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1 Introduction 

Since the foundation of drag racing and motorsports events in general, it has been the goal of the 

sanctioning bodies, drivers, and racing crews to create the fastest moving vehicle that can be 

operated as safely as possible.  Different types of racing events feature different types of cars, 

which each have different vulnerabilities and strengths in terms of safety and performance.  

While this is true, it can be recognized that all racing vehicles have two similarities that are also 

vulnerabilities.  The first susceptibility is their ignition or electrical system, and the second is 

their fuel.  The combination of these two systems leads to potential conditions for fire and 

explosion. 

 

Over the past few years, efforts have been made, especially in the professional categories of drag 

racing, to reduce the number of injuries and fatalities sustained in the sport.  Last year, Ford Blue 

Boxes were mounted in all cars of the professional classes in order to monitor the g-force levels 

that the car and driver sustain during a race.  Enclosed professional vehicles (such as the 

National Hot Rod Association – NHRA – funny car class) also incorporate a Halon system, 

which is intended to quickly extinguish fires from the cockpit of the race vehicle.   

 

After the most recent tragedy in the NHRA funny car class, the Electrimotion Safety Shutoff 

Controller was also mandated in professional categories.  This controller senses a manifold burst 

panel failure and simultaneously activates the fuel shut off, shuts off ignition, and deploys 

parachutes of the vehicle.  While these efforts to create safer race cars have been good initial 

steps to making the sport safer, more work remains to be done.  The area where the most 

vulnerability currently lies is in the area of sportsmen drag racing. 

 

In general, there are two divisions in drag racing: sportsmen and professionals.  The 

professionals are those seen at televised events and include the well known drivers of the sport.  

The sportsmen are those individuals who race for fun on the weekends at their local track or at 

NHRA and IHRA sanctioned events.  While rules exist to ensure the safety of sportsmen drivers, 

very little has been done in terms of electrical safety devices to aid in their protection.  Although 

these racers do not reach the same speeds as professional drivers, their cars are still fast enough 
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to warrant the use of crash detection and fire prevention devices.  Currently, no such devices are 

mandated in the sportsmen categories. 

 

For this reason, it was decided that a crash detection system, which combines the better features 

of systems used by professional racers with features that are necessary for sportsmen, would be a 

very beneficial product.  Instead of focusing on detecting part failures, which is the leading cause 

of accidents in professional categories, this device would focus on accident detection and fire 

prevention, which are the two leading causes of injury and death in sportsmen racing.  In general, 

it aims to protect the driver in accidents involving two cars striking one another, a car striking the 

wall of the race track, or a car rolling over during a race.  It is hoped that the added safety of such 

a device will reduce the number of injuries in sportsmen racing and also reduce the number of 

injuries to safety personnel who risk their lives trying to save racers who have been in accidents.   

 

In this way, the design for the DragAid-MK crash detection system was first created.  The 

DragAid-MK is a data analyzer and master kill switch for race cars.  It is designed to monitor 

and record the g-force levels that a race car sustains throughout the course of a race.  In this way, 

it is similar to a Ford Blue Box.  While it is recording data, the device is also comparing the g-

force levels received to pre-specified g-force safety thresholds.  When the g-force levels exceed 

the safety thresholds, the DragAid-MK will automatically shut off the ignition system and fuel 

pump of the vehicle (as does the new Electrimotion device for professional categories).  These 

actions will eliminate the sources of spark and fuel that could lead to a fire in the race vehicle.   

 

Although the DragAid-MK is designed for use in the sportsmen categories of drag racing, its 

unique design from other crash detection systems would also make it a valuable addition to the 

safety systems of professional drag racing and other types of racing teams as well.  It would most 

likely be beneficial in NASCAR and formula one racing where collisions with the wall and roll-

overs often incapacitate drivers and prevent them from properly shutting down their vehicles.  

Once it is proved in the racing industry, it could also be adapted to passenger vehicles for daily 

use.  Although driver incapacitation is less likely in passenger car collisions, the risk of fire is 

still great.  Often drivers do not realize the damage sustained by their vehicle following a 

collision, which results in them leaving their car idling or potentially continuing to drive.  This 
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behavior makes fires more likely.  A safety device such as the DragAid-MK would prevent this 

kind of post-accident behavior. 

 

As of right now, the DragAid-MK is a completely functional data acquisition system and g-force 

monitor.  It has the capability to turn off the ignition and fuel system of a vehicle when g-forces 

exceed thresholds set by the user.  Although all functionality requirements set forth for the 

DragAid-MK during this project were met, there remains to be significant work before this 

device is suitable to be sold in the racing industry.  Most improvements involve making the 

product easy to use for racers.  These adjustments will be easy to make, since the basic 

functionality of the device has already been proven.  After these enhancements have been made, 

the device should also be thoroughly tested on an actual race vehicle.  This type of testing is not 

possible until late spring or early summer when race tracks reopen for the year. 

 

Overall, through research it was found that a crash detection device such as the DragAid-MK 

would be extremely beneficial to race car drivers in all divisions of motorsports.  Although the 

current device is targeted toward sportsmen racers of drag racing, it could easily be adapted to 

almost any type of racing or even passenger vehicles.  As of right now, the DragAid-MK is 

completely operational.  All project goals were met, and the device could technically be mounted 

on a race car and function as intended.  In the future, work will be conducted in order to make 

the DragAid-MK PC software more user-friendly such that racers will be more willing to use the 

DragAid-MK to enhance their safety. 
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2 Prior Art and General Rules 

Before designing the DragAid-MK, research was conducted in order to determine if products that 

involved ideas similar to the DragAid-MK existed.  It was known that a device exactly like the 

DragAid-MK or with the same purpose of the DragAid-MK was not available at the time; 

however, it was hoped that similar devices could be found in order to gain ideas for the 

construction of the DragAid-MK.  From the prior art research, several devices were found that 

could be used as models for the DragAid-MK.  These devices are as follows: fuel shut off 

systems in motorcycles and racing bikes, the Ford Blue Box, a fuel shut off system designed by 

an Australian inventor, air bag deployment systems, and the Electrimotion safety device.   

Research was also conducted regarding the rules of the two major sanctioning bodies of drag 

racing in order to determine if there would be any restrictions on an electronic safety device. 

 

Before research was conducted on systems that would make suitable models for the DragAid-

MK, the current operation of race car shutdown controllers was reviewed.  As of right now, a 

sportsmen race car contains one master kill switch on the outside of the vehicle as well as a 

control panel within the race car.  The control panel within the car contains individual switches 

for each device electrically powered in the race car.  Figure 1 shows a diagram of a standard 

control panel. 

 
Figure 1: Race Car Control Panel1

 

The kill switch on the outside of the vehicle is not accessible to the driver within the race car.  It 

is meant for use by the starting line crew who can shut off the car if they detect a problem with 

the vehicle before the race begins.  Although this is a useful safety device, it does not aid a racer 

if a problem occurs once the race has begun. 

                                                 
1 http://www.moroso.com/catalog/categorydisplay.asp?catcode=77191 
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The control panel on the inside of the car contains the same ability as the master kill switch; 

however, as can be seen in Figure 1, there are often several switches that must be pressed to turn 

off the entire car.  During an accident, a racer may be incapacitated and therefore unable to shut 

off all items on the control panel.  In the excitement of an accident, it is also possible for a racer 

to forget or be unable to press the switches that need to be toggled to turn off the vehicle.  For 

these reasons, an electronically controlled master kill switch such as the DragAid-MK, which 

could automatically control the shut off of all sources of spark and liquid ejection within the 

vehicle, would be a beneficial improvement to the current control systems in race cars.  

 

The first item researched in regard to electronic safety systems available on the market was the 

fuel shut off systems in motorcycles.  This was suggested for study by Frank, one of the co-

developers in the project, who owns a Suzuki motorcycle.  He stated that in bikes designed for 

high speed racing and cornering there are often sensors to detect if the rider has fallen off the 

bike.  When the system detects an accident it shuts off the bike’s fuel system so that it will 

eventually run itself out of fuel and shutoff.  While this safety feature is relatively well known, it 

was very difficult to find information regarding its actual operation. 

 

Through various articles and motorcycle forums, it was eventually found that the product 

operated through the use of a tilt sensor, which is mounted in the front headlight of most bikes.2 

When the sensor detects that the bike is at a certain angle from the ground, it assumes the driver 

has fallen from the vehicle and shuts down the fuel injection system.  For motorcycles, a tilt 

sensor is a very proper choice for accident detection, due to the fact that when the rider falls, the 

motorcycle will always tip to one side or the other.  While this device works well for motorcycle 

crash detection, it would be more difficult to adapt to a race car.  Although it would provide 

detection for roll-over accidents, it would not detect accidents that involved collisions between 

two cars or with a wall.  For this reason, the tilt sensor method of accident detection was not 

chosen for implementation of the DragAid-MK. 

 

                                                 
2 http://www.fireblades.org/forums/honda-rc51/48982-tilt-sensor.html 
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Research on safety in racing motorcycles led to increased research in the online forums of the 

National Hot Rod Association (NHRA).  The NHRA is the largest sanctioning body in drag 

racing; therefore, it was believed that they would provide the most information on safety devices 

for race cars.  From this forum, information on the Ford Blue Boxes, which are now mandatory 

in all professional categories, was obtained.   

 

In March of 2007, Eric Medlen, a young professional driver of John Force Racing, was involved 

in a fatal accident at Gainesville Raceway Park in Gainesville, Florida.  The accident was 

initiated by a tire of his vehicle going flat during practice.  The equilibrium of the car was 

disturbed, and it resulted in severe tire shake.  This shake caused Medlen’s head to be pounded at 

enormous forces against the roll cage of his car.  He died from irreversible brain damage.   After 

this tragedy, John Force put Ford Blue Boxes in all of his vehicles and studied the information 

gathered from these devices after every round.  He was determined to prevent an accident such 

as this one from occurring ever again. 

 

Ford Blue Boxes were originally designed by the Ford Motor Company for use in the Champ Car 

World Series.  While developing the Blue Boxes, Ford’s racing division further created a Safety 

Research and Development group that is responsible for aiding teams in analyzing the data 

obtained from the Blue Boxes.  A Ford Blue Box operates by collecting data through sensors 

actually in the Blue Box, but also by recording data from accelerometers that are placed in the 

ears of the driver.  From this information, computer modeling is completed in order to determine 

the forces the driver and chassis are under during a race.3 

 

When a crash occurs, raw data from the Blue Box are analyzed along with medical reports, 

photographs, and video.  From this information, a CAE model of the driver inside the racecar 

cockpit is developed in order to recreate the accident through computer simulation.  This 

research was used to predict responses and injury potentials to drivers in high g-force impacts.  

The results are then compared to the actual response and physical condition of the driver from 

the medical reports.  Figure 2 shows a picture of the Ford Blue Box as well as a simulation 

conducted in the Funny Car Class of the NHRA. 

                                                 
3 http://www.zercustoms.com/news/Ford-Blue-Box-On-All-2008-NHRA-Nitro-Cars.html 
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Figure 2: Ford Blue Box and Resulting Chassis Simulation4 

Although the Ford Blue Box is a good example of a data acquisition system, it would not work 

as a crash detection system, which is what the DragAid-MK is being designed for.  However, the 

Ford Blue Box did lead to further research into accelerometers, which were determined to be a 

very reliable method of accident detection. 

 

Another device that was found through searching the forums of the NHRA was the new 

Electrimotion device invented for Top Fuel Funny Cars.  When research was first conducted into 

the prior art of crash detection, the Electrimotion safety device did not exist.  It was developed in 

early September of this year due to an accident that occurred in late June 2008 at Englishtown 

Raceway Park.  During this event, Funny Car driver, Scott Kalitta’s car exploded at the 1000 ft 

mark of the track causing the parachutes and body of the car to disintegrate.  The Halon system 

was activated after the explosion, but since the body of the vehicle was no longer attached to the 

car, it was completely ineffective.  It is assumed that Kalitta was knocked unconscious by the 

explosion for the car never slowed as it approached the end of the track.  A final explosion when 

the car shot off the track is believed to have ended Kalitta’s life. 

 

The Electrimotion Safety Shutoff Controller was designed by Dave Leahy of Electrimotion, a 

company that specializes in electronic control systems.  As stated earlier, the controller senses 

manifold burst panel failure and simultaneously activates the fuel shutoff, shuts off ignition, and 

deploys parachutes of the vehicle.  The device was tested by several Nitro Funny Car teams and 

made mandatory by the NHRA within two races after its introduction.  Although this device will 

aid in fire prevention in the professional nitro-methane classes, it will not aid sportsmen racers 

                                                 
4 http://www.zercustoms.com/photos/Ford-Blue-Box-On-All-2008-NHRA-Nitro-Cars/Ford-Blue-Box-2008-NHRA- 
Nitro-Cars-1.jpg.html 
http://www.myrideisme.com/Blog/ford-and-nhra-team-up-on-safety/ 
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whose cars do not have a manifold burst panel.  Therefore, the general idea of this safety 

controller is what is desired for sportsmen racers; however, its design will have to be altered to 

better suit the needs of a sportsmen vehicle. A diagram of the Electrimotion device has recently 

become available.  This is currently the only figure available of the device.  It can be seen in 

Figure 3.5 

 
Figure 3: Electrimotion Safety Shutoff Controller6 

After searching through the NHRA archives, research was also conducted outside the racing 

industry in order to determine if a device existed for passenger vehicles that would be a good 

model for the DragAid-MK.  The first system found was the Vehicle Safety Shutdown System 

invented by John Quee of Australia.7  This system is composed of two devices that are intended 

to reduce the risk of fire in a vehicle during an accident.  Quee recognized that the two major 

causes of fire during an accident are the ignition system continuing to run and the fuel injection 

                                                 
5 http://www.nhra.com/story/ 
6 http://www.zoomerdaily.com/?tag=shutoff-controller 
7 http://www.carcrashfires.com/index.html 
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system continuing to pump fuel to the motor.  He designed the Vehicle Safety Shutdown System 

to eliminate the risk from these two systems. 

 

The Vehicle Safety Shutdown System created by Quee is composed of two devices, which are 

designed to stop fuel and spark from becoming united after an accident has occurred.  The device 

is electromechanical in nature.  Its diagnostic system is composed of accelerometers (electric 

sensors) which are designed to detect impact from any side of the vehicle.  After an impact has 

been detected, the diagnostic system sends signals to the two mechanical pieces of the vehicle 

shutoff device. 

 

The first mechanical device of the shutdown system is the fuel shutoff valve (FSV).  The FSV is 

responsible for blocking the flow of the fuel from the fuel pump, zeroing the working pressure of 

the fuel system from the fuel pump to the engine, and converting the fuel system from high 

pressure to a vacuum, which then creates negative pressure.  Therefore, if the pressurized fuel 

system is ruptured, the fuel will be drawn back rather than sprayed over a hot engine. 

 

The second device of the Vehicle Safety Shutdown System is the battery isolation unit (BIU).  

This is responsible for cutting the supply of electricity to the vehicle’s ignition system and 

severing the power supply (battery) from the entire vehicle.  As of October 2008, Quee’s Vehicle 

Safety Shutdown System has not been adapted to any vehicles manufactured in the United States 

or abroad; however, it appears to be a viable solution to preventing fires in automotive accidents.  

A diagram of his device is not available at this time since a patent has not been awarded to him, 

and he wishes to keep his design private. 

 

The DragAid-MK will operate similarly to Quee’s device; however, there are a few differences 

that will hopefully make it more reliable for race cars.  The first change is that it will use 

electronic shutoffs rather than the mechanical shutoffs that are used in Quee’s system.  Although 

this will not create a vacuum in the fuel lines as does Quee’s system, it has other advantages in 

terms of response time, which are necessary in a racing impact.  Furthermore, the DragAid-MK 

will also be a data acquisition system, which will allow racers to adjust the shutoff thresholds to 

best meet the needs of their vehicle. 
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Another system that was reviewed was air bag deployment systems, which are now mandatory 

on all vehicles manufactured or sold in the United States.  These systems currently use a 

combination of accelerometers and gyros in order to determine if the car has been in an accident.  

The gyros are used to detect vehicle rollovers.  They sense change in tilt over time.  The major 

manufacturer of accelerometers for car companies is Analog Devices, whose iMEMS technology 

is far advanced over the competition.  These sensors are able to quickly detect and send signals 

to a controlling system after an accident has occurred.  A general block diagram of a crash 

detection system that relies on Analog Devices’ sensors can be seen in Figure 4. 

 
Figure 4: Analog Devices Crash Sensors8 

Experiments are currently being conducted into new accident detection techniques for air bag 

deployment systems since these systems are extremely critical to time.  One new method being 

investigated is detection of accidents through observing the metal flexing in the vehicle through 

magnetic plates.9  This system is very promising for air bag systems, since it will give more time 

for air bag inflation, which will reduce injuries to occupants of the vehicle.  This system of 

accident detection may not be as effective in race cars as in passenger vehicles for several 

reasons.   

 

                                                 
8 http://www.analog.com/en/automotive-solutions/crash-detection/applications/index.html 
9 www.mathworks.com 
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The first reason is that this system of accident detection relies on detecting stresses or crushing of 

the chassis of the vehicle.  Race cars, in general, undergo more stress than normal passenger 

vehicles.  This would put them at risk of falsely triggering sensors that rely on chassis stress. For 

this reason, the new techniques of accident detection would not be appropriate for race cars.  

Furthermore, detection of this type would require drivers to completely redesign their cars in 

order to add the stress detection sensors.  Racers tend to reject changes that appear too large or 

complex.  They would especially be against a product that required major changes to their race 

car. 

 

Although the new methods of air bag deployment are not appropriate for the DragAid-MK, the 

older methods of using accelerometers and gyros was very beneficial information to obtain.  

From this research, it was decided that Analog Devices accelerometers would be the most 

appropriate sensors to use.  Research was also conducted into the gyros of Analog Devices; 

however, it was decided that these sensors would not be necessary for the DragAid-MK.  It is 

believed that rollover detection can also be completed through information collected from the 

accelerometers. 

 

After the prior art of accident detection was fully reviewed, the rules of the IHRA (International 

Hot Rod Association) and NHRA were observed in order to make sure that there were no 

restrictions present on electronic safety control systems.  The rulebooks of both sanctioning 

bodies were found to be very similar.  A summary of the two is as follows.  The rulebooks were 

mostly concerned about cheating via electronic systems.  They reject any electronic system that 

in some way connects to the track or the track timing system.  All data recorders must be 

activated by a separate switch and cannot display information to the driver during a run.  In order 

for a new device to be accepted it must be presented to the technical officials of both sanctioning 

bodies before an event.  In general, both bodies state that they will allow a device that promotes 

safety with few questions as long as it can be proved to be fully functional. 

 

In summary, research was conducted into many areas of accident detection and prevention.  

From this research, it was possible to show that an electronic safety shut off system for 

sportsmen race vehicles would be a very beneficial addition to the simple control panel that is 
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currently used.  Further research unveiled several ideas that would be helpful in the design of 

such a system.  As could be seen from the research, a device does not exist in racing or general 

automobile manufacturing that combines the features that will be included in the DragAid-MK, 

electronic shutoff device.  For this reason, it is believed that the DragAid-MK will be a unique 

yet appropriate solution to the problems faced by sportsmen racers. 
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3 Objectives 

In order to ensure that the DragAid-MK would meet the needs of sportsmen racers, an objective 

or goal list was created.  The list was separated into two parts: general objectives and technical 

objectives.  The sections below provide a summary of each of the objective lists. 

3.1 General Objectives 

The first objective created was that the DragAid-MK should be an electronically controlled 

master kill switch that also incorporates a data acquisition system.  The device is intended to 

detect accidents that include vehicle roll-overs as well as side, front, or rear impacts.  The data 

acquisition system of the device is intended to help racers determine appropriate g-force 

thresholds for proper accident detection in their vehicles.  In order to review the data gathered 

through the acquisition system, the device should have a PC interface, which will allow the user 

to download the race data from the device. 

 

The software for the DragAid-MK should be a user-friendly program that will easily allow a 

racer to adjust the shutoff thresholds for his car and then send them to the DragAid-MK.  It is 

hoped that this program will eventually aid a driver by suggesting possible thresholds that would 

suit his vehicle.  In the future, it will also prevent inappropriate thresholds from being selected. 

 

The device should be easily testable by National Hot Rod Association (NHRA) and International 

Hot Rod Association (IHRA) technical officials.  The device should provide a simple way for the 

NHRA and IHRA to verify its operation.  This process must be quick and reliable because 

technical officials have limited time to review all race vehicles before the start of an event.  It 

may be decided in the future to create simulation software for technical officials, which will also 

test the operation of the DragAid-MK. 

 

A very important objective is to make the device adaptable to all types of cars.  This includes all 

possible models of vehicles in the sportsmen categories (dragsters versus door cars), but it also 

means professional race cars as well as race vehicles outside of drag racing.  This device was 

found to be unique in all types of racing; therefore, there is potential that it could be adapted 

beyond sportsmen categories of drag racing to other types of racing in the future. 
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The device should be manufactured with a durable case.  This will protect the electronic circuitry 

and sensors from any type of accident that the vehicle may undergo.  The device in general 

should be capable of shutting down the ignition system and all electronic systems of the vehicle 

when an unsafe condition is detected.  It should also shut off liquid pumps including the fuel and 

water pump of the vehicle when an accident is detected.  Although the DragAid-MK is designed 

to automatically shut down the vehicle it is mounted on, it should also have a manual control that 

will allow the driver to shut down all critical systems in case of an emergency. 

 

The final specification that was identified for the master kill switch is that it is not a wireless 

device.  All connections within the device and to the vehicle the device is controlling should be 

physical connections.  Although wireless is very reliable, there are many sources of interference 

in a race car that could cause problems to a wireless system.  Furthermore, wireless systems are 

more subjective to external tampering, which would be extremely detrimental in a device that 

controls the operation of a racecar.  It is important that all signals sent to shut off the vehicle are 

sanctioned by the device, and not external signals sent by one racer as vengeance toward another.  

It may not be possible to prove that such tampering occurred within the device, which would 

lead to doubts as to the functionality of the device.  This would undermine the racer’s confidence 

in the system as well as potentially cause the racers to stop using the system. 

 

The specification for no wireless in the system also includes data transfer to a PC.  In general, 

racers are mechanical minded individuals.  They do not understand electronics and prefer to find 

mechanical solutions to their problems when possible.  For this reason, they often have trouble 

setting up electrical systems of any type.  It is believed that setup of a wireless system would 

cause them more trouble than benefit.  It would also be more difficult to troubleshoot problems 

that may occur if racers use wireless data transfer.  With this in mind, wireless data transfer to a 

PC will not be included in this version of the DragAid-MK; however, in future versions, this idea 

may be considered. 
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3.2 Technical Objectives  

The technical objectives provide more detail as to the operation and construction of the device.  

In general, they are an elaboration and usually quantitative description of the general objectives 

of the device described in the previous section. 

 

The DragAid-MK should provide at least 5 auxiliary kill or shut off signals to the vehicle.  It 

should also provide at least 1 master kill or master shut off signal to the vehicle.  These lines 

should easily connect to the fuse panel or relay panel of the vehicle the DragAid-MK is mounted 

on, and lead to the shut off of the ignition system and fuel system of the vehicle. 

 

The DragAid-MK should contain sufficient memory to record at least 3 runs worth of data.  This 

is an improvement over the 1 run worth of data that it was originally expected to hold.  The data 

the DragAid-MK collects is no longer required to have a time-stamp associated with it; however, 

the g-force information that it saves will be the maximum for each accelerometer axis over the 

.02 second interval that it monitors.  It should be able to access and transfer this data to a PC via 

a USB connection.   

 

Since the DragAid-MK is a peripheral device to a PC, it should contain a Type-B USB 

connection and be capable of interfacing with a PC using a standard Type-A to Type-B USB 

cable.  High-speed communication is not necessary with the PC.  The only requirement is that all 

data is transferred without error.  USB was chosen since most racers carry laptops with them at a 

racetrack rather than a desktop computer.  USB ports are more common on laptops than RS-232 

serial communication ports; therefore, USB seemed to be the more suitable choice for PC 

communication. 

 

The device should be able to run off a 9 volt battery or the 12 volt ignition system of the race car.  

As a user interface, it should include a series of switches (one of them being a master kill 

switch).  By requirements of the NHRA and IHRA rulebooks, a master kill switch must be a 

positive action on/off switch.  For this reason, momentary contact switches will be used for 

switches that select between different modes of operation of the DragAid-MK.  A positive action 
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on/off switch will be used to initiate a master kill.  The DragAid-MK should also contain several 

colored LEDs to inform the user of the operating mode the device is currently in. 

 

The device should be capable of measuring the g-forces on the vehicle along the X, Y, and Z 

axes of the vehicle.  Since side, frontal, and rear impacts will be the most severe (highest g-

forces), the side, front, and rear accelerometers should be capable of detecting high g-forces (at 

least 50-g).  The accelerometer used for measuring vehicle roll-over simply needs to detect -1-g 

of force; therefore, a low-g 3-axis accelerometer can be used for this operation. 

 

An additional requirement that was added to the project is that the system should be triggered by 

the two-step or revolution limiter of the vehicle it is mounted on.  This would mark a more 

accurate beginning of a race and allow the device to only record data that is relevant to the safety 

of the driver.  It was also decided that the device should turn off completely (not only enter a low 

power mode) after the vehicle’s ignition system has been shut down and the device has 

performed its shut down sequence.  This will increase energy savings of the device, and also 

improve its operation on system startup. 

 

A final requirement is that the technical verification system of the device be capable of testing 

the firmware of the system as well as the sensors.  Both systems must be fully functional for the 

device to be completely operational.   
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4 Design Approach 

The block diagram for the DragAid-MK is currently composed of 10 general modules with more 

specific blocks within each of these modules.  The general modules that were identified for this 

project include a power supply module, a sensor module, a user input module, a signal 

conditioning module, a processing module, a memory module, a clock module, a programming 

module, an output module, and finally, a casing module.  The block diagram can be seen in 

Figure 5 below.  In this diagram, the dotted lines represent the general modules of the device and 

the more defined blocks within the modules represent the specific components that compose that 

module. 

 
Figure 5: System Block Diagram 

This section of the report will be broken into subsections based on each of the general modules 

in the block diagram of the DragAid-MK.  Each subsection will aim to describe the purpose and 

function of the different modules in the DragAid-MK system.  It will describe the input and 

outputs of each module as well as how each module interacts with the entire system. 

4.1 Power Supply Module 

The first module identified was the power supply module.  This module is required to supply 

sufficient power to every module in the circuit that requires power to operate.  The original 
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design for the power supply module only involved the use of voltage regulators to monitor the 

voltage across certain elements in the circuit.  When the design of the system was observed more 

closely, it was decided that certain components such as the sensors and analog to digital 

converter should be supplied a more exact voltage.  For this reason, the modified power supply 

module was constructed using a 5V voltage regulator, a 5V voltage reference, and a 3V voltage 

reference.   

 

The processing module, memory module, output module, signal conditioning module, and 

programming module all receive 5 volts from the voltage regulator.  The voltage supplied to 

these modules does not need to be exactly 5 volts, which is the reason that the voltage regulator 

is used to power these modules.  The sensor module receives 5 volts and 3 volts from the two 

voltage references of the power supply module.  Voltage references are specifically designed to 

provide more precise voltages to their load.   They are not designed to handle as large of a load 

as voltage regulators; however, for the purpose of this project, they are appropriate.  Two 

voltages are necessary for the sensor module, since one of the accelerometers requires a lower 

voltage to operate properly. 

 

The voltage reference of the analog to digital converter within the processing module also 

requires 5 volts from the power supply’s voltage reference.  It is imperative that the analog to 

digital converter has a near exact voltage across it; otherwise, the base value for the conversions 

will fluctuate.  This will cause the accuracy of the conversions to be questionable, which would 

undermine the entire operation of the DragAid-MK. 

 

The input to the power supply module is received from two sources: the 12 volt car ignition and 

a 9 volt battery incorporated in the device.  The power supply module is designed so that the 

input with the highest voltage is used to run the system.   Therefore, when the vehicle ignition is 

on, the 9 volt battery will not be used.  If the vehicle is turned off suddenly, the 9 volt battery 

will power the system and be used to complete shut down procedures.  The voltage comparator 

was created using a series of diodes.  It will be explained in more detail in Section 5, System 

Construction.  Once the two voltages are compared, the higher voltage source is fed into the 

voltage regulators and references, which are used to power the remainder of the circuit. 
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4.2 Input Module 

The input module is required to handle all user interaction with the device.  In other words, it is 

the user interface of the DragAid-MK.  It consists of two momentary contact switches that are 

used for switching the DragAid-MK into test mode or for turning off the input for the two-step.  

The two-step is a common device in race cars that is used as a motor revolution limiter.  When 

the racer is in the start position for a race, he pushes down on some type of activator for the two-

step.  He then proceeds to press the throttle pedal of the race car to the floor.  The engine will 

then limit itself to a preset revolution per minute (RPM) value that is controlled by the two-step.  

When the racer is ready to leave the starting line, he releases the two-step activator.  The outputs 

of both switches are active low and will be fed directly into the processing module of the circuit. 

 

The input module will also consist of a connector designed to allow a racer to easily connect his 

vehicle’s two-step to the DragAid-MK.  This will allow the DragAid-MK to monitor activation 

and deactivation of the two-step.  It can use this information in order to decide when the car is 

actually being raced versus when it is simply warming up or preparing for a race.  In this way, it 

can be used as a signal for a start of race, and therefore, a beginning point for recording the data 

received by the sensor module.  The two-step input can be either active low or high (this will be 

a setup choice for the user).  The signal received by the input module for the two-step will be fed 

into the signal conditioning module of the circuit before passing into the processing module.  

 

The final two inputs to the input module are from the USB connector and the master kill switch.  

The USB connector is used for transferring data between the DragAid-MK and a PC.  The 

signals received or sent by the USB connector are processed by the signal conditioning module 

of the DragAid-MK.   

 

The master kill switch input is a positive action on/off switch as specified by the IHRA and 

NHRA rule books.  It will be used to manually turn off the ignition and fuel pumps of the vehicle 

if the driver senses a dangerous situation.  The output from this switch is also active low and is 

fed directly into the processing module of the circuit. 
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4.3 Sensor Module 

The next module that was created was the sensor module.  This module is responsible for 

detecting the different conditions that the vehicle being monitored by the DragAid-MK is 

experiencing.  It currently consists of two accelerometers (an ADXL278 and an ADXL330) as 

well as an input from a RPM gauge (tachometer).  The input from the tachometer may be 

removed in the final revision of the board.  It was included in this revision since the initial 

functional design of the DragAid-MK required a RPM gauge for changing between user modes.  

In this revision, changes are controlled by the two-step and buttons; however, the RPM input was 

kept in case it was deemed necessary in future modifications to the device. 

 

The ADXL330 accelerometer requires 3 volts to operate.  It is a 3-axis, low-g accelerometer 

used for measuring z-axis g-force on the DragAid-MK.  It will be used for identifying vehicle 

roll-overs in the DragAid-MK circuit.  The output signal from the ADXL330 is fed directly into 

the processing module of the circuit.  It produces an output analog signal between 0 and 3 volts; 

therefore, it is not necessary for this signal to pass through a signal processing module. 

 

The ADXL278 accelerometer requires 5 volts to operate properly.  It is a 2-axis, high-g 

accelerometer used for measuring x and y-axis g-forces on the vehicle.  It will be used for 

sensing frontal, rear, or side impacts on the DragAid-MK.  It produces an output analog signal 

between 0 and 5 volts.  It will also be able to pass directly into the processing module of the 

circuit without signal conditioning. 

4.4 Signal Conditioning Module 

The signal conditioning module is required to process all signals that cannot be fed directly into 

the processing module of the circuit.  It is required to perform several different operations in 

order to ensure that all data passed to the processing module can be handled.  For this reason, it 

is composed of several different components. 

 

The first portion of the signal processing module consists of 3 voltage dividers, which are 

represented as one block in the block diagram shown in Figure 5.  The voltage dividers are used 

to process signals that have voltages greater than 5 volts.  This is done to prevent them from 
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damaging the processing module, which can only handle signals with a maximum value of 5 

volts.   

 

Two of the voltage dividers receive signals from the power supply module of the circuit.  They 

receive input directly from the battery and the ignition input of the power supply module; 

therefore, the two signals received by the signal conditioning module are around 9 volts and 12 

volts.  Once these signals are reduced to 5 volts, they are passed to the processing module of the 

circuit.  The final voltage divider is used to reduce the RPM input signal to 5 volts.  All systems 

in a race car generally run off of 12 volts; therefore, the signal received from the tachometer of 

the vehicle will also be around 12 volts when inputted to this voltage divider.  

 

The next portion of the signal conditioning module consists of an optocoupler.  This portion of 

the signal conditioning module takes as input the two-step signal form the user input module.  

The signal from a vehicle’s two-step will range from 0 to 12 volts, and have a high value when 

activated and low value otherwise.  In order to isolate the two-step from the processing module 

of the circuit (which will need to process whether the two-step is activated or deactivated), an 

optocoupler was used.  This device will limit the two-step voltage to 5 volts when the two-step is 

activated and 0 volts when the two-step is off.  Furthermore, it will prevent current from flowing 

from the two-step to the processing module, which could potentially damage the processing 

module of the circuit.  This is added protection in case the two-step is not connected properly to 

the DragAid-MK. 

 

The final portion of the signal conditioning module is the USB to UART conversion chip.   The 

input to this chip is received from the USB connector of the input module as well as from the 

UART (universal asynchronous receive transmit) portion of the processing module (which will 

be described in more detail later in the report).  The chip converts the information received from 

the USB connector to a format understood by a UART interface and sends this data to the 

processing module of the circuit.  It also is able to accept information in UART format and 

convert data to standard USB 1.1 format, which it then sends to the USB connector of the input 

module of the circuit.  The signals sent to the processing module from the USB to UART 
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conversion chip are between 0 and 3 volts.  Although this is low for inputs to the processing 

module, it is able to function properly; therefore, a voltage amplifier is not necessary. 

4.5 Memory Module 

The memory module was created as an aid to the processing module.  It is used to store the data 

received by the processing module from the sensing module of the circuit.  The memory module 

is required to input and output data to the processing module.  It operates from 5 volts; therefore, 

signals sent between the memory module and the processing module do not require signal 

conditioning.   

 

The chip used for the memory module is an external EEPROM manufactured by Microchip.  It is 

capable of holding 64 Kbytes of data, which is equivalent to 65536 bytes.  The EEPROM 

communicates to the processing module using a serial peripheral interface (SPI).  This interface 

is synchronous, which makes it faster than an UART interface.  The EEPROM is capable of 

transferring data at a rate of 20 MHz.  Although this speed is not possible with the current 

processor, it proves that data transfer between the processing module and the EEPROM will not 

be a source of system latency.  The processing module should be able to store data as fast as it 

receives it. 

4.6 Clock Module 

The clock module of the circuit is required to supply all clock sources to the processing module 

of the circuit.  Although the processing module has its own internal oscillators, these oscillators 

are known for being inaccurate and at times a-periodic.  For this reason, it is better to run the 

system off of an external 8 MHz clock when accuracy in timing is desired.  Although, instruction 

timing is not of critical importance for this circuit, it was found that using the external oscillator 

improved the UART communication.  During testing of the initial board design, the UART 

receive was found to be missing a bit in transfer.  When the 8 MHz clock was added to the board, 

the UART no longer dropped a bit, and all data was found to be received properly. This 

improvement may be due to the increase of speed to 8 MHz, or due to the greater accuracy of the 

external oscillator. 
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The second oscillator in the clock module of the circuit is a 32.768 kHz clock used for 

calculations in real-time.  The frequency 32.768 kHz is generally used for real time clock 

calculations, since when divided by 256 in an 8-bit system, roll-over of the 8-bit register occurs 

every 1 second.  This oscillator is extremely accurate, and will be used for timing in the 

processing circuit. 

4.7 Programming Module 

The programming module of the circuit consists of a JTAG header used for connecting a JTAG 

cable from a PC to the DragAid-MK board.  This interface is currently used to program the 

firmware written in assembler to the DragAid-MK processing module.  Since the SPI bus of the 

DragAid-MK’s processing module is being used for storing and receiving data from the memory 

module, the JTAG interface will be used to program DragAid-MK processing modules even after 

the test phases of the project are complete.   

 

Since its initial development, JTAG has frequently been used as an in-circuit debugger for 

embedded systems.  The most essential benefit of a JTAG debug (or boundary scan) is that 

virtual breakpoints can be set.  Although debugging an embedded system through JTAG appears 

to be similar to debugging PC software, this is not true.  JTAG only has access to boundary 

values of the embedded system.  This excludes all registers that are part of the internal core of 

the processor.  For this reason, a JTAG debug is limited; however, it still provides more 

information than was available before the creation of the JTAG interface.  It also allows 

embedded programmers to step through their code line by line, which is extremely helpful.    

 

The JTAG interface will be used whenever a problem is found with the firmware created for the 

processing module.  It will also be used to verify the correct logical operation of the code, which 

would be difficult to do without the ability to simulate system states using the debugger. 

4.8 Processing Module 

The processing module is the most important module of the DragAid-MK circuit.  It is 

responsible for organizing all the data received by the sensor and input modules of the circuit and 

then providing the proper output signals to the output module.  The processing module consists 

of an AT90USB647 microcontroller manufactured by Atmel Corporation.  The main features of 
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the microcontroller that will be used in this project can be seen as the separate blocks within the 

processing module in Figure 5.  They include the analog to digital converter (ADC), digital input 

and output ports, serial peripheral interface (SPI), universal asynchronous receive transmit 

(UART), and real time clock (RTC). 

 

The ADC portion of the processing module will receive input from the accelerometers of the 

sensor module as well as the 9 volt battery and 12 volt ignition voltage dividers from the signal 

conditioning module.  The signals from the accelerometers, once converted to digital signals, 

will be used to control whether the system should send off signals to the vehicle or continue 

operating normally.  The conditioned input from the 9 volt battery and 12 volt ignition system 

are meant to determine if the battery life of the system is low or if the ignition system of the 

vehicle has been shut down. 

 

The digital input and output ports of the system are connected to many modules of the entire 

system.   They are used to allow a user to interface with the DragAid-MK.  The main function of 

the digital input ports of the processing module are to take in user input.  These ports are used to 

determine whether the user wishes to put the device in test mode, bypass the input signal from 

the two-step, start racing, or shut down the entire vehicle.  The digital output ports are used for 

two main purposes.  First they provide signals to the output module of the circuit, allowing the 

current mode of the DragAid-MK to be displayed to the user.  They are also responsible for 

sending shut down signals to the solid state relays of the vehicle the device is mounted on. 

 

The SPI portion of the processing module is responsible for coordinating data transfers with the 

memory module of the device.  This is where the digital data that result from the analog to digital 

conversion are sent after they have been processed.  They are transferred to the memory module 

over the SPI bus where they are stored until a user wishes to review the data recorded during the 

run.  When this occurs the data can be read and erased from the memory module using 

commands sent over the SPI bus. 

 

Another key system of the processing module is the UART.  This module is used to send the data 

collected during a run to the user.  It is also used to receive important data from the user such as 
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threshold values for vehicle shut off, car information, and two-step polarity. Other values that 

will be transferred between the PC and DragAid-MK through the UART include the serial 

number, version number, and version date of the DragAid-MK as well as the date the thresholds 

were last modified. 

  

The final individual module within the processing module is the RTC interface.  The RTC port 

of the AT90USB647 is basically designed to allow asynchronous data input.  This makes the port 

ideal for sensing a clock input, which may not run synchronously with the main clock of the 

processor.  The RTC will be used as the timing base for all action occurring in the processing 

module.  It will be used to set a time limit for the device being in race mode.  Furthermore, it will 

be used to create delays in UART data sends. 

4.9 Output Module 

The final module displayed in the block diagram seen in Figure 5 at the beginning of the section 

is the output module.  This module is responsible for informing the user of the state of the 

device.  Furthermore, it is responsible for sending “off-signals” to the vehicle it is attached to.  

The output module consists of a series of LEDs, which each have a different meaning in regard 

to the system state.   

 

The LEDs require 15 milliamps of current for operation.  They are designed to be active low, 

which means a low signal from the processing module will activate them.  They receive a signal 

to turn on and off from the processing module of the circuit.  As of right now there are 6 LEDs 

on the DragAid-MK board.  Their purposes are as follows: Test Mode LED, Download Mode 

LED, Pit Road Mode LED, Race LED, System Test LED, and Two-Step On/Off LED.  

Therefore, each LED will give the user information on the current state of the system. 

 

The final portion of the output module is connections that will eventually attach to solid state 

relays of the vehicle the DragAid-MK is mounted on.  These connections will receive signals 

from the digital output port of the processing module.  They will be used to send vehicle shut 

down signals to the car controlled by the DragAid-MK.  The exact layout for this portion of the 

output module was not considered as part of this project and is open for future investigation. 
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4.10 Casing Module 

Another module, which cannot be seen in the block diagram, is the case module.  This module is 

responsible for protecting the circuitry of the device in everyday use as well as in a crash 

situation.  It is required to be sturdy so that if the device is dropped the circuitry will not be 

affected.  Furthermore, it must have sufficient padding to eliminate the vibrations from the 

ordinary movement of the car while still allowing the accelerometers to pick up major events.  

This is basically an attempt to reduce noise from the accelerometer signals in a physical manner, 

since the type of the noise is physical in nature. 

 

The current base design for the case module is a metal electrical box.  It is hoped that a box of 

this type will reduce electrical and magnetic interference that may occur within a race car.  Very 

little research has been done on the interference produced by race cars; therefore, we are not sure 

what to expect.  However, we do not want our device to get faulty readings due to environmental 

noise.  For this reason, a metal protection cage around the essential sensors and circuitry of the 

DragAid-MK seems to be a good solution.  More work on the aesthetics of the case should be 

completed before the DragAid-MK goes into production. 
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5 System Construction 

The creation of the final prototype for the DragAid-MK took place in 4 basic stages.  The first 

stage involved deciding how the system should function and then creating software flowcharts 

and system block diagrams that represented this functionality.  The second stage involved 

selecting components.  This included selecting sensors, memory, and the microprocessor as well 

as resistors, capacitors, and diodes that would best suit the needs of the device.  The third stage 

involved the schematic design, which included properly arranging the components in order to 

create a functioning device. The final stage was the actual construction of the system, which 

included the printed circuit board (PCB) layout and the soldering of the components to the PCB.   

 

In this section of the report, the construction of the DragAid-MK will be described through 

observing the construction process of each of the individual modules described in Section 4.  The 

only module that will not receive individual description is the signal conditioning module, which 

will be incorporated in the description of the input module and the sensor module of the circuit.  

Since the case module will not be completed as part of this project, this module will be omitted 

from this section of the report. 

 

Additional subsections will be added to this portion of the report to discuss the design and 

creation of the firmware and software for the DragAid-MK.  The final subsection will contain a 

description of the design of the printed circuit board.  This will include information on slight 

modifications that should be made before the product is released as an actual safety device. 

 

A complete schematic for the DragAid-MK can be viewed in Appendix L.  A complete parts list 

for the final PCB can be seen in Appendix M. 

5.1 Power Supply Circuit 

The first module that was designed was the power supply module.   Figures 6 and 7 are 

schematic representations of the power supply module.  Figure 6 shows the 5 volt voltage 

regulator, the 5 volt voltage reference, as well as the two input power sources to the circuit.  

Figure 7 shows the 3 volt voltage reference of this module. 
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Figure 6: Power Supply Module – Power Input Circuitry 

 

Figure 7: Power Supply Module - 3 Volt Reference 

As can be seen from the figures, the power supply module receives input from the 12 volt 

ignition system of the vehicle (represented as the center-pin positive power jack in Figure 6) as 

well as from a 9 volt battery used as a backup power source (B1).  This module is designed such 

that the 12 volt car ignition can power the DragAid-MK system while the car is running.  If the 

vehicle is shut down, either by the operator or by the DragAid-MK, the device will continue to 

run from the 9 volt battery for a certain length of time.  Once all final system operations are 

completed, the microprocessor of the circuit will have the ability to cut-off the battery from the 

DragAid-MK circuit; thereby, completely turning off the DragAid-MK system.   
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From the figures it can also be seen that the power supply module of the circuit is required to 

provide three outputs to the remainder of the circuit.  The first output is a 5 volt power signal that 

is meant to run the portions of the circuit that are not voltage sensitive.  The remaining two 

outputs are precision voltage signals of 3 and 5 volts that are meant to provide accurate reference 

voltages for the sensors and analog to digital converters in the circuit. 

 

The power supply module was designed to handle 500 milliamps of current; however, in normal 

operating conditions, the current draw from the circuit should not exceed 100 milliamps.  This 

calculation was made by observing the current draw of the key circuit elements in the DragAid-

MK. The resulting calculation can be seen in Table 1 below. 

Table 1: Table of Circuit Current Consumption 

Device Quantity Running 
Concurrently 

Single Component  
Current (mA) 

Total Current (mA) 

LEDs 2 15 30 
Microcontroller 1 18 18 
EEPROM 1 10 10 
ADXL278 1 2.2 2.2 
ADXL330 1 0.18 0.18 
CP2102 1 26 26 
Total - - 86.38 ≈ 100 

 

The power supply module has a complex design due to a unique requirement (mentioned briefly 

above) that it was designed to meet.  Under normal conditions, when the vehicle is running 

properly and no crash has occurred, the DragAid-MK is expected to be powered by the ignition 

system of the vehicle.  When a crash occurs, and the DragAid-MK shuts down the ignition 

system of the vehicle, the device must continue to run from batteries included on the DragAid-

MK board.  After the DragAid-MK has finished recording data, the device should then send a 

signal to the power circuitry in order to eliminate the input from the battery and thus completely 

shut down the system.  Although it is possible for systems to have completely electrical 

shutdowns, it is not common for a system to attempt to shut off its own power.  For this reason, 

many attempts were made at creating this circuit.  The operation of the power supply circuit seen 

in Figure 6 operates as described below. 
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When power is provided by the ignition system of the vehicle, a 12 volt power signal is received 

at the D7, D9 diode junction.  This signal is greater than the maximum 9 volt signal that could be 

supplied to this junction from the battery circuit.  This will result in the D7 diode being in the 

forward biased condition and the D9 diode being in the reversed biased condition.  Diodes only 

allow current to flow when they are forward biased; therefore, current will be drawn from the 

ignition system of the vehicle and not from the battery backup circuit.  When the signal from the 

ignition system is removed, the diodes will be biased in the opposite directions allowing current 

to be drawn from the battery circuit. 

 

After the signal from the power source passes through the diode junction, it enters into the 

UA78M05 five volt regulator and the ADR395 five volt reference.  The 5 volt regulator is 

designed to take in a signal between 7 and 20 volts.  It is guaranteed to output a signal between 

4.8 and 5.2 volts.  It is also able to handle a current draw of 500 milliamps, although it is unlikely 

that the DragAid-MK circuitry will draw this level of current.  The voltage regulator will supply 

power to the microprocessor, EEPROM, and USB to UART conversion chip.  These devices do 

not require precision voltage levels and only require power signals to operate.  The power signal 

provided to the circuit from the 5 volt regulator is also passed into the 3 volt reference (see 

Figure 7). 

 

The 5 volt reference requires an input voltage between 5.3 and 15 volts.  It is guaranteed to 

output a voltage between 4.995 and 5.005 volts as well as supply 5 milliamps of current.  The 

output from the 5 volt reference is used as a reference signal for the analog to digital converter of 

the microcontroller.  This circuitry requires negligible current as stated in the microcontroller’s 

user’s guide.  It is also used to supply power to the ADXL278 accelerometer, which relies on an 

accurate and precise power input in order to make accurate g-force readings.   Since the 

ADXL278 only requires 2.2 milliamps for proper operation, the current draw from the voltage 

reference will not exceed the maximum allowable current. 

 

The final 3 volt reference is used to supply power to the ADXL330 accelerometer, which 

requires a voltage less than 3.6 volts and nominally 3 volts to operate properly.  As with the 

ADXL278 accelerometer, the ADXL330 requires an accurate and precise voltage input in order 
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to guarantee accurate sensor readings.  For this reason, it was necessary that a 3 volt reference be 

used.  The 3 volt reference requires a 5 volt input signal, which is why its input signal is supplied 

from the 5 volt regulator of the circuit.  It will output a voltage signal between 2.997 and 3.003 

volts.  It also can provide up to 5 milliamps of current.  This is sufficient since the ADXL330 

only draws .18 milliamps.   

 

The final components of the power supply circuit were added to support the battery cut-off 

feature described above.  The main component used to achieve this function was a PNP 

transistor, which was operated as a switch to the battery in the circuit.  This transistor was a 

2SB0779 surface mount component manufactured by Discrete Semiconductor Products.  It was 

chosen due to its ability to handle 500mA of current through the collector of the transistor.  This 

is the maximum current that the power supply module was designed to withstand. 

 

As can be seen in Figure 6, the emitter of the transistor is connected to the output of the battery 

and the collector is connected to the input of the DragAid-MK circuit.  The base of the transistor 

is connected to the microprocessor through a base resistance as well as a NL17SZ07 open-drain, 

non-inverting buffer.   

 

Since the transistor used in this circuit is a PNP type, a low signal on the base is necessary to turn 

it on, and a high signal is necessary to turn it off.  When a low voltage signal is applied to the 

base of the transistor, the voltage from the emitter to the base is greater than .7 volts.  As stated 

above, this turns on the transistor allowing current to flow through the transistor and power the 

DragAid-MK circuit. 

 
When the base voltage of the transistor is set high, the transistor is turned off, thereby 

eliminating the battery source from the circuit.  Since the microcontroller will not be able to 

sustain a high voltage once the battery has been removed from the circuit, a pull-up resistor is 

used to keep the transistor base tied to a high voltage (9 volts).  A large pull-up resistor value is 

used in order to ensure that little current flows in the resulting loop that is created.  Technically 

no current should flow since the transistor is cut-off.  In order for this circuit to work properly, it 

was assumed that the microcontroller ports were open-drain.  In other words, they are able to 
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properly pull a signal low; however, in the high-state the circuit has high impedance rather than 

an actual high voltage level. 

 
Before this circuit was implemented on the printed circuit board of the project, it was setup and 

tested using a protoboard.  It was found that the assumption that the microcontroller had open-

drain outputs was false.  In other words, the transistor would turn on when the microcontroller 

sent a low voltage level; however, it would not turn off when the microcontroller sent a high 

voltage level.  In order to rectify this, an open drain buffer was obtained and placed between the 

base of the transistor and the output from the microcontroller.  With this buffer in place, the 

circuit was found to work properly.  The buffer used was a NL17SZ07 manufactured by ON 

semiconductor.  It can be seen in the completed circuit of Figure 6. 

 

The 100 micro Farad capacitor placed between diodes D7 and D9 is charged during the normal 

operation of the circuit.  When power is completely removed from the circuit (the battery and 

ignition circuits are shut down), this capacitor discharges power to the circuit allowing the 

processor a few extra milliseconds of power to ensure complete shut down. 

 

Another aspect of the circuit in Figure 6 that should be mentioned is the power lines EPwr and 

Batt, which leave the page.  These signals are used to perform voltage checks on the 12 volt 

ignition and 9 volt battery circuit.  The circuit that performs this can be seen in Figure 8 below. 

 
Figure 8: Ignition and Battery Voltage Check 

As can be seen from the circuit above, the battery and ignition checks are conducted using the 

same analog to digital converter pin of the microcontroller (PF3).  Due to both the ignition and 

battery circuits providing voltages greater than 5 volts, voltage dividers were necessary in order 

to limit the signals being passed to the microcontroller.  The voltage divider connected to the 

input from the ignition system was designed to reduce the signal to 5 volts.  The voltage divider 
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connected to the input from the battery circuit was designed to reduce its input to 2.5 volts.  In 

this way, the processor is able to detect when the 12 volt ignition power source is removed from 

the circuit by observing that the analog to digital conversion from the power input line drops 

from 5 volts to 2.5 volts. 

 
On the first revision and current revision of the prototype boards, a center-pin positive power 

jack was used to simulate the input from the 12 volt car ignition.  This was done to make it easy 

to power the device for testing.  In the boards that are created to be marketed, this will be 

replaced with positive and negative through-hole insertion points for input from the ignition 

system.  

5.2 Sensor Circuit 

The sensor circuitry of the device contains two accelerometers and an input line for input from 

the tachometer of the race vehicle.  The first accelerometer is an ADXL278 2-axis high g-force 

accelerometer.  It is manufactured by Analog Devices and was chosen since it was specifically 

designed for detecting vehicle collisions. 

 

The ADXL278 is capable of monitoring the x and y-axes (front, rear, and sides) of the vehicle 

that the device is mounted on.  It is capable of detecting g-forces of 50-g’s on each of the axes.  

This meets the requirement that was originally identified in Section 3.2 of the report.  Figure 9 

shows a diagram of the ADXL278 accelerometer, and its connections to the microcontroller 

(processing module of the circuit). 

 
Figure 9: ADXL278 Circuit  

The ADXL278 operates on 5-volts of power provided by the 5 volt reference of the power 

supply circuit.  As stated in Section 5.1 above, this voltage needs to be precise in order to ensure 

accurate g-force measurements.  The ADXL278 outputs 0-5 volts on pins 6 and 2 (Pin 6 is the x-
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axis output and Pin 2 is the y-axis output).  The output from the ADXL278 is fed directly into the 

microcontroller used for the project.  The microcontroller is able to handle 0-5 volt input; 

therefore, no signal processing is necessary on the output from the ADXL278.  The capacitor 

seen in Figure 9 is a bypass capacitor used for noise reduction on the ADXL278 power lines.  

The placement of this capacitor was suggested by the ADXL278 datasheet. 

 

Capacitors are not necessary on the X and Y output lines of the ADXL278.  In some Analog 

Devices components, capacitors are needed for bandwidth selection of the output signal; 

however, the ADXL278 comes equipped with a 400 Hz Bessel Filter.  With this filter it is 

necessary to sample output from the accelerometer at greater than 800 Hz, which is equivalent to 

about once every millisecond. 

 

The second accelerometer selected was the ADXL330, which is capable of monitoring the x, y, 

and z-axes of the vehicle.  It was chosen to fulfill the objective of detecting vehicle rollovers.  In 

a vehicle rollover, a car will experience 1-g of force on the underside of the vehicle.  This is 

equivalent to experiencing -1-g of force on the roof of the vehicle.  Therefore, with the 

ADXL330, it will be possible to detect vehicle rollovers by monitoring the z-output of the 

accelerometer and determining if it reaches -1-g of acceleration.  The ADXL330 can only 

accurately handle 3-g of acceleration; however, since only 1-g is in question this will suffice.  

Figure 10 shows the circuitry design for the ADXL330. 

 
Figure 10: ADXL330 Circuit  
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The ADXL330 requires 3 volts of power for normal operation.  It outputs 0-3 volts on Pin 8, 

which is the z-axis output pin.  As with the ADXL278, this output can be fed directly into the 

microcontroller without signal processing.  Since this part is also manufactured by Analog 

Devices, it also requires a 0.1 micro-Farad bypass capacitor between the input power lines and 

ground for noise reduction.  Unlike the ADXL278, the ADXL330 does not have an internal 

bandwidth selection filter.  For this reason, a capacitor is needed on the z-axis data output line in 

order to ensure the proper bandwidth is selected.  Since the processor needs to sample the 

ADXL278 accelerometer every millisecond, it was decided that the ADXL330 should also have 

new data every millisecond.  For this reason, the bandwidth selection chart which can be seen in 

Table 2 was reviewed, and a capacitor value of 0.027 micro-Farads was selected.  

Table 2: Bandwidth Capacitor Selection 

Bandwidth (Hz) Capacitor (uF) 
1 4.7 
10 0.47 
50 0.10 
100 0.05 
200 0.027 
500 0.01 

  

It may be observed from the description above that the ADXL330 has more features than is 

necessary for detecting vehicle rollovers.  In other words, it measures g-force for more than just 

the z-axis.  Even though it was a more powerful sensor than was needed, the ADXL330 proved 

to be the best choice for the DragAid-MK.  The primary reason that the ADXL330 was chosen 

was due to it being capable of measuring forces perpendicular to the chip.  This allows the chip 

to be mounted solidly on the PC board without inhibiting the chip from measuring z-axis data.  

Another reason the ADXL330 was selected is due to it being manufactured by Analog Devices.  

This chip was found to be more reliable than other 1-axis, z-axis accelerometers on the market 

and it could be obtained at a relatively low price.   Therefore, it was decided that the ADXL330 

should be used to sense vehicle rollovers in the project. 

 

The final portion of the sensor module was the tachometer input.  The circuit for the tachometer 

can be seen in Figure 11.   This circuit will remain in the final design of the DragAid-MK 

although it is currently not being used.  The original design for the DragAid-MK required that 
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the RPM level of the vehicle be used to determine the operation mode of the device.  In B-term, 

the operational design of the DragAid-MK was altered, rendering RPM monitoring unnecessary.  

Despite this fact, the sponsors of the DragAid-MK project did not want to remove the ability to 

monitor RPM levels from the DragAid-MK boards. 

 

The signal from the tachometer is a series of pulses with amplitude of 12 volts.  The frequency of 

the pulses depends on the revolutions of the motor or the RPMs.  It also depends on the number 

of cylinders of the motor.  Therefore, a motor with two cylinders running at 5000 RPMs will 

generate a different number of pulses than a motor with eight cylinders running at 5000 RPMs.  

It was due to this aspect of calculating RPM that the methods mentioned in previous reports for 

determining how the RPM signal was encoded failed. 

 
Figure 11: RPM Circuit  

Since the signal from the tachometer fluctuates between 0 and 12 volts, it could not be fed 

directly into the processing module of the circuit without damaging an input port.  For this 

reason, the signal from the tachometer is passed through a diode and a voltage divider.  The 

voltage divider is designed to reduce the input signal from the tachometer such that the 

maximum value of the signal is 5 volts.  The diode will reduce the signal by .7 volts and the 

actual voltage divider will reduce the input voltage by about 2/5. 

 

The conditioned tachometer signal is then passed into a digital input port of the processor, which 

is responsible for calculating the frequency of the motor revolutions.  As stated before, the 

number of cylinders in the engine must be known in order for the processor to properly calculate 

the RPM value.  This variable will have to be specified by the user in the PC software created for 

the device.  This variable can be added to the firmware and software of the DragAid-MK system, 

if it is decided that RPM calculations are necessary. 
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5.3 Input Circuit 

The input module of the DragAid-MK is composed of a series of switches as well as the USB 

interface to the circuit.  Two of the switches of the DragAid-MK are momentary contact 

switches.  The third switch is a positive action on/off switch.  The final switch is the input from 

the two-step of the vehicle the DragAid-MK is mounted on.  This is considered a switch since it 

behaves similar to a switch (it is either activated or deactivated). 

 

A diagram showing one momentary contact switch as well as the positive action on/ off switch 

can be seen in Figure 12.  The positive action on/off switch is the master kill switch of the 

circuit.  It is connected to Pin 25 of the microcontroller due to this pins ability to generate 

interrupts.  When this switch is closed, an interrupt will be generated that will proceed to send 

shutoff signals to the vehicle the DragAid-MK is mounted on.   

 
Figure 12: Momentary Contact and Positive Action Switches 

The momentary contact switch connected to Pin 26 of the processor is also capable of generating 

an external interrupt in the microcontroller.  This switch is used to control the two-step bypass 

feature of the device.  When the user does not want the two-step to cause the device to start 

recording data, this button can be pressed.  The two-step will not be monitored until this button is 

pressed again.  

 

Figure 13 shows the second momentary contact switch of the circuit as well as the two-step input 

circuitry.  This switch is connected to Pin 17 of the processor and is used to put the device into 

test mode (the mode where track officials can test the operation of the device).  Although this pin 

is capable of generating an interrupt, it is multiplexed with the other pins of Port B.  In other 

words, 8 interrupt sources (the 8 pins of the port) share one interrupt vector in the processor. 
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Figure 13: Momentary Contact Switch and Two-Step Input 

Pin 16 of the processor is connected to the two-step input from the vehicle. This pin is also on 

Port B, which could cause a problem if both the two-step and test mode button were monitored 

using interrupts.  This was the original plan for the switch input circuitry; however, once 

programming began, it was decided that the two-step input should be polled rather than 

monitored through interrupts.  Therefore, no problems are expected from connecting both 

switches to Port B of the processor.   

 

As described above, the two-step is a form of a momentary switch.  It is held on and then 

released.  The rising edge of the two-step is monitored in order to signal the device to start 

recording data.  As can be seen in Figure 13, an optocoupler is used to isolate the two-step input 

from the input port of the microcontroller.  Since the two-step is basically a switch directly 

across the battery of the vehicle the device is mounted on, the optocoupler was added as a 

precaution against damaging current levels flowing from the vehicle battery into the input port of 

the microcontroller.   In order to prevent damage to the optocoupler, a 12 KΩ resistor was added 

to limit current through the input of the optocoupler.  This resistor reduces current flow through 

the optocoupler to about 1mA, which was within the acceptable input current range of the 

device. 

 

All of the switch signals, except for the two-step input through the optocoupler, are active low, 

which means that internal pull-up resistors of the microcontroller are activated.  When a button is 

pressed or a switch closed, a low signal is received by the corresponding microcontroller pin.  

This action generates an interrupt, which changes the operating mode of the DragAid-MK.  If the 

test button is pressed a check on the sensors and software of the DragAid-MK is performed.  If 

the master kill switch is toggled, shut off signals will be sent to the vehicle.  If the two-step 
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bypass button is pressed, a two-step signal will not activate race mode of the device, and if the 

two-step input changes level, race mode will be entered. 

 

In the previous input circuit of the DragAid-MK, a button was also included for initiating USB 

downloads in the circuit.  Although USB is still used in the new schematic, the download button 

was removed since a UART interrupt is now used for signaling data transfer between the 

DragAid-MK and a PC.  

 
Figure 14: USB Circuit 

As can be seen in Figure 14, the USB circuit of the DragAid-MK was altered from the original 

schematic design of A-term.  The previous USB circuit relied on the built-in USB function of the 

Atmel processor.  When testing began with this feature of the Atmel processor, it was found to 

be difficult to use.  There was a lot of ambiguity regarding the proper way to setup the USB 

interface to the PC and very little documentation.  For this reason, the circuit was modified to the 

version seen in Figure 14. 

 

This circuit uses the CP2102, USB to UART conversion chip manufactured by Silicon 

Laboratories.  This chip connects to the universal asynchronous receive transmit (UART) of the 

microcontroller and transmits USB data to a PC.  A PC board purchased from Spark Fun 

Electronics was originally used to test the operation of the CP2102.  Figure 15 shows this 

breakout board.  The breakout board was used as a model for the USB circuitry seen in Figure 

14.  It could not be used exactly since the CP2102 breakout board is designed to use power from 

the USB bus to power the circuit it is attached to.  This operation is not desired in the DragAid-

MK. 
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Figure 15: CP2102 Breakout Board10 

In general, the USB circuit operates as follows.  Data is passed from Pins 27 and 28 of the 

microcontroller to the CP2102 conversion chip.  Pin 27 of the processor is the UART transmit 

pin and Pin 28 is the UART receive pin.  Pins 29 and 30 of the microcontroller are connected to 

the suspend lines of the CP2102 conversion chip.  These lines are controlled by the conversion 

chip.  They are used to alert the processor when the USB bus enters the suspend state.  This will 

signal that data transfer has ended.   

 

The remaining lines of the conversion chip are the power lines, which require 5 volts for proper 

operation and the USB port connections.  A USB port consists of two data lines, a voltage line, 

and a ground line.  USB data transfer is a complicated procedure of alternating the signals on the 

two data lines.  An explanation of this will not be given, since the USB conversion chip is able to 

handle all the details of communication. 

5.4 Memory Module 

The memory module of the DragAid-MK was constructed using the 25AA512 EEPROM chip 

manufactured by Microchip.  This chip is capable of holding 512 Kbit of data.  It connects to a 

microcontroller using a serial peripheral interface (SPI).  This type of interface is a synchronous 

interface that requires a common clock between the microcontroller and the chip.  The clock 

signal must be provided by the microcontroller.  Figure 16 shows the EEPROM circuit, which 

includes the pins that the 25AA512 must connect to on the microcontroller. 

                                                 
10 http://www.sparkfun.com/commerce/images/products/00198-03-L.jpg 
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Figure 16: EEPROM Circuit  

As can be seen in the figure, the EEPROM circuit contains the standard lines found in an SPI 

interface.  Since the EEPROM is a slave in this circuit, it only has one output signal.  This is Pin 

2, the master in slave out line.  All data sent to the microcontroller will be sent over this pin.  Pin 

5 is the master out slave in line, which will receive all data from the microcontroller.  Pin 1 is the 

chip select line, which will remain high until the microcontroller wishes to initiate a data 

transfer. 

 

The 25AA512 allows for rapid read and write of data.  It has a maximum write time of 5 ms per 

page, which will allow many data bytes to be stored in a very short period of time.   The exact 

read time of the chip is not specified in the EEPROM’s datasheet, which means that it is very 

small compared to the write time.  The read time is not of major concern, since it will only limit 

the data transfer rate to the PC.   

 

The EEPROM also has built in write protection and high reliability (endurance of 1 million 

erase/write cycles).  It operates off of 5 volts and stores data in byte format.  It is capable of 

storing a total of 65,536 bytes of data.  This is equivalent to 7 runs worth of data.  The 

calculation for this last value can be seen in Figure 17. 
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Figure 17: Data Run Calculation 

Despite this ability, it was decided that the DragAid-MK should only be designed to store 3 runs 

of data.  This decision was made due to the chip erase scheme of the 25AA512 EEPROM.   

Although 7 runs of data could technically fit into the EEPROM, it would be difficult to erase or 

manage this data if it was not aligned on pages or sectors of the EEPROM.  It was found that 

data could only be erased from the 25AA512 EEPROM by page, sector, or entire chip.  It was 

also found that most EEPROM manufactures suggest erasing data from a chip prior to a write.  

For these reasons, it was decided that an easy organization of data on the chip would be 

necessary to ensure fast erase.  This led to the conclusion that data for each run should be stored 

within a sector of the 25AA512 EEPROM chip.   

 

Since the first sector of the chip is designated to hold the necessary system data (race number, 

threshold values, threshold date, car number, serial number, version number, and version date), 

which should never be erased, only 3 sectors remained for saving race data.  Each sector contains 

16384 bytes of storage, which is more than enough to store 1 run of data.  When a new run is 

made, the sector designated to store the new run can be easily erased before the run using the 

sector erase command of the EEPROM.  This will allow the new data to be stored with no 

difficulties or errors. 

 

Overall, the 25AA512 EEPROM was an appropriate choice for the memory module of the 

circuit.  It is capable of storing sufficient data within the time constraints of the system. 

5.5 Clock Module 

The clock module of the circuit consists of two oscillators: a 32.768 kHz real time clock 

oscillator and an 8 MHz external oscillator.  The real time circuit oscillator (32.768 kHz crystal) 
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is connected to the TOSC2 and TOSC1 pins of the microcontroller as can be seen in Figure 18 

below.  The 18pF capacitors that can be seen in the figure were added to the circuit after testing 

was conducted on the board.  It was found that the clock was 6 times faster than specified before 

the capacitors were added, which is due to aliasing.  Although data sheets for both the 32.768 

kHz clock and microcontroller were reviewed to ensure that no capacitors would be necessary, it 

appears that an error existed in the documents.  Once the capacitors were added, the oscillator 

operated accurately at 32.768 kHz. 

 

The pins that the oscillator is connected to were chosen purposely, since these pins are able to 

detect changes asynchronously of the microcontroller clock.  This feature allows these pins to be 

used to detect clock pulses.  The microcontroller must then count the oscillations of the crystal.  

All real time clock calculations are performed in firmware. 

 
Figure 18: Real Time Clock Circuit 

The reason a 32.768 kHz clock was used for the real time clock circuit is as follows.  A 32.768 

kHz clock pulses at 32,768 cycles per second.  When this signal enters the microcontroller the 

clock frequency is divided by 128.  This results in the clock signal appearing to be 256 Hz.  

Therefore, after 256 pulses, one second has passed.  The microcontroller must then only count to 

256 in order to observe 1 second passing.  The number 256 also has special significance in an 8-

bit microcontroller.  It represents the maximum value that can be held in a standard 8-bit register.  

Therefore, when counting to 256, the microcontroller must simply wait for a register overflow to 

occur.  At this time, it knows that 1 second has passed.  The processor can then keep track of 

minutes and seconds as needed. 

 

The 8 MHz clock circuit can be seen in Figure 19.  It is connected to the XTAL1 and XTAL2 

pins of the microcontroller, which are specifically designed for an external clock input signal.  

When an oscillator is connected to these pins, it is possible to setup the processor to use the 

external clock source as the master clock for the processor. 
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Figure 19: 8 MHz External Clock 

Capacitors are also included in the clock circuit above.  They are required to ensure that the 

oscillator operates at the intended frequency (8 MHz) rather than a harmonic of this frequency.  

Although it is possible to use the 8 MHz internal clock as the master clock for the processor, the 

accuracy of this clock is in question.  When conducting tests between the first revision PC boards 

(operating from the internal oscillator) and the second revision PC boards (operating from the 

external oscillator), noticeable timing improvements were observed.   

 

The area where noticeable improvement was made was in the UART communication between 

the microcontroller and the PC.  The new external oscillator allowed the UART to operate with a 

more accurate baud rate, which resulted in less error in data transfers.  When using the first 

revision DragAid-MK boards, it can be found that the most significant bit of data is dropped on 

nearly every data transfer.  In the second revision boards with the new clock, this situation has 

not been reproduced even after extensive testing. 

5.6 Processing and JTAG Module 

The processing module is composed of the AT90USB647 microcontroller, which is 

manufactured by Atmel Corporation.  This microcontroller was originally chosen due to its 

sufficient memory, many input/output ports, accurate analog to digital converter, serial 

peripheral interface, and USB capability.  Although it was eventually decided that the Atmel 

processor’s USB documentation was insufficient to create a functioning, bug-free device, the 

processor was not discarded for a new one.  This processor is still relatively new as is USB 

technology.  It is believed that when USB processors become more common, Atmel will have 

improved USB documentation, and it will be possible to use the processor as it is intended. 

 

A pin-out of the AT90USB647 can be seen in Figure 20.  The pins that were used in the 

construction of the DragAid-MK have been marked in the diagram.  As can be seen in the pin-

out, a majority of the pins of the AT90USB647 were used. 
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Figure 20: AT90USB647 Pin Out 

The main features of the microcontroller that were used in the DragAid-MK are as follows.  Pin 

2 is used to completely shut down the circuit by disabling the battery backup system.  This was 

described in more detail in Section 5.1.   Pins 10 through 15 are used to interface with the 

EEPROM or memory module of the device.  Four of the 6 pins are specifically designated in the 

microcontroller for use in SPI data transfers.  The remaining two pins are used to control the 

write protect and hold (other control signals) of the EEPROM.  

 

Pins 16 and 17 are connected to the two-step input circuitry and the test mode momentary 

contact switch, respectively.  They were placed on this port of the microcontroller due to the 

interrupt capability of the port pins.  Since the signals received from the momentary contact 

switch is active low, the internal pull-up resistor feature of the processor will also need to be 

used on this pin. 

 

Pins 18 and 19 of the microcontroller are connected to the 32.768 kHz real time clock, while pins 

23 and 24 are connected to the 8 MHz external oscillator.  Pins 25 and 26 are connected to the 
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remaining two switches of the input module.  Pin 25 is connected to the positive action on/off 

switch allowing it to be used as the input to the processor for the master kill switch, and pin 26 is 

connected to the momentary contact switch that represents the two-step bypass switch.  Both 

pins have individual interrupt capability.  The interrupt of pin 25 has higher priority than all 

other button interrupts; therefore, the master kill switch was assigned to this port pin. 

 

Pins 27-30 are used to connect to the UART to USB conversion chip.  The first two pins (27 and 

28) are the receive and transmit lines of the UART, which are connected directly to the 

conversion chip.  Pins 29 and 30 are general purpose input ports of the processor.  They are 

connected to the suspend lines of the conversion chip.  They are used to determine when data 

transfer is initiated or terminated over the USB bus of the circuit. 

 

Pins 33 through 42 are used as shut off signals to the vehicle.  They will eventually be connected 

to solid state relays that will be capable of actually shutting down the vehicle.  Pin 44 is used for 

the RPM input signal.  Pins 46 through 51 are general output ports that are used to connect to the 

LEDs of the DragAid-MK.  Finally, pins 58 through 61 connect to the various parts of the 

DragAid-MK that require analog to digital conversion.  This includes the accelerometers and the 

battery and ignition of the DragAid-MK. 

 

Four remaining pins that were not mentioned in the description above are pins 54-57.  These are 

designated for the JTAG interface to the DragAid-MK.  They each have a specific purpose as 

specified by the joint test action group (JTAG) standard.  The first pin corresponds to TDI (test 

data in), the second to TDO (test data out), the third to TMS (test mode select), and the final to 

TCK (test clock).  The JTAG interface allows debugging of the circuit.  In reality, it uses a 

boundary scan to review all registers that are not part of the internal core of the processor.  

Breakpoints can be inserted in the embedded code in order to halt the processor when a certain 

boundary condition is found.  In this way, boundary scan has become very popular for in circuit 

debugs of complex embedded systems.  The JTAG is also commonly used for processor 

programming. 
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5.7 Output Module Construction 

The final module that was constructed is the output module of the circuit.  The output module is 

composed of a series of LEDs that are used to inform the user of the mode the DragAid-MK is 

currently in.  The output module also consists of shutoff signals that are connected to the vehicle 

the DragAid-MK is mounted on. 

 

The circuit for the LED user interface can be seen in Figure 21 below.  As can be seen, the LEDs 

are active low, which means the microcontroller must provide a low voltage level in order to turn 

on each of the LEDs.  They run on 15 milliamps; however, this will not be a problem, since at 

most 2 LEDs will be on at one time.  All of the LEDs on the current prototype board are yellow; 

however, the final product will most likely include red LEDs as well. 

 

Figure 21: LED Circuit  

The purpose of the LEDs is as follows.  The first LED will inform the user that the device is in 

pit road mode (a run will not be made).  The second LED will signal that the device is in race 

mode (prepared to make a run).  If the device is in pit road mode, the fifth LED will inform the 

user that the two-step has been bypassed.  If the user is in race mode, it will inform him that the 

master kill switch has been pressed or g-forces have exceeded their threshold levels.  The third 

LED will signal that the device is in download mode.  The fourth LED will inform the user that 

the device is in test mode, and the final LED will be used, along with the other LEDs on the 

board, to test the device while in test mode. 
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The second part of the output module is the shutoff signals to the vehicle.  The design of this 

circuitry was not completed as part of this project; however, it will eventually involve connecting 

general output ports of the processor to solid state relays.  These relays will either be mounted in 

the device or in the race vehicle.  A member of the design team, who works for the project 

sponsor and is familiar with race cars, will be designing this circuit this spring.  Figure 22 shows 

the design for the shutoff signals on the prototype board.  This design is very basic; however, it 

should allow us to test if the device is sending the proper signal to the relays, which is all that is 

necessary in a prototype board. 

 
Figure 22: Shutoff Signal Circuitry 

5.8 Firmware Design 

The functionality of the DragAid-MK, or in other words, how the mechanism works, is 

controlled by the firmware of the device.  The firmware is written in Atmel Assembly, and 

consists of 5 code modules. Each code module will be described separately in the following 

sections.  Assembly was chosen as a programming language for two reasons: timing 

requirements of the DragAid-MK and specifications of the project sponsor.   

 

The firmware of the system is all code that executes within the embedded processor 

(AT90USB647).  When creating this code, the circuitry described in the sections above were 

carefully considered in order to determine the proper way to interact with all systems in the 

project.  The desired functionality of the device was also reviewed.  From the information 

gathered, it was decided that 1 main module and 4 auxiliary modules (a total of 5 as described 

above) should control the operation of the DragAid-MK. 
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Before programming began on each module, firmware flow charts were designed in order to 

create guidelines to promote the completion of each module.  This technique worked well 

especially when problems were identified in programming.  It allowed the project to stay on task 

and, most importantly, maintain the desired functionality of the device even when errors 

occurred.  Each subsection of this report will describe a particular module, and demonstrate the 

functionality of this module based on a flowchart.  All flowcharts have been modified to 

represent the final functionality of the device. 

5.8.1 RollOverDevice (Main Function) 

The first module to be described is the RollOverDevice module.  This is the main module of the 

DragAid-MK and describes the main functionality of the device.  It contains the main loop of the 

DragAid-MK and describes the operation of the device in both pit road mode and race mode.  A 

flowchart for the main module can be seen in Figure 23.  The firmware for RollOverDevice.asm 

(actual code) can be viewed in Appendix G. 
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Figure 23: Main Function Flowchart 
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The main function of the DragAid-MK operates as follows.  The program begins when the 

microprocessor receives 12 volt input from the ignition system of the vehicle.  The first action of 

the processor is to output a low signal to the battery on/off switch (transistor).  This will result in 

the battery circuit being enabled; thereby, allowing it to power the DragAid-MK if the ignition 

system of the vehicle shuts down.  

 

After this is completed, the program performs initialization of the main systems to be used.  This 

includes tasks such as declaring the stack pointer and setting the data direction of the LED port.  

The initialization process must also set the initial values to high for the LED port (all LEDs off).  

It further includes declaring the switch ports to be input ports and enabling the pull-up resistors 

for these ports.  The power reduction register is also setup at this time.  In order to reduce power 

consumption of the processor, all unnecessary systems are shut down through the power 

reduction register.  At this time, the system functions that are disabled throughout the program 

include the two-wire synchronous serial interface, timer/counter 0, the USB controller, and 

timer/counter 3. 

 

During system initialization, the SPI interface to the EEPROM is also setup.  This system is set 

to operate as the master of the interface with a transfer speed of 4 MHz.  All control values of the 

EEPROM are setup properly such that the EEPROM is not activated; however, it is not write 

protected either.  A preliminary data read is then conducted such that system variables can be 

received from the EEPROM.   

 

After this is completed, the ADC is initialized so that each following section of the code must 

only declare a channel in order to make an ADC reading.  The x-axis accelerometer is connected 

to channel 1, the y-axis is connected to channel 2, the z-axis is connected to channel 3, and the 

power input circuitry is connected to channel 4 of the analog to digital converter input port.  The 

ADC initialization involves enabling the ADC and setting it to operate at a clock speed of 125 

kHz (this is a suggested clock rate for the ADC in order to ensure accurate conversions).   

 

After system initialization is completed, the processor will enable the interrupt for the master kill 

switch as well as global interrupts.  It is necessary to enable global interrupts, since this feature 
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allows the interrupt controller of the processor to function.  Otherwise, no interrupts will be 

received.  When enabling the master kill switch interrupt, it is necessary to specify the edge of 

the interrupt signal that will produce an interrupt.  It was decided that the falling edge of the 

interrupt signal (since the switches are active low) should produce both a master kill and a two-

step bypass interrupt.   

 

At this point, the initialization process for pit road mode begins.  The first item initialized in pit 

road mode is the universal asynchronous receive transmit (UART).  This system is setup to 

operate asynchronously (it has the option to operate synchronously as well), with no parity bits, 

1-stop-bit, and 8-bit (1-byte) transfers.  Both transmit and receive systems are enabled in the 

controller with a baud rate set to 9600 bits per second.  Now that testing has been completed this 

rate could be increased without any difficulties.  The receive interrupt of the UART controller is 

also enabled such that the DragAid-MK system is able to detect a PC request to transfer data. 

 

During pit road initialization, the test button and two-step bypass interrupts are also setup.  A 

variable, which monitors the switches that are currently pressed, is cleared before entering the 

actual pit road mode program.  The final initialization step will be to turn on the pit road LED, to 

inform the user that the DragAid-MK is on, but not in race mode.  In order to do this, a low 

signal is sent to the pit road LED pin of the LED port. 

 

After initialization is complete, a series of checks are made.  Before describing the checks, an 

important concept regarding the interrupts should be explained.  Although the UART, test, and 

two-step interrupt handling routines will occur immediately when the proper trigger signals are 

received, the interrupt subroutines will not perform the actual operations that the processor is 

being interrupted to recognize.  As an example, the interrupt subroutine for the test button will 

not perform the entire test sequence of the processor.  Instead the interrupt subroutines will set 

flags that can be checked later to determine if any interrupts have occurred.   The only interrupt 

that contains its entire sequence within the handling routine is the master kill interrupt.  This is 

due to the fact that the master kill switch requires immediate handling upon being pressed.  The 

actual master kill routine will be described in a following section. 
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Almost all checks that occur after system initialization are on the flag register described above, 

which holds the information as to which interrupt has occurred.  The first interrupt checked via 

the flag register is the UART interrupt.  If it is found that a data transfer or download is pending, 

the download subroutine is entered.  Upon return from this subroutine, the pit road initialization 

sequence (beginning after the setup of the master kill interrupt) must be repeated.  The next 

interrupt checked is the test interrupt.  If this was found to be triggered, the system will enter the 

test mode subroutine.  It will perform the same action as the download subroutine upon return. 

 

The next check performed is a voltage check on the ignition system of the vehicle.  It is 

performed using the ADC of the microcontroller.  In order to complete this check, the ADC 

channel must be set to 4 in order to tell the system that it wishes to read the level of the power 

input circuitry.  If the reading from the power input circuitry is above 3.7 volts, it can be 

assumed that the ignition system of the vehicle is on.  A voltage of 3.7 corresponds to an ADC 

value (in hex) of 0x300.  Therefore, if the high-byte of the ADC conversion is greater than or 

equal to 0x03, it is known that the ignition system of the vehicle is operating; otherwise, the 

DragAid-MK will be running from the battery system.  If the ignition system is found to be off, 

the shut down routine of the microcontroller is called, which will cut-off the battery from the 

system.  If the ignition system is running, the check sequence of the main function continues. 

 

The next check is to determine if the two-step of the vehicle has been bypassed.  When the 

bypass interrupt occurs, the bypass LED of the circuit will be turned on.  If the two-step is found 

to be bypassed at this check, the two-step status will be cleared and the series of checks will 

begin again.  If the two-step is not bypassed, the series of checks will continue by checking the 

two-step flag.  If the two-step has not been triggered, the series of checks will begin again; 

otherwise, a connection sequence between pit road mode and race mode will be entered. 

 

The connection sequence between pit road mode and race mode involves setting up a 5 second 

timer.  It was decided that if the two-step is held for 5 seconds or longer, the driver is most likely 

on the starting line preparing to make a run.  Otherwise, the driver may only be testing the two-

step to ensure that it is functioning properly.  If this is occurring, race mode should not be 

entered.  Therefore, if the two-step is held for longer than 5 seconds, race mode initialization 
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should begin.  If it is released before the 5 second time mark, the checks of pit road mode should 

begin again. 

 

The initialization sequence of race mode begins by turning off the UART interrupt, test interrupt, 

and two-step interrupts.  It turns off the pit road LED, and replaces it with the race mode LED, 

which will signal to the user that the system is ready to collect data.  At this point a 15 second 

and .02 second timer is setup, which will be used to time events in race mode.  The first timer 

represents the time limit of race mode and the second represents the amount of time between 

each data save in race mode.  Furthermore, registers, which will hold maximum g-force readings 

in a .02 second interval, will be cleared in preparation for data collection.  A memory read is also 

conducted during race mode initialization, in order to prepare and obtain the memory location 

that data should be written to during a run.  Once all this is complete, the system waits in order to 

determine if the two-step has been released.  If it has, the race has started, and race mode is 

finally entered.   

 

The representation of race mode seen in the flowchart of Figure 23 is much generalized 

compared to the actual operation of the code.  This was done in order to make the flow chart easy 

to read and the general operation of race mode easy to understand.  A more accurate 

representation of this mode will now be given.  It can also be seen in the actual code in Appendix 

G.    

 

The first action completed in race mode is the checking of the x-axis accelerometer.  In order to 

do this, the ADC must be set to read from channel 1, which is the x-axis input.  The value 

received is a 10-bit value; therefore, a double comparison scheme must be conducted in order to 

test both the high-byte and low-byte of the conversion.  This scheme will not be described in 

detail, but if interested can be seen in Appendix G.   

 

Once the conversion value is received, it is compared to determine if it is higher than an upper 

threshold specified for the x-axis.  Since g-force can be positive or negative depending on the 

direction an impact occurred, it is necessary to have both upper and lower thresholds for each 

axis of the DragAid-MK.  The actual g-force values read from the vehicle should be between the 



59 

 

two threshold values for that particular axis.  If the actual g-force reading is outside of the limits, 

a problem has occurred and the vehicle should be shut down. 

 

Therefore, after a conversion result is received for the x-axis, the firmware continues by 

comparing the conversion result to the maximum upper g-force value received from the x-axis 

during this .02 second interval (this value is stored in two registers for comparison purposes).  If 

the new value is greater than the old, the maximum upper g-force register is updated with the 

new value.  If the new value is greater, a check is also completed to determine if the new g-force 

value is greater than the x-axis upper threshold of the device.  If no problems are found a series 

of lower tests are conducted.   If the new value is not greater than the old values, then the 

threshold check is skipped, and the device continues by checking the lower g-force boundaries. 

 

If the g-force value is lower than the minimum lower g-force value received from the x-axis 

during the current .02 second interval, the minimum lower g-force registers are updated.  As 

before, if this is true, a comparison of the new g-force values to the actual device thresholds is 

conducted.  If this check finds a problem (the g-force values are lower than the low thresholds), 

the vehicle is shut down, the g-force values received are stored, and the DragAid-MK system 

shuts down.  Otherwise, race mode continues to operate. 

 

Race mode continues by setting up the ADC for a y-axis conversion and completing the same 

comparisons as above with y-axis maximum and minimum values as well as y-axis upper and 

lower thresholds if necessary.  Once the y-axis is complete, the z-axis is also completed in the 

same manner.  After the z-axis checks are completed, the .02 second timer interrupt flag register 

is checked in order to determine if .02 seconds has passed.  If this time has passed, an EEPROM 

memory write is initialized.  The current values of the maximum upper g-force registers and 

minimum lower g-force registers (12 registers or bytes in total) are written into EEPROM.  

When this is completed, the memory pointer is updated, and the maximum and minimum 

registers are reset to default values. 

 

Finally the system checks to see if 15 seconds has passed.  If this is false, race mode repeats by 

once again checking the accelerometers of the system.  Otherwise, the race is complete in the 
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eyes of the DragAid-MK. The ignition is checked in order to determine if the car is still running.  

If it is not, a system shut down occurs; otherwise, the race mode LED is shut down and all 

interrupts initialized for this mode are turned off.  The system returns to the initialization 

sequence of pit road mode, which occurs after the initialization of the master kill interrupt.  This 

concludes the operation of the main firmware of the DragAid-MK. 

5.8.2 Common.asm 

The next code module written was common.asm.  The code for this module can be viewed in 

Appendix H.  This module contains all auxiliary functions for the DragAid-MK system.  These 

include functions needed to interact with the serial peripheral interface (SPI) and analog to 

digital converter (ADC).  It also includes the functions that were designed to perform special 

tasks for the DragAid-MK, such as system shut down.  Flowcharts were only created for two of 

the functions in this module.  In general, the functions in this module have designs that only 

involve the processor executing a sequence of actions, which would result in simple flowcharts. 

 

The first set of functions created was for the SPI interface between the microcontroller and 

EEPROM.  In communications with the EEPROM, it is necessary to begin by sending a 

command to the EEPROM.  There are several commands that can be sent such as read, write, 

write enable, page erase, sector erase, and chip erase.  Each command is specified by sending a 

certain byte long command to the EEPROM.  Some commands require that an address be sent 

immediately following the command.  These commands include read, write, page erase, and 

sector erase (the EEPROM must know where to read, write, or erase from).   

 

The first function created for the SPI interface was named SPIComSend and was designed to take 

in a command and an address (if necessary).  The function began by loading the command into 

the SPI data register and calling SPIWait, which is another function in this module.  SPIWait 

operates by looping until the transmit data complete flag of the SPI status register is set.  

Therefore, SPIWait does not return until the data transmit is complete.  After this is completed, 

SPIComSend checks the command that was sent in order to determine if it is necessary to send a 

16-bit address as well.  If the one of the commands that requires an address is being sent, two 

more data sends are completed with the address bytes.  Once this is complete, the function 

returns. 
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Another function in this section of the module is the SPIRead function.  In order for the 

microcontroller to receive data from the EEPROM, it must send dummy data to the EEPROM 

after the read command and read address have been sent.  A dummy data send is necessary, since 

in an SPI interface, the slave device is not able to initiate a data transfer.  Therefore, the 

EEPROM may have data to send to the microcontroller, but it is not able to send this data unless 

the microcontroller sends data, thereby, activating the clock that controls the SPI interface. 

 

Therefore, the SPIRead function is designed to begin by sending out $00 to the EEPROM, which 

will give the EEPROM the opportunity to send data back to the microcontroller.  After loading 

the SPI data register with the dummy value, SPIRead calls SPIWait in order to loop until the 

transfer is complete.  Upon return from this function, the data read from the EEPROM will be in 

the SPI data register.  This value is returned to the calling function. 

 

The next function created was the SPIWrite function.  This function simply stores the data to be 

sent to the EEPROM, which is the input to the function, into the SPI data register.  It then calls 

SPIWait.  Upon completion of SPIWait, it returns to the calling function. 

 

The final function created for SPI communication was a function specifically designed to wait 

for a chip or sector erase to complete (SPIStatusWait).  This function should be called after a 

chip or sector erase command is sent to the EEPROM.  It begins by delaying firmware execution 

by 16 ms, which is the approximate time of a sector or chip erase.  It then requests to read the 

EEPROM status register by sending the status read command through the SPI.  If the status data 

shows that the erase is complete, the function exits.  Otherwise, it loops and continues to check 

the status register until the erase is complete. 

 

The next set of functions created was for the ADC of the microcontroller.  The first function 

written was ADCWait, which, as its name implies, is designed to loop until an ADC conversion 

is complete.  This function should only be called after an ADC conversion has been started.  It 

checks the conversion complete flag (ADIF) of the ADC status register (ADCSRA) and exits 

once this flag is set. 
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The second and final function created to work with the ADC was ADCStart.  This function is 

designed to initiate and complete an ADC conversion.  The function begins by starting the ADC 

conversion and clearing the ADC conversion complete flag, which may still be set from previous 

conversions.  It accomplishes this by writing the correct bits of the ADC status register 

(ADCSRA).  After this is completed, ADCWait is called.  Upon completion of this function, it is 

known that the result of the ADC conversion has been written into the ADC high and low data 

registers.  This data is then transferred from these registers into user controlled registers and 

returned to the calling function. 

 

The next set of functions created were the special functions for the DragAid-MK.  The first of 

these functions was the SystemShutDown function.  Upon being called, it is expected that the 

ignition system of the vehicle the device is mounted on is no longer running.  It is designed to 

send a high signal to the transistor acting as the battery cut-off switch.  The high signal should 

shut down the transistor and cut-off power from the DragAid-MK circuit.  The SystemShutDown 

function then loops until the power is removed from the circuit (which should be nearly 

instantaneous).  A flowchart for the SystemShutDown function was created.  As stated above, it is 

very simple and merely summarizes the above paragraph.  It can be seen in Figure 24. 

 
Figure 24: System Shut Down Function Flowchart 

The next function of this set is the VehicleShutDown function, which as its name implies, is 

designed to send off-signals to the vehicle the DragAid-MK is mounted on.  This is equivalent to 

the operation of the master kill switch interrupt.  It should only be called after the race mode 

code decides that the device thresholds have been exceeded.  The function operates by sending 
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high signals to all port pins designated to be used for shutting down the ignition and fuel system 

of the vehicle.  Upon completing this operation, the function returns.  A flowchart for this 

function can be seen in Figure 25. 

 
Figure 25: Vehicle Shut Down Flowchart 

The final function of this section was the StoreValues function.  This function is designed to 

complete a g-force value save to EEPROM.  It will simply store the 12 bytes of data in the 

maximum upper g-force registers and minimum lower g-force registers into the EEPROM.   This 

function was written to be called after g-force values have surpassed the thresholds of the device; 

therefore, it does not need to update the memory pointer or maximum and minimum g-force 

registers, since upon returning to the calling function, the system will be shut down. 

5.8.3 Download.asm 

The firmware written for the download subroutine or data transfer subroutine can be seen in 

Appendix I.  A flowchart for this routine can be seen in Figure 26. 
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Figure 26: Download Subroutine Flowchart 

The download function of the DragAid-MK operates as follows.  It begins by turning off the pit 

road LED and turning on the LED to signal that the device is in download mode.  It then 

performs initialization to prepare the device for operating in download mode.  The main steps 

taken to initialize the device for download mode include turning off the download, test, and two-

step interrupts as well as setting up a 5 minute and 1 millisecond timer.  The 5 minute timer is a 

timeout for download mode (when 5 minutes pass the device will reenter pit road mode).  The 1 
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millisecond timer is necessary as a buffer on data sends.   The final step is to set the ADC of the 

device such that conversions are taken from channel 4.  This is done so that the ignition system 

or power input of the vehicle can be monitored. 

 

As with the code for the main function, once initialization has occurred, a series of checks are 

performed.  The first test conducted is to see if the vehicle ignition is on.  If this is found to be 

false, download mode is exited and system shut down occurs.  If the ignition is still on, the 

system checks to see if data was received from the PC.  If this is true it further checks to see if 

the PC wishes for the microcontroller to send or receive data.  If the microcontroller is to receive 

data, the system calls the function DataRecieve.  If the microcontroller is to send data, the 

function DataSend will be called.  Otherwise, the function checks to see if data transfer is 

complete.  If this is true the system returns from the download subroutine to the calling function.   

 

Upon returning from the DataSend and DataReceive routines, a time out check is completed in 

order to see if 5 minutes has passed.  If this is true, the system returns from the download 

subroutine to the calling function.  Otherwise, the system jumps to the beginning of the loop of 

checks in order to see if a new data transfer has occurred. 

 

The two main functions of the download module are the DataSend and DataReceive functions.  

These functions are responsible for all major data transfer in the DragAid-MK system.  The first 

function (DataSend) has two main operations.  It can either send basic device data back to the 

PC, or it can send race data that was collected.  The information sent to the PC depends on a 

command that is received by the DragAid-MK from the PC.  If the PC only wants to receive 

information about the DragAid-MK, the DataSend routine proceeds by sending the car #, upper 

and lower threshold values, and date the thresholds were last modified.   If the PC wants to 

receive the run data, the DragAid-MK will respond with the car # followed by the run data.  It is 

capable of sending up to 3 runs of data back to the PC.  When the data send is complete a ‘C’ 

will be sent to the PC before the DataSend function exits.  The DataSend function will also clear 

the time out variable before returning to the main download loop. 
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The DataReceive function also has two main operations.  It will either receive initialization data 

for the DragAid-MK, which resets all key variables in the device, or it will receive threshold 

data.  If the PC sends an initialization command, the DragAid-MK responds with ‘OK’ and 

continues by loading default values for car #, threshold values, threshold date, version number, 

version date, and serial number into the EEPROM of the device.  If the PC sends a threshold 

command, the DragAid-MK responds with ‘OK’ and continues by waiting for the thresholds, the 

threshold date, and the car # from the PC.  These are the only values that are updatable by the 

user of the DragAid-MK.  The initialization command is for the manufacturer of the DragAid-

MK.  When these values are received, they are stored into temporary variables before a final data 

save is completed, which will store these values into the EEPROM of the device.  When the data 

save is complete, the DragAid-MK will respond with ‘C’ to let the PC know that everything was 

completed successfully.  As with the DataSend command, the DataReceive function will reset 

the time out variable on exitting. 

 

The final two functions written for the download module were ReceiveWait and TransmitWait.  

These functions were designed to improve the readability of the DataSend and DataReceive 

functions.  The first function (ReceiveWait) is designed to read the UART status register 

(UCSR1A).  It checks the receive-complete flag of this register.  While this flag is not set, the 

function loops inside the ReceiveWait routine.  When this flag is set, the data from the UART 

data register will be loaded into a user register and the function will return with the received data. 

 

The final function of the download module, TransmitWait, takes as input the data to send to the 

PC.  It stores this value in the UART data register, which will initiate the UART data transmit.  

The function then loops continuously checking the UART status register (UCSR1A).  When the 

transmit-complete flag is set, the loop ends.  At this point, the function enters another loop, 

which is designed to delay the system for 1 millisecond.  This delay is necessary between 

transmits; otherwise, the PC will not obtain all data transferred in a consecutive data transfer.  It 

is uncertain whether this error is due to a receive buffer in the PC or in the CP2102 chip; 

however, this small modification to the transmit function fixes the problem.  This problem and 

solution were found through experimental data transfers using the device. 
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As an end note, before the processor returns from download mode, the data transfer LED is 

turned off and the 5 minute and 1 millisecond timers are disabled. 

5.8.4 Interrupts.asm 

The next module constructed was the interrupt module.  This module contains all interrupt 

subroutines used in the DragAid-MK firmware.  The code for this module can be viewed in 

Appendix J.  Flowcharts were not created for the functions written in this module due to their 

simple design.  Good program design requires that interrupt subroutines are as short as possible.  

Therefore, the interrupt routines found in this module have no looping and very little branching.  

They mostly consist of a short sequence of actions that the microcontroller must perform. 

 

The first interrupt subroutine found in this module is the MasterKill routine.  This function 

performs the same operation as the VehicleShutDown function presented in section 5.8.2 of this 

report.  The main difference between this function and the function described earlier is that this 

function is triggered by pressing the master kill switch of the DragAid-MK.  Since it is an 

interrupt handling routine, it must also store all registers used in the routine onto the stack.  

Atmel processors also require the user to store the microcontroller status register onto the stack.  

Otherwise, this register is not preserved during an interrupt subroutine call. 

 

The next interrupt subroutine is TwoStepInt.  This routine is entered when the two-step bypass 

button is pressed.  This function operates by checking the flag of the switch variable 

corresponding to the two-step bypass.  If the two-step bypass flag is set, the function knows that 

the two-step is currently being bypassed in the program.  Since the button has been pressed 

again, the two-step bypass flag should be cleared and the LED representing the two-step bypass 

should be turned off.  If the flag is not set on entering the routine, the flag should be set during 

the routine and the two-step bypass LED should be turned on.  After one of these two operations 

is completed, the TwoStepInt will return to the function that it interrupted. 

 

Another interrupt subroutine in the module interrupts.asm is TestInt.  This function has a simple 

operation.  When the test button of the DragAid-MK board is pressed, the flag in the switch 

variable corresponding to the test switch is set.  After this is completed, the interrupt subroutine 

exits.  The interrupt routine Download, which follows TestInt in the interrupt module performs 
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the same operation as TestInt.  The two differences between the routines are that the Download 

routine occurs on a UART receive interrupt (rather than a test button press) and modifies the 

download flag of the switch variable (rather than the test flag). 

 

The final interrupt subroutine in the interrupt module, which performs an actual function, is 

RTCInt.  This module simply increases the value of a variable named secs.  It is used as a counter 

that can be set to count at different intervals.  The final interrupt handling routine in this module 

is Unused.  If an interrupt not being used by the DragAid-MK firmware is triggered by accident, 

the firmware is setup to call the Unused interrupt.  This interrupt simply consists of a return 

statement that will cause the execution of the program to return to the interrupted function. 

5.8.5 Test.asm 

The final module written to complete the functionality of the DragAid-MK was the test module.  

The code for this module was written in test.asm and can be seen in Appendix K.  The flowchart 

for the test module can be seen in Figure 27. 

 
Figure 27: Test Subroutine 
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As with the main routine and download routine, the test function subroutine begins with its own 

initialization sequence.  The first step is to turn off the pit road LED and turn on the LED for test 

mode.  It proceeds by turning off the download interrupt and resetting the test mode interrupt.  

When the user wishes to exit test mode, the test button should be pressed again, which will signal 

to the test function that it should return to the calling function. 

 

After the initialization sequence for test mode is completed, the main loop of test mode is 

entered.  In this loop, the function begins by using the analog to digital converter to check the 

voltage level of the power input circuitry.  If it is found that the ignition system is off, the system 

shut down function will be called, which will shut down the DragAid-MK device.  If the ignition 

system is still running, test mode will continue by checking the switch variable in order to see if 

the test button has been pressed again.  If it was once again pressed, the test mode LED will be 

turned off and the system will return to the calling function. 

 

If the test mode button has not been pressed, test mode continues by conducting an accelerometer 

check.  This accelerometer test sequence is setup in the same way as the tests conducted in race 

mode.  The only difference is that the x, y, and z thresholds are set to low values (+/- 1 g).  When 

the g-force levels surpass these thresholds, instead of vehicle shut down occurring as in race 

mode, an LED on the DragAid-MK turns on.  If the threshold surpassed is the upper x-threshold, 

the first LED on the device will turn on.  If the lower x-threshold is surpassed, the second LED 

on the device will turn on.  Surpassing the upper y-threshold results in the third LED turning on 

while the fifth LED will turn on when the lower y-threshold is surpassed.  The final LED will 

light when the device is held upside down in order to test the z-axis accelerometer.  The 

accelerometer check loop of test mode will continue until the test mode button is pressed or the 

ignition system of the vehicle is shut down. 

5.9 Software Design 

The DragAid-MK software is the program to be run on the user’s PC in order to view the data 

collected by the actual embedded system.  The software was written in Delphi, which is a 

specialized program for creating windows applications.  The software interface of the DragAid-

MK was not a major feature of this project (it was not a goal set forth for the completion of the 

MQP); however, it was started in order to lay a base for future continuation of this project.   
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The basic operation of the software has been decided; however, more work is required before the 

software is released to the racing market.  The major work conducted in the software design was 

the screen layouts and screen expectations.  These can be seen in the following figures below. 

 
Figure 28: Software Main Screen 

Figure 28 is the main screen of the PC interface software for the DragAid-MK.  As can be seen 

above, when the software is complete, it will have four major functions.  It will allow the user to 

download data from the DragAid-MK, view data that was downloaded in the past, adjust 

threshold values and update the DragAid-MK, and in the far future, it will also use the data 

received by the DragAid-MK to simulate what occurred to the car during the run. 

 

The screen shot in Figure 29, shows the help screen of the DragAid-MK. 
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Figure 29: Software Help Screen 

This screen will explain the different features of the software to the user.  The intent of this page 

is to be easy to use as well as helpful.  Right now it operates as follows.  The user must select 

one of the 6 choices in the upper left corner of the help screen.  When a new choice is selected, 

the help available for that selection is displayed in the main portion of the help screen. 

 

If the “View Run” button of the main screen is selected, the dialog box seen in Figure 30 is 

displayed to the user. 

 
Figure 30: Software Car Select Screen 

It requests the user to enter the car number and run number for the car that the user wishes to 

view.  In this way, it is able to search through available runs and car numbers in order to find the 

run the user is requesting. 

 

The actual view run screen is not complete.  Its current condition can be seen in Figure 31. 
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Figure 31: View Run Screen 

The view run screen will eventually display a graph of the g-force data collected during the 

particular run that the user requested.  It will also display the maximum g-forces for each axes 

recorded during the run.  Furthermore, it will eventually suggest possible g-force thresholds for 

the vehicle based on the run. 

 

The final screen is the threshold update screen.  This can be seen in Figure 32. 

 
Figure 32: Update Screen 
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This screen will eventually be able to send new threshold values to the microcontroller and 

receive the current threshold values from the microcontroller. 

 

Overall, a good start has been made to the software screens shown above.  It is believed that the 

screen layouts will remain the same when additional functionality is added to them and the 

project is continued by the sponsor. 

5.10 PC Board Design 

In this project, two revisions of printed circuit boards (PCBs) were made.  The first revision can 

be seen in Figure 33.  

 
Figure 33: Initial PCB 

As can be seen from the image, many wires and extra components were added to this board as 

various system tests were conducted and modifications were needed.  The board served its main 

purpose, which was to test the main systems of the DragAid-MK board.  Using this board, it was 

possible to test the accelerometers interaction with the analog to digital converter.  Furthermore, 

it was possible to test the LEDs, switches, 32.768 kHz clock, SPI interface, and USART.  

Therefore, this board served the purpose of a development board.  It worked very well in this 

application, and provided the necessary basis for developing the second revision board. 
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Several improvements were identified for the second revision PCB during the testing performed 

with the initial board.  The most important improvement was that the traces for the surface 

mount parts should be made larger.  As noted before, several additional components were 

required on the PCB in order to progress the board into the final stages of the project.  A picture 

of the second revision prototype board can be seen in Figure 34. 

 
Figure 34: Final Project PCB 

In order for the project to be sold on the market some slight changes would be required to this 

board.  I notified the sponsor of these necessary changes before producing this board, and they 

agreed that two more board passes could be made before production.   

 

This PCB revision was designed with stuffing the boards in mind.  For this reason, the 

components with pins underneath (MLP and LFCSP packages) were not included on the board.  

Samples of the two components with these package types (ADXL330 Accelerometer and 

CP2102 USB to UART Bridge) were purchased from SparkFun Electronics on breakout boards.  

These boards were fully functional and required no changes to be used in conjunction with the 

DragAid-MK circuitry.  This was also proven in the initial design revision seen in Figure 33.  
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Therefore, to make the soldering process easier, positions were set aside on the printed circuit 

board in order to mount the breakout boards from SparkFun.  Connection holes were also 

provided on the PC board in order to make the process of connecting the breakout boards to the 

PC board easy and neat.  A layout for the printed circuit board before the boards were produced 

can be seen in Figure 35. 

 
Figure 35: Printed Circuit Board Layout  

Once the PC boards were designed, they were sent to Advanced Circuits in Colorado.  This 

company provides the manufacture of two-sided PC boards for only $33.  Four boards were 

ordered and a 5th board was sent as a bonus for the purchase.  The components for the boards 

were also ordered from DigiKey around the same time.  Upon arrival, two boards were stuffed 

immediately in order to be tested.  This was done due to the possibility of component failure on a 

single board, which occurred when stuffing the first revision PC boards in September. 

 

The most noticeable revision that would be required in a final PCB design is that the breakout 

boards would have to be removed from the PCB.  This would save on cost and space of the PCB.  

The second revision is that capacitors must be added to the 32.768 kHz clock. It was noticed 

during testing that this clock ran faster than expected.  When an oscilloscope was connected to 

the clock in order to test the frequency, the clock ran at the proper rate.  It was quickly deduced 
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that capacitors were needed to cause the oscillator to oscillate at the correct rate and prevent it 

from running at a harmonic.  At this time, tests have been conducted and no other board changes 

appear to be necessary; therefore, this board revision was a success in that it can support the 

main functionality of the DragAid-MK. 
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6 System Testing 

Before the firmware design for the DragAid-MK was created, each key system of the DragAid-

MK board was tested on the initial and final prototype boards.  This was done to ensure that any 

problems detected in the final program were truly due to firmware and not the DragAid-MK 

circuitry.  As of now six preliminary tests and a final system test were conducted on the 

DragAid-MK board.  They are summarized in each of the sections below. 

6.1 LED Circuit Test 

The first test that was conducted was to ensure the operation of the LEDs of the DragAid-MK 

prototype board.  In order to do this a simple light routine was created using the AVR assembler.  

The Assembly code for this program can be seen in Appendix A.  The light program was 

designed to perform a simple loop.  It would turn on one light and then wait a short amount of 

time.  The delay was created by a simple software loop that performed no operations.  After the 

delay, the light currently on was switched off and a new light was turned on.  It was found that 

all the LEDs on the board functioned properly and also functioned as expected (active low). It 

was not necessary to change any aspect of the LED circuitry. 

6.2 Switch Circuit Test 

The next circuit tested was for the switches of the prototype board.  Appendix B shows the 

complete test code used for the switches.  This code is designed to poll for an input from the 

switches and then light up a different LED when each switch is pressed.  Therefore, four LEDs 

and all four of the switches on the initial prototype board are used for this program.  This 

program could not be mapped to the final prototype board due to port changes made between 

board revisions.  However, this test program showed that the circuitry design for the switches 

was correct, and allowed the circuitry on the final board to be designed properly. 

 

When the program was downloaded to the board, it was found to function properly.  As each 

switch was pressed a different LED was lit on the board.  There were no problems identified with 

this program; therefore, further tests were not conducted on the switch circuitry. 
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6.3 EEPROM (SPI) Circuit Test 

The 25AA512 EEPROM chip is connected to the AT90USB647 through the serial peripheral 

interface (SPI) of the microcontroller.  The User’s Guide of the AT90USB647 was consulted in 

order to learn about the operation of the SPI interface.  Through the user’s guides of both the 

AT90USB647 and the 25AA512, it was eventually possible to create the test code seen in 

Appendix C. 

 

The test code operates as follows.  First it allows the user to enter 8 values onto the test board.  

What is meant by entering values is that the board allows the user to enter any combination of 8 

button presses into the board.  When a button is pressed, a corresponding LED is lit on the board 

in order to inform the user that the button was actually pressed.  As each button is pressed, the 

information regarding the buttons pressed is stored in the EEPROM chip.  After 8 buttons are 

pressed, the information is recovered from the EEPROM chip and the LEDs corresponding to the 

buttons that were pressed are lit in the correct order.  It is similar to a primitive Simon game. 

 

The EEPROM (SPI) test code and circuitry worked as intended.  It stored the information 

gathered from the buttons of the DragAid-MK prototype board flawlessly.  Since this program 

was also setup to use the switches of the initial prototype board, it could not be loaded into the 

final prototype board; however, as with the last test program, it verified the proper operation of 

the SPI circuitry.  Therefore, this test program allowed the circuitry on the final prototype board 

to be designed properly. 

6.4 Accelerometer (ADC) Circuit Test 

The accelerometer or analog to digital converter (ADC) circuitry of the prototype board was 

tested using the ADC test code seen in Appendix D.  This code tests two accelerometers: the 

ADXL278 and the ADXL330.  There are two output lines coming from the ADXL278 

representing the x and y-axes of the device.  There is one output line coming from the ADXL330 

corresponding to the z-axis of the device.   

 

The ADC test code seen in Appendix D operates by lighting different LEDs on the board when 

g-force thresholds are passed.   The thresholds are set to �1-g for each of the axes.  Therefore, 
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no matter which side the test board is tilted to, an LED will light.  When the firmware was 

downloaded to the board, it was found to work properly.  The circuitry for each of the 

accelerometers was correctly designed; therefore, no circuit changes were needed in the final 

prototype.  Furthermore, due to the proper design of this test program, the basic code from it was 

used in the race mode function, which can be seen in section 5.8.1, and the test mode function, 

which can be seen in section 5.8.5. 

6.5 Real Time Clock Circuit Test 

The real time clock circuit was tested to ensure that the 32.768 kHz clock was operating 

properly.  The test code created can be seen in Appendix E.  It basically consists of a real time 

clock interrupt that updates the number of seconds that have passed on each interrupt.  The 

number or seconds is then displayed using binary and the LEDs available on the board.  After 60 

seconds pass, the variables reset and the count begins again from 0. 

 

When downloaded to the board, the firmware was found to work properly.  The 32.768 kHz 

clock was then tested for accuracy.  This was done by carefully synchronizing the board clock to 

a stopwatch and determining if both clocks reached 60 seconds at the same time.  The 32.768 

kHz clock was found to be accurate in 60 seconds.  It was due to this initial accuracy test that the 

circuitry from the initial prototype board was reproduced exactly on the final prototype board.  

Unfortunately the crystal was found to operate too quickly on the new boards, which required 

additional capacitors to be added to the board design.   

 

It is uncertain whether the original tests conducted on the initial prototype board were completed 

improperly, or if the crystal was simply a fluke; however, since the problem has been identified 

and solved, this will not be discussed further at this time. 

6.6 USB Circuit Test 

The final test code was designed to achieve USB communication between the DragAid-MK and 

a PC.  After two weeks of testing, successful data transfer was achieved.  Transferring data 

between the DragAid-MK and a PC required a program to be written in both software and 

firmware.  The firmware code can be seen in Appendix F. 
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The software designed to test USB communication had a very simple user interface.  Before it is 

described in detail, information needs to be understood about the USB conversion chip on the 

actual DragAid-MK board.  When a USB peripheral is first attached to a PC, the PC requests 

information about the type of device that was connected.  The USB conversion chip on the 

DragAid-MK is designed to tell the PC that a RS232 device has been attached.  This will allow 

PC applications to communicate with the DragAid-MK board as if they were communicating to a 

COM Port or in other words a normal RS232 Port. 

 

Since the DragAid-MK board appears as an RS232 device to the software application, the 

software must properly setup the virtual COM port the DragAid-MK is attached to in order to 

properly communicate with the device.  For the test, it was decided that a baud rate of 9600 

should be used along with no parity bit, 8-bit data transfer, and 1 stop bit.  Since the virtual COM 

port that the DragAid-MK will appear on is unknown at the beginning of the software (it is not 

known until the DragAid-MK is connected to the computer), it is necessary to have a COM port 

selection field in the test software.  A screen shot of the test software can be seen in Figure 36. 

 
Figure 36: USB Test Software 

The actual USB test software operates quite simply.  When one of the light buttons is pressed, 

the software will send the hex code corresponding to the light number to the DragAid-MK board.  

Windows API functions, which are designed specifically for communicating with computer 

hardware, are used to send data to the virtual COM Port.  Therefore, sending hex codes to the 
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DragAid-MK board is made simple by calling one Windows API function.  The “Sequence” 

button will result in several LEDs being turned on and off on the DragAid-MK board.  The 

“Light Clear” button will result in all the lights turning off. 

 

Since USB is the underlying communication protocol of the system (despite the RS232 

interface), the DragAid-MK board can never send data to the PC without the PC’s permission.  

This is part of the USB communication protocol, which states that the master (the PC) always 

has control of the data bus.  Therefore, in order to test the DragAid-MK’s ability to send data to 

the PC, it was necessary for the PC to first request data.  This was done with the “Get Button” 

button.  The processor will return a value representing one of the buttons on the DragAid-MK 

board.  This value will be displayed as text in the edit box underneath the “Get Button” button. 

 

The USB test firmware was designed to specifically interface with the test software.  After 

setting up the UART receive interrupt, which is used to receive data from the USB conversion 

chip, the processor enters a wait loop.  The receive interrupt is designed to take in the 8-bit data 

received over the USB bus from the PC.  If the data is a hex code between 1 and 6, a light on the 

DragAid-MK board will be lit.  If the hex code received is $46, the lights on the device will be 

cleared.  If the hex code is $47, it is known that the software wishes for the DragAid-MK to send 

data.  The board then waits for a button to be pressed and sends information on the button press 

to the USB conversion chip. 

 

The USB transfer was found to be very reliable in the tests conducted following the creation of 

the test software and firmware.  At first an intermittent problem was found with transfer from the 

PC to the DragAid-MK board.  Every so often, the most significant bit (MSB) of the data 

transfer would be misread.  It was soon found that the baud rate generated by the Atmel 

processor was inaccurate to 7%.  The system clock of the Atmel processor was raised causing the 

baud rate accuracy to improve such that there was only 0.2% error.  When the test program was 

once again run, the program received the correct data on every transfer. 
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Due to the design of this test program, it could be loaded into the final prototype board in order 

to test the UART communication.  It ran properly on the new boards, and confirmed the 

operation of the USB data transfer circuitry. 

6.7 Final Firmware Test 

Upon completion of the firmware for the DragAid-MK, it was downloaded into the final 

prototype board and tests to ensure its proper operation were conducted.  The first test completed 

was to ensure that the device entered race mode.  In order to conduct this test, it was necessary to 

use a second 12 volt power supply, which would simulate the input from the two-step.  The 

firmware was designed such that the two-step must be activated (high) for at least 5 seconds 

before the device would enter race mode.  Therefore, the 12 volt power supply was connected to 

the two-step input and a 5 second count was begun using a stopwatch.  It was found that the race 

mode LED lit at approximately 5 seconds after the two-step was activated.  Therefore, the two-

step trigger of race mode worked properly. 

 

The second test conducted was to ensure that race mode lasted the proper amount of time (15 

seconds from the release of the two-step).  In order to do this, the system and stop-watch were 

reset.  Once everything was ready, the two-step was activated again using the 12 volt power 

supply.  After 5 seconds passed, the two-step was deactivated to signal a race start and the stop 

watch was started.  At approximately 15 seconds according to the stop watch, the race mode 

LED shut off, signaling the end of race mode; therefore, it was found that the system worked as 

intended. 

 

The next portion of the system that was tested was the two-step bypass feature of pit road mode.  

In order to do this, the two-step bypass button was pressed.  It was immediately noticed that the 

two-step bypass LED was lit as expected.  The 12 volt power supply was then applied to the two-

step input to symbolize activating the two-step.  It was found that the race mode LED did not 

come on even after 5 seconds passed with the two-step activated.  This showed that the system 

was properly bypassing two-step input. 

 

The next test conducted was on test mode.  To begin this test, the test mode button of the 

DragAid-MK board was pressed.  As expected the test mode LED came on.  The board was 
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tilted to the front and back first.  When tilted forward, the first LED of the board lit (exceeded 

upper x-threshold), and when titled backward, the second LED lit.  When tilted to the left, the 

third LED of the board lit, and when tilted to the right the fifth lit.  Finally the board was held 

upside down, and it was found that the 6th LED lit.  Therefore, test mode was found to work as 

expected. 

 

The test of the master kill switch required a digital multimeter to be used.  Before the test was 

conducted, the voltage levels of all ports designated to send off signals were tested.  It was found 

that all these signals had low outputs, as expected.  The master kill switch was then pressed, and 

the values were once again recorded through the digital multimeter.  It was found that each 

output pin designated to shut down the vehicle had a voltage level of 4.96 volts.  This is as 

expected, a high voltage signal.  Therefore, the master kill switch of the device works as 

intended. 

 

The next feature of the device was slightly harder to test.  This is the system shut down feature, 

or in other words, the ability of the DragAid-MK to shut itself down after the ignition system of 

the vehicle has been removed.  It was decided that the best way to do this would be to connect a 

battery to the DragAid-MK system along with a 12 volt power source representing the ignition 

system.  The device should then be entered into race mode using another 12 volt power source to 

represent the two-step.  After race mode has begun, the 12 volt ignition should be removed.  The 

system is designed such that race mode will be completed before the device will shut down.  

Therefore, even with the 12 volt power source representing the ignition removed, the DragAid-

MK system should continue to run.  This test resulted in proof of the correct operation of the 

system shut down feature of the DragAid-MK. 

 

The only areas that remained to be tested at this point were the data saving ability of the 

DragAid-MK, and the USB transfer or download module.  It was decided that these two features 

of the DragAid-MK would be easiest to test together.  A simple test program was created that 

would send commands to the DragAid-MK and determine if the DragAid-MK produced the 

proper response.  The layout for this test program can be seen in Figure 37. 
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Figure 37: Initialize Test Program 

This test program was designed such that different responses from the DragAid-MK could be 

viewed.  As of right now, it tests the initialize portion of the DataReceive command in the 

download module of the DragAid-MK as well as the threshold send portion of the DataSend 

command.  When the program is started, the COM port that the DragAid-MK is connected to 

must be selected in order for the system to run properly.  As can be seen in Figure 37, when this 

is set in the program, a label appears that confirms the port number the device is connected to. 

 

The first button that was pressed is the “Send” button.  This button will send the initialize 

command to the DragAid-MK causing it to write initial threshold values to its variables and 

EEPROM.  When the DragAid-MK receives the command it sends “OK” back to the PC.  The 

initialization program created shows that the PC received these characters from the DragAid.  

After all values are written to the EEPROM of the DragAid-MK a ‘C’ is sent to the PC.  This 

value is also displayed upon being received as can be seen by the third label on the screen of the 

initialization program.   
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Once the system initialization operation appeared to be working properly, the DragAid-MK was 

shut down and then turned back on.  This was done to erase all the RAM values of the system.  

On system startup, all data held in RAM during the standard operation of the DragAid-MK is 

read from the EEPROM of the DragAid-MK (which is nonvolatile).  Therefore, through cycling 

power, an attempt was made to ensure that the SPI interface of the DragAid-MK was working 

properly.  The device was reconnected to the PC through a USB cable, and the “Receive” button 

of the initialization program was pressed.  As expected, all values written to the DragAid-MK 

during initialization were received by the initialization software. 

 

The values received by the software may seem to be rather large and, therefore, incorrect upon 

first looking at the initialization software figure (Figure 37).  This is due to the fact that the 

DragAid-MK only deals with values that are understandable by the analog to digital converter of 

the processor.  The analog to digital converter cannot deal in decimal points or negatives and 

only understand values from 0 to 1023.  Therefore, all voltage values produced by the 

accelerometers (which themselves represent g-force values) are mapped to a value in the range 

above in order to be understood by the ADC.  In a final program, these values would have to be 

converted back to g-force values in order to allow the user to easily work with them.   

 

Of course, all these systems did not work properly on the first try; however, they operated close 

enough to the desired function that only minor adjustments were necessary.  Some areas where 

initial error was found included preventing switch bounce.  Eventually extra precaution was 

taking by disabling the interrupts connected to the switches for a certain period after the switches 

were pressed.  This effectively eliminated switch bounce.  Another minor mistake was a reversal 

of the two-step input polarity.  This error was quickly and easily fixed.   

 

The most difficult problem to identify was a data transfer error with the USB interface.  It was 

found that the PC software would only receive the first two bytes transferred to it from the 

DragAid-MK firmware.  When the code in the DragAid-MK was stepped through, it was found 

that the PC received all data sent by the DragAid-MK.  If the code in the DragAid-MK was 

partially stepped through, the PC would receive all bytes that were stepped through and two 

bytes following this point.  It was eventually determined that the DragAid-MK, when 
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transferring data consecutively to the PC, transferred the data too quickly for the PC to handle.  

A 1 millisecond delay was added after each transmit in the DragAid-MK firmware, and it was 

found that all data was transferred perfectly to the PC. 

 

Overall, the firmware of the system withstood initial testing.  The functionality of the device was 

successfully confirmed, and it was decided that no major changes would be necessary to the 

logic of the operation of the device.  The tests also confirmed that the hardware of the DragAid-

MK was once again designed properly.  Only minor adjustments, all described in the sections 

above, will be needed in the final prototype board that will be designed by the project sponsor. 
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7 Future 

This project has extraordinary potential for future improvement, which is also the intention of the 

project sponsor.  The area where the most focus will be applied is in software development for 

the DragAid-MK.  The project sponsor has recognized that the firmware for the device is 

completed and functional and will most likely only require minor adjustments as the project 

design comes to a close.  They, therefore, wish to dedicate their resources to an area where 

considerable improvement can still be made.  They approve of the software layouts that were 

created for the program during this project and plan on expanding upon these layouts in the 

future. 

 

As stated in section 5.10 of the report, another revision of the printed circuit board will be 

required before the product can be sold.  Furthermore, the design of the solid-state relay vehicle 

shut-offs will have to be completed.  This was not part of the project conducted for this MQP due 

to the complexity of these devices.  A project engineer that works for the project sponsor has 

considerable experience with solid state relays as well as race cars.  He is in charge of the design 

of the solid state relay system shutoffs.  All data that he needs to interface them with the 

DragAid-MK should be available in this report. 

 

A design for the case of the DragAid-MK must also be completed in the near future.  Mechanical 

engineers who will be continuing the project have already come up with several ideas that will 

protect the delicate circuitry of the device from all crash situations.  The case will also be 

required to prevent electrical and magnetic noise in the race car from interfering with the sensors 

of the crash detector.  A final requirement of the case is that it is rigid enough to detect impacts 

on the vehicle, as well as designed to be easy to mount in the race vehicle. 

 

Due to the timeline of this project, it was not possible to test the DragAid-MK on an actual race 

car.  Racing season does not begin until late April, and most racers with cars that reach 

reasonable speeds do not begin racing until early to mid-May for safety reasons.  Therefore, 

considerable testing on actual race vehicles was not conducted during this project.  Test data 

would be extremely beneficial to this project.  The more test data received, the more the 
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DragAid-MK can be improved.  The device will not be able to be released to racers until 

sufficient test data has been received and studies on this data have been conducted. 

 

A final improvement to the DragAid-MK that should be considered in the future of the project is 

the use of multiple systems.  Since the DragAid-MK is a safety device, it is extremely important 

that it does not receive false accelerometer readings that result in a system shut down or a failure 

of the system to shut down.  For this reason, multiple systems would be extremely beneficial.  

The complete system would have 3 sets of accelerometers working in parallel.  The processor 

would be required to read data from each set of accelerometers and compare the results among 

all three sets.   

 

The general idea is to create a system of checks and balances.  A system shut down would only 

occur when 2 out of the 3 sets of accelerometers show that g-force thresholds have been 

exceeded.  This will reduce the chances of receiving an erratic reading that causes problems in 

the operation of the system.   

 

Overall, it seems like all improvements mentioned for the DragAid-MK are possible.  Hopefully 

with continued work they will become part of the device in the near future. 
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8 Conclusion 

In the end, this project resulted in the construction of the DragAid-MK, crash detection device 

for race cars.  The device is able to meet many requirements specified for the entire product as 

well as all requirements specified for the MQP.  The DragAid-MK was designed due to the 

increasing number of fatalities in drag racing that result from the ignition system and fuel system 

of race vehicles continuing to run even after a crash has occurred.  This often causes fire or 

explosion in the race vehicle, which endangers the life of both the racer and safety crew. 

 

The DragAid-MK, designed in this project, is a data analyzer and master kill switch for race cars.  

It is designed to collect and record g-force data that a drag race vehicle experiences during a run.  

G-force data is collected through two accelerometers operating in parallel in the DragAid-MK 

system.  The first accelerometer, an ADXL278, is able to record x-axis and y-axis g-forces up to 

50g.  The second accelerometer, an ADXL330, is able to record z-axis g-force data up to 3g.  

The device saves g-force data to a serial EEPROM every .02 seconds of a race.  After a race has 

been triggered in the DragAid-MK system, the device will record 15 seconds of g-force data. 

 

A unique feature of the DragAid-MK, which makes it adaptable to different types of race 

vehicles, is the adjustable vehicle shut off thresholds. The DragAid-MK is designed such that it 

shuts down the ignition system and fuel system of a vehicle when g-force levels on the vehicle 

surpass certain thresholds.  Different race vehicles experience different g-force levels depending 

on the setup of the car; therefore, the DragAid-MK system allows thresholds to be adjusted by 

the user of the vehicle.  This will allow a racer to adapt the DragAid-MK to his car, making the 

device safer and more reliable overall. 

 

In order to allow a racer to make reasonable adjustments to the thresholds of the DragAid-MK, it 

is necessary for the driver to know all g-force levels recorded by the DragAid-MK during a run.  

For this reason, the DragAid-MK is also a data acquisition system.  At the end of a race, a racer 

can extract g-force data from the DragAid-MK using a standard Type-A to Type-B USB cable, 

which will connect the DragAid-MK to a PC.  In the future, this data will be displayed to the 

racer through a series of graphs. 
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Although this project comes to a close, the plans for future development of the DragAid-MK are 

clear.  Focus must first be set on the software interface for the DragAid-MK, the solid-state relay 

shut-offs, and the case of the device.  Once these aspects have been completed, extensive testing 

can be done using actual race vehicles.  Multiple systems should also be considered, although 

this is not necessary for the completion or initial tests of the DragAid-MK. 

 

Overall, this project resulted in a crash detection device for race cars that has the potential of 

saving many lives in the sport of drag racing.  With extended work on the project, the DragAid-

MK system could be applied to other divisions of motorsports and passenger vehicles as well.  

Working on the DragAid-MK during this project has been extremely rewarding.  I have learned 

many new concepts, which will aid me in my professional career.  Most importantly, I feel that I 

have been part of a crucial development in safety systems for sportsmen drag racers, which until 

now was an area that was extremely underdeveloped.   
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Appendix A: LED Test Code 

.include "usb647def.inc" 

.cseg 

.org 0 
 jmp SetupLEDTest 
.org $04C 
SetupLEDTest: 
 ldi r16, $10 ; Initialize the Stack Pointer to the  end of 
 out SPH, r16 ; the internal SRAM 0x10FF 
 ldi r16, $FF 
 out SPL, r16 
 in r16, DDRA  ; Set PORTA as output 
 ori r16, $3F 
 out DDRA, r16 
 in r16, PORTA  ; Turn all the lights off to start 
 ori r16, $3F 
 out PORTA, r16 
StartLEDTest: 
 cbi PORTA, 0  ; Turn LED 0 on 
 call SWDelay  ; Delay 
 sbi PORTA, 0  ; Turn LED 0 off 
 cbi PORTA, 1  ; Turn LED 1 on 
 call SWDelay  ; Delay 
 sbi PORTA, 1  ; Turn LED 1 off 
 cbi PORTA, 2  ; Turn LED 2 on 
 call SWDelay  ; Delay 
 sbi PORTA, 2  ; Turn LED 2 off 
 cbi PORTA, 3  ; Turn LED 3 on 
 call SWDelay  ; Delay 
 sbi PORTA, 3  ; Turn LED 3 off 
 cbi PORTA, 4  ; Turn LED 4 on 
 call SWDelay  ; Delay 
 sbi PORTA, 4  ; Turn LED 4 off 
 cbi PORTA, 5  ; Turn LED 5 on 
 call SWDelay  ; Delay 
 sbi PORTA, 5  ; Turn LED 5 off 
 jmp StartLEDTest ; Loop again 
SWDelay: 
 clr r17 
SWDloop: 
 clr r16 
 inc r17 
SWDloop1: 
 inc r16 
 cpi r16, $FF 
 brne SWDloop1 
 cpi r17, $FF 
 brne SWDloop 
 ret 
.exit 
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Appendix B: Switch Test Code 

.include "usb647def.inc" 

.org $0 
 jmp SetupSwitchTest 
.org $4C 
SetupSwitchTest: 
 ldi r16, $10 ; Initialize the Stack Pointer to the  end of 
 out SPH, r16 ; the internal SRAM 0x10FF 
 ldi r16, $FF 
 out SPL, r16 
 in r16, DDRA  ; Setup PORTA pins 0-3 as output 
 ori r16, $0F 
 out DDRA, r16 
 in r16, PORTA  ; Turn off the 4 LEDs 
 ori r16, $0F 
 out PORTA, r16 
 in r16, DDRD  ; Setup PORTD pins 0-3 as input 
 andi r16, $F0 
 out DDRD, r16 
 in r16, PORTD  ; Turn on the pull-up resistors for  
 ori r16, $0F  ; PORTD pins 0-3 
 out PORTD, r16 
StartSwitchTest: 
 in r16, pind 
 ori r16, $F0 
 cpi r16, $FF 
 breq StartSwitchTest 
 cpi r16, Button0 
 brne StartSwitchTest1 
 ldi r16, $0F 
 out PORTA, r16 
 cbi PORTA, 0 
StartSwitchTest1: 
 cpi r16, Button1 
 brne StartSwitchTest2 
 ldi r16, $0F 
 out PORTA, r16 
 cbi PORTA, 1 
StartSwitchTest2: 
 cpi r16, Button2 
 brne StartSwitchTest3 
 ldi r16, $0F 
 out PORTA, r16 
 cbi PORTA, 2 
StartSwitchTest3: 
 cpi r16, Button3 
 brne StartSwitchTest 
 ldi r16, $0F 
 out PORTA, r16 
 cbi PORTA, 3 
 jmp StartSwitchTest 
.equ Button0 = $FE 
.equ Button1 = $FD 
.equ Button2 = $FB 
.equ Button3 = $F7 
.exit 
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Appendix C: EEPROM (SPI) Test Code 

.include "usb647def.inc" 

.org $0 
 jmp SetupSPITest 
.org $4C 
SetupSPITest: 
; Setup Stack Pointer 
 ldi r16, $10 ; Initialize the Stack Pointer to the  end of 
 out SPH, r16 ; the internal SRAM 0x10FF 
 ldi r16, $FF 
 out SPL, r16 
; Setup LEDs 
 in r16, DDRA ; Make Port A an output port 
 ori r16, $0F 
 out DDRA, r16 
 in r16, PORTA ; Output high to all of Port A 
 ori r16, $0F 
 out PORTA, r16 
; Setup Switches 
 in r16, DDRD ; Make Port D an input port 
 andi r16, $F0 
 out DDRD, r16 
 in r16, PORTD ; Activate the pull-up resistors 
 ori r16, $0F 
 out PORTD, r16 
; Setup SPI & Memory Pointer 
 in r16, DDRB ; Make Port B Pins 5-4,0-2 output and  3 input 
 andi r16, $F7 
 ori r16, $37 
 out DDRB, r16  
 sbi PORTB, 0 
 sbi PORTB, 4 
 sbi PORTB, 5 
 ldi r16, (1<<SPE)|(1<<MSTR) 
 out SPCR, r16 ; Setup the SPI 
StartSPITest: 
 in r16, PORTA 
 ori r16, $0F 
 out PORTA, r16 
 clr r17 
 sts MemPtL, r17 
 sts MemPtH, r17 
SPITest1: 
 in r16, PIND ; Put the button pressed into r16 
 ori r16, $F0 
 cpi r16, $FF 
 breq SPITest1 
 cpi r16, $FE 
 breq SPITest2 
 cpi r16, $FD 
 breq SPITest2 
 cpi r16, $FB 
 breq SPITest2 
 cpi r16, $F7 
 brne SPITest1 
SPITest2: 
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 inc r17 
 sts Data, r16 ; Store the button in Data   
 call StoreData ; Save it in EEPROM 
 andi r16, $0F ; Turn on the corresponding LED 
 out PORTA, r16 
SPITest3: 
 in r16, PIND 
 ori r16, $F0 
 cpi r16, $FF 
 brne SPITest3 ; Wait until the button is no longer  pressed 
 call SWDelay 
 ldi r16, $0F ; Turn Off all LEDs 
 out PORTA, r16 
 cpi r17, $08 ; See if 4 choices made 
 brne SPITest1 ; If not continue 
 clr r17 
 sts MemPtL, r17 ; Clear the memory 
SPITest4: 
 call ReadData ; Read the Data at the First Memory Position 
 lds r16, Data ; Load r16 with the Data 
 andi r16, $0F 
 out PORTA, r16 ; Turn on the corresponding LED 
 call SWDelay ; Slight Delay 
 inc r17 
 cpi r17, $08 
 brne SPITest4 
 jmp StartSPITest 
ReadData: 
 cbi PORTB, 0 ; Set CS low 
 ldi r16, $03 
 out SPDR, r16 ; Send READ instruction 
 call TransmissionComplete 
 lds r16, MemPtH 
 out SPDR, r16 ; Send High Byte of Memory Pointer 
 call TransmissionComplete 
 lds r16, MemPtL  
 out SPDR, r16 ; Send Low Byte of Memory Pointer 
 call TransmissionComplete 
 clr r16 
 out SPDR, r16 ; Send Nothing to Receive the Data 
 call TransmissionComplete 
 sts Data, r16 ; Store the Data into r16 
 sbi PORTB, 0 ; Set CS high 
 lds r16, MemPtL 
 inc r16 
 sts MemPtL, r16 
 ret 
StoreData: 
 push r16 
 cbi PORTB, 0 ; Set CS low 
 ldi r16, $06 
 out SPDR, r16 ; Send WREN instruction 
 call TransmissionComplete 
 sbi PORTB, 0 ; Set CS high 
 nop         
 nop 
 nop 
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 nop 
 nop    ; Slight Delay to give EEPROM time 
 cbi PORTB, 0 ; Set CS low 
 ldi r16, $02 
 out SPDR, r16 ; Send WRITE instruction 
 call TransmissionComplete 
 lds r16, MemPtH 
 out SPDR, r16 ; Send High Byte of Memory Pointer 
 call TransmissionComplete 
 lds r16, MemPtL 
 out SPDR, r16 ; Send Low Byte of Memory Pointer 
 call TransmissionComplete 
 lds r16, Data 
 out SPDR, r16 ; Send Data Byte to Memory 
 call TransmissionComplete 
 sbi PORTB, 0 ; Set CS high 
 lds r16, MemPtL 
 inc r16 
 sts MemPtL, r16 
 pop r16 
 ret 
TransmissionComplete: 
 in r16, SPSR ; Load r16 with the Status Register 
 andi r16, $80  
 cpi r16, $00 ; See if transmission is complete 
 breq TransmissionComplete 
 in r16, SPDR ; Load data into r16 
 ret 
SWDelay: 
 clr r18 
SWDelay1: 
 clr r16 
SWDelay2: 
 inc r16 
 cpi r16, $FF 
 brne SWDelay2 
 inc r18 
 cpi r18, $FF 
 brne SWDelay1 
 ret 
.equ MemPtH = $100 
.equ MemPtL = $101 
.equ Data = $102 
.exit 
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Appendix D: Accelerometer (ADC) Test Code 

.include "usb647def.inc" 

.org $0 
 jmp SetupADCTest 
.org $4C 
SetupADCTest: 
 ldi r16, $10 ; Initialize the Stack Pointer to the  end of 
 out SPH, r16 ; the internal SRAM 0x10FF 
 ldi r16, $FF 
 out SPL, r16 
 in r16, DDRA ; Set Port A as an output port 
 ori r16, $3F 
 out DDRA, r16 
 in r16, PORTA ; Output high to keep all the LEDs o ff 
 ori r16, $3F 
 out PORTA, r16 
 clr r16 
 sts ADCSRB, r16 
 ldi r16, (1<<ADC0D)|(1<<ADC1D)|(1<<ADC2D) 
 sts DIDR0, r16 
StartADCTest: 
; X Axis 
 clr r16 
 sts ADMUX, r16 ; Select X- axis of accelerometer 
 ldi r16, (1<<ADEN)|(1<<ADSC) 
 sts ADCSRA, r16 ; Start the conversion 
ADCTest1: 
 lds r16, ADCSRA  
 andi r16, $10 
 cpi r16, $00 
 breq ADCTest1 ; Wait here until the conversion is complete 
 lds r16, ADCL 
 lds r17, ADCH ; Take the results 
 sts XAxisH, r17 ; Store the results 
 sts XAxisL, r16 
 lds r16, ADCSRA ; Clear the ADC flag 
 ori r16, $10  
 sts ADCSRA, r16  
; Y Axis 
 ldi r16, (1<<MUX0) 
 sts ADMUX, r16 ; Select Y-axis of accelerometer 
 ldi r16, (1<<ADEN)|(1<<ADSC) 
 sts ADCSRA, r16 ; Start the conversion 
ADCTest2: 
 lds r16, ADCSRA 
 andi r16, $10 
 cpi r16, $00 
 breq ADCTest2 ; Wait here until the conversion is complete 
 lds r16, ADCL 
 lds r17, ADCH ; Take the results 
 sts YAxisH, r17 ; Store the results 
 sts YAxisL, r16 
 lds r16, ADCSRA ; Clear the ADC flag 
 ori r16, $10 
 sts ADCSRA, r16  
; Z Axis 



98 

 

 ldi r16, (1<<MUX1) 
 sts ADMUX, r16 ; Select Z-axis of accelerometer 
 ldi r16, (1<<ADEN)|(1<<ADSC) 
 sts ADCSRA, r16 ; Start the conversion 
ADCTest3: 
 lds r16, ADCSRA  
 andi r16, $10 
 cpi r16, $00 
 breq ADCTest3 ; Wait here until the conversion is complete 
 lds r16, ADCL 
 lds r17, ADCH ; Take the results 
 sts ZAxisH, r17 ; Store the results 
 sts ZAxisL, r16 
 lds r16, ADCSRA ; Clear the ADC flag 
 ori r16, $10 
 sts ADCSRA, r16  
; Tests 
 lds r16, XAxisL ; Load r16 and r17 with the ADC co nversion results 
 lds r17, XAxisH 
 ldi r18, $0D ; Load r18 and r19 with upper thresho ld 
 ldi r19, $02 
 cp  r17, r19  
 brlo ADCTest5 ; If r17 is larger than r19 then Lig ht On 
 brne ADCTest4 ; If r17 is not equal to r19 then be low Threshold 
 cp r16, r18  
 brlo ADCTest5 ; If r16 is larger than r18 then Lig ht On 
ADCTest4: 
 in r16, PORTA ; All lights off 
 ori r16, $3F 
 out PORTA, r16 
 cbi PORTA, 0 ; Light on 
 jmp StartADCTest; Go back to start 
ADCTest5: 
 ldi r18, $F8 ; Load r18 and r19 with the lower thr eshold 
 ldi r19, $01 
 cp r19, r17  
 brlo ADCTest7 ; If r19 is lower than r17 then abov e threshold 
 brne ADCTest6 ; If r19 is not equal to r17 then be low threshold 
 cp  r16, r18 ; If r16 is the same or higher then a bove threshold 
 brsh ADCTest7 
ADCTest6: 
 in r16, PORTA ; All lights off 
 ori r16, $3F 
 out PORTA, r16 
 cbi PORTA, 1 ; Light on 
 jmp StartADCTest; Go back to start 
ADCTest7: 
 lds r16, YAxisL ; Load r16 and r17 with the ADC co nversion results 
 lds r17, YAxisH 
 ldi r18, $07 ; Load r18 and r19 with upper thresho ld 
 ldi r19, $02 
 cp r17, r19 
 brlo ADCTest9 ; If r17 is lower than r19 then belo w threshold 
 brne ADCTest8 ; If r17 is not equal to r19 then ab ove threshold 
 cp r16, r18 
 brlo ADCTest9 ; If r16 is lower than r18 then belo w threshold 
ADCTest8: 
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 in r16, PORTA ; All lights off 
 ori r16, $3F 
 out PORTA, r16 
 cbi PORTA, 2 ; Light on 
 jmp StartADCTest; Go back to start 
ADCTest9: 
 ldi r18, $F8 ; Load r18 and r19 with the lower thr eshold 
 ldi r19, $01 
 cp r19, r17 
 brlo ADCTest11 ; If r19 is lower than r17 then abo ve threshold 
 brne ADCTest10 ; If r19 is not equal to r17 then b elow threshold 
 cp r16, r18  ; If r16 is the same or higher then a bove threshold 
 brsh ADCTest11 
ADCTest10: 
 in r16, PORTA ; All lights off 
 ori r16, $3F 
 out PORTA, r16 
 cbi PORTA, 3 ; Light on 
 jmp StartADCTest; Go back to start 
ADCTest11: 
 lds r16, ZAxisL ; Load r16 and r17 with the ADC co nversion results 
 lds r17, ZAxisH 
 ldi r18, $70 ; Load r18 and r19 with upper thresho ld 
 ldi r19, $01 
 cp r17, r19 
 brlo ADCTest13 ; If r17 is lower than r19 then bel ow threshold 
 brne ADCTest12 ; If r17 is not equal to r19 then a bove threshold 
 cp r16, r18  ; If r16 is lower than r18 then below  threshold 
 brlo ADCTest13 
ADCTest12: 
 in r16, PORTA ; All lights off 
 ori r16, $3F 
 out PORTA, r16 
 cbi PORTA, 4 ; Light on 
 jmp StartADCTest; Go back to start 
ADCTest13: 
 ldi r18, $F6 ; Load r18 and r19 with the lower thr eshold 
 clr r19 
 cp r19, r17  
 brlo ADCTest15 ; If r19 is lower than r17 then abo ve threshold 
 brne ADCTest14 ; If r19 is not equal to r17 then b elow threshold 
 cp r16, r18  ; If r16 is the same or higher then a bove threshold 
 brsh ADCTest15 
ADCTest14: 
 in r16, PORTA ; All lights off 
 ori r16, $3F 
 out PORTA, r16 
 cbi PORTA, 5 ; Light on 
ADCTest15:  
 jmp StartADCTest; Go back to start 
.equ XAxisH = $100 
.equ XAxisL = $101 
.equ YAxisH = $102 
.equ YAxisL = $103 
.equ ZAxisH = $104 
.equ ZAxisL = $105 
.exit 
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Appendix E: Real Time Clock Test Code 

.include "usb647def.inc" 

.org $0 
 jmp SetupRTCTest 
.org OVF2addr 
 jmp RTCtick 
.org $4C 
SetupRTCTest: 
; Setup Stack Pointer 
 ldi r16, $10 ; Initialize the Stack Pointer to the  end of 
 out SPH, r16 ; the internal SRAM 0x10FF 
 ldi r16, $FF 
 out SPL, r16 
; Enable Interrupts 
 sei 
; Setup LEDs 
 in r16, DDRA ; Make Port A an output port 
 ori r16, $3F 
 out DDRA, r16 
 in r16, PORTA ; Output high to all of Port A 
 ori r16, $3F 
 out PORTA, r16 
; Setup RTC Clock 
 ldi r16, (1<<AS2) 
 sts ASSR, r16 
 clr r16 
 sts secs, r16 
 sts TCCR2A, r16 
 sts TCNT2, r16 
 ldi r16, (1<<TOIE2) 
 sts TIMSK2, r16 
 ldi r16, (1<<CS22)|(1<<CS21) 
 sts TCCR2B, r16 
StartRTCTest: 
 jmp StartRTCTest 
RTCtick: 
 push r16 
 in r16, sreg 
 push r16 
 lds r16, secs 
 inc r16 
 sts secs, r16 
 cpi r16, $3C 
 brne RTCtick1 
 clr r16 
 sts secs, r16 
 ldi r16, $FF 
RTCtick1: 
 com r16 
 out PORTA, r16 
 pop r16 
 out sreg, r16 
 pop r16 
 reti 
.equ secs = $100 
.exit 
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Appendix F: USB Test Code 

.include "usb647def.inc" 

.org $0 
 jmp SetupUSBTest 
.org URXC1addr 
 jmp ReceivedData 
.org $4C 
SetupUSBTest: 
 cli 
; Setup the Stack Pointer 
 ldi r16, $10 ; Initialize the Stack Pointer to the  end of 
 out SPH, r16 ; the internal SRAM 0x10FF 
 ldi r16, $FF 
 out SPL, r16 
; Setup the LEDs 
 in r16, DDRA ; Setup PORTA pins 0-5 as output 
 ori r16, $3F 
 out DDRA, r16 
 in r16, PORTA ; Turn off the 6 LEDs 
 ori r16, $3F 
 out PORTA, r16 
; Setup the Switches 
 in r16, DDRD ; Setup PORTD pins 0-1 as input 
 andi r16, $FC 
 out DDRD, r16 
 in r16, PORTD ; Turn on the pull-up resistors for 
 ori r16, $03 ; PORTD pins 0-1 
 out PORTD, r16 
; Setup the USART 
 in r16, DDRD 
 andi r16, $FB 
 ori r16, $08 
 out DDRD, r16 ; Properly set data direction on UAR T pins 
 ldi r16, (1<<UCSZ11)|(1<<UCSZ10) 
 sts UCSR1C, r16 ; Set parity, # bits, and # stop b its 
 clr r16 
 sts UBRR1H, r16 
 ldi r16, 6 
 sts UBRR1L, r16 ; Set the baud rate 
 ldi r16, (1<<RXEN1)|(1<<RXCIE1)|(1<<TXEN1) 
 sts UCSR1B, r16 ; Setup UART to transmit and recei ve 
 clr r16 
 sts UDR1, r16 
 sts UCSR1A, r16 
 sei   ; Enable Interrupts 
 clr r17 
USBTest: 
 cpi r17, $47 ; Wait for $47 (code for device to tr ansmit) 
 brne USBTest ; to be received 
WaitforButton: 
 in r16, pind ; Loop until user presses a button 
 ori r16, $FC 
 cpi r16, $FF 
 breq WaitforButton 
 andi r16, $33 
WaittoTransmit: 
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 lds r17, UCSR1A ; Wait for the transmit line to be  available 
 andi r17, $20 
 cpi r17, $20 
 brne WaittoTransmit 
 sts UDR1, r16 ; Send the button pressed to the PC 
 clr r17 
 jmp USBTest  ; Return to the loop waiting for comm and $47 
ReceivedData:  ; Interrupt handling routine for rec eiving data 
 push r16  ; Store r16 and the status register 
 in r16, sreg 
 push r16 
 in r16, PORTA ; Turn off all LEDs 
 ori r16, $3F 
 out PORTA, r16 
 lds r16, UDR1 ; Load the value received into r16 
 andi r16, $7F  
 cpi r16, $46 ; Compare the value to $46 
 breq EndTest ; $46 = command for turning off LEDs,  done, so end 
 cpi r16, $31 ; If ‘1’ received turn on LED 1 
 brne Test2 
 cbi PORTA, 0 
Test2: 
 cpi r16, $32 ; If ‘2’ received turn on LED 2 
 brne Test3 
 cbi PORTA, 1 
Test3: 
 cpi r16, $33 ; If ‘3’ received turn on LED 3 
 brne Test4 
 cbi PORTA, 2 
Test4: 
 cpi r16, $34 ; If ‘4’ received turn on LED 4 
 brne Test5 
 cbi PORTA, 3 
Test5: 
 cpi r16, $35 ; If ‘5’ received turn on LED 5 
 brne Test6 
 cbi PORTA, 4 
Test6: 
 cpi r16, $36 ; If ‘6’ received turn on LED 6 
 brne Test7 
 cbi PORTA, 5 
Test7: 
 cpi r16, $47 ; If $47 received load the value into  r17 
 brne EndTest ; so the main program will know 
 ldi r17, $47 
EndTest:   ; Exit sequence 
 clr r16  ; Clear the receive flag to show it has b een handled 
 sts UCSR1A, r16 
 pop r16  ; Return saved registers 
 out sreg, r16 
 pop r16 
 reti   ; Return from the interrupt 
.exit 
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Appendix G: RollOverDevice.asm (Main Code) 
.include "usb647def.inc" 
; Vector Table (Beginning of memory) 
.org $0 
 jmp MainEntry ; On Reset go to the start of the pr ogram 
.org INT0addr  
 jmp MasterKill ; Master Kill Switch Interrupt 
.org INT1addr  
 jmp TwoStepInt ; Two Step On/Off Interrupt 
.org INT2addr  
 jmp Unused   
.org INT3addr  
 jmp Unused   
.org INT4addr 
 jmp Unused 
.org INT5addr 
 jmp Unused 
.org INT6addr 
 jmp Unused 
.org INT7addr 
 jmp Unused 
.org PCI0addr 
 jmp TestInt  ; Test Interrupt or Two-Step Pressed 
.org USB_GENaddr 
 jmp Unused 
.org USB_COMaddr 
 jmp Unused 
.org WDTaddr 
 jmp Unused 
.org OC2Aaddr 
 jmp RTCInt 
.org OC2Baddr 
 jmp Unused 
.org OVF2addr 
 jmp RTCInt  ; Real Time Clock Interrupt 
.org ICP1addr 
 jmp Unused 
.org OC1Aaddr 
 jmp Unused 
.org OC1Baddr 
 jmp Unused 
.org OC1Caddr 
 jmp Unused 
.org OVF1addr 
 jmp Unused 
.org OC0Aaddr 
 jmp Unused 
.org OC0Baddr 
 jmp Unused 
.org OVF0addr 
 jmp Unused 
.org SPIaddr 
 jmp Unused 
.org URXC1addr 
 jmp Download ; Download Interrupt Triggered 
.org UDRE1addr 
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 jmp Unused 
.org UTXC1addr 
 jmp Unused 
.org ACIaddr 
 jmp Unused 
.org ADCCaddr 
 jmp Unused 
.org ERDYaddr 
 jmp Unused 
.org ICP3addr 
 jmp Unused 
.org OC3Aaddr 
 jmp Unused 
.org OC3Baddr 
 jmp Unused 
.org OC3Caddr 
 jmp Unused 
.org OVF3addr 
 jmp Unused 
.org TWIaddr 
 jmp Unused 
.org SPMRaddr 
 jmp Unused 
; Beginning of the Program Code 
MainEntry: 
; Setup the Stack Pointer 
 ldi r16, $10 ; Initialize the Stack Pointer to the  end of 
 out SPH, r16 ; the internal SRAM 0x10FF 
 ldi r16, $FF 
 out SPL, r16 
; Set the Global Interrupt Flag in the SREG 
 sei 
; Reset the battery on/off switch 
 in r16, DDRE ; Make port E pins 6 and 7 output pin s 
 ori r16, $C0 ; Pin 7 = battery on/off 
 out DDRE, r16 ; Pin 6 = battery volt check enable 
 in r16, PORTE ; Turn on the battery and Enable bat tery check 
 andi r16, $3F ; Pin 7 & 6 = 0 
 out PORTE, r16  
; Reset the Master Kills 
 ldi r16, $FF ; Set port C as an output port 
 out DDRC, r16 
 in r16, DDRE ; Set pins 0 & 1 of port E as an outp ut port 
 ori r16, $03  
 out DDRE, r16 
 clr r16  ; Clear all outputs 
 out PORTC, r16 
 cbi PORTE, 0 
 cbi PORTE, 1  
; Initialize the LEDs 
 in  r16, DDRA ; Set the Data Direction Register so  Pins 0-5  
 ori r16, $3F ; are output pins 
 out DDRA, r16 
 in  r16, PORTA ; Set Pins 0-5 High to turn off the  LEDs 
 ori r16, $3F 
 out PORTA, r16 
; Initialize the Switches 
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 in r16, DDRD ; Make Port D pins 0 and 1 input pins  
 andi r16, $FC ; Pin 0 = Master Kill Switch 
 out DDRD, r16 ; Pin 1 = Two-Step On/Off Input 
 in r16, DDRB ; Make Port B pins 6 and 7 input pins  
 andi r16, $3F ; Pin 6 = Two-Step Input 
 out DDRB, r16 ; Pin 7 = Test Input 
 in r16, PORTD ; Turn on pull-up resistors for port s B and D 
 ori r16, $03  
 out PORTD, r16 
 in r16, PORTB 
 ori r16, $C0 
 out PORTB, r16 
 clr r16  ; Set Switch variable initially to 0 
 sts Switch, r16 
; Initialize the Power Reduction Registers 
 ldi r16, (1<<PRTWI)|(1<<PRTIM0) 
 sts PRR0, r16 
 ldi r16, (1<<PRUSB)|(1<<PRTIM3) 
 sts PRR1, r16 
; Initialize the SPI Interface 
 in r16, DDRB ; Setting the data direction of Port B for SPI 
 ori r16, $37 ; Pins 0-2, 4 and 5 are output 
 andi r16, $F7 ; Pin 3 is input 
 out DDRB, r16 
 in r16, PORTB ; Set the initial values of SS, Hold , and WP 
 ori r16, $31 ; All set high - off 
 out PORTB, r16 
 ldi r16, (1<<SPE)|(1<<MSTR) 
 out SPCR, r16 ; SPI on, set for master 
 ldi r16, (1<<SPI2X) 
 out SPSR, r16 ; Set for 4MHz speed 
 cbi PORTB, 0 ; Pull CS low 
 ldi r16, $03 ; Send Read Command 
 clr r17 
 clr r18 
 call SPIComSend 
 call SPIRead 
 sts races, r16  ; Store data in # races counter 
 call SPIRead 
 sts racecount, r16 ; Store total number of races m ade since 
download 
 call SPIRead 
 sts LThresXH, r16 ; Store data for X Threshold 
 call SPIRead 
 sts LThresXL, r16 
 call SPIRead 
 sts UThresXH, r16 
 call SPIRead 
 sts UThresXL, r16 
 call SPIRead 
 sts LThresYH, r16 ; Store data for Y Threshold 
 call SPIRead 
 sts LThresYL, r16 
 call SPIRead 
 sts UThresYH, r16 
 call SPIRead 
 sts UThresYL, r16 
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 call SPIRead 
 sts LThresZH, r16 ; Store data for Z Threshold 
 call SPIRead 
 sts LThresZL, r16 
 call SPIRead 
 sts UThresZH, r16 
 call SPIRead 
 sts UThresZL, r16 
 call SPIRead 
 sts ThresD0, r16 
 call SPIRead 
 sts ThresD1, r16 
 call SPIRead 
 sts ThresD2, r16 
 call SPIRead 
 sts ThresD3, r16 ; Store Date 
 call SPIRead 
 sts Car0, r16 
 call SPIRead 
 sts Car1, r16 
 call SPIRead 
 sts Car2, r16 
 call SPIRead 
 sts Car3, r16 
 call SPIRead 
 sts Car4, r16 
 call SPIRead 
 sts Car5, r16 ; Store Car # 
 sbi PORTB, 0 ; Pull CS high 
; Initialize Analog to Digital Converter 
 ldi r16, (1<<ADC0D)|(1<<ADC1D)|(1<<ADC2D)|(1<<ADC3 D) 
 sts DIDR0, r16 ; Turn off Digital Register of ADC conversion pins 
 clr r16 
 sts ADCSRB, r16 ; Set control register 
 ldi r16, (1<<ADEN)|(1<<ADPS2)|(1<<ADPS1) 
 sts ADCSRA, r16 ; Turn on the ADC and set clock 12 5 KHz 
; Turn on Master Kill Interrupt 
 Ldi r16, (1<<ISC11)|(1<<ISC01) 
 sts EICRA, r16 ; Falling edge produces interrupt f or MKill and TStep 
 clr r16 
 sts EICRB, r16 
 ldi r16, (1<<PCIE0) 
 sts PCICR, r16 ; Falling edge produces interrupt f or Test 
 sbi EIMSK, 0 ; Enable Master Kill Interrupt 
PitRoadInit: 
; Setup ADC for Ignition Test 
 ldi r16, (1<<MUX0)|(1<<MUX1) 
 sts ADMUX, r16 ; Set for Ignition Test Pin 
; Setup USART 
 ldi r16, (1<<FE1)|(1<<TXC1) 
 sts UCSR1A, r16 ; Set for No double speed and no m ulti-processor 
 ldi r16, (1<<UCSZ11)|(1<<UCSZ10) 
 sts UCSR1C, r16 ; asynchronous, no parity, 1 stop bit, 8-bit transfer 
 ldi r16, (1<<RXCIE1)|(1<<RXEN1)|(1<<TXEN1) 
 sts UCSR1B, r16 ; Set Receive interrupt, receive a nd transmit enabled 
 clr r16 
 sts UBRR1H, r16 
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 ldi r16, 51 
 sts UBRR1L, r16 ; Set the baud rate to 9600kbps 
; Setup Test and Two-Step On/Off Interrupts 
 sbi EIFR, INTF1 ; Clear the interrupt flag for two -step interrupt 
 sbi EIMSK, 1 ; Enable Two-Step Bypass Interrupt 
 ldi r16, (1<<PCINT7) 
 sts PCMSK0, r16 ; Enable Test Interrupt 
 clr r16 
 sts Switch, r16 ; Clear all switches 
; Turn on Pit Road Mode LED 
 cbi PORTA, 0 
; Beginning of Pit Road Mode Tests 
PitRoad: 
 lds r16, Switch ; Load the status of the Switch va riable to r16 
 andi r16, (1<<SDload) ; Mask off Download bit 
 cpi r16, $00  ; If 0 not set 
 breq PitRoad1  ; Skip to Pit Road 1 if 0 
 call DloadRoutine  ; Call Download Subroutine 
 jmp PitRoadInit  ; When return reinitialize pit ro ad mode 
PitRoad1: 
 lds r16, Switch  ; Load the status of the Switch v ariable to r16 
 andi r16, (1<<STest) ; Mask off the Test bit 
 cpi r16, $00  ; If 0 is not set 
 breq PitRoad2  ; Branch if 0 to PitRoad2 
 call TestRoutine  ; Otherwise call test subroutine  
 jmp PitRoadInit  ; When return reinitialize pit ro ad mode 
PitRoad2:    ; Ignition Test 
 call ADCStart 
 cpi r17, $03 ; See if high byte is greater than or  equal to $03 
 brsh PitRoad3 ; If greater than or equal to $03 th en ignition is on 
 call SystemShutDown 
PitRoad3: 
 lds r16, Switch  ; Load switch variable into r16 
 andi r16, (1<<STOnOff) ; Check if the two-step is bypassed 
 cpi r16, 0   ; If 0 it is not bypassed 
 breq PitRoad4  ; Not bypassed so go to PitRoad4 
 jmp PitRoad  ; Is bypassed go to PitRoad 
PitRoad4: 
 in r16, PINB  ; Take in info from Port B 
 andi r16, $40  ; Check if two-step pressed 
 cpi r16, $40  ; Compare two-step input to 0 
 brne TwoStepPressed ; If 2-step pressed (1) go to TwoStepPressed 
 jmp PitRoad  ; Otherwise retry tests from PitRoad 
TwoStepPressed: 
 ldi r16, (1<<AS2)  ; Set to 32.768 kHz external cl ock 
 sts ASSR, r16 
 clr r16   ; Setup the timer 
 sts TCCR2A, r16 
 sts secs, r16  ; Clear seconds variable 
 sts TCNT2, r16  ; Clear counter 
 ldi r16, (1<<TOIE2) 
 sts TIMSK2, r16 
 ldi r16, (1<<CS22)|(1<<CS20) 
 sts TCCR2B, r16  ; Setup 5 second timer 
TwoStepPressed1: 
 in r16, PINB  ; Take in info from Port B 
 andi r16, $40  ; Check if two-step pressed 



108 

 

 cpi r16, $40      
 brne TwoStepPressed2 ; If it is pressed go to TwoS tepPressed2 
 clr r16 
 sts TCCR2B, r16  ; Turn off timer 
 jmp PitRoad  ; Otherwise return to pit road mode 
TwoStepPressed2: 
 lds r16, secs  ; Load in the seconds variable 
 cpi r16, $05  ; Compare to 5 
 brlo TwoStepPressed1 ; If lower keep checking the two step 
; Start of Race Mode - When two-step released will be treated as a race 
RaceModeInit:   ; Greater than 5 seconds 
; Turn off download interrupts 
 clr r16 
 sts UCSR1A, r16 ; Set all the USART controls to 0 (will turn it off) 
 sts UCSR1B, r16 
 sts UCSR1C, r16 
; Turn off the two-step and test interrupts 
 cbi EIMSK, 1  ; Disable Two-Step Bypass Interrupt 
 clr r16 
 sts PCMSK0, r16  ; Disable Test Interrupt 
; Set LEDs 
 sbi PORTA, 0  ; Turn off Pit Road LED 
 cbi PORTA, 1  ; Turn on Race Mode LED 
; Setup .02 second timer 
 clr r16 
 sts TCCR1A, r16  ; Setup the timer control registe rs 
 sts TCCR1B, r16 
 sts TCNT1H, r16  ; Clear the timer counter registe rs 
 sts TCNT1L, r16 
 ldi r16, $4E 
 sts OCR1AH, r16 
 ldi r16, $20 
 sts OCR1AL, r16  ; Set max count compare to 20000 (.02 seconds) 
; Clear Maximum Lower Variables 
 ldi LMaxXH, $FF 
 ldi LMaxXL, $FF 
 ldi LMaxYH, $FF 
 ldi LMaxYL, $FF 
 ldi LMaxZH, $FF 
 ldi LMaxZL, $FF 
; Clear Maximum Upper Variables 
 clr UMaxXH 
 clr UMaxXL 
 clr UMaxYH 
 clr UMaxYL 
 clr UMaxZH 
 clr UMaxZL 
; Prepare memory variables 
 lds r16, races ; Increment the races variable (sta rt of a new race) 
 inc r16 
 cpi r16, 4  ; If greater than 4 races must replace  first race 
 brlo RaceInit1 
 ldi r16, 1 
RaceInit1: 
 sts races, r16 
 ldi r17, $40 
 ldi r18, $40 
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 cpi r16, $01 
 breq RaceInit1a 
 add r18, r17 
 cpi r16, $02 
 breq RaceInit1a 
 add r18, r17 
RaceInit1a: 
 clr r17 
 sts MemPtrH, r18 
 sts MemPtrL, r17 
 lds r16, racecount ; Load the number of races made  since last 
 inc r16   ; download into r16 
 sts racecount, r16 ; Increment and store result 
 cbi PORTB, 0  ; Clear bit to signal Memory Write 
 ldi r16, $06 
 call SPIComSend  ; Send Write Enable Command 
 sbi PORTB, 0  ; Set bit for latch to take effect 
 lds r17, MemPtrL  ; Load address for erase into r1 7:r18 
 lds r18, MemPtrH  
 ldi r16, $D8  ; Load command for erase into r16 
 cbi PORTB, 0  ; Clear bit to activate Memory 
 call SPIComSend  ; Send erase 
 sbi PORTB, 0  ; Set bit to latch command 
 call SPIStatusWait ; Wait until erase complete 
 cbi PORTB,0   ; Clear bit to activate Memory 
 ldi r16, $06  ; Send Write Enable Command 
 call SPIComSend 
 sbi PORTB,0   ; Set bit to latch command 
 ldi r16, $02  ; Send write command 
 clr r17   ; Address $0000 
 clr r18 
 cbi PORTB, 0  ; Clear bit to activate Memory 
 call SPIComSend  ; Send command 
 lds r16, races  ; Write races 
 call SPIWrite 
 lds r16, racecount ; Write racecount 
 call SPIWrite 
 sbi PORTB, 0  ; Set bit to latch command 
 lds r16, MemPtrL 
 lds r17, MemPtrH  ; Load starting pointer to r16:r 17 
 ldi r18, 128 
 clr r19 
 add r16, r18 
 adc r17, r19  ; Address of Start of Next Page is i n r16:r17 
 sts PageEndL, r16  ; Store the start of the next p age in memory 
 sts PageEndH, r17  
; Check to see if two-step released 
TwoStepWait: 
 in r16, PINB  ; Take in info from Port B 
 andi r16, $40  ; Check if two-step pressed 
 cpi r16, $40      
 brne TwoStepWait  ; It two-step pressed, loop unti l release 
 clr r16 
 sts secs, r16 
 ldi r16, (1<<WGM12)|(1<<CS10) 
 sts TCCR1C, r16 
RaceMode: 
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 clr r16 
 sts ADMUX, r16  ; Set to X-axis ADC channel 
 call ADCStart  ; Perform conversion - result in r1 6:r17 
 cp r17, UMaxXH  ; Compare conversion value to Max 
 brlo RaceMode2  ; If lower then no problem 
 brne RaceMode1 ; If not equal then new data is def initely higher 
 cp  r16, UMaxXL  ; Compare conversion value to low er Max 
 brlo RaceMode2  ; If lower then below max 
RaceMode1:    ; Above X Max Values 
 mov UMaxXH, r17  ; Update Maximum Values 
 mov UMaxXL, r16 
 lds r18, UThresXL  ; Load Upper Thresholds into r1 8:r19 
 lds r19, UThresXH  
 cp r17, r19  ; Compare upper bytes 
 brlo RaceMode2  ; If conversion value lower then n o problem 
 brne RaceMode1a ; If not equal conversion is highe r than thresholds 
 cp r16, r18  ; Compare lower bytes 
 brlo RaceMode2  ; If conversion lower then no prob lem 
RaceMode1a:    ; Above upper threshold 
 cli 
 call VehicleShutDown 
 call StoreValues 
 call SystemShutDown 
RaceMode2:    ; Below X Max Values or X Upper Thres hold 
 cp LMaxXH, r17  ; Compare upper bytes 
 brlo RaceMode4  ; If threshold value lower than co nversion okay 
 brne RaceMode3 ; If threshold not equal conversion  lower - problem 
 cp r16, LMaxXL  ; Compare lower bytes 
 brsh RaceMode4 ; If conversion is same or higher -  threshold is okay 
RaceMode3:    ; Lower than previous max values 
 mov LMaxXH, r17  ; Store new max values 
 mov LMaxXL, r16 
 lds r18, LThresXL  ; Load lower threshold into r18 :r19  
 lds r19, LThresXH  
 cp r19, r17  ; Perform same comparsion with thresh olds 
 brlo RaceMode4 
 brne RaceMode3a 
 cp r16, r18 
 brsh RaceMode4 
RaceMode3a:    ; If problem then shut down system 
 cli 
 call VehicleShutDown    
 call StoreValues 
 call SystemShutDown 
RaceMode4:    ; Check Y Values 
 ldi r16, (1<<MUX0)   
 sts ADMUX, r16  ; Set to Y-axis ADC channel 
 call ADCStart  ; Perform conversion - result in r1 6:r17 
 cp r17, UMaxYH  ; Compare conversion value to Max 
 brlo RaceMode6  ; If lower then no problem 
 brne RaceMode5  ; If not equal then new data is hi gher 
 cp  r16, UMaxYL  ; Compare conversion value to low er Max 
 brlo RaceMode6  ; If lower then below max 
RaceMode5:    ; Above Y Max Values 
 mov UMaxYH, r17  ; Update Maximum Values 
 mov UMaxYL, r16 
 lds r18, UThresYL  ; Load Upper Thresholds into r1 8:r19 
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 lds r19, UThresYH  
 cp r17, r19  ; Compare upper bytes 
 brlo RaceMode6  ; If conversion value lower then n o problem 
 brne RaceMode5a  ; If not equal then conversion is  higher 
 cp r16, r18  ; Compare lower bytes 
 brlo RaceMode6  ; If conversion lower then no prob lem 
RaceMode5a:    ; Above upper threshold 
 cli 
 call VehicleShutDown 
 call StoreValues 
 call SystemShutDown 
RaceMode6:    ; Below Y Max Values or Y Upper Thres hold 
 cp LMaxYH, r17  ; Compare upper bytes 
 brlo RaceMode8  ; If threshold is lower than conve rsion okay 
 brne RaceMode7 ; If threshold not equal, conversio n lower, problem 
 cp r16, LMaxYL  ; Compare lower bytes 
 brsh RaceMode8  ; If conversion is same or higher – okay 
RaceMode7:    ; Lower than previous max values 
 mov LMaxYH, r17  ; Store new max values 
 mov LMaxYL, r16 
 lds r18, LThresYL  ; Load lower threshold into r18 :r19  
 lds r19, LThresYH  
 cp r19, r17  ; Perform same comparsion with thresh olds 
 brlo RaceMode8 
 brne RaceMode7a 
 cp r16, r18 
 brsh RaceMode8 
RaceMode7a:    ; If problem then shut down system 
 cli 
 call VehicleShutDown    
 call StoreValues 
 call SystemShutDown 
RaceMode8: 
 ldi r16, (1<<MUX1) 
 sts ADMUX, r16  ; Set to Z-axis ADC channel 
 call ADCStart  ; Perform conversion - result in r1 6:r17 
 cp r17, UMaxZH  ; Compare conversion value to Max 
 brlo RaceMode10  ; If lower then no problem 
 brne RaceMode9  ; If not equal, new data is higher  
 cp  r16, UMaxZL  ; Compare conversion value to low er Max 
 brlo RaceMode10  ; If lower then below max 
RaceMode9:    ; Above Z Max Values 
 mov UMaxZH, r17  ; Update Maximum Values 
 mov UMaxZL, r16 
 lds r18, UThresZL  ; Load Upper Thresholds into r1 8:r19 
 lds r19, UThresZH  
 cp r17, r19  ; Compare upper bytes 
 brlo RaceMode10  ; If conversion value lower then no problem 
 brne RaceMode9a ; If not equal then conversion hig her than thresholds 
 cp r16, r18  ; Compare lower bytes 
 brlo RaceMode10  ; If conversion lower then no pro blem 
RaceMode9a:    ; Above upper threshold 
 cli 
 call VehicleShutDown 
 call StoreValues 
 call SystemShutDown 
RaceMode10:    ; Below Z Max Values or Z Upper Thre shold 
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 cp LMaxZH, r17  ; Compare upper bytes 
 brlo RaceMode12  ; If threshold is lower than conv ersion okay 
 brne RaceMode11 ; If threshold not equal conversio n lower - problem 
 cp r16, LMaxZL  ; Compare lower bytes 
 brsh RaceMode12  ; If conversion same or higher, t hreshold okay 
RaceMode11:    ; Lower than previous max values 
 mov LMaxZH, r17  ; Store new max values 
 mov LMaxZL, r16 
 lds r18, LThresZL  ; Load lower threshold into r18 :r19  
 lds r19, LThresZH  
 cp r19, r17  ; Perform same comparsion with thresh olds 
 brlo RaceMode12 
 brne RaceMode11a 
 cp r16, r18 
 brsh RaceMode12 
RaceMode11a:   ; If problem then shut down system 
 cli 
 call VehicleShutDown    
 call StoreValues 
 call SystemShutDown 
RaceMode12: 
 lds r16, TIFR1  ; Load r16 with timer flag registe r 
 andi r16, (1<<OCF1A) ; Isolate Compare bit 
 cpi r16, 0   ; If 0 then .02 seconds has not passe d 
 brne RaceMode12a  ; Otherwise it has and time to s tore data 
 jmp RaceMode12b  ; Keep checking accelerometers 
RaceMode12a: 
 lds r16, TIFR1  ; Clear the bit 
 ori r16, (1<<OCF1A) 
 sts TIFR1, r16 
 lds r16, MemPtrL  ; Load MemPtr into r16:r17 
 lds r17, MemPtrH 
 ldi r18, 8 
 clr r19 
 add r16, r18 
 adc r17, r19 
 lds r18, PageEndL  ; Load address of end of page i nto r18:r19 
 lds r19, PageEndH 
 cp r19, r17   ; See if values are equal 
 brne TimeUp1 
 cp r18, r16 
 brne TimeUp1  ; If not equal go to TimeUp1 
 sts MemPtrL, r16  ; Store new address 
 sts MemPtrH, r17 
 ldi r18, 128 
 clr r19 
 add r16, r18 
 adc r17, r19 
 sts PageEndL, r16  ; Store new end of page 
 sts PageEndH, r17 
TimeUp1: 
 cbi PORTB, 0  ; Clear bit to activate memory 
 ldi r16, $06  ; Load write enable command 
 call SPIComSend  ; Send the command 
 sbi PORTB, 0  ; Set bit to latch command 
 ldi r16, $02  ; Load write command  
 lds r17, MemPtrL  ; Load write address into r17:r1 8 
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 lds r18, MemPtrH 
 cbi PORTB, 0  ; Clear bit to activate memory 
 call SPIComSend  ; Send write command and address 
 mov r16, LMaxXH  ; Write 12 bytes of data 
 call SPIWrite 
 mov r16, LMaxXL 
 call SPIWrite 
 mov r16, UMaxXH 
 call SPIWrite 
 mov r16, UMaxXL 
 call SPIWrite 
 mov r16, LMaxYH 
 call SPIWrite 
 mov r16, LMaxYL 
 call SPIWrite 
 mov r16, UMaxYH 
 call SPIWrite 
 mov r16, UMaxYL 
 call SPIWrite 
 mov r16, LMaxZH 
 call SPIWrite 
 mov r16, LMaxZL 
 call SPIWrite 
 mov r16, UMaxZH 
 call SPIWrite 
 mov r16, UMaxZL 
 call SPIWrite 
 sbi PORTB, 0  ; Set bit to end write 
 lds r16, MemPtrL 
 lds r17, MemPtrH 
 ldi r18, $12 
 clr r19 
 add r16, r18 
 adc r17, r19 
 sts MemPtrL, r16  ; Add 12 and store address for n ext save 
 sts MemPtrH, r17 
; Reset the Maximum Thresholds 
 ldi LMaxXH, $FF 
 ldi LMaxXL, $FF 
 ldi LMaxYH, $FF 
 ldi LMaxYL, $FF 
 ldi LMaxZH, $FF 
 ldi LMaxZL, $FF 
 clr UMaxXH 
 clr UMaxXL 
 clr UMaxYH 
 clr UMaxYL 
 clr UMaxZH 
 clr UMaxZL 
; Check if 15 seconds is done 
RaceMode12b: 
 lds r16, secs  ; Load seconds into r16 
 cpi r16, 15   ; Compare value in r16 to 15 
 brsh RaceMode13  ; If greater than 15 go to RaceMo de13 
 jmp RaceMode  ; Otherwise go to RaceMode 
RaceMode13: 
 ldi r16, (1<<MUX0)|(1<<MUX1) 
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 sts ADMUX, r16  ; Set for Ignition Test Pin 
 call ADCStart  ; Perform Conversion 
 cpi r17, $03  ; See if high byte greater than or e qual to $03 
 brsh RaceMode14  ; If true then ignition is on 
 call SystemShutDown ; Turnoff DragAid-MK 
RaceMode14: 
 sbi  PORTA, 1  ; Turn off Race Mode LED 
 clr r16 
 sts secs, r16  ; Clear seconds variable 
 sts TCCR1C, r16  ; Shut off Timer 1 
 sts TCCR2B, r16  ; Shut off Timer 2 
 jmp PitRoadInit 
.include "common.asm" 
.include "definitions.asm" 
.include "interrupts.asm" 
.include "download.asm" 
.include "test.asm" 
.exit 
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Appendix H: Common.asm 
;************************************************** ************************ 
;*      SPI Functions       * 
;************************************************** ************************ 
; Precondition: SPI command is in r16, address is i n r17 & r18 
; Postcondition: SPI command is sent over SPI inter face 
SPIComSend: 
 out SPDR, r16  ; Output the command 
 call SPIWait  ; Wait for transmission to complete 
 cpi r16, $03  ; If read, write, page erase, or sec tor erase 
 breq SendAddress ; send address too 
 cpi r16, $02 
 breq SendAddress 
 cpi r16, $42 
 breq SendAddress 
 cpi r16, $D8 
 breq SendAddress 
 ret 
SendAddress: 
 out SPDR, r18  ; Output address (high) 
 call SPIWait 
 out SPDR, r17  ; Output address (low) 
 call SPIWait 
 ret 
; Precondition: Read command must be sent first 
; Postcondition: Result of read is in r16 
SPIRead: 
 ldi r16, $00 ; Send dummy data to receive info 
 out SPDR, r16  
 call SPIWait ; Wait for data to be received 
 in r16, SPDR ; Take in data 
 ret 
; Precondition: Write command has been sent 
; Postcondition: Byte to write is in r16 
SPIWrite: 
 out SPDR, r16 ; Send data out to memory 
 call SPIWait ; Wait for data to be sent 
 ret 
; Precondition: SPI command has been sent 
; Postcondtion: Returns when SPI transmission is co mplete 
SPIWait: 
 push r16 
SPIWait1: 
 in r16, SPSR 
 andi r16, (1<<SPIF) 
 cpi r16, $00 
 breq SPIWait1 
 pop r16 
 ret 
; Precondition: Erase Command has been sent 
; Postcondition: Returns when sector erase is compl ete 
SPIStatusWait: 
 push r16 
 push r17 
 push r18 
 clr r16 



116 

 

 clr r17 
 clr r18 
SPIStatus1: 
 inc r16 
 cpi r16, $FF 
 brne SPIStatus1 
 clr r16 
 inc r17 
 cpi r17, $FF 
 brne SPIStatus1 
 clr r16 
 clr r17 
 inc r18 
 cpi r18, $2 
 brne SPIStatus1  ; Delay for 16ms 
SPIStatus2: 
 cbi PORTB, 0 
 ldi r16, $05 
 call SPIComSend 
 call SPIRead 
 sbi PORTB, 0 
 andi r16, $01 
 cpi r16, $00 
 brne SPIStatus2 
 pop r18 
 pop r17 
 pop r16 
 ret 
;************************************************** ************************* 
;*                             ADC Functions                               * 
;************************************************** ************************* 
; Precondition: ADC Start Conversion has been trigg ered 
; Postcondition: When a conversion is complete this  will return 
ADCWait: 
 push r16 
ADCWait1: 
 lds r16, ADCSRA  ; Load the status of the conversi on into r16 
 andi r16, (1<<ADIF) 
 cpi r16, 0   ; While the conversion complete flag is not set 
loop 
 breq ADCWait1 
 pop r16    ; Otherwise return 
 ret 
; Precondition: None  
; Postcondition: Triggers an ADC conversion, waits for the result, and puts 
; the result in r16 and r17 
ADCStart: 
 lds r16, ADCSRA    
 ori r16, (1<<ADSC)|(1<<ADIF)  
 sts ADCSRA, r16  ; Start the ADC conversion and cl ear results 
flag 
 call ADCWait 
 lds r16, ADCL  ; Put the results in r16 and r17  
 lds r17, ADCH 
 ret     ; Return 
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;************************************************** ************************* 
;     Special Functions        * 
;************************************************** ************************* 
; Precondition: System operation is complete 
; Postcondition: System is off (power eliminated fr om the circuit) 
SystemShutDown: 
 sbi PORTE, 7 ; Send off signal to the system 
SystemShutDown1: 
 jmp SystemShutDown1 ; Wait here while system shuts  off 
 ret     ; Should never be reached 
; Precondition: Thresholds have been exceeded 
; Postcondition: "Off" Signals sent to Port C and E  
VehicleShutDown: 
 ldi r16, $FF ; Set Pins 35-42 high 
 out PORTC, r16  
 sbi PORTE, 0 ; Set Pins 33-34 high 
 sbi PORTE, 1 
 ret 
; Precondition: Thresholds have been exceeded 
; Postcondition: Current maximum values are stored in memory at next memory 
; location, no memory pointers are updated  
StoreValues: 
 lds r16, MemPtrL  ; Load MemPtr into r16:r17 
 lds r17, MemPtrH 
 ldi r18, 8 
 clr r19 
 add r16, r18 
 adc r17, r19 
 lds r18, PageEndL  ; Load address of end of page i nto r18:r19 
 lds r19, PageEndH 
 cp r19, r17   ; See if values are equal 
 brne StoreValues1 
 cp r18, r16 
 brne StoreValues1  ; If not equal go to TimeUp1 
 sts MemPtrL, r16  ; Store new address 
 sts MemPtrH, r17 
StoreValues1: 
 cbi PORTB, 0  ; Clear bit to activate memory 
 ldi r16, $06  ; Load write enable command 
 call SPIComSend  ; Send the command 
 sbi PORTB, 0  ; Set bit to latch command 
 ldi r16, $02  ; Load write command  
 lds r17, MemPtrL  ; Load write address into r17:r1 8 
 lds r18, MemPtrH 
 cbi PORTB, 0  ; Clear bit to activate memory 
 call SPIComSend  ; Send write command and address 
 mov r16, LMaxXH  ; Write 12 bytes of data 
 call SPIWrite 
 mov r16, LMaxXL 
 call SPIWrite 
 mov r16, UMaxXH 
 call SPIWrite 
 mov r16, UMaxXL 
 call SPIWrite 
 mov r16, LMaxYH 
 call SPIWrite 
 mov r16, LMaxYL 
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 call SPIWrite 
 mov r16, UMaxYH 
 call SPIWrite 
 mov r16, UMaxYL 
 call SPIWrite 
 mov r16, LMaxZH 
 call SPIWrite 
 mov r16, LMaxZL 
 call SPIWrite 
 mov r16, UMaxZH 
 call SPIWrite 
 mov r16, UMaxZL 
 call SPIWrite 
 sbi PORTB, 0  ; Set bit to end write 
 ret 
.exit 
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Appendix I: Download.asm 
DloadRoutine: 
; Set LEDs 
 sbi PORTA, 0 ; Turn off Pit Road LED 
 cbi PORTA, 2 ; Turn on Download LED 
; Turn off Download Interrupt 
 ldi r16, (1<<RXEN1)|(1<<TXEN1) 
 sts UCSR1B, r16 
; Turn off Button Interrupts 

cbi EIMSK, 1   ; Disable Two-Step Bypass Interrupt 
 clr r16 
 sts PCMSK0, r16  ; Disable Test Interrupt 
 ldi r16, (1<<AS2)  ; Set to 32.768 kHz external cl ock 
 sts ASSR, r16 
 ldi r16, (1<<WGM21) ; Set to count to OCR2A 
 sts TCCR2A, r16 
 clr r16   ; Setup the timer 
 sts secs, r16  ; Clear seconds variable 
 sts TCNT2, r16  ; Clear counter 
 ldi r16, 32   ; Load r16 with 32 
 sts OCR2A, r16  ; Store in OCR2A 
 ldi r16, (1<<OCIE2A) ; Set to interrupt on reachin g OCR2A value 
 sts TIMSK2, r16 
 ldi r16, (1<<CS20) 
 sts TCCR2B, r16    
; Setup ADC for ignition test 
 ldi r16, (1<<MUX0)|(1<<MUX1) 
 sts ADMUX, r16  ; Set for Ignition Test Pin 
DownloadLoop:   ; Start Loop 
 call ADCStart 
 cpi r17, $03  ; See if high byte greater than or e qual to $03 
 brsh Dloop1   ; If true then ignition is on 
 call SystemShutDown 
Dloop1: 
 lds r16, UCSR1A  ; Load USART flag register into r 16 
 andi r16, (1<<RXC1) ; Isolate Receive Bit 
 cpi r16, 0   ; If 0 nothing is in receive register  
 breq Dloop2 
 lds r16, UDR1  ; Load received command into r16 
 cpi r16, $53  ; See if 'S' 
 brne Dloop1a  ; If not check again 
 call DataReceive  ; Otherwise computer sending dat a for DragAid 
 jmp Dloop2   ; When done do a time out check 
Dloop1a: 
 cpi r16, $52  ; See if 'R' 
 brne Dloop1b  ; If not check again 
 call DataSend  ; Otherwise computer wants to recei ve data 
 jmp Dloop2   ; When done do a time out check 
Dloop1b: 
 cpi r16, $44  ; See if 'D' 
 brne Dloop2   ; If not, not recognized - go to 5 m inute check 
 lds r16, UDR1  ; Otherwise check again 
 cpi r16, $44  ; If 'D' again then done 
 breq DDone 
Dloop2:    ; Nothing is in the receive register 
; Time out check 
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 lds r16, secs  ; Load counter into r16 
 cpi r16, 255  ; Compare to 60 
 brlo DownloadLoop  ; If lower than 60, 5 minutes h as not passed 
DDone: 
 sbi PORTA, 2  ; Turn off Download LED 
 clr r16 
 sts TCCR2B, r16  ; Shut off time out timer 
 ret    ; Return to main program 
 
; Precondition: Received 'R' to state that PC wishe s to receive data from ;
 device 
; Postcondition: Device either sends thresholds and  car # or these as well as 
; Run Data 
DataSend: 
 call ReceiveWait 
 sts Command, r16  ; Either 'T' or 'D' 
 lds r16, Car0 
 call TransmitWait 
 lds r16, Car1 
 call TransmitWait 
 lds r16, Car2 
 call TransmitWait 
 lds r16, Car3 
 call TransmitWait 
 lds r16, Car4 
 call TransmitWait 
 lds r16, Car5 
 call TransmitWait  ; Send Car # to PC 
 lds r16, Command  ; Check to see if Data or Thresh old Send 
 cpi r16, $44 
 brne DataSend1 
 jmp DataSend1a 
DataSend1:    ; If 'D' then Data Send 
 lds r16, LThresXH 
 call TransmitWait 
 lds r16, LThresXL 
 call TransmitWait 
 lds r16, UThresXH 
 call TransmitWait 
 lds r16, UThresXL 
 call TransmitWait 
 lds r16, LThresYH 
 call TransmitWait 
 lds r16, LThresYL 
 call TransmitWait 
 lds r16, UThresYH 
 call TransmitWait 
 lds r16, UThresYL 
 call TransmitWait 
 lds r16, LThresZH 
 call TransmitWait 
 lds r16, LThresZL 
 call TransmitWait 
 lds r16, UThresZH 
 call TransmitWait 
 lds r16, UThresZL 
 call TransmitWait  ; Send Thresholds to the PC 



121 

 

 lds r16, ThresD0 
 call TransmitWait 
 lds r16, ThresD1 
 call TransmitWait 
 lds r16, ThresD2 
 call TransmitWait 
 lds r16, ThresD3 
 call TransmitWait  ; Send Threshold Date to the PC  
 jmp DataSendComplete 
DataSend1a: 
 lds r20, racecount 
 cpi r20, $00 
 breq DataSendComplete 
 cbi PORTB, 0  ; Enable the memory device 
 ldi r16, $03  ; Read command 
 clr r17 
 ldi r18, $40 
 call SPIComSend  ; Send read from Race 1 Address 
 clr r18 
 clr r19 
DataSendLoop: 
 call SPIRead 
 call TransmitWait  ; Must do this 9012 times 
 inc r18 
 cpi r18, $00 
 brne DataSendLoop1 
 inc r19 
DataSendLoop1: 
 cpi r19, $23 
 brne DataSendLoop 
 cpi r18, $34 
 brne DataSendLoop 
; When here have sent Race 1 
 cpi r20, $01 
 breq DataSendComplete 
 clr r18 
 clr r19 
DataSendLoop2: 
 call SPIRead 
 call TransmitWait 
 inc r18 
 cpi r18, $00 
 brne DataSendLoop3 
 inc r19 
DataSendLoop3: 
 cpi r19, $23 
 brne DataSendLoop2 
 cpi r18, $34 
 brne DataSendLoop2 
; When here have sent Race 2 
 cpi r20, $02 
 breq DataSendComplete 
 clr r18 
 clr r19 
DataSendLoop4: 
 call SPIRead 
 call TransmitWait 



122 

 

 inc r18 
 cpi r18, $00 
 brne DataSendLoop5 
 inc r19 
DataSendLoop5: 
 cpi r19, $23 
 brne DataSendLoop4 
 cpi r18, $34 
 brne DataSendLoop4 ; 3rd Race Sent 
DataSendComplete: 
 sbi PORTB, 0  ; Disable Memory Device 
 clr r16   
 sts racecount, r16 
 sts races, r16  ; Should also save this data to me mory! 
 cbi PORTB, 0  ; Enable Memory Device 
 ldi r16, $06 
 call SPIComSend  ; Send Write Enable Command 
 sbi PORTB, 0 
 ldi r16, $02  ; Write Command 
 clr r17   ; Addres (Low Byte) 
 clr r18   ; Address (High Byte) 
 cbi PORTB, 0  ; Enable Memory Device 
 call SPIComSend  ; Send Command 
 lds r16, races 
 call SPIWrite 
 lds r16, racecount 
 call SPIWrite  ; Write races and racecount to memo ry 
 sbi PORTB, 0  ; Disable Memory Device 
 ldi r16, $43 
 sts UDR1, r16  ; Send 'C' (Complete) 
DataSend2: 
 lds r16, UCSR1A    
 andi r16, (1<<TXC1) 
 cpi r16, 0   ; Check TXC1 to see if transmit compl ete 
 breq DataSend2  ; Loop until transmit complete 
 clr r16 
 sts secs, r16  ; Reset the 5 minute timer 
 sts Command, r16  ; Reset the command 
 ret 
 
; Precondition: Received 'S' to state that PC wishe s to send data to device 
; Postcondtion: Device accepts data and stores it i n memory 
DataReceive: 
; Send O.K to say can receive data 
 call ReceiveWait 
 sts Command, r16  ; Either 'I' or 'T' 
 cpi r16, $49 
 breq DataReceivea 
 jmp DataReceiveb 
DataReceivea: 
; Store thresholds 
 ldi r16, ILXH 
 sts LThresXH, r16 
 ldi r16, ILXL 
 sts LThresXL, r16 
 ldi r16, IUXH 
 sts UThresXH, r16 
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 ldi r16, IUXL 
 sts UThresXL, r16 
 ldi r16, ILYH 
 sts LThresYH, r16 
 ldi r16, ILYL 
 sts LThresYL, r16 
 ldi r16, IUYH 
 sts UThresYH, r16 
 ldi r16, IUYL 
 sts UThresYL, r16 
 ldi r16, ILZH 
 sts LThresZH, r16 
 ldi r16, ILZL 
 sts LThresZL, r16 
 ldi r16, IUZH 
 sts UThresZH, r16 
 ldi r16, IUZL 
 sts UThresZL, r16 
; Store date 
 ldi r16, ID0 
 sts ThresD0, r16 
 ldi r16, ID1 
 sts ThresD1, r16 
 ldi r16, ID2 
 sts ThresD2, r16 
 ldi r16, ID3 
 sts ThresD3, r16 
; Store Version Number 
 ldi r16, IVersionH 
 sts VersionH, r16 
 ldi r16, IVersionL 
 sts VersionL, r16 
; Store Serial Number 
 ldi r16, ISerialH 
 sts SerialH, r16 
 ldi r16, ISerialL 
 sts SerialL, r16 
 ldi r16, $58  ; Store XXXXX as Car # 
 sts Car0, r16 
 sts Car1, r16 
 sts Car2, r16 
 sts Car3, r16 
 sts Car4, r16 
 sts Car5, r16 
DataReceiveb: 
 ldi r16, $4F    
 sts UDR1, r16  ; Send 'O' 
DataReceive1: 
 lds r16, UCSR1A 
 andi r16, (1<<TXC1) 
 cpi r16, 0   ; Check TXC1 to see if transmit compl ete 
 breq DataReceive1  ; Loop until transmit complete 
 lds r16, UCSR1A 
 ori r16, (1<<TXC1) ; Reset the bit 
 ldi r16, $4B 
 sts UDR1, r16  ; Send 'K' 
DataReceive2: 
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 lds r16, UCSR1A    
 andi r16, (1<<TXC1) 
 cpi r16, 0   ; Check TXC1 to see if transmit compl ete 
 breq DataReceive2  ; Loop until transmit complete 
 lds r16, UCSR1A  
 ori r16, (1<<TXC1) ; Reset the bit 
 clr r16 
 sts races, r16 
 sts racecount, r16 
 lds r16, command 
 cpi r16, $49 
 brne DataReceive2a 
 jmp ReceiveStoreData 
DataReceive2a: 
; Get Threshold Data 
 call ReceiveWait 
 sts LThresXH, r16 
 call ReceiveWait 
 sts LThresXL, r16 
 call ReceiveWait 
 sts UThresXH, r16 
 call ReceiveWait 
 sts UThresXL, r16  
 call ReceiveWait 
 sts LThresYH, r16 
 call ReceiveWait 
 sts LThresYL, r16 
 call ReceiveWait 
 sts UThresYH, r16 
 call ReceiveWait 
 sts UThresYL, r16  
 call ReceiveWait 
 sts LThresZH, r16 
 call ReceiveWait 
 sts LThresZL, r16 
 call ReceiveWait 
 sts UThresZH, r16 
 call ReceiveWait 
 sts UThresZL, r16  
; Get Threshold Date Modfified 
 call ReceiveWait 
 sts ThresD0, r16 
 call ReceiveWait 
 sts ThresD1, r16 
 call ReceiveWait 
 sts ThresD2, r16 
 call ReceiveWait 
 sts ThresD3, r16 
 call ReceiveWait 
 sts Car0, r16 
 call ReceiveWait 
 sts Car1, r16 
 call ReceiveWait 
 sts Car2, r16 
 call ReceiveWait 
 sts Car3, r16 
 call ReceiveWait 
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 sts Car4, r16 
 call ReceiveWait 
 sts Car5, r16 
ReceiveStoreData: 
 cbi PORTB, 0  ; Enable the memory device 
 ldi r16, $06    
 call SPIComSend  ; Send write enable command 
 sbi PORTB, 0  ; Set latch 
 ldi r16, $02  ; Load write command and address 
 clr r17 
 clr r18 
 cbi PORTB, 0  ; Enable the memory device 
 call SPIComSend  ; Send Write command 
 lds r16, races 
 call SPIWrite  ; Clear races variable 
 lds r16, racecount 
 call SPIWrite  ; Clear racecount variable 
 lds r16, LThresXH 
 call SPIWrite 
 lds r16, LThresXL 
 call SPIWrite 
 lds r16, UThresXH 
 call SPIWrite 
 lds r16, UThresXL 
 call SPIWrite  ; Write X-thresholds 
 lds r16, LThresYH 
 call SPIWrite 
 lds r16, LThresYL 
 call SPIWrite 
 lds r16, UThresYH 
 call SPIWrite 
 lds r16, UThresYL 
 call SPIWrite  ; Write Y-thresholds 
 lds r16, LThresZH 
 call SPIWrite 
 lds r16, LThresZL 
 call SPIWrite 
 lds r16, UThresZH 
 call SPIWrite 
 lds r16, UThresZL 
 call SPIWrite  ; Write Z-thresholds 
 lds r16, ThresD0 
 call SPIWrite 
 lds r16, ThresD1 
 call SPIWrite 
 lds r16, ThresD2 
 call SPIWrite 
 lds r16, ThresD3 
 call SPIWrite  ; Write Modified Date 
 lds r16, Car0 
 call SPIWrite 
 lds r16, Car1 
 call SPIWrite 
 lds r16, Car2 
 call SPIWrite 
 lds r16, Car3 
 call SPIWrite 
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 lds r16, Car4 
 call SPIWrite 
 lds r16, Car5 
 call SPIWrite  ; Write Car # 
 lds r16, Command 
 cpi r16, $49  ; Determine if initialize 
 brne ReceiveComplete ; If not then done 
 lds r16, SerialH 
 call SPIWrite 
 lds r16, SerialL 
 call SPIWrite  ; Write Serial Number 
 lds r16, VersionH 
 call SPIWrite 
 lds r16, VersionL 
 call SPIWrite  ; Write Version Number 
 lds r16, ThresD0 
 call SPIWrite 
 lds r16, ThresD1 
 call SPIWrite 
 lds r16, ThresD2 
 call SPIWrite 
 lds r16, ThresD3 
 call SPIWrite  ; Write Date Version Loaded 
ReceiveComplete: 
 sbi PORTB, 0  ; Disable the memory 
; Transmit to PC to say receive is complete 
 ldi r16, $43 
 sts UDR1, r16  ; Send 'C' (Complete) 
DataReceive3: 
 lds r16, UCSR1A    
 andi r16, (1<<TXC1) 
 cpi r16, 0   ; Check TXC1 to see if transmit compl ete 
 breq DataReceive3  ; Loop until transmit complete 
 lds r16, UCSR1A  
 ori r16, (1<<TXC1) ; Reset the bit 
; Done 
 clr r16 
 sts Command, r16  ; Clear the command received 
 sts secs, r16  ; Reset the 5 minute timer 
 ret 
; Precondition: Data send expected 
; Postcondition: Data received and put in r16 
ReceiveWait: 
 lds r16, UCSR1A  ; Load r16 with the receive regis ter 
 andi r16, (1<<RXC1) ; Isolate the receive bit 
 cpi r16, 0   ; If not set then no new data 
 breq ReceiveWait  ; Wait for new data 
 lds r16, UDR1  ; Put received data in r16 
 ret 
; Precondition: Data to send put in r16 
; Postcondition: Data sent to PC 
TransmitWait: 
 sts UDR1, r16  ; Send Data in r16 
TransmitWait1: 
 lds r16, UCSR1A 
 andi r16, (1<<TXC1) 
 cpi r16, 0   ; Check TXC1 to see if transmit compl ete 
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 breq TransmitWait1 ; Loop until transmit complete 
 lds r16, secs 
 inc r16 
WaitaSec: 
 lds r17, secs 
 cp r16, r17 
 brne WaitaSec 
 ret 
.exit 
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Appendix J: Interrupts.asm 
; Interrupt Subroutine File 
;************************************************** ****************** 
; Precondition: Master Kill Switch Pressed 
; Postcondition: Pins 33-42 of the processor will b e brought low to 
;  shut down the vehicle 
MasterKill: 
 push r16  ; Save r16 and status register 
 in r16, sreg 
 push r16 
 ldi r16, $FF ; Set Pins 35-42 high 
 out PORTC, r16  
 sbi PORTE, 0 ; Set Pins 33-34 high 
 sbi PORTE, 1 
 pop r16  ; Return saved registers 
 out sreg, r16 
 pop r16 
 reti 
;************************************************** ****************** 
;************************************************** ****************** 
; Precondition: Two-step bypass button pressed 
; Postcondition: Flag in the switch variable is set  
TwoStepInt: 
 push r16 
 in r16, sreg 
 push r16 
TwoStepInt2: 
 in r16, PIND 
 andi r16, $02 
 cpi r16, $00 
 breq TwoStepInt2 ; Do not pass through until butto n released 
 lds r16, Switch ; Load Switch variable into r16 
 sbrc r16, STOnOff ; If two-step bypass button is n ot cleared branch 
 jmp TwoStepInt0 
 ori r16, (1<<STOnOff) 
 cbi PORTA, 4 ; Turn on the two-step bypass LED 
 jmp TwoStepInt1 
TwoStepInt0: 
 andi r16, ~(1<<STOnOff) ; Clear bit for two-step b ypass 
 sbi PORTA, 4 ; Turn off the two-step bypass LED 
TwoStepInt1: 
 sts Switch, r16 ; Store result back into switch 
 sbi EIFR, INTF1 
 pop r16  ; Return registers 
 out sreg, r16 
 pop r16 
 reti 
;************************************************** ****************** 
;************************************************** ****************** 
; Precondition: Test button pressed 
; Postcondition: Test Flag in the switch variable i s set 
TestInt: 
 push r16  ; Save r16 and status register 
 in r16, sreg 
 push r16 
 lds r16, Switch ; Load Switch register into r16 
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 ori r16, (1<<STest) ; Set the Test Flag 
 sts Switch, r16 ; Store r16 to Switch register 
TestInt1: 
 in r16, PINB 
 andi r16, $80 
 cpi r16, $00 
 breq TestInt1 ; Do not return until button release d 
 pop r16  ; Return saved variables 
 out sreg, r16 
 pop r16 
 reti 
;************************************************** ****************** 
;************************************************** ****************** 
; Precondition: USART interrupt received 
; Postcondition: Download Flag in Switch register i s set 
Download: 
 push r16  ; Save r16 and status register 
 in r16, sreg 
 push r16 
 lds r16, Switch ; Load Switch register into r16 
 ori r16, (1<<SDload) ; Set the Download Flag 
 sts Switch, r16 ; Store r16 to Switch register 
 pop r16  ; Return saved variables 
 out sreg, r16 
 pop r16 
 reti 
;************************************************** ****************** 
;************************************************** ******************* 
; Precondition: One Second has passed since last RT C interrupt 
; Postcondition: Variable secs will be incremented by 1 
RTCInt: 
 push r16  ; Save r16 and status register 
 in r16, sreg 
 push r16 
 lds r16, secs ; Load secs into r16 
 inc r16  ; Increment r16 
 sts secs, r16 ; Store new value to secs 
 pop r16  ; Return r16 and status register 
 out sreg, r16 
 pop r16 
 reti   ; Return 
;************************************************** ******************** 
;************************************************** ****************** 
; Safety interrupt 
Unused: 
 reti 
;************************************************** ****************** 
.exit   
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Appendix K: Test.asm 
TestRoutine: 
; Setup LEDs 
 sbi PORTA, 0 ; Turn off Pit Road LED 
 cbi PORTA, 3 ; Turn on Test Mode LED 
; Turn off download interrupts 
 clr r16 
 sts UCSR1A, r16 ; Set all the USART controls to 0 (will turn it off) 
 sts UCSR1B, r16 
 sts UCSR1C, r16 
; Turn off two-step bypass interrupt 
 cbi EIMSK, 1 ; Disable Two-Step Bypass Interrupt 
 sbi PORTA, 4 ; Turn it off if on 
; Reset Switch Interrupt 
 lds r16, Switch ; Load Switch register into r16 
 andi r16, ~((1<<STest)|(1<<STOnOff)) ; Clear the T est Flag and 
bypass flag 
 sts Switch, r16 ; Store r16 to Switch register 
TestLoop: 
; Perform Ignition Test 
 ldi r16, (1<<MUX0)|(1<<MUX1) 
 sts ADMUX, r16 ; Set for Ignition Test Pin 
 call ADCStart ; Perform Conversion 
 cpi r17, $03 ; See if high byte is greater than or  equal to $03 
 brsh TestLoop1 ; If greater than or equal to $03 t hen ignition is on 
 call SystemShutDown 
TestLoop1: 
 lds r16, Switch ; Load r16 with Switch data 
 andi r16, (1<<STest) ; Isolate switch test bit 
 cpi r16, 0  ; See if 0 
 breq TestLoop1a 
 jmp TestComplete ; If not then pressed and test is  done 
TestLoop1a: 
 clr r16 
 sts ADMUX, r16 ; Set to X-axis ADC channel 
 call ADCStart ; Perform conversion - result in r16 :r17 
 ldi r18, $03 
 ldi r19, $02  
 cp  r17, r19  
 brlo TestLoop3 ; If r17 is larger than r19 then Li ght On 
 brne TestLoop2 ; If r17 is not equal to r19 then b elow Threshold 
 cp r16, r18  
 brlo TestLoop3 ; If r16 is larger than r18 then Li ght On 
TestLoop2: 
 in r16, PORTA 
 ori r16, $37 
 out PORTA, r16 
 cbi PORTA, 0 ; Light on 
 jmp TestLoop ; Go back to start 
TestLoop3: 
 ldi r18, $F7 ; Load r18 and r19 with the lower thr eshold 
 ldi r19, $01 
 cp r19, r17  
 brlo TestLoop5 ; If r19 is lower than r17 then abo ve threshold 
 brne TestLoop4 ; If r19 is not equal to r17 then b elow threshold 
 cp  r16, r18 ; If same or higher then above thresh old 
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 brsh TestLoop5 
TestLoop4: 
 in r16, PORTA 
 ori r16, $37 
 out PORTA, r16 
 cbi PORTA, 1 ; Light on 
 jmp TestLoop ; Go back to start 
TestLoop5: 
 ldi r16, (1<<MUX0)   
 sts ADMUX, r16 ; Set to Y-axis ADC channel 
 call ADCStart ; Perform conversion - result in r16 :r17 
 ldi r18, $FC ; Load r18 and r19 with upper thresho ld 
 ldi r19, $01 
 cp  r17, r19  
 brlo TestLoop7 ; If r17 is larger than r19 then Li ght On 
 brne TestLoop6 ; If r17 is not equal to r19 then b elow Threshold 
 cp r16, r18  
 brlo TestLoop7 ; If r16 is larger than r18 then Li ght On 
TestLoop6: 
 in r16, PORTA 
 ori r16, $37 
 out PORTA, r16 
 cbi PORTA, 2 ; Light on 
 jmp TestLoop ; Go back to start 
TestLoop7: 
 ldi r18, $F0 ; Load r18 and r19 with the lower thr eshold 
 ldi r19, $01 
 cp r19, r17  
 brlo TestLoop9 ; If r19 is lower than r17 then abo ve threshold 
 brne TestLoop8 ; If r19 is not equal to r17 then b elow threshold 
 cp  r16, r18 ; If same or higher then above thresh old 
 brsh TestLoop9 
TestLoop8: 
 in r16, PORTA 
 ori r16, $37 
 out PORTA, r16 
 cbi PORTA, 4 ; Light on 
 jmp TestLoop ; Go back to start 
TestLoop9: 
 ldi r16, (1<<MUX1) 
 sts ADMUX, r16 ; Set to Z-axis ADC channel 
 call ADCStart ; Perform conversion - result in r16 :r17 
  ldi r18, $F8 ; Load r18 and r19 with the lower th reshold 
 clr r19 
 cp r19, r17  
 brlo TestLoop11 ; If r19 is lower than r17 then ab ove threshold 
 brne TestLoop10 ; If r19 is not equal to r17 then below threshold 
 cp  r16, r18 ; If same or higher then above thresh old 
 brsh TestLoop11 
TestLoop10: 
 in r16, PORTA 
 ori r16, $37 
 out PORTA, r16 
 cbi PORTA, 5 ; Light on 
 jmp TestLoop ; Go back to start 
TestLoop11: 
 in r16, PORTA 
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 ori r16, $37 
 out PORTA, r16 
 jmp TestLoop ; Go back to start 
TestComplete: 
 sbi PORTA, 3 ; Turn off Test Mode LED 
 sbi PORTA, 5 ; Turn off Test LED 
 ret 
.exit 
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Appendix L: Schematic 



Appendix M: Master Parts List 

(Please see next page) 



DragAid-MK – Drag Race Analyzer and Master Kill Switch 
Master Parts List – Rev. B 
Allison Smyth, Al Smyth & Frank Legassey 
December 23, 2008 
 

 
Design Team: 

 
Allison Smyth 
Frank Legassey 
Al Smyth 

 
asmyth@wpi.edu 
frank@portatree.com 
al@portatree.com 
 

# QTY Ref Value Description Dist. Part No. MFG MFG Part No. Unit Sub 
1 8 C1, C2, C3, 

C9, C10, C11, 
C14, C15 

.1uF CAP CER .1UF 50V 10% X7R 1206 Digi-Key 490-1775-2-ND Murata Electronics GRM319R71H
104KA01D 

0.02500 0.20000 

2 1 C4 10uF CAP 10UF 10V CERAMIC 1206 
X5R 

Digi-Key PCC2178TR-ND Panasonic-ECG ECJ-
3YB1A106M 

0.19336 0.19336 

3 1 C5 1uF CAP CER 1UF 50V X7R 10% 1206 Digi-Key 445-1423-1-ND TDK Corporation C3216X7R1H1
05K 

0.27500 0.27500 

4 1 C6 .027uF CAP 27000PF 50V CERAMIC X7R 
1206 

Digi-Key 311-1204-2-ND Yageo CC1206KRX7
R9BB273 

0.01750 0.01750 

5 1 C7 4.7uF CAP CER 4.7UF 50V X5R 1206 Digi-Key 399-5507-2-ND Kemet C1206C475K5
PACTU 

0.14900 0.14900 

6 1 C8 .39uF CAP .39UF 25V CERAMIC X7R 
1206 

Digi-Key PCC1890TR-ND Panasonic-ECG ECJ-
3YB1E394K 

0.11081 0.11081 

7 2 C12, C13 22pF CAP CERAMIC 22PF 50V NP0 1206 Digi-Key 311-1154-1-ND Yageo CC1206JRNP0
9BN220 

0.07700 0.15400 

8 1 C16 100uF CAP 100UF 50V ALUM LYTIC 
RADIAL 

Digi-Key P5182-ND Panasonic-ECG ECA-1HM101 0.29000 0.29000 

9 6 D1, D2, D3, 
D4, D5, D6 

_ LED OVAL NO FLNG ALINGAP 
AMBER 

Digi-Key 160-1621-ND Lite-On Inc. LTL5V3SSS 0.18080 1.08480 

10 7 D7, D8, D9, 
D10, D11, 
D12, D13 

-- RECTIFIER GPP 100V 1A SMD 
MELF 

Digi-Key DL4002-FDICT-
ND 

Diodes Inc. DL4002-13-F 0.49000 3.43000 

11 1 J1 _ 10x1 Inline header connector .025” 
contacts .100” spacing 

_ _ _ _ _ _ 

13 1 J2 _ JTAG pin header connector 2x5 .025” 
contacts, .100” spacing 

Phoenix HWS1334 _ _ 0.10800 0.10800 

14 1 J3 _ CONN USB RECEPT R/A TYPE B 
4POS 

Digi-Key A31725-ND Tyco Electronics 
AMP 

292304-1 0.67137 0.67137 

15 2 J4, J5 _ DC Power Connectors 2mm PCB 
JACK POWER JACK 

Mouser 806-KLDX-0202-
A 

Kycon KLDX-0202-A 0.19000 0.38000 

16 1 L1 10uH INDUCTOR FIXED SMD 10UH 
10% 

Digi-Key PCD1020CT-ND Panasonic-ECG ELJ-FA100KF 0.11646 0.11646 

17 1 Q1 _ TRANS PNP 20VCEO 500MA Digi-Key 2SB07790RLTR- Panasonic-SSG 2SB07790RL 0.23500 0.23500 
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MINI-3 ND 
18 6 R1, R2, R3,  

R4, R5, R6 
300Ω RES 300 OHM 1/4W 5% CARBON 

FILM 
Digi-Key 300QBK-ND Yageo CFR-25JB-

300R 
0.00855 0.05130 

19 3 R7, R9, R10 30K Ω RES 30K OHM 1/4W 5% CARBON 
FILM 

Digi-Key 30KQBK-ND Yageo CFR-25JB-30K 0.06400 0.19200 

20 1 R8 22K Ω RES 22K OHM 1/4W 5% CARBON 
FILM 

Digi-Key 22KQBK-ND Yageo CFR-25JB-22K 0.06400 0.06400 

21 1 R11 10KΩ RES 10K OHM 1/2W 5% CARBON 
FILM 

Digi-Key 10KH-ND Yageo CFR-50JB-10K 0.01222 0.01222 

22 1 R12 20KΩ RES 20K OHM 1/4W 5% CARBON 
FILM 

Digi-Key 20KQBK-ND Yageo CFR-25JB-20K 0.06400 0.06400 

23 10 R13, R14, 
R15, R16, 
R17, R18, 
R19, R20, 
R21, R22 

 
_ 

 
_ 

 
_ 

 
_ 

 
_ 

 
_ 

 
_ 

 
_ 

24 2 R23, R26 1KΩ RES 1.0K OHM 1/4W 5% CARBON 
FILM 

Digi-Key 1.0KQBK-ND Yageo CFR-25JB-1K0 0.05400 0.10800 

25 1 R24 4KΩ RES 4.7K OHM 1/4W 5% CARBON 
FILM 

Digi-Key 4.7KQBK-ND Yageo CFR-25JB-4K7 0.06400 0.06400 

26 1 R25 100KΩ RES 100K OHM 1/4W 5% CARBON 
FILM 

Digi-Key 100KQBK-ND Yageo CFR-25JB-
100K 

0.06400 0.06400 

27 2 SW1, SW2 _ Momentary Contact Switches  
(Not yet decided) 

_ _ _ _ _ _ 

28 1 SW3 _ Positive Action On/Off Switch 
(Not yet decided) 

_ _ _ _ _ _ 

29 1 U1 _ IC AVR MCU 64K 64TQFP Digi-Key AT90USB647-
16AU-ND 

Atmel AT90USB647-
16AU 

6.00000 6.00000 

30 1 U2 _ IC SRL EEPROM 512K 1.8V 8DIP Digi-Key 25AA512-I/P-ND Microchip 
Technology 

25AA512-I/P 1.74000 1.74000 

31 1 U3 _ IC ACCELEROMETER 3-AXIS 
16LFCSP 

Digi-Key ADXL330KCPZ-
RLTR-ND 

Analog Devices ADXL330KCP
Z-RL 

8.54145 8.54145 

32 1 U4 _ IC ACCELER 50G DUAL-AXIS 
8CLCC 

Digi-Key AD22285-R2CT-
ND 

Analog Devices AD22285-R2 13.81900 13.81900 

33 1 U5 _ IC VOLT REG FIXED POS SOT-
223 

Digi-Key 296-12290-1-ND Texas Instruments UA78M05CD
CYR 

0.18620 0.18620 

34 1 U6 _ IC VREF W/SHUTDN 5V TSOT23-5 Digi-Key ADR395AUJZRE
EL7CT-ND 

Analog Devices ADR395AUJZ
-REEL7 

1.95000 1.95000 

35 1 U7 - IC LDO V-REF 3.0V SOT23-3 Digi-Key 296-22643-1-ND Texas Instruments REF3330AIDB 2.38000 2.38000 
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ZT 
36 1 U8 _ PHOTOCOUPLER OPIC DGTL 

VDE 6-DIP 
Digi-Key 425-2205-5-ND Sharp 

Microelectronics 
PC900V0YSZ
XF 

1.17000 1.17000 

37 1 U9 - IC USB-TO-UART BRIDGE 28MLP Digi-Key 336-1160-ND Silicon Laboratories CP2102-GM 3.98000 3.98000 
38 1 U10 - IC BUFFER SGL OPEN DRAIN 

SOT353 
Digi-Key NL17SZ07DFT2

GOSCT-ND 
ON Semiconductor NL17SZ07DF

T2G 
0.48000 0.48000 

39 1 X1 32.768 
KHz 

CRYSTAL 32.768KHZ 6PF SMD Digi-Key 728-1004-1-ND Seiko Instruments SPT2AF-
6PF20PPM 

0.35000 0.35000 

40 
 

1 X2 8MHz CRYSTAL 8.000MHZ SERIES SMD Digi-Key XC1243TR-ND ECS Inc. ECS-80-S-
5PX-TR 

0.40500 0.40500 

 
 

         
Total: 

 
48.88 
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