Worcester Polytechnic Institute Digital WPI

Major Qualifying Projects (All Years)

Major Qualifying Projects

April 2009

Temperature Estimation Using Ring Oscillators

Gregory D. Pierre-Louis Worcester Polytechnic Institute

Justin Wells Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

Repository Citation

Pierre-Louis, G. D., & Wells, J. (2009). *Temperature Estimation Using Ring Oscillators*. Retrieved from https://digitalcommons.wpi.edu/mqp-all/1548

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Project Number: BS2-0902

TEMPERATURE ESTIMATION USING RING OSCILLATORS A Major Qualifying Project Report submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science By

Grégory Pierre-Louis

Justin Wells

Professor Berk Sunar, Advisor

This report represents the work of one or more WPI undergraduate students submitted to the faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports on its web site without editorial or peer review

TABLE OF CONTENTS

TABLE OF CONTENTS	2
LIST OF TABLES	4
LIST OF FIGURES	4
LIST OF EQUATIONS	4
ACKNOWLEDGEMENTS	5
ABSTRACT	6
INTRODUCTION	7
BACKGROUND	9
Previous Work	9
FPGA's	. 11
Structure	. 11
Design Process	. 12
Propagation Delay vs. Temperature	. 13
Ring Oscillator	. 13
TESTING TOOLS	. 14
FPGA Development Board	. 15
JTAG	
System Monitor	. 15
Applications	. 16
Xilinx ISE 10.1	. 16
ChipScope	
METHODOLOGY, TESTING, AND ANALYSIS	
Ring Oscillator vs. Pulse Generator	. 18
Initial Testing and Design	. 19
Temperature Chamber Testing	. 20
Analysis	. 21
Count-to-Temperature Conversion	. 22
Ring Oscillator Delay	
CONCLUSION	
FUTURE RECOMMENDATIONS	. 31
Pulse Generator	. 31
Temperature Chamber	. 31
Placement of the Ring Oscillator	. 33
REFERENCES	. 35
APPENDICES	. 36
Appendix A : MATLAB Code	. 36
Get Data	. 36
Load Data (Create Spreadsheet)	. 37
Appendix B : FPGA Code (VHDL and Schematics)	
Xilinx ISE Project Properties	. 38
Inverter	. 38
Delayline	. 38
Ring Oscillator	. 39
Fixed Ring Oscillator	. 39

Counting State Machine	
Clock Convert	
RS232 State Machine	
System Monitor Setup	
R\$232	
Design Implementing the RS232	
Send/Get State Machine	
Top Level Design Module	
Appendix C: CTC Table	

LIST OF TABLES

Table 1 – Initial Inverter-Cycle Results	20
Table 2 – Resolution Table	

LIST OF FIGURES

Figure 1 – A 3-Inverter Ring Oscillator	14
Figure 2 – Measured Temperature vs. Count, "Eyebrowing" Effect	22
Figure 3 – Measured Temperature vs. Count, 20-70°C	23
Figure 4 – Measured Temperature vs. Calibrated Count, 20-70°C	24
Figure 5 – Calculated Temperature vs. Calibrated Count, 20-70°C (using Equation 6)	25
Figure 6 – Measured and Calculated Temperature vs. Calibrated Count, 20-70°C	25
Figure 7 – Measured and Calculated Temperature vs. Calibrated Count, 20-70°C, with ±2σ	5 Error
-	26
Figure 8 – Xilinx Device Utilization Summary Screen Shot	30
Figure 9 – PlanAhead Screenshot	34
Figure 10 – ISE Project Properties Selection	38
Figure 11 – Ring Oscillator	39
Figure 12 – Fixed Ring Oscillator	40
Figure 13 – System Monitor Wizard Setup Pg 1	44
Figure 14 – System Monitor Wizard Setup Pg 2	44
Figure 15 – System Monitor Wizard Setup Pg 3	45
Figure 16 – System Monitor Wizard Setup Pg 4	
Figure 17 – System Monitor Wizard Setup Pg 5	46

LIST OF EQUATIONS

. 10
. 10
. 10
. 14
. 16
. 24
. 27
. 28
•

ACKNOWLEDGEMENTS

This team would like to thank Prof. Berk Sunar for his direction and advising. We would also like to thank Mr. Brendon Chetwynd, Mr. Evan Custodio, and Mr. Gerardo Orlando for supplying us with our workspace and equipment and for tending to our requests. We thank Ms. Robyn Colopy and Mr. Jatin Chopra for their VHDL and MATLAB guidance. We would like to acknowledge Mr. David Houlette for answering our questions about Xilinx and FPGA's. Lastly, we would like to thank all of the employees of GD in Needham for providing us with a friendly work environment.

ABSTRACT

Partnering with C-4 Systems of General Dynamics in Needham, MA, this Worcester Polytechnic Institute Major Qualifying Project team explored the idea of designing a completely digital temperature sensor on field-programmable gate arrays. The goals of this MQP were (1) to find consistency between our research and results, and (2) to design a sensor capable of outputting a range of 0-70°C, a resolution of 0.1°C/count, and an error of \pm 1°C. Since propagation delay is dependent on temperature, we designed a ring oscillator out of logical inverters and counted the number of set clock periods to measure the length of the oscillator's total delay. We implemented our design and determined its measuring capability to be 20-70°C with an average resolution of ~0.13°C/count and an error of \pm 2.75°C.

INTRODUCTION

Partnering with C-4 Systems of General Dynamics in Needham, MA, this Worcester Polytechnic Institute (WPI) Major Qualifying Project (MQP) team explored the idea of measuring temperature on field-programmable gate arrays (FPGAs) without using any on-board temperature sensors. Power losses can occur in the form of heat because of manufacturing imperfections and more than often lead to errors in the functionality of the chip or unexpected results due to the increase in temperature. Overheating is becoming a serious concern as more densely packed transistors within the chips are generating more heat per unit area. The advantages of using a digital sensor over an analog sensor are that less chip size and power is used, there is no permanent use of any of the FPGA elements, and it will be flexible enough so any FPGA may use with minor adjustments.

The demand for small sized, high accuracy chips has grown over time, and with that, the demand for low consumption smart temperature sensors has also grown. Also, demand for these sensors to consume less power has grown as the desire to prevent internal overheating and also improve battery life has grown[1].

Developers of smart sensors have become more concerned with increasing power consumption when increasing resolution, accuracy, range, or die size of a chip. Consumers on the other hand have become more concerned with the decreasing resolution, accuracy, range, or die size when buying cheaper sensors. Seemingly, the higher the power consumption, the more expensive the sensor become. Along with increased power consumption, cost of manufacturing FPGAs with on-board sensors also increases [1].

Much research has been done to turn away from analog-to-digital converters (ADC's) which occupy much of the chip size. Recent technological focus has been geared towards

completely digital sensors with use of a time-to-digital converter (TDC) to produce the digital output. In the literature we found one particular digital sensor that consumed 8.42μ W of power with a range of 0-75°C, a resolution of less than 0.1°C, and measurement error of ±1.5°C and [1].

Many of the designs make use of a time domain temperature sensor, a timing reference, and a TDC. The time domain temperature sensor is a thermally sensitive digital oscillator or pulse generator which is based on the fact that the propagation delay of logic gates increases with time. The timing reference is simply the on-board clock and the TDC being a simple counter. The number of oscillations or pulses that the counter counts varies with temperature. With this count, we can create a series of temperature curves and create an approximate count-totemperature conversion table. From this table, as opposed to outputting a count, one should be able to create a look-up table (LUT) to directly output the die temperature.

The goal of this MQP was two tiered: (1) to verify the theoretical design with practical experiments, and (2) to design a sensor capable of outputting a temperature with a range of 0-70°C – the typical commercial range, a resolution of 0.1°C/count, and an error of $\pm 1°C$. The sensor would be integrated into the chip for temperature monitoring and has the potential to serve as a way to minimize the risk of overheating and damaging the FPGA.

BACKGROUND

In this chapter, we discuss many of the issues we encountered in the course of our MQP, such as the general concept of FPGAs and how temperature relates to propagation delay.

Previous Work

Although we did much research in digital sensors, this particular piece contained much of the information we would use to base our design. The article describes a project similar to ours, so our initial steps in the MQP were to attempt to duplicate their project as much as we could and analyze temperature in a similar way [1].

FPGAs provide a great platform for this implementation. FPGAs yield high performance at relatively low cost, consume a relatively small area, and most importantly are reprogrammable. In the past, smart temperature sensors have been primarily constructed using analog-to-digital converters (ADCs). ADCs account for a large chip area, high power consumption, and often come with a limited temperature range. In this project, a time-to-digital converter (TDC) was used in place of the analog-to-digital converter. The TDC was combined with a pulse generator to produce a digital output. The chip size was reduced to nearly one tenth of that of the typical ADC. Furthermore, the power consumption was reduced to as low as 10 microwatts.

A simple counter would suffice as a TDC, as long as the pulse generator created a wide enough pulse. Using a reference clock of 100 MHz, the width would need to be tens of nanoseconds for an accurate reading.

Using the equations from [1] shown below, it was easier for the group to analyze the relationship between propagation delay and temperature.

9

$$T_{D} = \frac{(L/W)C_{L}}{\mu C_{OX}(V_{DD} - V_{T})} \ln(\frac{1.5V_{DD} - 2V_{T}}{0.5V_{DD}})$$

Equation 1 – Propagation Delay for the NOT gate

Mobility of holes and electrons, μ , is the relation of the speed of holes and electrons to an applied electric field. The mobility μ is expressed in Equation 2.

$$\mu = \mu_0 \left(\frac{T}{T_0}\right)^{km}, \qquad \qquad km = -1.2 \sim -2.0$$

Equation 2 – Mobility

The voltage across the insulating layer and the substrate of the transistor is called the threshold voltage, V_T . This is affected by temperature as seen in Equation 3.

$$V_T(T) = V_T(T_0) + \alpha(T - T_0), \qquad \alpha = -0.5 \sim -3.0 \,\mathrm{mV}/^{\circ}\mathrm{K}$$

Equation 3 – Threshold Voltage Temperature Dependency

Looking at these equations, one can see that as temperature increases, both mobility and threshold voltage decrease. In the situation in which V_{DD} is much higher than the threshold voltage (VT), it is seen that the higher the temperature is, the longer the propagation delay. This allowed for an easier creation of a delay line using a series of *N* inverters given the desired length, which would need to be quite long to get a reading for the desired temperature range.

FPGA's

Field-programmable gate arrays fall under a class of devices that are labeled "reconfigurable" or "reprogrammable" hardware. FPGAs are able to perform nearly any digital function they are programmed to realize. Application-specific integrated circuits (ASICs) are non-programmable and typically have one use. ASICs perform better than FPGAs but are much more expensive due to the customization capabilities. FPGAs are useful because they can be reprogrammed and reused respective to the task at hand for a cheaper cost with slight compromise in performance. Undesired functionality of the device can be fixed on field and non-recurring engineering costs are reduced [2].

Structure

FPGAs contain configurable logic blocks (CLBs) adjacent to two-dimensional arrays of wires. These wires are similar to roads on a map, running east to west and north to south. Each of these vertical and horizontal wires forms switches; and the intersection of these switches collectively create a programmable switch matrix (PSM). At a gate-level design, small subcircuits are partitioned from the design to be assigned to a CLB. Connections are then established between the CLBs via PSMs. The hardware blocks around the outskirts of the chip are used to drive signals on and off the chip. These blocks are called input/outputs blocks (IOBs). It can then be said FPGAs are comprised of mainly two types of building blocks: CLBs and IOBs [2, 3].

CLBs are basically comprised of a RAM modules, which are referred to as a lookup tables (LUTs), D-flip-flops, and multiplexers to bypass the D-flip-flop. A LUT can perform any logic gate of four inputs and quite recently even six. Depending on the manufacturer, the blocks can be made to be more complex for efficiency and functionality by duplicating or adding more components. "The propagation delay through a LUT is independent of the function implemented," [4]. Thus, meaning that no matter what the function is, the propagation delay of the LUT is the same as the delay of all functions. Furthermore, LUTs are truth tables. A truth table is a predefined list of outputs generated by every combination of inputs [2, 3].

Design Process

There are several ways to model a design into a CAD tool which will synthesize and produce a configuration bitmap to be downloaded into an FPGA. One way to enter a design is schematic capture. Hardware description languages (HDLs) are a great alternative to enter a design. The two most popular HDLs are Verilog and VHDL. This team will focus mainly on VHDL. The sequence of activities that is encompassed in FPGA implementation is as follows [2]:

- HDL Model This step refers to the actual coding process that proceeds interpreting the initial problem description which may be through state diagrams, truth tables, or a simple English description.
- Behavioral Simulation The coding must be simulated before synthesized on the FPGA to ensure that its functionality is properly implemented.
- Synthesis The design is then synthesized to a library of gates, flip-flips, latches, and perhaps other primitive components
- 4. *Functional Simulation* Using the physical properties of the FPGA, timing information is acquired to simulate preliminary performance estimates.
- 5. *Place and Route* The design is then mapped and placed; each primitive component is assigned to a specific CLB on the FPGA. The connections are then routed via PSMs. Accurate, more so then the functional simulation, timing information can be

obtained – this is often referred to as verification. The configuration bits or bit stream are then produced.

 Programming – The bit stream is loaded into the chip to be configured to implement the design.

Propagation Delay vs. Temperature

Propagation delay is the amount of time it takes for a logic gate to switch to the correct output after any of its inputs have changed. Delay of transitioning from a logic 1 to a logic 0 may be different from the delay transitioning from a logic 0 to a logic 1. Also, depending on the quality of the components of the gates manufactured, propagation delay may vary. Furthermore, propagation delay may attribute to glitches in digital components as logic blocks may not change faster than others resulting in an undesired output. For the primitive gates, p-channel transistors are used to control the sourcing current. In contrast, n-channel transistors are used to control the sinking current. P-channel transistors when in series or parallel can be combined into an equivalent p-channel transistor. The same follows for an equivalent n-channel transistor. Usually, the p-channel transistor is a pMOS transistor and the n-channel channel is an nMOS transistor [1].

Ring Oscillator

A ring oscillator is a chain of an odd number of NOT gates whose output is connected back to the input. The output of the chain would change when the previous output is inverted due to the odd number of inverters after the gates' propagation delays. When sufficiently many gates are used it is possible to generate a near square wave pattern. An even number of gates would not cause an oscillation since two or any other even number of inversions of a signal would cause an unchanged output. A schematic of a basic 3 inverter ring oscillator can be seen in Figure 1.

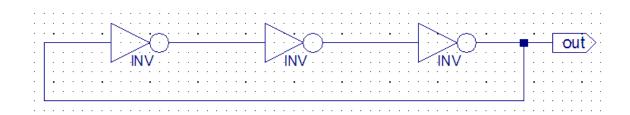


Figure 1 – A 3-Inverter Ring Oscillator

The frequency of the oscillator is shown below in Equation 4 with N being the number of gates and τ being the propagation delay of one gate, assuming that the delays of all the gates used are the same.

$$f = \frac{1}{2N\tau}$$

Equation 4 – Approximate Frequency of a Ring Oscillator

As discussed in the previous Section and captured in Equation 4 higher temperatures result in larger propagation delayshigher temperatures result in smaller frequencies. If a method could be devised to count the amount of times the oscillator fluctuates, one could theoretically relate the count to temperature.

TESTING TOOLS

Many programs and software tools are required for interfacing, simulation, testing, and eventually programming of a development board. We used these tools, along with some Xilinx tools, as stepping stones to a final temperature sensor design.

FPGA Development Board

Upon starting our project with General Dynamics, we were provided with a Virtex-5 ML505 development board – specifically with the XC5VLX50T device with a speed of -1 and the FF1136 package. The package provided many features, most of which we would not require during our design. The board came equipped with a Virtex 5 FPGA, which would eventually become our programming device to measure temperature.

JTAG

We used the JTAG interface when trying to connecting our board to the computer and establishing a method of sending and receiving information was one of the first steps in our design process. The JTAG chain starts at the connector and runs through the series of PROMs, CPLD, ACE controller, an FPGA board and an expansion card if necessary. Our main use would be programming and accessing the FPGA using the JTAG connection. However, it also allowed for us to incorporate the analysis tool Chipscope which we will discuss later in this section.

System Monitor

Along with the many functions available on the Virtex-5 platform, the FPGA comes with a block known as System Monitor [5]. System Monitor is located at the center of the die, and is developed around a 10-bit, 200-kSPS Analog-to-Digital Converter (ADC). Using other on-chip sensors, the ADC can measure operating characteristics such as on-chip power supply voltages and die temperatures. There are also 16 user-selectable external inputs, which allows monitoring of the external environment of the chip and entire board. The system also allows for the user to set constraints on voltage and temperature, as well as external inputs, to set off alarms based on parameters going either above or below the desired constraints. The System Monitor also is able to implement averaging of desired output values, either 16, 64, or 256 times.

The System Monitor does however have an error of $\pm 4^{\circ}$ C. Noticing on the chart that 1 LSB (least significant bit) correlated to around .49 °C, and that a count of 0 correlated to -273 °C, we created the equation below to relate our count to an appropriate output temperature.

Temperature = Count*0.49-273, where Temperature is expressed in °C

Equation 5 – System Monitor Count-to-Temperature Equation

We multiplied our count by the .49 °C for the LSB, then subtracted the 273 °C representing a count of zero to create out temperature output in MATLAB. We used the System Monitor as the reliable source of temperature considering other such measurement sensors and devices are less accommodating for automation.

Applications

Xilinx ISE 10.1

Xilinx ISE 10.1 was our main programming tool used throughout the project. The software allows the user to develop, simulate, and eventually program in a variety of methods. Our main use of the Xilinx ISE was for VHDL coding as well as simulation and schematic development. The Xilinx tool is designed to maximize connectivity and programming speed between the computer and the Virtex 5 FPGA. Xilinx ISE 10.1 allowed for us to easily write and

simulate VHDL for our project, and connect easily and program to our FPGA via the JTAG chain [3].

Our programming language throughout this project was VHDL. The program was created by the United States Department of Defense to assist in the development of high-speed integrated circuits. The language was changed in 1987, then again in 1993, and updates have been taking place ever since, all adhering to IEEE standards. VHDL is a commonly used programming language for FPGAs.

ChipScope

ChipScope is a software tool that comes with the Xilinx ISE 10.1 package, and is essentially like having an oscilloscope that analyzes cores designed onto the chip. The tool analyzes logic and allows the user to view any internal FPGA signal or node, which includes embedded processors. The signals are analyzed via the JTAG chain and analyzed through the ChipScope Pro Logic Analyzer tool. The ChipScope tool was another method used to monitor on-chip temperature. We used ChipScope for debugging, initial informal testing, and verification of our implementation of the System Monitor [6].

METHODOLOGY, TESTING, AND ANALYSIS

Ring Oscillator vs. Pulse Generator

We attempted to design a sensor using the generator, with little success. In the initial steps of our project we had discussed the creation of a ring oscillator, which would serve as a delay line to allow for the measurement of temperature. Our ring oscillator design was going to be a simple series of inverters; however the Xilinx tool removes inverters from a design during synthesis, so this added a new challenge to the task. We found a coding method that would allow for the synthesis of inverters, and after trying both a schematic and VHDL approach to the design, we decided that the coding was much more practical, as with the large number of inverters being used the program was finding it difficult to handle the design from a schematic standpoint.

After creating our ring oscillator, we soon ran into another issue. During the Xilinx testing phase, we realized our design experienced some degree of metastability. Metastability occurs when an output is neither 0 nor 1 at a specific time, and is essentially fluctuates in a random way between the two stable states. It can be compared to a ball rolling up a hill, with 0 being at the bottom of the hill, and 1 being on the other side. However, the ball does not have enough momentum to get all the way over the hill, and is stuck at the top. That is essentially the idea of metastability. We noticed this problem in our testbench waveformsWe overcame metastability by simply inserting two groups of 2 flip-flops into our design.

While we have chosen to design our circuit with the ring oscillator as opposed to the pulse generator, the pulse generator is also a useful option for this design since it has less jitter. It

might have actually made the design easier, however we felt more comfortable with the oscillator circuit.

Initial Testing and Design

During the first stages of our MQP when we determined that a ring oscillator would be an appropriate delay circuit, the question that needed to be answered was how many inverters we would need within the oscillator. In [1], the team was able to develop a circuit with a resolution near .1 degree Celsius per count with 140 inverters.

When we began testing we found that we were only receiving a reasonable resolution with an extremely large number of inverters, around 4000. We knew this was not practical for a design, and also took too much time to simulate and implement using Xilinx. Also with such a high number of inverters, the chip temperature would be raised due to self-heating, which was a side-effect we were hoping to avoid. In order to help reduce the number of inverters, we created a cyclic counter. The counter counts the number of times the oscillator completes a full cycle. This number can be changed within our code to increase or decrease the resolution. We then output the total number of clock ticks that our master counter sees between the given numbers of cycles. The cycle counter dramatically helped us reduce the number of inverters in our circuit.

Informally, we seemed to have reached our desired resolution of 0.1°C/count with multiple inverter and count combinations, as shown in Table 1. According to Equation 4, assuming a propagation delay of 0.238ns [4], the frequency of an oscillator with only 21 inverters is 100.04MHz. Since this is faster than our 100MHz master clock, it would cause synchronization issues and our sampling would not be accurate. The fewer inverters in the ring, the higher the oscillation frequency. We chose not to test rings with less than 21 inverters.

Inverters	Cycles	Count (16 bit)	Resolution
421	256	8100	.7 deg/count
421	512	16,200	.4 deg/count
421	1000	33,400	.16 deg/count
41	1000	4,300	1 deg/count
41	4096	16,700	.49 deg/count
41	8,192	31,500	.33 deg/count
	,	,	9
100	10000	OVERFLOW	
41	16,000+	OVERFLOW	
51	10000	41,000	.16 deg/count
51	12345	49,100	.12 deg/count
51	13579	56,200	.086 deg/count
25	15000	22.500	1E dog/oourt
25	15000	33,500	.15 deg/count
4200	16	900	

Table 1 – Initial Inverter-Cycle Results

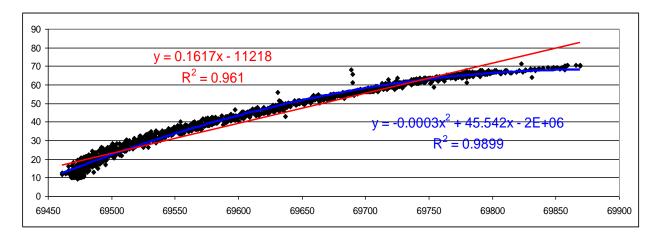
Our overflow problems were easily fixed when we began to use a 32-bit counter rather than 16-bit. From this test, we determined our optimal number of inverters to be 51 since it seemly gave us an appropriate resolution for our application and as one can realize from Table 1, the higher the count, the better the resolution. We did our formal testing using 51 inverters and a cycle count of 16,384 yielding an outputted count of ~70000.

Temperature Chamber Testing

We were granted access to a laboratory equipped with a temperature chamber capable of providing a stable temperature within our desired range (0-70°C). The user is able to input the

desired temperature, and the machine will either heat up or cool down until that point is reached. We placed our board inside, and ran our JTAG and RS232 cables out to a computer.

We decided that in our first test we would sweep through an input range on the chamber of -15 to 70°C. During our first half a dozen tests we saw unexpected results. We determined that we had lowered the temperature of the board too much and neither our program nor the system monitor was behaving properly. Once we reached an input temperature of around 15-20 °C, both the system monitor and our design began running smoothly. From -15 to 55 °C we let our design rest for 2 minutes to allow the chamber to heat up to the desired input. From 60-70 °C we let the design rest for 3 minutes as the hotter the desired temperature, the longer the chamber took to heat up. As previously mentioned, from 20-70°C our design appeared to operating with the least error, so in the ensuing tests we did not set the temperature any lower than 0°C.


In our next test we ran our design continuously. We allowed the temperature sensor to cool to 0°C, and then set it for 70 and ran our design. The sensor took 16 minutes to heat up to 70°C, at which point we stopped running our design. We repeated this test going from 70°C down to 0, which took around 16 minutes as well. Both produced similar and accurate results.

In our final test of the day we let the chamber again settle at 0°C, and then every minute increased the temperature by 5°C until it reached 70, with our design again continuously running in the background.

In these 4 tests we were able to see excellent results, matching perfectly to our expectations. We recorded well over 1000 data points for analysis.

Analysis

When comparing the System Monitor temperature output to our count, results show that there is indeed a direct proportionality between temperature and propagation delay. Although we expected a linear relationship, we found that there was some exponential curving and also relatively more noise located at the lower values of our count. We call this effect "eyebrowing" since the features of our curve are similar to that of a human eyebrow as seen below.

Count-to-Temperature Conversion

Figure 2 – Measured Temperature vs. Count, "Eyebrowing" Effect

In Figure 2, the x-axis represents our outputted count and the y-axis represents the System Monitor temperature output. Each data point represents one of our counts corresponding to temperature. The red trend line is a one-termed line with a determination coefficient (R^2) of 0.961 while the blue trend line is a two-termed line with a R^2 value of 0.9899. The determination coefficient is used to observe the variance of data. In this context, the closer R^2 is to 1, the more likely it is to fit the trend line.

If we were to use the linear approximation, we would expect, as seen in its equation of the line, a total resolution of 0.16° C/count. Below is a chart expressing the count range, and the resolution and R² value of one-termed trend lines generated between 10°C margins.

Temperature Range (°C)	Count Range	Resolution (°C/count)	\mathbf{R}^2
<20	69461-69496	0.2852	0.4490
20-29	69475-69538	0.1880	0.7309
30-39	69512-69590	0.1467	0.8296
40-49	69554-69647	0.1295	0.8350
50-59	69631-69754	0.1107	0.9024
>59	69689-69869	0.0689	0.8173

Table 2 – Resolution Table

Looking at the table above, we notice that as temperature increases our resolution and accuracy also increase. Looking back, our goal was to design a sensor capable of outputting a resolution of .1°C/count. Our current design is able to output such a resolution, but only in the in the range 20-70°C. Below is a plot of our range.

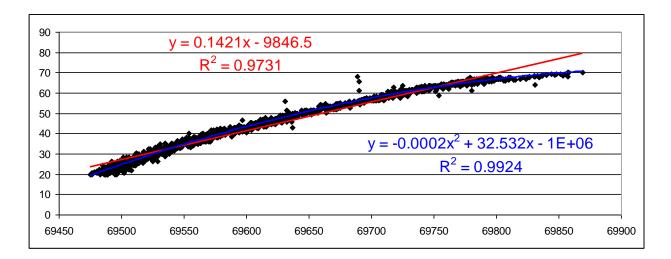


Figure 3 – Measured Temperature vs. Count, 20-70°C

In the figure above, we notice that the eyebrowing effect is somewhat less dramatic and both the resolution of the one-term trend line and the R^2 of both trend lines have improved. Below is a plot expressing the calibrated count generated by subtracting 69420 from our outputted count.

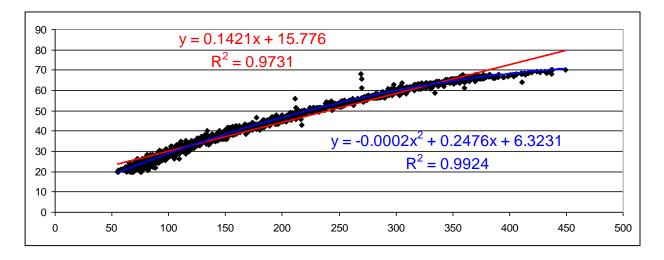


Figure 4 – Measured Temperature vs. Calibrated Count, 20-70°C

Above, we see that the magnitude of the intercepts used in the line equations have dramatically decreased. Also, the quadratic approximation seems to be a near fit of the recorded curve. If we attempted to use the linear approximation, we would find that calibrated counts above 350 would become increasing inaccurate. Below is the equation that expresses our count-to-temperature conversion, CTC, using the quadratic approximation equation.

$$CTC = -0.000234^{*}(N - 69420)^{2} + 0.2476^{*}(N - 69420) + 6.3231$$
, where N is the count

Equation 6 – Count-To-Temperature Conversion Equation

Using our calibrated recorded counts as the independent variable, we find that the resulting calculated temperature vs. count curve closely resemble that of our measured temperature vs. count curve as seen below.

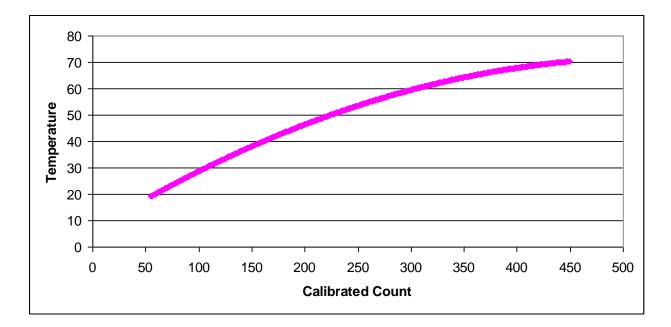


Figure 5 – Calculated Temperature vs. Calibrated Count, 20-70°C (using Equation 6)

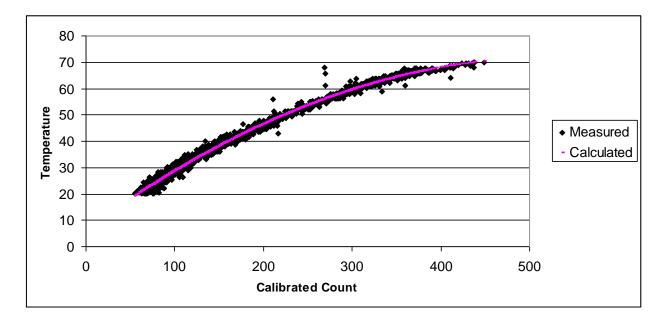


Figure 6 – Measured and Calculated Temperature vs. Calibrated Count, 20-70°C

Sweeping through calibrated counts of 55, our lowest recorded calibrated count for 20°C, and up to 449, our highest recorded calibrated count at 70°C, we find that the difference in the

resulting temperatures between adjacent counts slowly decreased as the count increased. We also find that with the calculated values, we have the worst case resolution of ~ 0.22° C/count at the lowest recorded count at 20°C, and we have the best case resolution of ~ 0.039° C/count at the highest recorded count at 70°C. Averaging all of the differences, we in addition find that the mean resolution of our calculated temperature is ~ 0.13° C/count.

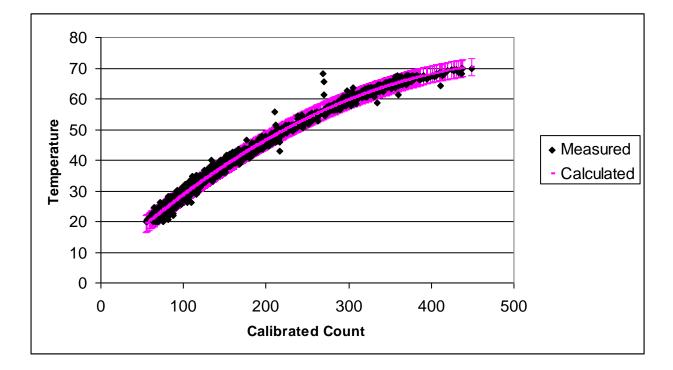


Figure 7 – Measured and Calculated Temperature vs. Calibrated Count, 20-70°C, with ±2σ Error

Our calculated curve generates a max error of $\pm 12^{\circ}$ C when referencing our recordings. However, we calculated that the 95% of recorded values fall within $\pm 2.75^{\circ}$ C of our calculated temperature. We found this by calculating the mean and standard deviation σ of the error between our measured and calculated temperature values. While the mean of our error is 0.945°C, σ turned out to be 0.905°C. Realistically, this team would prefer to use the same amount of output bits as the System Monitor. This is plausible since the temperature would output at the most 3 digits which would only require 10 bits. The truth table in which count, calibrated count, actual temperature, and output temperature is located in Appendix C.

Ring Oscillator Delay

Empirically, there must be a way to calculate the propagation delay through the inverters used in the ring oscillator by using the count and our design specifications. Recall that our design basically works by counting the number of clock ticks between the oscillation of a pulse coming from a 51-inverter ring oscillator. Knowing that we use a circulation counter of 2^{14} and a master clock of 100MHz, we can determine the propagation delay with respect to the count. The equation below expresses mean delay through one inverter.

$$\tau_{P_{individual}} = \mathrm{T}(\frac{N}{2C}) * \frac{1}{K},$$

Equation 7 – Mean Delay through One Inverter, $\tau_{Pindividual}$

In Equation 7 T is the period the master clock, N is the outputted count, C is the circulation count, and K is the number of inverters. According to this equation, an outputted count of 70000 indicates a delay of 0.419ns on average for every inverter, $\tau_{\text{Pindividual}}$. Further investigation is called on since we postulated that the delay through each inverter delay should be ~ 0.238ns. A simpler equation is expressed below to represent the delay through the ring of inverters.

$$\tau_{Pring} = \mathrm{T}(\frac{N}{2C}),$$

Equation 8 – Delay through the Ring, τ_{Pring}

With a count of 70000 (N), we find that the approximate average delay of one circulation τ_{Pring} is 21.36ns. Considering that the master clock allows a clock tick of 10ns (T) and the foundation upon which our count is based on supports one instance of a signal propagating through the ring oscillator, we find that accurately approximating the delay is difficult and imprecise. The delay found in Equation 8 is timed using the 100MHz clock. According to Equation 8, 51 inverters signify a delay of approximately 21.36ns. Each inverter delay should be ~0.238ns, thus 51 inverters should have yielded a delay of ~12.14ns – nearly 9ns of error.

An obvious solution would be to reference a faster clock if accessible. Another solution to this problem is redesigning the ring oscillator to be larger than 51 inverters. For example, 511 inverters would nearly increase the delay 10 times. Theoretically, increasing the ring delay would inversely decrease the error of counting. A number of 511 inverters would result in a delay of ~121.6ns. Using 10ns grades, miscounts – both under and over counts – will have less of an impact. Not only would the accuracy increase, but the resolution would as well. Also, average individual inverter delays would be more predictable. However, an immediate disadvantage to this is the expanded ring would require more chip space. Furthermore, the ring will consume more power.

CONCLUSION

Drawing from the analyses we formulated through our results, we found that there is indeed a proportional correlation between rise in propagation delay and rise in temperature and thus succeeded in completing goal (1). Using this property we designed a digital temperature sensor by counting the number of clock periods between the cycles of a ring oscillator comprised of inverters.

However, we were slightly unsuccessful in completing goal (1) which expressed the desire to create a sensor with a resolution of 0.1° C/count, a range of $0-70^{\circ}$ C, and an error of $\pm 1^{\circ}$ C. Instead, our results show our sensor has a range of $20-70^{\circ}$ C, an average resolution of ~ 0.13° C/count, and an error of $\pm 2.75^{\circ}$ C. When comparing the results from [1], whose sensor had a range of $0-75^{\circ}$ C, a resolution of less than 0.1° C, and measurement error of $\pm 1.5^{\circ}$ C, our sensor is outmatched.

Nonetheless, we formulated a conversion equation and thus made a CTC table (Appendix C) that could potentially be made into an LUT to be implemented in our design. Our design also uses 1% of the available resources on the FPGA as seen in Figure 8.

🖬 🖉 🌭 🗄 X 🖻 🖨 🗙		🔊 🖻 🖻 💷 🕒 🖗 🎢 🚳 🕷 🔙	¥ : V : G Ø : G) 🚱 🖬 🔎 🔎 🛯 🚰 🐼 🛛 🏟	🔉 ગાલા
🔀 🔀 FPGA Design Sur		design2 Project Statu	s (02/20/2009 - 10:42:09)		
mplem 💌 📄 Design Overview	Project File:	design2.ise	Current State:	Programming File Generated	
sign2 🔤 Summary 5vlx50t-1ff 🔄 📄 IOB Pro	Module Name:	design	• Errors:	No Errors	
desig Module	Target Device:	xc5vlx50t-1ff1136	• Warnings:	29 Warnings	
P p1 - Timing	Product Version:	ISE 10.1.03 - Foundation Simulator	Routing Results:	All Signals Completely Routed	
🖙 🔞 👘 📄 Pinout	Design Goal:	Balanced	Timing Constraints:	All Constraints Met	
😑 🚽 📄 Clock R	Design Strategy:	Xilinx Default (unlocked)	Final Timing Score:	0 (Timing Report)	
Errors and War					
- 📄 Synthes Translat		design2 Partition Su	mmary		
- And Map Me	No partition information was found.				
🖃 📢 👘 📄 Place a					
- 📄 Timing		Device Utilization Su	ummary		
🔄 🔄 📄 Bitgen	Slice Logic Utilization	Used	Available	Utilization	Note(s)
- Detailed Reports	Number of Slice Registers	129	28,800	1%	
- ₩ p3 - E- Detailed Reports - ♥ desi	Number used as Flip Flops	129			
Translat	Number of Slice LUTs	296	28,800	1%	
Map Re	Number used as logic	290	28,800	1%	
😂 🛄 — 📄 Place a	Number using 06 output only	173			
🗙 🚽 📄 Static Ti	Number using 05 output only	111			
s for: p2 - s Show or Hide R	Number using 05 and 06	6			
Add Exist	Number used as exclusive route-thru	6			
Create Ne Design II Project Properties	Number of route-thrus	117	57,600	1%	
Design U Project Properties Check Sy Zhable Enhar	Number using 06 output only	117			
Enable Messa					
Enhanced Design Sur		128	7,200	1%	
Show Partition		305			
- 🗆 Show Errors	Number with an unused Flip Flop	176	305	57%	
		9	305	2%	
		120	305	39%	
	Number of unique control sets	9			
	Number of slice register sites lost to control set restrictions	15	28,800	1%	
	10 Utilization				
	Number of bonded IOBs				
	Number of bonded	3	480	1%	
	Specific Feature Utilization				
what's New in ISE De	esign Suite 10.1 📡 Design Summary				
Show Varing Show Faing (Show Clock F Show Clock F	Number with an unused LUT Number of fully used LUT-FF pairs Number of unique control sets Number of disc register sites lost to control set restrictions 10 Utilization Number of bonded IOBs Number of bonded Specific Feature Utilization stign Suite 10.1 The Design Summary	9 120 9 15	305 305 28,800	2% 33% 1%	

Figure 8 – Xilinx Device Utilization Summary Screen Shot

FUTURE RECOMMENDATIONS

Pulse Generator

Initially we intended to use a pulse generator in place of our ring oscillator/delay line. The pulse generator would create a temperature proportional width which we would measure and eventually output a temperature reading. In fact, for nearly half of our project we were under the impression that the pulse generator would play a key role in our design, only to find out later it would be an aspect soon forgotten. When we ran into difficulties implementing our design using the pulse generator even from a simulation standpoint, we knew that we could run into some serious problems later. We made the decision to do away with the pulse generator and create our ring oscillator using a given number of inverters. As we had put in many hours developing our pulse generator, this was quite the daunting task to simply remove it completely from our project. The idea behind the pulse generator seemed brilliant, as developed in [1]. As a team, along with our advisors, we agreed that a pulse generator would be a great design, however was not practical for our capabilities and the time constraints of our project. We believe that with more time and research, the pulse generator would be a great replacement of the ring oscillator and could even provide a better design with a more accurate resolution and output.


Temperature Chamber

During the course of our project our ultimate goal from the start was to test our design in a temperature chamber provided by General Dynamics. The chamber allowed for us to vary the temperature (0-75°C), corresponding to the restraints of our chip and board. The chamber was extremely useful in that it allowed for us to control the precise temperature and measure over a period of time at that given temperature. Unfortunately, we were only provided limited access to the temperature chamber. We could only utilize the chamber to our benefit once our design was completely developed, which took nearly 5 weeks to complete. With only a 2 week window left, the chamber was only available for us to use for one full day. We took complete advantage and performed numerous tests, acquiring nearly 1500 data points. However, more time with the chamber would have allowed us to obtain more accurate results, and given us a chance to finetune the design. While 1500 data points is a good amount, we could have used a lot more to truly understand where our design was working successfully and also expose its flaws. With the need to provide written analysis of our testing with only one week remaining, combined with its limited availability, we were forced to settle for our one trip to the temperature chamber.

We also discussed the possibility of using multiple temperature measurement techniques. We had discussed the possibility of a portable temperature chamber, as well as a laser temperature control Another issue we encountered while using the temperature chamber was issues with both our design and the System Monitor at low temperature. The System Monitor operates at a temperature range of -40 to 125°C, and our chip and board itself can safely operate at a range of 0 to 70°C. In our first test, we set the temperature chamber at -15°C. The System Monitor was approximately 10°C off until we increased the chamber temperature to 15°C, at which point it began to output the correct temperature. Our design count was also not responding well to the changes in the temperature chamber until we reached around 15-20°C, at which point it began showing appropriate changes in count based on temperature. These issues could have occurred due to a number of issues. We suspected that when lowering the temperature chamber to -15°C in an attempt to see a reading of absolute 0 on the System Monitor, we exceeded the chip's temperature range and it took a while to return to an operating state. While the System Monitor User Guide states it will operate at temperatures as low as -40°C, the chip and board itself cannot. Once the chip realized a constant temperature of over 0°C, our design as well as the System Monitor began outputting properly. We believe that improvements on resolution and accuracy would have been our next steps if we had been given more time for this project; however with our restrictions we feel our resolution was adequate.

Placement of the Ring Oscillator

Early in the project we had we considered the idea of directly implementing configurable logic blocks (CLB's). While we investigated the process, it was clearly not plausible within the timeframe of this project. There is a Xilinx product called PlanAhead that allows users to directly choose the CLB's desired for their design. Basically, if one wished to place our ring oscillator in any corner of the chip, one may use this application to physically drag the signal instantiations into the CLB's in the floor plan on the chip. Figure 9 shows a screenshot of the 51 inverters being moved from the center of the chip towards the top, left corner.

Figure 9 – PlanAhead Screenshot

After the inverters are moved, the application can then create a constraints file with the proper signals moved to their correct locations.

REFERENCES

- [1] Poki Chen, Chun-Yan Chu, Mon-Chau Shie, Zi-Fan Zheng, and Zhi-Yuan Zheng, "A Fully Digital Time-Domain Smart Temperature Sensor Realized With 140 FPGA Logic Elements," *IEEE Transactions On Circuits And Systems—I: Regular Papers*, vol. 54, no. 12, pp. 2661-2668, Dec. 2007.
- [2] Sudhakar Yalamanchili, *Introductory VHDL: From Simulation to Synthesis*, Upper Saddle River, NJ: Prentice-Hall, Inc., 2001.
- [3] Dr. Zainalabedin Navabi, VHDL: Modular Design and Synthesis of Cores and Systems, New York, NY: McGraw-Hil, 2007.
- [4] "Virtex-5 User Guide," 2009, Xilinx, Feb. 2009, http://www.xilinx.com/support/documentation/user_guides/ug190.pdf>
- [5] "Virtex-5 System Monitor: User Guide," 2009, Xilinx, Feb. 2009, http://www.xilinx.com/support/documentation/user_guides/ug192.pdf>
- [6] "ChipScope Pro Software and Cores User Guide", 2009, Xilinx, Mar. 2009, http://www.xilinx.com/support/documentation/sw_manuals/chipscope_pro_sw_cores_9 _1i_ug029.pdf>
- [7] "MATLAB The Language of Technical Computing," MathWorks, Mar. 2009, http://www.mathworks.com/products/matlab/

APPENDICES

Appendix A : MATLAB Code

Get Data

clear

```
%all my files = {};
%save('file_list', 'all_my_files');
load('file list');
%mkdir('data');
while(1)
    a = datestr(clock, 'mm_dd__HH_MM_SS');
    d = instrfind('Port', 'COM1');
    if length(d) \sim = 0
        fclose(d);
        delete(d);
    end
    s = serial('COM1', 'InputBufferSize',3, 'BaudRate', 19200, ...
        'Timeout', 500000, 'ReadAsyncMode', 'continuous');
    fopen(s)
    readasync(s)
    out = fread(s,3,'uint8');
    %recieve data
    COUNT1 = out(1)
     *2^24+out(3)*2^16+out(2)*2^8+out(1)
8
    SYSMON Temp DegreesCelsius = (out(3) * 2^8 + out(2)) * .49 - 273
    filename = ['data/', a]; %data is folder
    save(filename, 'COUNT1','SYSMON Temp DegreesCelsius'); %out is your
recieved data
    all my files = [all my files; {filename}];
    save('file list', 'all my files');
```

```
file_count = length(all_my_files);
pause(1);
```

$\quad \text{end} \quad$

Load Data (Create Spreadsheet)

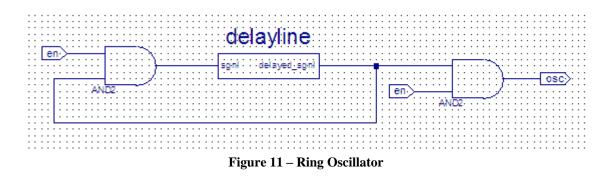
```
load ('file_list');
file_count = length(all_my_files);
all_data = zeros(file_count, 2);
for i=1:file_count
    one_file=char(all_my_files(i));
    load(one_file);
    all_data(i,1) = COUNT1;
    all_data(i,2) = SYSMON_Temp_DegreesCelsius;
end
all_data
```

Appendix B : FPGA Code (VHDL and Schematics)

Xilinx ISE Project Properties

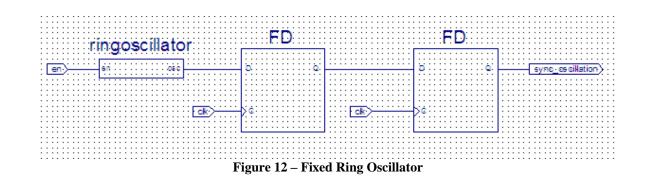
Property Name	Value	
Product Category	All	~
Family	Virtex5	~
Device	XC5VLX50T	~
Package	FF1136	~
Speed	-1	~
Top-Level Source Type	HDL	~
Synthesis Tool	XST (VHDL/Verilog)	~
Simulator	ISE Simulator (VHDL/Verilog)	~
Preferred Language	Verilog	~
Enable Enhanced Design Summ	nary 🔽	
Enable Message Filtering		
Display Incremental Messages		

Figure 10 – ISE Project Properties Selection


Inverter

Delayline

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
```


```
entity delayline is
    Port ( sgnl
                       : in STD LOGIC;
           delayed sgnl : out STD LOGIC );
end delayline;
architecture Behavioral of delayline is
component inverter
      port(a
              : in std logic;
       a not : out std logic );
end component;
signal avector : STD_LOGIC_VECTOR (0 to 51); -- 51 inverters
attribute keep : integer;
                                                        --used so the synthesizer
attribute keep of avector: signal is 1; --doesn't throw away inverters
begin
      avector(0) <= sgnl; --signal goes through first inverter</pre>
      g1: for i in 0 to 50 generate --up to 50 because of the indexing
             invrt: invertor port map ( avector(i), avector(i+1) ); --move signals
through inverters
      end generate g1;
      delayed sgnl <= avector(51); --signal comes out last inverter</pre>
end Behavioral;
```

Ring Oscillator

Fixed Ring Oscillator

This component is the synchronized version of the ring oscillator component.

Counting State Machine

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;
entity countingstatemachine is
           osc : in STD_LOGIC;
clk : in STD_LOGIC;
reset : in STD_LOGIC;
    Port ( osc
                            : in STD_LOGIC;
                       send
                       sample : out STD_LOGIC_VECTOR (31 downto 0));
end countingstatemachine;
architecture Behavioral of countingstatemachine is
signal tempcount : STD LOGIC VECTOR (31 downto 0) := (others => '0');
signal tempsample : STD LOGIC VECTOR (31 downto 0);
signal cyclecount : STD_LOGIC_VECTOR (14 downto 0) := (others => '0');
signal osc_prime : STD_LOGIC;
begin
      process (reset, clk, cyclecount, osc, osc prime, send) begin
              if (reset = '1') then -- when reset button is pressed, then reset
                    osc prime <= '0';</pre>
                    tempcount <= (others => '0');
                    tempsample <= (others => '0');
                    cyclecount <= (others => '0');
             elsif clk'event and clk = '1' then -- the clk is rising
                    osc prime <= osc; -- set osc prime to osc on the next clk cycle
                    if (cyclecount = "10000000000000") then -- if oscillator cycles
2^14 times
                            if send = '0' then --and getting
                                   tempsample <= tempcount; --then send highest count</pre>
                           else
                                  tempsample <= tempsample; --if sending then keep
                           end if;
                           tempcount <= (others => '0'); --reset count
                           cyclecount <= (others => '0'); --reset cycle count
                    else --when not equal to 2^14 cycles
                           if osc prime = '0' and osc = '1' then -- osc prime is
rising
                                  cyclecount <= cyclecount + 1; --increment cycle count
                           else
                                  cyclecount <= cyclecount; --if not rising, keep
                           end if;
```

```
tempcount <= tempcount + 1; --increment count
tempsample <= tempsample; --keep
end if;
else --if clk not rising and not reseting, then keep everything
tempcount <= tempcount;
tempsample <= tempsample;
cyclecount <= cyclecount;
osc_prime <= osc_prime;
end if;
end process;
sample <= tempsample;
end Behavioral;
```

Clock Convert

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- This code generates the clock signal
-- 5208 Hz for a baud rate of 19200 from a single
-- 100 MHz clock provided by the Virtex 5 board
-- Code from WPI ECE Course 3801 01.26.2009
entity Clk Convrt is
                               : in std logic;
    Port ( Clk in
           Reset
                               : in std logic;
           Clk outStateMachine : out std logic;
                      Clk_outrs232
                                       : out std logic );
end Clk Convrt;
architecture Behavioral of Clk Convrt is
   signal tmp clkstate : std logic:='0'; --temp signal for Clk outStateMachine
       signal tmp_clkrs : std_logic:='0'; --temp signal for Clk outrs232
begin
       Clk outStateMachine <= tmp clkstate;
       Clk outrs232 <= tmp clkrs;
       process(Reset,Clk in)
       variable counterstate:integer range 0 TO 50 000 000; -- 1Hz
       variable counterrs: integer range 0 TO 2604; --~19.2kHz
       begin
              if Reset = '1' then --if reset then reset
                    counterstate := 0;
                    counterrs := 0;
              elsif Clk_in'event and Clk_in = '1' then --if clock rising
                     counterstate := counterstate+1; --counts++
                     counterrs := counterrs+1;
                     if counterstate = 50\ 000\ 000 then
                           tmp_clkstate <= not tmp_clkstate;</pre>
                           counterstate := 0;
                     end if;
```

```
if counterrs = 2604 then
    tmp_clkrs <= not tmp_clkrs;
    counterrs := 0;
    end if;
    end if;
    end process;
end Behavioral;</pre>
```

RS232 State Machine

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity rs232statemachine is
                   : in STD LOGIC VECTOR (47 downto 0);
    Port ( DB
                       clk : in STD_LOGIC;
                       reset : in STD LOGIC;
                       send : in STD_LOGIC;
                       button : in STD LOGIC;
                       bitout : out STD LOGIC );
end rs232statemachine;
architecture Behavioral of rs232statemachine is
type statetype is (idle1, start, db0, db1, db2, db3, db4, db5, db6, db7, stop, idle2);
--there will be 12 states
signal state : statetype;
signal index : integer range 0 TO 48 := 0; --array index
begin
       process (clk, reset) begin
              if (reset = '1') then --if reset = 1 then reset
                     state <= idle1;</pre>
                     index <= 0;
              elsif (clk'event and clk = '1') then -- if clk is rising
                     case (state) is
                            when idle1 => -- if not sending then stay in this state
                                   if (button = '1' and send = '1') then
                                          state <= start;</pre>
                                   else
                                           state <= idle1;</pre>
                                   end if;
                            when start =>
                                   state <= db0;</pre>
                            when db0 =>
                                   state <= db1;</pre>
                            when db1 =>
                                   state <= db2;</pre>
                            when db2 =>
                                   state <= db3;</pre>
                            when db3 =>
                                   state <= db4;</pre>
                            when db4 =>
                                   state <= db5;
                            when db5 =>
                                   state <= db6;</pre>
                            when db6 =>
                                   state <= db7;</pre>
                            when db7 =>
                                   state <= stop;</pre>
```

```
when stop =>
                                    if not(index = 40) then --send more bits if not
complete
                                           state <= start;</pre>
                                           index <= index + 8;</pre>
                                    else
                                          index <= 0;
                                           state <= idle2;</pre>
                                    end if;
                            when idle2 => --stay in idle if done sending but not
getting
                                    if (send = '1') then
                                         state <= idle2;</pre>
                                    else
                                          state <= idle1;</pre>
                                    end if;
                            when others =>
                                   null;
                     end case;
              end if;
       end process;
       with state select
              bitout <= '1' when idle1,</pre>
                                     '0' when start,
                                     DB(index) when db0,
                                     DB(index + 1) when db1,
                                     DB(index + 2) when db2,
                                     DB(index + 3) when db3,
                                     DB(index + 4) when db4,
                                     DB(index + 5) when db5,
                                     DB(index + 6) when db6,
                                     DB(index + 7) when db7,
                                     '1' when stop,
                                     '1' when idle2,
                                     '1' when others;
end Behavioral;
```

System Monitor Setup

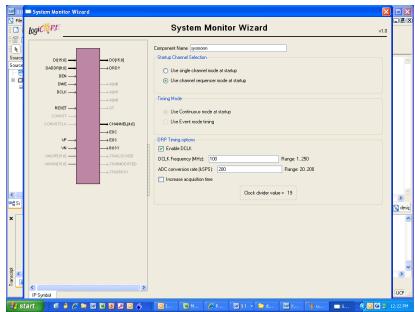


Figure 13 – System Monitor Wizard Setup Pg 1

DI[15:0]	→ D 0[15:0]	Dynamic Reconfiguration Port	IO Ports
DADDR(0:0)		Selects whether the DRP is brought out as a port (checke	d) or grounded (unchecked).
		Control and Clock	External Analog Inputs
DCLK		Selects which control ports are input. Deselected ports are grounded.	Selects which analog input ports are input. Deselected ports are grounded.
RESET	> 0T	Enable RESET	Enable VAUXP
$CONVST \longrightarrow$ $CONVSTCLK \longrightarrow$	CHANNEL 4:01	Enable CDNVST	Enable VAUXN
CONVERCEN	-> EOC	Enable CONVSTCLK	
∨₽ —→	→ E0 S	D Alarms	Status
$\forall N \rightarrow \forall ALDP[15:0] \rightarrow ALDP[15:0] \rightarrow$	→ BUSY → JTAGLOCKED	Selects which alarm ports are output.	Selects which status ports are output. Deselected
VAUX00 [15:0]		Deselected ports are left open.	ports are left open. Finable CHANNEL Enable JTAGLOCKED
	> JTAGBUSY	User Temperature alarm	Enable CHANNEL Enable STAGLOCKED Enable EOC Enable JTAGMODIFIED
		Vccint Alarm	Enable EOS Enable JTAGBUSY
		Vccaux Alarm	Enable BUSY

Figure 14 – System Monitor Wizard Setup Pg 2

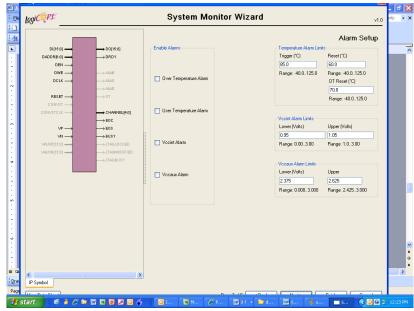


Figure 15 – System Monitor Wizard Setup Pg 3

Continuou Nore Nore DRDR 00	DI[15:0]	 Sequencer Mode	Channel Si	equencer Averaging		nel Sequencer S Supply Sensor	
DNE ALO Charmel Enable Average Enable Bicole Acquition Time DOL ALO ALO Image Enable Bicole Acquition Time ALO ALO Image Enable Bicole Image Enable Bicole Acquition Time COUNT ALO Image Enable							
DNE	DEN		(
ALAC Colvestor Temperature Image: Colvestor			Lhannel E hable	Average Enable	Bipolar	Acquisition Lime	
CONVET OT Imponduce	DCLK	Calibration					
CONVERSE	RESET		<u> </u>				
Vocar I I I VALUARY 16 01 SUBSY Vocar I I I VALUARY 16 01 SUBSY I I I I I VALUARY 16 01 SUBSY I I I I I I VALUARY 16 01 SUBSY I I I I I I VALUARY 16 01 SUBSY I <		Temperature					
VP Second S	CONVSTCLK	 VCONT					
VALUPS [16:0] STACAL OC CIED ->TRACADO DI FED ->TRACADO DI FED ->TRACADO DI FED ->TRACADO DI FED ->TRACADO DI FED ->TRACADO DI FED Valups [16:0] ->TRACADO DI FED ->TRACADO DI FED ->TRACADO DI FED Valups [16:0] ->TRACADO DI FED	∨P →						
VK/N I I I >JTAGABOURED Varre I I I Varre I I I I		VOCALIK					
Vacer I I I		 V-Nn					
Varee I I I	who with a manufacture of the second						
Vision I I I Vision I I I I Vision I I I I Vision I I I I		Vnern					
Value Image: Constraint of the second s		VIEIN					
		VALDEPO					
		VALDEP 1 NALDEN1					
		VALDEP2 NALDER2					
		VALOUPS NALOUNS					

Figure 16 – System Monitor Wizard Setup Pg 4

					Channe	el Sequencer Setu	ip P2
$DI[16:0] \longrightarrow$ DADDR[6:0] \longrightarrow	→ D0[15:0] → DRDY		Channel Enable	Average Enable	Bipolar	Acquisition Time	
		VALDOP4 NALDONA					
DCLK	> ALM1	VALDEPS/WALDONS					
RESET		ValuereNalizon					
CONVST	CHANNEL[4:0]	VALDEPT NALDENT					
		U VALOPS/VALONS					
VALORP[15:0]	→ JTAGLOCKED	VALDOPS/WALDONS					
own(ins)	JTAGBUSY	VALOUP TO NALDENTO					
		VALOOP 11 AVALOON 11					
		VALUEP 12 NALDEN 12					
		VALOOP 12 NALOON 13					
		VALOOP 14 NALION 14					
		VALOOP IS NALION IS					
<							

Figure 17 – System Monitor Wizard Setup Pg 5

RS232

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;
library UNISIM;
use UNISIM.VComponents.all;
entity rs232 is
    Port ( sample : in STD_LOGIC_VECTOR (31 downto 0);
                       clk : in STD_LOGIC;
reset : in STD_LOGIC;
send : in STD_LOGIC;
                       button : in STD_LOGIC;
                       bitout : out STD_LOGIC );
end rs232;
architecture Behavioral of rs232 is
component Clk_Convrt is
    Port ( Clk_in
                                : in std_logic;
           Reset
                                : in std_logic;
           Clk_outStateMachine : out std_logic;
                                      : out std_logic );
                       Clk outrs232
end component;
component rs232statemachine is
               : in STD_LOGIC_VECTOR (47 downto 0);
    Port ( DB
                       clk : in STD_LOGIC;
reset : in STD_LOGIC;
                       send : in STD LOGIC;
                       button : in STD LOGIC;
                       bitout : out STD LOGIC );
end component;
```

```
component sysmonn is
                      : in STD LOGIC;
    Port ( DCLK IN
                      DWE_IN : in STD_LOGIC;
                      DEN IN
                                : in STD LOGIC;
                      DADDR IN
                               : in STD LOGIC VECTOR (6 downto 0);
                      DI IN
                                 : in STD_LOGIC_VECTOR (15 downto 0);
                      RESET IN
                                : in STD_LOGIC;
                      DO OUT
                                : out STD_LOGIC_VECTOR (15 downto 0);
                      CHANNEL_OUT : out STD_LOGIC_VECTOR (4 downto 0);
                      BUSY OUT
                                : out STD LOGIC;
           EOS OUT
                      : out STD LOGIC;
                     DRDY OUT: out STD LOGIC; --unused
           EOC_OUT: out STD_LOGIC --unused
                     );
end component;
signal tempclk : STD LOGIC;
signal dummy : STD_LOGIC; --dummy signal
signal tempDO : STD_LOGIC_VECTOR (15 downto 0);
signal temperatures : STD_LOGIC_VECTOR (47 downto 0);
signal channel : STD_LOGIC_VECTOR (4 downto 0);
signal daddr : STD_LOGIC_VECTOR (6 downto 0);
signal en : STD LOGIC;
begin
      p1: Clk_Convrt port map ( clk, '0', dummy, tempclk );
      temperatures (47 downto 0) <= "000000" & tempDO(15 downto 6) & sample;
      daddr <= "00" & channel;</pre>
      p2: rs232statemachine port map (temperatures, tempclk, reset, send, button,
bitout );
      mysys: sysmonn port map (clk, '0', en, daddr, "00000000000000", '0', tempDO,
channel, en);
end Behavioral;
```

Design Implementing the RS232

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;
---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity designWithRS232 is
           clk : in STD_LOGIC;
reset : in STD_LOGIC;
    Port ( clk
                      send : in STD LOGIC;
                      button : in STD LOGIC;
                      bitout : out STD LOGIC);
end designWithRS232;
architecture Behavioral of designWithRS232 is
component counter is
    Port ( clk : in STD_LOGIC;
           reset : in STD LOGIC;
```

send : in STD LOGIC; sample : out STD LOGIC VECTOR (31 downto 0)); end component; component rs232 is Port (sample : in STD_LOGIC_VECTOR (31 downto 0); clk : in STD LOGIC; reset : in STD_LOGIC; send : in STD_LOGIC; button : in STD LOGIC; bitout : out STD LOGIC); end component; signal tempsample : STD LOGIC VECTOR (31 downto 0); begin p1: counter port map (clk, reset, send, tempsample); p2: rs232 port map (tempsample, clk, reset, send, button, bitout); end Behavioral;

Send/Get State Machine

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;
entity sendgetstatemachine is --sends either 0 (get) or 1 (send) everyother clock
cycle
   Port ( clk : in STD LOGIC;
           send : out STD_LOGIC );
end sendgetstatemachine;
architecture Behavioral of sendgetstatemachine is
signal tempsend : STD LOGIC := '0'; --temp send signal
begin
      process (clk) begin
       if (clk'event and clk = '1') then --if clk rising, send = not send
              tempsend <= not(tempsend);</pre>
       else
              tempsend <= tempsend; --else keep</pre>
       end if;
       send <= tempsend;</pre>
      end process;
end Behavioral;
```

Top Level Design Module

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
```

```
entity design is
    Port ( clk : in STD_LOGIC;
           reset : in STD LOGIC;
           bitout : out STD LOGIC );
end design;
architecture Behavioral of design is
component designWithRS232 is
    Port ( clk : in STD_LOGIC;
    reset : in STD_LOGIC;
                       send : in STD_LOGIC;
                       button : in STD LOGIC;
                       bitout : out STD_LOGIC );
end component;
component sendgetstatemachine is
    Port ( clk : in STD LOGIC;
          send : out STD LOGIC );
end component;
component Clk_Convrt is
    Port ( Clk_in : in std_logic;
Reset : in std_logic;
Clk_outStateMachine : out std_logic;
                    Clk_outrs232 : out std_logic);
end component;
signal tempsend : STD_LOGIC;
signal tempclk : STD LOGIC;
signal dummy : STD LOGIC; --dummy signal
begin
       p1: designWithRS232 port map ( clk, reset, tempsend, '1', bitout );
       p2: sendgetstatemachine port map ( tempclk, tempsend );
       p3: Clk_Convrt port map ( clk, '0', tempclk, dummy );
end Behavioral;
```

Appendix C: CTC Table

		Calc
Count	Calibrated Count	Temp
69475	55	19.2
69476	56	19.5
69477	57	19.7
69478	58	19.9
69479	59	20.1
69480	60	20.3
69481	61	20.6
69482	62	20.8
69483	63	21.0
69484	64	21.2
69485	65	21.4
69486	66	21.6
69487	67	21.9
69488	68	22.1
69489	69	22.3
69490	70	22.5
69491	71	22.7
69492	72	22.9
69493	73	23.2
69494	74	23.4
69495	75	23.6
69496	76	23.8
69497	77	24.0
69498	78	24.2
69499	79	24.4
69500	80	24.6
69501	81	24.8
69502	82	25.1
69503	83	25.3
69504	84	25.5
69505	85	25.7
69506	86	25.9
69507	87	26.1
69508	88	26.3
69509	89	26.5
69510	90	26.7
69511	91	26.9
69512	92	27.1
69513	93	27.3
69514	94	27.5
69515	95	27.7
69516	96	27.9
69517	97	28.1

695199928.56952010028.76952110128.96952210229.16952310329.36952410429.56952510529.76952610629.96952710730.16952810830.36952910930.56953011030.76953111130.96953211231.16953311331.36953411431.56953511531.76953611631.96953711732.16953811832.36953911932.56954012032.76954112132.96954212233.06954312533.66954412633.86954512533.66954612633.86954712734.06954812834.26954912934.46955113135.16955213234.96955313335.16955413435.36955513535.56955613635.76955713735.96955813836.06955913936.26956114136.86956314336.9	69518	98	28.3
69520100 28.7 69521 101 28.9 69522 102 29.1 69523 103 29.3 69524 104 29.5 69525 105 29.7 69526 106 29.9 69527 107 30.1 69528 108 30.3 69529 109 30.5 69530 110 30.7 69531 111 30.9 69532 112 31.1 69533 113 31.3 69534 114 31.5 69535 115 31.7 69536 116 31.9 69537 117 32.1 69538 118 32.3 69539 119 32.5 69540 120 32.7 69541 121 32.9 69542 122 33.0 69544 124 33.4 69545 125 33.6 69546 126 33.8 69547 127 34.0 69548 128 34.2 69549 129 34.4 69551 131 34.7 69555 135 35.5 69556 136 35.7 69557 137 35.9 69558 138 36.0 69559 139 36.2 69561 141 36.8 69563 143 36.9			
6952110128.96952210229.16952310329.36952410429.56952510529.76952610629.96952710730.16952810830.36952910930.56953011030.76953111130.96953211231.16953311331.36953411431.56953511531.76953611631.96953711732.16953811832.36953911932.56954012032.76954112132.96954212233.06954312333.26954412433.46954512533.66954612633.86954712734.06954812834.26954912934.46955013034.66955113134.76955213234.96955313535.56955613635.76955713735.96955813836.06955913936.26956014036.46956114136.86956314336.9			
6952210229.16952310329.36952410429.56952510529.76952610629.96952710730.16952810830.36952910930.56953011030.76953111130.96953211231.16953311331.36953411431.56953511531.76953611631.96953711732.16953811832.36953911932.56954012032.76954112132.96954212233.06954312333.26954412433.46954512533.66954612633.86954712734.06954812834.26954912934.46955013034.66955113134.76955213234.96955313535.56955613635.76955713735.96955813836.06955913936.26956014036.46956114136.66956214236.86956314336.9			
6952310329.36952410429.56952510529.76952610629.96952710730.16952810830.36952910930.56953011030.76953111130.96953211231.16953311331.36953411431.56953511531.76953611631.96953711732.16953811832.36953911932.56954012032.76954112132.96954212233.06954312333.26954412433.46954512533.66954612633.86954712734.06954812834.26954912934.46955013034.66955113134.76955213234.96955313535.56955613635.76955713735.96955813836.06955913936.26956014036.46956114136.66956314336.9			
6952410429.56952510529.76952610629.96952710730.16952810830.36952910930.56953011030.76953111130.96953211231.16953311331.36953411431.56953511531.76953611631.96953711732.16953811832.36953911932.56954012032.76954112132.96954212233.06954312333.26954412433.46954512533.66954612633.86954712734.06954812834.26954912934.46955013034.66955113134.76955213234.96955313535.56955613635.76955713735.96955813836.06955913936.26956014036.46956114136.66956314336.9			
69525 105 29.7 69526 106 29.9 69527 107 30.1 69528 108 30.3 69529 109 30.5 69530 110 30.7 69531 111 30.9 69532 112 31.1 69533 113 31.3 69534 114 31.5 69535 115 31.7 69536 116 31.9 69537 117 32.1 69538 118 32.3 69539 119 32.5 69540 120 32.7 69541 121 32.9 69542 122 33.0 69543 123 33.2 69544 124 33.4 69545 125 33.6 69546 126 33.8 69547 127 34.0 69551 131 34.7 69552 132 34.2 69549 129 34.4 69551 131 34.7 69552 132 35.3 69555 135 35.5 69556 136 35.7 69557 137 35.9 69558 138 36.0 69559 139 36.2 69560 140 36.4 69561 143 36.9			
69526 106 29.9 69527 107 30.1 69528 108 30.3 69529 109 30.5 69530 110 30.7 69531 111 30.9 69532 112 31.1 69533 113 31.3 69534 114 31.5 69535 115 31.7 69536 116 31.9 69537 117 32.1 69538 118 32.3 69539 119 32.5 69540 120 32.7 69541 121 32.9 69542 122 33.0 69543 123 33.2 69544 124 33.4 69545 125 33.6 69546 126 33.8 69547 127 34.0 69548 128 34.2 69549 129 34.4 69550 130 34.6 69551 131 35.1 69554 134 35.3 69555 135 35.5 69556 136 35.7 69557 137 35.9 69558 138 36.0 69563 143 36.9			
69527 107 30.1 69528 108 30.3 69529 109 30.5 69530 110 30.7 69531 111 30.9 69532 112 31.1 69533 113 31.3 69534 114 31.5 69535 115 31.7 69536 116 31.9 69537 117 32.1 69538 118 32.3 69539 119 32.5 69540 120 32.7 69541 121 32.9 69542 122 33.0 69543 123 33.2 69544 124 33.4 69545 125 33.6 69546 126 33.8 69547 127 34.0 69548 128 34.2 69549 129 34.4 69550 130 34.6 69551 131 34.7 69552 132 34.9 69553 133 35.1 69554 134 35.3 69555 135 35.5 69556 136 35.7 69559 139 36.2 69560 140 36.4 69561 141 36.6 69562 142 36.8 69563 143 36.9			
69528108 30.3 69529 109 30.5 69530 110 30.7 69531 111 30.9 69532 112 31.1 69533 113 31.3 69534 114 31.5 69535 115 31.7 69536 116 31.9 69537 117 32.1 69538 118 32.3 69539 119 32.5 69540 120 32.7 69541 121 32.9 69542 122 33.0 69543 123 33.2 69544 124 33.4 69545 125 33.6 69546 126 33.8 69547 127 34.0 69548 128 34.2 69549 129 34.4 69550 130 34.6 69551 131 35.1 69555 135 35.5 69556 136 35.7 69557 137 35.9 69558 138 36.0 69559 139 36.2 69560 140 36.4 69561 141 36.6 69562 142 36.8 69563 143 36.9			
69529 109 30.5 69530 110 30.7 69531 111 30.9 69532 112 31.1 69533 113 31.3 69534 114 31.5 69535 115 31.7 69536 116 31.9 69537 117 32.1 69538 118 32.3 69539 119 32.5 69540 120 32.7 69541 121 32.9 69542 122 33.0 69543 123 33.2 69544 124 33.4 69545 125 33.6 69546 126 33.8 69547 127 34.0 69548 128 34.2 69549 129 34.4 69550 130 34.6 69551 131 34.7 69552 132 35.3 69555 135 35.5 69556 136 35.7 69557 137 35.9 69558 138 36.0 69561 141 36.6 69561 141 36.6 69563 143 36.9			
69530110 30.7 69531 111 30.9 69532 112 31.1 69532 112 31.1 69533 113 31.3 69534 114 31.5 69535 115 31.7 69536 116 31.9 69537 117 32.1 69538 118 32.3 69539 119 32.5 69540 120 32.7 69541 121 32.9 69542 122 33.0 69543 123 33.2 69544 124 33.4 69545 125 33.6 69546 126 33.8 69547 127 34.0 69548 128 34.2 69549 129 34.4 69551 131 34.7 69552 132 34.9 69553 133 35.1 69554 136 35.7 69555 135 35.5 69556 136 35.7 69559 139 36.2 69560 140 36.4 69561 141 36.6 69562 142 36.8 69563 143 36.9			
69531111 30.9 69532 112 31.1 69533 113 31.3 69533 113 31.3 69534 114 31.5 69535 115 31.7 69536 116 31.9 69537 117 32.1 69538 118 32.3 69539 119 32.5 69540 120 32.7 69541 121 32.9 69542 122 33.0 69543 123 33.2 69544 124 33.4 69545 125 33.6 69546 126 33.8 69547 127 34.0 69548 128 34.2 69549 129 34.4 69550 130 34.6 69551 131 34.7 69552 132 34.9 69553 135 35.5 69556 136 35.7 69557 137 35.9 69558 138 36.0 69561 141 36.6 69562 142 36.8 69563 143 36.9			
69532 112 31.1 69533 113 31.3 69534 114 31.5 69535 115 31.7 69536 116 31.9 69537 117 32.1 69538 118 32.3 69539 119 32.5 69540 120 32.7 69541 121 32.9 69542 122 33.0 69543 123 33.2 69544 124 33.4 69545 125 33.6 69546 126 33.8 69547 127 34.0 69548 128 34.2 69549 129 34.4 69550 130 34.6 69551 131 34.7 69552 132 35.1 69555 135 35.5 69556 136 35.7 69557 137 35.9 69558 138 36.0 69561 141 36.6 69562 142 36.8 69563 143 36.9			
69533 113 31.3 69534 114 31.5 69535 115 31.7 69536 116 31.9 69537 117 32.1 69538 118 32.3 69539 119 32.5 69540 120 32.7 69541 121 32.9 69542 122 33.0 69543 123 33.2 69544 124 33.4 69545 125 33.6 69546 126 33.8 69547 127 34.0 69548 128 34.2 69549 129 34.4 69550 130 34.6 69551 131 34.7 69552 132 35.1 69555 135 35.5 69556 136 35.7 69557 137 35.9 69559 139 36.2 69560 140 36.4 69561 141 36.6 69562 142 36.8 69563 143 36.9			
69534114 31.5 69535 115 31.7 69536 116 31.9 69537 117 32.1 69538 118 32.3 69539 119 32.5 69540 120 32.7 69541 121 32.9 69542 122 33.0 69543 123 33.2 69544 124 33.4 69545 125 33.6 69546 126 33.8 69547 127 34.0 69548 128 34.2 69549 129 34.4 69550 130 34.6 69551 131 34.7 69552 132 34.9 69555 135 35.5 69556 136 35.7 69557 137 35.9 69559 138 36.0 69561 141 36.8 69562 142 36.8 69563 143 36.9			
69535 115 31.7 69536 116 31.9 69537 117 32.1 69538 118 32.3 69539 119 32.5 69540 120 32.7 69541 121 32.9 69542 122 33.0 69543 123 33.2 69544 124 33.4 69545 125 33.6 69546 126 33.8 69547 127 34.0 69548 128 34.2 69549 129 34.4 69550 130 34.6 69551 131 34.7 69552 132 35.1 69554 134 35.3 69555 135 35.5 69556 136 35.7 69557 137 35.9 69559 139 36.2 69560 140 36.4 69561 141 36.6 69562 142 36.8 69563 143 36.9			
69536116 31.9 69537 117 32.1 69538 118 32.3 69539 119 32.5 69540 120 32.7 69541 121 32.9 69542 122 33.0 69543 123 33.2 69544 124 33.4 69545 125 33.6 69546 126 33.8 69547 127 34.0 69548 128 34.2 69549 129 34.4 69550 130 34.6 69551 131 34.7 69552 132 34.9 69555 135 35.5 69556 136 35.7 69557 137 35.9 69558 138 36.0 69559 139 36.2 69561 141 36.6 69562 142 36.8 69563 143 36.9			
69537 117 32.1 69538 118 32.3 69539 119 32.5 69540 120 32.7 69541 121 32.9 69542 122 33.0 69543 123 33.2 69544 124 33.4 69545 125 33.6 69546 126 33.8 69547 127 34.0 69548 128 34.2 69549 129 34.4 69550 130 34.6 69551 131 34.7 69552 132 34.9 69553 133 35.1 69555 135 35.5 69556 136 35.7 69557 137 35.9 69558 138 36.0 69559 139 36.2 69561 141 36.6 69562 142 36.8 69563 143 36.9			
69538118 32.3 69539 119 32.5 69540 120 32.7 69541 121 32.9 69542 122 33.0 69543 123 33.2 69544 124 33.4 69545 125 33.6 69546 126 33.8 69547 127 34.0 69548 128 34.2 69549 129 34.4 69550 130 34.6 69551 131 34.7 69552 132 34.9 69553 133 35.1 69554 134 35.3 69555 135 35.5 69556 136 35.7 69559 139 36.2 69560 140 36.4 69561 141 36.6 69563 143 36.9	69536	116	31.9
69539 119 32.5 69540 120 32.7 69541 121 32.9 69542 122 33.0 69543 123 33.2 69544 124 33.4 69545 125 33.6 69546 126 33.8 69547 127 34.0 69548 128 34.2 69549 129 34.4 69550 130 34.6 69551 131 34.7 69552 132 34.9 69553 133 35.1 69555 135 35.5 69556 136 35.7 69557 137 35.9 69559 139 36.2 69560 140 36.4 69561 141 36.6 69563 143 36.9	69537	117	32.1
69540120 32.7 69541 121 32.9 69542 122 33.0 69543 123 33.2 69544 124 33.4 69545 125 33.6 69546 126 33.8 69547 127 34.0 69548 128 34.2 69549 129 34.4 69550 130 34.6 69551 131 34.7 69552 132 34.9 69553 133 35.1 69555 135 35.5 69556 136 35.7 69557 137 35.9 69558 138 36.0 69561 140 36.4 69562 142 36.8 69563 143 36.9	69538	118	32.3
69541 121 32.9 69542 122 33.0 69543 123 33.2 69543 123 33.2 69544 124 33.4 69545 125 33.6 69546 126 33.8 69547 127 34.0 69548 128 34.2 69549 129 34.4 69550 130 34.6 69551 131 34.7 69552 132 34.9 69553 133 35.1 69554 134 35.3 69555 135 35.5 69556 136 35.7 69557 137 35.9 69559 139 36.2 69560 140 36.4 69561 141 36.6 69563 143 36.9	69539	119	32.5
69542 122 33.0 69543 123 33.2 69544 124 33.4 69545 125 33.6 69546 126 33.8 69546 126 33.8 69547 127 34.0 69548 128 34.2 69549 129 34.4 69550 130 34.6 69551 131 34.7 69552 132 34.9 69553 133 35.1 69554 134 35.3 69555 135 35.5 69556 136 35.7 69557 137 35.9 69559 138 36.0 69561 140 36.4 69561 141 36.6 69563 143 36.9	69540	120	32.7
69543 123 33.2 69544 124 33.4 69545 125 33.6 69546 126 33.8 69546 126 33.8 69547 127 34.0 69548 128 34.2 69549 129 34.4 69550 130 34.6 69551 131 34.7 69552 132 34.9 69553 133 35.1 69554 134 35.3 69555 135 35.5 69556 136 35.7 69557 137 35.9 69558 138 36.0 69559 139 36.2 69561 141 36.6 69562 142 36.8 69563 143 36.9	69541	121	32.9
69544 124 33.4 69545 125 33.6 69546 126 33.8 69547 127 34.0 69548 128 34.2 69549 129 34.4 69550 130 34.6 69551 131 34.7 69552 132 34.9 69553 133 35.1 69554 134 35.3 69555 135 35.5 69556 136 35.7 69557 137 35.9 69558 138 36.0 69560 140 36.4 69561 141 36.6 69563 143 36.9	69542	122	33.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	69543	123	33.2
6954612633.8 69547 12734.0 69548 12834.2 69549 12934.4 69550 13034.6 69551 13134.7 69552 13234.9 69553 13335.1 69554 13435.3 69555 13535.5 69556 13635.7 69557 13735.9 69558 13836.0 69561 14136.4 69562 14236.8 69563 14336.9	69544	124	33.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	69545	125	33.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	69546	126	33.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	69547	127	34.0
6955013034.66955113134.76955213234.96955313335.16955413435.36955513535.56955613635.76955713735.96955813836.06955913936.26956014036.46956214236.86956314336.9	69548	128	34.2
6955113134.76955213234.96955313335.16955413435.36955513535.56955613635.76955713735.96955813836.06955913936.26956014036.46956114136.66956214236.86956314336.9	69549	129	34.4
6955213234.96955313335.16955413435.36955513535.56955613635.76955713735.96955813836.06955913936.26956014036.46956114136.66956214236.86956314336.9	69550	130	34.6
6955313335.16955413435.36955513535.56955613635.76955713735.96955813836.06955913936.26956014036.46956114136.66956214236.86956314336.9	69551	131	34.7
6955413435.36955513535.56955613635.76955713735.96955813836.06955913936.26956014036.46956114136.66956214236.86956314336.9	69552	132	34.9
6955513535.56955613635.76955713735.96955813836.06955913936.26956014036.46956114136.66956214236.86956314336.9	69553	133	35.1
6955613635.76955713735.96955813836.06955913936.26956014036.46956114136.66956214236.86956314336.9	69554	134	35.3
6955613635.76955713735.96955813836.06955913936.26956014036.46956114136.66956214236.86956314336.9	69555	135	35.5
6955713735.96955813836.06955913936.26956014036.46956114136.66956214236.86956314336.9	69556		
6955813836.06955913936.26956014036.46956114136.66956214236.86956314336.9			
6955913936.26956014036.46956114136.66956214236.86956314336.9			
6956014036.46956114136.66956214236.86956314336.9			
6956114136.66956214236.86956314336.9			
6956214236.86956314336.9			
69563 143 36.9			
	69564	143	37.1

69565	145	37.3
69566	146	37.5
69567	147	37.7
69568	148	37.8
69569	149	38.0
69570	150	38.2
69571	150	38.4
69572		
	152	38.6
69573	153	38.7
69574	154	38.9
69575	155	39.1
69576	156	39.3
69577	157	39.4
69578	158	39.6
69579	159	39.8
69580	160	39.9
69581	161	40.1
69582	162	40.3
69583	163	40.5
69584	164	40.6
69585	165	40.8
69586	166	41.0
69587	167	41.1
69588	168	41.3
69589	169	41.5
69590	170	41.7
69591	171	41.8
69592	172	42.0
69593	173	42.2
69594	174	42.3
69595	175	42.5
69596	176	42.7
69597	177	42.8
69598	178	43.0
69599	179	43.1
69600	180	43.3
69601		43.5
	181	
69602	182	43.6
69603	183	43.8
69604	184	44.0
69605	185	44.1
69606	186	44.3
69607	187	44.4
69608	188	44.6
69609	189	44.8
69610	190	44.9
69611	191	45.1

69612 192 45.2 69613 193 45.4 69614 194 45.6 69615 195 45.7 69616 196 45.9 69617 197 46.0 69618 198 46.2 69619 199 46.3 69620 200 46.5 69621 201 46.6 69622 202 46.8 69623 203 46.9 69624 204 47.1 69625 205 47.2 69626 206 47.4 69627 207 47.5 69628 208 47.7 69629 209 47.9 69630 210 48.0 69631 211 48.1 69632 212 48.3 69633 213 48.4 69634 214 48.6 69635 215 48.7 69636 216 48.9 69637 217 49.0 69638 218 49.2 69641 222 49.8 69642 222 49.8 69643 223 49.9 69644 224 50.0 69644 226 50.3 69644 226 50.3 69655 235 51.6 69656 236 51.7 69656 236 51.7 69656 236 51.7 69658 238	00040	100	45.0
69614 194 45.6 69615 195 45.7 69616 196 45.9 69617 197 46.0 69618 198 46.2 69619 199 46.3 69620 200 46.5 69621 201 46.6 69622 202 46.8 69623 203 46.9 69624 204 47.1 69625 205 47.2 69626 206 47.4 69627 207 47.5 69628 208 47.7 69629 209 47.9 69630 210 48.0 69631 211 48.1 69632 212 48.3 69633 213 48.4 69634 214 48.6 69635 215 48.7 69636 216 48.9 69637 217 49.0 69638 218 49.2 69639 219 49.3 69641 222 49.8 69643 223 49.9 69644 224 50.0 69644 226 50.3 69646 226 50.3 69650 230 50.9 69651 231 51.0 69656 236 51.7 69656 236 51.7 69656 236 51.7 69657 237 51.9	69612	192	45.2
69615 195 45.7 69616 196 45.9 69617 197 46.0 69618 198 46.2 69619 199 46.3 69620 200 46.5 69621 201 46.6 69622 202 46.8 69623 203 46.9 69624 204 47.1 69625 205 47.2 69626 206 47.4 69627 207 47.5 69628 208 47.7 69629 209 47.9 69630 210 48.0 69631 211 48.1 69632 212 48.3 69633 213 48.4 69634 214 48.6 69635 215 48.7 69636 216 48.9 69637 217 49.0 69638 218 49.2 69639 219 49.3 69641 220 49.5 69641 222 49.8 69643 223 49.9 69644 224 50.0 69645 225 50.2 69646 226 50.3 69650 230 50.9 69651 231 51.0 69656 236 51.7 69656 236 51.7 69656 236 51.7 69657 237 51.9	-		
69616 196 45.9 69617 197 46.0 69618 198 46.2 69619 199 46.3 69620 200 46.5 69621 201 46.6 69622 202 46.8 69623 203 46.9 69624 204 47.1 69625 205 47.2 69626 206 47.4 69627 207 47.5 69628 208 47.7 69629 209 47.9 69630 210 48.0 69631 211 48.1 69632 212 48.3 69633 213 48.4 69634 214 48.6 69635 215 48.7 69636 216 48.9 69637 217 49.0 69638 218 49.2 69640 220 49.5 69641 221 49.3 69643 223 49.9 69644 224 50.0 69645 225 50.2 69646 226 50.3 69647 227 50.5 69648 228 50.6 69650 230 50.9 69651 231 51.0 69654 234 51.4 69655 235 51.6 69656 236 51.7 69657 237 51.9	-		
69617 197 46.0 69618 198 46.2 69619 199 46.3 69620 200 46.5 69621 201 46.6 69622 202 46.8 69623 203 46.9 69624 204 47.1 69625 205 47.2 69626 206 47.4 69627 207 47.5 69628 208 47.7 69629 209 47.9 69630 210 48.0 69631 211 48.1 69632 212 48.3 69633 213 48.4 69634 214 48.6 69635 215 48.7 69636 216 48.9 69637 217 49.0 69638 218 49.2 69640 220 49.5 69641 221 49.6 69642 222 49.8 69643 223 49.9 69644 226 50.3 69646 226 50.3 69647 227 50.5 69648 228 50.6 69650 230 50.9 69651 231 51.0 69654 234 51.4 69655 235 51.6 69656 236 51.7 69657 237 51.9	-		
69618 198 46.2 69619 199 46.3 69620 200 46.5 69621 201 46.6 69622 202 46.8 69623 203 46.9 69624 204 47.1 69625 205 47.2 69626 206 47.4 69627 207 47.5 69628 208 47.7 69629 209 47.9 69630 210 48.0 69631 211 48.1 69632 212 48.3 69633 213 48.4 69634 214 48.6 69635 215 48.7 69636 216 48.9 69637 217 49.0 69638 218 49.2 69640 220 49.5 69641 221 49.6 69642 222 49.8 69643 223 49.9 69644 226 50.3 69646 226 50.3 69647 227 50.5 69648 228 50.6 69650 230 50.9 69651 231 51.0 69654 236 51.7 69655 235 51.6 69656 236 51.7 69657 237 51.9	-		
69619 199 46.3 69620 200 46.5 69621 201 46.6 69622 202 46.8 69623 203 46.9 69624 204 47.1 69625 205 47.2 69626 206 47.4 69627 207 47.5 69628 208 47.7 69629 209 47.9 69630 210 48.0 69631 211 48.1 69632 212 48.3 69633 213 48.4 69634 214 48.6 69635 215 48.7 69636 216 48.9 69637 217 49.0 69638 218 49.2 69639 219 49.3 69640 220 49.5 69641 221 49.6 69643 223 49.9 69644 224 50.2 69646 226 50.3 69647 225 50.2 69648 228 50.6 69649 229 50.8 69650 230 50.9 69651 231 51.0 69655 235 51.6 69656 236 51.7 69657 237 51.9	-		
69620 200 46.5 69621 201 46.6 69622 202 46.8 69623 203 46.9 69624 204 47.1 69625 205 47.2 69626 206 47.4 69627 207 47.5 69628 208 47.7 69629 209 47.9 69630 210 48.0 69631 211 48.1 69632 212 48.3 69633 213 48.4 69634 214 48.6 69635 215 48.7 69636 216 48.9 69637 217 49.0 69638 218 49.2 69639 219 49.3 69640 220 49.5 69641 221 49.6 69642 222 49.8 69643 223 49.9 69644 224 50.0 69645 225 50.2 69646 226 50.3 69647 227 50.5 69648 228 50.6 69650 230 50.9 69651 231 51.0 69654 234 51.4 69655 235 51.6 69656 236 51.7 69657 237 51.9	-		
69621 201 46.6 69622 202 46.8 69623 203 46.9 69624 204 47.1 69625 205 47.2 69626 206 47.4 69627 207 47.5 69628 208 47.7 69629 209 47.9 69630 210 48.0 69631 211 48.1 69632 212 48.3 69633 213 48.4 69634 214 48.6 69635 215 48.7 69636 216 48.9 69637 217 49.0 69638 218 49.2 69639 219 49.3 69640 220 49.5 69641 221 49.6 69642 222 49.8 69643 223 49.9 69644 226 50.3 69646 226 50.3 69647 227 50.5 69648 228 50.6 69650 230 50.9 69651 231 51.0 69653 235 51.6 69654 234 51.4 69655 235 51.6 69656 236 51.7 69657 237 51.9	-		
69622 202 46.8 69623 203 46.9 69624 204 47.1 69625 205 47.2 69626 206 47.4 69627 207 47.5 69628 208 47.7 69629 209 47.9 69630 210 48.0 69631 211 48.1 69632 212 48.3 69633 213 48.4 69634 214 48.6 69635 215 48.7 69636 216 48.9 69637 217 49.0 69638 218 49.2 69640 220 49.5 69641 221 49.6 69642 222 49.8 69643 223 49.9 69644 226 50.3 69646 226 50.3 69647 227 50.5 69648 228 50.6 69649 229 50.8 69650 230 50.9 69651 231 51.0 69654 234 51.4 69655 235 51.6 69656 236 51.7 69657 237 51.9	-		
69623 203 46.9 69624 204 47.1 69625 205 47.2 69626 206 47.4 69627 207 47.5 69628 208 47.7 69629 209 47.9 69630 210 48.0 69631 211 48.1 69632 212 48.3 69633 213 48.4 69634 214 48.6 69635 215 48.7 69636 216 48.9 69637 217 49.0 69638 218 49.2 69639 219 49.3 69640 220 49.5 69641 221 49.6 69642 222 49.8 69643 223 49.9 69644 226 50.3 69644 226 50.3 69644 226 50.3 69645 225 50.2 69648 228 50.6 69649 229 50.8 69650 230 50.9 69651 231 51.3 69654 234 51.4 69655 235 51.6 69656 236 51.7 69657 237 51.9			
69624 204 47.1 69625 205 47.2 69626 206 47.4 69627 207 47.5 69628 208 47.7 69629 209 47.9 69630 210 48.0 69631 211 48.1 69632 212 48.3 69633 213 48.4 69634 214 48.6 69635 215 48.7 69636 216 48.9 69637 217 49.0 69638 218 49.2 69639 219 49.3 69640 220 49.5 69641 221 49.6 69642 222 49.8 69643 223 49.9 69644 224 50.0 69645 225 50.2 69646 226 50.3 69647 227 50.5 69648 228 50.6 69650 230 50.9 69651 231 51.0 69653 233 51.3 69654 234 51.4 69655 235 51.6 69656 236 51.7 69657 237 51.9			
69625 205 47.2 69626 206 47.4 69627 207 47.5 69628 208 47.7 69629 209 47.9 69630 210 48.0 69631 211 48.1 69632 212 48.3 69633 213 48.4 69634 214 48.6 69635 215 48.7 69636 216 48.9 69637 217 49.0 69638 218 49.2 69639 219 49.3 69640 220 49.5 69641 221 49.6 69642 222 49.8 69643 223 49.9 69644 224 50.0 69645 225 50.2 69646 226 50.3 69647 227 50.5 69648 228 50.6 69650 230 50.9 69651 231 51.0 69652 232 51.2 69654 234 51.4 69655 235 51.6 69656 236 51.7 69657 237 51.9	-		
69626 206 47.4 69627 207 47.5 69628 208 47.7 69629 209 47.9 69630 210 48.0 69631 211 48.1 69632 212 48.3 69633 213 48.4 69634 214 48.6 69635 215 48.7 69636 216 48.9 69637 217 49.0 69638 218 49.2 69639 219 49.3 69640 220 49.5 69641 221 49.6 69642 222 49.8 69643 223 49.9 69644 224 50.0 69645 225 50.2 69646 226 50.3 69647 227 50.5 69648 228 50.6 69650 230 50.9 69651 231 51.0 69652 232 51.2 69653 233 51.3 69654 234 51.4 69655 235 51.6 69656 236 51.7 69657 237 51.9	-		
69627 207 47.5 69628 208 47.7 69629 209 47.9 69630 210 48.0 69631 211 48.1 69632 212 48.3 69633 2113 48.4 69634 214 48.6 69635 215 48.7 69636 216 48.9 69637 217 49.0 69638 218 49.2 69639 219 49.3 69640 220 49.5 69641 221 49.6 69642 222 49.8 69643 223 49.9 69644 224 50.0 69645 225 50.2 69646 226 50.3 69647 227 50.5 69648 228 50.6 69650 230 50.9 69651 231 51.0 69652 232 51.2 69653 235 51.6 69656 236 51.7 69657 237 51.9			
69628 208 47.7 69629 209 47.9 69630 210 48.0 69631 211 48.1 69632 212 48.3 69633 2113 48.4 69634 214 48.6 69635 215 48.7 69636 216 48.9 69637 217 49.0 69638 218 49.2 69639 219 49.3 69640 220 49.5 69641 221 49.6 69642 222 49.8 69643 223 49.9 69644 224 50.0 69645 225 50.2 69646 226 50.3 69647 227 50.5 69648 228 50.6 69650 230 50.9 69651 231 51.0 69652 232 51.2 69653 235 51.6 69656 236 51.7 69657 237 51.9			
69629 209 47.9 69630 210 48.0 69631 211 48.1 69632 212 48.3 69633 213 48.4 69634 214 48.6 69635 215 48.7 69636 216 48.9 69637 217 49.0 69638 218 49.2 69639 219 49.3 69640 220 49.5 69641 221 49.6 69642 222 49.8 69643 223 49.9 69644 224 50.0 69645 225 50.2 69646 226 50.3 69647 227 50.5 69648 228 50.6 69650 230 50.9 69651 231 51.0 69653 233 51.3 69654 234 51.4 69655 235 51.6 69656 236 51.7 69657 237 51.9			
69630 210 48.0 69631 211 48.1 69632 212 48.3 69633 213 48.4 69634 214 48.6 69635 215 48.7 69636 216 48.9 69637 217 49.0 69638 218 49.2 69639 219 49.3 69640 220 49.5 69641 221 49.6 69642 222 49.8 69643 223 49.9 69644 226 50.3 69645 225 50.2 69646 226 50.3 69647 227 50.5 69648 228 50.6 69650 230 50.9 69651 231 51.0 69654 234 51.4 69655 235 51.6 69656 236 51.7 69657 237 51.9	-		
69631 211 48.1 69632 212 48.3 69633 213 48.4 69634 214 48.6 69635 215 48.7 69636 216 48.9 69637 217 49.0 69638 218 49.2 69639 219 49.3 69640 220 49.5 69641 221 49.6 69642 222 49.8 69643 223 49.9 69644 224 50.0 69645 225 50.2 69646 226 50.3 69647 227 50.5 69648 228 50.6 69650 230 50.9 69651 231 51.0 69652 232 51.2 69653 233 51.3 69654 234 51.4 69655 235 51.6 69656 236 51.7 69657 237 51.9	-		
69632 212 48.3 69633 213 48.4 69634 214 48.6 69635 215 48.7 69636 216 48.9 69637 217 49.0 69638 218 49.2 69639 219 49.3 69640 220 49.5 69641 221 49.6 69642 222 49.8 69643 223 49.9 69644 224 50.0 69645 225 50.2 69646 226 50.3 69647 227 50.5 69648 228 50.6 69650 230 50.9 69651 231 51.0 69652 232 51.2 69653 233 51.3 69654 234 51.4 69655 235 51.6 69656 236 51.7 69657 237 51.9	-		
69633 213 48.4 69634 214 48.6 69635 215 48.7 69636 216 48.9 69637 217 49.0 69638 218 49.2 69639 219 49.3 69640 220 49.5 69641 221 49.6 69642 222 49.8 69643 223 49.9 69644 224 50.0 69645 225 50.2 69646 226 50.3 69647 227 50.5 69648 228 50.6 69649 229 50.8 69650 230 50.9 69651 231 51.0 69653 233 51.3 69654 234 51.4 69655 235 51.6 69656 236 51.7 69657 237 51.9	-		
69634 214 48.6 69635 215 48.7 69636 216 48.9 69637 217 49.0 69638 218 49.2 69639 219 49.3 69640 220 49.5 69641 221 49.6 69642 222 49.8 69643 223 49.9 69644 224 50.0 69645 225 50.2 69646 226 50.3 69647 227 50.5 69648 228 50.6 69650 230 50.9 69651 231 51.0 69652 232 51.2 69653 233 51.3 69654 234 51.4 69655 235 51.6 69656 236 51.7 69657 237 51.9	-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		
6964522550.26964622650.36964722750.56964822850.66964922950.86965023050.96965123151.06965223251.26965323351.36965423451.46965523551.66965623651.76965723751.9	-		
6964622650.36964722750.56964822850.66964922950.86965023050.96965123151.06965223251.26965323351.36965423451.46965523551.66965623651.76965723751.9	69644	224	
6964722750.56964822850.66964922950.86965023050.96965123151.06965223251.26965323351.36965423451.46965523551.66965623651.76965723751.9	69645		
6964822850.66964922950.86965023050.96965123151.06965223251.26965323351.36965423451.46965523551.66965623651.76965723751.9	69646	226	50.3
6964922950.86965023050.96965123151.06965223251.26965323351.36965423451.46965523551.66965623651.76965723751.9	69647		
6965023050.96965123151.06965223251.26965323351.36965423451.46965523551.66965623651.76965723751.9	69648	228	
6965123151.06965223251.26965323351.36965423451.46965523551.66965623651.76965723751.9	69649		
6965223251.26965323351.36965423451.46965523551.66965623651.76965723751.9			
6965323351.36965423451.46965523551.66965623651.76965723751.9	69651		
6965423451.46965523551.66965623651.76965723751.9			
6965523551.66965623651.76965723751.9	69653		
69656 236 51.7 69657 237 51.9	69654	234	51.4
69657 237 51.9	69655		
	69656	236	
69658 238 52.0		237	51.9
	69658	238	52.0

69659	23	9 52.1
69660	24	0 52.3
69661	24	1 52.4
69662	24	2 52.5
69663	24	3 52.7
69664	24	4 52.8
69665	24	
69666	24	
69667	24	
69668	24	
69669	24	
69670	25	
69671	25	
69672	25	
69673	25	
69674	25	
69674 69675	25	
69676	25	
69677		
	25	
69678	25	
69679	25	
69680	26	
69681	26	
69682	262	
69683	26	
69684	26	
69685	265	55.5
69686	266	55.6
69687	267	55.8
69688	268	55.9
69689	269	56.0
69690	270	56.1
69691	271	56.2
69692	272	56.4
69693	273	56.5
69694	274	56.6
69695	275	56.7
69696	276	56.8
69697	277	57.0
69698	278	57.1
69699	279	57.2
69700	280	57.3
69701	281	57.4
69702	282	57.5
69703	283	57.7
69704	284	57.8
69705	285	57.9

	000	50.0
69706	286	58.0
69707	287	58.1
69708	288	58.2
69709	289	58.3
69710	290	58.4
69711	291	58.6
69712	292	58.7
69713	293	58.8
69714	294	58.9
69715	295	59.0
69716	296	59.1
69717	297	59.2
69718	298	59.3
69719	299	59.4
69720	300	59.5
69721	301	59.7
69722	302	59.8
69723	303	59.9
69724	304	60.0
69725	305	60.1
69726	306	60.2
69727	307	60.3
69728	308	60.4
69729	309	60.5
69730	310	60.6
69731	311	60.7
69732	312	60.8
69733	313	60.9
69734	314	61.0
69735	315	61.1
69736	316	61.2
69737	317	61.3
69738	318	61.4
69739	319	61.5
69740	320	61.6
69741	321	61.7
69742	322	61.8
69743	323	61.9
69744	324	62.0
69745	325	62.1
69746	326	62.2
69747	327	62.3
69748	328	62.4
69749	329	62.5
69750	330	62.5
69751	331	62.6
69752	332	62.7

6975433462.96975533563.06975633663.16975733763.26975833863.36975933963.46976034063.56976134163.56976234263.66976334363.76976434463.86976534563.96976634664.06976734764.16976834864.16976934964.26977035064.36977135164.46977235264.56977335364.66977435464.66977535564.76977635664.86977735764.96977835865.06977935965.16978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86979037065.96979137166.06979237266.06979337366.16979437466.26979537566.36979637666.36979737766.469798		1	
6975533563.06975633663.16975733763.26975833863.36975933963.46976034063.56976134163.56976234263.66976334363.76976434463.86976534563.96976634664.06976734764.16976834864.16976934964.26977035064.36977135164.46977235264.56977335364.66977435464.66977535564.76977635664.86977735764.96977835865.06977935965.16978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86979037065.96979137166.06979237266.06979337366.16979437466.26979537566.36979637666.36979737766.46979837866.5	69753	333	62.8
6975633663.16975733763.26975833863.36975933963.46976034063.56976134163.56976234263.66976334363.76976434463.86976534563.96976634664.06976734764.16976834864.16976934964.26977035064.36977135164.46977235264.56977335364.66977435464.66977535564.76977635664.86977735764.96977835865.06977935965.16978036065.16978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86979037065.96979137166.06979237266.06979337366.16979437466.26979537566.36979637665.36979637666.36979737766.469798			
6975733763.26975833863.36975933963.46976034063.56976134163.56976234263.66976334363.76976434463.86976534563.96976634664.06976734764.16976834864.16976934964.26977035064.36977135164.46977235264.56977335364.66977435464.66977535564.76977635664.86977735764.96977835865.06977935965.16978036065.16978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86979037065.96979137166.06979237266.06979337366.16979437466.26979537566.36979637666.36979737766.46979837866.5			
6975833863.36975933963.46976034063.56976134163.56976234263.66976334363.76976434463.86976534563.96976634664.06976734764.16976834864.16976934964.26977035064.36977135164.46977235264.56977335364.66977435464.66977535564.76977635664.86977735764.96977835865.06977935965.16978036065.16978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86979037065.96979137166.06979237266.06979337366.16979437466.26979537566.36979637666.36979737766.46979837866.5			
6975933963.46976034063.56976134163.56976234263.66976334363.76976434463.86976534563.96976634664.06976734764.16976834864.16976934964.26977035064.36977135164.46977235264.56977335364.66977435464.66977535564.76977635664.86977735764.96977835865.06977935965.16978036065.16978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86979037065.96979137166.06979337366.16979437466.26979537566.36979637666.36979737766.46979837866.5			
6976034063.56976134163.56976234263.66976334363.76976434463.86976534563.96976634664.06976734764.16976834864.16976934964.26977035064.36977135164.46977235264.56977335364.66977435464.66977535564.76977635664.86977735764.96977835865.06977935965.16978036065.16978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86979037065.96979137166.06979237266.06979337366.16979437466.26979537566.36979637666.36979737766.46979837866.5			
6976134163.56976234263.66976334363.76976434463.86976534563.96976634664.06976734764.16976834864.16976934964.26977035064.36977135164.46977235264.56977335364.66977435464.66977535564.76977635664.86977735764.96977835865.06977935965.16978036065.16978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86979037065.96979137166.06979237266.06979337366.16979437466.26979537566.36979637666.36979737766.46979837866.5		339	
69762 342 63.6 69763 343 63.7 69764 344 63.8 69765 345 63.9 69766 346 64.0 69767 347 64.1 69768 348 64.1 69769 349 64.2 69770 350 64.3 69771 351 64.4 69772 352 64.5 69773 353 64.6 69774 354 64.6 69775 355 64.7 69776 355 64.7 69776 356 64.8 69777 357 64.9 69778 358 65.0 69778 358 65.1 69781 361 65.2 69782 362 65.3 69783 365 65.5 69784 364 65.4 69785 365 65.5			
6976334363.76976434463.86976534563.96976634664.06976734764.16976834864.16976934964.26977035064.36977135164.46977235264.56977335364.66977435464.66977535564.76977635664.86977735764.96977835865.06977935965.16978036065.16978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86979037065.96979137166.06979337366.16979437466.26979537566.36979637666.36979737766.46979837866.5			
6976434463.86976534563.96976634664.06976734764.16976834864.16976934964.26977035064.36977135164.46977235264.56977335364.66977435464.66977535564.76977635664.86977735764.96977835865.06977935965.16978036065.16978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86979037065.96979137166.06979237266.06979337566.36979637666.36979637666.36979737766.46979837866.5			63.6
6976534563.96976634664.06976734764.16976834864.16976934964.26977035064.36977135164.46977235264.56977335364.66977435464.66977535564.76977635664.86977735764.96977835865.06977935965.16978036065.16978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86979037065.96979137166.06979337366.16979437466.26979537566.36979637666.36979737766.46979837866.5	69763	343	63.7
6976634664.06976734764.16976834864.16976934964.26977035064.36977135164.46977235264.56977335364.66977435464.66977535564.76977635664.86977735764.96977835865.06977935965.16978036065.16978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86979037065.96979137166.06979337366.16979437466.26979537566.36979837666.36979837866.5	69764	344	63.8
6976734764.16976834864.16976934964.26977035064.36977135164.46977235264.56977335364.66977435464.66977535564.76977635664.86977735764.96977835865.06977935965.16978036065.16978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86979037065.96979137166.06979337366.16979437466.26979537566.36979637666.36979737766.46979837866.5	69765	345	63.9
6976834864.16976934964.26977035064.36977135164.46977235264.56977335364.66977435464.66977535564.76977635664.86977735764.96977835865.06977935965.16978036065.16978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86979037065.96979137166.06979237266.06979537566.36979637666.36979737766.46979837866.5	69766	346	64.0
6976934964.26977035064.36977135164.46977235264.56977335364.66977435464.66977535564.76977635664.86977735764.96977835865.06977935965.16978036065.16978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86979037065.96979137166.06979337366.16979437466.26979537566.36979637666.36979737766.46979837866.5	69767	347	64.1
6977035064.36977135164.46977235264.56977335364.66977435464.66977535564.76977635664.86977735764.96977835865.06977935965.16978036065.16978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86979037065.96979137166.06979337366.16979437466.26979537566.36979637666.36979737766.46979837866.5	69768	348	64.1
6977135164.46977235264.56977335364.66977435464.66977535564.76977635664.86977735764.96977835865.06977935965.16978036065.16978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86979037065.96979137166.06979337366.16979437466.26979537566.36979737766.46979837866.5	69769	349	64.2
6977235264.56977335364.66977435464.66977535564.76977635664.86977735764.96977835865.06977935965.16978036065.16978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86979037065.96979137166.06979337366.16979437466.26979537566.36979637666.36979737766.46979837866.5	69770	350	64.3
6977335364.66977435464.66977535564.76977635664.86977735764.96977835865.06977935965.16978036065.16978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86979037065.96979137166.06979337366.16979437466.26979537566.36979737766.46979837866.5	69771	351	64.4
6977435464.66977535564.76977635664.86977735764.96977835865.06977935965.16978036065.16978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836965.86979037065.96979137166.06979337366.16979437466.26979537566.36979737766.46979837866.5	69772	352	64.5
6977535564.76977635664.86977735764.96977835865.06977935965.16978036065.16978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86979037065.96979137166.06979337366.16979437466.26979537566.36979837666.36979737766.46979837866.5	69773	353	64.6
6977635664.86977735764.96977835865.06977935965.16978036065.16978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836965.86979037065.96979137166.06979337366.16979437466.26979537566.36979837666.36979737766.46979837866.5	69774	354	64.6
6977735764.96977835865.06977935965.16978036065.16978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836965.86979037065.96979137166.06979337366.16979537566.36979737766.46979837866.5	69775	355	64.7
6977835865.06977935965.16978036065.16978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86979037065.96979137166.06979337366.16979537566.36979737766.46979837866.5	69776	356	64.8
6977935965.16978036065.16978036165.26978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86979037065.96979137166.06979337366.16979437466.26979537566.36979837866.5	69777	357	64.9
6978036065.16978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86979037065.96979137166.06979337366.16979437466.26979537566.36979737766.46979837866.5	69778	358	65.0
6978136165.26978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86979037065.96979137166.06979337366.16979437466.26979537566.36979737766.46979837866.5	69779	359	65.1
6978236265.36978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86978936965.86979037065.96979137166.06979337366.16979437466.26979537566.36979737766.46979837866.5	69780	360	65.1
6978336365.46978436465.46978536565.56978636665.66978736765.76978836865.86978936965.86979037065.96979137166.06979337366.16979437466.26979537566.36979737766.46979837866.5	69781	361	65.2
6978436465.46978536565.56978636665.66978736765.76978836865.86978936965.86979037065.96979137166.06979237266.06979337366.16979437466.26979537566.36979737766.46979837866.5	69782	362	65.3
6978536565.56978636665.66978736765.76978836865.86978936965.86979037065.96979137166.06979237266.06979337366.16979437466.26979537566.36979737766.46979837866.5	69783	363	65.4
6978636665.66978736765.76978836865.86978936965.86979037065.96979137166.06979237266.06979337366.16979437466.26979537566.36979637666.36979737766.46979837866.5	69784	364	65.4
6978736765.76978836865.86978936965.86979037065.96979137166.06979237266.06979337366.16979437466.26979537566.36979637666.36979837866.5	69785	365	65.5
6978736765.76978836865.86978936965.86979037065.96979137166.06979237266.06979337366.16979437466.26979537566.36979637666.36979837866.5	69786	366	65.6
6978936965.86979037065.96979137166.06979237266.06979337366.16979437466.26979537566.36979637666.36979737766.46979837866.5	69787	367	
6978936965.86979037065.96979137166.06979237266.06979337366.16979437466.26979537566.36979637666.36979737766.46979837866.5	69788	368	65.8
6979037065.96979137166.06979237266.06979337366.16979437466.26979537566.36979637666.36979737766.46979837866.5	69789		
6979137166.06979237266.06979337366.16979437466.26979537566.36979637666.36979737766.46979837866.5			
6979237266.06979337366.16979437466.26979537566.36979637666.36979737766.46979837866.5			
6979337366.16979437466.26979537566.36979637666.36979737766.46979837866.5			
6979437466.26979537566.36979637666.36979737766.46979837866.5			
6979537566.36979637666.36979737766.46979837866.5			
6979637666.36979737766.46979837866.5			
6979737766.46979837866.5			
69798 378 66.5			
	69799	379	66.6

69800	380	66.6
69801	381	66.7
69802	382	66.8
69803	383	66.8
69804	384	66.9
69805	385	67.0
69806	386	67.0
69807	387	67.1
69808	388	67.2
69809	389	67.2
69810	390	67.3
69811	391	67.4
69812	392	67.4
69813	393	67.5
69814	394	67.6
69815	395	67.6
69816	396	67.7
69817	397	67.7
69818	398	67.8
69819	399	67.9
69820	400	67.9
69821	401	68.0
69822	402	68.0
69823	403	68.1
69824	404	68.2
69825	405	68.2
69826	406	68.3
69827	407	68.3
69828	408	68.4
69829	409	68.4
69830	410	68.5
69831	411	68.6
69832	412	68.6
69833	413	68.7
69834	414	68.7
69835	415	68.8
69836	416	68.8
69837	417	68.9
69838	418	68.9
69839	419	69.0
69840	420	69.0
69841	421	69.1
69842	422	69.1
69843	423	69.2
69844	424	69.2
69845	425	69.3
69846	426	69.3
	· · ·	

69847	427	69.4
69848	428	69.4
69849	429	69.5
69850	430	69.5
69851	431	69.6
69852	432	69.6
69853	433	69.7
69854	434	69.7
69855	435	69.8
69856	436	69.8
69857	437	69.8
69858	438	69.9
69859	439	69.9
69860	440	70.0
69861	441	70.0
69862	442	70.0
69863	443	70.1
69864	444	70.1
69865	445	70.2
69866	446	70.2
69867	447	70.2
69868	448	70.3
69869	449	70.3