
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2009

Temperature Estimation Using Ring Oscillators
Gregory D. Pierre-Louis
Worcester Polytechnic Institute

Justin Wells
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Pierre-Louis, G. D., & Wells, J. (2009). Temperature Estimation Using Ring Oscillators. Retrieved from
https://digitalcommons.wpi.edu/mqp-all/1548

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1548&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1548&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1548&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1548&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/1548?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F1548&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

 Project Number: BS2-0902

TEMPERATURE ESTIMATION USING RING OSCILLATORS

A Major Qualifying Project Report

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

By

Grégory Pierre-Louis

Justin Wells

Professor Berk Sunar, Advisor

This report represents the work of one or more WPI undergraduate students
submitted to the faculty as evidence of completion of a degree requirement.

WPI routinely publishes these reports on its web site without editorial or peer review

2

TABLE OF CONTENTS

TABLE OF CONTENTS .. 2

LIST OF TABLES .. 4

LIST OF FIGURES .. 4

LIST OF EQUATIONS .. 4

ACKNOWLEDGEMENTS .. 5

ABSTRACT .. 6

INTRODUCTION .. 7

BACKGROUND .. 9

Previous Work .. 9

FPGA’s ... 11

Structure .. 11

Design Process .. 12

Propagation Delay vs. Temperature .. 13

Ring Oscillator .. 13

TESTING TOOLS .. 14

FPGA Development Board ... 15

JTAG ... 15

System Monitor ... 15

Applications .. 16

Xilinx ISE 10.1 ... 16

ChipScope ... 17

METHODOLOGY, TESTING, AND ANALYSIS ... 18

Ring Oscillator vs. Pulse Generator .. 18

Initial Testing and Design ... 19

Temperature Chamber Testing ... 20

Analysis... 21

Count-to-Temperature Conversion ... 22

Ring Oscillator Delay ... 27

CONCLUSION ... 29

FUTURE RECOMMENDATIONS ... 31

Pulse Generator ... 31

Temperature Chamber .. 31

Placement of the Ring Oscillator .. 33

REFERENCES ... 35

APPENDICES .. 36

Appendix A : MATLAB Code ... 36

Get Data .. 36

Load Data (Create Spreadsheet) ... 37

Appendix B : FPGA Code (VHDL and Schematics) .. 38

Xilinx ISE Project Properties .. 38

Inverter .. 38

Delayline ... 38

Ring Oscillator .. 39

Fixed Ring Oscillator .. 39

3

Counting State Machine .. 40

Clock Convert ... 41

RS232 State Machine .. 42

System Monitor Setup... 44

RS232 .. 46

Design Implementing the RS232 .. 47

Send/Get State Machine .. 48

Top Level Design Module .. 48

Appendix C: CTC Table ... 50

4

LIST OF TABLES

Table 1 – Initial Inverter-Cycle Results .. 20

Table 2 – Resolution Table ... 23

LIST OF FIGURES

Figure 1 – A 3-Inverter Ring Oscillator .. 14

Figure 2 – Measured Temperature vs. Count, “Eyebrowing” Effect .. 22

Figure 3 – Measured Temperature vs. Count, 20-70°C .. 23

Figure 4 – Measured Temperature vs. Calibrated Count, 20-70°C .. 24

Figure 5 – Calculated Temperature vs. Calibrated Count, 20-70°C (using Equation 6) 25

Figure 6 – Measured and Calculated Temperature vs. Calibrated Count, 20-70°C 25

Figure 7 – Measured and Calculated Temperature vs. Calibrated Count, 20-70°C, with ±2σ Error

... 26

Figure 8 – Xilinx Device Utilization Summary Screen Shot .. 30

Figure 9 – PlanAhead Screenshot ... 34

Figure 10 – ISE Project Properties Selection .. 38

Figure 11 – Ring Oscillator ... 39

Figure 12 – Fixed Ring Oscillator .. 40

Figure 13 – System Monitor Wizard Setup Pg 1 .. 44

Figure 14 – System Monitor Wizard Setup Pg 2 .. 44

Figure 15 – System Monitor Wizard Setup Pg 3 .. 45

Figure 16 – System Monitor Wizard Setup Pg 4 .. 45

Figure 17 – System Monitor Wizard Setup Pg 5 .. 46

LIST OF EQUATIONS

Equation 1 – Propagation Delay for the NOT gate ... 10

Equation 2 – Mobility ... 10

Equation 3 – Threshold Voltage Temperature Dependency ... 10

Equation 4 – Approximate Frequency of a Ring Oscillator ... 14

Equation 5 – System Monitor Count-to-Temperature Equation ... 16

Equation 6 – Count-To-Temperature Conversion Equation ... 24

Equation 7 – Mean Delay through One Inverter, τPindividual ... 27

Equation 8 – Delay through the Ring, τPring .. 28

5

ACKNOWLEDGEMENTS

This team would like to thank Prof. Berk Sunar for his direction and advising. We would

also like to thank Mr. Brendon Chetwynd, Mr. Evan Custodio, and Mr. Gerardo Orlando for

supplying us with our workspace and equipment and for tending to our requests. We thank Ms.

Robyn Colopy and Mr. Jatin Chopra for their VHDL and MATLAB guidance. We would like to

acknowledge Mr. David Houlette for answering our questions about Xilinx and FPGA’s. Lastly,

we would like to thank all of the employees of GD in Needham for providing us with a friendly

work environment.

6

ABSTRACT

Partnering with C-4 Systems of General Dynamics in Needham, MA, this Worcester

Polytechnic Institute Major Qualifying Project team explored the idea of designing a completely

digital temperature sensor on field-programmable gate arrays. The goals of this MQP were (1) to

find consistency between our research and results, and (2) to design a sensor capable of

outputting a range of 0-70°C, a resolution of 0.1°C/count, and an error of ±1°C. Since

propagation delay is dependent on temperature, we designed a ring oscillator out of logical

inverters and counted the number of set clock periods to measure the length of the oscillator’s

total delay. We implemented our design and determined its measuring capability to be 20-70°C

with an average resolution of ~0.13°C/count and an error of ±2.75°C.

7

INTRODUCTION

Partnering with C-4 Systems of General Dynamics in Needham, MA, this Worcester

Polytechnic Institute (WPI) Major Qualifying Project (MQP) team explored the idea of

measuring temperature on field-programmable gate arrays (FPGAs) without using any on-board

temperature sensors. Power losses can occur in the form of heat because of manufacturing

imperfections and more than often lead to errors in the functionality of the chip or unexpected

results due to the increase in temperature. Overheating is becoming a serious concern as more

densely packed transistors within the chips are generating more heat per unit area. The

advantages of using a digital sensor over an analog sensor are that less chip size and power is

used, there is no permanent use of any of the FPGA elements, and it will be flexible enough so

any FPGA may use with minor adjustments.

The demand for small sized, high accuracy chips has grown over time, and with that, the

demand for low consumption smart temperature sensors has also grown. Also, demand for these

sensors to consume less power has grown as the desire to prevent internal overheating and also

improve battery life has grown[1].

Developers of smart sensors have become more concerned with increasing power

consumption when increasing resolution, accuracy, range, or die size of a chip. Consumers on

the other hand have become more concerned with the decreasing resolution, accuracy, range, or

die size when buying cheaper sensors. Seemingly, the higher the power consumption, the more

expensive the sensor become. Along with increased power consumption, cost of manufacturing

FPGAs with on-board sensors also increases [1].

Much research has been done to turn away from analog-to-digital converters (ADC’s)

which occupy much of the chip size. Recent technological focus has been geared towards

8

completely digital sensors with use of a time-to-digital converter (TDC) to produce the digital

output. In the literature we found one particular digital sensor that consumed 8.42μW of power

with a range of 0-75°C, a resolution of less than 0.1°C, and measurement error of ±1.5°C and

[1].

Many of the designs make use of a time domain temperature sensor, a timing reference,

and a TDC. The time domain temperature sensor is a thermally sensitive digital oscillator or

pulse generator which is based on the fact that the propagation delay of logic gates increases with

time. The timing reference is simply the on-board clock and the TDC being a simple counter.

The number of oscillations or pulses that the counter counts varies with temperature. With this

count, we can create a series of temperature curves and create an approximate count-to-

temperature conversion table. From this table, as opposed to outputting a count, one should be

able to create a look-up table (LUT) to directly output the die temperature.

The goal of this MQP was two tiered: (1) to verify the theoretical design with practical

experiments, and (2) to design a sensor capable of outputting a temperature with a range of 0-

70°C – the typical commercial range, a resolution of 0.1°C/count, and an error of ±1°C. The

sensor would be integrated into the chip for temperature monitoring and has the potential to

serve as a way to minimize the risk of overheating and damaging the FPGA.

9

BACKGROUND

In this chapter, we discuss many of the issues we encountered in the course of our MQP,

such as the general concept of FPGAs and how temperature relates to propagation delay.

Previous Work

Although we did much research in digital sensors, this particular piece contained much of

the information we would use to base our design. The article describes a project similar to ours,

so our initial steps in the MQP were to attempt to duplicate their project as much as we could and

analyze temperature in a similar way [1].

 FPGAs provide a great platform for this implementation. FPGAs yield high performance

at relatively low cost, consume a relatively small area, and most importantly are

reprogrammable. In the past, smart temperature sensors have been primarily constructed using

analog-to-digital converters (ADCs). ADCs account for a large chip area, high power

consumption, and often come with a limited temperature range. In this project, a time-to-digital

converter (TDC) was used in place of the analog-to-digital converter. The TDC was combined

with a pulse generator to produce a digital output. The chip size was reduced to nearly one tenth

of that of the typical ADC. Furthermore, the power consumption was reduced to as low as 10

microwatts.

 A simple counter would suffice as a TDC, as long as the pulse generator created a wide

enough pulse. Using a reference clock of 100 MHz, the width would need to be tens of

nanoseconds for an accurate reading.

Using the equations from [1] shown below, it was easier for the group to analyze the

relationship between propagation delay and temperature.

10

)
5.0

25.1
ln(

)(

)/(

DD

TDD

TDDOX

L
D

V

VV

VVC

CWL
T

Equation 1 – Propagation Delay for the NOT gate

 Mobility of holes and electrons, μ, is the relation of the speed of holes and electrons to an

applied electric field. The mobility μ is expressed in Equation 2.

km

T

T
)(

0

0 , 0.2~2.1 km

Equation 2 – Mobility

 The voltage across the insulating layer and the substrate of the transistor is called the

threshold voltage, VT. This is affected by temperature as seen in Equation 3.

)()()(00 TTTVTV TT , 0.3~5.0 mV/°K

Equation 3 – Threshold Voltage Temperature Dependency

 Looking at these equations, one can see that as temperature increases, both mobility and

threshold voltage decrease. In the situation in which VDD is much higher than the threshold

voltage (VT), it is seen that the higher the temperature is, the longer the propagation delay. This

allowed for an easier creation of a delay line using a series of N inverters given the desired

length, which would need to be quite long to get a reading for the desired temperature range.

11

FPGA’s

Field-programmable gate arrays fall under a class of devices that are labeled

“reconfigurable” or “reprogrammable” hardware. FPGAs are able to perform nearly any digital

function they are programmed to realize. Application-specific integrated circuits (ASICs) are

non-programmable and typically have one use. ASICs perform better than FPGAs but are much

more expensive due to the customization capabilities. FPGAs are useful because they can be

reprogrammed and reused respective to the task at hand for a cheaper cost with slight

compromise in performance. Undesired functionality of the device can be fixed on field and non-

recurring engineering costs are reduced [2].

Structure

FPGAs contain configurable logic blocks (CLBs) adjacent to two-dimensional arrays of

wires. These wires are similar to roads on a map, running east to west and north to south. Each of

these vertical and horizontal wires forms switches; and the intersection of these switches

collectively create a programmable switch matrix (PSM). At a gate-level design, small sub-

circuits are partitioned from the design to be assigned to a CLB. Connections are then established

between the CLBs via PSMs. The hardware blocks around the outskirts of the chip are used to

drive signals on and off the chip. These blocks are called input/outputs blocks (IOBs). It can then

be said FPGAs are comprised of mainly two types of building blocks: CLBs and IOBs [2, 3].

CLBs are basically comprised of a RAM modules, which are referred to as a lookup

tables (LUTs), D-flip-flops, and multiplexers to bypass the D-flip-flop. A LUT can perform any

logic gate of four inputs and quite recently even six. Depending on the manufacturer, the blocks

can be made to be more complex for efficiency and functionality by duplicating or adding more

components. “The propagation delay through a LUT is independent of the function

12

implemented,” [4]. Thus, meaning that no matter what the function is, the propagation delay of

the LUT is the same as the delay of all functions. Furthermore, LUTs are truth tables. A truth

table is a predefined list of outputs generated by every combination of inputs [2, 3].

Design Process

There are several ways to model a design into a CAD tool which will synthesize and

produce a configuration bitmap to be downloaded into an FPGA. One way to enter a design is

schematic capture. Hardware description languages (HDLs) are a great alternative to enter a

design. The two most popular HDLs are Verilog and VHDL. This team will focus mainly on

VHDL. The sequence of activities that is encompassed in FPGA implementation is as follows

[2]:

1. HDL Model – This step refers to the actual coding process that proceeds interpreting

the initial problem description which may be through state diagrams, truth tables, or a

simple English description.

2. Behavioral Simulation – The coding must be simulated before synthesized on the

FPGA to ensure that its functionality is properly implemented.

3. Synthesis – The design is then synthesized to a library of gates, flip-flips, latches, and

perhaps other primitive components

4. Functional Simulation – Using the physical properties of the FPGA, timing

information is acquired to simulate preliminary performance estimates.

5. Place and Route – The design is then mapped and placed; each primitive component

is assigned to a specific CLB on the FPGA. The connections are then routed via

PSMs. Accurate, more so then the functional simulation, timing information can be

13

obtained – this is often referred to as verification. The configuration bits or bit stream

are then produced.

6. Programming – The bit stream is loaded into the chip to be configured to implement

the design.

Propagation Delay vs. Temperature

 Propagation delay is the amount of time it takes for a logic gate to switch to the correct

output after any of its inputs have changed. Delay of transitioning from a logic 1 to a logic 0 may

be different from the delay transitioning from a logic 0 to a logic 1. Also, depending on the

quality of the components of the gates manufactured, propagation delay may vary. Furthermore,

propagation delay may attribute to glitches in digital components as logic blocks may not change

faster than others resulting in an undesired output. For the primitive gates, p-channel transistors

are used to control the sourcing current. In contrast, n-channel transistors are used to control the

sinking current. P-channel transistors when in series or parallel can be combined into an

equivalent p-channel transistor. The same follows for an equivalent n-channel transistor. Usually,

the p-channel transistor is a pMOS transistor and the n-channel channel is an nMOS transistor

[1].

Ring Oscillator

 A ring oscillator is a chain of an odd number of NOT gates whose output is connected

back to the input. The output of the chain would change when the previous output is inverted due

to the odd number of inverters after the gates’ propagation delays. When sufficiently many gates

are used it is possible to generate a near square wave pattern. An even number of gates would not

14

cause an oscillation since two or any other even number of inversions of a signal would cause an

unchanged output. A schematic of a basic 3 inverter ring oscillator can be seen in Figure 1.

Figure 1 – A 3-Inverter Ring Oscillator

The frequency of the oscillator is shown below in Equation 4 with N being the number of

gates and τ being the propagation delay of one gate, assuming that the delays of all the gates used

are the same.

N
f

2

1

Equation 4 – Approximate Frequency of a Ring Oscillator

As discussed in the previous Section and captured in Equation 4 higher temperatures

result in larger propagation delayshigher temperatures result in smaller frequencies. If a method

could be devised to count the amount of times the oscillator fluctuates, one could theoretically

relate the count to temperature.

TESTING TOOLS

15

 Many programs and software tools are required for interfacing, simulation, testing, and

eventually programming of a development board. We used these tools, along with some Xilinx

tools, as stepping stones to a final temperature sensor design.

FPGA Development Board

 Upon starting our project with General Dynamics, we were provided with a Virtex-5

ML505 development board – specifically with the XC5VLX50T device with a speed of -1 and

the FF1136 package. The package provided many features, most of which we would not require

during our design. The board came equipped with a Virtex 5 FPGA, which would eventually

become our programming device to measure temperature.

JTAG

 We used the JTAG interface when trying to connecting our board to the computer and

establishing a method of sending and receiving information was one of the first steps in our

design process. The JTAG chain starts at the connector and runs through the series of PROMs,

CPLD, ACE controller, an FPGA board and an expansion card if necessary. Our main use would

be programming and accessing the FPGA using the JTAG connection. However, it also allowed

for us to incorporate the analysis tool Chipscope which we will discuss later in this section.

System Monitor

 Along with the many functions available on the Virtex-5 platform, the FPGA comes with

a block known as System Monitor [5]. System Monitor is located at the center of the die, and is

developed around a 10-bit, 200-kSPS Analog-to-Digital Converter (ADC). Using other on-chip

sensors, the ADC can measure operating characteristics such as on-chip power supply voltages

and die temperatures. There are also 16 user-selectable external inputs, which allows monitoring

16

of the external environment of the chip and entire board. The system also allows for the user to

set constraints on voltage and temperature, as well as external inputs, to set off alarms based on

parameters going either above or below the desired constraints. The System Monitor also is able

to implement averaging of desired output values, either 16, 64, or 256 times.

The System Monitor does however have an error of ±4°C. Noticing on the chart that 1

LSB (least significant bit) correlated to around .49 °C, and that a count of 0 correlated to -273

°C, we created the equation below to relate our count to an appropriate output temperature.

27349.0* CounteTemperatur , where Temperature is expressed in °C

Equation 5 – System Monitor Count-to-Temperature Equation

We multiplied our count by the .49 °C for the LSB, then subtracted the 273 °C

representing a count of zero to create out temperature output in MATLAB. We used the System

Monitor as the reliable source of temperature considering other such measurement sensors and

devices are less accommodating for automation.

Applications

Xilinx ISE 10.1

 Xilinx ISE 10.1 was our main programming tool used throughout the project. The

software allows the user to develop, simulate, and eventually program in a variety of methods.

Our main use of the Xilinx ISE was for VHDL coding as well as simulation and schematic

development. The Xilinx tool is designed to maximize connectivity and programming speed

between the computer and the Virtex 5 FPGA. Xilinx ISE 10.1 allowed for us to easily write and

17

simulate VHDL for our project, and connect easily and program to our FPGA via the JTAG

chain [3].

Our programming language throughout this project was VHDL. The program was created

by the United States Department of Defense to assist in the development of high-speed integrated

circuits. The language was changed in 1987, then again in 1993, and updates have been taking

place ever since, all adhering to IEEE standards. VHDL is a commonly used programming

language for FPGAs.

ChipScope

 ChipScope is a software tool that comes with the Xilinx ISE 10.1 package, and is

essentially like having an oscilloscope that analyzes cores designed onto the chip. The tool

analyzes logic and allows the user to view any internal FPGA signal or node, which includes

embedded processors. The signals are analyzed via the JTAG chain and analyzed through the

ChipScope Pro Logic Analyzer tool. The ChipScope tool was another method used to monitor

on-chip temperature. We used ChipScope for debugging, initial informal testing, and verification

of our implementation of the System Monitor [6].

18

METHODOLOGY, TESTING, AND ANALYSIS

Ring Oscillator vs. Pulse Generator

 We attempted to design a sensor using the generator, with little success. In the initial

steps of our project we had discussed the creation of a ring oscillator, which would serve as a

delay line to allow for the measurement of temperature. Our ring oscillator design was going to

be a simple series of inverters; however the Xilinx tool removes inverters from a design during

synthesis, so this added a new challenge to the task. We found a coding method that would allow

for the synthesis of inverters, and after trying both a schematic and VHDL approach to the

design, we decided that the coding was much more practical, as with the large number of

inverters being used the program was finding it difficult to handle the design from a schematic

standpoint.

 After creating our ring oscillator, we soon ran into another issue. During the Xilinx

testing phase, we realized our design experienced some degree of metastablility. Metastability

occurs when an output is neither 0 nor 1 at a specific time, and is essentially fluctuates in a

random way between the two stable states. It can be compared to a ball rolling up a hill, with 0

being at the bottom of the hill, and 1 being on the other side. However, the ball does not have

enough momentum to get all the way over the hill, and is stuck at the top. That is essentially the

idea of metastability. We noticed this problem in our testbench waveformsWe overcame

metastability by simply inserting two groups of 2 flip-flops into our design.

 While we have chosen to design our circuit with the ring oscillator as opposed to the

pulse generator, the pulse generator is also a useful option for this design since it has less jitter. It

19

might have actually made the design easier, however we felt more comfortable with the

oscillator circuit.

Initial Testing and Design

 During the first stages of our MQP when we determined that a ring oscillator would be an

appropriate delay circuit, the question that needed to be answered was how many inverters we

would need within the oscillator. In [1], the team was able to develop a circuit with a resolution

near .1 degree Celsius per count with 140 inverters.

 When we began testing we found that we were only receiving a reasonable resolution

with an extremely large number of inverters, around 4000. We knew this was not practical for a

design, and also took too much time to simulate and implement using Xilinx. Also with such a

high number of inverters, the chip temperature would be raised due to self-heating, which was a

side-effect we were hoping to avoid. In order to help reduce the number of inverters, we created

a cyclic counter. The counter counts the number of times the oscillator completes a full cycle.

This number can be changed within our code to increase or decrease the resolution. We then

output the total number of clock ticks that our master counter sees between the given numbers of

cycles. The cycle counter dramatically helped us reduce the number of inverters in our circuit.

Informally, we seemed to have reached our desired resolution of 0.1ºC/count with

multiple inverter and count combinations, as shown in Table 1. According to Equation 4,

assuming a propagation delay of 0.238ns [4], the frequency of an oscillator with only 21

inverters is 100.04MHz. Since this is faster than our 100MHz master clock, it would cause

synchronization issues and our sampling would not be accurate. The fewer inverters in the ring,

the higher the oscillation frequency. We chose not to test rings with less than 21 inverters.

20

Inverters Cycles Count (16 bit) Resolution

421 256 8100 .7 deg/count

421 512 16,200 .4 deg/count

421 1000 33,400 .16 deg/count

41 1000 4,300 1 deg/count

41 4096 16,700 .49 deg/count

41 8,192 31,500 .33 deg/count

100 10000 OVERFLOW

41 16,000+ OVERFLOW

51 10000 41,000 .16 deg/count

51 12345 49,100 .12 deg/count

51 13579 56,200 .086 deg/count

25 15000 33,500 .15 deg/count

4200 16 900

Table 1 – Initial Inverter-Cycle Results

Our overflow problems were easily fixed when we began to use a 32-bit counter rather

than 16-bit. From this test, we determined our optimal number of inverters to be 51 since it

seemly gave us an appropriate resolution for our application and as one can realize from Table 1,

the higher the count, the better the resolution. We did our formal testing using 51 inverters and a

cycle count of 16,384 yielding an outputted count of ~70000.

Temperature Chamber Testing

We were granted access to a laboratory equipped with a temperature chamber capable of

providing a stable temperature within our desired range (0-70ºC). The user is able to input the

21

desired temperature, and the machine will either heat up or cool down until that point is reached.

We placed our board inside, and ran our JTAG and RS232 cables out to a computer.

 We decided that in our first test we would sweep through an input range on the chamber

of -15 to 70°C. During our first half a dozen tests we saw unexpected results. We determined that

we had lowered the temperature of the board too much and neither our program nor the system

monitor was behaving properly. Once we reached an input temperature of around 15-20 °C, both

the system monitor and our design began running smoothly. From -15 to 55 °C we let our design

rest for 2 minutes to allow the chamber to heat up to the desired input. From 60-70 °C we let the

design rest for 3 minutes as the hotter the desired temperature, the longer the chamber took to

heat up. As previously mentioned, from 20-70°C our design appeared to operating with the least

error, so in the ensuing tests we did not set the temperature any lower than 0°C.

 In our next test we ran our design continuously. We allowed the temperature sensor to

cool to 0°C, and then set it for 70 and ran our design. The sensor took 16 minutes to heat up to

70°C, at which point we stopped running our design. We repeated this test going from 70°C

down to 0, which took around 16 minutes as well. Both produced similar and accurate results.

 In our final test of the day we let the chamber again settle at 0°C, and then every minute

increased the temperature by 5°C until it reached 70, with our design again continuously running

in the background.

 In these 4 tests we were able to see excellent results, matching perfectly to our

expectations. We recorded well over 1000 data points for analysis.

Analysis

When comparing the System Monitor temperature output to our count, results show that

there is indeed a direct proportionality between temperature and propagation delay. Although we

22

expected a linear relationship, we found that there was some exponential curving and also

relatively more noise located at the lower values of our count. We call this effect “eyebrowing”

since the features of our curve are similar to that of a human eyebrow as seen below.

Count-to-Temperature Conversion

y = -0.0003x
2
 + 45.542x - 2E+06

R
2
 = 0.9899

y = 0.1617x - 11218

R
2
 = 0.961

0

10

20

30

40

50

60

70

80

90

69450 69500 69550 69600 69650 69700 69750 69800 69850 69900

Figure 2 – Measured Temperature vs. Count, “Eyebrowing” Effect

In Figure 2, the x-axis represents our outputted count and the y-axis represents the

System Monitor temperature output. Each data point represents one of our counts corresponding

to temperature. The red trend line is a one-termed line with a determination coefficient (R
2
) of

0.961 while the blue trend line is a two-termed line with a R
2
 value of 0.9899. The determination

coefficient is used to observe the variance of data. In this context, the closer R
2
 is to 1, the more

likely it is to fit the trend line.

 If we were to use the linear approximation, we would expect, as seen in its equation of

the line, a total resolution of 0.16°C/count. Below is a chart expressing the count range, and the

resolution and R
2
 value of one-termed trend lines generated between 10°C margins.

23

Temperature Range (°C) Count Range Resolution (°C/count) R
2

<20 69461-69496 0.2852 0.4490

20-29 69475-69538 0.1880 0.7309

30-39 69512-69590 0.1467 0.8296

40-49 69554-69647 0.1295 0.8350

50-59 69631-69754 0.1107 0.9024

>59 69689-69869 0.0689 0.8173

Table 2 – Resolution Table

Looking at the table above, we notice that as temperature increases our resolution and

accuracy also increase. Looking back, our goal was to design a sensor capable of outputting a

resolution of .1°C/count. Our current design is able to output such a resolution, but only in the in

the range 20-70°C. Below is a plot of our range.

y = 0.1421x - 9846.5

R
2
 = 0.9731

y = -0.0002x
2
 + 32.532x - 1E+06

R
2
 = 0.9924

0

10

20

30

40

50

60

70

80

90

69450 69500 69550 69600 69650 69700 69750 69800 69850 69900

Figure 3 – Measured Temperature vs. Count, 20-70°C

In the figure above, we notice that the eyebrowing effect is somewhat less dramatic and

both the resolution of the one-term trend line and the R
2
 of both trend lines have improved.

Below is a plot expressing the calibrated count generated by subtracting 69420 from our

outputted count.

24

y = 0.1421x + 15.776

R
2
 = 0.9731

y = -0.0002x
2
 + 0.2476x + 6.3231

R
2
 = 0.9924

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350 400 450 500

Figure 4 – Measured Temperature vs. Calibrated Count, 20-70°C

Above, we see that the magnitude of the intercepts used in the line equations have

dramatically decreased. Also, the quadratic approximation seems to be a near fit of the recorded

curve. If we attempted to use the linear approximation, we would find that calibrated counts

above 350 would become increasing inaccurate. Below is the equation that expresses our count-

to-temperature conversion, CTC, using the quadratic approximation equation.

6.3231)69420(*0.2476)69420(*000234.0 2 NNCTC , where N is the count

Equation 6 – Count-To-Temperature Conversion Equation

 Using our calibrated recorded counts as the independent variable, we find that the

resulting calculated temperature vs. count curve closely resemble that of our measured

temperature vs. count curve as seen below.

25

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350 400 450 500

Calibrated Count

T
e
m

p
e
ra

tu
re

Figure 5 – Calculated Temperature vs. Calibrated Count, 20-70°C (using Equation 6)

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500

Calibrated Count

T
e

m
p

e
ra

tu
re

Measured

Calculated

Figure 6 – Measured and Calculated Temperature vs. Calibrated Count, 20-70°C

 Sweeping through calibrated counts of 55, our lowest recorded calibrated count for 20°C,

and up to 449, our highest recorded calibrated count at 70°C, we find that the difference in the

26

resulting temperatures between adjacent counts slowly decreased as the count increased. We

also find that with the calculated values, we have the worst case resolution of ~0.22°C/count at

the lowest recorded count at 20°C, and we have the best case resolution of ~0.039°C/count at the

highest recorded count at 70°C. Averaging all of the differences, we in addition find that the

mean resolution of our calculated temperature is ~0.13°C/count.

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500

Calibrated Count

T
e

m
p

e
ra

tu
re

Measured

Calculated

Figure 7 – Measured and Calculated Temperature vs. Calibrated Count, 20-70°C, with ±2σ Error

Our calculated curve generates a max error of ±12°C when referencing our recordings.

However, we calculated that the 95% of recorded values fall within ±2.75°C of our calculated

temperature. We found this by calculating the mean and standard deviation σ of the error

between our measured and calculated temperature values. While the mean of our error is

0.945°C, σ turned out to be 0.905°C.

27

Realistically, this team would prefer to use the same amount of output bits as the System

Monitor. This is plausible since the temperature would output at the most 3 digits which would

only require 10 bits. The truth table in which count, calibrated count, actual temperature, and

output temperature is located in Appendix C.

Ring Oscillator Delay

Empirically, there must be a way to calculate the propagation delay through the inverters

used in the ring oscillator by using the count and our design specifications. Recall that our design

basically works by counting the number of clock ticks between the oscillation of a pulse coming

from a 51-inverter ring oscillator. Knowing that we use a circulation counter of 2
14

 and a master

clock of 100MHz, we can determine the propagation delay with respect to the count. The

equation below expresses mean delay through one inverter.

KC

N
individualP

1
*)

2
(,

Equation 7 – Mean Delay through One Inverter, τPindividual

In Equation 7 T is the period the master clock, N is the outputted count, C is the circulation

count, and K is the number of inverters. According to this equation, an outputted count of 70000

indicates a delay of 0.419ns on average for every inverter, τPindividual. Further investigation is

called on since we postulated that the delay through each inverter delay should be ~ 0.238ns. A

simpler equation is expressed below to represent the delay through the ring of inverters.

)
2

(
C

N
ringP ,

28

Equation 8 – Delay through the Ring, τPring

 With a count of 70000 (N), we find that the approximate average delay of one circulation

τPring is 21.36ns. Considering that the master clock allows a clock tick of 10ns (T) and the

foundation upon which our count is based on supports one instance of a signal propagating

through the ring oscillator, we find that accurately approximating the delay is difficult and

imprecise. The delay found in Equation 8 is timed using the 100MHz clock. According to

Equation 8, 51 inverters signify a delay of approximately 21.36ns. Each inverter delay should be

~0.238ns, thus 51 inverters should have yielded a delay of ~12.14ns – nearly 9ns of error.

 An obvious solution would be to reference a faster clock if accessible. Another solution

to this problem is redesigning the ring oscillator to be larger than 51 inverters. For example, 511

inverters would nearly increase the delay 10 times. Theoretically, increasing the ring delay

would inversely decrease the error of counting. A number of 511 inverters would result in a

delay of ~121.6ns. Using 10ns grades, miscounts – both under and over counts – will have less

of an impact. Not only would the accuracy increase, but the resolution would as well. Also,

average individual inverter delays would be more predictable. However, an immediate

disadvantage to this is the expanded ring would require more chip space. Furthermore, the ring

will consume more power.

29

CONCLUSION

 Drawing from the analyses we formulated through our results, we found that there is

indeed a proportional correlation between rise in propagation delay and rise in temperature and

thus succeeded in completing goal (1). Using this property we designed a digital temperature

sensor by counting the number of clock periods between the cycles of a ring oscillator comprised

of inverters.

 However, we were slightly unsuccessful in completing goal (1) which expressed the

desire to create a sensor with a resolution of 0.1°C/count, a range of 0-70°C, and an error of

±1°C. Instead, our results show our sensor has a range of 20-70°C, an average resolution of

~0.13°C/count, and an error of ±2.75°C. When comparing the results from [1], whose sensor had

a range of 0-75°C, a resolution of less than 0.1°C, and measurement error of ±1.5°C, our sensor

is outmatched.

Nonetheless, we formulated a conversion equation and thus made a CTC table (Appendix

C) that could potentially be made into an LUT to be implemented in our design. Our design also

uses 1% of the available resources on the FPGA as seen in Figure 8.

30

Figure 8 – Xilinx Device Utilization Summary Screen Shot

31

FUTURE RECOMMENDATIONS

Pulse Generator

 Initially we intended to use a pulse generator in place of our ring oscillator/delay line.

The pulse generator would create a temperature proportional width which we would measure and

eventually output a temperature reading. In fact, for nearly half of our project we were under the

impression that the pulse generator would play a key role in our design, only to find out later it

would be an aspect soon forgotten. When we ran into difficulties implementing our design using

the pulse generator even from a simulation standpoint, we knew that we could run into some

serious problems later. We made the decision to do away with the pulse generator and create our

ring oscillator using a given number of inverters. As we had put in many hours developing our

pulse generator, this was quite the daunting task to simply remove it completely from our

project. The idea behind the pulse generator seemed brilliant, as developed in [1]. As a team,

along with our advisors, we agreed that a pulse generator would be a great design, however was

not practical for our capabilities and the time constraints of our project. We believe that with

more time and research, the pulse generator would be a great replacement of the ring oscillator

and could even provide a better design with a more accurate resolution and output.

Temperature Chamber

 During the course of our project our ultimate goal from the start was to test our design in

a temperature chamber provided by General Dynamics. The chamber allowed for us to vary the

temperature (0-75°C), corresponding to the restraints of our chip and board. The chamber was

extremely useful in that it allowed for us to control the precise temperature and measure over a

period of time at that given temperature. Unfortunately, we were only provided limited access to

32

the temperature chamber. We could only utilize the chamber to our benefit once our design was

completely developed, which took nearly 5 weeks to complete. With only a 2 week window left,

the chamber was only available for us to use for one full day. We took complete advantage and

performed numerous tests, acquiring nearly 1500 data points. However, more time with the

chamber would have allowed us to obtain more accurate results, and given us a chance to fine-

tune the design. While 1500 data points is a good amount, we could have used a lot more to truly

understand where our design was working successfully and also expose its flaws. With the need

to provide written analysis of our testing with only one week remaining, combined with its

limited availability, we were forced to settle for our one trip to the temperature chamber.

 We also discussed the possibility of using multiple temperature measurement techniques.

We had discussed the possibility of a portable temperature chamber, as well as a laser

temperature control Another issue we encountered while using the temperature chamber was

issues with both our design and the System Monitor at low temperature. The System Monitor

operates at a temperature range of -40 to 125°C, and our chip and board itself can safely operate

at a range of 0 to 70°C. In our first test, we set the temperature chamber at -15°C. The System

Monitor was approximately 10°C off until we increased the chamber temperature to 15°C, at

which point it began to output the correct temperature. Our design count was also not responding

well to the changes in the temperature chamber until we reached around 15-20°C, at which point

it began showing appropriate changes in count based on temperature. These issues could have

occurred due to a number of issues. We suspected that when lowering the temperature chamber

to -15°C in an attempt to see a reading of absolute 0 on the System Monitor, we exceeded the

chip’s temperature range and it took a while to return to an operating state. While the System

Monitor User Guide states it will operate at temperatures as low as -40°C, the chip and board

33

itself cannot. Once the chip realized a constant temperature of over 0°C, our design as well as the

System Monitor began outputting properly. We believe that improvements on resolution and

accuracy would have been our next steps if we had been given more time for this project;

however with our restrictions we feel our resolution was adequate.

Placement of the Ring Oscillator

Early in the project we had we considered the idea of directly implementing configurable

logic blocks (CLB’s). While we investigated the process, it was clearly not plausible within the

timeframe of this project. There is a Xilinx product called PlanAhead that allows users to directly

choose the CLB’s desired for their design. Basically, if one wished to place our ring oscillator in

any corner of the chip, one may use this application to physically drag the signal instantiations

into the CLB’s in the floor plan on the chip. Figure 9 shows a screenshot of the 51 inverters

being moved from the center of the chip towards the top, left corner.

34

Figure 9 – PlanAhead Screenshot

After the inverters are moved, the application can then create a constraints file with the

proper signals moved to their correct locations.

35

REFERENCES

[1] Poki Chen, Chun-Yan Chu, Mon-Chau Shie, Zi-Fan Zheng, and Zhi-Yuan Zheng, “A Fully

Digital Time-Domain Smart Temperature Sensor Realized With 140 FPGA Logic

Elements,” IEEE Transactions On Circuits And Systems—I: Regular Papers, vol. 54, no.

12, pp. 2661-2668, Dec. 2007.

[2] Sudhakar Yalamanchili, Introductory VHDL: From Simulation to Synthesis, Upper Saddle

River, NJ: Prentice-Hall, Inc., 2001.

[3] Dr. Zainalabedin Navabi, VHDL: Modular Design and Synthesis of Cores and Systems, New

York, NY: McGraw-Hil, 2007.

[4] “Virtex-5 User Guide,” 2009, Xilinx, Feb. 2009,

<http://www.xilinx.com/support/documentation/user_guides/ug190.pdf>

[5] “Virtex-5 System Monitor: User Guide,” 2009, Xilinx, Feb. 2009,

<http://www.xilinx.com/support/documentation/user_guides/ug192.pdf>

[6] “ChipScope Pro Software and Cores User Guide”, 2009, Xilinx, Mar. 2009,

<http://www.xilinx.com/support/documentation/sw_manuals/chipscope_pro_sw_cores_9

_1i_ug029.pdf>

[7] “MATLAB - The Language of Technical Computing,” MathWorks, Mar. 2009,

<http://www.mathworks.com/products/matlab/>

36

APPENDICES

Appendix A : MATLAB Code

Get Data

clear

%all_my_files = {};
%save('file_list', 'all_my_files');
load('file_list');
%mkdir('data');

while(1)
 a = datestr(clock, 'mm_dd__HH_MM_SS');

 d = instrfind('Port', 'COM1');

 if length(d) ~= 0
 fclose(d);
 delete(d);
 end

 s = serial('COM1', 'InputBufferSize',3, 'BaudRate', 19200, ...
 'Timeout', 500000, 'ReadAsyncMode', 'continuous');

 fopen(s)

 readasync(s)

 out = fread(s,3,'uint8');

 %recieve data
 COUNT1 = out(1)
% *2^24+out(3)*2^16+out(2)*2^8+out(1)
 SYSMON_Temp_DegreesCelsius = (out(3)*2^8+out(2))*.49 - 273

 filename = ['data/', a]; %data is folder

 save(filename, 'COUNT1','SYSMON_Temp_DegreesCelsius'); %out is your

recieved data

 all_my_files = [all_my_files; {filename}];
 save('file_list', 'all_my_files');

37

 file_count = length(all_my_files);

 pause(1);

end

Load Data (Create Spreadsheet)

 load ('file_list');
 file_count = length(all_my_files);
 all_data = zeros(file_count, 2);

 for i=1:file_count
 one_file=char(all_my_files(i));
 load(one_file);
 all_data(i,1) = COUNT1;
 all_data(i,2) = SYSMON_Temp_DegreesCelsius;
 end

 all_data

38

Appendix B : FPGA Code (VHDL and Schematics)

Xilinx ISE Project Properties

Figure 10 – ISE Project Properties Selection

Inverter
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity inverter is

 Port (a : in STD_LOGIC;

 a_not : out STD_LOGIC);

end inverter;

architecture Behavioral of inverter is

begin

 a_not <= not(a); --inverter

end Behavioral;

Delayline
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

39

entity delayline is

 Port (sgnl : in STD_LOGIC;

 delayed_sgnl : out STD_LOGIC);

end delayline;

architecture Behavioral of delayline is

component inverter

 port(a : in std_logic;

 a_not : out std_logic);

end component;

signal avector : STD_LOGIC_VECTOR (0 to 51); -- 51 inverters

attribute keep : integer; --used so the synthesizer

attribute keep of avector: signal is 1; --doesn't throw away inverters

begin

 avector(0) <= sgnl; --signal goes through first inverter

 g1: for i in 0 to 50 generate --up to 50 because of the indexing

 invrt: invertor port map (avector(i), avector(i+1)); --move signals

through inverters

 end generate g1;

 delayed_sgnl <= avector(51); --signal comes out last inverter

end Behavioral;

Ring Oscillator

Figure 11 – Ring Oscillator

Fixed Ring Oscillator

This component is the synchronized version of the ring oscillator component.

40

Figure 12 – Fixed Ring Oscillator

Counting State Machine
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity countingstatemachine is

 Port (osc : in STD_LOGIC;

 clk : in STD_LOGIC;

 reset : in STD_LOGIC;

 send : in STD_LOGIC;

 sample : out STD_LOGIC_VECTOR (31 downto 0));

end countingstatemachine;

architecture Behavioral of countingstatemachine is

signal tempcount : STD_LOGIC_VECTOR (31 downto 0) := (others => '0');

signal tempsample : STD_LOGIC_VECTOR (31 downto 0);

signal cyclecount : STD_LOGIC_VECTOR (14 downto 0) := (others => '0');

signal osc_prime : STD_LOGIC;

begin

 process (reset, clk, cyclecount, osc, osc_prime, send) begin

 if (reset = '1') then -- when reset button is pressed, then reset

 osc_prime <= '0';

 tempcount <= (others => '0');

 tempsample <= (others => '0');

 cyclecount <= (others => '0');

 elsif clk'event and clk = '1' then -- the clk is rising

 osc_prime <= osc; -- set osc_prime to osc on the next clk cycle

 if (cyclecount = "100000000000000") then -- if oscillator cycles

2^14 times

 if send = '0' then --and getting

 tempsample <= tempcount; --then send highest count

 else

 tempsample <= tempsample; --if sending then keep

 end if;

 tempcount <= (others => '0'); --reset count

 cyclecount <= (others => '0'); --reset cycle count

 else --when not equal to 2^14 cycles

 if osc_prime = '0' and osc = '1' then -- osc prime is

rising

 cyclecount <= cyclecount + 1; --increment cycle count

 else

 cyclecount <= cyclecount; --if not rising, keep

 end if;

41

 tempcount <= tempcount + 1; --increment count

 tempsample <= tempsample; --keep

 end if;

 else --if clk not rising and not reseting, then keep everything

 tempcount <= tempcount;

 tempsample <= tempsample;

 cyclecount <= cyclecount;

 osc_prime <= osc_prime;

 end if;

 end process;

 sample <= tempsample;

end Behavioral;

Clock Convert
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- This code generates the clock signal

-- 5208 Hz for a baud rate of 19200 from a single

-- 100 MHz clock provided by the Virtex 5 board

-- Code from WPI ECE Course 3801 01.26.2009

entity Clk_Convrt is

 Port (Clk_in : in std_logic;

 Reset : in std_logic;

 Clk_outStateMachine : out std_logic;

 Clk_outrs232 : out std_logic);

end Clk_Convrt;

architecture Behavioral of Clk_Convrt is

 signal tmp_clkstate : std_logic:='0'; --temp signal for Clk_outStateMachine

 signal tmp_clkrs : std_logic:='0'; --temp signal for Clk_outrs232

begin

 Clk_outStateMachine <= tmp_clkstate;

 Clk_outrs232 <= tmp_clkrs;

 process(Reset,Clk_in)

 variable counterstate:integer range 0 TO 50_000_000; -- 1Hz

 variable counterrs:integer range 0 TO 2604; --~19.2kHz

 begin

 if Reset = '1' then --if reset then reset

 counterstate := 0;

 counterrs := 0;

 elsif Clk_in'event and Clk_in = '1' then --if clock rising

 counterstate := counterstate+1; --counts++

 counterrs := counterrs+1;

 if counterstate = 50_000_000 then

 tmp_clkstate <= not tmp_clkstate;

 counterstate := 0;

 end if;

42

 if counterrs = 2604 then

 tmp_clkrs <= not tmp_clkrs;

 counterrs := 0;

 end if;

 end if;

 end process;

end Behavioral;

RS232 State Machine
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity rs232statemachine is

 Port (DB : in STD_LOGIC_VECTOR (47 downto 0);

 clk : in STD_LOGIC;

 reset : in STD_LOGIC;

 send : in STD_LOGIC;

 button : in STD_LOGIC;

 bitout : out STD_LOGIC);

end rs232statemachine;

architecture Behavioral of rs232statemachine is

type statetype is (idle1, start, db0, db1, db2, db3, db4, db5, db6, db7, stop, idle2);

--there will be 12 states

signal state : statetype;

signal index : integer range 0 TO 48 := 0; --array index

begin

 process (clk, reset) begin

 if (reset = '1') then --if reset = 1 then reset

 state <= idle1;

 index <= 0;

 elsif (clk'event and clk = '1') then -- if clk is rising

 case (state) is

 when idle1 => -- if not sending then stay in this state

 if (button = '1' and send = '1') then

 state <= start;

 else

 state <= idle1;

 end if;

 when start =>

 state <= db0;

 when db0 =>

 state <= db1;

 when db1 =>

 state <= db2;

 when db2 =>

 state <= db3;

 when db3 =>

 state <= db4;

 when db4 =>

 state <= db5;

 when db5 =>

 state <= db6;

 when db6 =>

 state <= db7;

 when db7 =>

 state <= stop;

43

 when stop =>

 if not(index = 40) then --send more bits if not

complete

 state <= start;

 index <= index + 8;

 else

 index <= 0;

 state <= idle2;

 end if;

 when idle2 => --stay in idle if done sending but not

getting

 if (send = '1') then

 state <= idle2;

 else

 state <= idle1;

 end if;

 when others =>

 null;

 end case;

 end if;

 end process;

 with state select

 bitout <= '1' when idle1,

 '0' when start,

 DB(index) when db0,

 DB(index + 1) when db1,

 DB(index + 2) when db2,

 DB(index + 3) when db3,

 DB(index + 4) when db4,

 DB(index + 5) when db5,

 DB(index + 6) when db6,

 DB(index + 7) when db7,

 '1' when stop,

 '1' when idle2,

 '1' when others;

end Behavioral;

44

System Monitor Setup

Figure 13 – System Monitor Wizard Setup Pg 1

Figure 14 – System Monitor Wizard Setup Pg 2

45

Figure 15 – System Monitor Wizard Setup Pg 3

Figure 16 – System Monitor Wizard Setup Pg 4

46

Figure 17 – System Monitor Wizard Setup Pg 5

RS232
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

library UNISIM;

use UNISIM.VComponents.all;

entity rs232 is

 Port (sample : in STD_LOGIC_VECTOR (31 downto 0);

 clk : in STD_LOGIC;

 reset : in STD_LOGIC;

 send : in STD_LOGIC;

 button : in STD_LOGIC;

 bitout : out STD_LOGIC);

end rs232;

architecture Behavioral of rs232 is

component Clk_Convrt is

 Port (Clk_in : in std_logic;

 Reset : in std_logic;

 Clk_outStateMachine : out std_logic;

 Clk_outrs232 : out std_logic);

end component;

component rs232statemachine is

 Port (DB : in STD_LOGIC_VECTOR (47 downto 0);

 clk : in STD_LOGIC;

 reset : in STD_LOGIC;

 send : in STD_LOGIC;

 button : in STD_LOGIC;

 bitout : out STD_LOGIC);

end component;

47

component sysmonn is

 Port (DCLK_IN : in STD_LOGIC;

 DWE_IN : in STD_LOGIC;

 DEN_IN : in STD_LOGIC;

 DADDR_IN : in STD_LOGIC_VECTOR (6 downto 0);

 DI_IN : in STD_LOGIC_VECTOR (15 downto 0);

 RESET_IN : in STD_LOGIC;

 DO_OUT : out STD_LOGIC_VECTOR (15 downto 0);

 CHANNEL_OUT : out STD_LOGIC_VECTOR (4 downto 0);

 BUSY_OUT : out STD_LOGIC;

 EOS_OUT : out STD_LOGIC;

 DRDY_OUT: out STD_LOGIC; --unused

 EOC_OUT: out STD_LOGIC --unused

);

end component;

signal tempclk : STD_LOGIC;

signal dummy : STD_LOGIC; --dummy signal

signal tempDO : STD_LOGIC_VECTOR (15 downto 0);

signal temperatures : STD_LOGIC_VECTOR (47 downto 0);

signal channel : STD_LOGIC_VECTOR (4 downto 0);

signal daddr : STD_LOGIC_VECTOR (6 downto 0);

signal en : STD_LOGIC;

begin

 p1: Clk_Convrt port map (clk, '0', dummy, tempclk);

 temperatures (47 downto 0) <= "000000" & tempDO(15 downto 6) & sample;

 daddr <= "00" & channel;

 p2: rs232statemachine port map (temperatures, tempclk, reset, send, button,

bitout);

 mysys: sysmonn port map (clk, '0', en, daddr, "0000000000000000", '0', tempDO,

channel, en);

end Behavioral;

Design Implementing the RS232
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity designWithRS232 is

 Port (clk : in STD_LOGIC;

 reset : in STD_LOGIC;

 send : in STD_LOGIC;

 button : in STD_LOGIC;

 bitout : out STD_LOGIC);

end designWithRS232;

architecture Behavioral of designWithRS232 is

component counter is

 Port (clk : in STD_LOGIC;

 reset : in STD_LOGIC;

48

 send : in STD_LOGIC;

 sample : out STD_LOGIC_VECTOR (31 downto 0));

end component;

component rs232 is

 Port (sample : in STD_LOGIC_VECTOR (31 downto 0);

 clk : in STD_LOGIC;

 reset : in STD_LOGIC;

 send : in STD_LOGIC;

 button : in STD_LOGIC;

 bitout : out STD_LOGIC);

end component;

signal tempsample : STD_LOGIC_VECTOR (31 downto 0);

begin

 p1: counter port map (clk, reset, send, tempsample);

 p2: rs232 port map (tempsample, clk, reset, send, button, bitout);

end Behavioral;

Send/Get State Machine
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity sendgetstatemachine is --sends either 0 (get) or 1 (send) everyother clock

cycle

 Port (clk : in STD_LOGIC;

 send : out STD_LOGIC);

end sendgetstatemachine;

architecture Behavioral of sendgetstatemachine is

signal tempsend : STD_LOGIC := '0'; --temp send signal

begin

 process (clk) begin

 if (clk'event and clk = '1') then --if clk rising, send = not send

 tempsend <= not(tempsend);

 else

 tempsend <= tempsend; --else keep

 end if;

 send <= tempsend;

 end process;

end Behavioral;

Top Level Design Module
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

49

entity design is

 Port (clk : in STD_LOGIC;

 reset : in STD_LOGIC;

 bitout : out STD_LOGIC);

end design;

architecture Behavioral of design is

component designWithRS232 is

 Port (clk : in STD_LOGIC;

 reset : in STD_LOGIC;

 send : in STD_LOGIC;

 button : in STD_LOGIC;

 bitout : out STD_LOGIC);

end component;

component sendgetstatemachine is

 Port (clk : in STD_LOGIC;

 send : out STD_LOGIC);

end component;

component Clk_Convrt is

 Port (Clk_in : in std_logic;

 Reset : in std_logic;

 Clk_outStateMachine : out std_logic;

 Clk_outrs232 : out std_logic);

end component;

signal tempsend : STD_LOGIC;

signal tempclk : STD_LOGIC;

signal dummy : STD_LOGIC; --dummy signal

begin

 p1: designWithRS232 port map (clk, reset, tempsend, '1', bitout);

 p2: sendgetstatemachine port map (tempclk, tempsend);

 p3: Clk_Convrt port map (clk, '0', tempclk, dummy);

end Behavioral;

50

Appendix C: CTC Table

Count Calibrated Count
Calc
Temp

69475 55 19.2

69476 56 19.5

69477 57 19.7

69478 58 19.9

69479 59 20.1

69480 60 20.3

69481 61 20.6

69482 62 20.8

69483 63 21.0

69484 64 21.2

69485 65 21.4

69486 66 21.6

69487 67 21.9

69488 68 22.1

69489 69 22.3

69490 70 22.5

69491 71 22.7

69492 72 22.9

69493 73 23.2

69494 74 23.4

69495 75 23.6

69496 76 23.8

69497 77 24.0

69498 78 24.2

69499 79 24.4

69500 80 24.6

69501 81 24.8

69502 82 25.1

69503 83 25.3

69504 84 25.5

69505 85 25.7

69506 86 25.9

69507 87 26.1

69508 88 26.3

69509 89 26.5

69510 90 26.7

69511 91 26.9

69512 92 27.1

69513 93 27.3

69514 94 27.5

69515 95 27.7

69516 96 27.9

69517 97 28.1

51

69518 98 28.3

69519 99 28.5

69520 100 28.7

69521 101 28.9

69522 102 29.1

69523 103 29.3

69524 104 29.5

69525 105 29.7

69526 106 29.9

69527 107 30.1

69528 108 30.3

69529 109 30.5

69530 110 30.7

69531 111 30.9

69532 112 31.1

69533 113 31.3

69534 114 31.5

69535 115 31.7

69536 116 31.9

69537 117 32.1

69538 118 32.3

69539 119 32.5

69540 120 32.7

69541 121 32.9

69542 122 33.0

69543 123 33.2

69544 124 33.4

69545 125 33.6

69546 126 33.8

69547 127 34.0

69548 128 34.2

69549 129 34.4

69550 130 34.6

69551 131 34.7

69552 132 34.9

69553 133 35.1

69554 134 35.3

69555 135 35.5

69556 136 35.7

69557 137 35.9

69558 138 36.0

69559 139 36.2

69560 140 36.4

69561 141 36.6

69562 142 36.8

69563 143 36.9

69564 144 37.1

52

69565 145 37.3

69566 146 37.5

69567 147 37.7

69568 148 37.8

69569 149 38.0

69570 150 38.2

69571 151 38.4

69572 152 38.6

69573 153 38.7

69574 154 38.9

69575 155 39.1

69576 156 39.3

69577 157 39.4

69578 158 39.6

69579 159 39.8

69580 160 39.9

69581 161 40.1

69582 162 40.3

69583 163 40.5

69584 164 40.6

69585 165 40.8

69586 166 41.0

69587 167 41.1

69588 168 41.3

69589 169 41.5

69590 170 41.7

69591 171 41.8

69592 172 42.0

69593 173 42.2

69594 174 42.3

69595 175 42.5

69596 176 42.7

69597 177 42.8

69598 178 43.0

69599 179 43.1

69600 180 43.3

69601 181 43.5

69602 182 43.6

69603 183 43.8

69604 184 44.0

69605 185 44.1

69606 186 44.3

69607 187 44.4

69608 188 44.6

69609 189 44.8

69610 190 44.9

69611 191 45.1

53

69612 192 45.2

69613 193 45.4

69614 194 45.6

69615 195 45.7

69616 196 45.9

69617 197 46.0

69618 198 46.2

69619 199 46.3

69620 200 46.5

69621 201 46.6

69622 202 46.8

69623 203 46.9

69624 204 47.1

69625 205 47.2

69626 206 47.4

69627 207 47.5

69628 208 47.7

69629 209 47.9

69630 210 48.0

69631 211 48.1

69632 212 48.3

69633 213 48.4

69634 214 48.6

69635 215 48.7

69636 216 48.9

69637 217 49.0

69638 218 49.2

69639 219 49.3

69640 220 49.5

69641 221 49.6

69642 222 49.8

69643 223 49.9

69644 224 50.0

69645 225 50.2

69646 226 50.3

69647 227 50.5

69648 228 50.6

69649 229 50.8

69650 230 50.9

69651 231 51.0

69652 232 51.2

69653 233 51.3

69654 234 51.4

69655 235 51.6

69656 236 51.7

69657 237 51.9

69658 238 52.0

54

69659 239 52.1

69660 240 52.3

69661 241 52.4

69662 242 52.5

69663 243 52.7

69664 244 52.8

69665 245 52.9

69666 246 53.1

69667 247 53.2

69668 248 53.3

69669 249 53.5

69670 250 53.6

69671 251 53.7

69672 252 53.9

69673 253 54.0

69674 254 54.1

69675 255 54.2

69676 256 54.4

69677 257 54.5

69678 258 54.6

69679 259 54.8

69680 260 54.9

69681 261 55.0

69682 262 55.1

69683 263 55.3

69684 264 55.4

69685 265 55.5

69686 266 55.6

69687 267 55.8

69688 268 55.9

69689 269 56.0

69690 270 56.1

69691 271 56.2

69692 272 56.4

69693 273 56.5

69694 274 56.6

69695 275 56.7

69696 276 56.8

69697 277 57.0

69698 278 57.1

69699 279 57.2

69700 280 57.3

69701 281 57.4

69702 282 57.5

69703 283 57.7

69704 284 57.8

69705 285 57.9

55

69706 286 58.0

69707 287 58.1

69708 288 58.2

69709 289 58.3

69710 290 58.4

69711 291 58.6

69712 292 58.7

69713 293 58.8

69714 294 58.9

69715 295 59.0

69716 296 59.1

69717 297 59.2

69718 298 59.3

69719 299 59.4

69720 300 59.5

69721 301 59.7

69722 302 59.8

69723 303 59.9

69724 304 60.0

69725 305 60.1

69726 306 60.2

69727 307 60.3

69728 308 60.4

69729 309 60.5

69730 310 60.6

69731 311 60.7

69732 312 60.8

69733 313 60.9

69734 314 61.0

69735 315 61.1

69736 316 61.2

69737 317 61.3

69738 318 61.4

69739 319 61.5

69740 320 61.6

69741 321 61.7

69742 322 61.8

69743 323 61.9

69744 324 62.0

69745 325 62.1

69746 326 62.2

69747 327 62.3

69748 328 62.4

69749 329 62.5

69750 330 62.5

69751 331 62.6

69752 332 62.7

56

69753 333 62.8

69754 334 62.9

69755 335 63.0

69756 336 63.1

69757 337 63.2

69758 338 63.3

69759 339 63.4

69760 340 63.5

69761 341 63.5

69762 342 63.6

69763 343 63.7

69764 344 63.8

69765 345 63.9

69766 346 64.0

69767 347 64.1

69768 348 64.1

69769 349 64.2

69770 350 64.3

69771 351 64.4

69772 352 64.5

69773 353 64.6

69774 354 64.6

69775 355 64.7

69776 356 64.8

69777 357 64.9

69778 358 65.0

69779 359 65.1

69780 360 65.1

69781 361 65.2

69782 362 65.3

69783 363 65.4

69784 364 65.4

69785 365 65.5

69786 366 65.6

69787 367 65.7

69788 368 65.8

69789 369 65.8

69790 370 65.9

69791 371 66.0

69792 372 66.0

69793 373 66.1

69794 374 66.2

69795 375 66.3

69796 376 66.3

69797 377 66.4

69798 378 66.5

69799 379 66.6

57

69800 380 66.6

69801 381 66.7

69802 382 66.8

69803 383 66.8

69804 384 66.9

69805 385 67.0

69806 386 67.0

69807 387 67.1

69808 388 67.2

69809 389 67.2

69810 390 67.3

69811 391 67.4

69812 392 67.4

69813 393 67.5

69814 394 67.6

69815 395 67.6

69816 396 67.7

69817 397 67.7

69818 398 67.8

69819 399 67.9

69820 400 67.9

69821 401 68.0

69822 402 68.0

69823 403 68.1

69824 404 68.2

69825 405 68.2

69826 406 68.3

69827 407 68.3

69828 408 68.4

69829 409 68.4

69830 410 68.5

69831 411 68.6

69832 412 68.6

69833 413 68.7

69834 414 68.7

69835 415 68.8

69836 416 68.8

69837 417 68.9

69838 418 68.9

69839 419 69.0

69840 420 69.0

69841 421 69.1

69842 422 69.1

69843 423 69.2

69844 424 69.2

69845 425 69.3

69846 426 69.3

58

69847 427 69.4

69848 428 69.4

69849 429 69.5

69850 430 69.5

69851 431 69.6

69852 432 69.6

69853 433 69.7

69854 434 69.7

69855 435 69.8

69856 436 69.8

69857 437 69.8

69858 438 69.9

69859 439 69.9

69860 440 70.0

69861 441 70.0

69862 442 70.0

69863 443 70.1

69864 444 70.1

69865 445 70.2

69866 446 70.2

69867 447 70.2

69868 448 70.3

69869 449 70.3

	Worcester Polytechnic Institute
	Digital WPI
	April 2009

	Temperature Estimation Using Ring Oscillators
	Gregory D. Pierre-Louis
	Justin Wells
	Repository Citation

	FPGA Temperature Sensor

