Worcester Polytechnic Institute

Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2009
Crash Detection and Safety Shutoff Controller for
Race Cars

Allison P. Smyth
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

Repository Citation

Smyth, A. P. (2009). Crash Detection and Safety Shutoff Controller for Race Cars. Retrieved from https://digitalcommons.wpi.edu/
mgp-all/3556

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPL. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPL. For more information, please contact digitalwpi@wpi.edu.

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3556&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3556&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3556&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3556&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/3556?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3556&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/3556?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3556&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

DragAid-MK
Crash Detection Device
For Race Cars

Project Report

A Major Qualifying Project
submitted to the faculty of
WORCESTER POLYTECHNIC INSTITUTE
this 30" of April, 2009
in partial fulfillment of the requirements for the
Degree of Bachelor of Science

Submitted by:
Allison Smyth
Advised by:
Professor Stephen John Bitar

Table of Contents

TaDIE OFf FIQUIES ...ttt e e e e e e e e e e e et e et e e et e s e e e eeeaeeaeaeeeeeessnnsnes 4
JLIE= Lo (SN0) =1] = PP 4
R [o1 oo [F{ox 1 o o PP 5
2 Prior Art and General RUIES ... a e e e e e as 8
3 OBJECHIVES ...ttt e e e e e e e e e e e e 17
I R 1 gL = LI @] o =T o1 11V RSP 17
3.2 TECNNICAI ODJECHVES ... uueiiiii et e e e e e ettt s e e e e e e e e e eeeaeeeeeesssannnnnns 19
4 DEeSION APPIOBCH ..ottt e e e e e e e e e e e e e 21
4.1 PoOWeEr SUPPIY MOAUIE......eeeei ettt e e e e e e e e e e e e e e eeeaenannnns 21
A.2 INPUEIMOAUIE ... s e e e e e e e e e e e e e et e e et s e e e e eeeeaaeeaeeeeeeeensssnnnnns 23
G IS 1= {0) g Y, o o (1] LR 24
4.4 Signal ConditioNiNG MOAUIEuueeiiii e e e e e e 24
|V 1= T g L] 2N 1Y/ o T UL RSP 26
I @ (o Tod g Y/ o T U] 26
4.7 Programming MOAUIE ... e e e e e e e e e e e e e e e 27
B o Tt X1 T o 1Yo To L1 = RSP 27
4.9 OULPUL MOTUIE ...ttt e e e e e e e e e e e e e e e e e e 29
4.10 CasSiNgG MOUUIE ...ttt ettt e e e e e e e e e e e e e e e e bbb 30
5 SYSteM CONSITUCTION ..eeeeeiiiiitieee e et e e e e e e e e e e e e e e e eeeaa e s e e e e eeeaeaeaaeeeeeenesnnes 31
5.1 POWET SUPPIY CIFCUIT....coeieeiiiii ittt e e e e e e e e e e e e e e e e e e e aans 31
A=Y 1Yo o U | U 37
o0 T 1] 11 O o | SRS 41
5.4 MeMOIY MOUUIEttt et e e e e e e e e e e e e e e e ne e 44
SIS T O [Yo 1Y/ 0T | 46
5.6 Processing and JTAG MOAUIEuuuuiiiiiiiieiiie e e e e s 48
5.7 Output MOdUIE CONSIIUCTION ...eeeieiiieeieiee ettt e e e e e e e e e e e e 51
5.8 FINMMWAIE DESIGN ... iiiiiiiii ittt e e e e e e e e e e et e e e bbbt e et e et e et e e e e e e e aaaeaeeaaaanans 52
5.8.1 RollOverDevice (Main FUNCHION)uuuuiiiiiie e e e e e e 53
RS T2 o]0 1 gT0] o F= 1] o o IO PSP 60
LTS TRC TN o 1Y/ o1 [T= To = T o R 63
IR I N | 01 (=T ¢ (U] o ES = T 1 o PP 67
RS TR T I =T HR- L 1 o PP UPPPP PR SPPPPRTIN 68
5.9 SOMWAIE DESIGN ...ciiiiieiiie ettt et et ettt e ettt et e e e e e e e e e e e e e e 69

5.10 PC BOAIT DESIGN. ...ttt e ettt ettt e e e e e e e e e e e e e e s s e e e e e e e e e e e e aeeas 73

Y £S3 (= 0 T I = 1T PP 77
L I I O 1o L A = PP 77
LAY (o] o IO | o I =] RSP 77
6.3 EEPROM (SPI) CIrCUIL TOST...ciiiiiiieiiiiiiiiiii ittt ettt e e e e e e e e e e e s e s s eeaeaaaaaeeeeas 78
6.4 Accelerometer (ADC) CirCUIt TEST......oiiiiiieiiiiiiiiie e e e e e e e e e e e e e e e e e eeeaeannnns 78
6.5 Real TIMe ClOCK CIFCUIT TOST ...uuuuiiiiiiii e e e e e e e e e 79
O LU ST = O] (o U1 I PP 79
6.7 FINAl FINMMWAIE TOST ... eiiiiiiiiiiiieee et e et e e e e e e e e e e e e e e s e s s s s bbb et e e e eeaeaeaeeas 82

A U | (01 (= TP PPPPT 87

S T o [od U1 o] o I PPPPPPPRRUPURTRT 89

S (=T =] [TP 91

APPENTIX A: LED TESE COUR.. ..ttt e e e e e e e e e e e e e e e e e nnnes 92

Appendix B: SWItCh TEST COUE.........ccoieieeeeiieie e e e e e e e e e e e as 93

Appendix C: EEPROM (SPI) TESt COUEuuiiiiiiiiiii et e e e e e e 94

Appendix D: Accelerometer (ADC) TESt COUE........uuuuiiiiiiiiiiiiieieee e 97

Appendix E: Real Time CIOCK TSt COUE.........ccciiiiiiieeeeee e 100

APPENIX F: USB TSt COUEcoeiiiiiieeeeeeee e s e e e e e e e e e e e e e e e e e e eeaaeaa e as 101

Appendix G: RollOverDevice.asm (Main COUE)........cccuuuuruiiiiiiiiiieiiie e 103

APPENTIX H: COMIMONLBSIM ...ttt ettt e e e e e e e e e e e e e et b bbb e e e e e et e e e e e aaeeaeaeaaaaaans 115

P o] o L=T gl [ha B L0111V o1 (o = To IR T o ISP PPPUPRRRR 119

APPENTIX J: INTEITUPTS.BSIMN ..ottt e e e e e e e e e e e e e et r e e e e e e e eeeas 128

APPENAIX K TESEASIM ..ttt e e e e e e e e e e e e e e e bbbt e e e e e e et e e e e e e aaeaeaaaeeaaaaaana 130

APPENIX L: SCREMALIC........iiieeeeeeee e e e e e e e aeaeaes 133

APPENdIX M: MASEEI PaArtS LiSt.......cooiiiiiiiii e e e e e e e e 134

Table of Figures

Figure 1: Race Car Control PAneloiiiiiiii st a e e e e e e e ee e 8
Figure 2: Ford Blue Box and Resulting Chassis SImulationcccccceiiiiiiiieee 11
Figure 3: Electrimotion Safety Shutoff Controllerccooooe i, 12
Figure 4: Analog DeVviCes Crash SENSOIS.cccciiuiiiiiiiiiiiiie ettt e e 14
Figure 5: System BIOCK DIagram...........oiiiiiii it e e et s e e e e e e e e aaaaees 21
Figure 6: Power Supply Module — Power INput CirCUItIYcooiiiiiiiiiiiiiiieeeeeeeeee e 32
Figure 7: Power Supply Module - 3 VoIt Referenceoooovvviiviiiiiiiiiieeeeeeeeeeeee 32
Figure 8: Ignition and Battery Voltage ChecCKuuuiiiiiiiiiiiiii e 36
FIQUrE 9: ADXL278 CIICUIL.......ceeeeeiiiiiiiiiei e e e e e e e e e e e e e ettt e e e s e e e e e e e e e e e e e e eeaaeaaa s e e e e aaeeaeeeaees 37
FIgure 10: ADXL33B0 CIICUIL.uuueieeeieieiitieee annnenennbeeeees 38
T T L= I g Y 1 (o] | U 40
Figure 12: Momentary Contact and Positive Action SWItChes..............oo i 41
Figure 13: Momentary Contact Switch and Two-Step INPUt.............ceiiiiiiiiiiieeee e, 42
FIQUIE 142 USB CIICUIL ...ttt ettt e et e e e e e e e e e e s e et e e e e e e e e e eeeeeas 43
Figure 15: CP2102 Breakout BOAId...........cccoiiiiiiiiiiicieeeeese st e e e e e e e e aea e 44
Figure 16: EEPROM CIrCUIT......coiiiiiiiie ettt e e et e e e e e e e e e e e e e e e e e aannaes 45
Figure 17: Data RUN CalCUIAtiONuuiiiiiiiiei e e e 46
Figure 18: Real TIMe CIOCK CIICUIL........oiiiiiiiiiie e a7
Figure 19: 8 MHZz EXternal CIOCK..........ouuuiiiiiii s 48
Figure 20: ATOOUSBGBA7 PiN OUL........uiiiiiiiiiiiiiiieeee et e aanns 49
T T L= 2 gl I I I G o U SO 51
Figure 22: Shutoff Signal CIFCUITIYuuiiiiiiiieiiiiiieee e e e e 52
Figure 23: Main FUNCtion FIOWCHAItuueeiiiiiii e 54
Figure 24: System Shut Down Function FIOWChart..............cooiiiiiiiiieeeeee e 62
Figure 25: Vehicle Shut DOWN FIOWCHAITouuuiiiiiiiiiiiec e 63
Figure 26: Download Subroutine FIOWChart..............oooiiiiii e 64
FIQUIE 27: TEST SUDIOULINE......uiiii it e et e e e e e e e e e e e e e e e e e enesaa s 68
Figure 28: SOftWare MaiN SCIEEM ..ottt e e e e e e e e e e e e e e e e e e e 70
Figure 29: Software Help SCIrEENcooo i e e e e 71
Figure 30: Software Car SEIECT SCrEENcoii i 71
FIQUIE 31: VIEW RUN SCIEENo e et et e e e e e e e e ettt s s e e e e e e e e e e e e aeeeeeaaanssaan s 72
FIQUIE 32: UPUALE SCIEENMN... ..ttt e ettt et e e e e e e e e e e e e e s e nbbannnenees 72
FIQUrE 33: INILIAl PCBo et e e e e e e e aaaaeeaees 73
Figure 34: FINal PrOJECE PCB......ooiiiiiiiiiiii ettt e e e e e e e e e e e as 74
Figure 35: Printed Circuit Board LAYOULooeiiiiiiiiiiiiieii e e e e e e e e e e e eeeees 75
Figure 36: USB TeSE SOMWAIEuiiiiiiiiiiiiiiiee ettt e e e e e e e e e 80
Figure 37: Initialize TeSt PrOQIramccccee i e e e e e e e et e e s e e e e e e e eaaaeeeeeeennee 84
Table of Tables

Table 1: Table of Circuit Current CONSUMPLIONooiiiiiiiiiiiiiiiie e e e e e e e ea e 33
Table 2: Bandwidth Capacitor SEIECHIONoooiiiiii e 39

1 Introduction

Since the foundation of drag racing and motorsports events in gahbes been the goal of the
sanctioning bodies, drivers, and racing crews to create thesfavoving vehicle that can be
operated as safely as possible. Different types of raciagte feature different types of cars,
which each have different vulnerabilities and strengths in termsaf#ty and performance.
While this is true, it can be recognized that all racing vehiblave two similarities that are also
vulnerabilities. The first susceptibility is their ignition deetrical system, and the second is
their fuel. The combination of these two systems leads to potewtmlitions for fire and

explosion.

Over the past few years, efforts have been made, espeuistly professional categories of drag
racing, to reduce the number of injuries and fatalities sustamntxisport. Last year, Ford Blue
Boxes were mounted in all cars of the professional classesler to monitor the g-force levels
that the car and driver sustain during a race. Enclosed professiemales (such as the
National Hot Rod Association — NHRA — funny car class) alsorpmrate a Halon system,

which is intended to quickly extinguish fires from the cockpit of the race vehicle.

After the most recent tragedy in the NHRA funny car cléss, Electrimotion Safety Shutoff
Controller was also mandated in professional categories. Thiobensenses a manifold burst
panel failure and simultaneously activates the fuel shut off, shitgrofion, and deploys

parachutes of the vehicle. While these efforts to create ssfe cars have been good initial
steps to making the sport safer, more work remains to be done. &hevhere the most

vulnerability currently lies is in the area of sportsmen drag racing.

In general, there are two divisions in drag racing: sportsmmsh professionals. The
professionals are those seen at televised events and include ltheomsl drivers of the sport.
The sportsmen are those individuals who race for fun on the weeketiasrdocal track or at
NHRA and IHRA sanctioned events. While rules exist to ensursatety of sportsmen drivers,
very little has been done in terms of electrical safetjogs to aid in their protection. Although

these racers do not reach the same speeds as professional thisie cars are still fast enough

to warrant the use of crash detection and fire prevention deviagsen@y, no such devices are

mandated in the sportsmen categories.

For this reason, it was decided that a crash detection systéom combines the better features
of systems used by professional racers with features #aieaessary for sportsmen, would be a
very beneficial product. Instead of focusing on detecting pauréai) which is the leading cause
of accidents in professional categories, this device would focus®@deat detection and fire
prevention, which are the two leading causes of injury and death in sportsnmgn racgeneral,

it aims to protect the driver in accidents involving two cars striking one anetlar striking the
wall of the race track, or a car rolling over during a race. It is hopedhihaidded safety of such
a device will reduce the number of injuries in sportsmen racingaadreduce the number of
injuries to safety personnel who risk their lives trying to save racers whdeawein accidents.

In this way, the design for the DragAid-MK crash detectionesyswas first created. The
DragAid-MK is a data analyzer and master kill switch farergars. It is designed to monitor
and record the g-force levels that a race car sustains throughaatutfse of a race. In this way,
it is similar to a Ford Blue Box. While it is recording aathe device is also comparing the g-
force levels received to pre-specified g-force safety bimlels. When the g-force levels exceed
the safety thresholds, the DragAid-MK will automatically shdittbé ignition system and fuel
pump of the vehicle (as does the new Electrimotion device for profedstategories). These

actions will eliminate the sources of spark and fuel that could lead to a five rade vehicle.

Although the DragAid-MK is designed for use in the sportsmen caésgof drag racing, its
unigue design from other crash detection systems would also makelwable addition to the
safety systems of professional drag racing and other types of racingasaved. t would most
likely be beneficial in NASCAR and formula one racing wheskisions with the wall and roll-
overs often incapacitate drivers and prevent them from properlyirghatbwn their vehicles.
Once it is proved in the racing industry, it could also be adaptedss®ipger vehicles for daily
use. Although driver incapacitation is less likely in passengerollisions, the risk of fire is
still great. Often drivers do not realize the damage sustaigethd)r vehicle following a

collision, which results in them leaving their car idling or potdiyticontinuing to drive. This

behavior makes fires more likely. A safety device such a®thgAid-MK would prevent this

kind of post-accident behavior.

As of right now, the DragAid-MK is a completely functional datguisition system and g-force
monitor. It has the capability to turn off the ignition and fuetesysof a vehicle when g-forces
exceed thresholds set by the user. Although all functionality nesgents set forth for the
DragAid-MK during this project were met, there remains toskgmificant work before this
device is suitable to be sold in the racing industry. Most improntsmavolve making the
product easy to use for racers. These adjustments will beteasake, since the basic
functionality of the device has already been proven. After theseesm@&nts have been made,
the device should also be thoroughly tested on an actual race vehittetyple of testing is not

possible until late spring or early summer when race tracks reopen forathe ye

Overall, through research it was found that a crash detectionedswah as the DragAid-MK
would be extremely beneficial to race car drivers in all divis of motorsports. Although the
current device is targeted toward sportsmen racers of draggraticould easily be adapted to
almost any type of racing or even passenger vehicles. Aghdf now, the DragAid-MK is
completely operational. All project goals were met, and thecdesould technically be mounted
on a race car and function as intended. In the future, work will be cenduncorder to make
the DragAid-MK PC software more user-friendly such that saeell be more willing to use the

DragAid-MK to enhance their safety.

2 Prior Art and General Rules

Before designing the DragAid-MK, research was conducted in order torgeesf products that
involved ideas similar to the DragAid-MK existed. It was knowrt thdevice exactly like the
DragAid-MK or with the same purpose of the DragAid-MK was awailable at the time;
however, it was hoped that similar devices could be found in orderitoidgas for the
construction of the DragAid-MK. From the prior art research, sfwgvices were found that
could be used as models for the DragAid-MK. These devices af@l@ass: fuel shut off
systems in motorcycles and racing bikes, the Ford Blue Baxlashut off system designed by
an Australian inventor, air bag deployment systems, and the iEletitn safety device.
Research was also conducted regarding the rules of the two saaictioning bodies of drag

racing in order to determine if there would be any restrictions on an elecsafety device.

Before research was conducted on systems that would make suitathts for the DragAid-
MK, the current operation of race car shutdown controllers was redievAs of right now, a
sportsmen race car contains one master kill switch on the outsithe ekhicle as well as a
control panel within the race car. The control panel within thecgatains individual switches
for each device electrically powered in the race car. Figusbows a diagram of a standard

control panel.

MORGST

Figure 1: Race Car Control Panet

The kill switch on the outside of the vehicle is not accessiblleetariver within the race car. It
is meant for use by the starting line crew who can shut eftén if they detect a problem with
the vehicle before the race begins. Although this is a useful sideice, it does not aid a racer

if a problem occurs once the race has begun.

! http://www.moroso.com/catalog/categorydisplay.asptode=77191

8

The control panel on the inside of the car contains the same aslityge master kill switch;
however, as can be seen in Figure 1, there are often sewgéicies that must be pressed to turn
off the entire car. During an accident, a racer may be auitgped and therefore unable to shut
off all items on the control panel. In the excitement of andaadj it is also possible for a racer
to forget or be unable to press the switches that need mgbked to turn off the vehicle. For
these reasons, an electronically controlled master kill svataih as the DragAid-MK, which
could automatically control the shut off of all sources of sparklapid ejection within the

vehicle, would be a beneficial improvement to the current control systems icarace

The first item researched in regard to electronic safgdtems available on the market was the
fuel shut off systems in motorcycles. This was suggested udy iy Frank, one of the co-
developers in the project, who owns a Suzuki motorcycle. He statdhtbikes designed for
high speed racing and cornering there are often sensors to ifletectider has fallen off the
bike. When the system detects an accident it shuts off the bued'system so that it will
eventually run itself out of fuel and shutoff. While this safetdee is relatively well known, it

was very difficult to find information regarding its actual operation.

Through various articles and motorcycle forums, it was eventdalipd that the product
operated through the use of a tilt sensor, which is mounted in thehfradtight of most bikeS.
When the sensor detects that the bike is at a certain angléHeognound, it assumes the driver
has fallen from the vehicle and shuts down the fuel injection systéar motorcycles, a tilt
sensor is a very proper choice for accident detection, due to thhdhevhen the rider falls, the
motorcycle will always tip to one side or the other. While ¢i@sice works well for motorcycle
crash detection, it would be more difficult to adapt to a rame @lthough it would provide
detection for roll-over accidents, it would not detect accidentsinkiatved collisions between
two cars or with a wall. For this reason, the tilt sensohotef accident detection was not
chosen for implementation of the DragAid-MK.

2 http://www.fireblades.org/forums/honda-rc51/48382sensor.html

9

Research on safety in racing motorcycles led to increasedroésin the online forums of the
National Hot Rod Association (NHRA). The NHRA is the largesbctioning body in drag
racing; therefore, it was believed that they would provide the mfwstnation on safety devices
for race cars. From this forum, information on the Ford Blue Bowdich are now mandatory

in all professional categories, was obtained.

In March of 2007, Eric Medlen, a young professional driver of John Forcediavas involved
in a fatal accident at Gainesville Raceway Park in Gailies\lorida. The accident was
initiated by a tire of his vehicle going flat during practicéhe equilibrium of the car was
disturbed, and it resulted in severe tire shake. This shake causezhidéddiad to be pounded at
enormous forces against the roll cage of his car. He died frewersible brain damage. After
this tragedy, John Force put Ford Blue Boxes in all of his veharldsstudied the information
gathered from these devices after every round. He was deéstio prevent an accident such

as this one from occurring ever again.

Ford Blue Boxes were originally designed by the Ford Motor Company for use @hamp Car
World Series. While developing the Blue Boxes, Ford’s racing dwiflirther created a Safety
Research and Development group that is responsible for aiding t@aamalyzing the data
obtained from the Blue Boxes. A Ford Blue Box operates by coltedata through sensors
actually in the Blue Box, but also by recording data from acosleters that are placed in the
ears of the driver. From this information, computer modeling is ceteglin order to determine

the forces the driver and chassis are under during & race.

When a crash occurs, raw data from the Blue Box are analyned alith medical reports,
photographs, and video. From this information, a CAE model of the dnsgatel the racecar
cockpit is developed in order to recreate the accident through comgiotatation. This
research was used to predict responses and injury potentials ts dniv@gh g-force impacts.
The results are then compared to the actual response and plegsiddaion of the driver from
the medical reports. Figure 2 shows a picture of the Ford BlueaBoxell as a simulation
conducted in the Funny Car Class of the NHRA.

3 http://www.zercustoms.com/news/Ford-Blue-Box-Oi-2008-NHRA-Nitro-Cars.html

10

Figure 2: Ford Blue Box and Resulting Chassis Simation*

Although the Ford Blue Box is a good example of a data acquussiyistem, it would not work
as a crash detection system, which is what the DragAid-$vit€ing designed for. However, the
Ford Blue Box did lead to further research into accelerometershwirere determined to be a

very reliable method of accident detection.

Another device that was found through searching the forums of the NW&Athe new
Electrimotion device invented for Top Fuel Funny Cars. WherareBevas first conducted into
the prior art of crash detection, the Electrimotion safety dedi@ot exist. It was developed in
early September of this year due to an accident that occurrateidune 2008 at Englishtown
Raceway Park. During this event, Funny Car driver, Scotttialicar exploded at the 1000 ft
mark of the track causing the parachutes and body of the caimtedrate. The Halon system
was activated after the explosion, but since the body of the vetasao longer attached to the
car, it was completely ineffective. It is assumed thatttaivas knocked unconscious by the
explosion for the car never slowed as it approached the end ofdke &dinal explosion when

the car shot off the track is believed to have ended Kalitta’s life.

The Electrimotion Safety Shutoff Controller was designed byeDawahy of Electrimotion, a
company that specializes in electronic control systems. gisdsearlier, the controller senses
manifold burst panel failure and simultaneously activates the fuebf, shuts off ignition, and
deploys parachutes of the vehicle. The device was testesvbyak Nitro Funny Car teams and
made mandatory by the NHRA within two races after its intradnc Although this device will

aid in fire prevention in the professional nitro-methane classesll ihot aid sportsmen racers

* http://www.zercustoms.com/photos/Ford-Blue-Box-81h2008-NHRA-Nitro-Cars/Ford-Blue-Box-2008-NHRA-
Nitro-Cars-1.jpg.html
http://www.myrideisme.com/Blog/ford-and-nhra-team-on-safety/

11

whose cars do not have a manifold burst panel. Therefore, the getesabfi this safety

controller is what is desired for sportsmen racers; howevedeggyn will have to be altered to
better suit the needs of a sportsmen vehicle. A diagram of dugriglotion device has recently
become available. This is currently the only figure availabldhefdevice. It can be seen in

: 5
Figure 3:
s . Input Source
Top Fuel Safety Shutoff Controller Air 0-200psi
Port 1
Air Powered Fuel
- - Shut off valve port 2
- Air Powered Chute
- Release valve port 2
Iznition Power Source:
This will power the
MSD 8971 box.
|] - ‘ Burst Panel:
| = 1 Activates when the tether is pulled or
Power In 10 ft Extension circuit is opened.
Cable.

—_.- e
= 'J 3
Driver Button A 67 Manifold Tether ‘
‘ Air Activated Switch: Tether Anchor
Cable Hold
Down Wamning!!! When the blower 1s banged. replace the

tether. Also carefully inspect both the anchor and the
extension cable and check the system for proper
operation

Figure 3: Electrimotion Safety Shutoff Controller®

After searching through the NHRA archives, research v&s eonducted outside the racing
industry in order to determine if a device existed for passewnghicles that would be a good
model for the DragAid-MK. The first system found was the Veh®déety Shutdown System
invented by John Quee of AustrafiaThis system is composed of two devices that are intended
to reduce the risk of fire in a vehicle during an accident. Qeeegnized that the two major

causes of fire during an accident are the ignition systemnzongj to run and the fuel injection

® http://www.nhra.com/story/
® http://www.zoomerdaily.com/?tag=shutoff-controller
" http://www.carcrashfires.com/index.html

12

system continuing to pump fuel to the motor. He designed the ¥eBatety Shutdown System

to eliminate the risk from these two systems.

The Vehicle Safety Shutdown System created by Quee is compbsed devices, which are

designed to stop fuel and spark from becoming united after an ackateatcurred. The device
is electromechanical in nature. Its diagnostic system igpoeetd of accelerometers (electric
sensors) which are designed to detect impact from any sithe ekhicle. After an impact has
been detected, the diagnostic system sends signals to theewmiamtcal pieces of the vehicle

shutoff device.

The first mechanical device of the shutdown system is the liueb® valve (FSV). The FSV is
responsible for blocking the flow of the fuel from the fuel pump, zerthegvorking pressure of
the fuel system from the fuel pump to the engine, and converting theystem from high
pressure to a vacuum, which then creates negative pressure. Thafdafwepressurized fuel

system is ruptured, the fuel will be drawn back rather than sprayed over a hot engine.

The second device of the Vehicle Safety Shutdown System is tiegybigolation unit (BIU).
This is responsible for cutting the supply of electricity to thhiale’s ignition system and
severing the power supply (battery) from the entire vehicleofA3ctober 2008, Quee’s Vehicle
Safety Shutdown System has not been adapted to any vehicles mardfacthe United States
or abroad; however, it appears to be a viable solution to prevdiméagn automotive accidents.
A diagram of his device is not available at this time sincetenphas not been awarded to him,

and he wishes to keep his design private.

The DragAid-MK will operate similarly to Quee’s device; howewblere are a few differences
that will hopefully make it more reliable for race cars. Thet change is that it will use
electronic shutoffs rather than the mechanical shutoffs thatsae in Quee’s system. Although
this will not create a vacuum in the fuel lines as does Qugstem, it has other advantages in
terms of response time, which are necessary in a racing impacthermore, the DragAid-MK
will also be a data acquisition system, which will allow raderadjust the shutoff thresholds to

best meet the needs of their vehicle.

13

Another system that was reviewed was air bag deploymergnsysivhich are now mandatory
on all vehicles manufactured or sold in the United States. Thesens currently use a
combination of accelerometers and gyros in order to determihe ddr has been in an accident.
The gyros are used to detect vehicle rollovers. They sense cimatiig®ver time. The major
manufacturer of accelerometers for car companies is Analog@&ewhose IMEMS technology
is far advanced over the competition. These sensors are able Kty gigitect and send signals
to a controlling system after an accident has occurred. A debleck diagram of a crash

detection system that relies on Analog Devices’ sensors can be seen indEigure

Senzor
ASIC

\J

Laft Side

o -

Right Side

- o

Figure 4: Analog Devices Crash Sensots

Experiments are currently being conducted into new accident idetgethniques for air bag
deployment systems since these systems are extremégldio time. One new method being
investigated is detection of accidents through observing the flestialg in the vehicle through
magnetic plate. This system is very promising for air bag systems, sinaéligive more time
for air bag inflation, which will reduce injuries to occupants of Wiehicle. This system of
accident detection may not be as effective in race cars passenger vehicles for several

reasons.

8 http://www.analog.com/en/automotive-solutions/braetection/applications/index.html
® www.mathworks.com

14

The first reason is that this system of accident detection relies oninlgt&cesses or crushing of
the chassis of the vehicle. Race cars, in general, undergo trese than normal passenger
vehicles. This would put them at risk of falsely triggering seniwat rely on chassis stress. For
this reason, the new techniques of accident detection would not be apprépriaace cars.
Furthermore, detection of this type would require drivers to completelesign their cars in
order to add the stress detection sensors. Racers tend tachgjeges that appear too large or
complex. They would especially be against a product that requirext ofgnges to their race

car.

Although the new methods of air bag deployment are not appropriateef@ragAid-MK, the
older methods of using accelerometers and gyros was very beheffolanation to obtain.
From this research, it was decided that Analog Devices aocosd¢ers would be the most
appropriate sensors to use. Research was also conducted intgraBeofyAnalog Devices;
however, it was decided that these sensors would not be necesstimy fmragAid-MK. It is
believed that rollover detection can also be completed through informaadllected from the

accelerometers.

After the prior art of accident detection was fully reviewdsd tules of the IHRA (International
Hot Rod Association) and NHRA were observed in order to make surehii@ were no
restrictions present on electronic safety control systems. rdlebooks of both sanctioning
bodies were found to be very similar. A summary of the twa folows. The rulebooks were
mostly concerned about cheating via electronic systems. Thent egjy electronic system that
in some way connects to the track or the track timing systéith.data recorders must be
activated by a separate switch and cannot display information tittee during a run. In order
for a new device to be accepted it must be presented to the tédiffiicals of both sanctioning
bodies before an event. In general, both bodies state that theylavillaatlevice that promotes

safety with few questions as long as it can be proved to be fully functional.

In summary, research was conducted into many areas of acaddeection and prevention.
From this research, it was possible to show that an electrofety sshut off system for

sportsmen race vehicles would be a very beneficial addition teitiq@e control panel that is

15

currently used. Further research unveiled several ideas that wolldldfal in the design of
such a system. As could be seen from the research, a deeg@aloexist in racing or general
automobile manufacturing that combines the features that withddeded in the DragAid-MK,
electronic shutoff device. For this reason, it is believed thaDtagAid-MK will be a unique

yet appropriate solution to the problems faced by sportsmen racers.

16

3 Objectives
In order to ensure that the DragAid-MK would meet the needs ofsspen racers, an objective
or goal list was created. The list was separated into twe: ggeneral objectives and technical

objectives. The sections below provide a summary of each of the objective lists.

3.1 General Objectives

The first objective created was that the DragAid-MK should beelantronically controlled
master kill switch that also incorporates a data acquisitiotersys The device is intended to
detect accidents that include vehicle roll-overs as welldes &iont, or rear impacts. The data
acquisition system of the device is intended to help racers deterappropriate g-force
thresholds for proper accident detection in their vehicles. In oodeview the data gathered
through the acquisition system, the device should have a PC intevfach, will allow the user

to download the race data from the device.

The software for the DragAid-MK should be a user-friendly progthat will easily allow a
racer to adjust the shutoff thresholds for his car and then semdtththe DragAid-MK. It is
hoped that this program will eventually aid a driver by suggestwsgible thresholds that would

suit his vehicle. In the future, it will also prevent inappropriate thresholds frorg belected.

The device should be easily testable by National Hot Rod Assati@HRA) and International
Hot Rod Association (IHRA) technical officials. The device should providsplsiway for the
NHRA and IHRA to verify its operation. This process must be qaic#l reliable because
technical officials have limited time to review all racéhiates before the start of an event. It
may be decided in the future to create simulation softwareeébmical officials, which will also
test the operation of the DragAid-MK.

A very important objective is to make the device adaptable typdktof cars. This includes all
possible models of vehicles in the sportsmen categories (dragststs door cars), but it also
means professional race cars as well as race vehicleseuwofsdrag racing. This device was
found to be unique in all types of racing; therefore, there is potehéiait could be adapted

beyond sportsmen categories of drag racing to other types of racing uiuhe f

17

The device should be manufactured with a durable case. This wiltiptiageelectronic circuitry
and sensors from any type of accident that the vehicle may undérge device in general
should be capable of shutting down the ignition system and all elecsystems of the vehicle
when an unsafe condition is detected. It should also shut off liquid gnolpding the fuel and
water pump of the vehicle when an accident is detected. AlthbegbragAid-MK is designed
to automatically shut down the vehicle it is mounted on, it shoutdrelge a manual control that

will allow the driver to shut down all critical systems in case of an emeygenc

The final specification that was identified for the master $itch is that it is not a wireless
device. All connections within the device and to the vehicle the elévicontrolling should be
physical connections. Although wireless is very reliable, thegemany sources of interference
in a race car that could cause problems to a wireless sys$tarthermore, wireless systems are
more subjective to external tampering, which would be extremetiyntental in a device that
controls the operation of a racecar. It is important thaigidlads sent to shut off the vehicle are
sanctioned by the device, and not external signals sent by one racer aseengeard another.
It may not be possible to prove that such tampering occurred withidetriee, which would
lead to doubts as to the functionality of the device. This would undeth@nacer’s confidence

in the system as well as potentially cause the racers to stop using the syste

The specification for no wireless in the system also includes tdatsfer to a PC. In general,
racers are mechanical minded individuals. They do not understandreilestnd prefer to find
mechanical solutions to their problems when possible. For this reAgynoften have trouble
setting up electrical systems of any type. It is belethat setup of a wireless system would
cause them more trouble than benefit. It would also be moreudtiffac troubleshoot problems
that may occur if racers use wireless data transferth Wis in mind, wireless data transfer to a
PC will not be included in this version of the DragAid-MK; however, in future versiorssidia
may be considered.

18

3.2 Technical Objectives

The technical objectives provide more detail as to the operation antluotios of the device.
In general, they are an elaboration and usually quantitative destrgitthe general objectives
of the device described in the previous section.

The DragAid-MK should provide at least 5 auxiliary kill or shut siffnals to the vehicle. It
should also provide at least 1 master kill or master shut off Isigrthe vehicle. These lines
should easily connect to the fuse panel or relay panel of the vétecleragAid-MK is mounted

on, and lead to the shut off of the ignition system and fuel system of the vehicle.

The DragAid-MK should contain sufficient memory to record attl8asins worth of data. This
is an improvement over the 1 run worth of data that it was orlgie&pected to hold. The data
the DragAid-MK collects is no longer required to have a titaeap associated with it; however,
the g-force information that it saves will be the maximum faheaccelerometer axis over the
.02 second interval that it monitors. It should be able to accessaastetrthis data to a PC via
a USB connection.

Since the DragAid-MK is a peripheral device to a PC, it shouldacore Type-B USB
connection and be capable of interfacing with a PC using a standpedATt{o Type-B USB
cable. High-speed communication is not necessary with the PConlsheequirement is that all
data is transferred without error. USB was chosen since nuessrearry laptops with them at a
racetrack rather than a desktop computer. USB ports are moreatbonraptops than RS-232
serial communication ports; therefore, USB seemed to be tre suitable choice for PC

communication.

The device should be able to run off a 9 volt battery or the 12 volt ignition system at¢hear.
As a user interface, it should include a series of switches ¢brteem being a master Kill
switch). By requirements of the NHRA and IHRA rulebooks, a mdglieswitch must be a
positive action on/off switch. For this reason, momentary contaittresg will be used for

switches that select between different modes of operation @rdgAid-MK. A positive action

19

on/off switch will be used to initiate a master kill. The DratyMK should also contain several

colored LEDs to inform the user of the operating mode the device is currently in.

The device should be capable of measuring the g-forces on the valoiotethe X, Y, and Z

axes of the vehicle. Since side, frontal, and rear impactsbwithe most severe (highest g-
forces), the side, front, and rear accelerometers should be capalgteding high g-forces (at
least 50-g). The accelerometer used for measuring vebitlever simply needs to detect -1-g

of force; therefore, a low-g 3-axis accelerometer can be used for thatioper

An additional requirement that was added to the project is thal#tem should be triggered by
the two-step or revolution limiter of the vehicle it is mounted on. s Muld mark a more
accurate beginning of a race and allow the device to only recadldstis relevant to the safety
of the driver. It was also decided that the device should turn ofpledety (not only enter a low
power mode) after the vehicle’s ignition system has been shut dowrthandevice has
performed its shut down sequence. This will increase energygsawinthe device, and also

improve its operation on system startup.
A final requirement is that the technical verification systanthe device be capable of testing

the firmware of the system as well as the sensors. BsetRrag must be fully functional for the

device to be completely operational.

20

4 Design Approach

The block diagram for the DragAid-MK is currently composed of Itegd modules with more
specific blocks within each of these modules. The general moithaies/ere identified for this
project include a power supply module, a sensor module, a user input modsignah
conditioning module, a processing module, a memory module, a clock modutgranpming
module, an output module, and finally, a casing module. The block diagrarbecaeen in
Figure 5 below. In this diagram, the dotted lines represergdaheral modules of the device and
the more defined blocks within the modules represent the specifigarmnts that compose that

module.

Power Supply Module

]

|

Voltage Comparator I 1 :
]

‘ 5 Volt Reference ‘ ‘ 5 Volt Regulator H 3 Volt Reference | :

]

Sensor Module

t |
[t ! |
| |
i ADXL330 ' J Test LED |
| | (Accelerometer) ﬂ i B . ;0;9;;n_ _M;d_ul_e_ - _: | - !
: I — ADC ¢ [|| Download LED | |
I S ‘u | Signal Conditioning Module! I ! | |
| |=lgnal Landitioning Module | | =
| [Pecmpomepo [} |]| | [Digital | | Microcontroller | [Digtal | | +—|PitRoad LED| |
I | i g ! I | Input (AT90USB647) Output | | I :
| RPM Gauge | | - : | | | Race LED |
! |(Tachometer) ! ! Optocoupler : I 1| ! !
I ! I
_____________ " |1[Uss.Rez2 || [[TLUART 'J Ed _{ RTC |} ———{RedieD]| |
1”77 Gser Input Module | | | | UART Conversion I s o e | |
|
|
|
|
|
|
|

I
I
I
! |
: 2-Step Input |

I

:] : Clock Module :
I ! SR | 1 [32.768 KHz Clock | |
[| - [e=on | |
| | | JTAG Connector | | 1 | (25AA512) | | | |
I | | 1
I | | I

|
‘ 2-Step On/Off Switch H— ______________ T T R | l
I

Memaory Module

Figure 5: System Block Diagram
This section of the report will be broken into subsections basedanad the general modules
in the block diagram of the DragAid-MK. Each subsection will tandescribe the purpose and
function of the different modules in the DragAid-MK system. Ili wescribe the input and

outputs of each module as well as how each module interacts with the entire system.

4.1 Power Supply Module
The first module identified was the power supply module. This madutequired to supply

sufficient power to every module in the circuit that requires poweoperate. The original

21

design for the power supply module only involved the use of voltage regutatononitor the
voltage across certain elements in the circuit. When therdesitpe system was observed more
closely, it was decided that certain components such as the semwbranalog to digital
converter should be supplied a more exact voltage. For this reasonodifeed power supply
module was constructed using a 5V voltage regulator, a 5V voltégrenmee, and a 3V voltage

reference.

The processing module, memory module, output module, signal conditioning maahale
programming module all receive 5 volts from the voltage regulator. vbltage supplied to

these modules does not need to be exactly 5 volts, which is the reastiretvoltage regulator
is used to power these modules. The sensor module receives 5 voltyv@tslf®m the two

voltage references of the power supply module. Voltage referaneespecifically designed to
provide more precise voltages to their load. They are not desigriehtlle as large of a load
as voltage regulators; however, for the purpose of this project, areyappropriate. Two
voltages are necessary for the sensor module, since one of ther@ueters requires a lower

voltage to operate properly.

The voltage reference of the analog to digital converter withe processing module also
requires 5 volts from the power supply’s voltage reference. ithperative that the analog to
digital converter has a near exact voltage across it; othenhisdase value for the conversions
will fluctuate. This will cause the accuracy of the conwrsito be questionable, which would

undermine the entire operation of the DragAid-MK.

The input to the power supply module is received from two sourced2tlelt car ignition and

a 9 volt battery incorporated in the device. The power supply modulesigned so that the
input with the highest voltage is used to run the system. Therafbes the vehicle ignition is
on, the 9 volt battery will not be used. If the vehicle is turnedwitienly, the 9 volt battery
will power the system and be used to complete shut down proceduresolfdge comparator

was created using a series of diodes. It will be explainedoire detail in Section 5, System
Construction. Once the two voltages are compared, the higher vslbagee is fed into the

voltage regulators and references, which are used to power the remaititeciofuit.

22

4.2 Input Module

The input module is required to handle all user interaction with theelewn other words, it is
the user interface of the DragAid-MK. It consists of two miotag/ contact switches that are
used for switching the DragAid-MK into test mode or for turningtb# input for the two-step.
The two-step is a common device in race cars that is usednagor revolution limiter. When
the racer is in the start position for a race, he pushes down ontgoenef activator for the two-
step. He then proceeds to press the throttle pedal of theante the floor. The engine will
then limit itself to a preset revolution per minute (RPM) vahat ts controlled by the two-step.
When the racer is ready to leave the starting line, hasetethe two-step activator. The outputs

of both switches are active low and will be fed directly into the processing modhle cfcuit.

The input module will also consist of a connector designed to all@aeea to easily connect his
vehicle’s two-step to the DragAid-MK. This will allow the [@®id-MK to monitor activation
and deactivation of the two-step. It can use this information in todéecide when the car is
actually being raced versus when it is simply warming up @pamng for a race. In this way, it
can be used as a signal for a start of race, and theraftreginning point for recording the data
received by the sensor module. The two-step input can be eithver lagv or high (this will be

a setup choice for the user). The signal received by the nmpdile for the two-step will be fed

into the signal conditioning module of the circuit before passing into the processitujem

The final two inputs to the input module are from the USB connentbtle master kill switch.
The USB connector is used for transferring data between thgARFMK and a PC. The
signals received or sent by the USB connector are processée bighal conditioning module
of the DragAid-MK.

The master kill switch input is a positive action on/off switchspscified by the IHRA and
NHRA rule books. It will be used to manually turn off the ignition and fuel pumps of thdevehic
if the driver senses a dangerous situation. The output fromwitshss also active low and is

fed directly into the processing module of the circuit.

23

4.3 Sensor Module

The next module that was created was the sensor module. This m®&dekgponsible for
detecting the different conditions that the vehicle being monitosedhb DragAid-MK is
experiencing. It currently consists of two accelerometersA@KL278 and an ADXL330) as
well as an input from a RPM gauge (tachometer). The input fromaititeometer may be
removed in the final revision of the board. It was included in iingsion since the initial
functional design of the DragAid-MK required a RPM gauge for cimgnigetween user modes.
In this revision, changes are controlled by the two-step and buttons; howeverMhagRPwas

kept in case it was deemed necessary in future modifications to the device.

The ADXL330 accelerometer requires 3 volts to operate. It 3saais, low-g accelerometer
used for measuring z-axis g-force on the DragAid-MK. It wdl used for identifying vehicle
roll-overs in the DragAid-MK circuit. The output signal from thBXL330 is fed directly into

the processing module of the circuit. It produces an output analag biginveen 0 and 3 volts;

therefore, it is not necessary for this signal to pass through a signal pngaassiule.

The ADXL278 accelerometer requires 5 volts to operate properlyis B 2-axis, high-g
accelerometer used for measuring x and y-axis g-forces onethiele. It will be used for
sensing frontal, rear, or side impacts on the DragAid-MK. It praglaceoutput analog signal
between 0 and 5 volts. It will also be able to pass directly hegptocessing module of the

circuit without signal conditioning.

4.4 Signal Conditioning Module

The signal conditioning module is required to process all signalsanaiot be fed directly into
the processing module of the circuit. It is required to performersé different operations in
order to ensure that all data passed to the processing module kbandbed. For this reason, it

is composed of several different components.
The first portion of the signal processing module consists of tageldividers, which are

represented as one block in the block diagram shown in Figure 5. Thgevdividers are used
to process signals that have voltages greater than 5 volts. isTthose to prevent them from

24

damaging the processing module, which can only handle signals witxiamom value of 5

volts.

Two of the voltage dividers receive signals from the power supply raaxfuhe circuit. They
receive input directly from the battery and the ignition input led power supply module;
therefore, the two signals received by the signal conditioning madelaround 9 volts and 12
volts. Once these signals are reduced to 5 volts, they are paskedprocessing module of the
circuit. The final voltage divider is used to reduce the RPM ismrtal to 5 volts. All systems
in a race car generally run off of 12 volts; therefore, igaa received from the tachometer of

the vehicle will also be around 12 volts when inputted to this voltage divider.

The next portion of the signal conditioning module consists of an optocouptes portion of
the signal conditioning module takes as input the two-step sigmal tfeg user input module.
The signal from a vehicle’s two-step will range from 0 to 12syaind have a high value when
activated and low value otherwise. In order to isolate the tepfsom the processing module
of the circuit (which will need to process whether the tw@-s¢eactivated or deactivated), an
optocoupler was used. This device will limit the two-step voltageuolts when the two-step is
activated and 0 volts when the two-step is off. Furthermorellipsevent current from flowing
from the two-step to the processing module, which could potentially giartiee processing
module of the circuit. This is added protection in case the tvyoisteot connected properly to
the DragAid-MK.

The final portion of the signal conditioning module is the USB to UARIlversion chip. The
input to this chip is received from the USB connector of the input madulgell as from the
UART (universal asynchronous receive transmit) portion of the psoagsnodule (which will

be described in more detail later in the report). The chip cantlegtinformation received from
the USB connector to a format understood by a UART interface amdbs gbis data to the
processing module of the circuit. It also is able to acceptrdtion in UART format and
convert data to standard USB 1.1 format, which it then sends to theeaiictor of the input
module of the circuit. The signals sent to the processing moduie tihe USB to UART

25

conversion chip are between 0 and 3 volts. Although this is low for inputse processing

module, it is able to function properly; therefore, a voltage amplifier is nossaige

4.5 Memory Module

The memory module was created as an aid to the processing maddslesdd to store the data
received by the processing module from the sensing module ofrtué. The memory module
is required to input and output data to the processing module. It opeoateS volts; therefore,
signals sent between the memory module and the processing module dmuicgé signal

conditioning.

The chip used for the memory module is an external EEPROM mamefddty Microchip. It is
capable of holding 64 Kbytes of data, which is equivalent to 65536.byldhe EEPROM
communicates to the processing module using a serial peripheréddpt¢SPI1). This interface
is synchronous, which makes it faster than an UART interface. EBRRROM is capable of
transferring data at a rate of 20 MHz. Although this speed is naibp®svith the current
processor, it proves that data transfer between the processigarand the EEPROM will not
be a source of system latency. The processing module should be atbestdata as fast as it

receives it.

4.6 Clock Module

The clock module of the circuit is required to supply all clock sauteehe processing module
of the circuit. Although the processing module has its own intesallators, these oscillators
are known for being inaccurate and at times a-periodic. Fordhson, it is better to run the
system off of an external 8 MHz clock when accuracy in timsndgeisired. Although, instruction
timing is not of critical importance for this circuit, it wésund that using the external oscillator
improved the UART communication. During testing of the initial Hodesign, the UART
receive was found to be missing a bit in transfer. When the 8 MHz clock was addetadarthe
the UART no longer dropped a bit, and all data was found to be receiopérlyr This
improvement may be due to the increase of speed to 8 MHz, or cheedoetater accuracy of the

external oscillator.

26

The second oscillator in the clock module of the circuit is a 32.768 diblZk used for
calculations in real-time. The frequency 32.768 kHz is generaky dsr real time clock
calculations, since when divided by 256 in an 8-bit system, roll-ofvédre 8-bit register occurs
every 1 second. This oscillator is extremely accurate, andbeilused for timing in the

processing circuit.

4.7 Programming Module

The programming module of the circuit consists of a JTAG headdrfaseonnecting a JTAG
cable from a PC to the DragAid-MK board. This interfaceusently used to program the
firmware written in assembler to the DragAid-MK processingdaie. Since the SPI bus of the
DragAid-MK'’s processing module is being used for storing andiveng data from the memory
module, the JTAG interface will be used to program DragAid-MK processing masitdesafter
the test phases of the project are complete.

Since its initial development, JTAG has frequently been used as-@rcuit debugger for
embedded systems. The most essential benefit of a JTAG debbgundary scan) is that
virtual breakpoints can be set. Although debugging an embedded systenh thfédug appears
to be similar to debugging PC software, this is not true. JTA® loat access to boundary
values of the embedded system. This excludes all registéraréhpart of the internal core of
the processor. For this reason, a JTAG debug is limited; howevstill iprovides more
information than was available before the creation of the JTA&faue. It also allows
embedded programmers to step through their code line by line, which is extrepély. h

The JTAG interface will be used whenever a problem is found witfirthevare created for the
processing module. It will also be used to verify the corgegithl operation of the code, which
would be difficult to do without the ability to simulate system states using theyder.

4.8 Processing Module

The processing module is the most important module of the DragAid-MiGitc It is
responsible for organizing all the data received by the sensor and input modhkesiofuit and
then providing the proper output signals to the output module. The processiludenconsists

of an AT90USB647 microcontroller manufactured by Atmel Corporation. & features of

27

the microcontroller that will be used in this project can be sedheaseparate blocks within the
processing module in Figure 5. They include the analog to dagitalerter (ADC), digital input
and output ports, serial peripheral interface (SPI), universal lagymous receive transmit
(UART), and real time clock (RTC).

The ADC portion of the processing module will receive input from tteelarometers of the
sensor module as well as the 9 volt battery and 12 volt ignition eottaiders from the signal
conditioning module. The signals from the accelerometers, once cahvertigital signals,

will be used to control whether the system should send off signdlse vehicle or continue
operating normally. The conditioned input from the 9 volt battery and X2grotion system

are meant to determine if the battery life of the systeiovisor if the ignition system of the
vehicle has been shut down.

The digital input and output ports of the system are connected to madyles of the entire
system. They are used to allow a user to interface witDitagAid-MK. The main function of
the digital input ports of the processing module are to take inyser: These ports are used to
determine whether the user wishes to put the device in test, fogoless the input signal from
the two-step, start racing, or shut down the entire vehicle. Thaldagitput ports are used for
two main purposes. First they provide signals to the output moduihee aircuit, allowing the
current mode of the DragAid-MK to be displayed to the user. Theyao responsible for

sending shut down signals to the solid state relays of the vehicle the device isdrmunt

The SPI portion of the processing module is responsible for cotirdjndata transfers with the
memory module of the device. This is where the digital data that resulttimanalog to digital
conversion are sent after they have been processed. Theynaferted to the memory module
over the SPI bus where they are stored until a user wishes ¢wrthe data recorded during the
run. When this occurs the data can be read and erased from the nmaodwule using
commands sent over the SPI bus.

Another key system of the processing module is the UART. This module is used to send the dat

collected during a run to the user. It is also used to receperiant data from the user such as

28

threshold values for vehicle shut off, car information, and two-stepifyol®ther values that

will be transferred between the PC and DragAid-MK through tW&RU include the serial

number, version number, and version date of the DragAid-MK as wtikeagate the thresholds
were last modified.

The final individual module within the processing module is the RT&fate. The RTC port
of the AT90USB647 is basically designed to allow asynchronous data input. Thistireakest
ideal for sensing a clock input, which may not run synchronously withmidia clock of the
processor. The RTC will be used as the timing base for ainactcurring in the processing
module. It will be used to set a time limit for the device being in race mode. fruotiee it will

be used to create delays in UART data sends.

4.9 Output Module

The final module displayed in the block diagram seen in Figuretedidginning of the section
is the output module. This module is responsible for informing the afstre state of the
device. Furthermore, it is responsible for sending “off-signalghéovehicle it is attached to.
The output module consists of a series of LEDs, which each havi=iewlifmeaning in regard
to the system state.

The LEDs require 15 milliamps of current for operation. Theydmsigned to be active low,
which means a low signal from the processing module will activet®. They receive a signal
to turn on and off from the processing module of the circuit. Asgbt now there are 6 LEDs
on the DragAid-MK board. Their purposes are as follows: Test Mdi®e, IDownload Mode
LED, Pit Road Mode LED, Race LED, System Test LED, and Twp-®e/Off LED.
Therefore, each LED will give the user information on the current state ef/sthem.

The final portion of the output module is connections that will eventadich to solid state
relays of the vehicle the DragAid-MK is mounted on. These commectvill receive signals
from the digital output port of the processing module. They wilubed to send vehicle shut
down signals to the car controlled by the DragAid-MK. The ebegaiut for this portion of the
output module was not considered as part of this project and is open for future investigation

29

4.10 Casing Module

Another module, which cannot be seen in the block diagram, is the caseemdtiid module is
responsible for protecting the circuitry of the device in everydsg as well as in a crash
situation. It is required to be sturdy so that if the devicérapped the circuitry will not be
affected. Furthermore, it must have sufficient padding to elimitiae vibrations from the
ordinary movement of the car while still allowing the acceletenseto pick up major events.
This is basically an attempt to reduce noise from the acceédeorsignals in a physical manner,
since the type of the noise is physical in nature.

The current base design for the case module is a metal éétioix. It is hoped that a box of
this type will reduce electrical and magnetic interfeestiat may occur within a race car. Very
little research has been done on the interference producedebgana; therefore, we are not sure
what to expect. However, we do not want our device to get fadtimgs due to environmental
noise. For this reason, a metal protection cage around the essensiais and circuitry of the

DragAid-MK seems to be a good solution. More work on the aestladtite case should be

completed before the DragAid-MK goes into production.

30

5 System Construction

The creation of the final prototype for the DragAid-MK took placd ibasic stages. The first
stage involved deciding how the system should function and then creatiwarsoftowcharts

and system block diagrams that represented this functionality. s&ébend stage involved
selecting components. This included selecting sensors, memory, amectbprocessor as well
as resistors, capacitors, and diodes that would best suit the nebdsdefvice. The third stage
involved the schematic design, which included properly arranging th@ammnts in order to
create a functioning device. The final stage was the actualrgomat of the system, which

included the printed circuit board (PCB) layout and the soldering of the components tdthe PC

In this section of the report, the construction of the DragAid-MK @ described through
observing the construction process of each of the individual modules described in Sectien 4. Th
only module that will not receive individual description is the sigoalditioning module, which
will be incorporated in the description of the input module and the sermsdule of the circuit.
Since the case module will not be completed as part of this prijecmodule will be omitted

from this section of the report.

Additional subsections will be added to this portion of the report tousss¢he design and
creation of the firmware and software for the DragAid-MKheTfinal subsection will contain a
description of the design of the printed circuit board. This will includermation on slight

modifications that should be made before the product is released as an éetyalesace.

A complete schematic for the DragAid-MK can be viewed in AppehdidA complete parts list
for the final PCB can be seen in Appendix M.

5.1 Power Supply Circuit

The first module that was designed was the power supply module.ure&i¢ and 7 are
schematic representations of the power supply module. Figure 6sgthew5 volt voltage
regulator, the 5 volt voltage reference, as well as the two inpuempsaurces to the circuit.

Figure 7 shows the 3 volt voltage reference of this module.

31

E ——<35]
l_a'iu Req US C14

1 = L.

Emey [Bl
== = UA7EMAS

gaq-:l:- e

NSHDN Yout

_l_g 5 an Uout

EL-..FI nnnaqs 1ul

uua +ov

3

3 IHA Ucc
CND OUTY
«;';Nu?sza? 4K 180K
. : : : 3 3 2 |
al Bl |+
aad g . - -
J3 D8 —
POWER JACK - - cmyggup A Ay
Power Circuit -V - - a soow s ow o ow NE

Figure 6: Power Supply Module — Power Input Circuitry

'v'i.l"l
4. PuF ‘Gnd

l. Maut

Figure 7: Power Supply Module - 3 Volt Reference

£sclay

As can be seen from the figures, the power supply module redepes from the 12 volt
ignition system of the vehicle (represented as the center-pinveogdwer jack in Figure 6) as
well as from a 9 volt battery used as a backup power soBfdge (This module is designed such
that the 12 volt car ignition can power the DragAid-MK systelilemhe car is running. If the
vehicle is shut down, either by the operator or by the DragAid-M& device will continue to
run from the 9 volt battery for a certain length of time. Oabidinal system operations are
completed, the microprocessor of the circuit will have the gliitcut-off the battery from the

DragAid-MK circuit; thereby, completely turning off the DragAid-Mgssem.

32

From the figures it can also be seen that the power supply modthe ofrcuit is required to
provide three outputs to the remainder of the circuit. The first output is a 5 volt ggnedrtbat
iS meant to run the portions of the circuit that are not voltagsisve. The remaining two
outputs are precision voltage signals of 3 and 5 volts that are tganotlvide accurate reference
voltages for the sensors and analog to digital converters in the circuit.

The power supply module was designed to handle 500 milliamps of ¢uroewvgver, in normal
operating conditions, the current draw from the circuit should not dxt@eé milliamps. This
calculation was made by observing the current draw of the kayitoglements in the DragAid-

MK. The resulting calculation can be seen in Table 1 below.

Table 1: Table of Circuit Current Consumption

Device Quantity Running Single Component| Total Current (mA)
Concurrently Current (mA)

LEDs 2 15 30
Microcontroller 1 18 18
EEPROM 1 10 10
ADXL278 1 2.2 2.2
ADXL330 1 0.18 0.18
CP2102 1 26 26

Total - - 86.38= 100

The power supply module has a complex design due to a unique requireraptidified briefly
above) that it was designed to meet. Under normal conditions, wherehiede is running
properly and no crash has occurred, the DragAid-MK is expected towergubby the ignition
system of the vehicle. When a crash occurs, and the DrdgKicghuts down the ignition
system of the vehicle, the device must continue to run fromriestiecluded on the DragAid-
MK board. After the DragAid-MK has finished recording data, diegice should then send a
signal to the power circuitry in order to eliminate the input fittve battery and thus completely
shut down the system. Although it is possible for systems te ltampletely electrical
shutdowns, it is not common for a system to attempt to shut off itspower. For this reason,
many attempts were made at creating this circuit. The bperaf the power supply circuit seen

in Figure 6 operates as described below.

33

When power is provided by the ignition system of the vehicle, a 12wuler signal is received
at the D7, D9 diode junction. This signal is greater than the niexiénvolt signal that could be
supplied to this junction from the battery circuit. This willuksn the D7 diode being in the
forward biased condition and the D9 diode being in the reversed biasedaundiodes only

allow current to flow when they are forward biased; thereforeeatiwill be drawn from the

ignition system of the vehicle and not from the battery backwapitir When the signal from the
ignition system is removed, the diodes will be biased in the oppastgions allowing current

to be drawn from the battery circuit.

After the signal from the power source passes through the gimdéon, it enters into the
UA78MOS5 five volt regulator and the ADR395 five volt reference. The 5 ragulator is
designed to take in a signal between 7 and 20 volts. It is guatdoteetput a signal between

4.8 and 5.2 volts. Itis also able to handle a current draw of 500 milliamps, although it is unlikely
that the DragAid-MK circuitry will draw this level of cumé The voltage regulator will supply
power to the microprocessor, EEPROM, and USB to UART conversion cligseTdevices do

not require precision voltage levels and only require power signalsai@te. The power signal
provided to the circuit from the 5 volt regulator is also passedtiwo3 volt reference (see

Figure 7).

The 5 volt reference requires an input voltage between 5.3 and 15 Vbits.guaranteed to
output a voltage between 4.995 and 5.005 volts as well as supply 5 milliaropseft. The

output from the 5 volt reference is used as a reference smrialef analog to digital converter of
the microcontroller. This circuitry requires negligible cumtr@s stated in the microcontroller’s
user’s guide. It is also used to supply power to the ADXL278 axarekter, which relies on an
accurate and precise power input in order to make accurate gg-fearlings. Since the
ADXL278 only requires 2.2 milliamps for proper operation, the current dram the voltage

reference will not exceed the maximum allowable current.

The final 3 volt reference is used to supply power to the ADXL33felammeter, which
requires a voltage less than 3.6 volts and nominally 3 volts to opgaxgierly. As with the

ADXL278 accelerometer, the ADXL330 requires an accurate and preoltage input in order

34

to guarantee accurate sensor readings. For this reasos, fieeessary that a 3 volt reference be
used. The 3 volt reference requires a 5 volt input signal, whichyistsvinput signal is supplied
from the 5 volt regulator of the circuit. It will output a voltagignal between 2.997 and 3.003
volts. It also can provide up to 5 milliamps of current. This ficsent since the ADXL330

only draws .18 milliamps.

The final components of the power supply circuit were added to supgpoibdttery cut-off
feature described above. The main component used to achieve thierfumels a PNP
transistor, which was operated as a switch to the battery igitigt. This transistor was a
2SB0779 surface mount component manufactured by Discrete Semiconductort$rdtiuwas
chosen due to its ability to handle 500mA of current through the collettbe transistor. This

is the maximum current that the power supply module was designed to withstand.

As can be seen in Figure 6, the emitter of the transistmneected to the output of the battery
and the collector is connected to the input of the DragAid-MKuttircThe base of the transistor
is connected to the microprocessor through a base resistanel as & NL17SZ07 open-drain,

non-inverting buffer.

Since the transistor used in this circuit is a PNP type, a low signal on this basessary to turn

it on, and a high signal is necessary to turn it off. When a lowmg®Isignal is applied to the
base of the transistor, the voltage from the emitter to theibageater than .7 volts. As stated
above, this turns on the transistor allowing current to flow througlraimsistor and power the

DragAid-MK circuit.

When the base voltage of the transistor is set high, the transssturned off, thereby
eliminating the battery source from the circuit. Since theraonantroller will not be able to
sustain a high voltage once the battery has been removed fracivdiig a pull-up resistor is
used to keep the transistor base tied to a high voltage (9 valtgrge pull-up resistor value is
used in order to ensure that little current flows in the resultng that is created. Technically
no current should flow since the transistor is cut-off. In ordethsrcircuit to work properly, it
was assumed that the microcontroller ports were open-drain. Inwtrds, they are able to

35

properly pull a signal low; however, in the high-state the cifecag high impedance rather than

an actual high voltage level.

Before this circuit was implemented on the printed circuit badrthe project, it was setup and
tested using a protoboard. It was found that the assumption thatdieeaniroller had open-
drain outputs was false. In other words, the transistor would turnhen e microcontroller
sent a low voltage level; however, it would not turn off when the macrwoller sent a high
voltage level. In order to rectify this, an open drain buffer wasrdddeaand placed between the
base of the transistor and the output from the microcontroller. \Wishbuffer in place, the
circuit was found to work properly. The buffer used was a NL17SZ07 maetowéd by ON
semiconductor. It can be seen in the completed circuit of Figure 6.

The 100 micro Farad capacitor placed between diodes D7 and D9 isclolangng the normal
operation of the circuit. When power is completely removed from iticeic(the battery and
ignition circuits are shut down), this capacitor discharges poweahée circuit allowing the

processor a few extra milliseconds of power to ensure complete shut down.

Another aspect of the circuit in Figure 6 that should be mentionég ipower lines EPwr and
Batt, which leave the page. These signals are used trpevbltage checks on the 12 volt
ignition and 9 volt battery circuit. The circuit that performs this can be seegureR8 below.

R9

30K

Battery & Ignition -Test
Figure 8: Ignition and Battery Voltage Check
As can be seen from the circuit above, the battery and ignitiorkslae conducted using the
same analog to digital converter pin of the microcontroller (PEB)e to both the ignition and
battery circuits providing voltages greater than 5 volts, voltage d&/Mdere necessary in order
to limit the signals being passed to the microcontroller. Vdigage divider connected to the

input from the ignition system was designed to reduce the gigialolts. The voltage divider

36

connected to the input from the battery circuit was designed toeatfumput to 2.5 volts. In
this way, the processor is able to detect when the 12 vadltoigmoower source is removed from
the circuit by observing that the analog to digital conversion fioenpower input line drops

from 5 volts to 2.5 volts.

On the first revision and current revision of the prototype boardsnpi@regin positive power
jack was used to simulate the input from the 12 volt car ignitidns was done to make it easy
to power the device for testing. In the boards that are creatbd toarketed, this will be
replaced with positive and negative through-hole insertion points for inpuort the ignition

system.

5.2 Sensor Circuit

The sensor circuitry of the device contains two accelerometersua input line for input from

the tachometer of the race vehicle. The first acceleranmsetn ADXL278 2-axis high g-force
accelerometer. It is manufactured by Analog Devices andchasen since it was specifically

designed for detecting vehicle collisions.

The ADXL278 is capable of monitoring the x and y-axes (front,, r@ad sides) of the vehicle
that the device is mounted on. It is capable of detecting g-fofc&3-g’s on each of the axes.
This meets the requirement that was originally identified icti&e 3.2 of the report. Figure 9
shows a diagram of the ADXL278 accelerometer, and its connediiotise microcontroller
(processing module of the circuit).

"ASY ref

u3

o |

XFILT XouT

N0CA PR YFILT YouTt
- |ADCT PR T2

ST

n |0 ™~
B22K0Y S
Fr

h—

[
2
=]

C1

.mjv’

oy

Figure 9: ADXL278 Circuit

The ADXL278 operates on 5-volts of power provided by the 5 volt refereiche power
supply circuit. As stated in Section 5.1 above, this voltage needsptedise in order to ensure

accurate g-force measurements. The ADXL278 outputs 0-5 volts on pims B (Pin 6 is the x-

37

axis output and Pin 2 is the y-axis output). The output from the ADXL278 is fed directthent
microcontroller used for the project. The microcontroller is ablenandle 0-5 volt input;
therefore, no signal processing is necessary on the output fi@AQRXL278. The capacitor
seen in Figure 9 is a bypass capacitor used for noise redactitimee ADXL278 power lines.

The placement of this capacitor was suggested by the ADXL278 datasheet.

Capacitors are not necessary on the X and Y output lines of thedL2I8X In some Analog
Devices components, capacitors are needed for bandwidth selectidre ajutput signal;
however, the ADXL278 comes equipped with a 400 Hz Bessel Filteith iMs filter it is
necessary to sample output from the accelerometer at giieate800 Hz, which is equivalent to

about once every millisecond.

The second accelerometer selected was the ADXL330, which ibleagfamonitoring the x, v,
and z-axes of the vehicle. It was chosen to fulfill the objecif detecting vehicle rollovers. In
a vehicle rollover, a car will experience 1-g of force on the undiersf the vehicle. This is
equivalent to experiencing -1-g of force on the roof of the vehiclderefore, with the
ADXL330, it will be possible to detect vehicle rollovers by monitgrthe z-output of the
accelerometer and determining if it reaches -1-g of ateda. The ADXL330 can only
accurately handle 3-g of acceleration; however, since only 14y geiéstion this will suffice.

Figure 10 shows the circuitry design for the ADXL330.

3V

oo [cg DCE PF

N7
Y6
7¥5
Y4
Y3
sYe A2
Y1 Al
sYa . @

. 1uF 16 Lt
Vv

Figure 10: ADXL330 Circuit

E3
7E2
/E1

|

=
[

|

4
REETIXOY

|

—
[#%]

TTT T T

38

The ADXL330 requires 3 volts of power for normal operation. It outputs 03 wol Pin 8,
which is the z-axis output pin. As with the ADXL278, this output carelledirectly into the
microcontroller without signal processing. Since this part & ahanufactured by Analog
Devices, it also requires a 0.1 micro-Farad bypass capaeitaebn the input power lines and
ground for noise reduction. Unlike the ADXL278, the ADXL330 does not havitamal
bandwidth selection filter. For this reason, a capacitor is meed¢he z-axis data output line in
order to ensure the proper bandwidth is selected. Since the mnocessis to sample the
ADXL278 accelerometer every millisecond, it was decided thaA¥L330 should also have
new data every millisecond. For this reason, the bandwidth selebti@whwhich can be seen in

Table 2 was reviewed, and a capacitor value of 0.027 micro-Farads was selected.

Table 2: Bandwidth Capacitor Selection

Bandwidth (Hz) | Capacitor (uF)
1 4.7
10 0.47
50 0.10
100 0.05
200 0.027
500 0.01

It may be observed from the description above that the ADXL330 lwais features than is
necessary for detecting vehicle rollovers. In other words, isarea g-force for more than just
the z-axis. Even though it was a more powerful sensor than wdechdbe ADXL330 proved

to be the best choice for the DragAid-MK. The primary reasonttieaADXL330 was chosen
was due to it being capable of measuring forces perpendicuiae whip. This allows the chip
to be mounted solidly on the PC board without inhibiting the chip from umegsz-axis data.

Another reason the ADXL330 was selected is due to it being faetoved by Analog Devices.
This chip was found to be more reliable than other 1-axis, z-agedesiometers on the market
and it could be obtained at a relatively low price. Thereforeas decided that the ADXL330

should be used to sense vehicle rollovers in the project.
The final portion of the sensor module was the tachometer input. it éor the tachometer
can be seen in Figure 11. This circuit will remain in timalfdesign of the DragAid-MK

although it is currently not being used. The original design foDttagAid-MK required that

39

the RPM level of the vehicle be used to determine the operation mdde @évice. In B-term,
the operational design of the DragAid-MK was altered, renderirg RiBnitoring unnecessary.
Despite this fact, the sponsors of the DragAid-MK project did naoit waremove the ability to
monitor RPM levels from the DragAid-MK boards.

The signal from the tachometer is a series of pulses with amplitude of $2 Vbk: frequency of
the pulses depends on the revolutions of the motor or the RPMs. ttegdlsnds on the number
of cylinders of the motor. Therefore, a motor with two cylindensning at 5000 RPMs will
generate a different number of pulses than a motor with eigindeys running at 5000 RPMs.
It was due to this aspect of calculating RPM that the methodaned in previous reports for
determining how the RPM signal was encoded failed.

"R7° RS8

-'—H—o—\-RF‘M f\f\/-[iii‘-\j
' : 38K | 22K -
D11 W,

Figure 11: RPM Circuit

Since the signal from the tachometer fluctuates between 0 amdlts2 it could not be fed
directly into the processing module of the circuit without damagingnput port. For this
reason, the signal from the tachometer is passed through a diode\aridge divider. The
voltage divider is designed to reduce the input signal from thieomaeter such that the
maximum value of the signal is 5 volts. The diode will reduce igpeakby .7 volts and the
actual voltage divider will reduce the input voltage by about 2/5.

The conditioned tachometer signal is then passed into a digital inpwifpe processor, which
is responsible for calculating the frequency of the motor revolutiofs. stated before, the
number of cylinders in the engine must be known in order for theepsoc to properly calculate
the RPM value. This variable will have to be specified by tee insthe PC software created for
the device. This variable can be added to the firmware and softéviire DragAid-MK system,
if it is decided that RPM calculations are necessary.

40

5.3 Input Circuit

The input module of the DragAid-MK is composed of a series of best@as well as the USB
interface to the circuit. Two of the switches of the KagMK are momentary contact
switches. The third switch is a positive action on/off switche final switch is the input from
the two-step of the vehicle the DragAid-MK is mounted on. Thismsidered a switch since it

behaves similar to a switch (it is either activated or deactivated).

A diagram showing one momentary contact switch as well as thigpaaction on/ off switch

can be seen in Figure 12. The positive action on/off switch isntmer kill switch of the

circuit. It is connected to Pin 25 of the microcontroller due te thins ability to generate
interrupts. When this switch is closed, an interrupt will be geéeérdnat will proceed to send
shutoff signals to the vehicle the DragAid-MK is mounted on.

L R — ;’\sﬁc
PDL-INT1FEE
Sl V

Figure 12: Momentary Contact and Positive Action Swiches

The momentary contact switch connected to Pin 26 of the procesdso isapable of generating
an external interrupt in the microcontroller. This switch isdugecontrol the two-step bypass
feature of the device. When the user does not want the two-stepd®e ite device to start
recording data, this button can be pressed. The two-step will not be monitored ubtittihisis

pressed again.

Figure 13 shows the second momentary contact switch of the @scuiell as the two-step input
circuitry. This switch is connected to Pin 17 of the processorsanddad to put the device into
test mode (the mode where track officials can test the opeuddtibe device). Although this pin
is capable of generating an interrupt, it is multiplexed whih other pins of Port B. In other

words, 8 interrupt sources (the 8 pins of the port) share one interrupt vector in the processor

41

34 ~Twa-Step [nput -
VA, Redius . Pcosa,

: : ; ; : ; - 1é
Switeh Circuit <(cont) 7

PR&-OCLE
PR?-0CLC

e
SN
Figure 13: Momentary Contact Switch and Two-Step lput
Pin 16 of the processor is connected to the two-step input from theevehini$ pin is also on
Port B, which could cause a problem if both the two-step and test bubid® were monitored
using interrupts. This was the original plan for the switch inprduitry; however, once
programming began, it was decided that the two-step input should be pafllest than
monitored through interrupts. Therefore, no problems are expected fomeating both

switches to Port B of the processor.

As described above, the two-step is a form of a momentary switcis held on and then
released. The rising edge of the two-step is monitored in oodsighal the device to start
recording data. As can be seen in Figure 13, an optocoupler isousethte the two-step input
from the input port of the microcontroller. Since the two-step ischlg a switch directly

across the battery of the vehicle the device is mounted on, the oplecevas added as a
precaution against damaging current levels flowing from the \ebaitery into the input port of
the microcontroller. In order to prevent damage to the optocoupler K& resistor was added
to limit current through the input of the optocoupler. This resistuaes current flow through
the optocoupler to about 1mA, which was within the acceptable inputntuaage of the

device.

All of the switch signals, except for the two-step input throughohtecoupler, are active low,
which means that internal pull-up resistors of the microcontroller areated. When a button is
pressed or a switch closed, a low signal is received by thiespmnding microcontroller pin.
This action generates an interrupt, which changes the operatingoitbgeDragAid-MK. If the
test button is pressed a check on the sensors and software oatfdKMK is performed. If

the master Kkill switch is toggled, shut off signals will bets® the vehicle. If the two-step

42

bypass button is pressed, a two-step signal will not actiaae mode of the device, and if the

two-step input changes level, race mode will be entered.

In the previous input circuit of the DragAid-MK, a button was atsmuded for initiating USB

downloads in the circuit. Although USB is still used in the new satienthe download button
was removed since a UART interrupt is now used for signaling tlatesfer between the
DragAid-MK and a PC.

27
28
29

PD2-/INT2
PD3~/INT3
PD4~IC1

PDS-xCK1 22 g3
_ge'i RXD Sl ea
12]1%#D . 2
NSUS

D-

—0 3 LBuf
+*Su Zlpeetn o L
g udd CND{ o5
cLL LEiNRsT i

281242

|

GND 26

Figure 14: USB Circuit

As can be seen in Figure 14, the USB circuit of the DragAidwés altered from the original
schematic design of A-term. The previous USB circuit reliecherbuilt-in USB function of the
Atmel processor. When testing began with this feature of theelAprocessor, it was found to
be difficult to use. There was a lot of ambiguity regardingpteper way to setup the USB
interface to the PC and very little documentation. For this reéisemjrcuit was modified to the

version seen in Figure 14.

This circuit uses the CP2102, USB to UART conversion chip manufactuye®illzon
Laboratories. This chip connects to the universal asynchronous ré@aisenit (UART) of the
microcontroller and transmits USB data to a PC. A PC boardhpeed from Spark Fun
Electronics was originally used to test the operation of the CP2Xdgure 15 shows this
breakout board. The breakout board was used as a model for the USiBycgeen in Figure
14. It could not be used exactly since the CP2102 breakout board isedetgise power from
the USB bus to power the circuit it is attached to. This operadi not desired in the DragAid-
MK.

43

Figure 15: CP2102 Breakout Board’

In general, the USB circuit operates as follows. Datpaissed from Pins 27 and 28 of the
microcontroller to the CP2102 conversion chip. Pin 27 of the processor i$AR& transmit
pin and Pin 28 is the UART receive pin. Pins 29 and 30 of the microdentod connected to
the suspend lines of the CP2102 conversion chip. These lines are edritylihe conversion
chip. They are used to alert the processor when the USB bus thetsisspend state. This will

signal that data transfer has ended.

The remaining lines of the conversion chip are the power lines, waghre 5 volts for proper
operation and the USB port connections. A USB port consists of twdiegaa voltage line,
and a ground line. USB data transfer is a complicated procedulteroféing the signals on the
two data lines. An explanation of this will not be given, since the USB convetspis@ble to

handle all the details of communication.

5.4 Memory Module

The memory module of the DragAid-MK was constructed using the 3324 EPROM chip
manufactured by Microchip. This chip is capable of holding 512 Kbitatd. It connects to a
microcontroller using a serial peripheral interface (SPIhisType of interface is a synchronous
interface that requires a common clock between the microconteniiérthe chip. The clock
signal must be provided by the microcontroller. Figure 16 shows BHRREM circuit, which
includes the pins that the 25AA512 must connect to on the microcontroller.

10 http://www.sparkfun.com/commerce/images/produ€$aB-03-L.jpg

44

EEPROM Circuit

+S5u .
ua .Tﬂ. ;

vce

PRA-55 — Ao
PBI-MISO—E a1 . . |
PES/0CIA—A] ga E9AASIZ4pa 1S PRA/MOSI
PRIsSCK—8{ g 0 |
PB4-0CO—L] p

V5s

T

Figure 16: EEPROM Circuit

As can be seen in the figure, the EEPROM circuit containstémelard lines found in an SPI
interface. Since the EEPROM is a slave in this circudnliy has one output signal. This is Pin
2, the master in slave out line. All data sent to the microcéatwlll be sent over this pin. Pin
5 is the master out slave in line, which will receive all diatan the microcontroller. Pin 1 is the
chip select line, which will remain high until the microcontrollgishes to initiate a data

transfer.

The 25AA512 allows for rapid read and write of data. It has amuaxi write time of 5 ms per
page, which will allow many data bytes to be stored in a veoyt period of time. The exact
read time of the chip is not specified in the EEPROM'’s datashwéth means that it is very
small compared to the write time. The read time is noa&pbr concern, since it will only limit

the data transfer rate to the PC.

The EEPROM also has built in write protection and high religb{(&ndurance of 1 million
erase/write cycles). It operates off of 5 volts and stdeg¢a in byte format. It is capable of
storing a total of 65,536 bytes of data. This is equivalent to 7 wanth of data. The

calculation for this last value can be seen in Figure 17.

45

run =15s
save_rate= 02s

saves/run = E =750
02

bytes/ save =12
bytes/run =9000
bytes/ chip = 65536
runs/chip=7

Figure 17: Data Run Calculation

Despite this ability, it was decided that the DragAid-MK shouldy tel designed to store 3 runs
of data. This decision was made due to the chip erase schethe 26AA512 EEPROM.
Although 7 runs of data could technically fit into the EEPROM, it wdnddlifficult to erase or
manage this data if it was not aligned on pages or sectors &R&OM. It was found that
data could only be erased from the 25AA512 EEPROM by page, sectntirer chip. It was
also found that most EEPROM manufactures suggest erasing data thip prior to a write.
For these reasons, it was decided that an easy organization obrddkee chip would be
necessary to ensure fast erase. This led to the conclusiaathdor each run should be stored
within a sector of the 25AA512 EEPROM chip.

Since the first sector of the chip is designated to hold the rmegesgstem data (race number,
threshold values, threshold date, car number, serial number, version nambe&grsion date),
which should never be erased, only 3 sectors remained for saving race d&tsedaccontains
16384 bytes of storage, which is more than enough to store 1 run of\W@n a new run is
made, the sector designated to store the new run can be easéy defore the run using the
sector erase command of the EEPROM. This will allow the data to be stored with no

difficulties or errors.

Overall, the 25AA512 EEPROM was an appropriate choice for the memodule of the

circuit. It is capable of storing sufficient data within the time conssaihthe system.

5.5 Clock Module
The clock module of the circuit consists of two oscillators: a 32.768 idddk time clock
oscillator and an 8 MHz external oscillator. The real timeud oscillator (32.768 kHz crystal)

46

is connected to the TOSC2 and TOSC1 pins of the microcontrollemasecseen in Figure 18
below. The 18pF capacitors that can be seen in the figure deee & the circuit after testing
was conducted on the board. It was found that the clock was 6 astes than specified before
the capacitors were added, which is due to aliasing. Althoughstatds for both the 32.768
kHz clock and microcontroller were reviewed to ensure that no dapaeiould be necessary, it
appears that an error existed in the documents. Once the capaeteradded, the oscillator
operated accurately at 32.768 kHz.

The pins that the oscillator is connected to were chosen purposelg, these pins are able to
detect changes asynchronously of the microcontroller clock. f@higre allows these pins to be
used to detect clock pulses. The microcontroller must then count thetmsts of the crystal.
All real time clock calculations are performed in firmware.

RTC ciLa

18 _ .
PG3-TASC2 - = 18pF

PGA/TOSCL "1 Tt
32.768 kHz
. .)))) cL?

L8pF

Figure 18: Real Time Clock Circuit

The reason a 32.768 kHz clock was used for the real time clock e¢g@stfollows. A 32.768
kHz clock pulses at 32,768 cycles per second. When this signal #grearscrocontroller the
clock frequency is divided by 128. This results in the clock sigpakaring to be 256 Hz.
Therefore, after 256 pulses, one second has passed. The microcomusliehen only count to
256 in order to observe 1 second passing. The number 256 also has spatiedrste in an 8-
bit microcontroller. It represents the maximum value that can be helstamdard 8-bit register.
Therefore, when counting to 256, the microcontroller must simplyfeaa register overflow to
occur. At this time, it knows that 1 second has passed. The processtren keep track of
minutes and seconds as needed.

The 8 MHz clock circuit can be seen in Figure 19. It is comuketo the XTALL and XTAL2
pins of the microcontroller, which are specifically designed foesernal clock input signal.
When an oscillator is connected to these pins, it is possibleup #&t processor to use the

external clock source as the master clock for the processor.

47

Clock Circuit

Figure 19: 8 MHz External Clock

Capacitors are also included in the clock circuit above. Theyeapsired to ensure that the
oscillator operates at the intended frequency (8 MHz) ratherah@armonic of this frequency.
Although it is possible to use the 8 MHz internal clock as theanakick for the processor, the
accuracy of this clock is in question. When conducting tests between thevisgdm PC boards

(operating from the internal oscillator) and the second revisiobd¥tds (operating from the

external oscillator), noticeable timing improvements were observed.

The area where noticeable improvement was made was in thd dARmunication between
the microcontroller and the PC. The new external oscillatowall the UART to operate with a
more accurate baud rate, which resulted in less error in dataférs. When using the first
revision DragAid-MK boards, it can be found that the most sicpniti bit of data is dropped on
nearly every data transfer. In the second revision boards withetleclock, this situation has

not been reproduced even after extensive testing.

5.6 Processing and JTAG Module

The processing module is composed of the AT90USB647 microcontrollbich is
manufactured by Atmel Corporation. This microcontroller was orlyineghosen due to its
sufficient memory, many input/output ports, accurate analog to digwalverter, serial
peripheral interface, and USB capability. Although it wasengwally decided that the Atmel
processor's USB documentation was insufficient to create a @umatj, bug-free device, the
processor was not discarded for a new one. This processor ielstively new as is USB
technology. It is believed that when USB processors become ecoormon, Atmel will have
improved USB documentation, and it will be possible to use the processor as it is intended.

A pin-out of the AT90USB647 can be seen in Figure 20. The pins that weed in the
construction of the DragAid-MK have been marked in the diagram. aAde seen in the pin-
out, a majority of the pins of the AT90USB647 were used.

48

| (TEmIND PES | IRE

| (INT.TUAR 1/ ean) PET I

ucrd (B PEZ [ALEHWE)

ucap 3CLKQ)|

VEus

Sl (=] 1&] [l [£] [&]

AVR USB
D PEs TQFPES

f..;ss-ac:w:; eEq |
f_up::im'--scm'.l:m
: IRCINT2 "Eaz;

[{rcmvrsioc.1a) rBS

[(PoinTEio. 151 PG |

(=1 (51 FET PRI

18] [SIT5 18] (5] 18] (5] [

& &

(T4} PD&
(T POF

Figure 20: AT90USB647 Pin Out

The main features of the microcontroller that were used in tagAd-MK are as follows. Pin
2 is used to completely shut down the circuit by disabling therpditekup system. This was
described in more detail in Section 5.1. Pins 10 through 15 are usetkrface with the
EEPROM or memory module of the device. Four of the 6 pins arefispfigidesignated in the
microcontroller for use in SPI data transfers. The remainiayfins are used to control the
write protect and hold (other control signals) of the EEPROM.

Pins 16 and 17 are connected to the two-step input circuitry and thenaee momentary
contact switch, respectively. They were placed on this port ofmileocontroller due to the
interrupt capability of the port pins. Since the signals recefv@d the momentary contact
switch is active low, the internal pull-up resistor feature of ghecessor will also need to be
used on this pin.

Pins 18 and 19 of the microcontroller are connected to the 32.768 kHz real time clock, while pins

23 and 24 are connected to the 8 MHz external oscillator. Pins 2%aae connected to the

49

remaining two switches of the input module. Pin 25 is connected tooigve action on/off
switch allowing it to be used as the input to the processor fan#tster kill switch, and pin 26 is
connected to the momentary contact switch that represents theaepvbypass switch. Both
pins have individual interrupt capability. The interrupt of pin 25 hagkdri priority than all

other button interrupts; therefore, the master kill switch was assigned to thsrpor

Pins 27-30 are used to connect to the UART to USB conversion chip. r3itevb pins (27 and
28) are the receive and transmit lines of the UART, which arnected directly to the
conversion chip. Pins 29 and 30 are general purpose input ports of thesprocébey are
connected to the suspend lines of the conversion chip. They are usedrioirdetvhen data

transfer is initiated or terminated over the USB bus of the circuit.

Pins 33 through 42 are used as shut off signals to the vehicis. witheventually be connected
to solid state relays that will be capable of actually smgittiown the vehicle. Pin 44 is used for
the RPM input signal. Pins 46 through 51 are general output portseéhagesl to connect to the
LEDs of the DragAid-MK. Finally, pins 58 through 61 connect to theowuariparts of the
DragAid-MK that require analog to digital conversion. This incluthesaccelerometers and the

battery and ignition of the DragAid-MK.

Four remaining pins that were not mentioned in the description abev@rar 54-57. These are
designated for the JTAG interface to the DragAid-MK. Theyhdave a specific purpose as
specified by the joint test action group (JTAG) standard. Tkegdin corresponds to TDI (test
data in), the second to TDO (test data out), the third to TMSn({tede select), and the final to
TCK (test clock). The JTAG interface allows debugging of ¢heuit. In reality, it uses a
boundary scan to review all registers that are not part of tleenaitcore of the processor.
Breakpoints can be inserted in the embedded code in order to hatbtesgor when a certain
boundary condition is found. In this way, boundary scan has become veryrdoputacircuit
debugs of complex embedded systems. The JTAG is also commonlyfansptbcessor

programming.

50

5.7 Output Module Construction

The final module that was constructed is the output module of thetcifthe output module is
composed of a series of LEDs that are used to inform the udee ofidde the DragAid-MK is
currently in. The output module also consists of shutoff signalatbatonnected to the vehicle
the DragAid-MK is mounted on.

The circuit for the LED user interface can be seen in FiguteeRiw. As can be seen, the LEDs
are active low, which means the microcontroller must provide a lotagelevel in order to turn
on each of the LEDs. They run on 15 milliamps; however, thisnetllbe a problem, since at
most 2 LEDs will be on at one time. All of the LEDs on the entrprototype board are yellow;

however, the final product will most likely include red LEDs as well.

A+Sw
' LED Circuit ' UL '
RIMQGGSGG—IM\JM 31 pag-ano
["Re i WOy o sal.i .0
R3 Anee m 2 49 | paz ans
__Re 00 G T N 481003 ang
RO o 47 ipaq,ap4
oz aee DI . o
RéAmn—X ﬁna 46 | pas./ans

R

Figure 21: LED Circuit

The purpose of the LEDs is as follows. The first LED wilbmmfi the user that the device is in
pit road mode (a run will not be made). The second LED willadiggmat the device is in race
mode (prepared to make a run). If the device is in pit road miogléifth LED will inform the
user that the two-step has been bypassed. If the user is imodeg it will inform him that the
master Kill switch has been pressed or g-forces have @eddbeir threshold levels. The third
LED will signal that the device is in download mode. The fourth M&Dinform the user that
the device is in test mode, and the final LED will be used, alotiy the other LEDs on the
board, to test the device while in test mode.

51

The second part of the output module is the shutoff signals to theezehitle design of this
circuitry was not completed as part of this project; however, it will evdgitunslolve connecting
general output ports of the processor to solid state relays.e Thleys will either be mounted in
the device or in the race vehicle. A member of the design tedum,works for the project
sponsor and is familiar with race cars, will be designingdin@uit this spring. Figure 22 shows
the design for the shutoff signals on the prototype board. Thigrdesvery basic; however, it
should allow us to test if the device is sending the proper sigriaé relays, which is all that is
necessary in a prototype board.

Kill Sigrals

CPuertually Lo Relaysy . 71
Cpreps e FlAaa o
PC1s69 2o P13 Adyet—o @
prioptppte——— - Flaasal o3
CPCEsAr] FRoe FLE mfyad—o 4
PraspefBe—— Flasalos
PCS, 13 e PLE pf—o g
e s = @ 5 65 ¥ VRS Lk
PLE- Al 4 e REEM+—° 7
- BCToALS e S — o 8
oo Bl og
FG1. RO 22 REZ Al o 1n

Figure 22: Shutoff Signal Circuitry

5.8 Firmware Design

The functionality of the DragAid-MK, or in other words, how the mectaniworks, is
controlled by the firmware of the device. The firmware isttem in Atmel Assembly, and
consists of 5 code modules. Each code module will be described skyparétee following

sections. Assembly was chosen as a programming language dorre@msons: timing

requirements of the DragAid-MK and specifications of the project sponsor.

The firmware of the system is all code that executethinvithe embedded processor
(AT90USB647). When creating this code, the circuitry describetheé sections above were
carefully considered in order to determine the proper way to intevile all systems in the
project. The desired functionality of the device was also redewErom the information
gathered, it was decided that 1 main module and 4 auxiliary mo@uletal of 5 as described
above) should control the operation of the DragAid-MK.

52

Before programming began on each module, firmware flow chane designed in order to
create guidelines to promote the completion of each module. THhisiqgee worked well
especially when problems were identified in programmingllidived the project to stay on task
and, most importantly, maintain the desired functionality of the degiw@n when errors
occurred. Each subsection of this report will describe a pantioubalule, and demonstrate the
functionality of this module based on a flowchart. All flowchdmsve been modified to
represent the final functionality of the device.

5.8.1 RollOverDevice (Main Function)

The first module to be described is the RollOverDevice module. i§ i main module of the
DragAid-MK and describes the main functionality of the deviceofitains the main loop of the
DragAid-MK and describes the operation of the device in both pit m@de and race mode. A
flowchart for the main module can be seen in Figure 23. The firemfeaRollOverDevice.asm

(actual code) can be viewed in Appendix G.

53

{Power Inputted to Circuitry)

Reset (Close) Battery Switch
Turn On Master Kill Interrupt
Systam Initialization
¥

Turn On USART (Download] Interrupt
Turn On Button (Test) Interrupt

Turn On Button {Two-Step Bypass) Interrupt
Turn On Pit Road LED

Download Subroutine l—

» Test Subroutine

System Shut Down |

Turn Off Download, Test, and Two-5tep Bypass Interrupts
Turn Off Pit Road LED and Turn On Race LED
Reset Max-g Registers
Setup Memory and Timers

Vehicle Shut Down
Record Data
System Shut Down

Record Max-g in Memaory

Clear Max-g Registers

System Shut Down I

Turn Off Race Mode LED

Turn Off Timers

Figure 23: Main Function Flowchart

54

The main function of the DragAid-MK operates as follows. The progbegins when the
microprocessor receives 12 volt input from the ignition systerheof/ehicle. The first action of
the processor is to output a low signal to the battery on/off s\{titwhsistor). This will result in
the battery circuit being enabled; thereby, allowing it to pawerDragAid-MK if the ignition

system of the vehicle shuts down.

After this is completed, the program performs initialization ofrtre@n systems to be used. This
includes tasks such as declaring the stack pointer and settidgtéhdirection of the LED port.
The initialization process must also set the initial valudsgb for the LED port (all LEDs off).

It further includes declaring the switch ports to be input portsesadbling the pull-up resistors
for these ports. The power reduction register is also setupsdintte. In order to reduce power
consumption of the processor, all unnecessary systems are shut dowrh ttlieugower
reduction register. At this time, the system functions thatdaabled throughout the program
include the two-wire synchronous serial interface, timer/countehd®,USB controller, and

timer/counter 3.

During system initialization, the SPI interface to the EEPR®MIso setup. This system is set
to operate as the master of the interface with a transfer speed of 4 Mlldpntrol values of the
EEPROM are setup properly such that the EEPROM is not aalivebwever, it is not write
protected either. A preliminary data read is then conducted batlsystem variables can be
received from the EEPROM.

After this is completed, the ADC is initialized so that e&alowing section of the code must
only declare a channel in order to make an ADC reading. Teés»aacelerometer is connected
to channel 1, the y-axis is connected to channel 2, the z-axis is tathbechannel 3, and the
power input circuitry is connected to channel 4 of the analog ttatigpnverter input port. The

ADC initialization involves enabling the ADC and setting itojperate at a clock speed of 125
kHz (this is a suggested clock rate for the ADC in order to ensure accuratestomsjer

After system initialization is completed, the processol &ibble the interrupt for the master Kill

switch as well as global interrupts. It is necessary tblerglobal interrupts, since this feature

55

allows the interrupt controller of the processor to function. Otiserwno interrupts will be
received. When enabling the master kill switch interrupt, itesessary to specify the edge of
the interrupt signal that will produce an interrupt. It was detidhat the falling edge of the
interrupt signal (since the switches are active low) should psobath a master kill and a two-

step bypass interrupt.

At this point, the initialization process for pit road mode begifise first item initialized in pit
road mode is the universal asynchronous receive transmit (UART)s sSistem is setup to
operate asynchronously (it has the option to operate synchronouslylasmtielno parity bits,
1-stop-bit, and 8-bit (1-byte) transfers. Both transmit and recgiseems are enabled in the
controller with a baud rate set to 9600 bits per second. Now thiagtbss been completed this
rate could be increased without any difficulties. The recmiterrupt of the UART controller is
also enabled such that the DragAid-MK system is able to detect a PC requeséfer tlata.

During pit road initialization, the test button and two-step bypat&srupts are also setup. A
variable, which monitors the switches that are currently pressetdieared before entering the
actual pit road mode program. The final initialization step éllto turn on the pit road LED, to
inform the user that the DragAid-MK is on, but not in race modeordier to do this, a low

signal is sent to the pit road LED pin of the LED port.

After initialization is complete, a series of checks arelenaBefore describing the checks, an
important concept regarding the interrupts should be explained. AhhiegUART, test, and
two-step interrupt handling routines will occur immediately whwen groper trigger signals are
received, the interrupt subroutines will not perform the actual apesathat the processor is
being interrupted to recognize. As an example, the interrupt sulediati the test button will
not perform the entire test sequence of the processor. Insteadeatmapt subroutines will set
flags that can be checked later to determine if any inteytogte occurred. The only interrupt
that contains its entire sequence within the handling routine is a@iseenkill interrupt. This is
due to the fact that the master kill switch requires immediatelling upon being pressed. The

actual master kill routine will be described in a following section.

56

Almost all checks that occur after system initializatioa an the flag register described above,
which holds the information as to which interrupt has occurred. Therftesrupt checked via
the flag register is the UART interrupt. If it is found thadlata transfer or download is pending,
the download subroutine is entered. Upon return from this subroutine, ttoagiinitialization
sequence (beginning after the setup of the master Kill interrupg} be repeated. The next
interrupt checked is the test interrupt. If this was found to bgered, the system will enter the

test mode subroutine. It will perform the same action as the download subroutine upan retur

The next check performed is a voltage check on the ignition sysfethe vehicle. It is
performed using the ADC of the microcontroller. In order to cotepthis check, the ADC
channel must be set to 4 in order to tell the system that ltewito read the level of the power
input circuitry. If the reading from the power input circuitry above 3.7 volts, it can be
assumed that the ignition system of the vehicle is on. A votib§er corresponds to an ADC
value (in hex) of 0x300. Therefore, if the high-byte of the A@@wversion is greater than or
equal to 0x03, it is known that the ignition system of the vehiclgperating; otherwise, the
DragAid-MK will be running from the battery system. If tlgmition system is found to be off,
the shut down routine of the microcontroller is called, which will-off the battery from the

system. If the ignition system is running, the check sequence of the main fuoctioes.

The next check is to determine if the two-step of the vehiclebbas bypassed. When the
bypass interrupt occurs, the bypass LED of the circuit witulbeed on. If the two-step is found
to be bypassed at this check, the two-step status will beedlead the series of checks will
begin again. If the two-step is not bypassed, the series of civdtkentinue by checking the
two-step flag. If the two-step has not been triggered, thessefiehecks will begin again;

otherwise, a connection sequence between pit road mode and race mode will be entered.

The connection sequence between pit road mode and race mode involmgsugeti 5 second
timer. It was decided that if the two-step is held for ®eds or longer, the driver is most likely
on the starting line preparing to make a run. Otherwise, the dnagronly be testing the two-
step to ensure that it is functioning properly. If this is occgrrimce mode should not be

entered. Therefore, if the two-step is held for longer than 5 secawtsmode initialization

57

should begin. If it is released before the 5 second time markh#uoi< of pit road mode should

begin again.

The initialization sequence of race mode begins by turning ot &R T interrupt, test interrupt,
and two-step interrupts. It turns off the pit road LED, andaegs it with the race mode LED,
which will signal to the user that the system is ready ttecbtata. At this point a 15 second
and .02 second timer is setup, which will be used to time eventseémrade. The first timer
represents the time limit of race mode and the second represengsnount of time between
each data save in race mode. Furthermore, registers, whlidiolilmaximum g-force readings
in a .02 second interval, will be cleared in preparation for datactiolle A memory read is also
conducted during race mode initialization, in order to prepare and oh&imémory location
that data should be written to during a run. Once all this is complete, the sysitsrmwerder to
determine if the two-step has been released. If it has, tkeehas started, and race mode is

finally entered.

The representation of race mode seen in the flowchart of Figures 28uch generalized
compared to the actual operation of the code. This was done in order to make the l@asshar
to read and the general operation of race mode easy to understandioreA accurate
representation of this mode will now be given. It can also be seen in thecacteian Appendix
G.

The first action completed in race mode is the checking of thesxaakelerometer. In order to
do this, the ADC must be set to read from channel 1, which ix-thes input. The value
received is a 10-bit value; therefore, a double comparison schemd&encshducted in order to
test both the high-byte and low-byte of the conversion. This schelineot be described in

detail, but if interested can be seen in Appendix G.

Once the conversion value is received, it is compared to determinis iiigher than an upper
threshold specified for the x-axis. Since g-force can be positiveegative depending on the
direction an impact occurred, it is necessary to have both uppepwaerd thresholds for each

axis of the DragAid-MK. The actual g-force values read fthenvehicle should be between the

58

two threshold values for that particular axis. If the actu@rge reading is outside of the limits,

a problem has occurred and the vehicle should be shut down.

Therefore, after a conversion result is received for theix-ahe firmware continues by
comparing the conversion result to the maximum upper g-force vatetved from the x-axis
during this .02 second interval (this value is stored in two regigdercomparison purposes). If
the new value is greater than the old, the maximum upper g-foristereiy updated with the
new value. If the new value is greater, a check is also cazdpietdetermine if the new g-force
value is greater than the x-axis upper threshold of the deviago pfoblems are found a series
of lower tests are conducted. If the new value is not grehger the old values, then the

threshold check is skipped, and the device continues by checking the lower g-force lesundari

If the g-force value is lower than the minimum lower g-forceugateceived from the x-axis
during the current .02 second interval, the minimum lower g-force esgisire updated. As
before, if this is true, a comparison of the new g-force valuéset@ctual device thresholds is
conducted. If this check finds a problem (the g-force valuetoarer than the low thresholds),
the vehicle is shut down, the g-force values received are stamedthe DragAid-MK system

shuts down. Otherwise, race mode continues to operate.

Race mode continues by setting up the ADC for a y-axis conveasidrcompleting the same
comparisons as above with y-axis maximum and minimum values asasvelaxis upper and
lower thresholds if necessary. Once the y-axis is completez-bxis is also completed in the
same manner. After the z-axis checks are completed, the @dsiwmer interrupt flag register
is checked in order to determine if .02 seconds has passed. lfitbikds passed, an EEPROM
memory write is initialized. The current values of the maximuypper g-force registers and
minimum lower g-force registers (12 registers or bytesoial are written into EEPROM.
When this is completed, the memory pointer is updated, and the maxandmminimum
registers are reset to default values.

Finally the system checks to see if 15 seconds has padsidk i$ false, race mode repeats by

once again checking the accelerometers of the system. Ofbetwe race is complete in the

59

eyes of the DragAid-MK. The ignition is checked in order to mieitge if the car is still running.
If it is not, a system shut down occurs; otherwise, the race mafkeis shut down and all
interrupts initialized for this mode are turned off. The systeturns to the initialization
sequence of pit road mode, which occurs after the initializatiahe master kill interrupt. This

concludes the operation of the main firmware of the DragAid-MK.

5.8.2 Common.asm

The next code module written was common.asm. The code for this nzadulee viewed in

Appendix H. This module contains all auxiliary functions for thegbwd-MK system. These

include functions needed to interact with the serial peripheralfacter(SPI) and analog to
digital converter (ADC). It also includes the functions tvatre designed to perform special
tasks for the DragAid-MK, such as system shut down. Flowchares evdy created for two of

the functions in this module. In general, the functions in this modwe Hesigns that only

involve the processor executing a sequence of actions, which would result in simpleafisw

The first set of functions created was for the SPI intertaeveen the microcontroller and
EEPROM. In communications with the EEPROM, it is necessarpegin by sending a

command to the EEPROM. There are several commands that camtbguch as read, write,
write enable, page erase, sector erase, and chip erasecdaaciand is specified by sending a
certain byte long command to the EEPROM. Some commands rélgaiiran address be sent
immediately following the command. These commands include reatd, wage erase, and

sector erase (the EEPROM must know where to read, write, or erase from).

The first function created for the SPI interface was na®@omSend and was designed to take
in a command and an address (if necessary). The function bgdaading the command into
the SPI data register and calligglWait, which is another function in this modulesPIWait
operates by looping until the transmit data complete flag ofSRé status register is set.
Therefore,SPIWait does not return until the data transmit is complete. Afterishi®mpleted,
SPIComSend checks the command that was sent in order to determine iiecessary to send a
16-bit address as well. If the one of the commands that requiraddress is being sent, two
more data sends are completed with the address bytes. Onds tosiplete, the function

returns.

60

Another function in this section of the module is t#Read function. In order for the
microcontroller to receive data from the EEPROM, it must sendduchata to the EEPROM
after the read command and read address have been sent. A dumssndéis necessary, since
in an SPI interface, the slave device is not able to inigatata transfer. Therefore, the
EEPROM may have data to send to the microcontroller, but it iabietto send this data unless

the microcontroller sends data, thereby, activating the clock that conedthinterface.

Therefore, theéSPIRead function is designed to begin by sending out $00 to the EEPROM, which
will give the EEPROM the opportunity to send data back to theogoatroller. After loading
the SPI data register with the dummy valGB|Read calls SPIWait in order to loop until the
transfer is complete. Upon return from this function, the data reatdthe EEPROM will be in

the SPI data register. This value is returned to the calling function.

The next function created was tBelWrite function. This function simply stores the data to be
sent to the EEPROM, which is the input to the function, into thed&fl register. It then calls
SPIWait. Upon completion o8PIWait, it returns to the calling function

The final function created for SPI communication was a functionifsgaly designed to wait
for a chip or sector erase to comple®I&atusWait). This function should be called after a
chip or sector erase command is sent to the EEPROM. It degohalaying firmware execution
by 16 ms, which is the approximate time of a sector or chigeeréisthen requests to read the
EEPROM status register by sending the status read commandhithhgu§Pl. If the status data
shows that the erase is complete, the function exits. Othervigeps and continues to check

the status register until the erase is complete.

The next set of functions created was for the ADC of the nootoaller. The first function
written wasADCWait, which, as its name implies, is designed to loop until an ADC cowoversi
is complete. This function should only be called after an ADC csiorehas been started. It
checks the conversion complete flag (ADIF) of the ADC statustegg(ADCSRA) and exits
once this flag is set.

61

The second and final function created to work with the ADC aa€Sart. This function is
designed to initiate and complete an ADC conversion. The functionsbygistarting the ADC
conversion and clearing the ADC conversion complete flag, which nildyesset from previous
conversions. It accomplishes this by writing the correct bitgshef ADC status register
(ADCSRA). After this is completeddDCWait is called. Upon completion of this function, it is
known that the result of the ADC conversion has been written into th@ Wgh and low data
registers. This data is then transferred from these regist® user controlled registers and

returned to the calling function.

The next set of functions created were the special functionsidoDtagAid-MK. The first of
these functions was thgystemShutDown function. Upon being called, it is expected that the
ignition system of the vehicle the device is mounted on is no tangaing. It is designed to
send a high signal to the transistor acting as the battery fesvit€h. The high signal should
shut down the transistor and cut-off power from the DragAid-MK dirclihe SystemShutDown
function then loops until the power is removed from the circuit (which shbel nearly
instantaneous). A flowchart for ti8ystemShutDown function was created. As stated above, it is

very simple and merely summarizes the above paragraph. It can be seen iR4igure

System Shut Down
Begin

!

Turm Off &All Device
Systems

Open Batlery Switch
v
End

Figure 24: System Shut Down Function Flowchart

The next function of this set is théshicleShutDown function, which as its name implies, is
designed to send off-signals to the vehicle the DragAid-Miasnted on. This is equivalent to
the operation of the master kill switch interrupt. It should onlcéléed after the race mode

code decides that the device thresholds have been exceeded. Tlonfapetates by sending

62

high signals to all port pins designated to be used for shutting tt@nignition and fuel system
of the vehicle. Upon completing this operation, the function returns. owcHart for this

function can be seen in Figure 25.

Master Kill Interrupt
Begin

Shut Down Vehicle

v

System Shut Down

End

Figure 25: Vehicle Shut Down Flowchart
The final function of this section was ti8oreValues function. This function is designed to
complete a g-force value save to EEPROM. It will simplyesttve 12 bytes of data in the
maximum upper g-force registers and minimum lower g-forcestexd into the EEPROM. This
function was written to be called after g-force values have ssedabe thresholds of the device;
therefore, it does not need to update the memory pointer or maximumiamdum g-force

registers, since upon returning to the calling function, the system will belgvat

5.8.3 Download.asm
The firmware written for the download subroutine or data transfbrositine can be seen in

Appendix I. A flowchart for this routine can be seen in Figure 26.

63

Download Subroutine
Begin

¥
Turn Off Pit Road LED
Turn On Download LED
Turn Off Download Interrupt
Turn Off Test Interrupt

¥
Setup 5 Minute Timer

System Shut Down Reset 5 Minute Timaer

F 3

Send Data to PC
Confirm Data Send
Erase Device Data

Receive Data
Set New Device Values

Turn Off Download LED
Turn Off 5 Minute Timer

End

Figure 26: Download Subroutine Flowchart
The download function of the DragAid-MK operates as followsbeliins by turning off the pit
road LED and turning on the LED to signal that the device is in dmginimode. It then
performs initialization to prepare the device for operating inrdoad mode. The main steps
taken to initialize the device for download mode include turning effdibwnload, test, and two-
step interrupts as well as setting up a 5 minute and 1 milliségoed The 5 minute timer is a

timeout for download mode (when 5 minutes pass the device will rqghtead mode). The 1

64

millisecond timer is necessary as a buffer on data sends.finBhstep is to set the ADC of the
device such that conversions are taken from channel 4. This is dtme sloe ignition system

or power input of the vehicle can be monitored.

As with the code for the main function, once initialization has oedyra series of checks are
performed. The first test conducted is to see if the vehidigag is on. If this is found to be
false, download mode is exited and system shut down occurs. If thiengsitstill on, the
system checks to see if data was received from the Pthis lis true it further checks to see if
the PC wishes for the microcontroller to send or receive dati#e Hnicrocontroller is to receive
data, the system calls the functi@ataRecieve. If the microcontroller is to send data, the
function DataSend will be called. Otherwise, the function checks to see if daasfer is

complete. If this is true the system returns from the download subroutine tolihg fcalction.

Upon returning from th®ataSend and DataReceive routines, a time out check is completed in
order to see if 5 minutes has passed. If this is true, thensystieirns from the download
subroutine to the calling function. Otherwise, the system jumps tbetii@ning of the loop of

checks in order to see if a new data transfer has occurred.

The two main functions of the download module areRagSend and DataReceive functions.
These functions are responsible for all major data transtieiragAid-MK system. The first
function DataSend) has two main operations. It can either send basic devicebdekato the
PC, or it can send race data that was collected. The infornsdinto the PC depends on a
command that is received by the DragAid-MK from the PC. IfR@only wants to receive
information about the DragAid-MK, thBataSend routine proceeds by sending the car #, upper
and lower threshold values, and date the thresholds were last moditfethe PC wants to
receive the run data, the DragAid-MK will respond with the#&sllowed by the run data. Itis
capable of sending up to 3 runs of data back to the PC. When theeddtés complete a ‘C’
will be sent to the PC before tBataSend function exits. ThdéataSend function will also clear

the time out variable before returning to the main download loop.

65

The DataReceive function also has two main operations. It will either receivigalination data
for the DragAid-MK, which resets all key variables in the deyior it will receive threshold
data. If the PC sends an initialization command, the DragAid-E8pands with ‘OK’ and
continues by loading default values for car #, threshold values, thidegatd, version number,
version date, and serial number into the EEPROM of the device. FPGhsends a threshold
command, the DragAid-MK responds with ‘OK’ and continues by waitinghferthresholds, the
threshold date, and the car # from the PC. These are the duds\that are updatable by the
user of the DragAid-MK. The initialization command is for thenofacturer of the DragAid-
MK. When these values are received, they are stored into tetyparéables before a final data
save is completed, which will store these values into the EEPBIQM device. When the data
save is complete, the DragAid-MK will respond with ‘C’ totle¢ PC know that everything was
completed successfully. As with tiataSend command, théataReceive function will reset

the time out variable on exitting.

The final two functions written for the download module wBeeeiveWait and TransmitWait.
These functions were designed to improve the readability oD#iaSend and DataReceive
functions. The first function ReceiveWait) is designed to read the UART status register
(UCSR1A). It checks the receive-complete flag of thisstegi While this flag is not set, the
function loops inside th&®ecelveWait routine. When this flag is set, the data from the UART

data register will be loaded into a user register and the function wilhrefitin the received data.

The final function of the download modulE,ansmitWait, takes as input the data to send to the
PC. It stores this value in the UART data register, whichinitiate the UART data transmit.
The function then loops continuously checking the UART status re¢i$@®R1A). When the
transmit-complete flag is set, the loop ends. At this point, thetifumenters another loop,
which is designed to delay the system for 1 millisecond. Thisydslanecessary between
transmits; otherwise, the PC will not obtain all data transfein a consecutive data transfer. It
is uncertain whether this error is due to a receive buffer inP@eor in the CP2102 chip;
however, this small modification to the transmit function fixesghablem. This problem and

solution were found through experimental data transfers using the device.

66

As an end note, before the processor returns from download mode, theadafartt ED is

turned off and the 5 minute and 1 millisecond timers are disabled.

5.8.4 Interrupts.asm

The next module constructed was the interrupt module. This module coathimserrupt
subroutines used in the DragAid-MK firmware. The code for this modae be viewed in
Appendix J. Flowcharts were not created for the functions writtethis module due to their
simple design. Good program design requires that interrupt subroatmes short as possible.
Therefore, the interrupt routines found in this module have no loopingeagdittle branching.

They mostly consist of a short sequence of actions that the microcontroller miasthpe

The first interrupt subroutine found in this module is MasterKill routine. This function
performs the same operation as YfehicleShutDown function presented in section 5.8.2 of this
report. The main difference between this function and the functiomilded@arlier is that this
function is triggered by pressing the master kill switch of BragAid-MK. Since it is an
interrupt handling routine, it must also store all registers useitie routine onto the stack.
Atmel processors also require the user to store the microcontstdliels register onto the stack.

Otherwise, this register is not preserved during an interrupt subroutine call.

The next interrupt subroutine B®voStepint. This routine is entered when the two-step bypass
button is pressed. This function operates by checking the flag ofswliteh variable
corresponding to the two-step bypass. If the two-step bypasts fkag, the function knows that
the two-step is currently being bypassed in the program. Sincbutt@en has been pressed
again, the two-step bypass flag should be cleared and the |gEEseating the two-step bypass
should be turned off. If the flag is not set on entering the routindlapeshould be set during
the routine and the two-step bypass LED should be turned on. Aftef tmese two operations

is completed, th&woStepint will return to the function that it interrupted.

Another interrupt subroutine in the module interrupts.asiresint. This function has a simple
operation. When the test button of the DragAid-MK board is pressediathén the switch

variable corresponding to the test switch is set. After th®mpleted, the interrupt subroutine
exits. The interrupt routinBownload, which followsTestint in the interrupt module performs

67

the same operation d&stint. The two differences between the routines are thaDtvenload
routine occurs on a UART receive interrupt (rather than abieson press) and modifies the

download flag of the switch variable (rather than the test flag).

The final interrupt subroutine in the interrupt module, which performscamakfunction, is
RTCInt. This module simply increases the value of a variable named secs. It &swsedunter
that can be set to count at different intervals. The finalrugpeihandling routine in this module
is Unused. If an interrupt not being used by the DragAid-MK firmwarériggered by accident,
the firmware is setup to call tHénused interrupt. This interrupt simply consists of a return

statement that will cause the execution of the program to return to the intdrdupt&on.

5.8.5 Test.asm
The final module written to complete the functionality of thedia-MK was the test module.
The code for this module was written in test.asm and can bersé@pendix K. The flowchart

for the test module can be seen in Figure 27.

Test Subroutine
Begin

Turn Off Pit Road LED
Turn Off Download Interrupt
Turn On Test LED
Reset Test interrupt

False

w

Systemn Shut Down

Ignition On

Check Accelerometers

— Tum Off LED

Turn Off Test LED
Turn Off LED

Turn On LED

End

Figure 27: Test Subroutine

68

As with the main routine and download routine, the test function subroutjesb&ith its own

initialization sequence. The first step is to turn off therquid LED and turn on the LED for test
mode. It proceeds by turning off the download interrupt and regétim test mode interrupt.
When the user wishes to exit test mode, the test button should be pressed again, idgialvil

to the test function that it should return to the calling function.

After the initialization sequence for test mode is completed,nthé loop of test mode is
entered. In this loop, the function begins by using the analaligttal converter to check the
voltage level of the power input circuitry. If it is found that tfeition system is off, the system
shut down function will be called, which will shut down the DragAid-Mé&Vvice. If the ignition

system is still running, test mode will continue by checkingsthigch variable in order to see if
the test button has been pressed again. If it was once agaedptbestest mode LED will be

turned off and the system will return to the calling function.

If the test mode button has not been pressed, test mode continues by conducting ramateele
check. This accelerometer test sequence is setup in thensgnas the tests conducted in race
mode. The only difference is that the X, y, and z thresholds tai@ Isev values (+/- 1 g). When
the g-force levels surpass these thresholds, instead of vehidlelewvn occurring as in race
mode, an LED on the DragAid-MK turns on. If the threshold surpasskd igoper x-threshold,
the first LED on the device will turn on. If the lower x-threshslgurpassed, the second LED
on the device will turn on. Surpassing the upper y-threshold resuhs third LED turning on
while the fifth LED will turn on when the lower y-threshold isrgassed. The final LED will
light when the device is held upside down in order to test the zamdslerometer. The
accelerometer check loop of test mode will continue until themesle button is pressed or the

ignition system of the vehicle is shut down.

5.9 Software Design

The DragAid-MK software is the program to be run on the useZ'snPorder to view the data
collected by the actual embedded system. The software waenwin Delphi, which is a
specialized program for creating windows applications. The satméerface of the DragAid-
MK was not a major feature of this project (it was not d getaforth for the completion of the

MQP); however, it was started in order to lay a base for future continuation ofafastpr

69

The basic operation of the software has been decided; howeverwork is required before the
software is released to the racing market. The major wanmklwcted in the software design was

the screen layouts and screen expectations. These can be seen in the followsmbdigure
" @ DragAid-MK - lecnle=l e

DragAid-MK

Version #: 1.00
Release Date: 8/18/08

| Download View Run

Figure 28: Software Main Screen
Figure 28 is the main screen of the PC interface softvearthé DragAid-MK. As can be seen
above, when the software is complete, it will have four majortifoms. It will allow the user to
download data from the DragAid-MK, view data that was downloadedhenptast, adjust
threshold values and update the DragAid-MK, and in the far futureillibso use the data

received by the DragAid-MK to simulate what occurred to the car during the run.

The screen shot in Figure 29, shows the help screen of the DragAid-MK.

70

Help Menu .) . .

i : - The DragAid-MK is a data analyzer and master kill switch for your
© Version # © Update race car. Since each race car is different, the DragAid-MK was
© Release Date © View Run created to adjust to each vehicle it is used on. The software

) - being used here is designed to allow you to review the g-force
) Download © Simulate data collected during a run and reset your devices g-force

threshelds to insure that it gives you the proper protection.

Click On Each Button to Learn More

Version Number is used in case updates occur. It will allow you to know if you need a
new version of the software

www.portatree.com Return

Figure 29: Software Help Screen
This screen will explain the different features of the safvta the user. The intent of this page
is to be easy to use as well as helpful. Right now it opessatésllows. The user must select
one of the 6 choices in the upper left corner of the help screenn ¥Whew choice is selected,

the help available for that selection is displayed in the main portion of the he¢mscr

If the “View Run” button of the main screen is selected, theodidlox seen in Figure 30 is

displayed to the user.

Select Car #: @— Hint
Select Run #: | hint |
l Okay] [Cancel l

Figure 30: Software Car Select Screen

It requests the user to enter the car number and run number foarttieat the user wishes to
view. In this way, it is able to search through available runscandumbers in order to find the

run the user is requesting.

The actual view run screen is not complete. Its current condition can be seen irBEigure

71

" View Run e |

Car#: 1783 DragAid_MK
Run #: 1
Max Threshold Difference Threshold Suggestion
X Force: l
Y Force: l
Z Force:
Edlt Thresholds ‘ Back to Main ‘ Change Graph

Figure 31: View Run Screen
The view run screen will eventually display a graph of the g-foet@ collected during the
particular run that the user requested. It will also displaymtheimum g-forces for each axes
recorded during the run. Furthermore, it will eventually suggesilpess-force thresholds for

the vehicle based on the run.

The final screen is the threshold update screen. This can be seen in Figure 32.

Ji Update =R
Update Screen
Values from Device New Values

X Threshold: 00.00

Y Threshold: 00.00

Z Threshold: 00.00 ‘

Car#® L

Last Editted: ‘
k ‘ Get Values Back to Main Send Values

Figure 32: Update Screen

72

This screen will eventually be able to send new threshold valuésetonicrocontroller and

receive the current threshold values from the microcontroller.

Overall, a good start has been made to the software screens dimxen d is believed that the
screen layouts will remain the same when additional functignalitadded to them and the

project is continued by the sponsor.

5.10 PC Board Design

In this project, two revisions of printed circuit boards (PCBs) weaele. The first revision can
be seen in Figure 33.

Figure 33: Initial PCB

As can be seen from the image, many wires and extra componemgtsadded to this board as
various system tests were conducted and modifications were ne€decdoard served its main
purpose, which was to test the main systems of the DragAid-MKlbadidsing this board, it was
possible to test the accelerometers interaction with the ataldigital converter. Furthermore,
it was possible to test the LEDs, switches, 32.768 kHz clock, i8Biface, and USART.
Therefore, this board served the purpose of a development board. It wergedell in this
application, and provided the necessary basis for developing the second revision board.

73

Several improvements were identified for the second revision PCBgdilmé testing performed
with the initial board. The most important improvement was thattrdees for the surface
mount parts should be made larger. As noted before, several addimnpbnents were
required on the PCB in order to progress the board into thestiagés of the project. A picture

of the second revision prototype board can be seen in Figure 34.

3|l DragAjd-HK Rey 2

il Copyright 2009 [
W Portatree Timing Systerns
=] R -5-7“!' :‘.. A

o
%)
o
o
Lol
o
i
A

Figure 34: Final Project PCB
In order for the project to be sold on the market some slightgesawould be required to this
board. I notified the sponsor of these necessary changes bejdieipg this board, and they

agreed that two more board passes could be made before production.

This PCB revision was designed with stuffing the boards in mind. tlierreason, the
components with pins underneath (MLP and LFCSP packages) were lndethon the board.
Samples of the two components with these package types (ADXL386letdameter and
CP2102 USB to UART Bridge) were purchased from SparkFun Bléct on breakout boards.
These boards were fully functional and required no changes to benusedjunction with the

DragAid-MK circuitry. This was also proven in the initial dgsrevision seen in Figure 33.

74

Therefore, to make the soldering process easier, positions eteaside on the printed circuit
board in order to mount the breakout boards from SparkFun. Connection hoksalse
provided on the PC board in order to make the process of connecting the biezkaigtto the
PC board easy and neat. A layout for the printed circuit boadéb#fe boards were produced

can be seen in Figure 35.

s 's@'. 26 °III-——-°

| p 2 ﬁmhl—l—_«_,,

?III

’l‘

Figure 35: Printed Circuit Board Layout

Once the PC boards were designed, they were sent to AdvancedsCinc@olorado. This
company provides the manufacture of two-sided PC boards for only $33. bBards were
ordered and a"5board was sent as a bonus for the purchase. The components for the boards
were also ordered from DigiKey around the same time. Upon artwalboards were stuffed
immediately in order to be tested. This was done due to the pagsibitiomponent failure on a

single board, which occurred when stuffing the first revision PC boards in September

The most noticeable revision that would be required in a final PGBjrés that the breakout
boards would have to be removed from the PCB. This would save on cost amdfsihecPCB.
The second revision is that capacitors must be added to the 32.768 kHzltcleak. noticed
during testing that this clock ran faster than expected. Whencdlogsope was connected to

the clock in order to test the frequency, the clock ran at the pragger It was quickly deduced

75

that capacitors were needed to cause the oscillator to osecilléhe correct rate and prevent it
from running at a harmonic. At this time, tests have been condactedo other board changes

appear to be necessary; therefore, this board revision was asucdbat it can support the
main functionality of the DragAid-MK.

76

6 System Testing

Before the firmware design for the DragAid-MK was crdateach key system of the DragAid-
MK board was tested on the initial and final prototype boards. Téssdene to ensure that any
problems detected in the final program were truly due to firravaard not the DragAid-MK
circuitry. As of now six preliminary tests and a final systest were conducted on the

DragAid-MK board. They are summarized in each of the sections below.

6.1 LED Circuit Test

The first test that was conducted was to ensure the operatior &EMs of the DragAid-MK
prototype board. In order to do this a simple light routine was desiag the AVR assembler.
The Assembly code for this program can be seen in Appendix A. ligihteprogram was
designed to perform a simple loop. It would turn on one light and th&ravgaort amount of
time. The delay was created by a simple software loop tifrped no operations. After the
delay, the light currently on was switched off and a new lighd Warned on. It was found that
all the LEDs on the board functioned properly and also functionedpestex! (active low). It

was not necessary to change any aspect of the LED circuitry.

6.2 Switch Circuit Test

The next circuit tested was for the switches of the prototyedbo Appendix B shows the
complete test code used for the switches. This code is desigpedl for an input from the
switches and then light up a different LED when each switghneissed. Therefore, four LEDs
and all four of the switches on the initial prototype board are usedhis program. This
program could not be mapped to the final prototype board due to port chandgedetaeen
board revisions. However, this test program showed that the circdggign for the switches

was correct, and allowed the circuitry on the final board to be designed properly.
When the program was downloaded to the board, it was found to function properlgach

switch was pressed a different LED was lit on the board. There were no prothetifsed with

this program; therefore, further tests were not conducted on the switch gircuitr

77

6.3 EEPROM (SPI) Circuit Test

The 25AA512 EEPROM chip is connected to the AT90USB647 through the geripheral
interface (SPI) of the microcontroller. The User's Guidéhaf ATO90USB647 was consulted in
order to learn about the operation of the SPI interface. Throughstrés guides of both the
ATO0USB647 and the 25AA512, it was eventually possible to create shecdde seen in
Appendix C.

The test code operates as follows. First it allows thetosenter 8 values onto the test board.
What is meant by entering values is that the board allowssteto enter any combination of 8
button presses into the board. When a button is pressed, a correspondirglitBb the board

in order to inform the user that the button was actually pres8sdeach button is pressed, the
information regarding the buttons pressed is stored in the EEP&@M After 8 buttons are
pressed, the information is recovered from the EEPROM chip and the LEDs corregjptorithe

buttons that were pressed are lit in the correct order. It is similar tonéipe Simon game.

The EEPROM (SPI) test code and circuitry worked as intendedstofed the information
gathered from the buttons of the DragAid-MK prototype boardl@asly. Since this program
was also setup to use the switches of the initial prototype boamild not be loaded into the
final prototype board; however, as with the last test programfifiecethe proper operation of
the SPI circuitry. Therefore, this test program allowed thauitry on the final prototype board
to be designed properly.

6.4 Accelerometer (ADC) Circuit Test

The accelerometer or analog to digital converter (ADCQuiiry of the prototype board was
tested using the ADC test code seen in Appendix D. This codetwestccelerometers: the
ADXL278 and the ADXL330. There are two output lines coming from tH2XA278
representing the x and y-axes of the device. There is one augebming from the ADXL330

corresponding to the z-axis of the device.

The ADC test code seen in Appendix D operates by lighting diffdtEDs on the board when

g-force thresholds are passed. The thresholds are sdt-gofor each of the axes. Therefore,

78

no matter which side the test board is tilted to, an LED hght. When the firmware was
downloaded to the board, it was found to work properly. The circuitryefich of the
accelerometers was correctly designed; therefore, no cthaitges were needed in the final
prototype. Furthermore, due to the proper design of this test pnptira basic code from it was
used in the race mode function, which can be seen in section 5.8.1, arst thede function,

which can be seen in section 5.8.5.

6.5 Real Time Clock Circuit Test

The real time clock circuit was tested to ensure that3?&§68 kHz clock was operating
properly. The test code created can be seen in Appendix Esidaliya consists of a real time
clock interrupt that updates the number of seconds that have passedhomteaupt. The

number or seconds is then displayed using binary and the LEDs avaitethle board. After 60

seconds pass, the variables reset and the count begins again from O.

When downloaded to the board, the firmware was found to work properly. The 324Z68 k
clock was then tested for accuracy. This was done by carsfuilshronizing the board clock to
a stopwatch and determining if both clocks reached 60 seconds aintketimme. The 32.768
kHz clock was found to be accurate in 60 seconds. It was due toitisilsaccuracy test that the
circuitry from the initial prototype board was reproduced exactlyhenfinal prototype board.
Unfortunately the crystal was found to operate too quickly on thebwards, which required

additional capacitors to be added to the board design.

It is uncertain whether the original tests conducted on thelipitiotype board were completed
improperly, or if the crystal was simply a fluke; however, sitite problem has been identified

and solved, this will not be discussed further at this time.

6.6 USB Circuit Test

The final test code was designed to achieve USB communicatiwedrethe DragAid-MK and
a PC. After two weeks of testing, successful data tranvgés achieved. Transferring data
between the DragAid-MK and a PC required a program to be writteooth software and

firmware. The firmware code can be seen in Appendix F.

79

The software designed to test USB communication had a veryesimpl interface. Before it is
described in detail, information needs to be understood about the USB comwahrig on the
actual DragAid-MK board. When a USB peripheral is firstchtéal to a PC, the PC requests
information about the type of device that was connected. The W8&Beksion chip on the
DragAid-MK is designed to tell the PC that a RS232 device has aached. This will allow
PC applications to communicate with the DragAid-MK board as if they were oaioating to a
COM Port or in other words a normal RS232 Port.

Since the DragAid-MK board appears as an RS232 device to the sofipplieation, the
software must properly setup the virtual COM port the DragAid-Mkattached to in order to
properly communicate with the device. For the test, it was deditet a baud rate of 9600
should be used along with no parity bit, 8-bit data transfer, and 1 stop bit. SincéuaeGOM
port that the DragAid-MK will appear on is unknown at the beginninthefsoftware (it is not
known until the DragAid-MK is connected to the computer), it is reargg<o have a COM port
selection field in the test software. A screen shot of the test softesat@ecseen in Figure 36.

@ form1 LG Tost Bransam B |

USB Test Program

COM Port Select: |

Light 1 Light 2
] 1 Get Button
Light 3 Light 4
Button Pressed on Board:
Light 5 Light 6 [

Clear Box

i

Sequence Light Clear

Figure 36: USB Test Software

The actual USB test software operates quite simply. When ot dight buttons is pressed,
the software will send the hex code corresponding to the light number to thei@®gAboard.
Windows API functions, which are designed specifically for commatimg with computer

hardware, are used to send data to the virtual COM Port. Thersémding hex codes to the

80

DragAid-MK board is made simple by calling one Windows API fiomct The “Sequence”
button will result in several LEDs being turned on and off on thgg®ickMK board. The
“Light Clear” button will result in all the lights turning off.

Since USB is the underlying communication protocol of the systdespite the RS232
interface), the DragAid-MK board can never send data to the iB@uv the PC’s permission.
This is part of the USB communication protocol, which states thattmster (the PC) always
has control of the data bus. Therefore, in order to test theARFAK’s ability to send data to
the PC, it was necessary for the PC to first request ddis wias done with the “Get Button”
button. The processor will return a value representing one of the bottotie DragAid-MK

board. This value will be displayed as text in the edit box underneath the “Get Button” button.

The USB test firmware was designed to specifically inberfavith the test software. After
setting up the UART receive interrupt, which is used to receive fiain the USB conversion
chip, the processor enters a wait loop. The receive interrasigned to take in the 8-bit data
received over the USB bus from the PC. If the data is adex lsetween 1 and 6, a light on the
DragAid-MK board will be lit. If the hex code received is $46, lights on the device will be
cleared. If the hex code is $47, it is known that the softwateewifor the DragAid-MK to send
data. The board then waits for a button to be pressed and sends tigioromathe button press
to the USB conversion chip.

The USB transfer was found to be very reliable in the tesiducted following the creation of
the test software and firmware. At first an intermitterigpem was found with transfer from the
PC to the DragAid-MK board. Every so often, the most signifitaht{MSB) of the data
transfer would be misread. It was soon found that the baud rateagghdry the Atmel
processor was inaccurate to 7%. The system clock of the Atmel processaisea causing the
baud rate accuracy to improve such that there was only 0.2% &Woen the test program was

once again run, the program received the correct data on every transfer.

81

Due to the design of this test program, it could be loaded intorthkepiototype board in order
to test the UART communication. It ran properly on the new boamdd, confirmed the

operation of the USB data transfer circuitry.

6.7 Final Firmware Test

Upon completion of the firmware for the DragAid-MK, it was downlahdeto the final
prototype board and tests to ensure its proper operation were condiibeefirst test completed
was to ensure that the device entered race mode. In order to ctimisltest, it was necessary to
use a second 12 volt power supply, which would simulate the input fronwthstep. The
firmware was designed such that the two-step must be actiyaitgh) for at least 5 seconds
before the device would enter race mode. Therefore, the 12 volt papelly was connected to
the two-step input and a 5 second count was begun using a stopwatels. found that the race
mode LED lit at approximately 5 seconds after the two-stepaetivated. Therefore, the two-

step trigger of race mode worked properly.

The second test conducted was to ensure that race mode lasted #reapropnt of time (15

seconds from the release of the two-step). In order to do thisyshem and stop-watch were
reset. Once everything was ready, the two-step wagagadi again using the 12 volt power
supply. After 5 seconds passed, the two-step was deactivated toasigoa start and the stop
watch was started. At approximately 15 seconds according tstapewatch, the race mode
LED shut off, signaling the end of race mode; therefore, itfeasd that the system worked as

intended.

The next portion of the system that was tested was the twdrgbeyss feature of pit road mode.
In order to do this, the two-step bypass button was pressed. itweliately noticed that the
two-step bypass LED was lit as expected. The 12 volt power supply was then applestivio-t

step input to symbolize activating the two-step. It was found tieatace mode LED did not
come on even after 5 seconds passed with the two-step activatedshdhied that the system

was properly bypassing two-step input.

The next test conducted was on test mode. To begin this tedesthenode button of the
DragAid-MK board was pressed. As expected the test mode dadbfie on. The board was

82

tilted to the front and back first. When tilted forward, the fiED of the board lit (exceeded
upper x-threshold), and when titled backward, the second LED lit. Whed td the left, the
third LED of the board lit, and when tilted to the right the fifth IFinally the board was held
upside down, and it was found that tH2LEED lit. Therefore, test mode was found to work as

expected.

The test of the master kill switch required a digital nmodtier to be used. Before the test was
conducted, the voltage levels of all ports designated to send o#fisigere tested. It was found
that all these signals had low outputs, as expected. The rkidlstantch was then pressed, and
the values were once again recorded through the digital multimdtervas found that each
output pin designated to shut down the vehicle had a voltage leved@®ivdlts. This is as
expected, a high voltage signal. Therefore, the master kilclsvat the device works as

intended.

The next feature of the device was slightly harder to t&hts is the system shut down feature,
or in other words, the ability of the DragAid-MK to shut itself doafter the ignition system of
the vehicle has been removed. It was decided that the best @aythis would be to connect a
battery to the DragAid-MK system along with a 12 volt power souepresenting the ignition
system. The device should then be entered into race mode using dotléirpower source to
represent the two-step. After race mode has begun, the 12 volt ighibafd be removed. The
system is designed such that race mode will be completed kbrevice will shut down.
Therefore, even with the 12 volt power source representing theolgmégimoved, the DragAid-
MK system should continue to run. This test resulted in proof ofdiveat operation of the
system shut down feature of the DragAid-MK.

The only areas that remained to be tested at this point werdathesaving ability of the
DragAid-MK, and the USB transfer or download module. It wasdgekcthat these two features
of the DragAid-MK would be easiest to test together. A simgdé program was created that
would send commands to the DragAid-MK and determine if the DragAddgvbduced the

proper response. The layout for this test program can be seen in Figure 37.

83

@ Form1 - e
DragAid-MK System Initialize
COM Port Select: 4
COoM4

Car #: X000 Date: 3/22/2009
. Lower X: 434 Upper X: 589
| Lower Y: 434 Upper Y: 589
| Lower Z: 246 Upper Z: 491

Send (‘:’K Receive

Figure 37: Initialize Test Program

This test program was designed such that different responsedifeodragAid-MK could be
viewed. As of right now, it tests the initialize portion of thataReceive command in the
download module of the DragAid-MK as well as the threshold send patitime DataSend
command. When the program is started, the COM port that the RFAIA is connected to
must be selected in order for the system to run properly.aAde seen in Figure 37, when this

is set in the program, a label appears that confirms the port number the device isecbimect

The first button that was pressed is the “Send” button. This buttbrsevid the initialize

command to the DragAid-MK causing it to write initial thresholdueal to its variables and
EEPROM. When the DragAid-MK receives the command it sends’ 1iakk to the PC. The
initialization program created shows that the PC received tbigsecters from the DragAid.
After all values are written to the EEPROM of the DragAi#-M ‘C’ is sent to the PC. This
value is also displayed upon being received as can be seen hirdHaliel on the screen of the

initialization program.

84

Once the system initialization operation appeared to be workomepy, the DragAid-MK was
shut down and then turned back on. This was done to erase all the Réed whthe system.
On system startup, all data held in RAM during the standard aperait the DragAid-MK is

read from the EEPROM of the DragAid-MK (which is nonvolatilehefefore, through cycling
power, an attempt was made to ensure that the SPI interfabe BfragAid-MK was working
properly. The device was reconnected to the PC through a USB cablnea'Receive” button
of the initialization program was pressed. As expected, all vawigen to the DragAid-MK

during initialization were received by the initialization software.

The values received by the software may seem to be ratherdad, therefore, incorrect upon
first looking at the initialization software figure (Figure 37This is due to the fact that the
DragAid-MK only deals with values that are understandable bgrnhé&g to digital converter of
the processor. The analog to digital converter cannot deal in alepoints or negatives and
only understand values from 0 to 1023. Therefore, all voltage valumduced by the
accelerometers (which themselves represent g-force vaueshapped to a value in the range
above in order to be understood by the ADC. In a final program, tadses would have to be

converted back to g-force values in order to allow the user to easily work with them

Of course, all these systems did not work properly on the firshawever, they operated close
enough to the desired function that only minor adjustments weresaegesSome areas where
initial error was found included preventing switch bounce. Eventualisa gprecaution was
taking by disabling the interrupts connected to the switchesdertain period after the switches
were pressed. This effectively eliminated switch bounce. Anativesr mistake was a reversal
of the two-step input polarity. This error was quickly and easily fixed.

The most difficult problem to identify was a data transfer emih the USB interface. It was
found that the PC software would only receive the first two byeessferred to it from the
DragAid-MK firmware. When the code in the DragAid-MK waspgted through, it was found
that the PC received all data sent by the DragAid-MKthdf code in the DragAid-MK was
partially stepped through, the PC would receive all bytes tleae stepped through and two
bytes following this point. It was eventually determined tha® DragAid-MK, when

85

transferring data consecutively to the PC, transferred thetoatquickly for the PC to handle.
A 1 millisecond delay was added after each transmit in tlgA&d-MK firmware, and it was

found that all data was transferred perfectly to the PC.

Overall, the firmware of the system withstood initial testifidne functionality of the device was
successfully confirmed, and it was decided that no major changesl Weuhecessary to the
logic of the operation of the device. The tests also confirmedhedtardware of the DragAid-
MK was once again designed properly. Only minor adjustments, altilges in the sections

above, will be needed in the final prototype board that will be designed by the projecrspons

86

7 Future

This project has extraordinary potential for future improvement, whiclsasthe intention of the
project sponsor. The area where the most focus will be appliedsitivare development for
the DragAid-MK. The project sponsor has recognized that thewfinm for the device is
completed and functional and will most likely only require minor ddjests as the project
design comes to a close. They, therefore, wish to dedicateréisemrces to an area where
considerable improvement can still be made. They approve of theasaftayouts that were
created for the program during this project and plan on expanding upon dlyes¢slin the

future.

As stated in section 5.10 of the report, another revision of the gruiteuit board will be
required before the product can be sold. Furthermore, the design alithstate relay vehicle
shut-offs will have to be completed. This was not part of the project conducted forQRislive

to the complexity of these devices. A project engineer that workthe project sponsor has
considerable experience with solid state relays as wedlcsaars. He is in charge of the design
of the solid state relay system shutoffs. All data that hreds@¢o interface them with the

DragAid-MK should be available in this report.

A design for the case of the DragAid-MK must also be complet#aei near future. Mechanical
engineers who will be continuing the project have already comeithpsewveral ideas that will

protect the delicate circuitry of the device from all craghasions. The case will also be
required to prevent electrical and magnetic noise in the ackeamn interfering with the sensors
of the crash detector. A final requirement of the case idttisatigid enough to detect impacts

on the vehicle, as well as designed to be easy to mount in the race vehicle.

Due to the timeline of this project, it was not possible tottesDragAid-MK on an actual race
car. Racing season does not begin until late April, and mastsrawith cars that reach
reasonable speeds do not begin racing until early to mid-Mayafetysreasons. Therefore,
considerable testing on actual race vehicles was not conducted thisngroject. Test data

would be extremely beneficial to this project. The more tkgta received, the more the

87

DragAid-MK can be improved. The device will not be able to beassd to racers until

sufficient test data has been received and studies on this data have been conducted.

A final improvement to the DragAid-MK that should be considered iritture of the project is
the use of multiple systems. Since the DragAid-MK is atgafevice, it is extremely important
that it does not receive false accelerometer readings thdt e a system shut down or a failure
of the system to shut down. For this reason, multiple systems Wweuéktremely beneficial.
The complete system would have 3 sets of accelerometers wankpagallel. The processor
would be required to read data from each set of accelerometecompére the results among

all three sets.

The general idea is to create a system of checks and balaAcgystem shut down would only
occur when 2 out of the 3 sets of accelerometers show that g#wegholds have been
exceeded. This will reduce the chances of receiving aticereading that causes problems in

the operation of the system.

Overall, it seems like all improvements mentioned for the DiddAK are possible. Hopefully

with continued work they will become part of the device in the near future.

88

8 Conclusion

In the end, this project resulted in the construction of the D&y, crash detection device
for race cars. The device is able to meet many requirerspatsfied for the entire product as
well as all requirements specified for the MQP. The Dragil was designed due to the
increasing number of fatalities in drag racing that resafnfthe ignition system and fuel system
of race vehicles continuing to run even after a crash has odcuifis often causes fire or

explosion in the race vehicle, which endangers the life of both the racerfatydcsaw.

The DragAid-MK, designed in this project, is a data analyzer and mast&widh for race cars.

It is designed to collect and record g-force data that a d@gwehicle experiences during a run.
G-force data is collected through two accelerometers opgrati parallel in the DragAid-MK
system. The first accelerometer, an ADXL278, is able to rec@xis and y-axis g-forces up to
50g. The second accelerometer, an ADXL330, is able to record zrdarse data up to 3g.
The device saves g-force data to a serial EEPROM evergdd2ds of a race. After a race has
been triggered in the DragAid-MK system, the device will record 15 secondoofeyefata.

A unique feature of the DragAid-MK, which makes it adaptable tcemdifit types of race
vehicles, is the adjustable vehicle shut off thresholds. The DragKids designed such that it
shuts down the ignition system and fuel system of a vehicle whercgevels on the vehicle
surpass certain thresholds. Different race vehicles experibfiesent g-force levels depending
on the setup of the car; therefore, the DragAid-MK system altbvesholds to be adjusted by
the user of the vehicle. This will allow a racer to adapt tregBid-MK to his car, making the

device safer and more reliable overall.

In order to allow a racer to make reasonable adjustments tordsholds of the DragAid-MK, it
is necessary for the driver to know all g-force levels redrby the DragAid-MK during a run.
For this reason, the DragAid-MK is also a data acquisition systt the end of a race, a racer
can extract g-force data from the DragAid-MK using a stethdgpe-A to Type-B USB cable,
which will connect the DragAid-MK to a PC. In the future, thisadatll be displayed to the

racer through a series of graphs.

89

Although this project comes to a close, the plans for future develohtr DragAid-MK are

clear. Focus must first be set on the software inteffacthe DragAid-MK, the solid-state relay
shut-offs, and the case of the device. Once these aspects baveob®leted, extensive testing
can be done using actual race vehicles. Multiple systems shagoldealconsidered, although

this is not necessary for the completion or initial tests of the DragAid-MK.

Overall, this project resulted in a crash detection devicedoe cars that has the potential of
saving many lives in the sport of drag racing. With extended worthe project, the DragAid-
MK system could be applied to other divisions of motorsports and passaigeles as well.
Working on the DragAid-MK during this project has been extrgmelvarding. | have learned
many new concepts, which will aid me in my professional carsterst importantly, | feel that |
have been part of a crucial development in safety systems fasrsigm drag racers, which until

now was an area that was extremely underdeveloped.

90

References

o N O o

10
11
12
13
14
15

http://www.moroso.com/catalog/categorydisplay.asp?catcode=77191
http://www.fireblades.org/forums/honda-rc51/48982-tilt-sensor.html
http://www.zercustoms.com/news/Ford-Blue-Box-On-All-2008-NHRA-Nitro-
Cars.html
http://www.zercustoms.com/photos/Ford-Blue-Box-On-All-2008-NHRA-Nitro-
Cars/Ford-Blue-Box-2008-NHRA-Nitro-Cars-1.jpg.html
http://www.myrideisme.com/Blog/ford-and-nhra-team-up-on-safety/
http://www.nhra.com/story/
http://www.zoomerdaily.com/?tag=shutoff-controller
http://www.carcrashfires.com/index.html
http://www.analog.com/en/automotive-solutions/crash-
detection/applications/index.html

www.mathworks.com
http://www.sparkfun.com/commerce/images/products/00198-03-L.jpg
ADXL278 Data Sheet Rev. A 5/2005

ADXL330 Data Sheet Rev. A 9/2006

AT90USB647 Device User's Guide

CP2102 USB to UART Bridge Data Sheet

25AA512 EEPROM Data Sheet

91

Appendix A: LED Test Code

.include "usb647def.inc"
.cseg
.org O

jmp SetupLEDTest

.org $04C
SetupLEDTest:

Idir16, $10
out SPH, r16
Idi r16, $FF
out SPL, r16
inrl6, DDRA
ori rl6, $3F
out DDRA, r16
inrl6, PORTA
orirle, $3F

out PORTA, r16

StartLEDTest:

cbi PORTA, 0
call SWDelay
sbi PORTA, 0
cbi PORTA, 1
call SWDelay
sbi PORTA, 1
cbi PORTA, 2
call SWDelay
sbi PORTA, 2
cbi PORTA, 3
call SWDelay
sbi PORTA, 3
cbi PORTA, 4
call SWDelay
sbi PORTA, 4
cbi PORTA, 5
call SWDelay
sbi PORTA, 5

jmp StartLEDTest

SWhDelay:

clrrl7

SWDloop:

clrrl6
inc rl7

SWDloop1:

.exit

inc rl6
cpirl6, $SFF

brne SWDloopl

cpirl7, $FF
brne SWDIoop
ret

; Initialize the Stack Pointer to the
; the internal SRAM O0x10FF

; Set PORTA as output

; Turn all the lights off to start

; Turn LED O on
; Delay
; Turn LED O off
; Turn LED 1 on
; Delay
; Turn LED 1 off
; Turn LED 2 on
; Delay
; Turn LED 2 off
; Turn LED 3 on
; Delay
; Turn LED 3 off
; Turn LED 4 on
; Delay
; Turn LED 4 off
; Turn LED 5 on
; Delay
; Turn LED 5 off

; Loop again

92

end of

Appendix B: Switch Test Code

.include "usb647def.inc"
.org $0

jmp SetupSwitchTest

.org $4C
SetupSwitchTest:
Idi r16, $10 : Initialize the Stack Pointer to the
out SPH, r16 ; the internal SRAM O0x10FF

Idi r16, $FF

out SPL, r16
inrl6, DDRA
ori rle, $0F

out DDRA, r16
inrl6, PORTA
orirl6, $0F

out PORTA, r16
inrl6, DDRD
andi r16, $F0
out DDRD, r16
inrl6, PORTD
ori rl6, $0F

out PORTD, r16

StartSwitchTest:

in rl6, pind

orirl6é, $F0

cpi rlé, $FF

breq StartSwitchTest
cpi rl6, ButtonO

brne StartSwitchTest1
Idi r16, $0F

out PORTA, rl16

cbi PORTA, 0

StartSwitchTest1:

cpi rl6, Buttonl

brne StartSwitchTest2
Idi r16, $0F

out PORTA, r16

chi PORTA, 1

StartSwitchTest2:

cpi rl6, Button2

brne StartSwitchTest3
Idi r16, $OF

out PORTA, r16

chi PORTA, 2

StartSwitchTest3:

.equ
.equ
.equ
.equ
.exit

cpi rl6, Button3
brne StartSwitchTest

Idi r16, $0F

out PORTA, r16

cbi PORTA, 3

jmp StartSwitchTest
ButtonO = $FE
Buttonl =$FD
Button2 = $FB
Button3 = $F7

; Setup PORTA pins 0-3 as output

: Turn off the 4 LEDs

; Setup PORTD pins 0-3 as input

; Turn on the pull-up resistors for
; PORTD pins 0-3

93

end of

Appendix C: EEPROM (SPI) Test Code

.include "usb647def.inc"

.org $0
jmp SetupSPITest

.org $4C

SetupSPITest:

; Setup Stack Pointer
Idi r16, $10 ; Initialize the Stack Pointer to the end of
out SPH, r16 ; the internal SRAM 0x10FF
Idi r16, $FF
out SPL, r16

; Setup LEDs
inrl6, DDRA ; Make Port A an output port
ori rl6, $0F
out DDRA, r16
inrl6, PORTA ; Output high to all of Port A
ori rl6, $0F
out PORTA, r16

; Setup Switches

inrl6, DDRD ; Make Port D an input port
andi r16, $F0

out DDRD, r16

inrl6, PORTD ; Activate the pull-up resistors
ori rl6, $0F

out PORTD, r16
; Setup SPI & Memory Pointer
inrl6, DDRB ; Make Port B Pins 5-4,0-2 output and 3 input
andi rl6, $F7
orirle, $37
out DDRB, r16
sbi PORTB, 0
sbi PORTB, 4
sbi PORTB, 5
Idi r16, (1<<SPE)|(1<<MSTR)
out SPCR, r16 ; Setup the SPI
StartSPITest:
inrl6, PORTA
ori rl6, $0F
out PORTA, r16
clr r17
sts MemP1L, r17
sts MemPtH, r17
SPITestl1:
inrl6, PIND ; Put the button pressed into r16
orirl6é, $F0
cpirlé, $FF
breq SPITestl
cpi rl6, $FE
breq SPITest2
cpi rl6, $FD
breq SPITest2
cpirle, $FB
breq SPITest2
cpi rl6, $F7
brne SPITestl
SPITest2:

94

incrl7

sts Data, r16
call StoreData
andi r16, $0F
out PORTA, r16

SPITest3:

in r16, PIND
orirle, $F0
cpirlé, $FF
brne SPITest3
call SWDelay
Idi r16, $0F

out PORTA, r16
cpi rl7, $08
brne SPITestl
clrrl7

sts MemPtL, r17

SPITest4:

call ReadData
Ids r16, Data
andi r16, $0F
out PORTA, r16
call SWDelay
inc rl7

cpirl7, $08
brne SPITest4

jmp StartSPITest
ReadData:

cbi PORTB, 0
Idi r16, $03
out SPDR, r16

; Store the button in Data
; Save it in EEPROM
; Turn on the corresponding LED

; Wait until the button is no longer
; Turn Off all LEDs

; See if 4 choices made
; If not continue

; Clear the memory

; Read the Data at the First Memory
; Load r16 with the Data

; Turn on the corresponding LED
; Slight Delay

; Set CS low

; Send READ instruction

call TransmissionComplete

Ids r16, MemPtH

out SPDR, r16 ; Send High Byte of Memory Pointer
call TransmissionComplete

Ids r16, MemPtL

out SPDR, r16 ; Send Low Byte of Memory Pointer
call TransmissionComplete

clrrl6

out SPDR, r16 ; Send Nothing to Receive the Data
call TransmissionComplete

sts Data, r16 ; Store the Data into r16

sbi PORTB, 0 ; Set CS high

Ids r16, MemPtL

inc r16

sts MemPtL, r16

ret

StoreData:

push r16

cbi PORTB, 0
Idi r16, $06
out SPDR, r16 ; Send WREN instruction
call TransmissionComplete

sbi PORTB, 0 ; Set CS high

nop

nop

nop

; Set CS low

95

pressed

Position

nop

nop ; Slight Delay to give EEPROM time
chi PORTB, 0 ; Set CS low

Idi r16, $02

out SPDR, r16 ; Send WRITE instruction

call TransmissionComplete

Ids r16, MemPtH

out SPDR, r16 ; Send High Byte of Memory Pointer
call TransmissionComplete

Ids r16, MemPtL

out SPDR, r16 ; Send Low Byte of Memory Pointer
call TransmissionComplete

Ids r16, Data

out SPDR, r16 ; Send Data Byte to Memory

call TransmissionComplete

sbi PORTB, 0 ; Set CS high

Ids r16, MemPtL

inc r16

sts MemPtL, r16

pop rl6

ret

TransmissionComplete:

inrl6, SPSR ; Load r16 with the Status Register
andi r16, $80

cpirleé, $00 ; See if transmission is complete
breq TransmissionComplete

in rl6, SPDR ; Load data into r16

ret

SWDelay:

clrrl8

SWhDelay1l:

clrrlé

SWDelay2:

.equ
.equ
.equ
.exit

incrl6

cpi rl6, $FF

brne SWDelay?2

incrl8

cpi rl8, $FF

brne SWDelay1l

ret
MemPtH =$100
MemPtL =$101
Data =$102

96

Appendix D: Accelerometer (ADC) Test Code

.include "usb647def.inc"
.org $0
jmp SetupADCTest
.org $4C
SetupADCTest:
Idi r16, $10 ; Initialize the Stack Pointer to the end of
out SPH, r16 ; the internal SRAM O0x10FF
Idi r16, $FF
out SPL, r16
in r16, DDRA ; Set Port A as an output port
orirle, $3F
out DDRA, r16
inrl6, PORTA ; Output high to keep all the LEDs o ff
orirle, $3F
out PORTA, r16
clrrl6
sts ADCSRB, r16
Idi r16, (1<<ADCOD)|(1<<ADC1D)|(1<<ADC2D)
sts DIDRO, r16
StartADCTest:
; X Axis
clrrl6
sts ADMUX, r16 : Select X- axis of accelerometer
Idi r16, (1<<ADEN)|(1<<ADSC)
sts ADCSRA, r16 ; Start the conversion
ADCTestl:
Ids r16, ADCSRA
andirl6, $10
cpi rl16, $00
breq ADCTest1 ; Wait here until the conversion is complete
Ids r16, ADCL
lds r17, ADCH ; Take the results
sts XAxisH, r17 ; Store the results
sts XAXxisL, r16
Ids r16, ADCSRA ; Clear the ADC flag
orirle, $10
sts ADCSRA, r16
;'Y Axis
Idi r16, (1<<MUXO0)
sts ADMUX, r16 ; Select Y-axis of accelerometer
Idi r16, (1<<ADEN)|(1<<ADSC)
sts ADCSRA, r16 ; Start the conversion
ADCTest2:
Ids r16, ADCSRA
andi r16, $10
cpi r16, $00
breq ADCTest2 ; Wait here until the conversion is complete
Ids r16, ADCL
lds r17, ADCH ; Take the results
sts YAxisH, r17 ; Store the results
sts YAXxisL, r16
Ids r16, ADCSRA ; Clear the ADC flag
orirle, $10
sts ADCSRA, r16
; Z AXis

97

Idi r16, (1<<MUX1)

sts ADMUX, r16 ; Select Z-axis of accelerometer

Idi r16, (1<<ADEN)|(1<<ADSC)

sts ADCSRA, r16 ; Start the conversion
ADCTest3:

Ids r16, ADCSRA

andirl6, $10
cpi rl16, $00
breq ADCTest3
Ids r16, ADCL
Ids r17, ADCH
sts ZAxisH, r17
sts ZAxisL, r16

Ids r16, ADCSRA

orirle, $10

sts ADCSRA, r16

Ids r16, XAxisL
Ids r17, XAxisH
Idi r18, $0D
Idi r19, $02
cp rl7,r19
brlo ADCTest5
brne ADCTest4

; Wait here until the conversion is

; Take the results
; Store the results

; Clear the ADC flag

; Load r16 and r17 with the ADC co

; Load r18 and r19 with upper thresho

; If rl7 is larger than r19 then Lig
; If r17 is not equal to r19 then be

cp rle, rl8
brlo ADCTest5 ; If r16 is larger than r18 then Lig
ADCTest4:
inrl6, PORTA ; All lights off
orirle, $3F
out PORTA, r16
cbi PORTA, 0 ; Light on
jmp StartADCTest; Go back to start
ADCTest5:
Idi r18, $F8 ; Load r18 and r19 with the lower thr
Idi r19, $01
cp rlo, r17
brlo ADCTest7 ; If r19 is lower than r17 then abov
brne ADCTest6 ; If r19 is not equal to r17 then be
cp rl6, r18 ; If r16 is the same or higher then a
brsh ADCTest7
ADCTest6:
inrl6, PORTA ; All lights off
orirle, $3F
out PORTA, rl16
chi PORTA, 1 ; Light on

jmp StartADCTest; Go back to start

ADCTest7:

Ids r16, YAXxisL
Ids r17, YAxisH

; Load r16 and r17 with the ADC co

Idi r18, $07 ; Load r18 and r19 with upper thresho
Idi r19, $02

cprl7,rl9

brlo ADCTest9 ; If r17 is lower than r19 then belo
brne ADCTest8 ; If r17 is not equal to r19 then ab
cp rle, rl8

brlo ADCTest9

ADCTest8:

; If r16 is lower than r18 then belo

98

complete

nversion results
[o}
ht On
low Threshold

ht On

eshold

e threshold
low threshold
bove threshold

nversion results
[o}
w threshold
ove threshold

w threshold

in rl6, PORTA ; All lights off

orirle, $3F
out PORTA, r16
chi PORTA, 2

; Light on

jmp StartADCTest; Go back to start
ADCTest9:

Idi r18, $F8
Idi r19, $01
cp rl9, r17
brlo ADCTest11
brne ADCTest10
cprl6, rl8
brsh ADCTest11

ADCTest10:

inrl6, PORTA
ori rl6, $3F

out PORTA, r16
chi PORTA, 3

; Load r18 and r19 with the lower thr

; If r19 is lower than r17 then abo
; If r19 is not equal to r17 then b
; If r16 is the same or higher then a

; All lights off

; Light on

jmp StartADCTest; Go back to start
ADCTest11:

Ids r16, ZAxisL
Ids r17, ZAxisH
Idi r18, $70

Idi r19, $01
cprl7,rl19

brlo ADCTest13
brne ADCTest12
cp rle, r18

brlo ADCTest13

ADCTest12:
in rl6, PORTA ; All lights off

orirle, $3F
out PORTA, r16
chi PORTA, 4

; Load r16 and r17 with the ADC co

; Load r18 and r19 with upper thresho

; If r17 is lower than r19 then bel
; If r17 is not equal to r19 then a
; If r16 is lower than r18 then below

; Light on

jmp StartADCTest; Go back to start
ADCTest13:

Idi r18, $F6
clrr19

cp rl9, r17

brlo ADCTest15

brne ADCTest14

cprl6, rl8

brsh ADCTest15

ADCTest14:
in rl6, PORTA ; All lights off

orirl6, $3F
out PORTA, r16
cbi PORTA, 5

ADCTest15:
jmp StartADCTest; Go back to start

.equ
.equ
.equ
.equ
.equ
.equ
.exit

XAxisH
XAXisL
YAxisH
YAXxisL
ZAxisH
ZAXxisL

; Load r18 and r19 with the lower thr

; If r19 is lower than r17 then abo
; If r19 is not equal to r17 then b
; If r16 is the same or higher then a

; Light on

=$100
=$101
= $102
=$103
=$104
= $105

99

eshold

ve threshold
elow threshold
bove threshold

nversion results
Id
ow threshold

bove threshold
threshold

eshold

ve threshold
elow threshold
bove threshold

Appendix E: Real Time Clock Test Code

.include "usb647def.inc"
.org $0
jmp SetupRTCTest
.org OVF2addr
jmp RTCtick
.org $4C
SetupRTCTest:
; Setup Stack Pointer
Idi r16, $10 ; Initialize the Stack Pointer to the end of
out SPH, r16 ; the internal SRAM Ox10FF
Idi r16, $FF
out SPL, r16
; Enable Interrupts
sei
; Setup LEDs
in r16, DDRA ; Make Port A an output port
orirlé, $3F
out DDRA, r16
inrl6, PORTA ; Output high to all of Port A
orirle, $3F
out PORTA, rl16
; Setup RTC Clock
Idi r16, (1<<AS2)
sts ASSR, r16
clrrl6
sts secs, r16
sts TCCR2A, r16
sts TCNT2, r16
Idi r16, (1<<TOIE2)
sts TIMSK2, r16
Idi r16, (1<<CS22)|(1<<CS21)
sts TCCR2B, r16
StartRTCTest:
jmp StartRTCTest
RTCtick:
push r16
in rl6, sreg
push r16
Ids rl6, secs
incrl6
sts secs, r16
cpi rl6, $3C
brne RTCtickl
clrrl6
sts secs, r16
Idi r16, $FF
RTCtick1:
com rl6
out PORTA, r16
pop rl6
out sreg, r16
pop rl6
reti
.equ secs = $100
.exit

100

Appendix F: USB Test Code

.include "usb647def.inc"

.org $0
jmp SetupUSBTest

.org URXCladdr
jmp ReceivedData

.org $4C

SetupUSBTest:
cli

; Setup the Stack Pointer
Idi r16, $10 ; Initialize the Stack Pointer to the end of
out SPH, r16 ; the internal SRAM Ox10FF
Idi r16, $FF
out SPL, r16

; Setup the LEDs
in r16, DDRA ; Setup PORTA pins 0-5 as output
orirle, $3F
out DDRA, r16
inrl6, PORTA ; Turn off the 6 LEDs
orirle, $3F
out PORTA, rl16

; Setup the Switches

inrl6, DDRD ; Setup PORTD pins 0-1 as input
andi rl6, $FC

out DDRD, r16

in rl6, PORTD ; Turn on the pull-up resistors for
ori rl6, $03 ; PORTD pins 0-1

out PORTD, r16
; Setup the USART
inrl6, DDRD
andi r16, $FB
ori rl6, $08
out DDRD, r16 ; Properly set data direction on UAR T pins
Idi r16, (1<<UCSZ11)|(1<<UCSZ10)
sts UCSRI1C, rl6 ; Set parity, # bits, and # stop b its
clrrl6
sts UBRR1H, r16
Idi r16, 6
sts UBRRILL, r16 ; Setthe baud rate
Idi r16, (1<<RXEN1)|(1<<RXCIE1)|(1<<TXEN1)
sts UCSR1B, r16 ; Setup UART to transmit and recei ve
clrrl6
sts UDR1, r16
sts UCSRI1A, r16
sei ; Enable Interrupts
clrrl7
USBTest:
cpirl7, $47 ; Wait for $47 (code for device to tr ansmit)
brne USBTest ; to be received
WaitforButton:
in rl6, pind ; Loop until user presses a button
orirle, $FC
cpi rl6, $FF
breq WaitforButton
andi r16, $33
WaittoTransmit:

101

lds r17, UCSR1A
andi rl7, $20
cpi rl7, $20

: Wait for the transmit line to be

brne WaittoTransmit

sts UDR1, r16
clrrl7
jmp USBTest

ReceivedData:

Test2:

Test3:

Test4:

Test5:

Test6:

Test7:

push r16

in rl6, sreg
push r16
inrl6, PORTA
orirle, $3F
out PORTA, rl16
Ids r16, UDR1
andirl6, $7F
cpi rl6, $46
breq EndTest
cpi rl6, $31
brne Test2

cbi PORTA, 0

cpi rl6, $32
brne Test3
chi PORTA, 1

cpirl6, $33
brne Test4
chi PORTA, 2

cpirl6, $34
brne Test5
chi PORTA, 3

cpirl6, $35
brne Test6
cbhi PORTA, 4

cpi rl6, $36
brne Test7
chi PORTA, 5

cpirle, $47
brne EndTest
Idir17, $47

EndTest:

.exit

clr r16

sts UCSRI1A, r16
pop rl6

out sreqg, r16
pop rl6

reti

; Send the button pressed to the PC

; Return to the loop waiting for comm
; Interrupt handling routine for rec
; Store r16 and the status register

; Turn off all LEDs
; Load the value received into r16
; Compare the value to $46

; $46 = command for turning off LEDs,
; If *1’ received turn on LED 1

; If ‘2’ received turn on LED 2

; If ‘3’ received turn on LED 3

; If ‘4’ received turn on LED 4

; If ‘5’ received turn on LED 5

; If ‘6’ received turn on LED 6

: If $47 received load the value into
; so the main program will know

; Exit sequence
; Clear the receive flag to show it has b
; Return saved registers

; Return from the interrupt

102

available

and $47
eiving data

done, so end

rl7

een handled

Appendix G: RollOverDevice.asm (Main Code)

.include "usb647def.inc"

; Vector Table (Beginning of memory)

.org

.org

.org

.org

.org

.org

.org

.org

.org

.org

.org

.org

.org

.org

.org

.org

.org

.org

.org

.org

.org

.org

.org

.org

.org

.org

.org

$0

jmp MainEntry
INTOaddr

jmp MasterKill
INT1addr

jmp TwoSteplnt
INT2addr

jmp Unused
INT3addr

jmp Unused
INT4addr

jmp Unused
INT5addr

jmp Unused
INT6addr

jmp Unused
INT7addr

jmp Unused
PClOaddr

jmp Testint
USB_GENaddr

jmp Unused
USB_COMaddr

jmp Unused
WDTaddr

jmp Unused
OC2Aaddr

jmp RTCInt
OC2Baddr

jmp Unused
OVF2addr

jmp RTCInt
ICPladdr

jmp Unused
OC1Aaddr

jmp Unused
OC1Baddr

jmp Unused
OC1Caddr

jmp Unused
OVF1laddr

jmp Unused
OCOAaddr

jmp Unused
OCOBaddr

jmp Unused
OVFOaddr

jmp Unused
SPladdr

jmp Unused
URXC1laddr

jmp Download
UDRE1laddr

; On Reset go to the start of the pr
; Master Kill Switch Interrupt

; Two Step On/Off Interrupt

; Test Interrupt or Two-Step Pressed

; Real Time Clock Interrupt

; Download Interrupt Triggered

103

ogram

.org

.org

.org

.org

.org

.org

.org

.org

.org

.org

.org

jmp Unused

UTXCladdr

jmp Unused

ACladdr

jmp Unused

ADCCaddr

jmp Unused

ERDYaddr

jmp Unused

ICP3addr

jmp Unused

OC3Aaddr

jmp Unused

OC3Baddr

jmp Unused

OC3Caddr

jmp Unused

OVF3addr

jmp Unused

TWladdr

jmp Unused

SPMRaddr

jmp Unused

; Beginning of the Program Code
MainEntry:
; Setup the Stack Pointer

Idir16, $10 ; Initialize the Stack Pointer to the
out SPH, r16 ; the internal SRAM Ox10FF

Idi r16, $FF

out SPL, r16

; Set the Global Interrupt Flag in the SREG

sei

; Reset the battery on/off switch

in r16, DDRE ; Make port E pins 6 and 7 output pin

orirle, $CO ; Pin 7 = battery on/off

out DDRE, r16 ; Pin 6 = battery volt check enable
in rl6, PORTE ; Turn on the battery and Enable bat
andi rl16, $3F ;Pin7&6=0

out PORTE, r16

: Reset the Master Kills

Idi r16, $FF ; Set port C as an output port

out DDRC, r16

in rl6, DDRE ; Set pins 0 & 1 of port E as an outp
ori rl6, $03

out DDRE, r16

clrrl6 ; Clear all outputs

out PORTC, r16

cbi PORTE, 0

cbi PORTE, 1

: Initialize the LEDs

in rl6, DDRA ; Set the Data Direction Register so
orirle, $3F ; are output pins

out DDRA, r16

in rl6, PORTA ; Set Pins 0-5 High to turn off the
orirle, $3F

out PORTA, r16

: Initialize the Switches

104

end of

tery check

ut port

Pins 0-5

LEDs

inrl6, DDRD ; Make Port D pins 0 and 1 input pins

andi rl6, $FC ; Pin 0 = Master Kill Switch

out DDRD, r16 ; Pin 1 = Two-Step On/Off Input
inrl6, DDRB ; Make Port B pins 6 and 7 input pins
andi rl6, $3F ; Pin 6 = Two-Step Input

out DDRB, r16 ; Pin 7 = Test Input

inrl6, PORTD ; Turn on pull-up resistors for port sBandD
ori rl6, $03

out PORTD, r16

inrl6, PORTB

ori rl6, $CO

out PORTB, r16

clrrl6 ; Set Switch variable initially to 0

sts Switch, r16

; Initialize the Power Reduction Registers
Idi r16, (1<<PRTWI)|(1<<PRTIMO)
sts PRRO, r16
Idi r16, (1<<PRUSB)|(1<<PRTIM3)
sts PRR1, r16

; Initialize the SPI Interface

in rl6, DDRB ; Setting the data direction of Port B for SPI
ori rle, $37 ; Pins 0-2, 4 and 5 are output

andirl6, $F7 ; Pin 3 is input

out DDRB, r16

in rl6, PORTB ; Set the initial values of SS, Hold , and WP

ori rle, $31 ; All set high - off

out PORTB, r16

Idi rl6, (1<<SPE)|(1<<MSTR)

out SPCR, r16 ; SPI on, set for master

Idi r16, (1<<SPI2X)

out SPSR, rl16 ; Set for 4AMHz speed

cbhi PORTB,0 ; Pull CS low

Idi r16, $03 : Send Read Command

clrr17

clrrl8

call SPIComSend

call SPIRead

sts races, r16 ; Store data in # races counter

call SPIRead

sts racecount, r16 ; Store total number of races m ade since
download

call SPIRead

sts LThresXH, r16 ; Store data for X Threshold

call SPIRead

sts LThresXL, r16

call SPIRead

sts UThresXH, r16

call SPIRead

sts UThresXL, r16

call SPIRead

sts LThresYH, rl16 ; Store data for Y Threshold

call SPIRead

sts LThresYL, r16

call SPIRead

sts UThresYH, r16

call SPIRead

sts UThresYL, r16

105

call SPIRead

sts LThresZH, rl16 ; Store data for Z Threshold

call SPIRead

sts LThresZL, r16

call SPIRead

sts UThresZH, r16

call SPIRead

sts UThresZL, r16

call SPIRead

sts ThresDO, r16

call SPIRead

sts ThresD1, r16

call SPIRead

sts ThresD2, r16

call SPIRead

sts ThresD3, r16 ; Store Date

call SPIRead

sts CarO0, r16

call SPIRead

sts Carl, r16

call SPIRead

sts Car2, r16

call SPIRead

sts Car3, r16

call SPIRead

sts Car4, r16

call SPIRead

sts Carb, r16 ; Store Car #

sbi PORTB, 0 ; Pull CS high
; Initialize Analog to Digital Converter

Idi r16, (1<<ADCOD)|(1<<ADC1D)|(1<<ADC2D)|(1<<ADC3 D)
sts DIDRO, r16 ; Turn off Digital Register of ADC conversion pins
clrrl6

sts ADCSRB, r16 ; Set control register
Idi r16, (1<<ADEN)|(1<<ADPS2)|(1<<ADPS1)
sts ADCSRA, r16 ; Turn on the ADC and set clock 12 5 KHz
; Turn on Master Kill Interrupt
Ldirl6, (1<<ISC11)|(1<<ISCO01)
sts EICRA, r16 ; Falling edge produces interrupt f or MKill and TStep
clr r16
sts EICRB, r16
Idi r16, (1<<PCIEOQ)

sts PCICR, r16 ; Falling edge produces interrupt f or Test
sbi EIMSK, 0 ; Enable Master Kill Interrupt
PitRoadlInit:

; Setup ADC for Ignition Test

Idi r16, (1<<MUXO0)|(1<<MUX1)

sts ADMUX, r16 ; Set for Ignition Test Pin
; Setup USART

Idi r16, (1<<FE1)|(1<<TXC1)

sts UCSR1A, r16 ; Set for No double speed and no m ulti-processor

Idi r16, (1<<UCSZ11)|(1<<UCSZ10)

sts UCSR1C, r16 ; asynchronous, no parity, 1 stop bit, 8-bit transfer

Idi r16, (1<<RXCIE1)|(1<<RXEN1)|(1<<TXEN1)

sts UCSR1B, r16 ; Set Receive interrupt, receive a nd transmit enabled
clr r16

sts UBRRI1H, r16

106

Idi r16, 51
sts UBRRI1L, r16 ; Setthe baud rate to 9600kbps
; Setup Test and Two-Step On/Off Interrupts
sbi EIFR, INTF1 ; Clear the interrupt flag for two -step interrupt
shi EIMSK, 1 ; Enable Two-Step Bypass Interrupt
Idi r16, (1<<PCINT7)
sts PCMSKO, r16 ; Enable Test Interrupt
clrrl6
sts Switch, r16 ; Clear all switches
; Turn on Pit Road Mode LED

cbi PORTA, 0
; Beginning of Pit Road Mode Tests
PitRoad:
Ids r16, Switch ; Load the status of the Switch va riable to r16
andirl6, (1<<SDload) ; Mask off Download bit
cpi rl6, $00 ; If 0 not set
breq PitRoadl ; Skip to Pit Road 1if O
call DloadRoutine ; Call Download Subroutine
jmp PitRoadInit ; When return reinitialize pit ro ad mode
PitRoad1:
Ids r16, Switch ; Load the status of the Switch v ariable to r16
andirl6, (1<<STest) ; Mask off the Test bit
cpi rl6, $00 ; If 0 is not set
breq PitRoad2 ; Branch if O to PitRoad?2
call TestRoutine ; Otherwise call test subroutine
jmp PitRoadlnit ; When return reinitialize pit ro ad mode
PitRoad2: ; Ignition Test
call ADCStart
cpirl7, $03 ; See if high byte is greater than or equal to $03
brsh PitRoad3 ; If greater than or equal to $03 th en ignition is on
call SystemShutDown
PitRoad3:
Ids r16, Switch ; Load switch variable into r16
andi r16, (1<<STONOff) ; Check if the two-step is bypassed
cpirl6, 0 ; If O it is not bypassed
breq PitRoad4 ; Not bypassed so go to PitRoad4
jmp PitRoad ; Is bypassed go to PitRoad
PitRoad4:
in ri6, PINB ; Take in info from Port B
andirl6, $40 ; Check if two-step pressed
cpirle, $40 ; Compare two-step input to 0
brne TwoStepPressed ; If 2-step pressed (1) go to TwoStepPressed
jmp PitRoad ; Otherwise retry tests from PitRoad
TwoStepPressed:
Idi rl6, (1<<AS2) ; Set to 32.768 kHz external cl ock
sts ASSR, r16
clrrl6 ; Setup the timer
sts TCCR2A, r16
sts secs, r16 ; Clear seconds variable
sts TCNTZ2, r16 ; Clear counter

Idi r16, (1<<TOIE2)
sts TIMSK2, r16
Idi r16, (1<<CS22)|(1<<CS20)

sts TCCR2B, r16 ; Setup 5 second timer
TwoStepPressedl.:

inrl6, PINB ; Take in info from Port B

andirl6, $40 ; Check if two-step pressed

107

cpirl6, $40

brne TwoStepPressed?2 ; If it is pressed go to TwoS tepPressed2
clrrl6
sts TCCR2B, r16 ; Turn off timer
jmp PitRoad ; Otherwise return to pit road mode
TwoStepPressed?:
Ids r16, secs ; Load in the seconds variable
cpi rl6, $05 ; Compare to 5
brlo TwoStepPressedl ; If lower keep checking the two step
; Start of Race Mode - When two-step released will be treated as a race
RaceModelnit: ; Greater than 5 seconds
; Turn off download interrupts
clrrl6
sts UCSR1A, rl6 ; Set all the USART controls to 0 (will turn it off)

sts UCSRI1B, r16
sts UCSRI1C, r16
; Turn off the two-step and test interrupts

cbi EIMSK, 1 ; Disable Two-Step Bypass Interrupt
clrrl6
sts PCMSKO, r16 ; Disable Test Interrupt
; Set LEDs
sbi PORTA, 0 ; Turn off Pit Road LED
cbi PORTA, 1 ; Turn on Race Mode LED
; Setup .02 second timer
clr r16
sts TCCR1A, r16 ; Setup the timer control registe rs
sts TCCR1B, r16
sts TCNT1H, r16 ; Clear the timer counter registe rs
sts TCNTL1L, r16
Idi r16, $4E
sts OCR1AH, r16
Idi r16, $20
sts OCR1AL, r16 ; Set max count compare to 20000 (.02 seconds)

; Clear Maximum Lower Variables
Idi LMaxXH, $FF
Idi LMaxXL, $FF
Idi LMaxYH, $FF
Idi LMaxYL, $FF
Idi LMaxZH, $FF
Idi LMaxZL, $FF
; Clear Maximum Upper Variables
clr UMaxXH
clr UMaxXL
clr UMaxYH
clr UMaxYL
clr UMaxzZH
clr UMaxZL
; Prepare memory variables
Ids r16, races ; Increment the races variable (sta rt of a new race)
incrlé
cpirl6, 4 ; If greater than 4 races must replace first race
brlo Racelnitl
Idi r16, 1
Racelnitl:
sts races, rl6
Idi r17, $40
Idi r18, $40

108

cpi rl6, $01
breq Racelnitla
add r18, r17
cpi rl16, $02
breq Racelnitla
add r18, r17

Racelnitla:

clrr17

sts MemPtrH, r18
sts MemPtrL, r17
Ids r16, racecount
incrl6

sts racecount, r16
cbi PORTB, 0

Idi r16, $06

call SPIComSend
shi PORTB, 0

Ids r17, MemPtrL
Ids r18, MemPtrH
Idi r16, $D8

cbi PORTB, 0

call SPIComSend
sbi PORTB, 0

call SPIStatusWait
cbhi PORTB,0

Idi r16, $06

call SPIComSend
shi PORTB,0

Idi r16, $02
clrrl7

clrrl8

cbhi PORTB, 0

call SPIComSend
Ids r16, races

call SPIWrite

Ids r16, racecount
call SPIWrite

sbi PORTB, 0

Ids r16, MemPtrL
Ids r17, MemPtrH
Idi r18, 128
clrrl9

add r16, r18

adc rl7, r19

sts PageEndL, rl16
sts PageEndH, r17

inrl6, PINB

andi r16, $40

cpi rl6, $40

brne TwoStepWait
clrrl6

sts secs, r16

: Load the number of races made
; download into r16
; Increment and store result
; Clear bit to signal Memory Write

; Send Write Enable Command
; Set bit for latch to take effect
; Load address for erase into rl

; Load command for erase into r16
; Clear bit to activate Memory
; Send erase
; Set bit to latch command
; Wait until erase complete
; Clear bit to activate Memory
; Send Write Enable Command

; Set bit to latch command

; Send write command

; Address $0000

; Clear bit to activate Memory
; Send command

; Write races

: Write racecount
; Set bit to latch command

; Load starting pointer to r16:r

; Address of Start of Next Page is i
; Store the start of the next p

; Check to see if two-step released
TwoStepWait:

; Take in info from Port B
; Check if two-step pressed

; It two-step pressed, loop unti

Idi r16, (1<<WGM12)|(1<<CS10)

sts TCCR1C, r16

RaceMode:

109

since last

7:r18

17

nrl6:rl7
age in memory

| release

clrrl6
sts ADMUX, r16

brne RaceModela
cp rle, rl8
brlo RaceMode?2

RaceModela:

cli
call VehicleShutDown
call StoreValues

; Set to X-axis ADC channel

; If not equal conversion is highe
; Compare lower bytes
; If conversion lower then no prob
; Above upper threshold

call ADCStart ; Perform conversion - result in r1 6:r17
cp r17, UMaxXH ; Compare conversion value to Max
brlo RaceMode2 ; If lower then no problem
brne RaceModel ; If not equal then new data is def initely higher
cp rl6, UMaxXL ; Compare conversion value to low er Max
brlo RaceMode2 ; If lower then below max
RaceModel: ; Above X Max Values
mov UMaxXH, r17 ; Update Maximum Values
mov UMaxXL, r16
Ids r18, UThresXL ; Load Upper Thresholds into rl 8:r19
Ids r19, UThresXH
cp ri7, r19 ; Compare upper bytes
brlo RaceMode2 ; If conversion value lower then n o problem

r than thresholds

lem

call SystemShutDown
RaceMode2:

cp LMaxXH, r17

brlo RaceMode4

brne RaceMode3

cp rl6, LMaxXL

brsh RaceMode4
RaceMode3:

mov LMaxXH, r17

mov LMaxXL, r16

; Below X Max Values or X Upper Thres hold
; Compare upper bytes
; If threshold value lower than co
; If threshold not equal conversion
; Compare lower bytes
; If conversion is same or higher -
; Lower than previous max values
; Store new max values

nversion okay
lower - problem

threshold is okay

Ids r18, LThresXL ; Load lower threshold into r18 'r19
Ids r19, LThresXH
cp r19, r17 ; Perform same comparsion with thresh olds

brlo RaceMode4

brne RaceMode3a

cp rle, r18

brsh RaceMode4
RaceMode3a:

cli

call VehicleShutDown

call StoreValues

call SystemShutDown
RaceMode4:

Idi r16, (1<<MUXO0)

sts ADMUX, r16

; If problem then shut down system

; Check Y Values

; Set to Y-axis ADC channel

call ADCStart ; Perform conversion - result in rl1 6:r17
cp r17, UMaxYH ; Compare conversion value to Max
brlo RaceMode6 ; If lower then no problem
brne RaceMode5 ; If not equal then new data is hi gher
cp rl6, UMaxYL ; Compare conversion value to low er Max
brlo RaceMode6 ; If lower then below max

RaceModeb5: ; Above Y Max Values
mov UMaxYH, rl17 ; Update Maximum Values
mov UMaxYL, r16
Ids r18, UThresYL ; Load Upper Thresholds into rl 8:r19

110

Ids r19, UThresYH

cp rl7, r19 ; Compare upper bytes

brlo RaceMode6 ; If conversion value lower then n o problem

brne RaceModeba ; If not equal then conversion is higher

cp rle, ri8 ; Compare lower bytes

brlo RaceMode6 ; If conversion lower then no prob lem
RaceModeb5a: ; Above upper threshold

cli

call VehicleShutDown
call StoreValues
call SystemShutDown

RaceModeé6: ; Below Y Max Values or Y Upper Thres hold
cp LMaxYH, r17 ; Compare upper bytes
brlo RaceMode8 ; If threshold is lower than conve rsion okay
brne RaceMode7 ; If threshold not equal, conversio n lower, problem
cp rl6, LMaxyYL ; Compare lower bytes
brsh RaceMode8 ; If conversion is same or higher — okay
RaceMode7: ; Lower than previous max values
mov LMaxYH, r17 ; Store new max values
mov LMaxYL, r16
Ids r18, LThresYL ; Load lower threshold into r18 'r19
Ids r19, LThresYH
cp r19, r17 ; Perform same comparsion with thresh olds

brlo RaceMode8
brne RaceMode7a
cprl6, rl8
brsh RaceMode8
RaceMode7a: ; If problem then shut down system
cli
call VehicleShutDown
call StoreValues
call SystemShutDown

RaceModeS8:
Idi r16, (1<<MUX1)
sts ADMUX, r16 ; Set to Z-axis ADC channel
call ADCStart ; Perform conversion - result in rl1 6:r17
cp rl7, UMaxzH ; Compare conversion value to Max
brlo RaceMode10 ; If lower then no problem
brne RaceMode9 ; If not equal, new data is higher
cp rl6, UMaxZL ; Compare conversion value to low er Max
brlo RaceModel10 ; If lower then below max
RaceMode9: ; Above Z Max Values
mov UMaxZH, r17 ; Update Maximum Values
mov UMaxZL, r16
Ids r18, UThresZL ; Load Upper Thresholds into rl 8:r19
Ids r19, UThresZH
cp rl7, r19 ; Compare upper bytes
brlo RaceMode10 ; If conversion value lower then no problem
brne RaceMode9a ; If not equal then conversion hig her than thresholds
cp rle, ri8 ; Compare lower bytes
brlo RaceMode10 ; If conversion lower then no pro blem
RaceMode9a: ; Above upper threshold
cli

call VehicleShutDown
call StoreValues
call SystemShutDown
RaceModel0: ; Below Z Max Values or Z Upper Thre shold

111

cp LMaxZH, r17
brlo RaceMode12
brne RaceModel1l
cp rl6, LMaxzZL
brsh RaceMode12

RaceModell:

mov LMaxZH, r17
mov LMaxZL, r16
Ids r18, LThresZL
Ids r19, LThresZH
cp rlo, r17

brlo RaceMode12
brne RaceModella
cp rle, r18

brsh RaceMode12

RaceModella:

cli

call VehicleShutDown
call StoreValues

call SystemShutDown

RaceModel2:

Ids r16, TIFR1

andi r16, (1<<OCF1A)
cpirle, 0

brne RaceModel2a
jmp RaceModel2b

RaceModel2a:

lds r16, TIFR1

ori r16, (1<<OCF1A)
sts TIFR1, r16

Ids r16, MemPtrL
Ids r17, MemPtrH
Idir18, 8

clrrl9

add rl6, r18
adcrl7,rl9

Ids r18, PageEndL
Ids r19, PageEndH
cp rl9, r17

brne TimeUp1l
cprls8, rl6

brne TimeUp1l

sts MemPtrL, r16
sts MemPtrH, r17
Idi r18, 128

clrrl9

add rl6, r18

adc rl7,r19

sts PageEndL, r16
sts PageEndH, r17

TimeUp1l:

cbi PORTB, 0

Idi r16, $06

call SPIComSend
shi PORTB, 0

Idi r16, $02

Ids r17, MemPtrL

; Compare upper bytes
; If threshold is lower than conv

; If threshold not equal conversio

; Compare lower bytes
; If conversion same or higher, t
; Lower than previous max values
; Store new max values

: Load lower threshold into r18

; Perform same comparsion with thresh

; If problem then shut down system

; Load r16 with timer flag registe
; Isolate Compare bit
; If 0 then .02 seconds has not passe
; Otherwise it has and time to s
; Keep checking accelerometers

; Clear the bit

; Load MemPtr into r16:r17

; Load address of end of page i

; See if values are equal

; If not equal go to TimeUp1l
; Store new address

; Store new end of page

; Clear bit to activate memory
; Load write enable command
; Send the command
; Set bit to latch command
; Load write command
; Load write address into r17:rl1

112

ersion okay
n lower - problem

hreshold okay

r19

olds

d
tore data

nto r18:r19

Ids r18, MemPtrH
cbi PORTB, 0 ; Clear bit to activate memory
call SPIComSend ; Send write command and address
mov rl16, LMaxXH ; Write 12 bytes of data
call SPIWrite
mov rl16, LMaxXL
call SPIWrite
mov r16, UMaxXH
call SPIWrite
mov r16, UMaxXL
call SPIWrite
mov r16, LMaxYH
call SPIWrite
mov rl16, LMaxYL
call SPIWrite
mov r16, UMaxYH
call SPIWrite
mov r16, UMaxYL
call SPIWrite
mov r16, LMaxZH
call SPIWrite
mov r16, LMaxZL
call SPIWrite
mov r16, UMaxZH
call SPIWrite
mov r16, UMaxZL
call SPIWrite
shi PORTB, 0 ; Set bit to end write
Ids r16, MemPtrL
Ids r17, MemPtrH
Idi r18, $12
clrrl9
add r16, r18
adcrl7,r19
sts MemPtrL, r16 ; Add 12 and store address for n ext save
sts MemPtrH, r17
: Reset the Maximum Thresholds
Idi LMaxXH, $FF
Idi LMaxXL, $FF
Idi LMaxYH, $FF
Idi LMaxYL, $FF
Idi LMaxZH, $FF
Idi LMaxZL, $FF
clr UMaxXH
clr UMaxXL
clr UMaxYH
clr UMaxYL
clr UMaxZH
clr UMaxZL
; Check if 15 seconds is done
RaceModel2b:
Ids r16, secs ; Load seconds into r16
cpirle, 15 ; Compare value in r16 to 15
brsh RaceModel3 ; If greater than 15 go to RaceMo del3
jmp RaceMode ; Otherwise go to RaceMode
RaceModel3:
Idi r16, (1<<MUXO0)|(1<<MUX1)

113

sts ADMUX, r16 ; Set for Ignition Test Pin

call ADCStart ; Perform Conversion
cpirl7, $03 ; See if high byte greater than or e qual to $03
brsh RaceMode14 ; If true then ignition is on
call SystemShutDown ; Turnoff DragAid-MK
RaceModel4:
sbi PORTA, 1 ; Turn off Race Mode LED
clrrl6
sts secs, r16 ; Clear seconds variable
sts TCCR1C, r16 ; Shut off Timer 1
sts TCCR2B, r16 : Shut off Timer 2

jmp PitRoadlnit
.include "common.asm"
.include "definitions.asm"
.include "interrupts.asm”
.include "download.asm"
.include "test.asm"
.exit

114

Appendix H: Common.asm

shkkkkkkkkkkkkkkkkkkkkkkhkhhhkhhhhhhkhkhkkkkxkkkxxxxxx%x kkkkkkkkhkhkkkhkkAkkkkkkkkkk
1

> SPI Functions *
;** *khkkkkkkkkkkkhkhkhkhkhik
; Precondition: SPI command is in r16, address is i nrl7 &rl8
; Postcondition: SPI command is sent over SPI inter face
SPIComSend:

out SPDR, r16 ; Output the command

call SPIWait ; Wait for transmission to complete

cpirleé, $03 ; If read, write, page erase, or sec tor erase

breq SendAddress ; send address too

cpi rl16, $02

breq SendAddress

cpi rl6, $42

breq SendAddress

cpi rl6, $D8

breq SendAddress

ret
SendAddress:

out SPDR, r18 ; Output address (high)

call SPIWait

out SPDR,rl7 ; Output address (low)

call SPIWait

ret

; Precondition: Read command must be sent first
: Postcondition: Result of read is in r16

SPIRead:
Idi r16, $00 ; Send dummy data to receive info
out SPDR, r16
call SPIWait ; Wait for data to be received
in r16, SPDR ; Take in data
ret

; Precondition: Write command has been sent
; Postcondition: Byte to write is in r16
SPIWrite:
out SPDR, r16 ; Send data out to memory
call SPIWait ; Wait for data to be sent
ret
; Precondition: SPI command has been sent
; Postcondtion: Returns when SPI transmission is co mplete
SPIWait:
push r16
SPIWaitl:
inrl6, SPSR
andirl6, (1<<SPIF)
cpi rl6, $00
breq SPIWaitl
pop rl6
ret
; Precondition: Erase Command has been sent
; Postcondition: Returns when sector erase is compl ete
SPIStatusWait:
push r16
push r17
push r18
clrrl6

115

clrrl7

clrrl8
SPIStatus1:

incrl6

cpi rl6, $FF

brne SPIStatusl

clrrlé

inc rl7

cpirl7, $FF

brne SPIStatusl

clrrlé

clrrl7

incrl8

cpirls, $2

brne SPIStatusl ; Delay for 16ms
SPIStatus2:

cbhi PORTB, 0

Idi r16, $05

call SPIComSend

call SPIRead

shi PORTB, 0

andi r16, $01

cpi r16, $00

brne SPIStatus2

pop r18

pop r17

pop rl6

ret

shkkkkkkkkkkkkkkkkkkkkkkkhhhhhhkhhkkkkkkkxkkkxxkxxx%x kkkkkkkkhkhkkhkhkkkkkkAkkkkk
’

* ADC Functions *
;** *% *% *% *% *% *%
; Precondition: ADC Start Conversion has been trigg ered
; Postcondition: When a conversion is complete this will return
ADCWait:
push r16
ADCWaitl:
Ids r16, ADCSRA ; Load the status of the conversi on into r16
andi rl16, (1<<ADIF)
cpirle, 0 ; While the conversion complete flag is not set

loop

breq ADCWaitl

pop rl6 ; Otherwise return

ret
; Precondition: None
; Postcondition: Triggers an ADC conversion, waits for the result, and puts
; the resultin r16 and r17
ADCStart:

Ids r16, ADCSRA

ori r16, (1<<ADSC)|(1<<ADIF)

sts ADCSRA, r16 ; Start the ADC conversion and cl ear results
flag

call ADCWait

Ids r16, ADCL ; Put the results in r16 and r17

Ids r17, ADCH

ret ; Return

116

shkkkkkkkkkkkkkkkkkkkkhhhhhhhhhhhhhkrkkkkkkkkkkhhik *kkkkkkkkkkhhhhhhhhiix

; Special Functions *

shkkkkkkkkkkkkkkkkkkkkkhkkhhhkhhhhhhkkkkkkkxkkkxxxxkxx%x kkkkkkkkhkhkhkhkhkkkkkkkkkkkk

; Precondition: System operation is complete

; Postcondition: System is off (power eliminated fr om the circuit)
SystemShutDown:
sbi PORTE, 7 ; Send off signal to the system
SystemShutDown1:
jmp SystemShutDown1 ; Wait here while system shuts off
ret ; Should never be reached

; Precondition: Thresholds have been exceeded
; Postcondition: "Off" Signals sent to Port C and E
VehicleShutDown:

Idi r16, $FF ; Set Pins 35-42 high
out PORTC, r16
sbi PORTE, 0 ; Set Pins 33-34 high
sbi PORTE, 1
ret
; Precondition: Thresholds have been exceeded
; Postcondition: Current maximum values are stored in memory at next memory

; location, no memory pointers are updated
StoreValues:
Ids r16, MemPtrL ; Load MemPtr into r16:r17
Ids r17, MemPtrH
Idi r18, 8
clr r19
add r16, r18
adc rl7,r19
Ids r18, PageEndL ; Load address of end of page i nto r18:r19
Ids r19, PageEndH
cprlo, r17 ; See if values are equal
brne StoreValuesl
cp rls8, r16
brne StoreValuesl ; If not equal go to TimeUp1
sts MemPtrL, r16 ; Store new address
sts MemPtrH, r17
StoreValues1:

cbi PORTB, 0 ; Clear bit to activate memory

Idi r16, $06 ; Load write enable command

call SPIComSend ; Send the command

sbi PORTB, 0 ; Set bit to latch command

Idi r16, $02 : Load write command

Ids r17, MemPtrL : Load write address into r17:rl1 8
Ids r18, MemPtrH

cbi PORTB, 0 ; Clear bit to activate memory

call SPIComSend ; Send write command and address
mov r16, LMaxXH ; Write 12 bytes of data

call SPIWrite

mov r16, LMaxXL

call SPIWrite

mov r16, UMaxXH

call SPIWrite

mov r16, UMaxXL

call SPIWrite

mov r16, LMaxYH

call SPIWrite

mov rl16, LMaxYL

117

.exit

call SPIWrite

mov r16, UMaxYH
call SPIWrite

mov r16, UMaxYL
call SPIWrite

mov r16, LMaxZH
call SPIWrite

mov rl16, LMaxZL
call SPIWrite

mov r16, UMaxZH
call SPIWrite

mov r16, UMaxZL
call SPIWrite

shi PORTB, 0

ret

; Set bit to end write

118

Appendix I: Download.asm
DloadRoutine:

: Set LEDs
sbi PORTA, 0 ; Turn off Pit Road LED
cbi PORTA, 2 ; Turn on Download LED

; Turn off Download Interrupt
Idi r16, (1<<RXEN1)|(1<<TXEN1)
sts UCSR1B, r16

; Turn off Button Interrupts

chi EIMSK, 1

clrrl6

sts PCMSKO, r16

Idi r16, (1<<AS2)

sts ASSR, r16

Idi r16, (1<<WGM21)
sts TCCR2A, r16
clrrl6

sts secs, r16

sts TCNT2, r16

Idi r16, 32

sts OCR2A, r16

Idi r16, (1<<OCIE2A)
sts TIMSK2, r16

Idi r16, (1<<CS20)
sts TCCR2B, r16

; Setup ADC for ignition test

; Disable Two-Step Bypass Interrupt

; Disable Test Interrupt
; Set to 32.768 kHz external cl

; Set to count to OCR2A

; Setup the timer
; Clear seconds variable
; Clear counter
: Load r16 with 32
; Store in OCR2A
; Set to interrupt on reachin

Idi r16, (1<<MUX0)|(1<<MUX1)

sts ADMUX, r16

DownloadLoop:

call ADCStart

cpirl7, $03

brsh Dloopl

call SystemShutDown

Dloop1:

Ids r16, UCSR1A
andi rl6, (1<<RXC1)
cpirle, 0

breq Dloop2

Ids r16, UDR1

cpi rl6, $53

brne Dloopla

call DataReceive
jmp Dloop2

Dloopla:

cpi rl6, $52
brne Dlooplb
call DataSend
jmp Dloop2

Dloop1b:

cpi rl6, $44
brne Dloop2
lds r16, UDR1
cpi rl6, $44
breq DDone

Dloop2:
; Time out check

; Set for Ignition Test Pin
; Start Loop

; See if high byte greater than or e
; If true then ignition is on

; Load USART flag register into r
; Isolate Receive Bit
; If 0 nothing is in receive register

: Load received command into r16
: See if 'S’
; If not check again
; Otherwise computer sending dat
: When done do a time out check

; See if 'R
; If not check again
; Otherwise computer wants to recei
; When done do a time out check

; See if 'D’
; If not, not recognized - go to 5 m
; Otherwise check again

; If 'D' again then done

; Nothing is in the receive register

119

ock

g OCR2A value

qual to $03

16

a for DragAid

ve data

inute check

Ids r16, secs
cpi rl6, 255
brlo DownloadLoop

DDone:

shi PORTA, 2
clrrlé

sts TCCR2B, r16
ret

; Load counter into r16

; Compare to 60

; If lower than 60, 5 minutes h
; Turn off Download LED

; Shut off time out timer
; Return to main program

: Precondition: Received 'R' to state that PC wishe

device

; Postcondition: Device either sends thresholds and

Run Data

DataSend:

call ReceiveWait
sts Command, r16
Ids r16, Car0

call TransmitWait
lds r16, Carl

call TransmitWait
Ids r16, Car2

call TransmitWait
Ids r16, Car3

call TransmitWait
Ids r16, Car4d

call TransmitWait
Ids r16, Carb

call TransmitWait
Ids r16, Command
cpi rl6, $44

brne DataSend1
jmp DataSendla

DataSend1:

Ids r16, LThresXH
call TransmitWait
Ids r16, LThresXL
call TransmitWait
Ids r16, UThresXH
call TransmitWait
Ids r16, UThresXL
call TransmitWait
Ids r16, LThresYH
call TransmitWait
Ids r16, LThresYL
call TransmitWait
Ids r16, UThresYH
call TransmitWait
Ids r16, UThresYL
call TransmitWait
Ids r16, LThresZH
call TransmitWait
Ids r16, LThresZL
call TransmitWait
Ids r16, UThresZH
call TransmitWait
Ids r16, UThresZL
call TransmitWait

; Either 'T' or 'D’

; Send Car #to PC

: Check to see if Data or Thresh

; If 'D' then Data Send

: Send Thresholds to the PC

120

as not passed

s to receive data from ;

car # or these as well as

old Send

Ids r16, ThresDO
call TransmitWait
Ids r16, ThresD1
call TransmitWait
Ids r16, ThresD2
call TransmitWait
Ids r16, ThresD3
call TransmitWait : Send Threshold Date to the PC
jmp DataSendComplete
DataSendla:
Ids r20, racecount
cpi r20, $00
breq DataSendComplete
cbi PORTB, 0 ; Enable the memory device
Idi r16, $03 : Read command
clrrl7
Idi r18, $40
call SPIComSend ; Send read from Race 1 Address
clrrl8
clrrl9
DataSendLoop:
call SPIRead
call TransmitWait ; Must do this 9012 times
incrl8
cpi rl18, $00
brne DataSendLoopl
inc r19
DataSendLoopl:
cpi rl19, $23
brne DataSendLoop
cpi rl8, $34
brne DataSendLoop
; When here have sent Race 1
cpi r20, $01
breq DataSendComplete
clrrl8
clrrl9
DataSendLoop2:
call SPIRead
call TransmitWait
inc rl8
cpi rl18, $00
brne DataSendLoop3
inc r19
DataSendLoop3:
cpirl9, $23
brne DataSendLoop2
cpi rl8, $34
brne DataSendLoop2
; When here have sent Race 2
cpi r20, $02
breq DataSendComplete
clrrl8
clrr19
DataSendLoop4:
call SPIRead
call TransmitWait

121

inc r18

cpi rl18, $00

brne DataSendLoop5

inc r19
DataSendLoop5:

cpi rl9, $23

brne DataSendLoop4

cpi rl8, $34

brne DataSendLoop4 ; 3rd Race Sent
DataSendComplete:

sbi PORTB, 0 ; Disable Memory Device

clr r16

sts racecount, rl6

sts races, r16 ; Should also save this data to me mory!

cbi PORTB, 0 ; Enable Memory Device

Idi r16, $06

call SPIComSend ; Send Write Enable Command

sbi PORTB, 0

Idi r16, $02 ; Write Command

clrrl7 ; Addres (Low Byte)

clrrl8 ; Address (High Byte)

cbi PORTB, 0 ; Enable Memory Device

call SPIComSend ; Send Command

Ids r16, races

call SPIWrite

Ids r16, racecount

call SPIWrite ; Write races and racecount to memo ry

sbi PORTB, 0 ; Disable Memory Device

Idi r16, $43

sts UDR1, rl16 ; Send 'C' (Complete)
DataSend2:

Ids r16, UCSR1A

andi r16, (1<<TXC1)

cpirle, 0 ; Check TXCL1 to see if transmit compl ete

breq DataSend2 ; Loop until transmit complete

clrrl6

sts secs, r16 ; Reset the 5 minute timer

sts Command, r16 ; Reset the command

ret
; Precondition: Received 'S’ to state that PC wishe s to send data to device
; Postcondtion: Device accepts data and stores it i n memory

DataReceive:
; Send O.K to say can receive data
call ReceiveWait
sts Command, r16 ; Either 'I' or 'T"
cpi rl6, $49
breq DataReceivea
jmp DataReceiveb
DataReceivea:
; Store thresholds
Idi r16, ILXH
sts LThresXH, r16
Idi r16, ILXL
sts LThresXL, r16
Idi r16, IUXH
sts UThresXH, r16

122

; Store

Idi r16, ITUXL

sts UThresXL, r16

Idi r16, ILYH

sts LThresYH, r16
Idi r16, ILYL

sts LThresYL, r16
Idi r16, IUYH

sts UThresYH, r16
Idi r16, IUYL

sts UThresYL, r16
Idi r16, ILZH

sts LThresZH, r16
Idi r16, ILZL

sts LThresZL, r16
Idi r16, IUZH

sts UThresZH, r16
Idi r16, IUZL

sts UThresZL, r16
date

Idi r16, IDO

sts ThresDO, r16
Idir16, ID1

sts ThresD1, r16
Idi r16, ID2

sts ThresD2, r16
Idi r16, ID3

sts ThresD3, r16

: Store Version Number

; Store

Idi r16, IVersionH
sts VersionH, r16
Idi r16, IVersionL
sts VersionL, r16
Serial Number
Idi r16, ISerialH
sts SerialH, r16
Idi r16, ISerialL
sts Seriall, r16
Idi r16, $58

sts CarO0, r16

sts Carl, r16

sts Car2, r16

sts Car3, r16

sts Car4, r16

sts Carb, r16

DataReceiveb:

Idi r16, $4F
sts UDR1, r16

DataReceivel:

Ids r16, UCSR1A
andirl6, (1<<TXC1)
cpirl6, 0

breq DataReceivel
lds r16, UCSR1A
ori r16, (1<<TXC1)
Idi r16, $4B

sts UDR1, r16

DataReceive2:

; Store XXXXX as Car #

; Send 'O

; Check TXC1 to see if transmit compl
; Loop until transmit complete

; Reset the bit

; Send 'K'

123

ete

Ids r16, UCSR1A
andirl6, (1<<TXC1)

cpirle, 0 ; Check TXCL1 to see if transmit compl ete
breq DataReceive2 ; Loop until transmit complete

Ids r16, UCSR1A

ori rl6, (1<<TXC1) ; Reset the bit

clr r16

sts races, r16
sts racecount, r16
Ids r16, command
cpi rl6, $49
brne DataReceive2a
jmp ReceiveStoreData

DataReceive2a:

: Get Threshold Data
call ReceiveWait
sts LThresXH, r16
call ReceiveWait
sts LThresXL, r16
call ReceiveWait
sts UThresXH, r16
call ReceiveWait
sts UThresXL, r16
call ReceiveWait
sts LThresYH, r16
call ReceiveWait
sts LThresYL, r16
call ReceiveWait
sts UThresYH, r16
call ReceiveWait
sts UThresYL, r16
call ReceiveWait
sts LThresZH, r16
call ReceiveWait
sts LThresZL, r16
call ReceiveWait
sts UThresZH, r16
call ReceiveWait
sts UThresZL, r16

; Get Threshold Date Modfified
call ReceiveWait
sts ThresDO, r16
call ReceiveWait
sts ThresD1, r16
call ReceiveWait
sts ThresD2, r16
call ReceiveWait
sts ThresD3, r16
call ReceiveWait
sts CarO, r16
call ReceiveWait
sts Carl, r16
call ReceiveWait
sts Car2, r16
call ReceiveWait
sts Car3, r16
call ReceiveWait

124

sts Car4, r16
call ReceiveWait
sts Carb, r16
ReceiveStoreData:
cbi PORTB, 0 ; Enable the memory device
Idi r16, $06
call SPIComSend ; Send write enable command
shbi PORTB, 0 ; Set latch
Idi r16, $02 ; Load write command and address
clrrl7
clrrl8
cbi PORTB, 0 ; Enable the memory device
call SPIComSend ; Send Write command
Ids r16, races
call SPIWrite ; Clear races variable
Ids r16, racecount
call SPIWrite ; Clear racecount variable
Ids r16, LThresXH
call SPIWrite
Ids r16, LThresXL
call SPIWrite
Ids r16, UThresXH
call SPIWrite
Ids r16, UThresXL
call SPIWrite ; Write X-thresholds
Ids r16, LThresYH
call SPIWrite
Ids r16, LThresYL
call SPIWrite
Ids r16, UThresYH
call SPIWrite
Ids r16, UThresYL
call SPIWrite : Write Y-thresholds
Ids r16, LThresZH
call SPIWrite
Ids r16, LThresZL
call SPIWrite
Ids r16, UThresZH
call SPIWrite
Ids r16, UThresZL
call SPIWrite : Write Z-thresholds
Ids r16, ThresDO
call SPIWrite
Ids r16, ThresD1
call SPIWrite
Ids r16, ThresD2
call SPIWrite
Ids r16, ThresD3
call SPIWrite ; Write Modified Date
Ids r16, Car0O
call SPIWrite
lds r16, Carl
call SPIWrite
Ids r16, Car2
call SPIWrite
Ids r16, Car3
call SPIWrite

125

Ids r16, Car4d

call SPIWrite

Ids r16, Carb

call SPIWrite : Write Car #

Ids r16, Command

cpi rl6, $49 ; Determine if initialize

brne ReceiveComplete
Ids r16, SerialH
call SPIWrite

Ids r16, SerialL
call SPIWrite

Ids r16, VersionH
call SPIWrite

Ids r16, VersionL
call SPIWrite

Ids r16, ThresDO
call SPIWrite

Ids r16, ThresD1
call SPIWrite

Ids r16, ThresD2
call SPIWrite

Ids r16, ThresD3
call SPIWrite

ReceiveComplete:

sbi PORTB, 0

Idi r16, $43
sts UDR1, r16

DataReceive3:

Ids r16, UCSR1A
andirl6, (1<<TXC1)

; If not then done

: Write Serial Number

; Write Version Number

; Write Date Version Loaded

; Disable the memory

; Transmit to PC to say receive is complete

; Send 'C' (Complete)

cpirl6, 0 ; Check TXC1 to see if transmit compl ete
breq DataReceive3 ; Loop until transmit complete
Ids r16, UCSR1A
ori rl6, (1<<TXC1) ; Reset the bit
clr r16
sts Command, r16 ; Clear the command received
sts secs, r16 ; Reset the 5 minute timer
ret
; Precondition: Data send expected
; Postcondition: Data received and put in rl6
ReceiveWait:
Ids r16, UCSR1A ; Load r16 with the receive regis ter
andi rl6, (1<<RXC1) ; Isolate the receive bit
cpirl6, 0 ; If not set then no new data
breq ReceiveWait ; Wait for new data
lds r16, UDR1 ; Put received data in r16
ret
; Precondition: Data to send put in r16
; Postcondition: Data sent to PC
TransmitWait:
sts UDR1, r16 ; Send Data in r16
TransmitWait1:
Ids r16, UCSR1A
andirl6, (1<<TXC1)
cpirl6, 0 ; Check TXC1 to see if transmit compl ete

126

breq TransmitWaitl
Ids r16, secs
incrl6
WaitaSec:
lds r17, secs
cp rle6, r17
brne WaitaSec
ret
.exit

; Loop until transmit complete

127

Appendix J: Interrupts.asm
; Interrupt Subroutine File

;** *kkkkkkkkkhkkkkkkkkk
; Precondition: Master Kill Switch Pressed
; Postcondition: Pins 33-42 of the processor will b e brought low to
; shut down the vehicle
MasterKill:

push r16 ; Save r16 and status register

in rl6, sreg

push r16

Idi r16, $FF ; Set Pins 35-42 high

out PORTC, r16

sbi PORTE, 0 ; Set Pins 33-34 high

sbi PORTE, 1

pop rl6 ; Return saved registers

out sreqg, r16

pop rl6

reti
skkkkkkkkkhkkhkkhkkkkhkkhkhhhhhhkhhhhhhhhhhhhkhhhrhhhrixk *kkkkkkkkkhkkkkhkkhkk
skkkkkkkkkhkkhkkhkkhkkhkkkkhhhhhkhhhhhhhhhhhhhhhhhhkhriik *khkkkkkkkkhkkhkkkhkkhkk

; Precondition: Two-step bypass button pressed
; Postcondition: Flag in the switch variable is set
TwoSteplnt:
push r16
in rl6, sreg
push r16
TwoStepint2:
inrl6, PIND
andi r16, $02
cpi rl16, $00
breq TwoStepint2 ; Do not pass through until butto n released
Ids r16, Switch ; Load Switch variable into r16
sbrc r16, STONOff ; If two-step bypass button is n ot cleared branch
jmp TwoStepInt0
ori rl6, (1<<STONOff)
cbi PORTA, 4 ; Turn on the two-step bypass LED
jmp TwoStepintl
TwoStepIntO:
andi rl6, ~(1<<STONOff) ; Clear bit for two-step b ypass
sbi PORTA, 4 ; Turn off the two-step bypass LED
TwoSteplintl:
sts Switch, r16 ; Store result back into switch
shi EIFR, INTF1

pop rl6 ; Return registers

out sreqg, r16

pop rl6

reti
rkkkkkkkkkkkkkkkkkkkkhkkkkkhkkkhkkhkkhkkkhkkhkkkhkkhkkhkkhkkhkkkkkk *kkkkkkkkkkkkkhkkkkk
;** kkkkkkkkkkkkkhkkkkk
; Precondition: Test button pressed
; Postcondition: Test Flag in the switch variable i s set
Testint:

push r16 ; Save r16 and status register

in rl6, sreg

push r16

Ids r16, Switch ; Load Switch register into r16

128

ori rl6, (1<<STest) ; Set the Test Flag

sts Switch, r16 ; Store rl6 to Switch register
TestIntl:

inrl6, PINB

andi r16, $80

cpi rl6, $00

breq TestiIntl ; Do not return until button release

pop r16 ; Return saved variables

out sreg, r16

pop rl6

reti

skkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkhkkx
’

shkkkkkkkkkkkkkkkkkkkkkhhhhhkkkhkkkkkkkkkkkkkkkkhkhikx

; Precondition: USART interrupt received
; Postcondition: Download Flag in Switch register i
Download:
push r16 ; Save rl16 and status register
in rl6, sreg
push r16
Ids r16, Switch ; Load Switch register into r16
ori rl6, (1<<SDload) ; Set the Download Flag
sts Switch, r16 ; Store rl6 to Switch register
pop r16 ; Return saved variables
out sreg, r16
pop rl6
reti

skkkxkx
1

shkkkkkkkkkkkkkkkkkkkkkhkkhhkkkhhkkhkkkkkkkkkkkkkkhkhkikx
’

; Precondition: One Second has passed since last RT
; Postcondition: Variable secs will be incremented
RTClInt:

push r16 ; Save rl16 and status register
in rle, sreg

push r16

Ids rl6, secs ; Load secs into r16

incrlé ; Increment r16

Sts secs, rl6 ; Store new value to secs

pop r16 ; Return r16 and status register
out sreg, r16

pop rl6

reti ; Return

skkkkkkkkkhkkhkkhkkkkhkkkkhkhkhhkhhhhhhhhhhhhhhhhkrhhhriik
L
skkkkkkkkkkkkkkkkkkkkkkhkkkhkkkhkkhkkhkkhkkhkkkhkkhkkhkkkkkkkkkkx
’
; Safety interrupt
Unused:

reti

skkx
1

.exit

129

kkkkhhhkhhhkhkhkkkkkkx

kkkkkkkkkkkkkkkkkk

S set

kkkkhhhkhhhkkhkkkkkx

nnnnnnnnn

C interrupt
by 1

*kkkkhkkkhkkhhhhhhkix

kkkkkkkkkkkkkkkkkk

*kkkhhkhhhkhkhkkkkkx

Appendix K: Test.asm
TestRoutine:
; Setup LEDs
shbi PORTA, 0 ; Turn off Pit Road LED
cbi PORTA, 3 ; Turn on Test Mode LED
; Turn off download interrupts
clrrl6
sts UCSR1A, r16 ; Set all the USART controls to 0
sts UCSR1B, r16
sts UCSR1C, r16
; Turn off two-step bypass interrupt
cbi EIMSK, 1 ; Disable Two-Step Bypass Interrupt
sbi PORTA, 4 ; Turn it off if on
; Reset Switch Interrupt
Ids r16, Switch ; Load Switch register into r16
andi r16, ~((1<<STest)|(1<<STONOfT))
bypass flag
sts Switch, rl6 ; Store rl6 to Switch register
TestLoop:
; Perform Ignition Test
Idi r16, (1<<MUXO0)|(1<<MUX1)

;Clearthe T

sts ADMUX, r16
call ADCStart
cpi rl7, $03
brsh TestLoopl

; Set for Ignition Test Pin

; Perform Conversion

; See if high byte is greater than or
; If greater than or equal to $03 t

call SystemShutDown

TestLoopl:

Ids r16, Switch

andirl6, (1<<STest)

cpirl6, 0
breq TestLoopla

; Load r16 with Switch data
; Isolate switch test bit
; Seeif0

jmp TestComplete ; If not then pressed and test is

TestLoopla:

clr r16

sts ADMUX, r16
call ADCStart
Idi r18, $03

Idi r19, $02

cp rl7,r19
brlo TestLoop3
brne TestLoop2
cp rie, r18
brlo TestLoop3

TestLoop2:

inrl6, PORTA
orirle, $37

out PORTA, rl16
cbi PORTA, 0
jmp TestLoop

TestLoop3:

Idi r18, $F7

Idi r19, $01

cp r19, r17

brlo TestLoop5

brne TestLoop4
cp rl6,rl8

; Set to X-axis ADC channel
; Perform conversion - result in r16

; If rl7 is larger than r19 then Li
; If rl7 is not equal to r19 then b

; If r16 is larger than r18 then Li

; Light on
: Go back to start

; Load r18 and r19 with the lower thr

; If r19 is lower than r17 then abo
; If r19 is not equal to r17 then b
; If same or higher then above thresh

130

(will turn it off)

est Flag and

equal to $03
hen ignition is on

done

rl7

ght On
elow Threshold

ght On

eshold

ve threshold
elow threshold
old

brsh TestLoop5

TestLoop4:

inrl6, PORTA
orirle, $37

out PORTA, r16
cbi PORTA, 1
jmp TestLoop

TestLoop5:

; Light on
; Go back to start

Idi r16, (1<<MUXO0)

sts ADMUX, r16
call ADCStart
Idi r18, $FC

Idi r19, $01

cp rl7,r19
brlo TestLoop7
brne TestLoop6
cp rle, rl8
brlo TestLoop7

TestLoopb6:

inrl6, PORTA
orirle, $37

out PORTA, r16
cbhi PORTA, 2
jmp TestLoop

TestLoop7:

Idi r18, $FO0

Idi r19, $01

cp ri9, r17
brlo TestLoop9
brne TestLoop8
cp rl16,rl8
brsh TestLoop9

TestLoop8:

inrl6, PORTA
orirle, $37

out PORTA, rl16
chi PORTA, 4
jmp TestLoop

TestLoop9:

; Set to Y-axis ADC channel
; Perform conversion - result in r16
; Load r18 and r19 with upper thresho

; If rl7 is larger than r19 then Li
; If rl7 is not equal to r19 then b

; If r16 is larger than r18 then Li

; Light on
; Go back to start

; Load r18 and r19 with the lower thr
; Ifr19 is lower than r17 then abo

; If r19 is not equal to r17 then b
; If same or higher then above thresh

; Light on
; Go back to start

Idi r16, (L<<MUX1)

sts ADMUX, r16
call ADCStart
Idi r18, $F8
clrrl9

cp rlo, r17
brlo TestLoopll

brne TestLoopl0

cp rl6, ri8

brsh TestLoop11
TestLoopl0:

inrl6, PORTA
orirle, $37

out PORTA, rl16
cbi PORTA, 5
jmp TestLoop

TestLoopll:

inrl6, PORTA

; Set to Z-axis ADC channel
; Perform conversion - result in r16
; Load r18 and r19 with the lower th

; 1fr19 is lower than r17 then ab
; If r19 is not equal to r17 then
; If same or higher then above thresh

; Light on
: Go back to start

131

rl7
Id

ght On
elow Threshold

ght On

eshold

ve threshold
elow threshold
old

rl7
reshold

ove threshold
below threshold
old

orirle, $37
out PORTA, r16

jmp TestLoop ; Go back to start
TestComplete:

shbi PORTA, 3 ; Turn off Test Mode LED

sbi PORTA, 5 ; Turn off Test LED

ret

.exit

132

1C

Schemati

Appendix L

1199US - YoS ZHINPIVBEIQ\JDW\JDNISIIBWND0Q [[WASIISWNI0g\IBUMO\SISS D

1 jo | abeg i 13y 9838340y
m : 31NAJ4T] 30017
V__Eluﬂc m(_m ’ 4dza
[e i L 191X
swajshg butwr] sauqequod - mxwx —
31N041] Wamad ¥aN
N 91
H, 6 %QSHB ygee ¥3mod 359, uorytubl g Auazgeq o
= ~ 60 ¢ 40 - —Heo
s —iy
10
K rv|<> T
N/ 8
iR o - ml Lo iy s
nes Vo BTh 2 W : o I & e N b—S23, @
H wv H e N9 N9 QNS T_R% -2 €2
g n ; . :
E mmmmnnazu ant wxv— 89428 erin e 2909 g i ety H
3] . b
Sanon usa 63 g &5 61 WK e | S41N0UT] JIFAU0UST00Y L
3nop NaHsNfE! 77 20501-€9¢ 1 =T
s = : TTHLK e « P . bo[3nsze
& n Jree" BI9 01¥ g3 13538/ [EER
M CRkBAEN e b on L b 1) e T|I¢mm¢_ A
T Tr|¥-edd N3d/ —~ g *
g 4iNked3d 2008 24d o £ ST
—{SINI/53d 900Y/93d | == W —
—Z|SiN1-63d £90Y,S4d £ o
—{ bINIP3d 5% § 2lm—(dd 190y g P
INIb 34 ¥087bdd e —5{L0A & L114Afy—43d 800Y g N
) Pepnisiind €006/Edd [gr————————— ol inox T LT[y an "
K2 200,23 [z aan
—{0td/13d 1909 14d g m_ £n
7|fdd-e3d w 0IqY/Bd | 394 G L g
F|eleld - 01907 260 m-‘_mo%
@ PA| UoD) 31R041] Yoa3In bad AL o1 P2
Tepleotd s 4120984 |- Lo J 4e3Ing I A~
] 1#0%50d g ¥120/58d - L] B3doal of L
zT T2I-v0d a20-v8d T R, » Sdd SW 08 \Ow
B | EANDEnd ST Egd YT e net [EEETTD
=T ¥ = ol pB
27| 24Nl 150U/28d =y %0p80d BNT pow YA -
o1 0—-AV=T5d - | 1LNI/10d Ny kil i ST — 23d 101> o6 el
_
6 o1 WA(e3d] O———————{BINI /00 s5/08d |y ot
S AT G 29725 N 30°FUIUI TYIC
Lo—T"We 1 2 i 905954 T U L | e 110
3 oAV a5 €19-50d SO L > K] ”w 3INOUTY WONdI3
NI
§ oWy B slredd YOG pd Ssh
by oWy o £09/60d o —¥dd]
£ o—-Wieg sr{ors-224 s 138 |e—< T34 558
2 oWy g 6919 108-14d REd_TSOD>—7¥0S 51 gypce 2 fr—< SEd]
T oWty T 89-02d 00Y-8Yd 14 [o—<&d O8IN
T (sRetay 03 AT1enjuan3) 224 3% 998 oy —8dd s5]
sTeuds 111 . —] 13 mn 3INOJT] 037
m& 2n
NG+
NG+ NG+

133

Appendix M: Master Parts List

(Please see next page)

DragAid-MK — Drag Race Analyzer and Master Kill Switch

Master Parts List — Rev. B Design Team: Allison Smyth asmyth@wpi.edu
Allison Smyth, Al Smyth & Frank Legassey Frank Legassey frank@portatree.com
December 23, 2008 Al Smyth al@portatree.com
QTY Ref Value Description Dist. Part No. MFG MMRart No. Unit Sub
1 8 C1, C2, C3, 1uF CAP CER .1UF 50V 10% X7R 1206 Digi-Key 490-87ND Murata Electronics | GRM319R71H 0.02500{ 0.2000(
C9, C10, C11, 104KA01D
C14, C15
2 1 C4 10uF CAP 10UF 10V CERAMIC 1206 | Digi-Key | PCC2178TR-ND | Panasonic-ECG ECJ- 0.19336| 0.19334
X5R 3YB1A106M
3 1 C5 1uF CAP CER 1UF 50V X7R 10% 120¢ Digi-Key 544123-1-ND TDK Corporation C3216X7R1H1 0.27500(0.2750(
05K
4 1 C6 .027uF | CAP 27000PF 50V CERAMIC X7R Digi-Key | 311-1204-2-ND Yageo CC1206KRX7 0.01750| 0.0175(
1206 R9BB273
5 1 C7 4.7uF CAP CER 4.7UF 50V X5R 1206 Digi-Key 93507-2-ND Kemet C1206C475K5 0.14900| 0.1490(
PACTU
6 1 c8 .39uF CAP .39UF 25V CERAMIC X7R | Digi-Key | PCC1890TR-ND | Panasonic-ECG ECJ- 0.11081| 0.11081
1206 3YB1E394K
7 2 C12,C13 22pF CAP CERAMIC 22PF 50V NP0 1206 iBigy | 311-1154-1-ND Yageo CC1206JRNRO 0.07700| 0.1540(
9BN220
8 1 Cil6 100uF CAP 100UF 50V ALUM LYTIC Digi-Key | P5182-ND Panasonic-ECG ECA-1HM101 0.290000.29000
RADIAL
9 6 D1, D2, D3, _ LED OVAL NO FLNG ALINGAP Digi-Key | 160-1621-ND Lite-On Inc. LTL5V3SSS 0.18080 1.08480
D4, D5, D6 AMBER
10 7 D7, D8, D9, -- RECTIFIER GPP 100V 1A SMD Digi-Key | DL4002-FDICT- | Diodes Inc. DL4002-13-F 0.49000 3.430p0
D10, D11, MELF ND
D12, D13
11 1 J1 _ 10x1 Inline header connector .025" _ _ _ _ _ _
contacts .100” spacing
13 1 J2 _ JTAG pin header connector 2x5 .02%hoenix HWS1334 _ _ 0.10800 0.10800
contacts, .100” spacing
14 1 J3 _ CONN USB RECEPT R/A TYPE B| Digi-Key | A31725-ND Tyco Electronics | 292304-1 0.67137 0.67137
4POS AMP
15 2 J4, 35 _ DC Power Connectors 2mm PCB | Mouser 806-KLDX-0202-| Kycon KLDX-0202-A 0.19000 0.38000
JACK POWER JACK A
16 1 L1 10uH INDUCTOR FIXED SMD 10UH Digi-Key | PCD1020CT-ND | Panasonic-ECG ELJ-FA100KF 1646| 0.11646
10%
17 1 Q1 _ TRANS PNP 20VCEO 500MA Digi-Ke 2SB07790R- | Panasonic-SSG 2SB07790RL 0.23500 0.23p00

MINI-3 ND
18 6 R1, R2, R3, 30002 RES 300 OHM 1/4W 5% CARBON | Digi-Key | 300QBK-ND Yageo CFR-25JB- 0.00855| 0.0513(
R4, R5, R6 FILM 300R
19 3 R7, R9, R10 30K | RES 30K OHM 1/4W 5% CARBON | Digi-Key | 30KQBK-ND Yageo CFR-25JB-30} 0.06400 0.00Z
FILM
20 1 R8 22KQ | RES 22K OHM 1/4W 5% CARBON | Digi-Key | 22KQBK-ND Yageo CFR-25JB-22} 0.06400 0.064
FILM
21 1 R11 1010 RES 10K OHM 1/2W 5% CARBON | Digi-Key | 10KH-ND Yageo CFR-50JB-10H 0.01222 0.01722
FILM
22 1 R12 200 RES 20K OHM 1/4W 5% CARBON | Digi-Key | 20KQBK-ND Yageo CFR-25JB-20} 0.06400 0.064
FILM
23 10 R13, R14,
R15, R16, _ _ _ _ _ _ _ _
R17, R18,
R19, R20,
R21, R22
24 2 R23, R26 1R RES 1.0K OHM 1/4W 5% CARBON Digi-Key | 1.0KQBK-ND Yageo CFR-25JB-1K0 0.05400 ®BM0O
FILM
25 1 R24 41Q RES 4.7K OHM 1/4W 5% CARBON Digi-Key | 4.7KQBK-ND Yageo CFR-25JB-4KJ 0.06400 406
FILM
26 1 R25 100K | RES 100K OHM 1/4W 5% CARBON Digi-Key | 100KQBK-ND Yageo CFR-25JB- 0.06400(0.0640(
FILM 100K
27 2 SW1, SW2 _ Momentary Contact Switches _ _ _ _ _ _
(Not yet decided)
28 1 SW3 _ Positive Action On/Off Switch _ _ _ _ _ _
(Not yet decided)
29 1 Ul _ IC AVR MCU 64K 64TQFP Digi-Key AT90USB647 | Atmel ATO0USB647-| 6.00000{ 6.0000(
16AU-ND 16AU
30 1 u2 _ IC SRL EEPROM 512K 1.8V 8DIP Digi-Key 25312-1/P-ND | Microchip 25AA512-I/P 1.74000 1.74000
Technology
31 1 U3 _ IC ACCELEROMETER 3-AXIS Digi-Key | ADXL330KCPZ- | Analog Devices ADXL330KCP 8.54145| 8.54144
16LFCSP RLTR-ND Z-RL
32 1 U4 _ IC ACCELER 50G DUAL-AXIS Digi-Key | AD22285-R2CT- | Analog Devices AD22285-R2 13.81900 13.81900
8CLCC ND
33 1 us _ IC VOLT REG FIXED POS SOT- | Digi-Key | 296-12290-1-ND | Texas Instruments UA78MO5CD 0.18620| 0.1862(
223 CYR
34 1 U6 _ IC VREF W/SHUTDN 5V TSOT23-6Digi-Key | ADR395AUJZRE | Analog Devices ADR395AUJZ| 1.95000| 1.9500(
EL7CT-ND -REEL7
35 1 u7 - IC LDO V-REF 3.0V SOT23-3 Digi-Key 29663-1-ND | Texas Instruments REF3330AIDB 2.38000 20880

136

ZT

36 us _ PHOTOCOUPLER OPIC DGTL Digi-Key | 425-2205-5-ND | Sharp PC900V0YSZ 1.17000 1.1700(¢
VDE 6-DIP Microelectronics XF
37 U9 - IC USB-TO-UART BRIDGE 28MLP Digi-Key 33BL60-ND Silicon Laboratories CP2102-GM 3.98000 BB
38 u1o0 - IC BUFFER SGL OPEN DRAIN Digi-Key | NL17SZ07DFT2 | ON Semiconductor | NL17SZ07DF| 0.48000 0.4800(
SOT353 GOSCT-ND T2G
39 X1 32.768 | CRYSTAL 32.768KHZ 6PF SMD Digi-Key| 728-1004-1-ND iz Instruments SPT2AF- 0.35000 0.3500(
KHz 6PF20PPM
40 X2 8MHz CRYSTAL 8.000MHZ SERIES SMI) Digi-Key = XC42TR-ND ECS Inc. ECS-80-S- 0.40500 0.4050(
5PX-TR
Total: 48.88

137

	Worcester Polytechnic Institute
	Digital WPI
	April 2009

	Crash Detection and Safety Shutoff Controller for Race Cars
	Allison P. Smyth
	Repository Citation

	tmp.1535548689.pdf.M7CCP

