
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

March 2012

Active Control of Feedrate and Spindle Speed to
Extend Tool Life During CNC Milling Processes
Brenden T. Gibbons
Worcester Polytechnic Institute

Joseph Adam Driscoll
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Gibbons, B. T., & Driscoll, J. A. (2012). Active Control of Feedrate and Spindle Speed to Extend Tool Life During CNC Milling Processes.
Retrieved from https://digitalcommons.wpi.edu/mqp-all/3551

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3551&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3551&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3551&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3551&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/3551?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3551&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Active Control of Feedrate and Spindle Speed to Extend Tool Life During

CNC Milling Processes

A Major Qualifying Project

Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science by:

____________________________ ____________________________

Joseph Driscoll (RBE) Brenden Gibbons (RBE)

In Collaboration with Huazhong University of Science and Technology

Partners: Yuan Liu and Yuling Niu

Date: 14 December 2011

 Approved: __________________________________
Professor Yiming (Kevin) Rong, Major Advisor, ME

Abstract

 This project involved design and partial implementation of an active tool wear

monitoring and prevention platform. In order to assess the sponsor company’s needs, a

requirements analysis was performed. After researching and analyzing the current state of the art

a program was written in C and C++ to actively monitor axial cutting forces and control spindle

speed and feedrate of a CNC to maximize tool life through various control methods. In order to

complete the system, a comprehensive, user-friendly GUI was created.

Acknowledgements

We would first like to thank HUST for granting us the use of their facilities and their

hospitality. We would also like to thank Professor Rong, Professor He, Professor Li, Dr.

Hongqi, and Zhigang Yang for providing support in both setting up and executing the project.

Additionally, our thanks go out to Huazhong Numerical Control, our host company. Finally, we

would like to thank our partners Neil and Hermione for helping with the project and assisting us

with everyday life in China.

Table	 of	 Contents	
Abstract ... 2	

Acknowledgements ... 3	

1. Introduction ... 8	

2. Background ... 9	

2.1 Company Background ... 9	

2.2 Original System ... 9	

2.3 Competitors ... 10	

2.3.1 TMAC by Caron Engineering .. 10	

2.3.2 ACM by OMATIVE Systems .. 10	

2.4 The Computer Numerical Control Milling Process .. 10	

2.5 Past Research ... 12	

2.6 Control Algorithms Overview ... 12	

2.6.1 Proportional Integral Derivative Control .. 12	

2.6.2 Fuzzy Logic Control ... 13	

3. Methodology ... 15	

3.1 Control Algorithms Methodology ... 15	

3.1.2 Proportional Integral Derivative Methodology .. 15	

3.1.3 Fuzzy Logic Methodology .. 15	

3.2 Testing the Control Algorithms ... 17	

3.2.1 Proportional Integral Derivative Control Testing ... 17	

3.2.2 Fuzzy Logic Control Testing .. 18	

3.3 Software Methodology .. 19	

3.4 Graphical User Interface Design ... 21	

3.5 Hardware System Design .. 25	

3.6 Operating System Selection .. 27	

3.7 Data Collection Methodology ... 28	

Summary ... 29	

4. Results ... 30	

4.1 Control Algorithms ... 30	

4.1.2 Proportional Integral Derivative Control System Development 30	

4.1.3 Fuzzy Logic Control System Development .. 32	

4.2 Software System Development ... 34	

4.2.1 Final Graphical User Interface Design ... 34	

4.4 Data Collection Results ... 40	

4.5 CNC Communication Results ... 42	

4.6 Summary ... 42	

5. Conclusion .. 43	

6. Future Works .. 44	

6.1 Response time ... 44	

6.2 Communication with the Numerical Controller .. 44	

6.3 Live Testing ... 44	

6.4 Database Implementation .. 44	

6.5 Load Band Monitoring .. 44	

Works Cited .. 46	

Appendix A: Full UML Diagram ... 47	

Appendix B: Matlab Test Code .. 48	

Appendix C: Program Code .. 50	

Table	 of	 Figures	
Figure 1 - Large Generator Shaft .. 8	
Figure 2 - Top: Original Control System .. 9	
Figure 3 - Milling Machine: Table and Spindle .. 11	
Figure 4 - Milling Machine: Computer Numerical Controller ... 11	
Figure 5 - PID Control Loop Diagram .. 13	
Figure 6 - Fuzzy Logic Control Loop Diagram .. 13	
Figure 7 - Sample Fuzzy Set ... 14	
Figure 8 - Fuzzy Logic Spindle Speed Rules	 Figure 9 - Fuzzy Logic Feedrate Rules 16	
Figure 10 - Input Fuzzy Set .. 18	
Figure 11 - Fuzzy Control Testing Loop .. 18	
Figure 12 - Simplified UML Diagram .. 21	
Figure 13 - Initial GUI Design .. 22	
Figure 14 - Second Iteration of GUI Design ... 23	
Figure 15 - Third Iteration of GUI Design .. 23	
Figure 16 - Final GUI Design ... 24	
Figure 17 - Inner Components of the New Control System ... 25	
Figure 18 - Hardware System Diagram .. 26	
Figure 19 - Synchronous PID Control Response .. 30	
Figure 20 - Asynchronous PID Control Response .. 31	
Figure 21 - Spindle Speed Output Fuzzy Set .. 32	
Figure 22 - Feedrate Output Fuzzy Set ... 32	
Figure 23 - Fuzzy Logic Control Response .. 33	
Figure 24 - Final GUI Design ... 34	
Figure 25 - GUI: Basic Tab .. 35	
Figure 26 - GUI: Advanced Tab ... 36	
Figure 27 - GUI: New Tool Parameters Entry .. 36	
Figure 28 - GUI: New Operation Entry .. 37	
Figure 29 - GUI: Control Algorithm Selection ... 37	
Figure 30 - GUI: Fuzzy Controller Setup ... 38	
Figure 31 - GUI: Asynchronous PID Controller Setup .. 39	
Figure 32 - GUI: Synchronous PID Controller Setup ... 39	
Figure 33 - GUI: Alarm Screen .. 40	
Figure 34 - Data Collection Testing Results ... 41	
Figure 35 - Data Collection Testing: Input Square Wave ... 41	

	

 	

Table	 of	 Tables	
Table 1 - Cutting Force Equation Historical Trends ... 17	
Table 2 - Requirements Analysis .. 19	
Table 3 - Hardware Components .. 26	
Table 4 - PCM 3355 Specifications .. 27	
Table 5 - Synchronous PID Gain Values .. 30	
Table 6 - Asynchronous PID Control Gain Values .. 31	

1. Introduction

 The CNC milling process involves removing material from a workpiece by feeding it past

a rotating cutting tool. The process inevitably leads to tool abrasion and therefore increased

cutting forces which will eventually cause tool breakage. This tool breakage can result in a

ruined workpiece as well as decreases in efficiency. As such an effective tool wear monitor and

CNC controller is extremely useful in milling. Figure 1 below displays the rotating shaft of a

large generator, of which the center portion is cut using a mill. Milling this piece was the original

scope of this project as the ramifications of a broken tool and therefore a broken shaft are much

greater than in most other cases.

Figure 1 - Large Generator Shaft

A tool wear and breakage monitor is already in use by the customers of Huazhong

Numerical Control Co., Ltd, that machine the piece above, however this has become obsolete.

Running on DOS and implementing outdated signal processing methods, this system needs to be

replaced. To create a new and effective control system, a list of objectives was created and they

are as follows: detect machine tool abrasion and breakage through the analysis of cutting forces,

extend tool life by actively controlling feedrate and spindle speed with a response time of less

than 100ms, continuously display plots of the spindle speed, feedrate, and cutting force, develop

and efficient and stable signal processing method and a user friendly interface, back the tool off

of the workpiece within 10ms of extreme tool abrasion or tool breakage, and finally, display an

alarm if significant tool wear or tool breakage has occurred.

2. Background

The Background Chapter will convey general background information concerning the

host company, its competitors, and iterations of the specific product that this project focuses on.

It will also provide a brief literature review of similar past works, and related topics.

2.1 Company Background
Huazhong Numerical Control Co., Ltd. (HNC) was founded in 1994 in Wuhan, China as

a researcher, developer, and producer of Computer Numerical Control (CNC) systems. Since its

inception, HNC has become one of the leading CNC manufacturers in the world, offering

innovative and reliable systems to its customers. HNC’s main products are their CNC

controllers; however they also offer servo drivers and motors, CNC machines, and infrared

products. HNC products are used worldwide in a variety of different businesses such as the

textile, mechanical, chemical, medical, and steel industries. HNC also uses their products for

educational services, such as technical personnel training.

2.2 Original System
 The currently implemented system, which can be seen below in Figure 2, is a black box

with a screen on the top half and buttons to control the program on the bottom half. In the bottom

half of the picture is a screenshot of the system while on but not currently monitoring anything.

As can be seen, there is only one area to display information about the cutting force, and a list of

options on the right side. This setup is not very user friendly and also is not capable of displaying

all of the desired information.

Figure 2 - Top: Original
Control System

Bottom: User Interface

On top of a poor user interface, the software of the system is outdated. The system runs

on DOS which does not allow for real time operation. Also, the signal processing algorithms

being used are slow and do not allow for optimal performance. Unfortunately there was no

specific information was available about the controller to allow for a more thorough analysis.

2.3 Competitors
 In this section, two competitive products are discussed.

2.3.1 TMAC by Caron Engineering

Founded in 1986, Caron Engineering, Inc. offers manufacturing and engineering

companies a single source for the custom development, design, and assembly of tool monitoring

and adaptive control systems. Their product, the Tool Monitoring Adaptive Control (TMAC)

system, monitors machining horsepower in order to extend cutting tool life. It uses slope

monitoring on the horsepower to regulate the machines feedrate, thus maintaining a constant

spindle motor horsepower.

The TMACs features include: a response time of less than 10ms, several different

machine interfaces, preset tool limits for extreme wear, and a GUI with real-time graphing with

the ability to start and stop monitoring.

2.3.2 ACM by OMATIVE Systems

OMATIVE Systems is a developer of advanced manufacturing and productivity

technologies, focusing on adaptive control, monitoring, and metal cutting optimization products.

They are recognized as an industry and global leader in these technology areas.

The Adaptive Control Monitor (ACM) monitors cutting conditions in real-time and

automatically adjusts the feedrate to its optimal level. It uses either maximum load or load band

monitoring to optimize tool life and is capable of alarming and stopping the machine in case of

tool breakage.

2.4 The Computer Numerical Control Milling Process
The milling process is a procedure by which a workpiece is fed past a rotating cutting

tool in order to cut the workpiece. In this process, the cutting tool is held horizontally stationary

while translating vertically to increase or decrease the depth of cut. The rate at which the cutting

tool is spinning is called spindle speed. Increasing the spindle speed can reduce the cutting force

and increase the quality of the cut. The workpiece is held in place on a horizontally translating

table and is fed past the cutting tool. The rate at which the workpiece moves across the cutting

tool is called the feedrate. Feedrate has the opposite effect of spindle speed in that decreasing it

will reduce the cutting force and increase the quality of the cut. A picture of a mill displaying the

spindle and table can be seen below in Figure 3.

Figure 3 - Milling Machine: Table and Spindle

In many cases, this process is controlled by a CNC, or computer numerical controller. This is a

computer which controls all aspects of the cutting process and allows accuracy and speed beyond

that of manual control. A picture of the HNC 210iB (the project specific CNC) can be seen

below in Figure 4.

Figure 4 - Milling Machine: Computer Numerical Controller

2.5 Past Research
Monitoring of tool wear and breakage on milling machines, often referred to as adaptive

control in industry, has been a topic of research for quite some time and several different

methods of control have been developed over the years. There are three main methods of

adaptive control which are: adaptive control with optimization (ACO), adaptive control with

constraints (ACC), and geometric adaptive control (GAC) [1]. ACO optimizes systems by

analyzing a performance index subject to process constraints. ACC systems don’t rely on a

performance index, focusing solely on the constraints. GACs maintain part quality through

analyzing and compensating for tool wear and deflection. Due to the project requirements and

the provided hardware, an ACC system was the chosen implementation.

As mentioned, adaptive control with constraints maintains a given variable, such as cutting force,

within provided constraints by altering cutting parameters, such as feedrate and spindle speed.

The cutting parameters are manipulated through the use of some control algorithm that has been

implemented such as a PID (proportional, integral, derivative) controller or a fuzzy logic

controller. “Adaptive Control Systems for Machining” describes a proportional controller in

which feedrate is manipulated to maintain cutting force [1]. In the article “Fuzzy Control of

Spindle Power in End Milling Processes”, a method of control using fuzzy logic to control both

spindle speed and feedrate to regulate power is brought forth with reported success is various

different scenarios [2]. “Design of a Drilling Torque Controller for a Machining Center”

describes a system in which a PID controller was used to control torque while drilling by

manipulating the feedrate of the machine [3].

2.6 Control Algorithms Overview
Sections 2.6.1 and 2.6.2 provide brief overviews of the two control methods used in the

project.

2.6.1 Proportional Integral Derivative Control
A PID controller is a basic control algorithm that calculates error by taking the difference

between the current state and desired state. A basic control block diagram can be seen below in

Figure 5. To calculate the proportional term, the error is multiplied by some gain KP. The integral

value is calculated by summing the error with all previous errors and multiplying the new value

by some gain KI. To determine the derivative value, the change in error over time is calculated

by subtracting the previous error from the current error and dividing by the change in time since

the two measurements. This value is then multiplied by some gain KD. All gain values are

determined through experimentation. The three terms are then summed together resulting in an

output value corresponding to necessary change. The process then loops until the object being

controlled has reached the desired state.

Figure 5 - PID Control Loop Diagram

2.6.2 Fuzzy Logic Control
Fuzzy logic controllers are much more complex and involved than a PID controller.

Though the basic forms of the control block diagram, seen below in Figure 6 and above in Figure

5, for each are similar, there are many more steps involved in getting an output value for a fuzzy

logic controller.

Figure 6 - Fuzzy Logic Control Loop Diagram

A fuzzy controller is made up of some number of fuzzy sets, membership functions to

make those sets, a set of several rules, and truth values on a scale of zero to one. An example of a

fuzzy set can be seen below in Figure 7. First the error is calculated and is input into a fuzzy set.

This results in a membership function and a truth value based on where the input lies in the

membership function. For example, a common membership function is in the shape of an

isosceles triangle. Let’s say a particular membership function ranges from 0 to 100. These means

if the input is 50, the truth value will be one. If the input is 25 or 75, the truth value would be .5.

If the input does not fall within this range, it will be applied to a different membership function.

Once this is done, a separate input is applied to another fuzzy set in the same manner. The

membership functions currently in use by each are then applied to the rule set to determine the

output. A basic rule outline is if A set is B function and C set is D function then output set is E

function. Determining the truth value to use for the output function depends on how the rule is

written. There are two main types of rules, AND rules and OR rules. An AND rule, used in the

outline above, compares the two different truth values and uses the lower of the two. An OR rule

will use the higher of the two values. It is likely that given just two inputs there will be many

more than just one output as membership functions generally overlap, resulting in multiple rules

being met. These outputs are all applied to the same output set. Once all rules have been checked

and applied, the center of gravity, or centroid, is found based on weighing all of the individual

outputs. The position of the centroid along the x-axis is the final output of the system.

Figure 7 - Sample Fuzzy Set

3. Methodology

 The following section describes how the project was approached, specifically what

techniques and practices were used. It shows how the project was taken from a concept to an

actual product.

3.1 Control Algorithms Methodology
For the adaptive controller, two control algorithms were chosen to be implemented; a PID

(proportional, derivative, integral) controller, and a fuzzy logic controller. The PID was chosen

as it is a proven and easily implementable method. The fuzzy logic controller was chosen as it

provides rapid error correction and tends to be a bit more forgiving than a PID controller. Each

algorithm will be discussed further in their respective sections below.

3.1.2 Proportional Integral Derivative Methodology

Because the controller has to alter two different values, spindle speed and feedrate, the

PID controller needs two different sets of gains, one set of gains for the feedrate and the other for

spindle speed. This allows for more accuracy and higher efficiency from the control function.

This is because the two parameters affect the cutting force in slightly different ways.

Altering two different variables also allows for the use of two different versions of a PID. One

version that controls the spindle speed and feedrate simultaneously, a synchronous controller,

and one that controls the two values separately, an asynchronous controller. The asynchronous

controller manipulates spindle speed for larger errors. Once the error crosses a predetermined

threshold, control switches to varying the feedrate for the final changes. Both versions were

implemented in order to give the user a bit more choice and control for cutting operations

depending on the desired response. The two versions of the PID can be viewed in MATLAB

code in Appendix B. It should be noted that this form alters slightly from the version in the

actual program as this was also used for testing purposes which will be discussed shortly.

3.1.3 Fuzzy Logic Methodology

As discussed in the fuzzy logic background (section 2.6.2), fuzzy controllers have been

implemented to control cutting force through spindle speed and feedrate changes successfully.

These articles were used as a guide for the implementation of this controller.

The first step was to determine the overall layout of the fuzzy controller, that is to say, the inputs

and the outputs. Going along with the method described in “Fuzzy Control of Spindle Power in

End Milling Processes” it was decided that the system should take in the current error and the

change in change in force and output a new feedrate and spindle speed, as opposed to a change in

feedrate and spindle as done in the PID controllers [2]. The next step was to create the two fuzzy

sets to take in the error and change in error. The authors used 7 membership functions per fuzzy

set [2]. Keeping the user in mind, it was decided to reduce this number five to make it a bit

simpler without losing too much functionality. The membership functions were labeled as “Big

Negative”, “Negative”, “Zero Error”, “Positive”, and “Big Positive” and shaped as triangles, a

standard membership function shape. After this, the output fuzzy sets were created, again using

five triangle membership functions and the same naming convention with the “spindle” or “feed”

as prefixes for the spindle speed and feedrate outputs respectively.

Once all of the fuzzy sets were created a rule set needed to be created. There needs to be

a rule for each possible combination of input fuzzy sets that alters the feedrate and spindle speed

in some way, resulting in 25 different rules. Again, “Fuzzy Control of Spindle Power in End

Milling Processes” was used as a starting place to create the rule set [2]. However, because they

used seven membership functions per fuzzy set their rule sets didn’t directly translate and

adjustments had to be made. Figures 8 and 9 below display the rules used for the controller.

Figure 8 - Fuzzy Logic Spindle Speed Rules Figure 9 - Fuzzy Logic Feedrate Rules

3.2 Testing the Control Algorithms
A control algorithm cannot be implemented without first testing it. In a real scenario, the

controller would send the mill some value, the mill would apply the change and a new force

would result. This new force would be sent back into the control algorithm to continue making

adjustments. Because the test is a simulated scenario, there is no live update of the cutting force

that happens as a natural progression. Because of this, a separate function had to be implemented

to calculate what the resultant force would be based on the output and then feed that force back

in. The equation used to accomplish this is as follows:
Equation 1 - Cutting Force Calculation

𝐹 = 𝐾! ∗ 𝑎 ∗
𝑉
𝑝𝑁

!

Where F is the cutting force in Newtons, a is the depth of cut in mm, V is the feedrate in

rpm, p is the number of teeth on the tool, N is the spindle speed in millimeters per minute

(mm/m), KS is the specific cutting force in Newtons, and u is some value ranging from .6 <u<1.

Both KS and u depend on the tool and workpiece material.[1]

The values chosen for testing were selected as average values based on knowledge of machining

and industry standards. The values used were as follows:
Table 1 - Cutting Force Equation Historical Trends

𝐾! = 500 𝑁

𝑎 = 4 𝑚𝑚

𝑝 = 4 𝑡𝑒𝑒𝑡ℎ

𝑢 = .8

with a desired cutting force of 𝐹 = 500 𝑁. Various starting forces were chosen, both above and

below the desired cutting force, to verify that the algorithms work in multiple different scenarios.

3.2.1 Proportional Integral Derivative Control Testing

Tuning the two PID controllers involved adjusting the gain values corresponding to the

feedrate and spindle speed until an acceptable response was produced. This means having fast

rise and settling times and a small percent overshoot. This is the same process that needs to be

done for every new cutting operation. The code used to test the two controllers can be found in

Appendix B.

3.2.2 Fuzzy Logic Control Testing

To test the fuzzy control, input fuzzy sets had to be defined and output sets had to be

tuned. The two input sets were given the same parameters and one of the can be seen below in

Figure 8.

Figure 10 - Input Fuzzy Set

The displayed range is -300N to 300N, however the two membership functions on the

end extend out to +-10000N, used to simulate infinity. The three inner functions were each given

a range of 300N with a standard isosceles shape. This results in each function overlapping with

the functions on either side of it.

Tuning the fuzzy controller involved altering the ranges and shapes of each output

membership function, again until an acceptable response was produced through simulation.

While it is important to be accurate with these numbers, they do not have to be as exact as the

gains in the PID because the fuzzy controller is much more forgiving in this sense. Unlike the

PID controllers, Simulink was used in order to test the fuzzy controller. The model used can be

seen below in Figure 9.

Figure 11 - Fuzzy Control Testing Loop

To understand the model, it is easiest to start at the memory block. This block is used to

set the initial force for the test. This sends a signal to three places: a scope block to measure the

signal, a derivative block to calculate the change in force, and the negative input of an error

block. On the positive input of the error block is a constant corresponding to the desired force.

This block, as its name implies, calculates the error between the desired and current force. This

signal, along with the derivative signal, is sent to a Mux block to combine the data into one

signal so it can be interpreted by fuzzy controller. This model makes use of two separate fuzzy

controllers, one for spindle speed and one for feedrate, instead of one as described above in the

fuzzy methodology section (section 3.1.3). This was due to limitations in Simulink that did not

allow for multiple output sets in a single controller. The two fuzzy logic controls run and

calculate their output. These outputs are then combined over the next five blocks which

calculates the above cutting force equation. The simulation continues to loop around until the set

run time has completed. It is also important to note that with this setup, the controller does not

begin actively controlling until the second loop.

3.3 Software Methodology
 Before any actual code could be written, a requirements analysis for the software was

completed. This entailed listing the Customer, Architectural, Structural, Behavioral, Functional,

Non-Functional, and Design requirements. All data was obtained in an interview with Dr.

Hongqi Liu. Table 2 below shows this analysis. Although most of the following requirements

were by the company, some additional ones were added to during the creation of the software to

allow extra features, or to ensure other ones were met.
Table 2 - Requirements Analysis

Requirement
Customer • The system will be used in HNC’s customer’s factories on assorted

milling machines in order to monitor tool wear and reduce tool
breakage.

• The system will be expected to operate effectively in a typical factory
setting

Architectural • The system must be comprised of: A usb mouse, an analog keyboard,
a monitor, an Advantech PCM3718HO, an Advantech PCM3355, a
Kistler 5070A charge amplifier, and a Kistler 9129AA
Multicomponent Dynamometer. The NC model used is the HNC
210B.

Structural • Expandable Code base

• Object oriented-style coding
• Data modules for easy data recording

Behavioral • Responds to Possible Cutting Tool breakage by setting off the Mill
alarm, showing a flashing red and black screen, backing the milling
tool away from the workpiece, and stopping the spindle within 10ms.

• Responds to “Start” and “Stop” buttons by turning on/off data
collection, control, and updated display of values.

• Responds to pressing restart button in alarm screen by turning off the
alarm, saving all stored data, and allowing new operations to
commence

• Responds to clear button being pressed
• Allows the creation of Individual tools and operations
• Allows the creation of control systems
• Responds to “Save Data” button being pressed by writing stored data

to a formatted text file
• “Quit button” exits the program cleanly
• Two tabs for basic and advanced users

Functional • Monitors and display 3 axis force sensor data in real time (100ms)
versus time.

• Determines the state of tool breakage at any given moment
• Display real time (100ms) plots of the current feedrate and spindle

speed versus time.
• Display numbers correlating to values of plots in real time
• Actively control the feedrate and spindle speed of the NC to extend

tool life using a selected control algorithm.
Non-Functional • Usable by basic Factory worker

• Robust and hard to break – extensively tested
• Efficient enough to run on the limited hardware selected

Performance • 10ms hard real-time response for setting off the alarm and backing the
mill of the workpiece in the event of likely tool wear

• 100ms soft real-time response for collecting data, controlling the
feedrate and spindle speed, and displaying collected data

Design • Whole program done in C, except for GUI elements
• GUI elements done in C++
• Use Red Hat 9 Linux as the operating system
• Expandable code base

In order to best meet all of the requirements of the preceding analysis, several features of

the code were planned out in detail before any coding began. It was decided that for ease of

usability, compatibility, and portability that all non C++ code would be styled in an object-

oriented manner. This involved the extensive use of structs, and passing pointers to them to all

functions modifying them. All code would be written in the ANSI C99 standard to ensure

portability between compilers.

For planning purposes, a UML (Unified Modeling Language) diagram was created. This

allowed separate functions in each class to be specifically defined before coding, and also a

visualization of how incoming data travels through and is modified in each of the modules.

Several iterations of the UML diagram were created, both before and during coding. The

iterations were necessary when certain requirements could not easily be met with the UML

diagram at the time. A simplified version of the latest and most complete iteration of the UML

diagram is shown below in Figure 10. The full version can be found in Appendix A.

Figure 12 - Simplified UML Diagram

Many measures were taken to ensure that the code base was easily expandable. The first

of these was the heavy compartmentalization of the code. Separate C modules (header and .c

file) were created for almost every task in code. In all, nine individual-purpose modules were

written, and a tenth for the GUI. The separation of tasks into modules also allowed ease of

testing and debugging for each section of code. The second measure was to comment all code

consistently and thoroughly. Each file in the code base is extensively commented with great

detail in the DoxyComment format. The final measure to ensure ease of expandability /

modification was to create a .pdf file outlining how all code fits together and explaining each

module by a line by line basis.

3.4 Graphical User Interface Design
As shown previously in the Requirements Analysis, there were minimal specific

requirements for the system’s GUI. The first step taken in creating a GUI was to choose the

most appropriate and usable framework. Possible frameworks included wxWidgets, Qt, GTK+,

and BVRDE. Ultimately QT was chosen due to its C++ cross platform nature, signals and slots

implementation, and ease of use. Additionally, several team members had used it previously to

avail.

 The 2003 Qt version 3.1.0 was used to ensure that the PCM 3355 could run it in a Red

Hat Linux 9 environment, as required by HNC. This version comes built-in with larger RH9

installs, so compatibility issues were reduced naturally. In addition to providing a C++

programming framework, the Qt install includes many useful tools such as Qmake for making

large projects with ease, and QML for documentation of both C and C++ GUI files. Qwt widgets

version 4.2.0 for Qt were used for displaying real time plots.

 A process of programming a GUI, analyzing it, and iteratively improving it to better

meet/exceed requirements was used as a method to achieve the best possible outcome. Figure 11

below shows the first GUI created.

Figure 13 - Initial GUI Design

This GUI met all of HNC’s desired functionalities at the time. It had start, stop, reset,

and alarm off buttons, a small alarm screen that flashes in response to severe tool wear. Real-

Time plots of three-axis forces are also displayed, along with a real time plot of estimated tool

wear coefficient. These four plots were placed vertically atop one another, so that only one time

axis was displayed for screen space efficiency. Not long after this initial GUI was created, HNC

greatly changed their requirements, shifting the focus of the project to actively controlling

feedrate and spindle speed to extend tool life rather than predicting tool wear. As a response to

these changes, a second GUI was made. It is shown in Figure 12 below.

Figure 14 - Second Iteration of GUI Design

Although iteration 2 of the GUI met the new requirements of displaying the workpiece

load and feedrate on real time plots, as well as showing actual numerical values of the feedrate

and spindle speed, it did not display a plot of spindle speed, and had limited buttons for user

input. Its color scheme and layout style also did not match that of HNC’s CNCs, which was

desired. Additionally, no “Quit” button was created by accident. Iteration 2 was therefore

scrapped in favor of the next iteration, shown in Figure 13 below.

Figure 15 - Third Iteration of GUI Design

Iteration 3 of the GUI met all requirements laid out by HNC. It contained six user input

buttons (Start, Stop, Reset, Save Params, Save Data, and Quit), as well as the three required real-

time plots. Additionally, a drop down box for cutting tool selection was added for ease. There

are manual number entry boxes for the experimentally determined maximum allowable cutting

force, ideal spindle speed and initial feedrate of the cutting operation. Although all strict

requirements were met, one more GUI iteration was created to ensure multi – level usability and

ease of operation. The final iteration of the GUI is shown in Figure 14 below.

Figure 16 - Final GUI Design

The final iteration of the GUI was a significant improvement to all others in terms of

functionality, multi-level usability, and style. It retained all of the required features from

previous iterations (such as the six buttons and three real time plots), but also added several new

features. These features include a drop down box for selecting cutting operations, button tabs for

both basic and advanced users, and the ability to create separate controllers with specific

parameters linked to a desired pair of operation and tool. A full description of this GUI’s

functionality can be found in section 4.2.1 Results of GUI.

3.5 Hardware System Design
The system hardware architecture was primarily decided by HNC before the project

began, although slight modifications had to be made for various reasons. Figure 15 below shows

the initial hardware provided by HNC.

Figure 17 - Inner Components of the New Control System

It consisted of a power supply, a PCM3718HO board, a PCM 3778 board, a 5” TFT LCD

display, five buttons for user input, and a small fan inside of a steel and plastic case. Upon initial

inspection, many wires appeared to be broken, or disconnected in potentially harmful ways. To

avoid serious problems, datasheets for all components were analyzed to determine exactly what

wires needed to be replaced/ connected to what. A total of three wires needed to be fixed, as

well as a plastic end cap used to connect analog keyboard input to the PCM3778. Despite

limited resources, these repairs were made successfully. Once a keyboard could successfully be

connected, installation of the operating system began. A problem arose when connecting the

PCM3778 board to the TFT LCD display. Although all wires were undamaged, the display

would only turn on about two percent of the time, and only for moments. This problem was

traced to a faulty PCM 3778 board, so it was replaced with a newer model with similar

capabilities, the PCM 3355. Once installed, the new board also did not work with the TFT LCD

display. For diagnostic purposes, a normal LCD desktop monitor was hooked up and tested. It

worked successfully, indicating that the TFT LCD itself was malfunctioning.

Although the Desktop LCD Display could interface with the new PCM 3355 board, the

board did not have any firmware or BIOS installed by the factory, rendering it unusable until the

proper manufacturer’s CDs were obtained. Finally, one week before the end of the project, a

PCM 3355 board was delivered in working condition. The final hardware system diagram is

shown in Figure 16 below.

Figure 18 - Hardware System Diagram

The flow of data and in what form it is at any stage is clearly labeled. The function of

each component is explained in Table 3 below.
Table 3 - Hardware Components

Advantech PCM3355 Single board PC104 computer used for main control calculations,
driving the display, handling user input, and overall system
coordination.

Advantech PCM3718HO Analog I/O board used for both collecting analog workpiece force
data from the Charge Amplifier and outputting digital words to the
HNC 210B to change the feedrate and spindle speed.

LCD Display Displays the GUI, allowing the user to interact with the program.
Analog keyboard and
USB mouse

Input devices used to operate the system.

HNC 210B The numerical controller model that the system is made to operate
with.

Kistler 9129AA Multi-
Component
Dynamometer

Measures forces on the workpiece in the x, y, and z axes and outputs
proportional electrical charge across three channels

Kistler 5070A Charge
Amplifier

Takes in the three-channel electrical charge output from the
Dynamometer and converts them to corresponding analog voltages

This final hardware system configuration would allow precise control of the HNC210B

feedrate and spindle speed, sufficient user input capabilities, and a large display for the GUI.

3.6 Operating System Selection
The choice of what operating system to run was mainly determined by three important

factors, the first of which is as follows: The PCM3355 board needed to be able to communicate

with the PCM3718HO board through PCM104 pins in order to receive three axis real time force

information. Advantech only offers the drivers with this functionality for Windows Compact

Edition and Red Hat Linux 9. Therefore, it was decided that in the interest of time, and to

prevent complications, it was best to use one of these two operating systems, as the drivers for

data collection were already written. Therefore, the choice was immediately limited to two

operating systems.

The next factor that played an important role in operating system selection was the

limited power and storage of the PCM 3355 board. Table 4 below shows the specifications that

the board is capable of compared to shows the board’s configuration as provided by HNC:

Table 4 - PCM 3355 Specifications

Spec Capable Provided

CPU AMD Geode 500MHz AMD Geode

500MHz

RAM 1GB DDR333SRAM 512MB

DDR333SRAM

BIOS 4mbit flash bios 4mbit flash bios

Compact

Flash

Up to 128GB (Dependent on

OS)

1GB

The specifications of the provided board presented an issue with what operating systems

would be installable. With only 1 GB of compact flash, a typical install of red hat Linux 9 would

be impossible, so custom options would have to be chosen. With a slightly larger (2GB)

compact flash card, this would not be a problem. Windows CE has a very small memory

footprint (32MB), so it could easily be installed on the system, however the third factor involved

in operating system choice made it an unviable option.

The final and most influential factor that led to the choice of Red Hat 9 for the operating

system was the suggestions of Huazhong Numerical Control. The sponsor company suggested

using Red Hat 9 to meet the real-time requirement of the project. The team’s advisor Dr. Hongqi

Liu and his graduate student Zhigang Yang both agreed with this suggestion, as they had worked

with it previously. As a group of non-computer scientists, the team thought it best to listen to

this advice.

3.7 Data Collection Methodology
The Advantech advDAQ libraries were used for all Data collection. The main challenge

was to obtain a force value in Newtons from the charge amplifier, which outputted voltages. To

implement this functionality, the following steps were taken: The raw output voltages of the

charge amplifier range from -10V to 10V. The Advantech PCM3718 board’s Analog to Digital

Converter is twelve bits, number of states is 4096. This gives a resolution of .00488V/bit. The

output from the ADC is therefore multiplied by this value to obtain the actual voltage. Once an

actual voltage has been obtained, this voltage can be converted into a force value by first

subtracting ten volts (to normalize the range), the multiplying by 10000Newtons/20V. A

function for this purpose can be found in Appendix C, DataCollector.c.

Two methods for collecting data were implemented. The first (using a software timer to

poll the charge amplifier) is an easy to implement, yet somewhat unreliable method. It involves

simply using the advDAQ method to get an ADC value from a channel on a software driven

interrupt. Problems can occur however when other software processes are scheduled to be

executed before this timer interrupt happens, and therefore, it may not be accurate every time.

The second method is using a hardware interrupt. This is slightly more difficult to implement

than the previous method, however it is more precise and reliable. A hardware interrupt is set on

the PCM3718 to trigger every so often. Then, when this occurs, an interrupt service routine is

run to record the data. Because the timer on the PCM3718 is very reliable, and the interrupt

service routine always pre-empts the currently running process, it is rare that the collected data

would not match up perfectly with the time step.

All collected data for each axis is stored in a corresponding queue of a variable specified

length. This data structure allows a constant flow of incoming data to be easily processed and

displayed versus time.

Summary
In summary, three separate control methods were proposed, including fuzzy, synchronous

PID and asynchronous PID. Tests were then designed for these algorithms. Next, a data

collection scheme was created, and a suitable operating system was selected. Finally, a software

architectural structure was conceived, and a comprehensive and user-friendly GUI was designed.

4. Results

 The following section describes the final outcome of the project. It outlines what was

completed, and how it corresponds to the initial goals laid out in the Introduction section.

4.1 Control Algorithms
Although the controller was not able to be tested in a real life scenario, all three

implemented control algorithms were able to be simulated and perform quite well under the

theoretical conditions after some fine tuning. In the next sections, the performance of each

control algorithm along with sample results will be discussed

4.1.2 Proportional Integral Derivative Control System Development
Figure 17 below displays the response of the synchronous PID to the sample data

discussed is section 3.2.

Figure 19 - Synchronous PID Control Response

After some tuning, the final gain values for the system were:

Table 5 - Synchronous PID Gain Values
Feedrate Gains: Spindle Speed

Gains:
𝐾! = 1 𝐾! = 1.5
𝐾! = .11 𝐾! = .15

𝐾! = .01 𝐾! = .03

These values result in a very rapid adjustment to the desired force while overshooting the

desired force by a small amount. In more specific terms, a rise time of about .35s, a settling time

of about .9s, and about an 11% overshoot.

Figure 18 below displays the tuned response of the asynchronous PID controller.

Figure 20 - Asynchronous PID Control Response

The gains used for this system were as follows:

Table 6 - Asynchronous PID Control Gain Values
Feedrate Gains: Spindle Speed

Gains:
𝐾! = 1 𝐾! = 1.3
𝐾! = .01 𝐾! = .03
𝐾! = .05 𝐾! = .01

These values, unlike the synchronous version, provide a much slower rise with a very

small percent overshoot. Because the rise time of the system is so slow, the rise and settling

times are about the same at roughly .8s with about a 3% overshoot. While the settling time is

actually smaller than the synchronous function, the asynchronous function takes a very long time

to reach the actual desired value.

4.1.3 Fuzzy Logic Control System Development
Tuning fuzzy controller resulted in the two following output sets:

Figure 21 - Spindle Speed Output Fuzzy Set

Figure 22 - Feedrate Output Fuzzy Set

Figure 19 shows that the spindle speed set ranges from 1500 rpm to 3500 rpm, centering

on 2500 rpm. The spindle negative (sN) and spindle positive (sP) both have a range of 840 rpm

with the peak shifted 20 rpm towards the center of the set. The two outer functions are standard

have a range of 500 rpm their peaks at the borders of the sets. The zero function was given a

significantly larger range than the other sets, total range being 1400 rpm with the peak right at

the center of both the function and the set.

Figure 20 shows that the feedrate set ranges from 1300 mm/m to 2300 mm/m, centering

on 1800mm/m. The two outer functions again have their peaks on the borders of the set, this time

with a range of 250 mm/m each. The negative and positive sets were given a range of 500 mm/m

with the peaks shifted 50 mm/m towards the outside of the set. Again, the zero function was

given a much larger range than the rest with a range of 800 mm/m and the peak both in the center

of both the function and sets range.

The actual results of running through a simulation with the fuzzy set are displayed below

in Figure 21.

Figure 23 - Fuzzy Logic Control Response

Because of the zero values for the two output sets, 1800mm/m for feedrate and 2500 rpm

for spindle speed, the desired force came out to be 507.28N instead of the 500N that was used for

the PID simulation. Because Simulink runs in discrete time steps, it is difficult to determine any

values such as rise and settling time. Though the fuzzy the simulation results show a correction

time of .4s as the first .1s involved getting the simulation to run properly as a result of the

Simulink setup.

4.2 Software System Development
 This section describes what was achieved in terms of the overall software codebase, and

the Graphical User Interface.

4.2.1 Final Graphical User Interface Design
Figure 22 below shows the multi – functional GUI. As the guidelines for the user

interface were not outlined in depth by HNC, the team tried to create one that would encompass

a range of usage and abilities from simple to complex. This would enable basic users (i.e.

factory workers) to use the program simply to monitor cutting operations, while advanced users

could create and save individual control systems that best fit specific cutting tool and operation

combinations.

Figure 24 - Final GUI Design

The foremost specified requirement of the GUI was to display real-time plots of the

cutting force, spindle speed, and feedrate. This was accomplished by expanding upon the

qwtPlot widget from the QWT library. Each plot dynamically changes its y axis scaling to best

fit the range of incoming data. The x-axes range from zero to a negative number of seconds that

is specified in pre-processor defines of the program. The three graphs are very large and placed

prominently at the top of the GUI.

Display boxes below each of the three plots show the numerical value of the current data.

They are updated along with the three plots every 100 milliseconds. They cannot be clicked on

or typed in, and are intended to be useful when the data range in a plot is large enough to create

confusion and misestimating upon visual inspection.

On the lower left hand side of the GUI, drop down boxes for selecting both a tool and an

operation are present. Although initially empty, they can be added to by using features in the

“Advanced Tab” When

To the lower right of the GUI, there are two tabs: “Basic”, and “Advanced. All of the

buttons required for basic usage of the GUI exist under the “Basic” tab. These buttons would be

used by a typical factory worker when monitoring a cutting operation with previously defined

parameters and controllers. Figure 23 below shows the basic tab.

Figure 25 - GUI: Basic Tab

The green “Start” button begins cutting force monitoring, control of spindle speed and

feedrate, and real-time data collection and plotting. It is dynamically enabled when a valid exists

for the selected Tool and Operation and disabled when no such controller exists.

The red “Stop” button temporarily suspends cutting force monitoring, real-time control of

spindle speed and feedrate, and data display. Pressing “Stop” does not clear or reset any data.

The “Reset” button clears all existing data and the three plots. It is used when changing the Tool

and operation combination, or when performing a new cut, as all stored errors within the current

controller will be cleared.

The “Quit” button to the absolute lower right of the interface clears all data, tools,

operations, and controllers and exits the program.

4.2.1.1 Advanced Tab
The “Advanced” Tab (shown below in Figure 24) houses four buttons.

Figure 26 - GUI: Advanced Tab

The “Save Data” button writes all currently stored data to a text file for future viewing.

The file is named with a timestamp for ease of filing. The first column displays the time

increment. The second, third, and fourth columns show the cutting force, spindle speed, and

feedrate respectively. The final three columns are the x, y and z forces as measured by the force

plate. The file is stored in the same directory as the program is run from. This functionality was

one of the specific details communicated by HNC.

The New Tool Dialog, shown below in Figure 25, is evoked when the “New Tool” button

is pressed. This dialog allows users to create tools with specified names and maximum cutting

forces. The maximum cutting force value is an experimentally determined value for each tool,

over which a tool break will likely occur. The Alarm is triggered when cutting force exceeds this

value. Once a new tool is created, it is added to the drop down box of tools on the left hand side

of the GUI, allowing it to be selected whenever desired. There is a maximum of 25 unique tools,

after which a message indicating that no more new ones may be created is shown.

Figure 27 - GUI: New Tool Parameters Entry

“New Operation” – The New Operation Dialog, Figure 26 below, is conjured when the

button is pressed. This dialog allows users to create operations with specified names. Each new

operation created represents an action one would perform using a CNC machine, using a given

tool. An example would be “3D contouring ANSI 6160 Aluminum”, or “Grooving generator

shaft”. Once a new operation is created, it is added to the drop down box of operations on the

left hand side of the GUI, allowing it to be selected whenever desired, just like a tool. There is a

maximum of 25 unique operations, after which a message indicating that no more new ones may

be created is shown.

Figure 28 - GUI: New Operation Entry

The “New Controller” button can only be pressed when both a Tool and an Operation

have been selected from their drop down menus. When pressed, it pops up a window for

selecting the type of new controller the user wishes to create. As shown below in Figure 27, one

of three controller types may be selected: Synchronous PID, Asynchronous PID, or Fuzzy.

Figure 29 - GUI: Control Algorithm Selection

In each instance, the new controller is bound to the currently selected Tool/Operation

combination. This means that it will be saved upon creation and automatically selected in the

future whenever that Tool/Operation combination is selected from the drop down menus. This

feature allows advanced users to set up complicated parameters, while allowing basic users to

operate the program by remaining in the “Basic” tab.

The “Create new Fuzzy Controller” dialog pops up when the “Fuzzy” Button is pressed.

Once all of the parameters for creating a new Fuzzy Controller have been entered, the user clicks

the “Create” button. A fuzzy controller with two member function diagrams of five member

functions each is dynamically created from the entered values.

Figure 30 - GUI: Fuzzy Controller Setup

The “Asynchronous PID” button opens the “Create new Asynchronous PID Controller”

dialog (Figure 29). Here, the user inputs all of the parameters necessary for creating an

Asynchronous PID Controller. Once “Create” is clicked, the controller is created and bound to

the specific Tool/Operation combination.

Figure 31 - GUI: Asynchronous PID Controller Setup

The “Create new Synchronous PID Controller” dialog (Figure 30), opened with the

“Synchronous PID” button is identical to the “Create new Asynchronous PID Controller” dialog

explained previously, except that it lacks an input box for Cutoff Force, as it is not needed for a

synchronous PID controller.

Figure 32 - GUI: Synchronous PID Controller Setup

If the cutting force maximum value (specified for each tool upon creation) is ever

exceeded, a stop command is issued to the Numerical Controller within 10ms. Additionally, an

Alarm screen, seen below in Figure 31, is displayed, which encompasses the entirety of the GUI.

Data Collection and plotting are immediately halted and adaptive control of the feedrate and

spindle speed is suspended. All current stored data is saved to file, to permit later inspection of

the error. The Alarm screen strobes between bright red and black and displays a highly

contrasting warning message. The” Reset” button on the lower right hand side allows the user to

end the alarm.

Figure 33 - GUI: Alarm Screen

4.4 Data Collection Results
All of the Advantech DAQ boards use the same API for collecting data: ActiveDaq.

This means that if a program is able to successfully acquire data from one Advantech DAQ

board, it will also succeed on any other board. As the main program was never successfully run

on the PCM3355 board, the program to collect data from the Kistler 5070A charge amplifier was

tested on an Ubuntu computer using an Advantech USB 4718. Data was successfully collected

in this manner. The results are shown in Figure 32 below.

Figure 34 - Data Collection Testing Results

Figure 35 - Data Collection Testing: Input Square Wave

The software timer driven data collection code was able to accurately and timely collect

voltage values ranging from -10V to +10V. This is the same as the range of Kistler 5070A

charge amplifier output voltages, ensuring proper data reading. As seen in the above Figure 33,

a -5V to +5V 85Hz square wave was read and the output printed to the terminal every 100

milliseconds.

Code was written to implement the use of the PCM3718HO hardware timer to collect

data. The hardware interrupt driven code is located in Appendix C in the DataCollector.c

section. For both timing methods, examples from the Advantech user’s manual were studied and

modified with appropriate values [4]. Although both software and hardware timer driven code

were implemented, only the software timer driven code was tested. This was due to the

hardware timer driven data collection code needing to be run on the board.

Two versions of the Data Collecting program were written. The first uses a software

timer (QtTimer) to poll the force acting on. The Kistler 9129AA Multicomponent Dynamometer

used to directly gather the tri-axial forces acting upon the workpiece outputs electrical charges in

three channels, which correspond to the forces [5, 6]. As the PCM 3718HO DAQ board’s analog

input ports can only measure changes in voltage, a Kistler 5070A charge amplifier was used to

convert the dynamometer’s output of electrical charge to a corresponding change in voltage.

4.5 CNC Communication Results
 Although information about communicating on-the-fly with other companies’ numerical

controllers through RS32 or Ethernet could be found, no such material from HNC was available.

Due to time constraints and the aforementioned, this task of the project was left uncompleted.

4.6 Summary
Overall, the three control algorithms conceptualized in the methodology section were

implemented and tested in MATLAB. Data was successfully collected from and verified with an

oscilloscope. Finally, an appropriate software system was developed in C and C++ to meet most

of the project goals, and a user-friendly GUI was created.

5. Conclusion

Overall, the project was a success. Four out of six of the objectives laid out in the

introduction were met, and another was partially met. A viable replacement for HNC’s current

machining tool wear and breakage monitor that operates in soft real-time and implements a tool

life extending spindle speed and feedrate control system was produced. This system is able to

detect significant machining tool abrasion and breakage through the analysis of cutting forces,

extend tool life by actively controlling feedrate and spindle speed, continuously display plots of

relevant information, and display an alarm in the event of excessive tool wear/breakage, all via a

user-friendly interface. Functionality to back the machining tool off of the workpiece within

10ms of extreme cutting tool abrasion/tool breakage was not implemented due to time

constraints, and no available resources about communication protocol with the HNC210iB.

Although all of these functionalities were implemented, few could be tested due to

setbacks such as not receiving fully functional hardware until the week before the end of the

project and not being able to obtain an optimal hard drive / compact flash card. Accordingly,

tasks whose outcome could be tested in simulation were, reducing the possibility of errors

occurring when the physical system is fully realized. Even so, a significant portion of all the

necessary work to fully implement the system has been accomplished.

6. Future Works

6.1 Response time
As currently implemented, the device runs on “soft” real-time. That is, the 10ms response

time to tool breakage is met most of the time, however this is not guaranteed. As the program

currently stands, it uses the Qt class Qtimer which has an accuracy on a Linux system such as

this of +/- 5ms [7]. This is a similar problem for the 100ms response time for graphing and

actively controlling the system.

In order to fix this issue, “hard” real-time must implemented using the hardware timer

interrupts of the PCM3718HO. Code has been written to implement this feature; however it has

not been tested due to unsuccessfully setting up the hardware.

6.2 Communication with the Numerical Controller
Assuming the proper documentation can be found, the dummy function currently

implemented would have to be replaced by the proper protocols. The function calls are already

implemented in the correct places, so replacing the protocols is all that would need to be done.

6.3 Live Testing
Assuming Red Hat 9 can be successfully installed with a larger compact flash card, the

entire system would have to be tested and debugged. Some error would likely occur, and these

would have to be addressed.

6.4 Database Implementation
An SQL database could be used as a more efficient storage method for individual tool

and cutting operation information and sets. This would also allow tools that have been created to

persist in the event that the program is closed.

6.5 Load Band Monitoring
In the current implementation, the system uses an experimentally determined maximum

cutting force value to decide when to trigger the alarm. Another option would be to use load

band monitoring for deciding when to trigger the alarm. This would allow for early warnings in

the case of imminent tool breakage. This would be easily implementable in the code base.

Works Cited

1. Koren, Yoram. "Adaptive Control Systems for Machining." Manufacturing Perspective 2.1

(1989). Web. Autumn 2011. <http://www-

personal.umich.edu/~ykoren/uploads/Adaptive_control_systems_for_machining.pdf>.

2. Liang, Ming, Tet Yeap, Saeed Rahmati, and Zhixin Han. "Fuzzy Control of Spindle Power

in End Milling Processes." International Journal of Machine Tools and Manufacture 21.14

(2002): 1487-496. Science Direct. 12 Oct. 2002. Web. Autumn 2011.

<http://www.sciencedirect.com/science/article/pii/S0890695502001402>.

3. Oh, Young T., Gi D. Kim, and Chong N. Chu. "Design of a Drilling Torque Controller for a

Machining Center." The International Journal of Advanced Manufacturing Technology

22.5-6 (2003): 329-35. Springer Link. Web. Autumn 2011.

<http://www.springerlink.com/content/tag7gj1qdppb8wyn/fulltext.pdf>.

4. “PCM-3355 User Manual”. Advantech Co., Ltd

<http://support.advantech.com.tw/support/DownloadDatasheet.aspx>

5. “Kistler Type 5070A DataSheet”. 2010 The Kistler Group

<http://www.kistler.com/mediaaccess/5070A_BP__000-485e-03.10.pdf>

6. “Operating Instructions: Multichannel Charge Amplifier”. 1996 The Kistler Group

<http://ust.fme.vutbr.cz/obrabeni/rozvoj/Kistler-CNC-5019B-Description-En.pdf>

7. “QTimer Class Reference ”. 2011 Nokia Corporation

<http://developer.qt.nokia.com/doc/qt-4.8/qtimer.html>

Appendix A: Full UML Diagram

Appendix B: Matlab Test Code

u = .8; %User Input
a = 4; %User Input, depth of cut (mm)
p = 4; %User Input, number of teeth
K = 500; %User Input, specific cutting force
N = 2000; %Starting Spindle Speed
V = 2262; %Starting feedrate
threshold = 15; %User Input, cutting force threshold used for asynch
refFor = 500; %User Input desired force

%Starting cutting forces
xForce = 600;
yForce = 400;
zForce = 100;

err = 0; %current error
prevErr = 0; %previous error
errSum = 0; %sum of errors

%Feedrate Gains
fKp = 1; %User Input
fKi = .01; %User Input
fKd = .05; %User Input

%Spindle Speed Gains
sKp = 1.3; %User Input
sKi = .03; %User Input
sKd = .01; %User Input

%Testing arrarys
feedVal = zeros(1,50);
spinVal = zeros(1,50);
forceVal = zeros(1,50);
PID = zeros(1,50);
error = zeros(1,50);

%Magnitude of cutting force
curFor = sqrt(xForce^2 + yForce^2 + zForce^2);

%loop 50 times
for i=1:50

 forceVal(i) = curFor;

 err = refFor - curFor; %calculcate error
 error(i) = err;
 errSum = err + errSum; %calculate sum of errors

 %Calculate feedrate PID terms
 fP = err*fKp;
 fI = errSum*fKi;
 fD = ((err-prevErr)/.1)*fKd;
 deltaFeed = (fP+fI+fD); %sum the terms

 %Calculate spindle speed PID terms
 sP = err*sKp;
 sI = errSum*sKi;
 sD = ((err-prevErr)/.1)*sKd;
 deltaSpindle = (sP+sI+sD); %sum the terms

 PID(i) = deltaSpindle;

 %Difference between synchronous and asychrous control
 % With the conditional statement, asychronous
 % Without the conditional statement, synchronous
 if err > threshold || err < -threshold
 N = N - deltaSpindle; %Update Spindle Speed
 else
 V = V + deltaFeed; %Update Feedrate
 end

 feedVal(i) = V;
 spinVal(i) = N;

 %calculate new force
 f = V/(p*N);
 curFor = K*a*f^u;

 %set error to previous error
 prevErr = err;
end

%Graph the results
x=1:50;
figure(1);
plot(x,feedVal);
title('Feed Rate');

figure(2);
plot(x, spinVal);
title('Spindle Speed')

figure(3);
plot(x, forceVal);
title('Force');
xlabel('Time (.1s)');
ylabel('Force (N)');

Appendix C: Program Code

Controller

/**
 * \class Controller
 * \brief Contains struct for a controller. Control functions for both the Spindle speed and
feedrate
 * \author Brenden Gibbons
 * Contact: btgibbons@wpi.edu
 */
//allows use of this C file in CPP classes
#ifdef __cplusplus
 extern "C" {
 #endif
//include guards
#ifndef CONTROLLER_H
#define CONTROLLER_H
#include "tool.h"
#include "FuzzyController.h"

/** Struct to define a Controller
 */
typedef struct controller {
 unsigned short controllerType;//0 for synchPID, 1 for asynchPID, 2 for default Fuzzy
 //!The PID params
 float errorSum; //!Error sum for integral term
 float prevError; //!Previous Error to be used for derivative term

 float desiredCuttingForce; //!previously determined optimal cutting force
 float feedKp; //!Proportional Gain for feed PID
 float feedKi; //!Integral Gain for feed PID
 float feedKd; //!Derivative Gain for feed PID
 float spindleKp; //!Proportional Gain for spindle PID
 float spindleKi; //!Integral Gain for spindle PID
 float spindleKd; //!Derivative Gain for spindle PID
 //only used for asynch
 float errorBoundary; //!error boundary used in asynchronous control mode
 //used for all
 float currFeedRate; //!The current feed rate of the NC
 float currSpindleSpeed; //!The current spindle speed of the NC
 /*
 float controllerGain; //! The controller gain used in calculation
 float controllerSignal; //! The controller signal
 float feedRateGain; //! Gain used when adjusting the feedrate
 float previousCommandSignal; //!The previous signal sent by the controller
*/
 //for fuzzy
 fuzzyController* theFuzz;
 float desiredSpindleSpeed; //!The optimal spindle speed for the current operatio
 float desiredFeedRate;
 //float desiredCuttingForce; //!The optimal cutting force for the current operation
} Controller;

/** \brief Creates a Controller by allocating mem for the struct and its members and initializes
it.
 * \param cGain - (float) the Controller gain of the new Controller
 * \param cSignal - (float) The controller signal
 * \param fGain - (float) Gain used when adjusting the feedrate
 * \param pSignal -(float) The previous signal sent by the controller
 * \param cRate - (float) The current feed rate of the NC
 * \param dSpeed - (float) The optimal spindle speed for the current operation
 * \param dForce - (float) The optimal cutting force for the current operation
 * \param t - (tool *) pointer to the tool used for the current operation. Has a maxForce
 * \return - (Controller *) returns a pointer to the newly allocated Controller
 */
Controller *create_Controller();

void init_as_Fuzzy(Controller *cont,float eNeg, float E, float ePos, float deNeg, float DE,
float dePos, float recFeed, float recSpindle, float Ks, float u, float doc);

void init_as_asynchPID(Controller *cont, float desF, float fkp, float fki, float fkd, float skp,
float ski, float skd, float errbound);

void init_as_synchPID(Controller *cont, float desF, float fkp, float fki, float fkd, float skp,
float ski, float skd);
//will use control function of whatever type of controller
void multiControl(Controller *cont, float currForce, double timestep);

/** \brief Control function for determing the correct feed rate.
 * \param cont - (Controller*) A pointer to the controller in question
 * \param currForce - (float) The current cutting force read by the 3 axis sensor
 * \return - (float) returns the updated feed rate to be sent to the NC
 */
void asynchronousControlFunction(Controller *cont, float forceError, double timestep);

/** \brief Control function for determing the correct Spindle Speed.
 * \param cont - (Controller*) A pointer to the controller in question
 * \param currForce - (float) The current cutting force read by the 3 axis sensor
 * \return - (float) returns the updated spindle speed to be sent to the NC
 */
void synchronousControlFunction(Controller *cont, float forceError, double timestep);

//called when changing controllers or resetting to clear past sums
void clearOldData(Controller *cont);

#endif
#ifdef __cplusplus
 }
 #endif

#include <stdlib.h>
#include <stdio.h>
#include "Controller.h"

Controller *create_Controller(){

 Controller *new_controller; // Holds pointer to the newly-allocated Controller structure
 new_controller = (Controller *) malloc(sizeof(Controller));
 if (new_controller == NULL) return NULL; // Error--unable to allocate.
 // Fill in some of the struct
 new_controller->controllerType = 3;
 new_controller->errorSum = 0;
 new_controller->prevError = 0;

 return new_controller;
}

void init_as_asynchPID(Controller *cont, float desF, float fkp, float fki, float fkd, float skp,
float ski, float skd, float errbound){
 cont->controllerType = 1;//asynch
 cont->desiredCuttingForce = desF;
 cont->feedKp =fkp;
 cont->feedKi =fki;
 cont->feedKd =fkd;
 cont->spindleKp=skp;
 cont->spindleKi=ski;
 cont->spindleKd=skd;
 cont->errorBoundary = errbound;
 cont->currFeedRate = 0;
 cont->currSpindleSpeed = 0;
 //dont touch theFuzz
 cont->desiredSpindleSpeed=0;
 cont->desiredFeedRate=0;
}

void init_as_synchPID(Controller *cont, float desF, float fkp, float fki, float fkd, float skp,
float ski, float skd){
 cont->controllerType = 0;//synch

 printf("Setting desF to: %f",desF);
 cont->desiredCuttingForce = desF;
 cont->feedKp =fkp;
 cont->feedKi =fki;
 cont->feedKd =fkd;
 cont->spindleKp=skp;
 cont->spindleKi=ski;
 cont->spindleKd=skd;
 cont->errorBoundary = 0;
 cont->currFeedRate = 0;
 cont->currSpindleSpeed = 0;
 //dont touch theFuzz
 cont->desiredSpindleSpeed=0;
 cont->desiredFeedRate=0;
}

void init_as_Fuzzy(Controller *cont,float eNeg, float E, float ePos, float deNeg, float DE,
float dePos, float recFeed, float recSpindle, float Ks, float u, float doc){

 cont->controllerType = 2;//fuzzy
 cont->desiredCuttingForce = 0; //actually we need to do the cutting force equations here!
 cont->feedKp =0;
 cont->feedKi =0;
 cont->feedKd =0;
 cont->spindleKp=0;
 cont->spindleKi=0;
 cont->spindleKd=0;
 cont->errorBoundary = 0;
 cont->currFeedRate = 0;
 cont->currSpindleSpeed = 0;
 cont->theFuzz=defaultCreateFuzzyController(eNeg, E, ePos, deNeg, DE, dePos, recFeed,
recSpindle);
 cont->desiredSpindleSpeed=recSpindle;
 cont->desiredFeedRate=recFeed;
}

void multiControl(Controller *cont, float currForce, double timestep){
 if(cont->controllerType == 0){
 synchronousControlFunction(cont, currForce, timestep);
 }
 else if(cont->controllerType == 1){
 asynchronousControlFunction(cont, currForce, timestep);
 }
 else if(cont->controllerType==2){
 Control(cont->theFuzz, currForce);
 cont->currSpindleSpeed = getNormalizedSpindleSpeed(cont->theFuzz);
 cont->currFeedRate = getNormalizedFeedRate(cont->theFuzz);
 }

}

void asynchronousControlFunction(Controller *cont, float currForce, double
timestep){
 //get the force error
 float error = cont->desiredCuttingForce - currForce;
 //temp float calculation variables
 float pVal, iVal, dVal;
 //sum the error
 cont->errorSum = error + cont->errorSum;
 //check whether to adjust the Spindle speed or Feed Rate
 if(error>cont->errorBoundary||error<cont->errorBoundary*-1){
 //large error so adjust the Feed Rate
 pVal = error * cont->feedKp;
 iVal = cont->errorSum * cont->feedKi;
 dVal = (float)((error - cont->prevError)/timestep) * cont->feedKd;
 cont->currFeedRate+=(pVal + iVal + dVal);
 }
 else{
 //small error so adjust the Spindle Speed
 pVal = error * cont->spindleKp;

 iVal = cont->errorSum * cont->spindleKi;
 dVal = (float)((error - cont->prevError)/timestep) * cont->spindleKd;
 cont->currSpindleSpeed+=(pVal + iVal + dVal);
 }
 cont->prevError = error;
}

void synchronousControlFunction(Controller *cont, float currForce, double timestep){
 //get the force error
 float error = cont->desiredCuttingForce - currForce;
 printf("desF: %f\n", cont->desiredCuttingForce);
 printf("currF: %f\n", currForce);
 printf("Error: %f\n", error);
 //temp float calculation variables
 float pVal, iVal, dVal;
 //sum the error
 cont->errorSum = error + cont->errorSum;
 //Adjust both the Feed rate and the Spindle speed

 //adjust Feed Rate
 pVal = error * cont->feedKp;
 iVal = cont->errorSum * cont->feedKi;
 dVal = (float)((error - cont->prevError)/timestep) * cont->feedKd;
 cont->currFeedRate+=(pVal + iVal + dVal);

 //adjust the Spindle Speed
 pVal = error * cont->spindleKp;
 iVal = cont->errorSum * cont->spindleKi;
 dVal = (float)((error - cont->prevError)/timestep) * cont->spindleKd;
 cont->currSpindleSpeed+=(pVal + iVal + dVal);

 cont->prevError = error;
}

void clearOldData(Controller *cont){
 cont->prevError = 0;
 cont->errorSum = 0;
}

Cutting Operation

#ifdef __cplusplus
 extern "C" {
 #endif

#ifndef CUTTINGOPERATION_H
#define CUTTINGOPERATION_H

/** Struct to define a tool and related functions
 */
typedef struct cuttingoperation {
 char *operationName;
 unsigned short number; //for easy ID
 }cuttingOperation;

/** \brief Creates a tool by allocating mem for the struct and its members and initializes it.
 * \param t- (float) the Controller gain of the new Controller
 * \param mat - (float) The controller signal
 * \param maxForce - (float) Gain used when adjusting the feedrate
 * \param refForce -(float) The previous signal sent by the controller
 * \return - (Controller *) returns a pointer to the newly allocated Controller
 */
cuttingOperation* create_cuttingOperation(char *name, unsigned short num);

#endif

#ifdef __cplusplus
 }
 #endif

#include <stdlib.h>
#include <string.h>
#include "cuttingoperation.h"

cuttingOperation* create_cuttingOperation(char* name, unsigned short num){
 cuttingOperation* new_operation;
 new_operation = (cuttingOperation *) malloc(sizeof(cuttingOperation));
 new_operation->operationName = name;
 new_operation->number = num;
 return new_operation;
}

Data Collector

/**
 * \class DataCollector
 * \brief Contains struct for a dataCollector, and functions for collecting data
 * \author Brenden Gibbons
 * Contact: btgibbons@wpi.edu
 */

//allows use of this C file in CPP classes
#ifdef __cplusplus
 extern "C" {
 #endif
//include guards
#ifndef DATACOLLECTOR_H
#define DATACOLLECTOR_H
#include "queue.h"

/** Struct to define a Controller
 */
typedef struct DataCollector {
 int samplingRateHz; //! the AD sampling rate (Hz)
 int mode; //! 1 for sim, 0 for real
 Queue *xForceQueue; //! pointer to the z Force Queue
 Queue *yForceQueue; //! pointer to the y Force Queue
 Queue *zForceQueue; //! pointer to the z Force Queue
 int lastvalue; //! used for simulation
 int cf; //! used for simulation
 int cs; //! used for simulation
} dataCollector;

/** \brief Create and initialize a DataCollector
 \param size - (int) The size of the three queues
 \param srate - (int) The sampling rate of data acq.
 \param mode - (int) 1 if simulation, 0 if real
 \return - (*dataCollector) The pointer to the new dataCollector, NULL if fail
*/
dataCollector *createDataCollector(int size, int srate, int m);

/** \brief Make a random int
 \param high - (int) The highest random value to receive
 \return - (int) Pseudorandom number between 0 and high
*/
int makerand(int high);

/** \brief Get an analog voltage value off of a specified port
 \param channelNum - (int) The port number in question
 \param m - (int) 1 if simulation, 0 if run on board
 \return - (float) representing the AD value
*/
int pullAnalogPort(dataCollector* the_dataCollector, int channelNum, int m);

/** \brief Convert a raw AD input to a force
 \param rawInput - (float) The raw AD value
 \return - (float) number representing the axial force
*/
float toForce(int rawInput);

/** \brief Get and store the forces on all 3 axes in their respective queues
 \param the_dataCollector - (dataCollector*) The dataCollector in question
 \return - (int) 1 for success, 0 for failure
*/
int getAndStoreForces(dataCollector *the_dataCollector);

/** \brief return the magnitude of the latest entries in a dataCollector's Queues
 \param the_dataCollector - (dataCollector*) the dataCollector to act on
 \return - (float) The magnitude of the latest Queue entries
*/
float forceFloat(dataCollector *the_dataCollector);

float getCurrForceSquared(dataCollector* the_dataCollector);

//float getForceFromFS(dataCollector* the_dataCollector, Tool* t, cuttingOperation* co,
Controller* cont);

#endif
#ifdef __cplusplus
 }
 #endif

#include <stdlib.h>
#include <stdio.h>
/*
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <string.h>
#include <sys/mman.h>
#include <termios.h>
#include <signal.h>
#include <Advantech/advdevice.h>
*/
#include "queue.h"
#include "fileIO.h"
#include "DataCollector.h"

//#define MODE 0

dataCollector *createDataCollector(int size, int srate, int m){
dataCollector *new_dataCollector;//pointer to the new dataCollector
//allocate mem for datacollector
new_dataCollector = (dataCollector *) malloc(sizeof(dataCollector));
if (new_dataCollector == NULL) return NULL; // Error--unable to allocate.
 //fill in the struct
 //set the sample rate
 new_dataCollector->samplingRateHz = srate;
 //printf("The sampling rate is %d\n", srate);
 //printf("The sampling rateHZ is %d\n", new_dataCollector->samplingRateHz);
 //set the mode
 new_dataCollector->mode = m;
 //printf("The entered mode is %d\n", m);
 //printf("The recorded mode is is %d\n", new_dataCollector->mode);
 //set the Queues
 new_dataCollector->xForceQueue = create_queue(size);
 new_dataCollector->yForceQueue = create_queue(size);
 new_dataCollector->zForceQueue = create_queue(size);
 //make sure the Queues were allocated
 if((!new_dataCollector->xForceQueue)||(!new_dataCollector->yForceQueue)
 ||(!new_dataCollector->zForceQueue)){
 printf("Empty Queues");
 return NULL;
 }
 new_dataCollector->lastvalue = 1000;
return new_dataCollector;
}

int makerand(int high){
return rand()%(high+1); //returns a random number from 0 to high
}

int pullAnalogPort(dataCollector* the_dataCollector, int channelNum, int m){
//if we are not in computer simulation

 //we must pull from the appropriate port
 /*This can't run on the computer so its commented out
/* Step 1: Open Device */
/*
 PT_AIConfig AIConfig;
 PT_AIBinaryIn AIBinaryIn;
 PT_AIVoltageIn AIVoltageIn;
 PT_AIScale AIScale;
 unsigned short wdata;
 unsigned short channel;
 unsigned short gain;
 unsigned int buffer;
 float voltage = 0;
 char err_msg[100];
 char* filename = "/dev/advdaq0";
 int ret;
 int fd;

 ret = DRV_DeviceOpen(filename, &fd);
 if (ret) { DRV_GetErrorMessage(ret, err_msg);
 printf("err msg: %s\n", err_msg);
 return -1;
 }

 memset(&AIConfig, 0, sizeof(PT_AIConfig));
 memset(&AIBinaryIn, 0, sizeof(PT_AIBinaryIn));
 memset(&AIVoltageIn, 0, sizeof(PT_AIVoltageIn));
*/
/* Step 3: Set Single-end or Differential */
/* buffer = 0x0000; /* 0: single-end */
 //set device properties
/* ret = DRV_DeviceSetProperty(fd, CFG_AiChanConfig, &buffer, sizeof(unsigned int));
 if (ret) {
 DRV_GetErrorMessage(ret, err_msg);
 printf("err msg: %s\n", err_msg);

 DRV_DeviceClose(&fd);
 return -1;
 }
 /* Step 2: Config AI Setting */
/* AIConfig.DasChan = channel;
 AIConfig.DasGain = gain;

 ret = DRV_AIConfig(fd, &AIConfig);
 if (ret) {
 DRV_GetErrorMessage(ret, err_msg);
 printf("err msg: %s\n", err_msg);

 DRV_DeviceClose(&fd);
 return -1;
 }

if(m==0){ //Binary In
 AIBinaryIn.chan = channel;
 AIBinaryIn.TrigMode = 0;
 AIBinaryIn.reading = &wdata;

 ret = DRV_AIBinaryIn(fd, &AIBinaryIn);
 if(ret){
 DRV_GetErrorMessage(ret, err_msg);
 printf("err msg: %s\n", err_msg);
 DRV_DeviceClose(&fd);
 return -1;
 }

 AIScale.reading = wdata;
 AIScale.MaxVolt = 5.0;
 AIScale.MaxCount = 4095;
 AIScale.offset = 2048;
 AIScale.voltage = &voltage;

 ret = DRV_AIScale(fd, &AIScale);
 if(ret){
 DRV_GetErrorMessage(ret, err_msg);
 printf("err msg: %s\n", err_msg);
 DRV_DeviceClose(&fd);
 return -1;
 }
 return voltage;
}
else if(m==1){ //voltage in
 AIVoltageIn.chan = channelNum;
 AIVoltageIn.gain = gain;
 AIVoltageIn.TrigMode = 0;
 AIVoltageIn.voltage = &voltage;

 ret=DRV_AIVoltageIn(fd, &AIVoltage);
 if(ret){
 DRV_GetErrorMessage(ret, err_msg);
 printf("err msg: %s\n", err_msg);
 DRV_DeviceClose(&fd);
 return -1;
 }
 return voltage;

}
//sim
*/

//we must create a simulated AD value that is reasonable
 //this should give a lowish standard deviation
 int result = (makerand(128)+makerand(128)-makerand(128)-makerand(128))+the_dataCollector-
>lastvalue;
 the_dataCollector->lastvalue=result;
 return (float) result;

}

float toForce(int rawInput){
//simply convert raw ad data to force
//the raw output voltage rangle of the charge amp is between -10 and 10V
//there is a 12 bit AD converter, so between 0 and 4096 resolution
//first multiply by .0048828125Volts/Digital to convert to a voltage
float result;
result = rawInput*.0048828125;
//Next subtract ten volts to get the proper range
result = result-10;
//finally multiply by (Newtons/Volts)
result = result*(10000/20);
return result;
}

int getAndStoreForces(dataCollector *the_dataCollector){
//get the forces
float oner = toForce(pullAnalogPort(the_dataCollector,1,the_dataCollector->mode));
float twor = toForce(pullAnalogPort(the_dataCollector,2,the_dataCollector->mode));
float threer = toForce(pullAnalogPort(the_dataCollector,3,the_dataCollector->mode));
//allocate some memory
float* fp1;
fp1 = (float *) malloc(sizeof(float));
*fp1 = oner;
float* fp2;
fp2 = (float *) malloc(sizeof(float));

*fp2 = twor;
float* fp3;
fp3 = (float *) malloc(sizeof(float));
*fp3 = threer;
//Force enqueue the forces into their appropriate queues
//printf(" Forceenqueuing Dereferenced ONE: %f\n", *fp1);
forceEnqueue(the_dataCollector->xForceQueue, (void *)fp1);
//printf(" Forceenqueuing Dereferenced TWO: %f\n", *fp2);
forceEnqueue(the_dataCollector->yForceQueue, (void *)fp2);
//printf(" Forceenqueuing Dereferenced THREE: %f\n", *fp3);
forceEnqueue(the_dataCollector->zForceQueue, (void *)fp3);
return 0;
}

float forceFloat(dataCollector *the_dataCollector){
//make some float pointers
float totalForce;
float *xp;
float *yp;
float *zp;

//look at the most recent queue entries
xp = (float*)peekTail(the_dataCollector->xForceQueue);
yp = (float*)peekTail(the_dataCollector->yForceQueue);
zp = (float*)peekTail(the_dataCollector->zForceQueue);

//magnitude the forces
totalForce = ((*xp)*(*xp))+((*yp)*(*yp))+((*zp)*(*zp));

return totalForce;
}

float getCurrForceSquared(dataCollector* the_dataCollector){
 float totalForce;
 float xp=toForce(pullAnalogPort(the_dataCollector,0,the_dataCollector->mode));
 float yp=toForce(pullAnalogPort(the_dataCollector,1,the_dataCollector->mode));
 float zp=toForce(pullAnalogPort(the_dataCollector,2,the_dataCollector->mode));

 totalForce = ((xp)*(xp))+((yp)*(yp))+((zp)*(zp));
 return totalForce;
}
/*
float getForceFromFS(dataCollector* the_dataCollector, Tool* t, cuttingOperation* co, Controller*
cont)
{
 //float mf = f/(t->numteeth*s);
 //float force = exp((co->Ks*co->DoC),co->u);
 return 1.0;
}*/

File IO

/**
 * \class fileIO
 * \brief Functions for writing to file (saving data)
 * \author Brenden Gibbons
 * Contact: btgibbons@wpi.edu
 */

//allows use of this C file in CPP classes
#ifdef __cplusplus
 extern "C" {
 #endif
//include guards
#ifndef FILEIO_H
#define FILEIO_H
#include "queue.h"

/** \brief Outputs a float to a given FILE* and inserts a new line character
 * \param stream - (FILE*) A pointer to the file to be written to

 * \param f - (float) The float to print
 * \return - (int) 1 if success, 0 if fail
 */
int outputFloatLine(FILE *stream, float f);

/** \brief Outputs a float to a given FILE*, then a tab character
 * \param stream - (FILE*) A pointer to the file to be written to
 * \param f - (float) The float to print
 * \return - (int) 1 if success, 0 if fail
 */
int outputFloatTab(FILE *stream, float f);

/** \brief Outputs a String to a given FILE*, then a tab character
 * \param stream - (FILE*) A pointer to the file to be written to
 * \param string - (char*) The string to print
 * \return - (int) 1 if success, 0 if fail
 */
int outputStringTab(FILE *stream, char* string);

/** \brief Outputs a String to a given FILE*, then a newline character
 * \param stream - (FILE*) A pointer to the file to be written to
 * \param string - (char*) The string to print
 * \return - (int) 1 if success, 0 if fail
 */
int outputStringLine(FILE *stream, char* string);

/** \brief write a Queue in a column to a file
 \param file- (FILE*) a pointer to the file we wish to write to
 \param queue- (Queue) a pointer to the Queue we wish to write
 \return - (int) 1 for success, 0 for failure
*/
int writeQueueToFile(FILE* file, Queue* queue);

/** \brief Creates a file with a given name and writes a queue to it
 \param fname - (char*) the file name as a string
 \param queue- (Queue) a pointer to the Queue we wish to write
 \return - (int) 1 for success, 0 for failure
*/
int writeQueueToFileName(char* fname, Queue* queue);

/** \brief write 6 queues formatted in columns to a file
 \param file- (FILE*) a pointer to the file we wish to write to
 \param queue1- (Queue) a pointer to the first Queue we wish to write
 \param queue2- (Queue) a pointer to the second Queue we wish to write
 \param queue3- (Queue) a pointer to the third Queue we wish to write
 \param queue4- (Queue) a pointer to the fourth Queue we wish to write
 \param queue5- (Queue) a pointer to the fifth Queue we wish to write
 \param queue6- (Queue) a pointer to the sixth Queue we wish to write
 \param time - the time step
 \return - (int) 1 for success, 0 for failure
*/
int writeAllTheQueuesFormatted(FILE* file, Queue* queue1, Queue* queue2,
 Queue* queue3, Queue* queue4,
 Queue* queue5, Queue* queue6, double time);

#endif
#ifdef __cplusplus
 }
 #endif

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include "queue.h"

int outputFloatLine(FILE *stream, float f){
//if the inputted file stream hasnt been terminated
if (stream != '\0'){
 //print to file the float

 fprintf(stream, "%.2f\n", f);
}
//file pointer is terminated or null
else {
 //print error
 printf("Error: %d: %s.\n", errno, strerror(errno));
 return 0;
}
return 1;
}

int outputFloatTab(FILE *stream, float f){
//if the inputted file stream hasnt been terminated
if (stream != '\0'){
 //print to file the float
 fprintf(stream, "%.2f\t", f);
}
//file pointer is terminated or null
else {
 //print error
 printf("Error: %d: %s.\n", errno, strerror(errno));
 return 0;
}
return 1;
}

int outputStringTab(FILE *stream, char* string){
//if the inputted file stream hasnt been terminated
if (stream != '\0'){
 //print to file the string
 fprintf(stream, "%s\t", string);
}
//file pointer is terminated or null
else {
 //print error
 printf("Error: %d: %s.\n", errno, strerror(errno));
 return 0;
}
return 1;
}

int outputStringLine(FILE *stream, char* string){
//if the inputted file stream hasnt been terminated
if (stream != '\0'){
 //print to file the string
 fprintf(stream, "%s\n", string);
}
//file pointer is terminated or null
else {
 //print error
 printf("Error: %d: %s.\n", errno, strerror(errno));
 return 0;
}
return 1;
}

int writeQueueToFile(FILE* file, Queue* queue){
//loop counter
int i;
//temporary float
for(i = 0; i<queue->cells_used;i++){
 //dequeue from the queue, print the value to a file, then re-enqueue
 float* tempfloat;
 tempfloat=(float*)malloc(sizeof(float));
 tempfloat=(float *) dequeue(queue);
 outputFloatLine(file,(*tempfloat));
 enqueue(queue, (void*)tempfloat);
}
//I want to free it to avoid mem leak, but there is a segfault
//free(tempfloat);
fclose(file);

}

int writeQueueToFileName(char* fname, Queue* queue){
//loop counter
int i;
//temporary float
float* tempfloat;
tempfloat=(float*)malloc(sizeof(float));
//make new file
FILE *file = fopen(fname, "w"); // Open/create file
//make sure it was created
if (file != '\0'){
 for(i = 0; i<queue->cells_used;i++){
 //dequeue from the queue, print the value to a file, then re-enqueue
 tempfloat=(float *) dequeue(queue);
 outputFloatLine(file, *tempfloat);
 enqueue(queue, (void*)tempfloat);
 }
 //free the tempfloat
 free(tempfloat);
 fclose(file);
 return 1;
}
//failed
return 0;
}

int writeAllTheQueuesFormatted(FILE* file, Queue* queue1, Queue* queue2,
 Queue* queue3, Queue* queue4,
 Queue* queue5, Queue* queue6, double timeStep)
{
//loop counter
int i;
//temporary float
float* tempfloat;
//all queues will have the same number of entries, so only need to for with 1
outputStringTab(file, "Time(s)");
outputStringTab(file, "C Force");
outputStringTab(file, "FeedRate");
outputStringTab(file, "SSpeed");
outputStringTab(file, "xFqueue");
outputStringTab(file, "yFqueue");
outputStringLine(file, "zFqueue");
for(i = 0; i<queue1->cells_used;i++){
//print the time (like a boss)
outputFloatTab(file, (float)((double)i*timeStep*-1));
//dequeue from the 1queue, print the value to a file, then re-enqueue
tempfloat=(float*)malloc(sizeof(float));
tempfloat= (float *) dequeue(queue1);
outputFloatTab(file, *tempfloat);
enqueue(queue1, (void*)tempfloat);
//dequeue from the 2queue, print the value to a file, then re-enqueue
tempfloat=(float*)malloc(sizeof(float));
tempfloat=(float *) dequeue(queue2);
outputFloatTab(file, *tempfloat);
enqueue(queue2, (void*)tempfloat);
//dequeue from the 3queue, print the value to a file, then re-enqueue
tempfloat=(float*)malloc(sizeof(float));
tempfloat=(float *) dequeue(queue3);
outputFloatTab(file, *tempfloat);
enqueue(queue3, (void*)tempfloat);
//dequeue from the 4queue, print the value to a file, then re-enqueue
tempfloat=(float*)malloc(sizeof(float));
tempfloat=(float *) dequeue(queue4);
outputFloatTab(file, *tempfloat);
enqueue(queue4, (void*)tempfloat);
//dequeue from the 5queue, print the value to a file, then re-enqueue
tempfloat=(float*)malloc(sizeof(float));
tempfloat=(float *) dequeue(queue5);
outputFloatTab(file, *tempfloat);
enqueue(queue5, (void*)tempfloat);

//dequeue from the 6queue, print the value to a file, then re-enqueue
tempfloat=(float*)malloc(sizeof(float));
tempfloat=(float *) dequeue(queue6);
outputFloatLine(file, *tempfloat);
enqueue(queue6, (void*)tempfloat);
}
fclose(file);
return 1; //success!
}

Fuzzy Controller

/**
 * \class FuzzyController
 * \brief A fully customizable fuzzy controller for use in the GUI
 * \author Brenden Gibbons
 * Contact: btgibbons@wpi.edu
 */

//allows the use of this C file in CPP classes
#ifdef __cplusplus
 extern "C" {
 #endif
//include guards
#ifndef FUZZYCONTROLLER_H
#define FUZZYCONTROLLER_H

//#defines for member functions
#define EBN -100
#define DEBN -100
#define SBN 1
#define FBN 1
#define EN -50
#define DEN -50
#define SN 2
#define FN 2
#define Z 3
#define EP 50
#define DEP 50
#define SP 4
#define FP 4
#define EBP 100
#define DEBP 100
#define SBP 5
#define FBP 5

#include "mFD.h"
/** Struct to define a FuzzyController
 */
typedef struct FuzzyController {
 mFD* errorInputMFD; //! The mFD for input error
 mFD* deltaErrorInputMFD; //! The mFD for input delta error
 mFD* spindleOutputMFD; //! The mFD for output spindle
 mFD* feedOutputMFD; //! The mFD for output spindle
 float currentSpindleSpeed; //! Holds the last updated spindle speed
 float currentFeedRate; //! Holds the last updated feed rate
 int feedTable[5][5]; //! table for feed fuzzy rules/sets
 int spindleTable[5][5]; //! table for spindle fuzzy rules/sets
 float prevError; //! The previous force error
 float idealSpindleSpeed; //! Holds the ideal spindle speed (used in auto-creation)
 float idealFeedRate; //! Holds the ideal feed rate (used in auto-creation)
 float idealCuttingForce; //! Holds the ideal feed rate (used in auto-creation)
 float maxForce; //! force that triggers the alarm
}fuzzyController;

/** \brief Create and initialize a fuzzyController
 \param eI - (mFD*) The input error mFD
 \param dEI - (mFD*) The input change in error mFD
 \param sO - (mFD) The output spindle mFD
 \paramfO - (mFD*) The output feed mFD

 \return - (*fuzzyController) The pointer to the new fuzzyController, NULL if fail
*/
fuzzyController *createfuzzyController(mFD* eI, mFD* dEI, mFD* sO, mFD* fO);

/** \brief Create and initialize a default fuzzyController
 \return - (*fuzzyController) The pointer to the new fuzzyController, NULL if fail
*/
fuzzyController *defaultCreateFuzzyController(float eNeg, float E, float ePos, float deNeg, float
DE, float dePos, float recFeed, float recSpindle);

/** \brief Applies the INPUT fuzzy logic stage and calls applyFuzzyLogic for OUTPUT stage
 \param FC - (fuzzyController*) The fuzzyController
 \param forceIn - (float) The current cutting force
 \return - (void) Sets the currentFeedRate and currentSpindleSpeed
*/
void Control(fuzzyController * FC, float forceIn);

/** \brief Applies the OUTPUT stage of fuzzy control
 \param FC - (fuzzyController*) The fuzzyController
 \param errorTruths - (float []) array of error truths
 \param deltaErrorTruths - (float[]) array of change in error truths
 \return - (void) Sets the currentFeedRate and currentSpindleSpeed
*/
void applyFuzzyLogic(fuzzyController * FC, float errorTruths[], float deltaErrorTruths[]);

/** \brief Return the Feed Rate to be sent to the mill
 \param FC - (fuzzyController*) The fuzzyController to get the feed rate of
 \return - (*float) The normalized feedrate
*/
float getNormalizedFeedRate(fuzzyController * FC);

/** \brief Return the Spindle to be sent to the mill
 \param FC - (fuzzyController*) The fuzzyController to get the spindle speed of
 \return - (*float) The normalized spindle speed
*/
float getNormalizedSpindleSpeed(fuzzyController * FC);

//Inline function for ANDing fuzzy logic style
inline float fuzzAnd(float a, float b);

#endif
#ifdef __cplusplus
 }
#endif

#include <stdlib.h>
#include <stdio.h>
#include "FuzzyController.h"

fuzzyController *createfuzzyController(mFD* eI, mFD* dEI, mFD* sO, mFD* fO){
//pointer to the new mFD
fuzzyController *new_fuzzyController;
//allocate mem for mFD
new_fuzzyController = (fuzzyController *) malloc(sizeof(fuzzyController));
if (new_fuzzyController == NULL) return NULL; // Error--unable to allocate.
//set the mFDs
new_fuzzyController->errorInputMFD=eI;
new_fuzzyController->deltaErrorInputMFD=dEI;
new_fuzzyController->spindleOutputMFD=sO;
new_fuzzyController->feedOutputMFD=fO;
//here is where all the fuzzy sets are defined in fuzzy tables
//These are based on values from "Fuzzy Control of spindle power in end milling process"
//for Feeds
new_fuzzyController->feedTable[0][0] = FN;
new_fuzzyController->feedTable[1][0] = FN;
new_fuzzyController->feedTable[2][0] = FBN;
new_fuzzyController->feedTable[3][0] = FBN;
new_fuzzyController->feedTable[4][0] = FBN;
new_fuzzyController->feedTable[0][1] = FN;
new_fuzzyController->feedTable[1][1] = FN;
new_fuzzyController->feedTable[2][1] = FN;

new_fuzzyController->feedTable[3][1] = FN;
new_fuzzyController->feedTable[4][1] = FBN;
new_fuzzyController->feedTable[0][2] = FP;
new_fuzzyController->feedTable[1][2] = FP;
new_fuzzyController->feedTable[2][2] = Z;
new_fuzzyController->feedTable[3][2] = FN;
new_fuzzyController->feedTable[4][2] = FN;
new_fuzzyController->feedTable[0][3] = FP;
new_fuzzyController->feedTable[1][3] = FP;
new_fuzzyController->feedTable[2][3] = FP;
new_fuzzyController->feedTable[3][3] = Z;
new_fuzzyController->feedTable[4][3] = Z;
new_fuzzyController->feedTable[0][4] = FBP;
new_fuzzyController->feedTable[1][4] = FBP;
new_fuzzyController->feedTable[2][4] = FBP;
new_fuzzyController->feedTable[3][4] = FP;
new_fuzzyController->feedTable[4][4] = FP;
//for spindle speed
new_fuzzyController->spindleTable[0][0] = SN;
new_fuzzyController->spindleTable[1][0] = SN;
new_fuzzyController->spindleTable[2][0] = SN;
new_fuzzyController->spindleTable[3][0] = SN;
new_fuzzyController->spindleTable[4][0] = SN;
new_fuzzyController->spindleTable[0][1] = Z;
new_fuzzyController->spindleTable[1][1] = SN;
new_fuzzyController->spindleTable[2][1] = SN;
new_fuzzyController->spindleTable[3][1] = SN;
new_fuzzyController->spindleTable[4][1] = SN;
new_fuzzyController->spindleTable[0][2] = SP;
new_fuzzyController->spindleTable[1][2] = SP;
new_fuzzyController->spindleTable[2][2] = Z;
new_fuzzyController->spindleTable[3][2] = SN;
new_fuzzyController->spindleTable[4][2] = SN;
new_fuzzyController->spindleTable[0][3] = SP;
new_fuzzyController->spindleTable[1][3] = SP;
new_fuzzyController->spindleTable[2][3] = SP;
new_fuzzyController->spindleTable[3][3] = Z;
new_fuzzyController->spindleTable[4][3] = Z;
new_fuzzyController->spindleTable[0][4] = SP;
new_fuzzyController->spindleTable[1][4] = SP;
new_fuzzyController->spindleTable[2][4] = SP;
new_fuzzyController->spindleTable[3][4] = SP;
new_fuzzyController->spindleTable[4][4] = SP;
//set the other variables
new_fuzzyController->currentSpindleSpeed=1;
new_fuzzyController->currentFeedRate=1;
new_fuzzyController->prevError=0;
new_fuzzyController->idealSpindleSpeed=0;
new_fuzzyController->idealFeedRate=0;
new_fuzzyController->idealCuttingForce=0;
new_fuzzyController->maxForce = 99999;
//return the fuzzyController pointer
return new_fuzzyController;
}

fuzzyController *defaultCreateFuzzyController(float eNeg, float E, float ePos, float deNeg, float
DE, float dePos, float recFeed, float recSpindle)
{
 //MAKE THE FUZZY CONTROLLER (default membership functions equilaterally spaced)
 memberFunction* mf1;
 memberFunction* mf2;
 memberFunction* mf3;
 memberFunction* mf4;
 memberFunction* mf5;
 mFD* mFD1;
 mFD* mFD2;
 mFD* mFD3;
 mFD* mFD4;
 //input error
 float step = (ePos-E)/3;
 mf1=createMemberFunction(E-3*step,E-step,eNeg);

 mf2=createMemberFunction(E-2*step,E,E-step);
 mf3=createMemberFunction(E-step,E+step,E);
 mf4=createMemberFunction(E,E+2*step,E+step);
 mf5=createMemberFunction(E+step,E+3*step,ePos);
 mFD1 = createMFD(0,mf1,mf2,mf3,mf4,mf5);
 //input delta error
 step = (dePos-DE)/3;
 mf1=createMemberFunction(DE-3*step,DE-step,deNeg);
 mf2=createMemberFunction(DE-2*step,DE,DE-step);
 mf3=createMemberFunction(DE-step,DE+step,DE);
 mf4=createMemberFunction(DE,DE+2*step,DE+step);
 mf5=createMemberFunction(DE+step,DE+3*step,dePos);
 mFD2 = createMFD(0,mf1,mf2,mf3,mf4,mf5);
 //output spinlde
 mf1=createMemberFunction(.15,.51,.33);
 mf2=createMemberFunction(.48,.84,.66);
 mf3=createMemberFunction(.75,1.25,1);
 mf4=createMemberFunction(1.15,1.51,1.33);
 mf5=createMemberFunction(1.48,1.84,1.66);
 mFD3 = createMFD(1,mf1,mf2,mf3,mf4,mf5);
 //output feed
 mf1=createMemberFunction(.15,.51,.33);
 mf2=createMemberFunction(.48,.84,.66);
 mf3=createMemberFunction(.82,1.18,1);
 mf4=createMemberFunction(1.15,1.51,1.33);
 mf5=createMemberFunction(1.48,1.84,1.66);
 mFD4 = createMFD(1,mf1,mf2,mf3,mf4,mf5);
 fuzzyController* the_fuzzyController;
 the_fuzzyController = createfuzzyController(mFD1, mFD2, mFD3, mFD4);
 return the_fuzzyController;
}

void Control(fuzzyController * FC, float forceIn){
 //temporary floats
 float error, de;
 //get error and change in error
 error = forceIn-FC->idealCuttingForce;
 de=error-FC->prevError;
 //update the truths for all member functions in the input MFDs
 getTruths(FC->errorInputMFD, error);
 getTruths(FC->deltaErrorInputMFD, de);
 //feed in the truth arrays, first errorinput, then deltaerrorinput to applyFuzzyLogic
 applyFuzzyLogic(FC, FC->errorInputMFD->truths, FC->deltaErrorInputMFD->truths);
 //set the error to the previous error
 FC->prevError=error;
}

float getNormalizedSpindleSpeed(fuzzyController * FC){
 //multiply the ideal spindle speed by the (currentSpindleSpeed), which is
 //a percentage of ideal spindle speed, and return it
 return FC->idealSpindleSpeed*FC->currentSpindleSpeed;
}

float getNormalizedFeedRate(fuzzyController * FC){
 //multiply the ideal feed rate by the (currentFeedRate), which is
 //a percentage of ideal feed rate, and return it
 return FC->idealFeedRate*FC->currentFeedRate;
}

//takes in array of input truths and applies fuzzy logic rules and defuzzifies
//storing the result in the fuzzyController
void applyFuzzyLogic(fuzzyController * FC, float errorTruths[], float deltaErrorTruths[]){
//sums of Areas and sums of Areas*Centroids
float FACSum = 0;
float FASum = 0;
float SACSum = 0;
float SASum = 0;

//loop counters
int i, j;

//running through error
for(i = 0; i<5; i++){
 //running through change in error
 for(j = 0; j<5; j++){

 //if there is a triangle
 //dont use ==0 because of floating point errors
 if((deltaErrorTruths[j]>.01)&&(errorTruths[i]>.01)){
 //defuzzification - sum the area*centroid of all the triangles with truth
 //then divide by the sum of the areas
 FACSum +=
 getAreaOfMember(FC->feedOutputMFD,fuzzAnd(deltaErrorTruths[j],errorTruths[i]),
 FC->feedTable[j][i])*getCentroidOfMember(FC->feedOutputMFD, FC->feedTable[j][i]);

 FASum +=
 getAreaOfMember(FC->feedOutputMFD,fuzzAnd(deltaErrorTruths[j],errorTruths[i]),
 FC->feedTable[j][i]);

 SACSum +=
 getAreaOfMember(FC->spindleOutputMFD,fuzzAnd(deltaErrorTruths[j],errorTruths[i]),
 FC->spindleTable[j][i])
 *getCentroidOfMember(FC->spindleOutputMFD, FC->spindleTable[j][i]);

 SASum +=
 getAreaOfMember(FC->spindleOutputMFD,fuzzAnd(deltaErrorTruths[j],errorTruths[i]),
 FC->spindleTable[j][i]);

 }
 }
}
//set the FC currentSpindleSpeed to the centroid of the entire weighted area
FC->currentSpindleSpeed=(SACSum/SASum);
//set the FC currentFeedRate to the centroid of the entire weighted area
FC->currentFeedRate=(FACSum/FASum);
}

inline float fuzzAnd(float a, float b) {
 //fuzzy AND logic returns the smaller of the two numbers
 return a > b ? b : a;
}

Member Function

/**
 * \class MemberFunction
 * \brief Member function used in fuzzy controller - Represents a triangle
 * \author Brenden Gibbons
 * Contact: btgibbons@wpi.edu
 */

//allows the use of this C file in CPP classes
#ifdef __cplusplus
 extern "C" {
 #endif

//include guards
#ifndef MEMBERFUNCTION_H
#define MEMBERFUNCTION_H

/** Struct to define a MemberFunction. Only triangle member functions allowed
 */
typedef struct MemberFunction {
 float left; //! The x val of left corner of the triangle member
 float right; //! The x val of right corner of the triangle member
 float center; //! The x val of the third vertex of the triangle
 float midLeft; //! Point used in both area and centroid calcs
 float midRight; //! Point used in both area and centroid calcs
}memberFunction;

/** \brief Create and initialize a MemberFunction

 \param left - (float) The left bottom x coord of the member function
 \param right - (float) The right bottom x coord of the member function
 \param mode - (float) The center top x coord of the member function
 \return - (*memberFunction) The pointer to the new memberFunction, NULL if fail
*/
memberFunction *createMemberFunction(float left, float right, float center);

/** \brief Get a truth value from a member function, given an input value. INPUT phase
 \param mF - (*memberFunction) The member function in question pointer
 \param input - (float) The input value
 \return - (float) The truth value
*/
float getTruth(memberFunction* mF, float input);

/** \brief Gets area of the trapezoid formed by a line at y=truth and the memberfunction OUTPUT
PHASE
 \param mF - (*memberFunction) The member function in question pointer
 \param truth - (float) The truth value
 \return - (float) The Area of the trapezoid
*/
float getArea(memberFunction* mF, float truth);

/** \brief Gets centroid of the trapezoid formed by a line at y=truth and the memberfunction
OUTPUT PHASE
 \param mF - (*memberFunction) The member function in question pointer
 \return - (float) The centroid on the x axis of the trapezoid
*/
//special note! if this is called before GetArea on a memberfunction, midLeft and midRight
//will be set to zero, so it will not find the centroid at all
float getCentroid(memberFunction* mF);

#endif
#ifdef __cplusplus
 }
#endif

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "MemberFunction.h"

memberFunction *createMemberFunction(float left, float right, float center){
//pointer to the new memberFunction
memberFunction *new_memberFunction;
//allocate mem for datacollector
new_memberFunction = (memberFunction *) malloc(sizeof(memberFunction));
if (new_memberFunction == NULL) return NULL; // Error--unable to allocate.
//set all the members
new_memberFunction->left = left;
new_memberFunction->right = right;
new_memberFunction->center = center;
//these start as 0 because we can' know them without a truth value
new_memberFunction->midLeft = 0;
new_memberFunction->midRight = 0;
return new_memberFunction;
}

//for input phase
float getTruth(memberFunction* mF, float input){
 //if the input is within the memberfunction range
 if((input>mF->left)&&(mF->right>input)){
 //return the associated truth
 return 1-fabs((mF->left+mF->right-2*input)/(mF->right-mF->left));
 }
 //else the truth is 0
 else{
 return 0;
 }
}

//for output phase
float getArea(memberFunction* mF, float truth){
 //make temporary floats
 float totalArea, tipArea, slopeLeft, slopeRight;
 //first get the area of the whole triangle
 totalArea = (.5*(mF->right-mF->left));
 //find the slopes of the two edges
 slopeLeft = (1.0/(mF->center-mF->left));
 slopeRight = (1.0/(mF->right-mF->center));
 //find intersection of both edges with line y=truth
 mF->midLeft = mF->left+((1.0/slopeLeft)*truth);
 mF->midRight = mF->right-((1.0/slopeRight)*truth);
 //get the area of the small triangle at the top
 tipArea = (mF->midRight-mF->midLeft)*(1-truth)*.5;
 //return area of trapezoid
 return totalArea-tipArea;
}

//DONT CALL WITHOUT ABOVE FUNCTION FIRST
float getCentroid(memberFunction* mF){
 //temporary floats
 float a, b, c;
 //get three lengths representative of the trapezoid created in prev. function
 a = mF->midRight-mF->midLeft;
 b = mF->right-mF->left;
 c = mF->midLeft-mF->left;
 //Find the x axis centroid of the trapezoid using geometry
 float result = mF->midLeft+((2*a*c)+(a*a)+(c*b)+(a*b)+(b*b))/(3*(a+b));
 //return the centroid
 return result;
}

Member Function Diagram

/**
 * \class mFD
 * \brief Member Function diagram - holds 5 members and is used as part of a fuzzyController
 * \author Brenden Gibbons
 * Contact: btgibbons@wpi.edu
 */

//allows the use of this C file in CPP classes
#ifdef __cplusplus
 extern "C" {
 #endif
//include guards
#ifndef MFD_H
#define MFD_H
/** Struct to define a MFD-membership function diagram - 5 entries for all
 */
#include "MemberFunction.h"

typedef struct MFD {
 memberFunction* bigNegative; //! The memberFunction associated with big negative values
 memberFunction* negative; //! The memberFunction associated with negative values
 memberFunction* zero; //! The memberFunction associated with middle values
 memberFunction* positive; //! The memberFunction associated with positive values
 memberFunction* bigPositive; //! The memberFunction associated with big positive values
 float truths[5]; //! An array representing the truths of each member function in the MFD
} mFD;

/** \brief Create and initialize a MFD
 \param i - (int) functionality not implimented yet
 \param BNeg - (memberFunction*) The leftmost member function
 \param BNeg - (memberFunction*) The left member function
 \param BNeg - (memberFunction*) The middle member function
 \param BNeg - (memberFunction*) The right member function
 \param BNeg - (memberFunction*) The rightmost member function
 \return - (*mFD) The pointer to the new mFD, NULL if fail
*/

mFD* createMFD(int i, memberFunction* BNeg, memberFunction* Neg, memberFunction* Zer,
memberFunction* Pos, memberFunction* BPos);

//goes through each 5 membership diagrams and calls getTruth on them
//returns an array filled with the 5 truth values

/** \brief goes through each 5 membership diagrams and stores their truths for given input
 \param mFD - (MFD*) The mFD in question
 \param input - (float) Input value to get truths for
 \return - (void) The truths are stored in mFD->truths
*/
void getTruths(mFD* mFD, float input);

/** \brief gets the x axis centroid of the desired member
 \param mFD - (MFD*) The mFD in question
 \param i - (int) Indicates which member function to get the centroid of
 \return - (float) The desired centroid
*/
float getCentroidOfMember(mFD* mFD, int i);

/** \brief gets the area of the desired member
 \param mFD - (MFD*) The mFD in question
 \param i - (int) Indicates which member function to get the area of
 \return - (float) The desired area
*/
float getAreaOfMember(mFD* mFD,float truth, int i);

#endif
#ifdef __cplusplus
 }
#endif

#include <stdlib.h>
#include <stdio.h>
#include "mFD.h"

mFD *createMFD(int i, memberFunction* BNeg, memberFunction* Neg, memberFunction* Zer,
memberFunction* Pos, memberFunction* BPos){
//pointer to the new mFD
mFD *new_mFD;
//allocate mem for mFD
new_mFD = (mFD *) malloc(sizeof(mFD));
if (new_mFD == NULL) return NULL; // Error--unable to allocate.
//set the member triangles
new_mFD->bigNegative=BNeg;
new_mFD->negative=Neg;
new_mFD->zero = Zer;
new_mFD->positive=Pos;
new_mFD->bigPositive=BPos;
//return pointer to new MFD
return new_mFD;
}

void getTruths(mFD* mFD, float input){
//if the input is off-the-charts negative, the big negative truth will be 1
if(input<=mFD->bigNegative->left){
 mFD->truths[0]=1;
}
//else treat normally
else{
 mFD->truths[0] = getTruth(mFD->bigNegative, input);
}
//middle three memberfunctions
mFD->truths[1] = getTruth(mFD->negative, input);
mFD->truths[2] = getTruth(mFD->zero, input);
mFD->truths[3] = getTruth(mFD->positive, input);
//if the input is off-the-charts negative, the big negative truth will be 1
if(input>=mFD->bigPositive->right){
 mFD->truths[4]=1;
}

//else treat normally
else{
 mFD->truths[4] = getTruth(mFD->bigPositive, input);
}
}

float getAreaOfMember(mFD* mFD, float truth, int i){
//depending on the memberfunction stated and the truth value
//return the area
if(i==1){
return getArea(mFD->bigNegative, truth);
}
if(i==2){
return getArea(mFD->negative, truth);
}
if(i==3){
return getArea(mFD->zero, truth);
}
if(i==4){
return getArea(mFD->positive, truth);
}
if(i==5){
return getArea(mFD->bigPositive, truth);
}
else return 0;
}

float getCentroidOfMember(mFD* mFD, int i){
//depending on the memberfunction stated
//return the centroid
if(i==1){
return getCentroid(mFD->bigNegative);
}
if(i==2){
return getCentroid(mFD->negative);
}
if(i==3){
return getCentroid(mFD->zero);
}
if(i==4){
return getCentroid(mFD->positive);
}
if(i==5){
return getCentroid(mFD->bigPositive);
}
else return 0;
}

NCCommunicator

#ifdef __cplusplus
 extern "C" {
 #endif

#ifndef NCCOMMUNICATOR_H
#define NCCOMMUNICATOR_H

#include <stdlib.h>
/** Struct to define a Controller
 */
struct NCCommunicator {

int comValue;
int baudRate;

};

typedef struct NCCommunicator NcCommunicator;

NcCommunicator* create_NcCommunicator();

int initCommunications(NcCommunicator * nc);

int setSpindleSpeed(NcCommunicator * nc, float rpm);

int setFeedRate(NcCommunicator * nc, float mmPerMinute);

int alarmRoutine(NcCommunicator * nc);

#endif

#ifdef __cplusplus
 }
 #endif

#include <stdlib.h>
#include <stdio.h>
#include "NCCommunicator.h"
#include "Controller.h"

NcCommunicator* create_NcCommunicator(){
 NcCommunicator *tehpointer; // Holds pointer to the newly-allocated Queue structure.
 tehpointer = (NcCommunicator *) malloc(sizeof(NcCommunicator));
 return tehpointer;
}

int initCommunications(NcCommunicator * nc){
 printf("Initializing Communications");
 return 1;
}

int setSpindleSpeed(NcCommunicator * nc, float rpm){
 printf("Setting Spindle Speed to: %f rpm", rpm);
 return 1;
}

int setFeedRate(NcCommunicator * nc, float mmPerMinute){
 printf("Setting Feed Rate to: %f mm/min", mmPerMinute);
 return 1;
}

int alarmRoutine(NcCommunicator * nc){
 //set spindle speed to zero
 setSpindleSpeed(nc, 0);
 return 1;
}

Cutting Operation

#include <stdlib.h>
#include <string.h>
#include "cuttingOperation.h"

cuttingOperation* create_cuttingOperation(char* name, unsigned short num){
 cuttingOperation* cuttingOperation;
 new_operation = (cuttingOperation *) malloc(sizeof(cuttingOperation));
 new_operation->operationName = name;
 new_operation->number = num;
 return new_operation;
}

ParamTable

/**
 * \class ParamTable
 * \author Brenden Gibbons
 * Contact: btgibbons@wpi.edu
 */

//allows use of this C file in CPP classes
#ifdef __cplusplus
 extern "C" {
 #endif
//include guards
#ifndef PARAMTABLE_H
#define PARAMTABLE_H
#include "tool.h"
#include "cuttingoperation.h"
#include "Controller.h"
 typedef struct paramtable {
 Controller* table[25][25];
 unsigned short filltable[25][25];
 }paramTable;

 paramTable *create_paramTable();
 int addSet(paramTable* pt, Controller* newCont, int toolnum, int opnum);
 Controller* getAtIndex(paramTable* pt, int toolnum, int opnum);
 int confirmEntry(paramTable* pt, int toolnum, int opnum);

#endif
#ifdef __cplusplus
 }
 #endif

#include <stdlib.h>
#include <string.h>
#include "ParamTable.h"

paramTable* create_paramTable(){
 paramTable* new_paramTable;
 new_paramTable = (paramTable *) malloc(sizeof(paramTable));
 //init table to null
 int ii, jj;
 for(ii = 0; ii< 25; ii++){
 for(jj = 0; jj< 25; jj++){
 new_paramTable->filltable[ii][jj]=0;
 }
 }
 return new_paramTable;
}

int addSet(paramTable* pt, Controller* newCont, int toolnum, int opnum){
 pt->table[toolnum][opnum] = newCont;
 pt->filltable[toolnum][opnum] = 1;
 return 1;
}

Controller* getAtIndex(paramTable* pt, int toolnum, int opnum){
 //printf("getting at index %d , %d \n", toolnum, opnum);
 return pt->table[toolnum][opnum];
}

int confirmEntry(paramTable* pt, int toolnum, int opnum){
 return pt->filltable[toolnum][opnum];
}

Queue

/**
 * \class Queue
 * \brief Queue used for all types of things
 * \author Brenden Gibbons
 * Contact: btgibbons@wpi.edu
 */

//allows the use of this C file in CPP classes
#ifdef __cplusplus
 extern "C" {

 #endif
//include guards
#ifndef QUEUE_H
#define QUEUE_H
/** Struct to define a queue; each entry can hold a pointer to anything.
 */
typedef struct queue {
 void **tail; //! Pointer to tail (FI) element of queue
 void **head; //! Pointer to head (FO) of queue
 void **beg; //! Pointer to the beginning of the queue
 void **end; //! Pointer to the end of the queue
 int max_cells; //! Maximum number of entries in the queue
 int cells_used; //! Currently used number of cells
}Queue;

/** \brief - Creates a queue by allocating a queue structure, initializing it,
 * and allocating memory to hold the queue entries.
 * \param max_cells - (int) Maximum entries in the queue
 * \return - (Queue*) Pointer to newly-allocated Queue structure, NULL if error.
 */
Queue *create_queue(int max_cells);

/** \brief - Enqueues a pointer onto the tail of a Queue.
 * \param which_queue - (Queue*)Pointer to queue you want to enqueue onto.
 * \param ptr - (void*)Pointer to be enqueued.
 * \return - (int) 0 if successful, -1 if not.
 */
int enqueue(Queue *which_queue, void *ptr);

/** Forces a pointer onto the tail of a Queue, regardless if it is full
 * \param which_queue - (Queue*) Pointer to queue you forceEnqueue
 * \param ptr - (void*)Pointer to be force enqueued.
 * \return - (int) 0 if successful, -1 if not.
 */
int forceEnqueue(Queue *which_queue, void *ptr);

/** \brief - Dequeues a pointer from head of Queue,and returns it.
 * \param which_queue - (Queue*)Pointer to Queue you want to dequeue from.
 * \return - (void*) head entry of queue, NULL if queue is empty.
 */
void* dequeue(Queue *which_queue);

/** \brief - returns a pointer to what the head of the Queue was pointing to
 * \param which_queue - (Queue*)Pointer to Queue you want to peek.
 * \return - (void*) head entry of queue, NULL if queue is empty.
 */
void* peek(Queue *which_queue);

/** \brief - returns a pointer to what the tail of the Queue was pointing to
 * \param which_queue - (Queue*)Pointer to Queue you want to peek.
 * \return - (void*) tail entry of queue, NULL if queue is empty.
 */
void* peekTail(Queue *which_queue);

/** \brief - returns an int indicating whether or not the Queue is full
 * \param which_queue - (Queue*)Pointer to Queue
 * \return - (int) 1 if full, 0 otherwise
 */
int isFull(Queue *which_queue);

/** Prints an entire queue to standard output
 * \param which_queue - (Queue*)Pointer to queue to print
 * \return - (void)
 */
void printQueue(Queue *which_queue);

#endif
#ifdef __cplusplus
 }
 #endif

#include <stdlib.h>
#include <stdio.h>
#include "/home/btgibbons/MQP/queue.h"

Queue *create_queue(int max_cells) {
Queue *new_queue; // Holds pointer to the newly-allocated Queue structure.
new_queue = (Queue *) malloc(sizeof(Queue));
if (new_queue == NULL) return NULL; // Error--unable to allocate.
 // Fill in the struct
 new_queue->max_cells = max_cells;
 new_queue->cells_used = 0; // Empty to start
 // Now allocate space for the queue entries.
 void** arr = (void**) calloc (max_cells, sizeof(void*));
 new_queue->beg = arr; //que beg now points to new queue start
 new_queue->end = &arr[max_cells-1]; //end now points to end
 // Make the Queue end pointer
 if (new_queue->beg == NULL) {
 free(new_queue); // Unable to allocate queue entries, so free struct.
 return NULL;
 }
 new_queue->head = new_queue->beg; // Start at beginning
 new_queue->tail = new_queue->beg; //start at beginning
 return new_queue;
}

int enqueue(Queue *which_queue, void *ptr) {
// Check if queue is already full
if ((which_queue->cells_used) >= (which_queue->max_cells)) {
 which_queue->cells_used = which_queue->max_cells; // Fixed
return -1; // Queue overflow.
}
//check if tail is running off the end
if((which_queue->tail) > (which_queue->end)){
 //wrap around if it is
 which_queue->tail = which_queue->beg;
}
// enqueue
*(which_queue->tail) = ptr; // Store the pointer on the queue
(which_queue->tail)++; // Point to next free cell
(which_queue->cells_used)++; //increment cellsused
return 0; // Success
}

int forceEnqueue(Queue *which_queue, void *ptr){
//check if the queue is full
if(isFull(which_queue)){
 //full, so dequeue
 free((float*)dequeue(which_queue));
 //then enqueue
 return enqueue(which_queue,ptr);
}
else{
 //queue not full, so simply enqueue
 return enqueue(which_queue,ptr);
}
}

void* dequeue(Queue *which_queue) {
// Check if queue is empty
if ((which_queue->cells_used) <= 0) {
 which_queue->cells_used = 0; //insurance
 return NULL; // Queue empty
}
//check if head is running off the end
if((which_queue->head) > (which_queue->end)){
 //wrap head around to beg
 which_queue->head = which_queue->beg;
}
// dequeue.
void* R = *(which_queue->head);//remove the head pointer

(which_queue->head)++; // Remember, this points
(which_queue->cells_used)--; //decrement the cellsused
return R;//return the head pointer
}

void printQueue(Queue *which_queue) {
int i; //loop counter
//loop to print the queue
for (i = 0; i<which_queue->cells_used;i++){
 //pointer to a float
 float* tempfloat;
 //This will only print the queue if it has floats
 tempfloat=(float*)malloc(sizeof(float));
 //dequeue one from queue
 tempfloat=(float *) dequeue(which_queue);
 //print the value
 printf("Queue Entry %d: %f", i, *tempfloat);
 //reenqueue
 enqueue(which_queue, (void*)tempfloat);
}
return;
}

void* peek(Queue *which_queue){
//check if empty
if ((which_queue->cells_used) <= 0) {
 which_queue->cells_used = 0; // insurance
 return NULL; // Queue empty
}
void* ret = *(which_queue->head);
return ret;
}

void* peekTail(Queue *which_queue){
//check if empty
if ((which_queue->cells_used) <= 0) {
 which_queue->cells_used = 0; // Fix
 return NULL; // Queue empty
}
//check to make sure we will not look before the beg of the queue
else if((which_queue->tail) == (which_queue->beg)){
 void* ret = *(which_queue->end);
 return ret;
}
//tail peek
else{
 (which_queue->tail)--;
 void* ret = *(which_queue->tail);
 (which_queue->tail)++;
 return ret;
}
}

int isFull(Queue *which_queue){
//compare max cells to cells used
if(which_queue->cells_used>=which_queue->max_cells){
 //return true
 return 1;
}
else{
 //return false
 return 0;
}
}

#ifdef __cplusplus
 extern "C" {
 #endif

#ifndef TOOL_H
#define TOOL_H

/** Struct to define a tool and related functions
 */
typedef struct tool {
 char *toolName; //!The name of the tool
 float maxAllowableForce; //!The maximum allowable cutting force for the tool
 unsigned short number; //for easy ID
 }Tool;

Tool

/** \brief Creates a tool by allocating mem for the struct and its members and initializes it.
 * \param t- (float) the Controller gain of the new Controller
 * \param mat - (float) The controller signal
 * \param maxForce - (float) Gain used when adjusting the feedrate
 * \param refForce -(float) The previous signal sent by the controller
 * \return - (Controller *) returns a pointer to the newly allocated Controller
 */
Tool* create_Tool(char *name, float maxForce, unsigned short num);

#endif

#ifdef __cplusplus
 }
 #endif

#include <stdlib.h>
#include <string.h>
#include "tool.h"

Tool* create_Tool(char* name, float maxForce, unsigned short num){
 //make a pointer, allocate memory for the Tool
 Tool* new_tool;
 new_tool = (Tool *) malloc(sizeof(Tool));
 //set the properties
 new_tool->toolName = name;
 new_tool->maxAllowableForce = maxForce;
 new_tool->number = num;
 //return
 return new_tool;
}

Qt UI file

/**
/** ui.h extension file, included from the uic-generated form implementation.
***/
//length of queues and arrays
#define dataSize 500
//timestep of display and control (in seconds)
#define timeStep .1
res
//neccessary imports
#include "queue.h"
#include "fileIO.h"
#include "Controller.h"
#include "DataCollector.h"
#include "tool.h"
#include "NCCommunicator.h"
#include "MemberFunction.h"
#include "mFD.h"
#include "FuzzyController.h"
#include "cuttingoperation.h"
#include "ParamTable.h"

#include <qstring.h>
#include <qwidget.h>

#include <qapplication.h>
#include <qlayout.h>
#include <qwt_plot.h>
#include <qwt_plot_canvas.h>
#include <qwt_scale.h>
#include <qwt_scldraw.h>
#include <qwt_math.h>
#include <qvalidator.h>
#include <time.h>
#include <string.h>
#include <qframe.h>
#include <qpainter.h>
#include <qcolor.h>

/** Create a queue by allocating a queue structure, initializing it,
 * and allocating memory to hold the queue entries.
 * @param max_cells Maximum entries in the queue
 * @return Pointer to newly-allocated Queue structure, NULL if error.
 */
void Form1::init()
{
 //Alarm/Alarm Frame initialization
 alarmFlag = 0;
 alarmCounter = 0;
 alarmFrame->hide();

 //gui stuff
 controllerTypes->hide();
 synchPIDFrame->hide();
 asynchPIDFrame->hide();
 fuzzyFrame->hide();

 //init the controller
 theController = create_Controller();
 //Tools and Operations Inits
 newToolFrame->hide();
 toolIndex = 0;
 maxToolsReachedLabel->hide();
 newOperationFrame->hide();
 operationIndex = 0;
 maxOperationsReachedLabel->hide();

 //Param table init
 the_Ptable = create_paramTable();

 //this will be used for the control and data saving speed
 dataCounterTop =(int) (timeStep*1000)/10;
 dataCounter = 0;

 //create queues that will be used for graphs
 spindleQueue = create_queue(dataSize);
 forceQueue = create_queue(dataSize);
 feedQueue = create_queue(dataSize);

 //create the controller and the datacollector
 //theController = init_Controller();
 theDataCollector = createDataCollector(dataSize, 50, 1);

 //create the NcCommunicator
 the_NcCommunicator = create_NcCommunicator();

 //MAKE THE FUZZY CONTROLLER
 memberFunction* mf1;
 memberFunction* mf2;
 memberFunction* mf3;
 memberFunction* mf4;
 memberFunction* mf5;
 mFD* mFD1;
 mFD* mFD2;
 mFD* mFD3;
 mFD* mFD4;

 //input error
 mf1=createMemberFunction(-130,-70,-100);
 mf2=createMemberFunction(-80,-20,-50);
 mf3=createMemberFunction(-30,30,0);
 mf4=createMemberFunction(20,80,50);
 mf5=createMemberFunction(70,130,100);
 mFD1 = createMFD(0,mf1,mf2,mf3,mf4,mf5);
 //input delta error
 mf1=createMemberFunction(-125,-75,-100);
 mf2=createMemberFunction(-75,-25,-50);
 mf3=createMemberFunction(-35,35,0);
 mf4=createMemberFunction(25,75,50);
 mf5=createMemberFunction(75,125,100);
 mFD2 = createMFD(0,mf1,mf2,mf3,mf4,mf5);
 //output spinlde
 mf1=createMemberFunction(.15,.51,.33);
 mf2=createMemberFunction(.48,.84,.66);
 mf3=createMemberFunction(.75,1.25,1);
 mf4=createMemberFunction(1.15,1.51,1.33);
 mf5=createMemberFunction(1.48,1.84,1.66);
 mFD3 = createMFD(1,mf1,mf2,mf3,mf4,mf5);
 //output feed
 mf1=createMemberFunction(.15,.51,.33);
 mf2=createMemberFunction(.48,.84,.66);
 mf3=createMemberFunction(.82,1.18,1);
 mf4=createMemberFunction(1.15,1.51,1.33);
 mf5=createMemberFunction(1.48,1.84,1.66);
 mFD4 = createMFD(1,mf1,mf2,mf3,mf4,mf5);

 //timerCounter = (timestep*1000)
 //the_fuzzyController = createfuzzyController(mFD1, mFD2, mFD3, mFD4);

 //create the time axis that will be used in all the plots
 //600 tenths of a second = 1 minute of data displayed
 //also fill dummy array that will be used for plotting
 for (int i = 0; i< dataSize; i++)
 {
 t[i] = -timeStep * double(i); // time axis
 y[i] = 0; // dummy array
 force[i] = 0;
 feed[i] = 0;
 spindle[i] = 0;
 }

 //set up the force plot and curve
 forcePlot->setTitle("Cutting Force");
 forcePlot->setAxisTitle(QwtPlot::xBottom, "Time(s)");
 forcePlot->setAxisTitle(QwtPlot::yLeft, "Newtons");
 long forceCurve = forcePlot->insertCurve("Force");
 forcePlot->setCurvePen(forceCurve, QPen(Qt::red));
 forcePlot->setCurveRawData(forceCurve, t, force, dataSize);
 forcePlot->replot();
 forcePlot->show();

 //set up the spindle plot and curve
 spindlePlot->setTitle("Spindle Speed");
 spindlePlot->setAxisTitle(QwtPlot::xBottom, "Time(s)");
 spindlePlot->setAxisTitle(QwtPlot::yLeft, "RPM");
 long spindleCurve = spindlePlot->insertCurve("Spindle");
 spindlePlot->setCurvePen(spindleCurve, QPen(Qt::blue));
 spindlePlot->setCurveRawData(spindleCurve, t, spindle, dataSize);
 spindlePlot->replot();
 spindlePlot->show();

 //set up the feed plot and curve
 feedPlot->setTitle("Feed Rate");
 feedPlot->setAxisTitle(QwtPlot::xBottom, "Time(s)");
 feedPlot->setAxisTitle(QwtPlot::yLeft, "mm/min");
 long feedCurve = feedPlot->insertCurve("Feed");
 feedPlot->setCurvePen(feedCurve, QPen(Qt::green));
 feedPlot->setCurveRawData(feedCurve, t, feed, dataSize);

 feedPlot->replot();
 feedPlot->show();

 //Tools

 //toolComboBox->insertItem("Tool 2",-1);
 //toolComboBox->insertItem("Tool 3",-1);
 //toolComboBox->insertItem("Tool 4",-1);

 //Init the array of tools
 //This would have to be done with a database if a lot of tools were used
 //toolArray[0] =

 currTool = create_Tool("Carbide", 50000, 1);

}

//write the dataCollector's queues to text file
void Form1::saveData()
{
 //check to make sure the queues arent empty
 if(forceQueue->cells_used>0){
 time_t now;
 char the_date[50];
 the_date[0] = '\0';
 now = time(NULL);
 if(now !=-1)
 {
 strftime(the_date, 50, "%c.txt", localtime(&now));
 }
 FILE *file = fopen(the_date , "w");
 printf("OPENED THE FILE\n");

 writeAllTheQueuesFormatted(file,forceQueue, feedQueue, spindleQueue, theDataCollector-
>xForceQueue, theDataCollector->yForceQueue, theDataCollector->zForceQueue, timeStep);
 }

}

//set controller parameters
void Form1::setParams()
{/*
 the_fuzzyController->idealSpindleSpeed = spindleEdit->text().toFloat();
 //the_fuzzyController->currentSpindleSpeed = the_fuzzyController->idealSpindleSpeed;
 the_fuzzyController->idealFeedRate = feedEdit->text().toFloat();
 //the_fuzzyController->currentFeedRate = the_fuzzyController->idealFeedRate;
 the_fuzzyController->idealCuttingForce = forceEdit->text().toFloat();
 /*
 theController->desiredSpindleSpeed = spindleEdit->text().toFloat();
 theController->currFeedRate = feedEdit->text().toFloat();
 theController->desiredCuttingForce = forceEdit->text().toFloat();
 theController->controllerGain = .6;
 theController->feedRateGain = .5;
 theController->previousCommandSignal = 0;*/
 /***
 get the current tool index from the tool index QComboBox
 theController->setTool
 **/

}

//clears the dataCollector's queues
//clears the form's queues
//sets control parameters to 0
//clears curves
void Form1::reset()
{

 //reset the force, feed, and spindle arraysex
 for (int i = 0; i< dataSize; i++)
 {
 t[i] = -0.1 * double(i); // time axis
 y[i] = 0; // dummy array
 force[i] = 0;
 feed[i] = 0;
 spindle[i] = 0;
 }

 //if there is a controller, reset the prev error and sum error

 clearOldData(theController);

 //reset the controller parameters
 //->desiredSpindleSpeed = 0;
 //theController->currFeedRate = 0;
 //theController->desiredCuttingForce = 0;

 //the_fuzzyController->idealSpindleSpeed = 0;
 //the_fuzzyController->idealFeedRate = 0;
 //the_fuzzyController->idealCuttingForce = 0;
 //the_fuzzyController->currentFeedRate = 1;
 //the_fuzzyController->currentSpindleSpeed = 1;

 //clear the queues
 for (int i = 0; i< dataSize; i++)
 {
 free(dequeue(forceQueue));
 free(dequeue(feedQueue));
 free(dequeue(spindleQueue));
 free(dequeue(theDataCollector->xForceQueue));
 free(dequeue(theDataCollector->yForceQueue));
 free(dequeue(theDataCollector->zForceQueue));
 }
 return;
}

//stops the timer events
void Form1::stop()
{
printf("Stopping Timer\n");
 killTimer(tehtimer);
}

//initialize the timer!
void Form1::start()
{
 //currTool=

 printf("Starting Timer\n");
 tehtimer = startTimer((int)(10));

}

//take in data, impliment control algorithm, communicate with NC
//plots
void Form1::timerEvent(QTimerEvent *)
{
 //flash the alarm if it is on
if(alarmFlag==1){
 alarmCounter++;
 alarmFrame->show();
 if(alarmCounter>=20){
 if(alarmCounter>=40){
 alarmCounter = 0;
 //change to red
 alarmFrame->setPaletteBackgroundColor(Qt::red);
 alarmFrame->repaint(true);
 alarmLabel2->setPaletteBackgroundColor(Qt::red);

 alarmLabel2->repaint(true);

 }
 else{
 alarmFrame->setPaletteBackgroundColor(Qt::black);
 alarmFrame->repaint(true);
 alarmLabel2->setPaletteBackgroundColor(Qt::black);
 alarmLabel2->repaint(true);
 }
 }
}

//Alarm wasnt currently acitvated, so proceed

 else{
 //if too high of force! Alarm!!!!
 if(sqrt(getCurrForceSquared(theDataCollector))>=currTool->maxAllowableForce){
 //ALARM
 //stop the timer
 //killTimer(tehtimer);
 //perform the alarmRoutine (aka spindle off, back off the piece)
 alarmGUI();
 //now display the alarm in GUI
 //alarmFrame->show();
 //alarmFrame->showFullScreen();
 }
 //alarm not active and the force is acceptable, so store, gui, and control
 else{
 //because of the 10ms alarm, 100ms control
 dataCounter++;
 if(dataCounter >= dataCounterTop){
 //get the ADC force values
 getAndStoreForces(theDataCollector);
 // printf("GOT AND STORED FORCES\n");

 //this might not be right, but calculate the cutting force(adam method)
 currForce = forceFloat(theDataCollector);
 currForce = sqrt(currForce);
 //printf(" Current Force: %f\n", currForce);

 //Control
 multiControl(theController, currForce, .1);

 //update the forceQueue
 float* fp1;
 fp1 = (float *) malloc(sizeof(float));
 *fp1 = currForce;
 forceEnqueue(forceQueue,(void *)fp1);

 forceShow->setText(QString::number(currForce, 'f', 3));
 qwtShiftArray(force, dataSize, 1);
 force[0] = currForce;
 forcePlot->replot();

 //update spindleSpeed and store in queue
 float* fp2;
 fp2 = (float *) malloc(sizeof(float));
 *fp2 = theController->currSpindleSpeed;
 //*fp2 = spindleControlFunction(theController, currForce);
 forceEnqueue(spindleQueue,(void *)fp2);
 spindleShow->setText(QString::number(*fp2, 'f', 3));
 qwtShiftArray(spindle, dataSize, 1);
 spindle[0] = *fp2;
 spindlePlot->replot();

 //update spindleSpeed and store in queue
 float* fp3;
 fp3 = (float *) malloc(sizeof(float));
 *fp3 = theController->currFeedRate;

 //*fp3 = feedControlFunction(theController, currForce);
 forceEnqueue(feedQueue,(void *)fp3);
 feedShow->setText(QString::number(*fp3, 'f', 3));
 qwtShiftArray(feed, dataSize, 1);
 feed[0] = *fp3;
 feedPlot->replot();

 //CONTROL

 //free the memory
 //free(fp1);

 ///float a[600];

 //make the
 /*
 static int zeta = 0;

 if(zeta == 100) zeta = 0;
 qwtShiftArray(y, 600, 1);
 y[0] = zeta;
 forcePlot->replot();
 zeta++;
 */
 dataCounter=0;
 }

 }
}
}

void Form1::test()
{

}

void Form1::unAlarmGUI()
{
 //turn off alarmflag

 //hide the alarm frame
 alarmFrame->hide();
 alarmFlag = 0;
 stop();
 reset();

}

void Form1::alarmGUI()
{
 //killTimer(tehtimer);
 //perform the alarmRoutine (aka spindle off, back off the piece)
 alarmRoutine(the_NcCommunicator);
 //now display the alarm in GUI
 alarmFrame->raise();
 alarmFrame->show();
 //already a timer in use, so this works well
 alarmFlag=1;
 //save the Data, to provide insight as to what went wrong
 saveData();
}

void Form1::popNewToolFrame()
{
 cancelNewOperation();
 //newToolFrame->setIsTopLevel(true);
 //newToolFrame->resize();
 newToolFrame->raise();
 newToolFrame->show();
 newToolFrame->repaint();
 disableBackground();

}

void Form1::popNewControllerSelect()
{
 //need to ensure that both a tool and an operation are available
 if(toolComboBox->count()<=0){
 //TODO pop up a warning that a tool must be selected
 printf("A tool must be selected\n");
 }
 else if(opComboBox->count()<=0){
 //TODO pop up a warning that an operation must be selected
 printf("an op must be selected\n");
 }
 //need to ensure that for the specified combo, a Controller doesnt already exist
 else if(confirmEntry(the_Ptable, toolComboBox->currentItem(), opComboBox->currentItem())==0){
 controllerTypes->raise();
 controllerTypes->show();
 controllerTypes->repaint();
 disableBackground();
 }
 //the combo already existed
 else{
 //TODO pop a window that a Controller has already been made
 printf("A controller already exists\n");
 }
}

void Form1::popNewOperationFrame()
{
 cancelNewTool();
 //opComboBox->setEnabled(false);
 //opComboBox->clearFocus();
 //newToolFrame->setIsPopup(true);
 newOperationFrame->raise();
 newOperationFrame->show();
 newOperationFrame->repaint();
 disableBackground();
}

void Form1::cancelNewTool()
{
 toolNameEdit->clear();
 maxForceEdit->clear();
 newToolFrame->hide();
 //toolComboBox->insertItem("Tool 1",-1);
 enableBackground();
}

void Form1::cancelNewOperation()
{
 operationNameEdit->clear();
 newOperationFrame->hide();
 enableBackground();
}

void Form1::saveTool()
{
QString str1 = toolNameEdit->text();

// copy QString to char*
char* cstr;
std::string fname;
fname = str1.ascii();
cstr = new char [fname.size()+1];
strcpy(cstr, fname.c_str());
Tool* aNewTool = create_Tool(cstr,maxForceEdit->text().toFloat(), toolIndex);
toolArray[toolIndex] = aNewTool;

//add tool to tool array
 //Tool* newTool=create_Tool(toolNameEdit->text(),maxForceEdit->text().toFloat(),toolIndex);
 //toolArray[toolIndex]=newTool;
 toolIndex++;
 //if too many tools, then say it
 if(toolIndex>=25){
 maxToolsReachedLabel->show();
 newToolButton->setEnabled(false);
 }
 //newToolFrame->setIsPopup(false);
 toolComboBox->insertItem(aNewTool->toolName,-1);
 cancelNewTool();
 changeTool();
 //setEnabled(true);
}

void Form1::saveOperation()
{
QString str1 = operationNameEdit->text();
// copy QString to char*
char* cstr;
std::string fname;
fname = str1.ascii();
cstr = new char [fname.size()+1];
strcpy(cstr, fname.c_str());
cuttingOperation* aNewOperation = create_cuttingOperation(cstr, operationIndex);
operationArray[operationIndex] = aNewOperation;

 operationIndex++;
 //if too many tools, then say it
 if(operationIndex>=25){
 maxOperationsReachedLabel->show();
 newOperationButton->setEnabled(false);
 }
 //newToolFrame->setIsPopup(false);
 opComboBox->insertItem(aNewOperation->operationName,-1);

 cancelNewOperation();
 changeOperation();
 //setEnabled(true);
}

void Form1::popSynchPIDFrame()
{
 controllerTypes->hide();
 synchPIDFrame->raise();
 synchPIDFrame->show();
 synchPIDFrame->repaint();
}

void Form1::saveSynchPID()
{
 // make a new controller and pointer to the controller
 Controller *newCont = create_Controller();
 //init the controller as a SynchPID with inputted params
 init_as_synchPID(newCont,
 newRecForceEdit->text().toFloat(),
 newSynchfKpEdit->text().toFloat(),
 newSynchfKdEdit->text().toFloat(),
 newSynchfKiEdit->text().toFloat(),
 newSynchsKpEdit->text().toFloat(),
 newSynchsKdEdit->text().toFloat(),

 newSynchsKiEdit->text().toFloat()
);
 //now save the controller to the_Ptable
 addSet(the_Ptable,newCont,toolComboBox->currentItem(),opComboBox->currentItem());
 closeSynchPID();
 clearOldData(theController);
 theController=newCont;
 //enable the start button
 startButton->setEnabled(true);

}

void Form1::closeSynchPID()
{
 newSynchfKpEdit->clear();
 newSynchfKdEdit->clear();
 newSynchfKiEdit->clear();
 newSynchsKpEdit->clear();
 newSynchsKdEdit->clear();
 newSynchsKiEdit->clear();
 newRecForceEdit->clear();
 synchPIDFrame->hide();
 enableBackground();
}

void Form1::popAsynchPIDFrame()
{
 controllerTypes->hide();
 asynchPIDFrame->raise();
 asynchPIDFrame->show();
 asynchPIDFrame->repaint();
}

void Form1::saveAsynchPID()
{
 // make a new controller and pointer to the controller
 Controller *newCont = create_Controller();
 //init the controller as an AsynchPID with inputted params
 init_as_asynchPID(newCont,
 newAsynchRecForceEdit->text().toFloat(),
 newAsynchfKpEdit->text().toFloat(),
 newAsynchfKdEdit->text().toFloat(),
 newAsynchfKiEdit->text().toFloat(),
 newAsynchsKpEdit->text().toFloat(),
 newAsynchsKdEdit->text().toFloat(),
 newAsynchsKiEdit->text().toFloat(),
 AsynchCutoffForce->text().toFloat()
);
 //now save the controller to the_Ptable
 addSet(the_Ptable,newCont,toolComboBox->currentItem(),opComboBox->currentItem());
 clearOldData(theController);
 theController=newCont;
 closeAsynchPID();
 //enable the start button
 startButton->setEnabled(true);
}

void Form1::closeAsynchPID()
{
 newAsynchRecForceEdit->clear();
 newAsynchfKpEdit->clear();
 newAsynchfKdEdit->clear();
 newAsynchfKiEdit->clear();
 newAsynchsKpEdit->clear();
 newAsynchsKdEdit->clear();
 newAsynchsKiEdit->clear();
 AsynchCutoffForce->clear();
 asynchPIDFrame->hide();
 enableBackground();
}

void Form1::popFuzzyFrame()
{
 controllerTypes->hide();
 fuzzyFrame->raise();
 fuzzyFrame->show();
 fuzzyFrame->repaint();
}

void Form1::saveFuzzy()
{
 // make a new controller and pointer to the controller
 Controller *newCont = create_Controller();
 //init the controller as an AsynchPID with inputted params
 init_as_Fuzzy(newCont,
 fuzzyENegEdit->text().toFloat(),
 fuzzyEZeroEdit->text().toFloat(),
 fuzzyEPosEdit->text().toFloat(),
 fuzzyDENegEdit->text().toFloat(),
 fuzzyDEZeroEdit->text().toFloat(),
 fuzzyDEPosEdit->text().toFloat(),
 fuzzyRecFeedEdit->text().toFloat(),
 fuzzyRecSpindleEdit->text().toFloat()
);
 //now save the controller to the_Ptable
 addSet(the_Ptable,newCont,toolComboBox->currentItem(),opComboBox->currentItem());
 closeFuzzy();
 clearOldData(theController);
 theController=newCont;
 //enable the start button
 startButton->setEnabled(true);
}

void Form1::closeFuzzy()
{
 fuzzyENegEdit->clear();
 fuzzyEZeroEdit->clear();
 fuzzyEPosEdit->clear();
 fuzzyDENegEdit->clear();
 fuzzyDEZeroEdit->clear();
 fuzzyDEPosEdit->clear();
 fuzzyRecFeedEdit->clear();
 fuzzyRecSpindleEdit->clear();
 fuzzyFrame->hide();
 enableBackground();
}

void Form1::disableBackground()
{
 textLabel7->setEnabled(false);
 feedShow->setEnabled(false);
 newtonLabel->setEnabled(false);
 mmMinLabel->setEnabled(false);
 pushButton8->setEnabled(false);
 spindleShow->setEnabled(false);
 rpmLabel->setEnabled(false);
 textLabel6->setEnabled(false);
 textLabel5->setEnabled(false);
 forceShow->setEnabled(false);
 feedPlot->setEnabled(false);
 forcePlot->setEnabled(false);
 spindlePlot->setEnabled(false);
 toolSelectionLabel->setEnabled(false);
 opselectLabel->setEnabled(false);
 buttonsTabs->setEnabled(false);
 opComboBox->setEnabled(false);
 toolComboBox->setEnabled(false);
 forcePlot->removeMarkers();
}

void Form1::enableBackground()
{

 textLabel7->setEnabled(true);
 feedShow->setEnabled(true);
 newtonLabel->setEnabled(true);
 mmMinLabel->setEnabled(true);
 pushButton8->setEnabled(true);
 spindleShow->setEnabled(true);
 rpmLabel->setEnabled(true);
 textLabel6->setEnabled(true);
 textLabel5->setEnabled(true);
 forceShow->setEnabled(true);
 feedPlot->setEnabled(true);
 forcePlot->setEnabled(true);
 spindlePlot->setEnabled(true);
 toolSelectionLabel->setEnabled(true);
 opselectLabel->setEnabled(true);
 buttonsTabs->setEnabled(true);
 opComboBox->setEnabled(true);
 toolComboBox->setEnabled(true);
}

//upon tool change, will check if the current tool/op combo has a controller
//if not, disable start button
void Form1::changeTool()
{
 //if(toolComboBox->count()>0){
 //sets the current tool to the corresponding one in the toolArray
 printf("LOLOLOLOLOLOLOLOL Changing the currTool");
 currTool=toolArray[toolComboBox->currentItem()];//}
 //make sure that there is a tool and an operation
 if(opComboBox->count()>0&&toolComboBox->count()>0){
 printf("both an op and tool are present");
 //if there is no controller, disable start button
 if(confirmEntry(the_Ptable, toolComboBox->currentItem(), opComboBox->currentItem())==0){
 startButton->setEnabled(false);
 }
 //else there is a controller, so enable start button
 else{
 startButton->setEnabled(true);
 //set theController to the one from the ParamTable
 clearOldData(theController);
 theController = getAtIndex(the_Ptable, toolComboBox->currentItem(), opComboBox-
>currentItem());
 }
 }
 else{
 startButton->setEnabled(false);
 }
}

void Form1::changeOperation()
{
 //make sure that there is a tool and an operation
 if(opComboBox->count()>0&&toolComboBox->count()>0){
 printf("both an op and tool are present");
 //if there is no controller, disable start button
 if(confirmEntry(the_Ptable, toolComboBox->currentItem(), opComboBox->currentItem())==0){
 startButton->setEnabled(false);
 }

 //else there is a controller, so enable the start button
 else{
 startButton->setEnabled(true);
 clearOldData(theController);
 //set theController to the one from the ParamTable
 theController = getAtIndex(the_Ptable, toolComboBox->currentItem(), opComboBox-
>currentItem());
 }

 }
 else{
 startButton->setEnabled(false);

 }
}

Main Program

#include <qapplication.h>
#include "form1.h"
#include "qwt_plot.h"

int main(int argc, char ** argv)
{
 QApplication a(argc, argv);
 Form1 w;
 w.show();
 a.connect(&a, SIGNAL(lastWindowClosed()), &a, SLOT(quit()));
 return a.exec();
}

	Worcester Polytechnic Institute
	Digital WPI
	March 2012

	Active Control of Feedrate and Spindle Speed to Extend Tool Life During CNC Milling Processes
	Brenden T. Gibbons
	Joseph Adam Driscoll
	Repository Citation

	Microsoft Word - mqpreport.docx

