procedural Planet Generation
Andrey V. Sklyar
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Sklyar, A. V. (2007). Procedural Planet Generation. Retrieved from https://digitalcommons.wpi.edu/mqp-all/1644

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1644&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1644&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1644&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1644&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/1644?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1644&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Procedural Planet Generation

A Major Qualifying Project

submitted to the Faculty of the

Worcester Polytechnic Institute

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Andrey V. Sklyar

Date: _____________

Dr. Robert W. Lindeman

Advisor

 ii

Abstract for the Final Report for the Procedural Planet
Generation Project

by Andrey V. Sklyar

Procedural planet generation is a way of creating computer-generated environments from a set of

specified guidelines. In exploring these environments, only enough detail needs to be present so

that the current screen seems realistic. This can be accomplished by using simplified versions of

the objects in the environment until more detail is required. This paper describes a way to

accomplish this level of detail switching using work done by previous researchers on progressive

meshes.

This report begins by defining field-specific terminology necessary to understand the previous

work and current implementation. It then describes work done by previous researchers in the

area of level of detail meshes. It focuses on progressive meshes, which allow a high-resolution

mesh to be simplified to a low-resolution approximation and then refined to any level of detail in

between. A specific implementation of both the simplification process and the refinement

mechanism are presented next, with special care given to the details of the simplification step.

The report finishes by proposing improvements to the current implementation and suggesting

areas of expansion where progressive meshes could be used.

Most of the previous work centers on progressive meshes. The first paper describes how to,

given an initial high-resolution triangle mesh, produce a good approximation of the original with

a smaller number of vertices. It does this by performing operations on the edges of the mesh

while trying to minimize an energy function that attempts to preserve geometric properties of the

original. This work is then used to introduce a continuous level of detail representation, referred

to as a Progressive Mesh. Data structures for efficient implementation are introduced in the next

summarized paper. The section continues by describing a way of creating real-time, continuous

level of detail meshes that allows view-dependent refinement. The section concludes with a

description of work that adds similar view-dependent capabilities to progressive meshes.

 iii

The next part of the paper describes a specific implementation of progressive meshes. It

describes the mesh data structures needed to implement the simplification algorithm and the

resulting progressive mesh. The energy function used is based on distance from the vertices of

the original mesh. Identification of the edges and details associated with removing detail in the

simplification step are described in depth. This is followed by a discussion of the effectiveness

of the simplification algorithm used to preserve the qualities of the original model.

The report concludes by proposing improvements to the current implementation and suggesting

expansions that could use progressive meshes as a subcomponent. These include implement

view-dependent refinement, incorporation into a multi-user system architecture, and the

continuation of the Procedural Planet Generation project.

 iv

Acknowledgements

Thank you Derek and Dr. Lindeman for all your help and guidance on this project.

 v

Table of Contents

Abstract ... ii

Acknowledgements ... iv

Table of Contents..v

List of Figures... vi

1 Introduction...1

2 Background Information..3

2.1 Anatomy of a Mesh ...3

2.2 The View Frustum...3

2.3 Levels of Detail ...4

2.4 View-Dependent Refinement ...5

3 Previous Work...6

3.1 Mesh Optimization ..6

3.2 Progressive Meshes ...8

3.3 Efficient Implementation of Progressive Meshes..11

3.4 Dynamic View-Dependent Simplification of Polygonal Models.................................12

3.5 View-Dependent Refinement of Progressive Meshes ...14

4 Progressive Meshes for Procedural Planet Generation ...16

4.1 Overview...16

4.2 Terrain Generation...16

4.3 Mesh..17

4.4 Simplification ..19

4.4.1 Energy Function...19

4.4.2 Mesh Simplifier ...19

4.4.3 Creating the Simplification Mesh ...21

4.4.4 Performing the Edge Collapses ..23

5 Progressive Mesh ..26

5.1 Construction ..26

5.2 Vertex Split (next) ...27

5.3 Edge Collapse (prev) ...28

6 Results ..29

7 Future Work..33

7.1 Improvements..33

7.1.1 Red-Black Trees ..33

7.1.2 Anchor Spring Constant Assignment..33

7.1.3 Energy Functions ...33

7.2 Expansions ..35

7.2.1 View-Dependent Refinement ...35

7.2.2 Procedural Planet Generation ...36

7.2.3 Virtutopia...36

8 References...38

9 Tools Use ..40

 vi

List of Figures

Figure 1: Edge Operations [1] ...6

Figure 2: Edge Collapse [2]...9

Figure 3: Wedges [3]...11

Figure 4: Vertex Split Encoding [3]...12

Figure 5: Vertex Split with Neighborhood Information [5] ..15

Figure 6: View-Dependent Refinement Constraints [5] ...15

Figure 7: Mesh Classes ...17

Figure 8: Face Data Structure..18

Figure 9: Mesh Simplifier Class ..20

Figure 10: SimplMesh Prerequisites ..21

Figure 11: SimplMesh Class..22

Figure 12: Neighborhood Labeling..23

Figure 13: PMesh Class...26

Figure 14: Level 0 Mesh ~35 Faces...30

Figure 15: Level 1 Mesh ~ 100 Faces..30

Figure 16: Level 2 Mesh ~ 250 Faces..31

Figure 17: Level 3 Mesh ~ 600 Faces..31

Figure 18: Level 4 Mesh ~ 1500 Faces ..32

Figure 19: Level 5 Mesh (Original) ~ 3000 Faces..32

Figure 20: 150 Face Airplane from Progressive Meshes [2]...35

Figure 21: 444 Face Spaceship from Efficient Implementation of Progressive Meshes [3].........35

 1

1 Introduction
The goal of procedural planet generation is to provide a way to easily create interesting

computer-generated (CG) environments for use in videogames, cinematography, or other

applications. Currently, applications like Terragen [13] and Mojo World [9] provide a means of

doing this by using fractals. Alternatively, a highest resolution version of an object can be

generated, and simplified versions produced to ease the rendering load of client applications.

Most of the content for the environments created by Procedural Planet Generation will be created

automatically by abstract processes. These processes can be anything from artificial intelligence

guided design to rigid city plans. The concept was originally inspired by fractals, though; both

because they can be used to generate interesting objects from relatively simple specifications

[10] and because of the potential for infinite detail in the models generated [9].

A fractal is defined as "a geometrically complex object, the complexity of which arises through

the repetition of a given form over a range of scales” [9]. They have been used to generate

terrains, tree leaves, ferns, and objects of infinite resolution. The "infinite resolution" is a result

of the repetition of the form over a range of scales. Several examples of natural objects defined

using fractals such as pine trees, flowers, and other plants can be found at the University of

Calgary’s Algorithmic Botany website [15].

Due to the finite nature of computers, computer-generated fractal objects can only be generated

to some finite representation. When refinement is deemed necessary, it can be performed. Until

then, there is a detailed model available for use by applications. Specifically, they can be used in

virtual environments, where their natural complexity could be used to add to the visual

experience of exploring that world.

Beyond generating individual objects, fractals can be used to model the growth of mountains [9,

13], ecosystems [15], and cities [16]. Since fractals are capable of filling in many of the

interesting details of a model and introducing random variation in such details, it is conceivable

that they could be used to generate full environments for use in anything from cinematography to

videogames [9]. In the case that precise control of several components of the environment is

 2

required, an initial model could be generated using fractals followed by specific refinements

made manually.

Fractals are by no means the only approach for describing all aspects of the world we inhabit [9].

For some objects, there is either no way or no need to specify them using self similarity. At

other times, a different representation may contain all the detail about a model. One such

example would be using plans for a specific building generated by using a CAD program. These

specifications are usually very large and tend to be hard to render at their full resolution.

Fortunately, there is no need to store or display the model at its full resolution until it is

necessary for visual quality. Therefore, if all that this building is used for is a long-distance shot

of a cityscape, a much simpler version could be used than if the viewer were looking up at it

directly from its entrance.

In order to use the lower resolution representations of highly complex models they need to be

passed through a simplification step that can produce refinable versions of the models. This

report describes the way that Progressive Meshes [2] can be used to achieve these levels of

detail. It also describes a specific implementation of the simplification algorithm and the

resulting refundable model.

 3

2 Background Information
This project implements the part of the procedural planet generator that allows highly detailed

models to be simplified after they have been generated or added to the world. The simplifier

takes in a three-dimensional mesh and produces a continuous level of detail representation

allows for simpler versions of the object to be used when the full detail is not necessary. The

background necessary to understand the content of this report is presented in this section.

2.1 Anatomy of a Mesh

A polygonal mesh is a piecewise planar approximation of a three-dimensional (3-D) surface [12].

It is defined by a set of vertices (3-D points) and faces (closed, usually convex, polygons made

up of a small subset of the vertices). Triangle meshes are a specific type of polygonal mesh

where all the faces are made up of exactly three vertices. Any mesh can be turned into a triangle

mesh by triangulating the faces. All the models in this project are assumed to be triangle meshes.

In order to display a mesh on the screen, the computer needs to know how light interacts with it.

For example, when drawing a sphere, it should look smooth rather than blocky. This can be

accomplished by specifying normal vectors associated with each vertex in the model, allowing

the computer to compute the intensity with which the light illuminates the object at that point:

fully illuminated if the normal points towards the light source and fully in shadow if it points

away. Intermediate values on the vertices can be interpolated by using a shading model such as

Gouraud or Phong [12] shading models.

One can also place a texture onto the object by associating texture coordinates with each vertex.

The renderer will then be able to take a texture map, or function, and appropriately map it onto

the surface.

2.2 The View Frustum

The View frustum is a four-sided, semi-infinite pyramid that represents the volume that the user

may be seeing View Dependent Refinement of Progressive Meshes [5]. Testing against the

bounds of this figure allows a program to determine whether an object is out of sight, which can

be used as criteria to coarsen the current representation of that object. Even though these parts of

 4

the model would never be displayed, determining that they should not be displayed will be done

more quickly since fewer vertices will have to be considered.

2.3 Levels of Detail

When an object is far away, it is visually smaller, and therefore takes up fewer pixels on the

screen. Suppose that an apartment building were being modeled. A typical apartment building

would have windows, balconies, and a fire escape. If the building was so far away that it only

took up a 5 x 5 pixel block, it would be hard to distinguish any detail except for maybe that it is a

building. At this resolution, a simple box would probably be as convincing an approximation as

the full-detail figure. If the camera were to move closer, it would reach a point where the

building would be displayed at a high enough resolution that large features like the fire escape

and the balconies would this become distinguishable. However, details such as the individual

bars on the balconies or the individual steps on the fire escape would still be indistinguishable,

calling for another version of this model. At some point the viewer would get close enough to the

model that all the details would become discernible. It is only at this point that the viewer would

benefit from having the full-detailed model.

This notion of using a set of predefined, lower-resolution models as substitutes for an object

when the full detail is not necessary is referred to as "discrete levels of detail (LoD)." It allows

for reductions in the amount of information that needs to be sent to the display initially, allowing

a user to interact with the world more quickly than if they had to wait for all the information to

load. It also reduces the number of polygons that need to be rendered per frame, allowing for

higher frame rates.

The decision on which model to use is usually based on how far away the object is, and whether

or not it is in the view frustum. When the object comes close enough that a higher resolution

model will improve the visual quality, the model being used is switched to the higher resolution.

Unfortunately, as the two models being used are different, the change in the detail might be

noticed. This noticeable switch between levels of detail is referred to as "popping." One way of

reducing the severity of the popping is to introduce the change in the models over several frames.

This can be done by interpolating intermediate values, and is referred to as morphing.

 5

When there are many refinements that can be made to the model at any one point in time that

introduce a small amount of detail each time, the representation is referred to as a continuous

LoD representation. These sorts of models lend themselves to view-dependent refinement, which

is discussed next.

2.4 View-Dependent Refinement

Discrete levels of detail are good for modeling objects that fit within one screenshot since all the

extra data adds to the visual quality of the image. So, for example, if discrete levels of detail

were used to model a human-sized statue moving closer to it would increase the amount of detail

rendered, all the way until the model fills up the whole screen. At this point, only roughly half

the model’s detail will be in view, since half of it will be facing away from the viewer. Now

consider using discrete levels of detail to model the apartment building in the previous example.

By the time that the viewer is close enough that the door to the entrance takes up the majority of

the screen, all of the information about all of the windows, stairwells and balconies will be

loaded. In any one screenshot the user will only be able to see a small part of the building. The

renderer, nonetheless, will have to consider, and possibly render, detail that is far away on the

building at a higher resolution than is visually necessary. A solution to this problem is to use

view-dependent refinement. This is usually done with continuous LoD.

Continuous LoD allow for dynamic refinement of parts of a model (such as specific vertices)

based on refinement criteria. These criteria can include distance from a part of the model to the

viewer, whether the part is facing towards or away from the viewer, and whether the difference

in screen pixels between displaying the original model and the approximation is within a

specified tolerance at that location. By repeatedly applying these refinements based on viewing

criteria, a model with high resolution near the viewer and other key locations (such as the

silhouette borders), and lower resolution at hidden or distant parts can be attained.

Since continuous levels of detail can allow for refinement in specific areas, the amount of

popping when switching levels can be significantly reduced, since less of the model is affected.

Combined with morphing, the transitions can become practically unnoticeable [5].

 6

3 Previous Work
Much research has been done in the area of levels of detail. Peter Brown [8] provides an in-depth

discussion of LoD. This section describes work related to progressive meshes, since they were

the main focus of this project. Concepts from all of these papers were used in the implementation

described later in the paper.

3.1 Mesh Optimization

The goal of Mesh Optimization [1] Hugues Hoppe et al. is, given an initial high-resolution

triangle mesh, to produce a mesh with the same topological layout with a smaller number of

vertices. They accomplished this by repeatedly performing one of three edge operations while

minimizing an energy function.

The three basic operations that can be performed are an edge collapse, an edge split, and an edge

swap (Figure 1). An edge collapse removes an edge by removing the two faces that share the

edge and then updating the mesh connectivity. An edge split introduces a new vertex in the

middle of the edge and adds edges to the remaining vertex in the neighboring faces. An edge

swap changes which vertices in the two adjacent triangles share the edge.

Figure 1: Edge Operations [1]

 7

One thing to notice about these operations is that they only have local effect on the overall mesh.

They only possibly deform those faces incident on the vertices defining the edges removed,

modified, or created. This adds to the efficiency of the optimization algorithm, since each step

the calculation needs to be done on only this local subset.

The three components of the energy function are the distance energy (Edist), the representation

energy (Erep), and the edge-spring energy (Espring). Distance energy measures the squared

deviation of each point currently used to approximate the mesh from the surface of the data

model being optimized. This assures that, at each step, the current approximation stays close to

the surface of the original mesh. Representation energy allows the user to specify how important

it is to have a small number of vertices at the expense of a less-accurate approximation of the

original model. Finally, the edge-spring energy is used to guide the simplification process in the

beginning stages when there are many edges that are candidates for operations. Its influence is

reduced as the number of vertices in the mesh gets smaller. Mathematically, the energy is

expressed as follows.

E(K, V) = Edist(K, V) + Erep(K) + Espring(K, V) (eq. 1: Energy Function [1])

Where K represents the connectivity of the mesh (which vertices make up a face and which faces

are adjacent to each other) and V is the set of vertices presence in the mesh. Edge collapses and

splits modify both K and V. Edge swaps only affect K.

The algorithm applies one of the above-mentioned deformations to a randomly chosen edge and

then optimizes the vertex positions in the neighborhood of the transformation. Edge collapses are

considered first, followed by edge swap, and then edge split. The choice of which operation to

perform is constrained by a requirement that the resulting model not self intersect (which can

happen because of an edge collapse or an edge split). This is accomplished using a heuristic that

ensures that the angle between the resulting faces is not too large.

This process is effective in simplifying the original mesh and preserving detail where it needs to

be. Regions with high curvature receive more vertices than flat surfaces, which are approximated

 8

by a few large faces with long edges. Since the algorithm preserves the topological type of the

model, it is also able to identify creases in the model by specifying the threshold angle for

smoothness. Using this information, the models can then be segmented into smooth components,

and normals can be calculated for each of the surfaces independently.

3.2 Progressive Meshes

The work described in Progressive Meshes [2] introduces a continuous level of detail

representation that takes into account the geometry of the mesh as well as discrete and scalar

attributes associated with it. It performs a simplification step similar to Mesh Optimization [1],

taking into account discrete attributes associated with faces (e.g., a shader function) and scalar

attributes associated with the corners of each face (e.g., normals and texture coordinates).

In order to simplify complicated models for rendering purposes, shading information needs to be

included as a parameter in the simplification step. Specifically, progressive meshes consider the

textures associated with each face and the normal vector information and texture coordinates at

each face corner. Note that the material identifier or shader function associated with the face is a

discrete value, while texture coordinates and normals are scalar values that can be interpolated.

Associating the scalar attributes with the corners of the face rather than the vertices themselves

allows for creases to be modeled and rendered. For smooth portions of the surface, there is

usually only one normal associated with the vertices. At curve discontinuities, each of the

surfaces will have different normals associated with the same vertices.

These discontinuities in attributes, both discrete and scalar, happen along edge boundaries

(between two faces). The edges where this happens are labeled as “sharp,” and define a set of

discontinuity curves on the surface. Sharp edges are border edges
1
, edges between two adjacent

faces that have different, discrete attributes associated with them, or edges that have different

scalar attributes at adjacent corners.

1
 Border edges are those which only have one incident face, rather than two.

 9

The simplification algorithm implemented for this project only uses edge collapses as defined in

[1], as the authors found that this operation alone was sufficient for achieving good

approximations. Associated with an edge collapse is a vertex split, which defines the opposite

operation. The end result of the simplification process is a simplified version of the original

model, and a set of refinements (vertex splits) that, when applied in order, will return the mesh to

the highest resolution state. The tuple consisting of the base mesh and the sequence ordered of

vertex splits is referred to as a progressive mesh.

When an edge collapse is performed, one of the vertices (vt in Figure 2) is removed and the edges

that were incident to it now connect to the other (vs). It also removes the two faces that were

incident on this edge. The collapse moves the corners of the remaining faces and changes the

location of vs and the scalar attributes stored at the corners. These changes are recorded in the

vertex split record’s attribute field (not shown in the illustration).

Figure 2: Edge Collapse [2]

The energy function used for the simplification is similar to that of [1], but takes into account

discrete and scalar attributes. It penalizes removal of discontinuities when specific sharp edges

are collapsed (eq. 2).

E(M) = Edist(M) + Espring(M) + Escalar(M) + Edisc(M) (eq. 2)

 10

In this equation, M represents a tuple (K, V, D, S) where K and V are the same as in [1], D

represents the discrete attributes associated with the faces, and S is the set of scalar attributes

associated with the corners of the faces.

Geometric optimization happens first, using the distance and spring energies. Once the vertex

positions have been determined, the scalar attributes are optimized. Rather than randomly

choosing the next edge to collapse, the algorithm keeps a priority queue of all the candidate edge

collapses sorted by their energy change. After the collapse is performed, the weights of all the

affected edges in the neighborhood of the collapse are updated, and the queue is reordered. When

removal of an edge would break a discontinuity curve, the algorithm adds an amount to its

energy value that compensates for the disruption.

After this simplification algorithm is applied to an initial mesh, a progressive mesh is

constructed. It can be refined using vertex splits and coarsened by applying them in reverse.

These operations introduce or remove vertices and faces, which can result in popping. This can

be made less apparent by using alpha-blending geomorphs [2]. By introducing the change over

several frames, any vertex split or collapse can be animated smoothly. The intermediate values

can be interpolated either linearly (such as vertex position) or nonlinearly (normals are

interpolated over the unit sphere). Discrete attributes are also introduced smoothly, since the

faces that reference the discrete attributes are introduced or removed smoothly as well.

Progressive meshes also lend themselves to progressive transmission over a network. The base

mesh can be sent and the user can begin interacting. Vertex splits can be sent incrementally,

refining the mesh as they arrive. When all the splits arrive, the client will be able to reconstruct

the highest-detail mesh.

The paper also describes a way of doing selection of refinements by using the closest living

ancestor. A better approach is described in View Dependent Refinement of Progressive Meshes

[5].

 11

3.3 Efficient Implementation of Progressive Meshes

Efficient Implementation of Progressive Meshes [3] describes the data structures used to

efficiently implement progressive meshes. It introduces the concept of "wedges" to represent

corner attributes and defines the dependencies between faces, wedges, and vertices. It then

describes a way to add and remove detail from a progressive mesh.

A mesh is represented by a set of vertices, a set of corner attributes called wedges, and a set of

faces. The vertices store 3-D locations on the model. Wedges associate scalar attributes with the

vertices and represent vertex-adjacent corners that share the same attributes (Figure 3). There is a

many-to-one relationship between wedges and vertices. A face stores discrete attributes, three

wedges in counterclockwise order referring to the corners of the face, and pointers to the three

edgewise-adjacent neighbor faces. The reference to vertices is made indirectly through the

wedges.

Figure 3: Wedges [3]

A progressive mesh stores a mesh object (the base mesh) and a list of vertex splits. Due to the

Face Wedge Vertex data dependency, vertex splits need to reference a Face (flclw, in

Figure 4) in order to have appropriate access to the connectivity of the mesh. In this

representation, the parameters of the vertex split are identified by an index within the face

pointing to vs (vs_index) and a number of faces to go around vs in a clockwise order to reach vr

(vlr_rot). The left vertex, vl, is taken to be the next vertex within flclw after vs in clockwise

order. Changes to the wedge attributes in vertex positions and extra information, including

 12

continuity of wedges over edge boundaries, is stored as well. This provides enough information

to introduce the new faces and vertices, and update the connectivity and appropriate attributes

after a split or collapse is performed.

Figure 4: Vertex Split Encoding [3]

A progressive mesh read stream abstracts the source of the progressive mesh. Specifically, it

allows progressive meshes to be used when the data is stored in memory, when it is

progressively received over an input stream, or when it is received from the stream and cached.

The progressive mesh iterator extends the mesh class with the ability to perform vertex splits and

edge collapses. Edge collapses are only allowed for the cases where there is an internal store of

all the vertex splits. Since the iterator is itself a mesh, it can be rendered at any point in time. It

also provides a way of generating a mesh with a specified number of vertices or faces as well.

Geomorphs are implemented by keeping track of which vertices split or collapse to become

which other vertices. Once this ancestry information is known for all modified vertices, the

initial and final vertex positions and attributes of the edges can be alpha blended.

3.4 Dynamic View-Dependent Simplification of Polygonal Models

Motivated by visualization of complicated structures for scientific purposes, Dynamic View-

Dependent Simplification for Polygonal Models [3] describes a way of creating real-time,

 13

continuous level of detail meshes that allows view-dependent refinement. They also use more-

sophisticated heuristics for determining whether detail needs to be added or removed at a region.

The process of creating a refinable mesh is similar to progressive-mesh simplification. In

performing the edge collapses, one of the vertices is chosen as the child and the other as the

parent. After each collapse, the child is removed and all of its edges are linked to the parent.

Collapses are done in a binary fashion, without interpolating the coordinates of the parent vertex

after the collapse.

In order to assure that the mesh’s surface does not fold over itself, the authors define dependency

relationships between the vertices, which they refer to as regions of influence. The region of

influence of a vertex is the set of vertices that are edge-adjacent to it. In order to perform a vertex

split the region of influence that was present when it was collapsed during the simplification step

need to be in the mesh and adjacent to the parent vertex. For edge collapses, the regions of

influence for both vertices need to be in the mesh and adjacent to the edge.

The algorithm attempts to make balanced merge trees to allow similar amounts of refinement on

all parts of the mesh. It goes about this by performing all the edge collapses where the regions of

influence do not overlap. This set of collapses becomes a level in the merge tree. This step is

then repeated with the remaining edges until the original mesh is significantly simplified. Edges

are considered in order of edge length, from shortest to longest.

In order to allow refinement at runtime, each node holds a set of attribute ranges that the attribute

values can take until it needs to be refined. One of the attributes is Euclidean distance from the

node to its child in the node to its parent. This allows the renderer to decide whether to split the

vertex or collapse an edge by making sure that the screen-projected length is within a certain

threshold. If the distance is too small, the edge is collapsed. If the distance is large, then the edge

is split and more detail is added.

The other attribute ranges stored at the nodes of the tree are based on local illumination, visibility

culling, and silhouette boundaries. Local illumination gives preference to areas that have more-

 14

direct light. Visibility culling attempts to reduce the number of faces on the backward-facing side

of the model, or outside of the viewing area. Detail is also preferred at silhouette boundaries,

where there is potential for high contrast between the model and either itself or the background.

In order to display the mesh, a set of active vertices and faces is recorded. Whenever a frame is

rendered, each of the active vertices is considered for a split or collapse. The choice is made

based on whether the above-mentioned ranges fit within the specified threshold from the current

viewing position. If a split needs to be performed, the child vertex is added to the list of active

vertices, and the resulting faces are added to the list of active faces. The added vertices are then

recursively tested to see if they need further refinement. Refinement stops when either the node’s

range is within the specified threshold or there are no more splits that can be performed in this

area. Removal of detail proceeds in the opposite fashion.

3.5 View-Dependent Refinement of Progressive Meshes

View-Dependent Refinement of Progressive Meshes [5] describes a method of implementing

view-dependent refinement of progressive meshes. Similar to work described by Xia et al. [4], a

parent and child relationship between the vertices of the intermediate meshes is determined. The

vertex split operation is augmented to include neighborhood information that is used to place

constraints on which splits or collapses may be performed. A set of refinement criteria and a

generalized triangle strip creation method for progressive meshes and their implementations are

described.

The set of vertex splits is computed just as in Progressive Meshes [2], except that the two

vertices defining the edge (vu and vt) are removed and a new vertex (vu) is introduced (Figure 5).

This new vertex becomes the parent of the two vertices that defined the edge. Also stored in the

split (Figure 6) are the two faces, fl and fr, and their neighbors (fn0, fn1, fn2, and fn3). This set of

four faces provides the necessary link into the mesh that assures the legality of a collapse or a

split. When performing a vertex split, these four faces need to be present, with fn0 adjacent to fn1,

fn2 adjacent to fn3, and vs in the positions illustrated below. When performing a collapse, fl and fr

need to be active in the mesh, with vt and vu in the appropriate places, fn0 and fn1 have to be

adjacent to fl, and fn2 and fn3 have to neighbor fr.

 15

Figure 5: Vertex Split with Neighborhood Information [5]

The criteria used to determine whether to add or remove detail is based on similar metrics as

defined in [4]. In order to determine whether an object is within the viewing area, bounding

spheres are computed at each node of the merge tree. Determining whether a sphere is within a

frustum can be done quickly, and those vertices completely outside are not refined. Surface

orientation at each vertex is computed using groups of normals from its children to create a

bounding cone. The final metric is the screen-space geometric error that assures that the

difference between the original mesh and the approximation mesh on the current screen is below

a given tolerance.

Figure 6: View-Dependent Refinement Constraints [5]

Just like in [4], all of the active vertices are considered for a split or collapse before rendering

each frame. The decision to perform the refinements is based on the metrics described above.

Finally, a greedy algorithm is used to generate triangle strips before display to increase

performance.

 16

4 Progressive Meshes for Procedural Planet Generation
As discussed in the introduction, part of the procedural planet generation system is a method by

which to generate simplified versions of objects and refine them when more detail will add value

to the scene. Progressive meshes provide exactly this mechanism.

Since the first objects generated by procedural planet generation will be terrain landscapes, the

output of a fractal terrain generator was used as the model on which to test the simplification

algorithm. There exist continuous level of detail representations and simplification algorithms

specialized for height field terrains [6, 7]. Progressive meshes were chosen instead since they

provide a way of simplifying and refining arbitrary triangulated models not constrained to be

height fields.

The ultimate goal was to provide a view-dependent continuous level of detail model, similar to

the one described in View Dependent Refinement of Progressive Meshes [5]. Due to time

constraints, only view-independent continuous level of detail model generation was

implemented. Several parts of the code, such as recording neighborhood information in the

vertex splits, reflect this discrepancy. Completing the view-dependent aspect of this

representation is part of future work.

4.1 Overview

In order to create a progressive mesh version of a terrain, a triangulated version of a height field

created by the Terragen fractal terrain generator [13] was passed to the simplifier. The simplifier

then repeatedly performed edge collapses while trying to minimize an energy function based on

distance from the vertices of the original mesh. The resulting progressive mesh provides a

representation that can be used to generate view-independent continuous level-of-detail meshes.

4.2 Terrain Generation

Fractal terrain generation allows a user to specify the parameters which the terrain should satisfy

and produces a randomly generated model that satisfies those constraints. Texturing & Modeling

[9] gives a good introduction to both procedural and fractal generated models. For this project,

Terragen was used, a free-for-noncommercial-use fractal terrain generator that is capable “of

 17

photorealistic results for professional landscape visualization, special effects, art and recreation,”

as quoted on the homepage [13].

Terragen provides an export mechanism by which the height field data defining the terrain can

be stored to a binary file as 257*257 16-bit little-endian unsigned integers that represent a 257 x

257 height field. This format was chosen because it was easy to load the contents of the file into

a mesh object.

4.3 Mesh

A mesh object (Figure 7) represents a 3-D triangle mesh. It stores an array of vertices and an

array of faces. Each face contains three indices into the vertex array and three indices into the

face array. The vertex references define the three points that make up the triangle. The face

references the three faces that are adjacent to this one.

Vertices represent 3-D points, and are implemented using Theilana
2
 physics engine’s point3d

class. Three-dimensional calculations such as finding the distance between two points is also

performed using this library.

Figure 7: Mesh Classes

The two thee-element vertex and neighbor arrays of the face class are stored in counterclockwise

order (Figure 8). This ordering becomes very important when updating mesh connectivity, since

2
 Written by Derek Radtke [14]

 class Vertex {

 point3d point;

 };

 class Face {

 //indices into the vertices in
 //counterclockwise order.
 int vertices[3];
 //indices into the neighbor faces
 //-1 means no neighbor
 int neighbors[3];

 //the face adjacent to the edge
 //(vertices[i], vertices[(i+1) % 3])
 //will be stored in neighbors[i].

 };

 class Mesh {

 //parse and triangulate a height field
 //from a binary file. Assumes a square,
 //regular, grid of 257x257 2 byte
 //little-endian integer heights.
 void load(char* file_name);

 //traverse the faces and display them
 void draw();

 //list of all vertices (with normals
 vector<Vertex> vertices;

 //list of all current faces
 vector<Face> faces;

 };

 18

the index of the next face to be examined can always be determined. Also, the face shares

vertices indexed by vertices[i] and vertices[(i+1)mod3] with the face indexed by

neighbors[i].

Figure 8: Face Data Structure

In order to load a height field for use in the simplification algorithm, it needs to be triangulated

and stored as a mesh object. This is what the load method does. It reads in all the vertices and

creates the faces with appropriate connectivity.

A height field can be thought of as a rectangular grid of values. In order to triangulate this grid,

each of the squares is given an additional diagonal. The loader creates the diagonal that separates

each square into a bottom-left in the top-right triangle. The top-left vertex of the square is at

index zero in both triangles, and the rest are numbered in counterclockwise order. The bottom-

left triangles are always linked to the top-right neighbor in the same square. They are also linked

to the neighbors to the left and the neighbor to the bottom unless the square is either in the

leftmost column or the bottommost row, in which case the value of -1 is assigned to the neighbor

field. Similarly, each top-right triangle is linked to the bottom-left triangle in its square and to the

top in the right neighbors in all but the topmost row and rightmost column.

A mesh can be displayed by calling the draw method. It simply goes through the list of faces and

sends face’s three vertex coordinates down the rendering pipeline.

 19

4.4 Simplification

The energy function used is described as follows: an edge collapse can be thought of as

individually moving each of the two vertices that define the edge to a new location. An energy

value can be associated with this motion by placing virtual springs at each of the vertices of the

original mesh, so that any deviations from the original have a cost. The energy associated with a

vertex is given as the sum of the individual tensions of these springs acting on it. The change in

energy of an edge collapse is the difference between the initial energies of the two vertices

defining the edge and the final vertex to which the edge collapses.

Edges are identified in terms of a face and a neighbor index. Spring constants are assigned to the

endpoints of edges, which are vertices. This allows identification of borders and other surface

features which might require higher spring constants.

Next, the energy change of collapsing each of the edges is computed. Since the energy change of

an edge collapse depends on the location of the final vertex, several locations are tried. This

vertex location and the change in energy are associated with the edges.

After this set up, the algorithm generates a progressive mesh by repeatedly performing the least

expensive edge collapse until a specified number of faces are attained. For each collapse

performed, the algorithm saves the necessary neighborhood information required to later add this

removed detail to the progressive mesh.

4.4.1 Energy Function

The change in energy is calculated by taking the difference between the energy after the collapse

and the energy before the collapse. The initial energy is defined as the sum of all the spring

energies associated with each of the two initial vertices that define the edge. The final energy is

the sum of the spring energies associated with the single vertex that replaces them.

4.4.2 Mesh Simplifier

The mesh simplifier takes in a mesh object, identifies all of its edges, associates spring constants

with all of the vertices, and computes the initial energy changes of collapses (Figure 9). It does

 20

so by constructing a simplification mesh, which provides the data structures that implement the

above-listed concepts, as they are not part of the mesh class.

Figure 9: Mesh Simplifier Class

The getPMesh method of the simplifier is called in order to get a progressive mesh with the

desired number of faces in the base mesh. This function repeatedly applies the least expensive

edge collapse until the desired number of faces remains. The simplifier keeps a list of indices

into the edges of the simplification mesh, finds the index of the cheapest collapse, and calls the

perform_collapse method of the simplification mesh to perform the collapse. The

perform_collapse function returns a vertex split and the number of faces removed. In the case

that no faces are removed, the split is not recorded (this scenario is discussed in depth in the

performing the Section 4.4.4).

The simplifier collects the vertex splits as generated by performing the collapses. They will be in

reverse order, since the last collapse performed will be the first split that will be done by the

progressive mesh. The getPMesh method finishes by passing the final simplification mesh and

list of vertex splits to the progressive mesh constructor, which reorders the vertices and faces to

reflect the order in which they are introduced into the model.

 class MeshSimplifier {

 //return the base mesh of the
 //specified size and a sequence
 //of legal vertex splits
 PMesh getPMesh(int num_faces);

 //The mesh being simplified (with
 //vertex springs and edges).
 SimplMesh mesh;

 //indicies into the simplification
 //mesh’s edge list
 vector<int> collapse_pointers;

 //the accumulated vertex splits
 //that will be used to make the
 //progressive mesh
 vector<Vsplit> vsplits;

 };

 21

4.4.3 Creating the Simplification Mesh

The Simplification Mesh is a Mesh augmented with anchoring springs associated with the

vertices of the original mesh and edges associated with the boundaries between faces (Figure

11). The construction of a simplification mesh begins by copying the face information provided

in the Mesh (vertex and neighbor indices) into the Simplification Mesh’s face array. Edges are

then identified using a face index and a neighbor index within that face. This means that edges

are defined in terms of faces, not vertices, since the vertices that make up the face will possibly

be changing as edges are collapsed (Figure 10).

Figure 10: SimplMesh Prerequisites

 //a vertex that can exert a spring force
 //on the simplification vertices
 class AnchorVertex : public Vertex {

 //compute the spring energy from
 //this anchor to the provided vertex
 float energyTo(const Vertex &v) const;

 //spring constant for moving this vertex
 float k;

 };

 //vertices that keep track of ancestry
 //for calculating vertex energy
 class SimplVertex {

 //the current vertex information
 Vertex v;

 //the sum of the magnitudes of the
 //anchor "forces" acting on this vertex
 float ancestor_energy;

 //the ancestors from the original mesh
 set<AnchorVertex> ancestors;

 };

 //a weighted edge collapse
 class Ecol {

 //All of the fields below are indices
 //to the objects described.

 //face that is being collapsed.
 int fl_i;
 //neighbor who shares this edge.
 int fr_index;

 //vertex to which this edge collapses
 int vu_i;

 //Change in energy
 float dE;

 //whether this edge exists in the mesh
 bool active;

 };

 //Face used by simplifier
 class SimplFace : public Face{

 //index into the edge collapses on
 //the edges of the face.
 //edge[i] is the edge shared with
 //neighbor[i]
 int edges[3];

 //whether face is in the mesh.
 bool active;

 };

 //The operation that will be used
 //on the PMesh
 class Vsplit {

 //vu is split into vs and vt when
 //performing inverse (edge collapse),
 //vt and vs collapse to vu
 int vs_i, vt_i, vu_i;

 //face numbers of the faces created.
 int fl_i, fr_i;

 //face numbers of the faces that
 //have to be surrounding fl and fr
 //for collapse, or that will be
 //surrounding them after split.
 int f0_i, f1_i, f2_i, f3_i;

 };

 22

Figure 11: SimplMesh Class

Since an edge collapse removes faces, the Simplification Mesh needs to make sure that edges are

always defined in terms of active faces (ones that have not been removed yet). This process is

described in Section 4.4.4.

Faces also hold references to edges. This makes the process of updating edge collapse

information in the neighborhood efficient, since updating the edge collapse information in the

neighborhood of a just-performed edge collapse requires a simple traversal of faces in the

neighborhood.

The next step in the construction is to create the vertices with their associated sets of ancestors.

This set represents points from which the springs acting on this vertex originate and is always a

subset of the vertices in the original mesh. Initially, each vertex has only one ancestor (the vertex

 //A mesh that takes into account edges and spring energies
 class SimplMesh{

 //make it harder to move boundary vertices.
 void make_anchors(const Mesh &m);

 //calculate the change in energy for the given edge collapse
 void assign_collapse_information(const int &e_i);

 //calculate the change in energy for the given edge collapse
 //and assign the miniumum vu to verteices[vu_i]
 void assign_collapse_information(const int &e_i, const int &vu_i);

 //don't create another vu, just modify the current one
 void update_collapse_information(const int &e_i);

 //collapse the edge, update the mesh and the affected edges
 //and save the vsplit record. Return the number of faces removed
 //and the vsplit record.
 std::pair<int, Vsplit> perform_collapse(int e_i);

 //go around old_v_i and replace it with new_v_i
 void replace_corner_vertex(int old_v_i, int new_v_i, int fs_i, int fe_i);

 //redo the edge collapse calculations for the edges
 //around this vertex
 void update_ecols(int v_i, int fs_i, int fe_i);

 //all the vertices in this simplification.
 vector<SimplVertex> vertices;

 //all the edges that can be collapsed
 vector<Ecol> edges;

 //simplifier faces
 vector<SimplFace> faces;

 };

 23

at which it is originally located). When edges are collapsed and vertices are moved, the union of

the ancestries of the two vertices becomes the ancestry of the vertex to which they collapse.

In assigning spring constants to the initial ancestry, we give border vertices a higher spring

constant than center vertices. Border vertices are identified as being the endpoints of border

edges (ones whose neighbor index dereferences to -1).

With edges identified and the vertices assigned initial ancestries, the constructor finally

calculates the vertex to which each edge collapses and the energy associated with that collapse

for all of the edges. The algorithm tries a discrete number of points along the edge and uses the

one with the smallest energy change, as described above. A new vertex is introduced for each

split in order to provide expansion to view-dependent refinement of the progressive mesh.

4.4.4 Performing the Edge Collapses

Figure 12: Neighborhood Labeling

If the face referenced by the collapse is fl and the specified neighbor as fr, then the faces f0, f1,

f2, and f3 are as labeled in (Figure 12), with f0 neighboring fl on top and f3 on the bottom, and

similarly, f1 neighboring fr on top and f2 from the bottom. The information stored in a vertex

split is (vs, vt, vu, fl, fr, f0, f1, f2, f3). A vertex in the place of vl and vr is required to exist when

either a collapse or a split is performed, but they are not constrained to specific vertices and are

thus not recorded but rather inferred from the neighbor faces. The vertex split and the number of

faces that were removed are returned as the result of each call to perform_collapse.

 24

4.4.4.1 General case

In the general case, all of the faces and vertices described in the vertex split exist. The collapse

proceeds by removing fl and fr, which effectively puts a hole in the mesh. We stitch up this hole

by connecting the two faces that were neighboring each of fl and fr, and updating the vertex

references of all the faces that had either vs or vt at a corner to point to vu. The process finishes

by updating the collapse information of all the edges in the affected faces.

Care must be taken while updating the connectivity of the faces to make sure that all edges’ face-

indexes point to active faces within the mesh, and that only one edge defines the boundary

between two faces. Since edges are defined in terms of faces, removing fl or fr from the mesh

could possibly result in the algorithm eventually
3
 considering an edge that does not identify a

boundary within the mesh. On the other side of the spectrum, connecting the neighbors of fl and

fr merges two face boundaries into one. We need to make sure that neighboring faces’ edges

refer to the same edge, since otherwise we might try to collapse the same edge twice, which

would be an error, since it would not exist the second time.

Making sure that an edge’s face-index references a live face is accomplished by testing whether

any of the edges on the face being removed are identified by that face. If they are, we update the

edge’s face index to point to fr (the dereferenced neighbor as specified by the edge) and the

neighbor index for the edge becomes the index within fr that points to the face being removed.

This effectively identifies the boundary, since after the connectivity is updated the neighbor

index will point to live face. Double identification of edges is prevented by using only one of the

two neighboring face’s edges that were incident with the face being removed.

4.4.4.2 Special Considerations

Fr does not always exist. This happens when a border edge is collapsed. Fl update the

connectivity of its neighbors is updated. Fr, f1 and f2 are all set to -1 in the vertex split record,

and the number of faces removed that is returned is one.

3
 This will not happen at the first level of removals. It will occur when any of the removed face’s neighbors are

removed.

 25

One of the neighboring faces could not exist. This is the same situation for fl and fr, and

happens if one of the edges not being collapsed on fl or fr is a border edge. In that case we

remove fl or fr and link the neighbor that does exist to the border. Those neighbors’ indices that

did not exist are set to -1 in the vertex split record.

Both neighboring faces might not exist. This happens when the face is a corner, and is not

allowed, since in order to perform a vertex split later, we will have to know vl and vr. This

information is inferred from the neighborhood. If fl has no neighbors, vl will not exist. If fr has

no neighbors, vr will not exist. A large number is added to the energy change of the collapse and

no modifications to the mesh are made. This effectively eliminates the collapse from

consideration until it is updated due to another collapse. A dummy vertex split and a zero for the

number of faces removed are returned.

The neighbors of fl or fr might already be neighbors. This is not allowed, since

performing this collapse would make these two triangles adjacent to each other on two sides. The

change in energy of this collapse is adjusted like in the corner case, and a similar dummy pair is

returned.

4.4.4.3 Replacing the Vertices

When an edge collapse is performed, the instances of vs and vt need to be replaced with vu in all

the remaining faces. This is accomplished by going in counterclockwise order from the faces

adjacent to fl and fr on the top and on the bottom. It is assumed that all faces that reference vs

and vt are transitively connected to either the start or the end face. In other words, there are no

peninsulas. It is acceptable for there to be a gap in this traversal, which would happen if a border

were encountered while going counterclockwise from the start. In that case, the algorithm

proceeds clockwise from the finish until it hits the border from the other side.

A similar approach is taken when updating edge collapse information. The difference is that the

edge energies and the final vertex positions of the collapse are recalculated.

 26

5 Progressive Mesh
When the simplifier finishes performing edge collapses, it passes the simplification mesh and list

of vertex splits to the progressive mesh constructor. Since all the edges are identified when the

simplification mesh is constructed and each edge collapse introduces exactly one vertex, the

simplification mesh will have had to store exactly (#original vertices + #original edges) vertices.

Faces, on the other hand, will have always been a subset of the faces of the original mesh (Figure

13).

Figure 13: PMesh Class

5.1 Construction

In constructing the progressive mesh, the vertices and faces are reordered in the order that they

are introduced to the model, as discussed in [2]. This is accomplished by putting all of vertices

and faces from the base mesh at the beginning of the vertex and face arrays. The rest of the faces

 //allows a face to be removed from the mesh
 class PFace : public Face {

 bool active;

 };

 //Represents a progressive mesh.
 class PMesh {

 //increase the resolution of the mesh.
 //returns the number of faces added.
 int next();

 //decrease the resolution of the mesh.
 //returns the number of faces removed.
 int prev();

 //draw the active faces
 void draw();

 //go around old_v_i and replace it with new_v_i
 void replace_corner_vertex(
 int old_v_i, int new_v_i, int fs_i, int fe_i);

 //a list of all the vertices that could ever be used by the PMesh
 vector<Vertex> vertices;

 //a list of all the faces that could ever be used by the PMesh
 vector<PFace> faces;

 //an iterator pointing to the next vertex split
 unsigned int next_split_i;

 //the refinement operations that can be performed on the mesh.
 vector<Vsplit> vsplits;

 };

 27

and vertices are introduced in the opposite order that they were collapsed, since we are now

adding detail to the base model.

The transformation from the original order to the new order is accomplished by keeping two

move vectors, one for vertices and one for faces. These vectors specify where an item in the

original ordering is moved to in the new ordering. Concretely, vert_move[i] specifies that the

vertex at index i in the simplification mesh should be moved to index vert_move[i] in the

progressive mesh’s vertex list. This is accomplished by keeping a counter for the faces and the

vertices that specifies the next location to move these objects to in their respective lists.

The constructor first goes through the list of the simplification mesh’s faces, adds entries to the

move vector, and increments the current face counter for all the active faces. For each face that is

moved, all of its vertices that have yet to be moved are added to the move vector as well, and the

vertex counter is treated similarly.

Next, the list of vertex splits is traversed in reverse order and fl, fr (if it exists), vs and vt are

marked to be moved to the next available positions. Neither of these faces or vertices will have

existed in the mesh. On the other hand, the neighboring faces and vu will already be in the mesh,

since otherwise this vertex split would not be legal. These vertex split values are also updated

according to the move vectors, making sure that the indices to the faces in the neighborhood

point to the relocated positions.

After the move vectors are populated, the actual translocation of the faces and vertices begins.

The vertices are copied as specified by the move vector, and faces are also moved, but their

neighbor lists are updated to point to the moved faces.

5.2 Vertex Split (next)

The next() method of the progressive mesh class performs the next vertex split and returns the

number of faces that were added in. It proceeds by making sure that the mesh is not already at

the highest level of detail, in which case it returns that zero faces were added. Otherwise, it

introduces at least one face.

 28

The new faces will have vs and vt as two of their vertices. The other vertex, vl or vr, is inferred

from the neighboring faces. All the faces referencing vu are updated to point to vs or vt. Finally,

the method increments the current split index and returns the number of faces added.

5.3 Edge Collapse (prev)

The prev() method performs an edge collapse. This is the same operation as the edge collapse

of the simplification mesh, except that it does not have to worry about edges. It performs a lower

bound check for the vertex split index. If we are at the base mesh, no collapse is performed.

 29

6 Results
The simplification algorithm produced a progressive mesh that could be refined view-

independently from a single triangle up to the full resolution of the mesh. Below are screenshots

of several levels of detail of a 40x40 height field triangulated and simplified. Notice that the

peaks and valleys are preserved well at high resolutions (Figure 17, Figure 18, and Figure 19).

This is because the edges lying perpendicular to the areas with large slope are considered first

since they are shorter.

As more edges are simplified many springs begin to act on the same vertex. This makes the

position that optimizes the edge collapse somewhere in the center of all the ancestors.

Unfortunately, this makes the features of the model become smoother and more leveled out,

whereas a better approximation would keep the peaks and valleys at their extremes (Figure 14,

Figure 15, and Figure 16).

One way to address this problem could be to make the spring constants in areas of high curvature

larger. This would give preference to these areas in the simplification algorithm and possibly

reduce the distortion. This is the way that the borders were preserved. Other methods for

making the energy function produced better estimates of the original model are described in

future work.

 30

Figure 14: Level 0 Mesh ~35 Faces

Figure 15: Level 1 Mesh ~ 100 Faces

 31

Figure 16: Level 2 Mesh ~ 250 Faces

Figure 17: Level 3 Mesh ~ 600 Faces

 32

Figure 18: Level 4 Mesh ~ 1500 Faces

Figure 19: Level 5 Mesh (Original) ~ 3000 Faces

 33

7 Future Work

7.1 Improvements

There are several optimizations that would significantly improve the performance of the current

simplification algorithm.

7.1.1 Red-Black Trees

The data structure used to store edge collapses needs to support four operations: one-time

insertion of all the collapses; accessing the least expensive edge collapse; updating of individual

collapse information; and removal of elements. Currently, using an unsorted array to store the

collapses, insertion of all the collapses takes linear time; removal and update take constant time
4
;

and accessing the least expensive edge takes linear time, since each element in the array needs to

be considered. Because the simplification algorithm repeatedly chooses the least expensive edge,

this makes the whole algorithm have quadratic time complexity.

This time complexity could be reduced to n*log(n) by using a red-black tree implemented

priority queue, since insertion and deletion are logarithmic complexity and are performed at most

the number of edges times.

7.1.2 Anchor Spring Constant Assignment

Currently, only border edges are assigned heavier spring constants. It would make sense to allow

similar labeling of other important features of the mesh, such as areas with high curvature. This

can be accomplished by adding more predicates on the corners of faces. The predicates cannot be

made on the vertices themselves, since there is no direct link between vertices, but there is

between faces. Possible criteria could be thresholds for the angles of the edges that are incident

on that corner. If the predicate evaluates to true, then an associated value for the importance of

the feature can either be assigned or added to the current spring constant at that vertex.

7.1.3 Energy Functions

The energy function used in this project was chosen due to its simplicity. It preserves details well

in the early stages of the simplification, when there are but a few anchor vertices, since the

4
 Removal is accomplished by setting the active field of the edge collapse to false. Updating an element requires

dereferencing the array at a certain index.

 34

springs make the collapses favor edges closer to the original geometry. After many collapses

have been performed, though, too many forces end up acting on a single vertex, which causes the

model to smooth out.

Even though this can be acceptable for modeling objects that are far away, it is inadequate for

closer use. Since part of the criteria for simplification is the processing power of the device being

used to render the model, the simplification algorithm will need to be able to produce good

approximations of the models even at low resolutions of the mesh.

Mesh Optimization [1] and Progressive Meshes [2] have already addressed this problem. In

future work, the energy function from these papers should be used. It would be an interesting

exercise, though, to see whether the vertex spring energy function used in this project could be

adjusted to attain better low-resolution approximations since it is mathematically much simpler.

Another possible improvement to the energy function is to add a term that attempts to preserve

symmetry within the object. This is not as important with terrains, but when modeling man-made

objects, the low-level approximations produced by the progressive mesh simplification algorithm

do not seem to account for symmetry, as can be seen in the low resolution illustrations of the

Figure 20 and Figure 21.

 35

Figure 20: 150 Face Airplane from Progressive Meshes [2]

Figure 21: 444 Face Spaceship from Efficient Implementation of Progressive Meshes [3]

7.2 Expansions

Several expansions can be envisioned that use the current implementation as a subsystem. Some

of them are listed below.

7.2.1 View-Dependent Refinement

The current progressive mesh data structure is set up for allowing view-dependent refinement as

described in [5]. The neighborhood information contained in the vertex split records is enough to

allow the construction of a vertex refinement hierarchy. Combined with refinement criteria based

 36

on camera distance from the vertices, possibly optimized using spatial-partitioning data

structures and algorithms, the progressive mesh could be used to generate a view-dependent,

continuous level of detail mesh.

7.2.2 Procedural Planet Generation

There are many more parts of the procedural planet generation project that need to be

implemented. There will need to be a fractal terrain generator that can generate models at

varying levels of detail. Architecture for a single user and multi-user exploration of the same

planet will need to be created. Some of these concepts may be borrowed from Virtutopia

(discussed below).

The same environments could potentially be used for different applications with varying

rendering expectations. In a video game, interactive frame rates are important, while rendering

an environment for use in a movie would also desire information about special effects to make

the environment seem more realistic. This interface to different renderers is possible if

standardized data representation and distribution models are created. All the information needed

for the highest supported renderer could be stored with the model, and subsets of these properties

could be transmitted as required by the more-constrained renderers. For example, a renderer that

will not be doing ray tracing will not need to know about the speed of light constants of

transparent materials. At the same time, this extra information might be vital in achieving a

certain mood in a movie scene.

For the interactive part of procedural planet generation, it might be appropriate to modify the

currently generated model. An example of this would be chopping down a forest to build the city

or creating a crater due to meteor impact. A system for allowing these changes will also need to

be developed.

7.2.3 Virtutopia

Progressive meshes could be used in the Virtutopia [11] project in a similar manner as described

for the Procedural Planet Generation project. Virtutopia is meant to be “a gateway into many

various virtual environments where thousands of users can interact on artwork, solve engineering

problems, or lose themselves in an online video game” [11]. Such a gateway will need an

 37

efficient way of rendering objects on many different platforms of varying processing power.

Progressive meshes can provide this mechanism.

Progressive meshes could be incorporated into the Virtutopia server-side object repository by

providing a progressive mesh transmission mechanism between the Virtutopia server and

Virtutopia clients. The server would contain a precomputed progressive mesh representation of

the objects that would be displayed in the world and could send varying levels of detail

representations of the object, based on factors like client frame rate, distance from the camera,

and current server bandwidth use.

Transmission would proceed as described in the Progressive Meshes [2] and Efficient

Implementation of Progressive Meshes [3]. In the general case, the base mesh could be sent from

the server to the client where it could be cached and displayed in the renderer. Requests for

refinements could be made based on different criteria, including distance from the camera and

high frame rates. The client could update the mesh view-dependently or independently and ask

the renderer to create the geomorph between the two levels of detail that are being switched.

 38

8 References

1. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. Mesh optimization.

In Computer Graphics Proceedings, Annual Conference series, ACM SIGGRAPH, pages

19--26. 1993

2. Hoppe, H. Progressive meshes. Computer Graphics (SIGGRAPH '96 Proceedings), pages

99--108, 1996.

3. Hoppe, H. Efficient Implementation of Progressive Meshes. Computers & Graphics Vol.

22 No. 1, 27-36, 1998.

4. Xia, J., and Varshney, A. Dynamic view-dependent simplification for polygonal models.

In Visualization '96 Proceedings, IEEE, pp. 327--334. 1996

5. Hoppe, H. View-dependent refinement of progressive meshes. In SIGGRAPH '97, pages

189--198. 1997

6. Hoppe, H., Smooth view-dependent level-of-detail control and its application to terrain

rendering, Proc. of IEEE Visualization '98, pp 35-42; 516, 1998.

7. Duchaineau, M., Wolinsky, M., Sigeti, D.E., Miller, M.C., Aldrich, C., Mineev--

Weinstein, M.B.: ROAMing Terrain: Real--time optimally adapting meshes, in Proc.

Visualization '97, 1997.

8. Brown, P. "Selective Mesh Refinement for Rendering." Selective Mesh Refinement for

Rendering. February 1998. University of Cambridge. April 2007.

<http://www.cl.cam.ac.uk/research/rainbow/publications/pjcb/thesis/>.

9. Ebert, D., Musgrave, F., Peachey, D., Perlin, K., Worley, S. Texturing and modeling a

procedural approach Third edition, Morgan Kaufmann Publishers, 2003

10. Martz, P. “Generating Random Fractal Terrain” Generating Random Fractal Terrain,

1997. http://www.gameprogrammer.com/fractal.html

 39

11. Janc, A., Jarmak, M., Kolk, S., Martin, R., Pedrotti, O. Virtutopia: A framework for

virtual invironments, WPI Electronic Projects Collection, 2007

12. Hill, F.S., Computer Graphics Using Open GL Second Edition, 2001, Prentice Hall

13. “Terragen,” Terragen, April 2007, http://www.planetside.co.uk/terragen/

14. Derek Radtke. Please contact the author for more information.

15. “Algorithmic Botany: Publications,” BMV Publications May 2007, University of Calgary

http://algorithmicbotany.org/papers/

16. Lorenz, W. “Fractals and Fractal Architecture”, Fractals and Fractal Architecture, May

2007 http://www.iemar.tuwien.ac.at/modul23/Fractals/subpages/62Cityplanning.html

 40

9 Tools Use

• GNU C++ compiler – This project was implemented using C++.

• Standard Template Library - many of the container classes and algorithms, such as

finding the minimum element, used in this project were from the standard template

library.

• Theilana - the three dimensional mathematics libraries were taken from Derek Radtke’s

Theilana physics engine.

• OpenGL - is an open source reference Library and was used to render the meshes.

• Terragen - is a free for noncommercial use fractal terrain generator used to generate the

height fields for the model simplified in this project.

• Eclipse - that eclipse C++ development interface was used for the programming.

	Worcester Polytechnic Institute
	Digital WPI
	May 2007

	Procedural Planet Generation
	Andrey V. Sklyar
	Repository Citation

	tmp.1535548689.pdf.2kCps

