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Abstract 

This report describes the research, mechanical analysis, design methodology, and testing 

procedures that were used to design and build a tree-climbing robot. The goal of this project was 

to build a tree-climbing robot to satisfy the requirements established by the USDA and aid in the 

detection of Asian Longhorn Beetles. The following report details the threat that invasive beetle 

species pose to the United States, how tree climbing robots may help eliminate invasive species, 

a review of robots that have successfully climbed trees, and how effective they may be at 

locating beetles, our considerations when developing a tree climbing robot design, the 

preliminary robot design, the final robot design, mechanical analysis, programming structure, 

and the results that were achieved by the robot. 
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Executive Summary 

The Asian Longhorn Beetle (ALB) is an extremely destructive invasive species native to China, 

Japan, and Korea, which was brought to the United States and now threatens to destroy many 

hardwood trees. The current methods of beetle detection involve workers climbing trees to find 

evidence of beetles and are hazardous, expensive, time consuming, and ineffective. The USDA 

endorsed the potential solution of using robots equipped with cameras to detect beetles instead of 

using humans.  

Different research projects have resulted in the creation of robots such as RISE, Treebot, and 

many others, which have successfully climbed trees. However, each of these designs has 

limitations in functionality, which would prevent it from being used for beetle detection. This 

project is a continuation of last year’s tree-climbing robot MQP, both of which sought to design 

and construct a tree-climbing robot that meets the requirements specified by the USDA. 

After comparing various tree climbing strategies for their pros and cons, a robot platform with a 

gait similar to that of an inchworm was chosen. Subsequently, a prototype was designed and a 

concept gripper was produced. The robot and gripper were analyzed mechanically, programmed, 

and tested. After testing the prototype gripper, a new robot chassis was redesigned, analyzed, 

built, programmed, and tested. The end result of this project was proof of concept, useful 

analysis that can contribute to next year’s MQP, and a plethora of future recommendations.  
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1. Introduction 

The Asian Longhorn Beetle (ALB) is an extremely destructive invasive species native to China, 

Japan, and Korea, which was brought to the United States on shipping containers in the late 

1980’s. These beetles have killed off more than 50 million hardwood trees over a three-year 

period in the province of Ningxia, China. Their more recent presence in Worcester, 

Massachusetts resulted in the removal of 18,000 trees from 2008 to 2011 (Nisley, 2012). These 

pests were also found in New York in 1996, Illinois in 1998, New Jersey in 2004, and Ohio in 

2011. If the infestation continues to spread throughout the United States, scientists believe the 

beetles could kill a third of the country’s trees (Reardon, 2012; Daniel 2011). If this were to 

happen, the national parks and hardwood forests of America could be destroyed, which would 

affect the production of furniture, maple syrup, as well as other goods made from trees and 

wood. (Reardon, 2012; Kenny, 2011). 

The ALB is a larger beetle with a shiny black body that is covered in irregular white 

spots. Adults can range in length from 3/4 to 1-1/4 inches and have two long white and black 

antennae (Drew, 2008). In its native habitat, the beetle usually takes up residence in poplar and 

willow trees, however the beetles taste expanded when it was introduced to North America. In 

the United States the beetle typically inhabits maple, box elder, buckeye, willow, elm, birch, and 

sycamore trees (Sawyer, 2010). 

Thus far it has been difficult to contain the ALB infestation because traditional pest 

control methods, such as the application of pesticides, are not very effective in reducing the 

population of the beetles. This is because the beetle spends most of its life cycle inside the tree, 

eating it from the inside out. The proven method of successfully eliminating an ALB population 

requires locating the infested trees, cutting down the infested trees and some surrounding 
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potential host trees, chipping the trees up into fine particles, incinerating the remains, and 

applying pesticides to the surrounding trees (Reardon, 2012). Currently the only way to locate an 

infested tree is to hire individuals to climb trees and look for the telltale signs of infestation, 

small 3/8-1/2” entrance holes in the tree, and/or locate frass, sawdust like shavings which can 

accumulate near the hole openings (Nisley, 2012). Tree inspections can be hazardous to workers, 

expensive for small towns, and are labor intensive. 

  While the current “chip and burn” methods of ALB detection and elimination could 

potentially slow the progression of an infestation, these methods are only effective if the infected 

trees are properly identified. Since there is a high probability of a worker missing a small hole in 

a large tree, a more reliable detection method is needed to improve chances of eliminating the 

infestation. A robot could be used as an alternative to humans for tree inspections, this would 

improve chances of locating an infestation, lower the cost of tree inspections, and make it more 

safe for workers to inspect trees.  

Different research projects have resulted in the creation of robots such as RISE, Treebot, 

and many others, which have successfully climbed trees. However, each of these designs has 

limitations in functionality, which would prevent it from being used for beetle detection. Other 

robots are either too big, too complex, cannot climb around branches, or do not have room to 

mount a camera. This project, which is a continuation of last year’s MQP, seeks to design and 

construct a tree climbing robot that meets the requirements specified by the USDA.  
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2. Background 

2.1 Researching the Problem 

After reviewing the USDA’s requirements, extensive research was conducted to locate as much 

information as possible on robot designs that could climb trees and similar surfaces. The 

following section contains a review of these robot designs. After compiling a list of tree climbing 

robots, they were individually analyzed for their advantages, disadvantages, and ability to meet 

the USDA’s requirements. Each design tree climbing robot design was evaluated based on how 

well it could climb, the surfaces it could climb, and whether or not it could maneuver around 

branches.   

2.1.1 RiSE 

The RiSE project was funded by the Defense Advanced Research Projects Agency (DARPA).  

DARPA’s biodynamic robotics program consists entirely of robots that are biologically inspired 

and are designed to function and maneuver in a variety of conditions. One of the goals is the 

development of a robot that can climb vertically. The possible applications for such robots 

include surveillance, retrieval, and inspection. Boston Dynamics Inc., in collaboration with 

several Universities, has at this point created three versions of the RiSE robot which can climb 

straight up trees and wooden poles (University of Pennsylvania, 2012). 

RiSE V1 was first announced in 2005 (University of Pennsylvania, 2012). Each of its six 

legs is actuated by two electric motors, giving them each two degrees of freedom. The robot was 

tested mainly on carpeted walls to analyze and enhance its climbing ability. This robot maintains 

stability while climbing by using a tripod gait, meaning that at least three legs are in contact with 

the climbing surface at any given time.  The robot maintains that grip by using a tail, which is 
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attached to the rear of the chassis and has the ability to push the robot. Figure 1 below shows 

how the tail works by pushing towards the climbing surface, which allows the front of the robot 

to remain within reach of the tree. 

 

Figure 1: RiSE V1 

RiSE V2 was the successor to RiSE V1, and was very similar in structure to the original 

version, and it uses the same six legged configuration, each leg is powered by two actuators 

each. It reuses the tripod gait for climbing, in which three legs maintain contact with the surface 

at all times.  This robot also has several end effector modules, which allow it to climb a variety 

of surfaces including outdoor walls and trees, as shown in Figure 2 below.   
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Figure 2: RiSE V2 

 

The gripping method for this robot includes spines made from modified medical needles 

installed at the end of each leg.  These micro-spine covered feet allow penetration to be made 

into the climbing surface with minimal damage.  With two degrees of actuated freedom on each 

leg, the designers are able to determine and utilize the best direction in which to apply force 

through the spiny feet for maximum gripping. 

RiSE V3 brought about some major changes from the previous versions.  This robot 

employs a Quadrupedal configuration, which means it only has four legs instead of the original 

six.  Different brushless DC motors are used in this version to increase power. Coupled with a 

dramatically different leg mechanism and unique gaited behavior, this robot exhibits rapid 

climbing (upward of 22 cm/s) up a vertical surface such as a telephone pole. (University of 

Pennsylvania, 2012). This chassis offers another degree of freedom over the old design. A 
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pivoting joint in the backbone of the robot allows it to adjust its upper body toward or away from 

the climbing surface.  This gives it even more ability to adjust to the optimal gripping position 

during climbing. This can be seen in Figure 3 below. 

 

Figure 3: RiSE V3 

 

2.1.2 WOODY 

The WOODY project began in 2004 in the Sugano Lab at Waseda University in Japan, and since 

then there have been three generations of prototypes (Waseda University 2003). Unlike the RiSE 
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project, the only desired application for WOODY is in forest preservation. Trees need to be 

periodically pruned to reduce the number of branches on them. Too many branches can have 

negative effects on the forest by blocking sunlight, as well as accumulating precipitation which 

in turn can cause the trees to fall.  

WOODY adheres to tree trunks by wrapping its two arms all the way around them.  

Because of this, the robot is limited to a certain range of tree diameters it can climb. The robot 

climbs by alternating grip on the upper and lower arms, and by using a worm gear to generate 

vertical motion, similar to an inchworm.  The tree side of the arm has wheels mounted to it 

which allow for rotational motion. Due to its configuration, the robot can only climb up straight 

trees, and cannot avoid branches. Thus, WOODY is equipped with a saw mounted at the highest 

point of the robot to allow it to remove obstructing branches and proceed upward, as depicted in 

Figure 4 below. 

 

Figure 4: WOODY: "Robot Assisting Forestry Work" 

2.1.3 Uncle Sam 

Carnegie Mellon University developed a modular hyper-redundant robot named Uncle Sam that 

mimics the motions of a snake.  Using universal joints with three degrees of freedom, the robot is 



11 

 

able to move in many different ways including rolling, wiggling, and side winding, depending on 

the terrain being encountered (Carnegie Mellon University, 2008). The way this robot climbs 

trees is one method that is not actually borrowed from the snake.  Instead, it wraps around the 

tree trunk and applies inward pressure while rolling its body to generate vertical motion up the 

tree, as seen in Figure 5 below. This climbing method is effective in certain situations but also 

has some inherent limitations. First, the body of the robot must be long enough to wrap all the 

way around the tree trunk, and second, it is not able to overcome branches. However, researchers 

think that if they increase the length of the robot, they may enhance the ability of the robot to 

maneuver onto and off of branches (Carnegie Mellon University, 2008). 

 

Figure 5: Uncle Sam, courtesy of Carnegie Mellon University 

2.1.4 Kawasaki’s Pruning Robot 

A tree-pruning robot was developed at the Kawasaki & Mouri Lab of Gifu University in Japan. 

This robot climbs up cylindrical objects, whether trees or metal posts, yet it does not possess the 

ability to transition onto branches that may obstruct the robot’s climbing progress. It is designed 
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so that its center of gravity resides within the tree when it is mounted around the tree. It has four 

wheels in contact with the tree that it is climbing, two of which are in contact with the tree below 

the robot’s center of gravity and adjacent to each other and two of which are in contact with the 

tree above the robot’s center of gravity. This design negates the need for a pushing force on the 

tree to be exerted by on-board actuators. The static state of the robot naturally creates the 

pushing forces needed to maintain the four wheels’ traction on the tree and prevent the robot 

from falling off of the tree (Kawasaki & Mouri Lab). The orientation of these four contact points 

can be seen in Figure 6, below (Kawasaki & Mouri Lab). 

 

Figure 6: Kawasaki's Tree Pruning Robot at Gifu University, Japan 

The robot uses a worm gear drive of each wheel independently in order to prevent them from 

being back-driven, which would otherwise allow the robot to roll back down the tree when the 

motors were not active. The first prototype of the robot was developed in 2008. This first 

iteration exhibited fixed wheels that were aligned vertically, thereby allowing exclusively 

vertical travel up and down the tree through one degree of freedom. The second prototype 

incorporated wheels that were capable of actively steering, thereby adding a second degree of 
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freedom. This allowed the robot to switch between varying degrees of vertical versus spiral 

climbing patterns to potentially improve climbing efficiency (Kawasaki & Mouri Lab). 

2.1.5 Seirei Industry’s Automatic Pruning Machine 

Seirei Industry Co.’s AB232R Automatic Pruning Machine is a commercialized tree-climbing 

robot. Its wheels are mounted at fixed angles that, when driven, move the robot up a tree in a 

fixed spiral pattern. Since the wheel orientation cannot be changed, neither can the spiral pattern 

with which the robot climbs the tree. This skewed orientation of the wheels can be seen in Figure 

7, below (Seirei Industry Co.). 

 

Figure 7: Seirei Industries’ Automatic Pruning Machine (AB232R) 

This robot generates its gripping force on the tree from pre-loaded springs. This approach 

to providing the necessary gripping force restricts the domain of tree diameters that the robot can 

climb. This particular model is designed to climb trees with diameters between 70mm and 
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230mm. This robot is not able to climb onto any branches other than the primary tree trunk and 

will instead indiscriminately cut off any branches that it runs into with its cutting tool. 

2.1.6 TREPA 

In 2006, a robot called TREPA was developed at Miguel Hernandez University. This robot uses 

a version of the six-degree-of-freedom Gough-Stewart platform. This platform uses six linear 

actuators connected to a platform at each of their ends via universal joints (Aracil, 2006).  In this 

configuration, each of the “platforms” is actually hollow. The robot is mounted around the tree 

with and the tree trunk occupies the cylindrical void in the middle of the robot. The rings, hollow 

“platforms” on the top and bottom of the robot, grip the tree with actuated grippers that fold in to 

apply pressure on the tree from multiple sides of the tree. The robot’s structure can be seen in 

Figure 8, below (Aracil, 2006). 

 

Figure 8: TREPA Robot Climbing a Tree Trunk 

TREPA uses a general repeated four-step process when climbing up a tree, as illustrated 

in Figure 9, below (Aracil, 2006). First, with the bottom ring gripping the tree and the actuators 

contracted, the top ring releases its grip. The linear actuators then extend to move the top ring 

into its new position. Next, the top ring engages its grippers to grab the tree. Once this has 
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gripped, the bottom ring releases its grip on the tree. The linear actuators then contract to raise 

the lower ring to a higher position where it engages its grippers to grab the tree. This process is 

repeated continuously. 

 

Figure 9: The Four-Cycle Climbing Steps of the TREPA Parallel Climbing Robot 

 

2.1.7 DIGbot 

A climbing robot was developed by Eric David Diller at Case Western University with the 

intended functionality of being able to climb various surfaces and transition between orthogonal 

surfaces. The robot’s gripping system used a principle called Distributed Inward Gripping (DIG) 

where the rot’s hexapod legs grip the climbing surface by exerting pulling forces from opposite 

legs in opposite directions to enhance grip and stability. A functional version of the robot can be 

seen in Figure 10, below (Diller, 2010) 
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Figure 10: DIGbot climbing along a chain-link fence 

The final design of DIGbot’s legs incorporated physical compliance into the design. An 

exploded view of this leg design can be seen in Figure 11, below. Two different sets of legs were 

constructed for DIGbot, one with compliant materials and one with rigid materials. Depending 

on the surface DIGbot was climbing, the legs could be switched out to enable for better adhesion.  

DIGbot was tested as tree-climber, researchers concluded that, “when climbing on tree bark, a 

stiff spine is required to allow the spine to penetrate the bark.” However, based on the testing of 

stiff legs, the stiff spine “has never resulted in robust climbing.” (Diller, 2010) 
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Figure 11: Exploded foot design 

 

Figure 12: One foot design: single-spine for climbing a screen 
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Figure 13: Another foot design: cross sectional view of a foot with multiple spring-loaded, retractable spines that passively 

adjust to the surface that the foot is in contact with 

 

 

Figure 14: DIGbot climbing up a tree (left) and a telephone pole (right) 
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2.1.8 TreeBot 

Treebot was developed by Tin Lun Lam and Yangsheng Xu from the University of Hong 

Kong to assist and/or replace humans in tree related tasks (Lam, 2012). Treebot was designed to 

be a highly skilled climber capable of traversing the bark and branches of a many tree species. 

Treebot’s design is broken down into three main assemblies, the two tree grippers, the continuum 

body, and the semi passive joint. Treebot has three active, and two passive, degrees of freedom 

utilizing a total of five actuators. Two of these actuators are located in the grippers, and one 

resides in the continuum body. Maneuverability was a top design priority in order for Treebot to 

be able to traverse irregularly shaped trees, to enable turning, and allow for transitions to 

different climbing postures. The only way for Treebot to maintain stability was to remain 

strongly adhered to a tree. Without solid adhesion, Treebot would fall.  

 

Figure 15: Treebot Overview 
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The makers of Treebot wanted to facilitate easy transportation by focusing on creating a 

lightweight and compact design. The designers of Treebot ended up manufacturing a 6.5 gram 

robot with a payload capacity. This high power to weight ratio allowed Treebot to carry a 

significant amount of additional equipment to perform a variety of tasks in trees.  

The tree grippers are made up of four claws separated by 90 degrees. This allows for 

Omni-directional gripping, or a relatively similar amount of grip that is not heavily impacted by 

the orientation of the claw relative to the tree. Each claw is made up of two parts, named phalanx 

1 and 2, and is arranged in a two bar linkage configuration. At the tips of each claw are surgical 

needles that are used for tree surface penetration, and generate surface adhesion when the gripper 

closes.  

As seen in Figure 16, in order for the claw to open, the linear motor presses down on a 

plate that in turn pushes all four phalanx ones. As a result of phalanx 1 being pressed, phalanx 2 

moves up and compresses a spring at joint (A) on phalanx 1.  When the gripper is closed, the 

linear motor releases the plate and the spring force applied to joint A presses phalanx 2 into the 

tree. By using the spring at joint A to close the gripper, Treebot can maintain adhesion to the tree 

surface with zero energy expenditures.  

The continuum body of Treebot can extend up to ten times its contracted length, and has 

three degrees of freedom. The continuum body moves similar to an inchworm, but rather than 

bend its body, Treebot contracts and extends. The continuum body uses three mechanical springs 

connected in parallel, separated by 120 degrees as a rack, and combines a pinion gear attached to 

a DC motor to provide bendable movement. Treebot is equipped with a variety of sensors that 

monitor the position and condition of the robot. Treebot has encoders mounted on each tendon 
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motor in the continuum body, which are used to measure its extension length. On the claws of 

each gripper are tactile sensors used to map the tree as Treebot climbs. Mounted on the forward 

gripper is a triple axis tilt sensor used to measure the direction of gravity relative to Treebot. 

Treebot moves up the tree in an inchworm style motion. First, Treebot anchors its rear 

gripper to the tree and extends its front gripper up the tree. Then the front gripper is engaged and 

the rear released. The continuum body contracts and raises the rear gripper up before it is 

reengaged with the tree. Once this process is complete it begins again and continues to move up 

the tree. 

 

Figure 16: Treebot Continuum Body  
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3. Project Strategy 

A list of robot chassis ideas which took inspiration from the previously review robot designs was 

developed. Concurrently, a list of specifications was created from the requirements set forth by 

the USDA. The following list of specifications provided a way to evaluate the proposed designs 

and eliminate the least feasible designs.  

 Be small and lightweight as to facilitate transportation. 

 Be able to transport a camera to the canopy of a tree and back. 

 Not damage the tree it is surveying. 

 Be able to navigate around branches and other limbs. 

 Have a control interface that is intuitive and easy to use. 

 Have built in safety features to protect its operators. 

Using the list of design specifications, the team created and compared a list of proposed ideas. If 

a particular design element did failed to meet any specifications it was removed from 

consideration. The remaining design ideas were examined for their advantages and 

disadvantages, and were subsequently incorporated into a single preliminary design.  
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3.1 Potential Robot Designs 

3.1.1 Wheeled Design 

One of the design possibilities the team considered was to use wheels.  Looking back at the 

background research section, several tree-pruning robots can be seen that utilize wheels.  

However, these robots are all designed to trim trees and are only capable of climbing straight up 

the trunks of trees. Due to these undesirable design features, these ideas would not be suitable for 

the application at hand. 

Another potential wheeled robot design could utilize a wheel design similar to the one in 

Figure 17 below.  This wheel designed by the Jet Propulsion Laboratory at the California 

Institute of Technology, has four micro-spines which are fixed to the wheel by highly elastic red 

rubbery material. When the wheel rotates during climbing, the red material stretches and allows 

for the weight of the robot to hang from the spike and pull it into the surface.  This design proved 

quite effective for the Durable Reconnaissance and Observation Platform (DROP) robot.  

 

Figure 17: Wheel that can climb up walls, courtesy of NASA/JPL-Caltech. 

There are several advantages to a wheeled design. Eliminating the legs makes the design 

much simpler. With a legged robot comes the problem of how to build the legs, which need 

many degrees of freedom to allow for proper maneuverability on varying tree diameters. Also, 
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every joint needs to be actuated and a proper gait must also be devised, thereby complicating 

programming. With a wheeled design, there is no gait. Instead, the driving motors directly rotate 

the wheels. 

Despite the simplicity a wheeled design offers, the team decided against it for a few 

reasons. First, the design and construction of the wheels could be a project in itself. Not only 

would the correct materials have to be studied and engineered, but a way to attach the plastic and 

rubber materials would have to be devised. Also, the micro-spine wheels may need to be delicate 

and could possibly need to be replaced often.  Lastly, a wheeled design would limit the 

maneuverability of the robot. These wheels are designed to climb straight up, but the USDA 

specified a robot with the ability to turn and navigate all around the tree. The team considered a 

four-wheeled mobile robot.  In order for a robot of this configuration to turn, the wheels either 

need the ability to steer or the ability to slip.  Since steering the wheels would add more actuation 

and thus more weight and complexity of programming, it would defeat the purpose of using 

wheels in the first place.  To use four fixed wheels would require the wheels to slip orthogonally 

to the direction of rotation per the equations derived in the figure below.  Since the purpose of 

these wheels is to dig in and grip sturdily, the idea of allowing for some slippage did not seem 

fitting. 
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Figure 18: Sliding constraint for a four fixed wheeled robot 
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3.1.2 Legged Design 

The legged design is essentially defined by a robot with a stationary central body and legs on the 

sides of this central body. Each leg is individually able to hook onto a tree that is being climbed. 

The robot would climb using a repetitive gait process in which one or more legs is anchored onto 

the climbing surface while one or more of the other legs are released from the climbing surface 

to move to a new, higher position, and anchor into the surface. This process can repeat a number 

of times for each leg’s position change depending on how many legs are used on the robot. 

The primary advantage of the legged design is its proof of concept, in both natural and 

man-made instances. Almost all insects and animals that are able to climb utilize this principle 

(the notable exception being the inchworm, discussed in the following section). Their bodies or 

torsos ascend at a relatively constant rate while their legs on each side of their bodies execute a 

gait that involves legs alternatingly gripping, releasing, moving, and re-gripping. This concept 

has also proven successful in the instance of Boston Dynamics’ RISE robots. The proven re-

creation of these climbing motions could have been applied to the design of this project’s robot 

with the advantage of being able to directly relate insect and animal climbing patterns to the 

climbing dynamics of the robot. 

Although the legged design has been proven in concept, it is largely unfeasible for the 

scope of this project for some notable shortcomings. First and foremost, the motions that have to 

be executed by the legs are very complicated compared to other designs. This directly translates 

to more complex and precise actuator design, more expensive actuators and mechanisms, and 

much more complex programming and control design for the gait. The robot is also not as 

weight-efficient as possible because the heavy central body does not serve a purpose in the gait. 
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3.1.3 Inchworm Design 

The inchworm design is similar to the legged design. However, it differs in the sense that the 

inchworm robot has no stationary central body. It is essentially one system of legs that all move 

relative to each other in a gait. The simplest form of this includes two gripping points at each end 

of the robot along the climbing axis with an actuated, bendable set of connections between the 

grip points that allow the grippers to move relative to each other. With this design’s gait, one 

gripper releases to move to a new position and re-grip while the other gripper remains attached to 

the climbing surface to support the robot. 

The main advantage of the inchworm design is that it is a simpler mechanism than the 

legged style described in the previous section. It has many of the benefits of this legged design, 

while also being a mechanically simpler design. This greatly simplifies the mechanical dynamics 

and their design along with the corresponding overall cost, actuator programming, and weight. It 

has also been proven in concept in the case of Treebot. The inchworm design also offers optimal 

functionality to weight factor because the mechanical system is comprised exclusively of 

components that contribute to the climbing actions because the entire robot is essentially made 

out of actuated legs, a notable shortcoming of the central-bodied legged design. 

Although the inchworm design’s main advantage may be its simpler design, this property 

can also serve as a disadvantage because of the reduced number of grippers. Such a property 

reduces the complexity of many aspects of the robot, but also reduces the ability of the robot to 

maintain its grip in the case of slippage relative to, or detachment from, the climbing surface. If 

one of the two grippers loses its grip from the tree while the other is detached and in the gait 

phase of moving to a new gripping position, the robot will have no connection with the tree and 

will therefore fall off of the tree. Another advantage that also serves as a potential disadvantage 
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is the overall lightweight construction of the robot. The lighter, less dense design infers less 

overall toughness and could make the robot more fragile and susceptible to damage should it lose 

grip from the tree. Although these properties of the inchworm design possess both advantages 

and disadvantages, the team deduced that the benefits of this design outweigh its detriments and 

selected this design as the final design foundation for the tree-climbing robot. 

 

3.2 Preliminary Robot Body Design 

One of the main design constraints for the proposed robot design was flexibility and 

maneuverability. In order for the robot to be able to successfully navigate a tree, the chassis of 

the robot would need to be able to maneuver the gripping mechanisms to reach many local 

locations in order to maintain adhesion to the tree surface. To achieve this, the robot grabbing 

mechanisms were designed around a flexible “spine”, which would allow the robot to place its 

grippers in numerous locations, while providing a place to mount the necessary electronics.  

 

Figure 19: Robot Overview (No cables shown) 
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The robot is made up of two separate sections: the vertebrae and the central body. In the 

configuration shown in Figure 19, there are four identical vertebrae. Each vertebra is connected 

to another and to the central body. This is accomplished via a universal joint that can also rotate 

inside the vertebra. Between each vertebra is a series of cables arranged in pairs, such as those 

shown in Figure 20, which would both be connected to the same actuator. As the actuator rotates 

one way, it would wind up one cable while simultaneously unwinding the other. This allows the 

vertebra to lift up or go down (away from or towards the tree) based upon the direction of 

rotation. As seen in Figure 21, this pair of cables would both be both connected to the same 

actuator. 

 

 

Figure 20:  Robot Vertebra-Vertebra Connection (Top View) 



30 

 

 

Figure 21: Robot Vertebra-Vertebra Connection (Side View) 

 

Figure 22: Robot Vertebra-Vertebra Connection (Side View) 

The claw is connected to the vertebra via a removable bottom plate that snaps into place. 

On either side of the claw block is a spring, which can be seen in Figure 23. The purpose of the 

two springs is to realign the claw when the vertebra is not in contact with the tree. The claw itself 

would be made of a high strength material with sharpened ends for the purposes of penetrating 

into the tree and generating an adhesive force. 
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Figure 23: Vertebrae Claw Connection 
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3D printing could be used to create the complex universal axle connections that are 

located between the vertebrae and central body, as shown in Figure 24, because this is the only 

way to create this part and make it one solid piece. The universal axle would need to rotate 

within this coupling to allow for an additional degree of freedom allowing the vertebrae to better 

align with the surface of the tree. This motion is not powered but would be limited in order to 

keep the vertebrae claws in a position that can reach the tree and grab hold. The gripping action, 

which occurs when the actuator winds and constricts the cables, is shown in Figure 25. 

 

Figure 24: Section View of Vertebrae Universal Joint Connection 

 

Figure 25: Robot Vertebra (Front view) 

A B A. B. 
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3.2.1 Sensors 

In order to achieve a closed loop control system, there needs to be sensor feedback from the 

robot.  The first issue to address is whether or not a gripper is correctly placed against the tree 

before allowing its claws to close and clamp onto the bark.  To know when this occurs, there is a 

push-button installed in the ‘palm’ area of each gripper.  Being simple binary devices consisting 

of only an on or off state, the buttons are the most efficient method for sensing contact.   When 

the push-button is depressed, the system knows that the gripper is in place and that it is ok to 

allow the gripper to close on the tree. 

The second set of data desired is the robot’s orientation at any given time.  To accomplish 

this, the team thought of attaching accelerometers to each section of the robot.  The 

accelerometers allow constant feedback of what the angle of each section of the robot is, relative 

about the x, y and z axes, and otherwise known as its pitch, roll and yaw.  The accelerometers 

also provide a secondary desired function by being incorporated into the fail safe mode and 

triggering a response. If all the values change rapidly at once, the robot has lost grip and is free 

falling. Figure 26 illustrates potential reference coordinate frames where accelerometers could be 

placed. 
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Figure 26: Example axes for individual robot section orientation data from accelerometers 

3.2.2 Robot Movement Steps 

The robot moves up the tree using a series of steps. To complete one gait there are four separate 

steps. 

Robot Movement Step 1 

The first position that the robot would be in would be a straight configuration with all four sets of 

claws, in their rest position, attached to the tree (Figure 27A)  

Robot Movement Step 2 

To get to the second position, first the last vertebra (V4) would release the tree. Then, the 

actuator inside the central body corresponding to the cables connected to the third and fourth 

universal axles (U3, U4) would rotate, winding and unwinding the corresponding cables to 

achieve the desired position. Lastly, to get into the second position, the last vertebra would then 

reengage the tree (Figure 27B). 

Robot Movement Step 3 

To get to the third position, the second and third vertebra (V2, V3) would release the tree. Then, 

the actuator inside the central body corresponding to the cables connected to all four of the 

universal axles would rotate, winding and unwinding the corresponding cables to achieve the 

desired position. Lastly, to get into position, the second and third vertebra (V2, V3) would then 

reengage the tree (Figure 27C). 

Robot Movement Step 4 

To get back to the first configuration, the first vertebra (V1) would release the tree. Then, the 

actuator inside the central body corresponding to the cables connected to the first and second 
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universal axles would rotate, winding and unwinding the corresponding cables to achieve the 

desired position. Lastly, to get into position, the first vertebra (V1) would then reengage that tree 

(Figure 27D). 

 

Figure 27: Robot Gait 

  

V1 

A. 

B. 

C. 

D. 

V2 V3 V4 

U1 U2 U3 U4 
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3.2.3 Design Concerns 

After taking a deeper look into the preliminary design, many concerns about the proposed design 

began to surface. One potential problem was the placement of the cables; the cables could cause 

the body of the robot to pull in on itself, causing possible jamming issues. One way to overcome 

this issue would be to reroute the cables to the exterior of the robot chassis. However, 

repositioning the cables did not eliminate the possibility of having the cables get tangles in 

branches or other objects during normal operation. 

Another concern with the prototype design was the ability of the vertebrae to maneuver 

the spikes to various locations. The vertebrae design would only allow the grippers to be 

positioned in a limited range of orientations in order to achieve any gripping force. This design 

would impair the robots ability to climb irregular shaped trees, and was not satisfactory for our 

purposes.  

After re-evaluating the gait proposed robot gait, the team decided that same gait could be 

accomplished with only two vertebrae and a central body to house the electronics. If the robot 

were to be redesigned around this principle, it would be possible to significantly lower the 

complexity of the robot while reducing the weight. From these decisions the team decided to 

focus solely on the way in which the robot would grab onto the tree and build the chassis around 

the gripping mechanism.  

 

3.3 Preliminary Gripper Design 

In order to be able to firmly attach to a wide variety of trees, the robot would need a gripper 

designed to firmly attach to a tree in any orientation. To achieve this, the gripper design was 

made to be radially symmetrical. Taking design principles from the DIG robot, the proposed 
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gripper design would utilize opposite inward pulling forces to generate a holding force against 

the climbing surface. Also, like Treebot, the concept gripper was designed to be able to remain 

attached to the climbing surface with no external power to prevent the robot from falling if it ran 

out of power. The gripper was also designed to be small and light to allow for maximum 

maneuverability. As seen in Figure 28, the housing is roughly 1.25 cubic inches, and the gripper 

arm span is about 4.5 inches.  

 

Figure 28: Gripper Design 

The gripper is made up of 4 four bar linkages all sharing the same top link (see Figure 

29A). With the springs generating a force upward on Link A, the gripper links C are forced into 

the climbing surface. There are three spikes located on each gripper arm (see Figure 29C), and 

each spike is threaded, allowing for easy adjustment of the spike length.  
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Figure 29: Gripper Section View 

3.3.1 Gripper Construction and Testing 

In order to keep on track with the project timeline, the machining of the parts necessary for the 

gripper and the body was done off site by Robert Symcak and Edward Healey. Together, they 

have over 40 years of machining experience. In collaboration with Mr. Healey, the Solidworks 

drawings of each part were verified for machinability, as well as drawing completeness. Also, 

during the machining process, a number of phone consultations were conducted to make minor 

adjustments to the design and to verify these changes would not interfere with the function of the 

gripper when assembled. After receiving the machined parts and hardware for the concept 

gripper and completing assembly, a variety of tests were designed and subsequently 

implemented to test the effectiveness of the gripper design.  

First Iteration 

The initial tests consisted of placing the gripper on the surface of a log and manually driving the 

gripper’s spikes into the bark. The results from this test showed it would be possible for the 

gripper’s spikes to penetrate the surface of the tree and generate a holding force if a great enough 

force was generated. This test revealed that the amount of force required to generate a significant 
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holding force was approximately 5 to 10lbs. After this test the team found and purchased a pair 

of linear actuators that could generate 45N or approximately 10.12lbs. Unfortunately, because of 

the how the testing took place, inaccurate conclusions about the amount of force required for the 

spike to penetrate the tree were concluded.  

Second Iteration 

After the linear actuators arrived, a mounting bracket was constructed in order to attach the linear 

actuator to the gripper. A sample program was written to the Arduino to enable the actuator to 

open and close, while a bench top power supply supplied power to the actuator. Then, the gripper 

was held against the tree and the program triggered the linear actuator to close, creating the 

gripping force needed to press the spikes against the tree. The results of this test showed that the 

purchased actuators were not strong enough to force the spikes into the tree surface. 

Third Iteration 

Following the results from the previous iteration of testing, the next set of tests was designed to 

figure out how much force would actually be required to drive the spikes into the tree. To 

determine this force, the gripper was modified to accommodate a mounting point to which a 

spring scale or hanging weights could be attached. A piece of scrap 2x3 pine was clamped to the 

bench top, and the gripper was clamped to the scrap wood. Then, a spring scale was attached to 

the mounting point and pulled upwards to simulate the linear actuator force. The spring scale 

maximum force of 25lb was applied, and was found to be inadequate to penetrate the wood and 

provide any significant holding force. Then, the gripper was clamped with the gripper upside 

down to the wood and weights were hung from the constructed mounting point. After various 

weights of ranging from 30 to 75lbs were hung from the constructed gripper mounting point, the 

gripper spikes were manually checked for their removal resistance, by feeling the force required 
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to pull the spikes from the wood. It was found that the weights were hard to stabilize and did not 

appear to give consistent results; therefore modifications to this testing procedure to improve the 

accuracy of the test were implemented for the next iteration of testing. 

Fourth Iteration 

The previous test showed that a spring scale gave more accurate and consistent results then did 

hanging weights from the gripper. In light of this finding, a digital spring scale with a maximum 

of 110lbs was purchased for use in this test. Also new for this iteration of testing, a different 

testing apparatus was constructed which had a higher degree of controllability than the previous 

design. The new testing apparatus utilized several quick-clamps to hold the gripper to a piece of 

1x6 maple, the hardest wood favored by the Asian Long-horned Beetle. The maple was clamped 

to the bench top and a scrap piece of wood was attached to the shelf hanging over the bench. One 

side of a quick-clamp was connected to the overhanging piece of scrap wood, while the other 

side was attached to the spring scale and to the mounting point within the gripper. This way, the 

quick-clamp handle could be compressed, and the resulting force being applied to the gripper 

could be read off of the digital scale. This setup can be seen in Figure 30.  



41 

 

 

Figure 30: Iteration Four Testing Apparatus 

Once the setup was constructed, a force of 52.2lbs was applied to the gripper, and the 

spikes began to slightly penetrate the wood. Next, the location of the gripper was moved to a 

new location on the wood and a force of 62.5lbs was applied. With this force the spikes began to 

penetrate but still did not show any measurable resistance to removal.  

Finally, a force of 71.98lbs was applied. This force was enough to cause the spikes to 

penetrate the wood with sufficient depth to warrant a holding force test. Without disturbing the 

spikes, the clamps were carefully removed from the gripper and a spring scale was attached to 

the body of the robot. The spring scale was subsequently pulled in a direction parallel to the 

maple board, in order to simulate the force of gravity when the gripper was on a tree as seen in 
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Figure 31. From this test the spring scale was able to apply between 5 and 6lbs before the spikes 

were released their hold from the wood. 

 

Figure 31: Gripper Holding Strength 

Fifth Iteration 

Since the 10lb linear actuators were not capable of generating 70lbs of force with our current 

configuration, the effects of different spike insertion angles were empirically tested. Three 

different sets of gripper arms were machined and subsequently tested to see how the varying 

insertion angle would affect the amount of force required to penetrate the wood. The three 

different arm sets were shorter than the original arms to generate additional penetrating force at 

the end of the spike, and had bend angles of plus and minus 15 degrees from the original 140-

degree set. The part drawings for the spike angles can be seen in Figure 32.  
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Figure 32: Gripper Arm Angles 

The fifth iteration of testing utilized the same set up as the previous iteration of testing, and was 

carried out to test the new sets of gripper arms. Unfortunately, no conclusive results were drawn 

on the effectiveness of varying spike insertion angles, as all three angles appeared to drive the 

spikes into the wood roughly the same distance. Since the spike angles did not have a serious 

impact on the force required to penetrate the wood, a new linear actuator capable of generating a 

much greater force was purchased.  

After the second set of linear actuators was received, additional testing with the gripper 

and linear actuator was performed. The gripper was placed on the tree log, held in place, and the 

actuator was signaled to close. Fortunately, this test showed that the actuator by itself could 

generate enough force to grip onto the log and hold roughly one pound.  

3.3.2 Gripper Spring Force Requirements 

The gripper is designed with compatibility for four springs within the mechanism that assist with 

closing the gripper. The springs lie between the base of the frame of the gripper and the 

connecting block (the same part that the linear actuator’s shaft is connected to). As the linear 

actuator opens the gripper’s claws, the connecting block compresses the springs, thereby linearly 

increasing the amount of force that each of the four springs applies onto the connecting block. If 

selected properly, these springs could assist the gripper with digging the spikes into a tree. 
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The design choice for these four parallel springs is based on the two parameters of the spring 

constant and the natural length of the spring. The two free variables specified in this situation are 

the spring constant (k) and natural length (Lo). These two values may be selected based on the 

desired resultant force for the four identical springs. This analysis yields a value for both the 

spring constant and the natural length based on a desired resultant spring force. However, both 

the spring constant and natural length may be independently selected. In order to prevent 

physical interference within the gripper, these springs would need to have radii between 2.5mm 

and 4.5mm to allow them to fit simultaneously around the bolts and inside the pre-cut holes. 

Assuming that the linear actuator on the gripper is able to exert 40lbs of force, the springs 

will need to exert a reaction force that is a reasonable amount less than 40lbs to allow the linear 

actuator to compress the connecting block all the way down to move the gripper into the fully 

open position. To incorporate a safety factor, the maximum exertion force of the springs was 

chosen to be 30lbs. This initial condition can then be used to solve for the desired spring 

constants and unloaded spring lengths for a given Fc. Fc (or Fclosed) is defined as the net force that 

all four of the springs collectively exert onto the connecting block when the gripper is in the fully 

closed configuration. Ideally, there would be some force exerted by the springs in this situation 

to keep the claw as still as possible in its resting position. Therefore, Fc should be chosen to be at 

least 5 lbs. or greater. For the analysis of these design parameters, some variables must be 

defined. 

L: the general length between the base of the frame of the gripper and the connecting block. This 

represents the length of the spring in any given situation because that is the exact length of the 

space that the spring has to occupy. 
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Lmin = 0.567 inches: minimum length of the spring that is seen in any situation. This occurs when 

the gripper is fully open. 

Lmax = 0.803 inches: maximum length of the spring that is seen in any situation. This occurs 

when the gripper is fully closed (measured on gripper) 

Lo: represents the natural length of the spring (design choice) 

xopen: the displacement of the spring relative to Lo when the gripper is in the open position 

xclosed: the displacement of the spring relative to Lo when the gripper is in the closed position 

k: the spring constant of one of the four springs within the gripper (design choice) 

First, the overall spring constant of this system needs to be related to the spring constant 

of one of the four springs comprising the system. Following the rules of springs acting in 

parallel, the overall spring constant of this system would be all of the spring constants added 

together with the value of “4k” used to describe the overall spring constant. This value of “4k” 

can then be used to describe the overall force of this spring system where x is the displacement 

of the springs from their would-be unloaded length. 

         (  )  

The displacements xopen and xclosed need to be calculated to properly relate to the spring force 

equation. These calculations are as follows: 
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The spring force equation can now be solved for each of the two states of the gripper 

when it is either fully closed or completely open. When the gripper is closed, the combined force 

of the springs is equal to the free-choice variable Fc, which is the independent variable that Lo 

and k are plotted against for this analysis. The maximum force that the springs can output under 

any circumstance is 30lbs. This combined spring force occurs when the gripper is completely 

open. 

   (  )(       )         (  )(     ) 

   (  )(       )         (  )(       ) 

Solving each of these equations for “k”, setting these resultant equations equal to each other, and 

solving for Lo yields: 

   
               

     
 

Similarly, solving each of these equations for “Lo”, setting the resultant equations equal to each 

other, and solving for “k” yields: 

  
     

 (         )
 

Each of these equations was enumerated in Mathcad and the resulting equations were 

plotted against Fc. The results of this analysis are shown below in Figure 33. The final plot of 

these relationships is shown in Figure 34. 
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Figure 33: Mathcad calculations of natural spring length (Lo) and spring constant (k) 
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Figure 34: Plots of two spring parameters versus the desired spring force in the gripper's closed position 

 

As a result of this spring analysis, the possibility of being able to develop more than 

70lbs of force at the connecting block was realized. The 70lb force required to penetrate a flat 

maple board is significantly greater than the force it would take to penetrate the bark of a tree. 

Using the linear actuator that was sourced which was capable of developing 40lbs, it may not be 

possible to penetrate the tree bark. However, the actuator could be supplemented by springs to 

generate in excess of 60lbs if necessary. Our calculations and testing proved that the concept 

gripper was effective in its ability to adhere to a tree. Following the success of the gripper 

design, the process of designing a body that was capable of utilizing the gripper was started. 
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3.4 TCR12 Body Design 

Taking from the preliminary design and the gripper design, a new design was constructed that 

would provide the flexibility and degrees of freedom that are needed to scale the uneven surface 

of a tree. This new design is shown in Figure 35. The overall length of the TCR12 is roughly 14 

inches, with an approximate width of 5 inches and a height of 6 inches. The overall weight of the 

robot has been calculated to be just over 2 pounds. With its compact dimensions and light weight 

the TCR12 easily fulfills the requirements of being light and portable. The robot consists of two 

grippers connected via a ladder frame, which is connected to a center spherical wrist; in total the 

entire robot has 5 degrees of freedom with respect of one gripper relative to the other. 

 

Figure 35: Tree-Climbing-Robot-2012 SolidWorks Rendering 

The robot is a modular design consisting of two different subassemblies, the gripper 

frame assembly, and the spherical wrist assembly, as shown in Figure 36. The robot is made up 
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of two copies of the gripper frame assembly and one spherical wrist assembly. By creating a 

design that utilizes repeating subassemblies it was possible to minimize the number of unique 

parts, and subsequently ease the manufacturing effort. With this design, only 13 parts needed to 

be machined, allowing for a low production line cost.  

 

Figure 36: Gripper Frame Assembly Solidworks Rendering Left/ Spherical Wrist Assembly Solidworks Rendering Right 

TCR12 is equipped with multiple sensors that allow it to observe its surroundings, 

monitor its own health, and warn people in the event of a gripping failure. On the palm of each 

gripper is a series of 5 push button sensors as seen in Figure 37.  
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Figure 37: Gripper Palm Push-buttons 

The push buttons allow the robot to know when it has made full contact with the climbing 

surface. By having multiple pushbuttons on the palm, the robot not only knows when it has come 

into contact with the climbing surface, but also the orientation relative to the climbing surface. If 

the linear actuator begins to draw too much current it will trip the current sensor, the robot can 

take preventative actions to avoid damaging the linear actuator by opening its gripper, 

repositioning it, and trying again. Also, a safety system was designed to warn people in the event 

of a grip failure. Accelerometers could be added to allow the robot to know when it is falling, 

close the grippers to prevent it from digging into a person if it fell on them, and activate a 

warning sound to notify people that they need to clear the area.  

3.5 TCR12 Gait 

TCR12’s climbing motion is a series of steps that create the robot’s gait. First, TCR12 is placed 

on the tree’s surface, and after the pushbuttons on the gripper’s palms sense that they are in 
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contact with the tree, both grippers close (Figure 38.1). The next step is for the bottom gripper to 

release from the tree (Figure 38.2). Next, the servos on each gripper and the spherical wrist move 

to pre-determined set points, creating a V-shape with the open side against the tree surface 

(Figure 38.3). Then, the bottom gripper clamps down onto the tree surface (Figure 38.4), 

followed by the upper gripper releasing from the tree (Figure 38.5). After that, the two servos 

and spherical wrist move back to the straight out configuration (Figure 38.6). The last step of 

each gait is to reengage the upper gripper with the tree returning to the first step (Figure 38.1). 

This process is repeated as the robot moves up the tree, and the only variation comes when the 

robot needs to turn left or right, or if the upper gripper needs to move in or out compared to the 

lower gripper. By giving the upper gripper 5 degrees of freedom with respect to the lower 

gripper, the upper gripper can be placed in a wide variety of places to traverse even the most 

complicated tree surface.  
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Figure 38: TCR12 State Diagram 
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3.6 Robot Design Analysis 

After the preliminary design was finalized, the next effort was to examine and evaluate the 

robot’s ability to meet our established goals. Various analytical methods were used to determine 

the required specifications for servomotors, find the amount of force developed at the gripper 

spikes in various situations, and solve for the factor of safety when utilizing specific components. 

These analytical methodologies and their respective results are described in the following 

sections. 

3.6.1 Maximum Torque Analysis 

To allow the robot to operate properly it was necessary to determine the greatest torque that any 

servo would ever have to exert to enable the robot to move in a situation. To solve for the worst-

case scenario when the robot was lifting itself in a vertical direction, multiple free body diagrams 

were created and analyses were performed. 

In the horizontal worst-case scenario, only one of the robot’s grippers would be adhered 

to the tree while the body would be fully outstretched. The free body diagram in Figure 39 

illustrates this worst-case scenario. In this diagram, Wc and Wb represent simplified centers of 

mass while Lc and Lb represent simplified lengths of robot components. Equations of equilibrium 

were then established and solved to determine the angle α at which the greatest possible moment 

occurs about point Z. 
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Figure 39: Using Generalized Free Body Diagram to Determine The Max Torque Situation 

Solving for required τs to maintain equilibrium. 

    τs-Wb(Lc+.5Lb)sin(α)-Wc(2Lc+Lb)sin(α) 

τs=-Wb(Lc+.5Lb)sin(α)-Wc(2Lc+Lb)sin(α) 

In order to find the maximum torque, τs, required to keep this system at equilibrium, it 

was necessary to select an angle α that will maximize the value of the sine function and create 

the greatest moment about point Z. When α=90°, the sine function outputs it’s highest possible 

value, 1, and τs has to balance out the greatest possible moment exerted by the weight of the 

body. To solve for τs, a weight distribution diagram, Figure 40, was constructed to determine 

how much torque a servo located at point Z would have to generate in order to maintain 

equilibrium. 
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3.6.2 TCR Weight Distribution 

The precise locations of the centers of mass of each modeled robot component each of their 

respective weights were obtained through SolidWorks. The remaining component weights were 

obtained from their respective manufactures and their centers of mass were estimated. The 

diagram in Figure 40 was constructed to provide an estimate of the torque that would have to be 

generated at the outermost servo in order to lift the body of the robot straight out if it were only 

gripping from one end.  

 

 

Figure 40: Determining the Weight Distribution Diagram 

 

 

A =  gripper assembly (236g) + linear actuator circuit (20g) + servo with servo block (102g) = 

358g 

B = ladder guide (18g)  
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C = servo with servo block (102g)  

D = servo block guide (16g) + bread board (35g) = 51g 

E = central spherical wrist servo assembly (122g)  

F = servo with servo block (102g) 

G = ladder guide (18g) + Arduino (143g) = 161g 

H = gripper assembly (236g) + linear actuator circuit (20g) + servo with servo block (102g) = 

358g 

Total weight = 1272 grams=44.87 ounces=2.80 pounds 

Required torque = 0 *A +2.2” *B + 4.44”*C + 5.64”*D + 6.84”*E + 8.3”*F + 10.23”*G + 

12.43”*H 

Required torque = 0 + 1.39 + 15.98 + 10.15 + 29.41 + 29.88 +58.11 + 156.99 = 301.91 oz-in 

(1.57 ft-lb) 

As shown in the calculations above, it was estimated that the outermost servos would 

need to exert a force of 1.57 ft-lb to lift the weight of the body. After computing and rechecking 

this calculation, servos capable of producing 2.68 ft-lb of torque were found online and were 

considered for use in the body of the robot. If a servo capable of producing 2.68ft-lb were used in 

the claw, it would be using 59% of its maximum torque output to hold the body horizontal. 

After the greatest possible moment required for movement in the vertical direction was 

calculated, it was necessary to check and solve for the maximum moment necessary to allow the 

robot to pivot left and right. In Figure 41 below, servo B rotates while the servo at A holds the 
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robot body horizontal. In Figure 42, the centers of mass of the respective robot components 

located at C, B, E, and F change locations are shown. After the rotation these masses move to 

their new locations at C’, B’, E’, F’ after the rotation at B. 

 

Figure 41: Determining Max Torque (Side View) 

 

Figure 42: Determining Moment Arm Length AC’ After a Rotation of Φ° (Top View) 
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Point 
Weight 
(lb) 

Distance from Point B to Center of Mass (inches) 
when Φ=0° 

C 0.789 6.840 

D 0.040 4.640 

E 0.225 2.400 

F 0.112 1.200 
Table 1: Weights and Distances 

As the servo at point B rotates clockwise, the resultant moment required to hold up end C, 

which is developed at servo A, changes in accordance with angle Φ. While servo B rotates, the 

mass at point C moves to point C’, as do the other respective centers of mass shown in Table 1. 

The lengths BC and AC do not change during the rotation about B. However, the moment arm 

from point A to point C’ changes, indicating a change in the amount of force required to keep the 

body at vertical equilibrium during the rotation. These assumptions were made when solving for 

moment arm AC: 

 Lengths AB and BC are known 

 Angle ABC’ is 180°-Φ°  

 To solve for length AC’ the following equation is used: 

    √         (  )(  )    (     ) 

    √             (    )(    )    (      ) 

          

The moment arms for all of the centers of mass of each of the robot’s components were 

calculated using the formula above and substituting in the appropriate value of BC for each 

component, which is the distance from each respective center of mass to the rotation point B. 

After all calculated moment arms were solved for, they were multiplied by their respective 
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weight to determine the required moment at servo A to maintain equilibrium the result of these 

calculations is in Table 2. Subsequently, the moment generated by the rest of the robot was 

added to the resultant force, everything was converted to foot-pounds, and the resulting graph is 

shown in Figure 43. 

 

Rotation Φ° at Point B 0 10 20 30 40 50 60 70 80 90 100 

Distance BC (inches) 12.430 12.382 12.242 12.009 11.686 11.275 10.780 10.204 9.552 8.830 8.044 

Distance BD (inches 10.230 10.191 10.075 9.883 9.616 9.278 8.869 8.395 7.858 7.262 6.613 

Distance BE (inches) 7.990 7.964 7.887 7.761 7.586 7.364 7.099 6.794 6.453 6.082 5.686 

Distance BF (inches) 6.790 6.775 6.730 6.656 6.554 6.427 6.276 6.104 5.917 5.716 5.509 

Resultant force (in-lb) 12.777 12.730 12.592 12.364 12.047 11.645 11.162 10.601 9.967 9.268 8.509 
Table 2: Resultant Forces after Rotations 

 

Figure 43: Required Torque vs. Rotation Graph 
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By the two using the two analytical methods detailed above, it was determined that the 

maximum required torque output of any servo during any body positioning movement is 1.57 ft-

lb. This situation is encountered when a servo at one end of the robot is holding the opposing end 

of the body out parallel with the horizontal plane. Next, it was necessary to determine what 

forces the gripper could exert on the body of the TCR while in operation. 

3.6.3 Gripper Force Analysis 

In order to determine the force that would be generated at the spike for any given spike insertion 

angle, θ, force equations were derived using geometric relations measured in SolidWorks. The 

following images, taken from the SolidWorks CAD models that the team created, show the 

geometric relations between the forces developed at various points and the effects of various 

component geometries of the robot claw components.  

 

Figure 44: Determining Spike Angle 
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Solving for spike insertion angle θ: 

 

   ( )
 

 

   (  )
 

       (
 

 
   (  )) 

      

 

Figure 45: Determining Spike Moment Arm 1 
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Figure 46: Determining Spike Moment Arm 2 

The distance from the center connecting block to the tip of the spike is: .57in+ .75in = 

1.32in. A minimum of 40lbs of force is developed at the connecting block. In this situation, 10lbs 

of force are developed at each of the connecting linkages.  

Solving for the resulting X and Y component forces developed the end of each spike when 40lbs 

of force is applied to the center connecting block: 

X-force=10(1.32)cos(30)=11.1inlb 

Y-force=10(1.32)sin(30)=6.6inlb 

Since these forces are developed at one end of the robot while the claw is closing, the 

servomotor at the opposing end of the robot needs to maintain equilibrium. The two farthest 

spikes are 13.24in from the axis of rotation of the opposing servo, while the two closer spikes are 

11.06 inches away from the axis of rotation the opposing servo. The torque that needs to be 

developed at the opposing servo and maintain equilibrium while the other claw closes is: 
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   ( (     ))

  
             

   ( (     ))

  
            

The following graph shows the relationship of the angle of insertion to the amount of 

force, developed in the X and Y directions at each spike when the claw closes. The forces 

developed in the X and Y directions are equal when the insertion angle is 80°, and the Y force 

goes to zero when the spike is completely horizontal. The production claw was designed with a 

30° insertion angle to reduce force in the Y direction, while providing a strong force in the X 

direction. This was done to help prevent the robot from pushing itself off of the tree when the 

claw closes. 

 

Figure 47: Force vs. Insertion Angle Graph 
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3.6.4 Determining Spike Reaction Forces 

In order for the robot to be able to actually stay adhered to a tree that it is climbing, the spikes 

gripping the tree must experience reaction forces from the tree that are able to cancel out the 

forces applied to these spikes by the robot’s weight. The realistic worst case that the robot can 

experience when the forces on the spikes are the greatest is when the robot’s bottom claw is 

anchored into the tree while the other claw is not attached to any surface and the body extends 

away from the vertical tree at a 45° angle. This configuration is illustrated in Figure 49. This is 

the realistic worst case because the robot is physically unable to drop the body lower than this 

45° position due to various components of the chassis colliding with each other and limiting the 

range of motion. This model simplifies the robot to two dimensions and simplifies the weight 

distribution of the robot into three discrete elements. These three elements are the overall central 

body and each of the two grippers. The model also assumes that the only two points of contact 

between the robot and the tree are points A and B. Since there are four gripping spikes on the 

claw, each of those two points represents the effective contact point of two spikes. The goal of 

this analysis was to determine the spike reaction forces at points A and B. Since there are four 

reaction forces to solve for (RA,x , RA,y , RB,x and RB,y) and this model is only two-dimensional, 

this problem is statically indeterminate. 

 

Figure 48: Dimensions for the 2-D model 
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Figure 49: Worst case free-body diagram for spike holding/reaction forces - statically indeterminate 

 

In order to solve for the spike reaction forces, the number of unknowns must be reduced 

from four to three. This was achieved by assuming that there is no y-component of the reaction 

force at point B (RB,y = 0). Since the bottom spike would actually bear some of the force in the y-

direction with the real robot, this assumption will cause RA,y to appear greater in magnitude than 

in the real-world situation. This overshoot maintains this analysis as a worst-case scenario 

because the top spike at point A would be more likely to lose its grip on the tree and dislocate, 

causing the robot to fall. This is because the robot’s weight trying to rotate the gripper counter-

clockwise, thereby pulling the top spike at point A out of the tree while pushing the bottom spike 
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at point B into the tree. The new statically determinate free-body diagram of this model is 

illustrated in Figure 50. All evident forces are represented as red arrows. 

 

Figure 50: Worst case free-body diagram for spike holding/reaction forces - statically determinate 

Using this free-body diagram, the forces in the y-direction can be related to solve for RA,y. 

∑                  
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Similarly, the forces in the x-direction can be summed to determine the relationship between RA,x 

and RA,y. 

∑               

           

The final equation of static equilibrium that can be applied is the sum of moments. Since the 

moments were calculated about point A, the relationship between A and all of the other points 

needed to be determined. These measurements are illustrated in Figure 51, Figure 52, and Figure 

53. 
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Figure 51: Measurements of point Z relative to point A 
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Figure 52: Measurements of point C relative to point A 
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Figure 53: Measurements of point D relative to point A 
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With all of these values describing the location of all points relative to point A, the sum of 

moments about point A could then be calculated. 

∑          (    )        ( )  (   )        ( )  (   )        ( )  (   ) 

       (      )              (      )  (       )              (      )  (       )          

    (      )  (        ) 

     (      )   [            (      )  (       )              (      )  (       )          

    (      )  (        )] 

     
 [            (      )  (       )              (      )  (       )              (      )  (        )]

(      )
 

                         

This value for RB,x can then be plugged into the resultant equation from the sum of the forces in 

the y-direction to solve for RA,x. 

           

                       

In summary: 

            ,             , and               

The magnitude of the overall reaction force exerted by the tree onto the spike at point A is then: 

|  |  √(    )
 
 (    )

 
 √(       )  (       )  

|  |          



73 

 

|  | represents the maximum magnitude of the reaction force exerted on the spike at 

point A. The direction in which this force acts can be calculated as follows with   representing 

the angle between the positive x-axis and the direction of the maximum force (measured in the 

clockwise direction). 

       (
    

    
)       (

       

       
) 

         

The torque required by the servo at point Z to hold the robot in this 45° position was calculated 

based on the dimensions previously specified in Figure 40. 

A =  gripper assembly (236g) + linear actuator circuit (20g) + servo with servo block (102g) = 

358g 

B = ladder guide (18g)  

C = servo with servo block (102g)  

D = servo block guide (16g) + bread board (35g) = 51g 

E = central spherical wrist servo assembly (122g)  

F = servo with servo block (102g) 

G = ladder guide (18g) + Arduino (143g) = 161g 

H = gripper assembly (236g) + linear actuator circuit (20g) + servo with servo block (102g) = 

358g 
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Total weight = 1272 grams=44.87 ounces=2.80 pounds 

Required torque = 0 *A + sin(45°)*2.2” *B + sin(45°)*4.44”*C + sin(45°)* 5.64”*D + sin(45°)* 

6.84”*E + sin(45°)* 8.3”*F + sin(45°)* 10.23”*G + sin(45°)* 12.43”*H 

Required torque = 0 + 0.98 + 11.30 + 7.18 + 20.80 + 21.13 + 41.09 + 111.01 = 213.49 oz-in 

(1.11 ft-lbs) 

Therefore, the minimum torque that the servo at point Z must exert to hold the robot statically 

stable on the tree in the 45° offset position is 1.11 ft-lbs. 

 

3.6.5 TCR Component Stress Simulations 

After the design of the gripper was finalized and prototype testing had been completed, it was 

determined that the design could feasibly adhere to a tree with minimal design changes. In order 

to allow the gripper to penetrate wood it would be necessary to generate a force of approximately 

70lbs at the connecting block. Since this load was significantly higher than expected when the 

gripper was designed, all parts that would be placed under an increased load were analyzed to 

ensure that they could bear the required loads without deformation. SolidWorks 

Simulationxpress was used to carry out these static load simulations. The assumptions made 

during these tests, the simulation settings, results, and conclusions are presented below. 

Assumptions: 

 All loads are static 

 Applied loads are estimated and exaggerated to simulate an extreme circumstance 

 All loads are applied as close to their real location as possible  
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 All parts are modeled out of 6061 aluminum alloy with a yield strength of 1150000 

lb/ft^2 and a tensile strength of 2515000 lb/ft^2 

3.6.6 Stress Simulation Results 

All but one of the parts that underwent the SolidWorks SimulationXpress were readily able to 

hold their exaggerated loads, had an acceptable margin of safety, and exhibited relatively 

minimal displacement. Screenshots of these tests are shown in Appendix C. The lowest factor of 

safety experienced by any part during the simulations was the y-block, which had a minimum 

factor of safety of .84. However, the y-block test load of 17.5 lb was significantly higher than it 

would experience in actuality and it was also applied to the face at end of the y-block. In reality 

the load would be transmitted to the part via two bolts, capped with nuts, which would pass 

through the holes at each end of the y-block. The additional support provided by aforementioned 

nuts and bolts will prevent the applied load from spreading the fork end of the y-block, which is 

the area exhibiting the highest deformation and the lowest factor of safety in the simulation. With 

this in mind, it is reasonable to assume that the y-block will not deform under load as shown in 

the simulation results.   

3.7 Software and Controller Design 

TCR12 is a fairly simple state machine with four sensors and seven actuators.  Two types of 

sensing occur on the robot.  Whether or not either gripper is in contact with the climbing surface 

is sensed with pushbuttons on both grippers and amount of force being exerted by the linear 

actuators is measured by current-sensing circuits wired in series with them. The force sensing is 

mainly used to monitor the actuators’ performance and determine how well the robot is gripping 

various surfaces.  The pushbuttons, however, play an important role in state-to-state transitions 
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when climbing. They are what determine whether or not the robot is ready to make the next 

motion in the gait. 

The seven actuators are broken down to 5 rotational servos and 2 linear actuators, each of 

which requires independent controllability. Depending on the current mode of the robot, whether 

climbing or turning, one or several of these actuators may need to respond to the gait sequence or 

direct input from the user.  A flowchart overview of the control program for TCR12 can be found 

in Appendix D. 

All components were taken into consideration when evaluating potential system 

controllers. The controller would need to allow for analog and digital input, PWM outputs, and 

live communication to a user interface device.  For this an Arduino Mega microcontroller was 

selected.  The Arduino has more than adequate Input/Output capabilities as well as built in ADC 

to convert the analog signals from the current-sensing circuits.  It also has several options for 

servo control.  It is an inexpensive option with more than enough ability for this application. 

3.8 Programming  

The control program development began with defining a coordinate system, and naming I/O 

components accordingly for clarity. Figure 54 depicts the naming convention used.  The three 

servos at the center of the robot, which control chassis movement, are named based on which 

axis about which they generate rotation. 
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Figure 54: Orientation and component naming convention 

Once the components were defined and initial device setup coded, serial communication 

was established to enable manual control via PC. Using a PuTTY command window, the user 

can supply inputs for several motions. An example of the command window in action is shown 

below in Figure 55, along with a sample of the code, depicting one of the motion functions. 

 

Figure 55: Left: PuTTY Command window in action.  Right: Snippet of code showing turning function. 
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As mentioned previously, there are six different states for the climbing (and descending) 

gait. Transitions from one state to another are triggered by input from the pushbuttons on the 

bottom of either gripper. To perform the climbing motion there are two functions, upperStep() 

and lowerStep(). Starting in state one, the lowerStep() function makes all necessary calls to open 

the bottom gripper, raise the lower half of the chassis, and close the gripper on the tree again 

ending in state four. The upperStep() function then moves all servos and actuators required to 

raise the top half of the chassis and return the robot back to the first state. For transitions between 

these steps, helper-functions named makeContact() and checkContact() run to slowly move the 

desired portion of the chassis towards the tree until the pushbuttons are depressed, then close the 

gripper. All of this loops continuously when the user has commanded the robot to be in ‘vertical 

mode’ until a new command is entered. To descend, ‘vertical mode’ simply takes in a variable 

based on user input that reverses the order of the sequence described above. 

The other two motion modes are used for turning purposes. When either of these modes 

is initiated in climbing mode, the top gripper opens and the user then has direct control of the 

upper half of the chassis. Conversely, the bottom gripper and lower half of the chassis is 

controlled when initiated in descending mode. By using the commands for ‘turning mode’, 

chassisServoZ is activated to turn the robot around the z-axis, to change the robots direction in 

the same plain as it was already in. Using different input commands, the user can initiate ‘rolling 

mode’ which rolls the robot around the y-axis and the circumference of the tree, using 

chassisServoY. Using this command will re-orient the robot correctly so that the gripper is facing 

the tree and can make contact after a turn is performed. Figure 56 depicts the keyboard input for 

each command. 
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Figure 56: User controls 

 

Finally, a program was incorporated to enable users to monitor forces applied to either 

gripper’s center block. To do so, current drawn by the gripper actuators is measured through 

circuitry and converted to force through code. This data is then displayed on the console for the 

user to monitor while operating the robot. 

Originally, an autonomous program was started, but never finished since the robot will be 

tethered. It may be further developed for future versions of the robot, if more sensing and 

obstacle avoidance is added.   
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3.9 Electronics 

3.9.1 Current Sensing: 

As mentioned above, the system allows for the user to monitor how much force is being applied 

by the gripper. This is used to determine optimal force required for gripping different surface 

properties, or different kinds of trees. Displaying this data live to the user enables them to 

determine if the gripper has applied enough force to hold on at any given time during operation. 

In order to sense the force on a gripper, the current drawn by the linear actuator which drives the 

gripper needs be measured. To do so the circuit below was designed. It measures the current 

going through the actuator directly by adding a shunt resistor in series with the actuator’s ground 

lead. The voltage drop is then measured across this resistor, and is converted to current using 

Ohm’s Law, V=iR. In order to get an accurate measurement that would not waste too much 

power in the process, a high precision, extremely low resistance (5 milliohms) shunt resistor was 

selected. This resistor is labled Rsense in Figure 57 below. 

 

Figure 57: Current Sense Circuit Diagram 
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Since the voltage drop, Vsense, across such a small resistor is very small, an operational 

amplifier is needed to boost the voltage into a range that the Arduino microcontroller can make 

use of. Using the resistor value of Rsense, and the 650mA stall current of the actuators, the 

maximum voltage drop across the shunt resistor was determined. Comparing that voltage to the 

maximum voltage of 5V that the Arduino’s ADC uses, the required gain from the op amp was 

determined to be 1538. To get this gain, a voltage divider needed to be set up between the op 

amp’s output, inverting input, and ground. Using available resistors, a very close gain of 

approximately 1500 was achieved. These calculations are depicted in Figure 58 below. 

 

Figure 58: Op-Amp Gain Calculations 
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With this gain, the voltage range that is input to the Arduino’s ADC is 0-4.78V. 

Comparing this range to the 0-1023 range of ADC values allowed for calculations to be made 

which would map any value read from the ADC to the actual voltage drop across the shunt 

resistor. From there, simple algebra was used to determine the actual current running through the 

shunt resistor, and thus the actuator as seen below.  

 

Figure 59: Mapping ADC values to Curent 

Using the Current vs. Force graph obtained from the actuator’s manufacturer, as shown 

below in Figure 60, the current being sensed was then converted to an actual force being exerted 

on the gripper’s center block.  A force of 0N is exerted by the actuator until 50mA is achieved, 

then it linearly climbs to 200N, or 44.96 lbs., at 400mA.  This range was used to calculate the 

force in pounds per amp.   
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Figure 60: Current vs Force graph for Firgelli L16 actuators, courtesy of Firgelli Technologies Inc. 

 

 

Quantity Parts Required 

2 0.005Ω Shunt Resistors 

2 680Ω Resistors 

2 1MΩ Resistors 

1 LM324N Op Amps 

Table 3: Current-sensing circuit parts list 
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Finally, the parts were ordered according to the list in Table 3 and a test circuit was 

constructed. A test program was written to manually run one actuator and print the current and 

force being sensed to the user console. A multimeter was wired in series with the test circuit in 

order to compare values for proof of concept. The tests yielded positive results, and thus a final 

set of circuits was constructed. All of the calculations were then coded into the main program in 

order to display real time force readings to the user. For TCR12, the circuits will remain on a 

prototyping breadboard to allow for flexibility incase additional circuitry is needed. Future teams 

may consider switching to a printed circuit board for added robustness and weight reduction. The 

prototype test circuit, the test setup, and the final circuits are shown in Figure 61, Figure 62, and 

Figure 63, respectively 

 

Figure 61: Current Sense Circuit Prototype 
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Figure 62: Current Sense test setup 

 

Figure 63: Finalized current sense circuits 
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4. Final Testing 

Once final assembly of the prototype was complete, testing began. First it was necessary to 

manually jog each joint servo to find the set points for centered and extreme positions. These 

values were subsequently entered into the robot control program. After all correct values were in 

place, the program was ready for testing.  Initially, all individual functions of the program, such 

as the climbing command, were tested separately to ensure proper operation. This stage of testing 

was conducted on a horizontal surface to ensure that the robot had the proper gait before 

attempting a vertical climb. Once functionality was established, the manual control program was 

tested in whole, with user input as described in the Programming section. Figure 64 depicts the 

robot in its initial state on the left, and then in the middle of its stride on the right. 

 

Figure 64: TCR12 half-stride 

After fine tuning the program to get a smooth and consistent gait, vertical testing began. A new 

testing apparatus was constructed, as shown in Figure 65, to allow for safe vertical testing. 
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Figure 65: Testing apparatus 

The testing apparatus was capable of holding the upright post at any angle ranging from a 

vertical position to a completely horizontal position. To tether the robot to the post, a rope was 

looped over a pulley at the top of the post, and attached to the robot at the other end. This was a 

precautionary measure taken to prevent the robot from crashing to the ground if something were 

to go awry. 

To test the vertical climbing ability of the robot, it was held against the tower and the 

start position command was given to close both of the grippers. With both grippers closed, they 

were able to hold the robot to the tower and subsequently the climbing function was called. 

When one gripper opened and the robot attempted to climb, a slight jolt occurred. This sudden 

application of force was enough to dislodge the spikes of the other gripper, causing the robot to 
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fall. The team realized that although the grippers had sufficient force to drive the spikes in 

enough to hold the robot in place, they were not driven in deep enough to withstand the motion 

of the next gait step with only one gripper holding it. The team considered installing springs in 

the grippers to increase the force developed at the spike points. However, the calculations in the 

Gripper Force Analysis section proved that the servos would not have enough torque to 

withstand the push-off force the tower would exert back on the gripper with increased closing 

force. 

At this point the team decided that vertical climbing would not be attainable for this 

iteration of the robot. The team then moved to establish proof of concept for individual functions 

of the robot. In the earlier stages of testing, shown in the Gripper Assembly and Testing section, 

the gripper mechanism had proven it was capable of holding substantial weight when enough 

force was generated to drive its spikes in. Also, the chassis design and control program 

demonstrated the ability to perform a smooth and consistent gait. 
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5. Conclusions  

5.1 Project Review 

Few robots in existence can climb vertically, and none of them could satisfy our established list 

of requirements. Having abandoned altogether the initial prototype from the previous project 

team, this team started from scratch. The team had to consider both proven and unproven 

methods of climbing to determine the best design features. Then the team needed to decide how 

to execute the chosen approach and come up with a design. The design underwent analysis in 

many areas before being machined and assembled for testing. During testing, unexpected issues 

arose, requiring much trouble shooting and a minor redesign. Finally a finished prototype was 

assembled, tested, and analyzed in order to establish a list of things that worked well and things 

that future project teams should take into consideration. 

5.2 Results 

Throughout the project, the team was able to demonstrate their expertise in designing and 

analyzing mechanical, electrical, and computer-controlled systems. That being said, the robot 

was unable to climb a vertical surface due to one factor, the force required to drive the gripper 

spikes into the wood. This is something that the team grappled with for the duration of the 

project. No resources could be found that provided an acceptable model of the mechanical 

properties of tree bark, requiring that the team estimate the force instead. The team did not 

correctly estimate the amount of force required to drive in the spikes, and this reduced the 

effectiveness of the design. To compensate for this, the spikes were sharpened to make them 

more effective at penetrating the wood, and several sets of legs were machined with different 

spike insertion angles with the hope that they might also reduce the force required.  However, 
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these modifications did not have enough of an impact to allow the gripping function to operate as 

intended. It was determined that stronger actuation must be added to the grippers, which in turn 

would require replacing the chassis servos to compensate for the additional weight of said 

actuators and the additional push back force that accompanies a stronger closing force.  Another 

option would be to use micro-spine style spikes, as seen on some of the robots in the Research 

section of this paper.  Future teams might consider investigating the possibility of combining 

both of these ideas.  

Although vertical climbing was not achieved, the team still made solid progress in several 

aspects. Through research and analysis, an exceptional gripper was designed, built, and proven 

successful. A chassis of high mobility was designed and constructed in a way that kept it 

extremely light weight, which was decidedly an important feature. The chassis effectively 

demonstrated its ability to perform a smooth gait, as well as turn and twist to navigate around the 

circumference of a convex surface. Along with progress made mechanically, there were steps 

taken to enhance the control system as well. A program was written that established full motion 

control of the robot via user input through a laptop. This program was tested and tuned to 

provide a consistent gait. A feedback system was incorporated into this iteration of the robot, 

with sensors built into the grippers to enable further control of actuation for optimum grip. Also, 

the team designed and constructed circuitry that allowed the user to monitor the force being 

applied by the grippers, which future iterations of this project can build and improve on. 
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6. Recommendations and Future Work 

6.1 Gripping 

As mentioned numerous times in this report, the gripping needs to be addressed. The mechanism 

itself works great, but needs to be able to drive the spikes in further. Two suggestions to 

accomplish this are to look at the actuation and the spikes. If the robot can be modified to handle 

adding more force at the gripper actuators, the spikes should be able to sink in enough to hold 

while climbing. When the team manually exerted 70lb of force to the center block where the 

actuation occurs, the gripper was then able to hold a substantial force before being pulled out.  

Also, teams might consider looking into micro-spines. Something like a medical syringe or the 

end of a fishing hook may be easier to drive into the wood due to its smaller diameter and 

sharpness. 

6.2 3D Printing 

Future iterations of this project should seek to utilize lighter materials such as 3D printing resin 

save weight and lower the amount of force required to move the robot in any given situation. In 

order for 3D printed parts to be a viable alternative to machined aluminum parts, several parts, 

such as the Y blocks, would need to be redesigned. When the 3D printed robot was created 

multiple Y blocks were damaged during assembly and needed to be re-printed. However, if the 

current design was modified properly and aluminum parts were used in high stress areas, 3D 

printing could be a feasible way to lower the weight of the robot and increase it’s effectiveness.  

6.3 Safety Features 

Since this was not a production design, several safety features were omitted that could easily be 

included in next year’s design. The next tree-climbing robot could be made to be a highly visible 
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color, such as construction orange, or vibrant green, to make it easy to see. Additionally, a slip 

notification system, such as an accelerometer wired to set off a warning siren of a fall is detected 

should be employed in future designs. This is another effective way to warn people that there is a 

falling robot overhead and they should relocate themselves immediately. 

6.4 Power Distribution 

There are several necessary considerations when deciding on a power supply. The suggested 

supply for the Arduino is anywhere between 7-12V. An on-board regulator will reduce that to 5V 

which it operates on, and also provides extra pins to pull that 5V to other components that need 

it, provided they do not draw more than 40mA of current. This can be used to power the op amps 

necessary for the current sensing circuits. There are 5 servos that require 8.4V and draw roughly 

1.5-2A of current when stalled. This totals 10A in a ‘worst-case’ scenario of all 5 being stalled at 

once. Finally, the linear actuators run on 12V, and will draw up to 650mA when stalled. There 

are two of these, so combined they could draw up to 1.3A. 

Fortunately, since this version of the robot is tethered, battery weight was not a concern. 

The supply can sit on the ground with the user, with just the wires running up the tether to the 

robot. Due to this fact, this iteration of the robot utilizes a bench-top power supply. Ideally, 

however, there would be an on-board power supply for the robot.  To accomplish this, future 

teams could consider using a 12V battery with a maximum discharge rate of at least 12A. 

Although it will probably never be in a situation that requires it to power everything at the same 

time, it is advised to allow for the possibility to do so. In order for a single 12V supply to power 

all components, step-down voltage regulators could be purchased to bring the voltage down to 

the 7.4V that the servos need. It will be important to consider the output current ratings when 

selecting regulators as to not restrict flow to the servos. 
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Future teams should also consider light weight battery options if they intend to go tether-less. 

They will need to keep in mind discharge rates and capacity in order to have longer lasting run 

times that still allow for full power for all of the robot’s components. 
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7. Appendix A: Rapid Prototyping 

In an attempt to reduce the weight, cost, and time of construction a 3D printed version of the 

robot chassis was created. This 3D printed version was created using the MakerBot Replicator, 

on loan from Scott Innocenzi at Nottingham High School - North. By converting the SolidWorks 

part files into .Stl files, these parts were printed and assembled using model glue. The finished 

model can be seen below in Figure 66. 

 

Figure 66: 3D printed TCR12 Chassis 

From this 3D printed chassis the team learned that that time to construct each part was drastically 

reduced when compared with the time required to machine the same part out of aluminum. Also 

the 3D printed part was roughly 1/3
rd

 the weight of its aluminum counterpart. The problem with 
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3D printed parts is that they could not withstand enough force to be a viable alternative to 

aluminum parts for our design.  

8. Appendix B: Budget for Initial Design 

Price per item Qty Total Price Part Note 

$43.80 5 $219.00 Servos Small size 

$28.40 5 $142.00 Servo Blocks 
load-bearing servo 
case 

$117.00 2 $234.00 Linear actuators 
rated at 3 lbs of 
force 

$2.35 5 $11.75 H-bridge chip 
2 Motors per 
controller 

$200.00 1 $200.00 Chassis machining 

    $0.00 Hardware nuts, bolts, etc. 

$50.00 1 $50.00 Cables/Wires   

$40.00 8 $320.00 Claws High strength metal 

$50.00 1 $50.00 Arduino Mega (if necessary) 

$50.00 2 $100.00 Cameras Laptop webcam 

    $1,327 Total Requested   
 

Table 4: Estimated Budget for Initial Prototype Design 
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9. Appendix C: Initial Proposed Project Timeline 
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10. Appendix D: Component Stress Simulations 

10.1 Claw Arm Simulation  

Fixtures and Loads 

Fixture Image Fixture Details 

                 

Entities: 2 face(s) 

Type: Fixed 

Geometry 

 

Load Image Load Details 

                 

Entities: 1 face(s) 

Type: Apply 

normal force 

Value: 17.5 lbf 

 

 

Name Type Min Max 

Stress VON: von Mises 

Stress 

319.22 

lb/ft^2 

719641lb/ft^2 

Displacement URES: Resultant 

Displacement 

0 in 0.00222 in 

Factor of Safety Max von Mises 

Stress 

1.60051 3608.2 
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10.2 Center Block Simulation 

Fixtures and Loads 

Fixture Image Fixture Details 

 

Entities: 8 face(s) 

Type: Fixed 

Geometry 

 

Load Image Load Details 
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Entities: 1 face(s) 

Type: Apply 

normal 

force 

Value: 70 lbf 

(Load 

applied to 

front face of 

part) 

 

 

 

Name Type Min Max 

Stress VON: von Mises 

Stress 

560.3 

lb/ft^2 

115504.4 lb/ft^2 

Displacement URES: Resultant 

Displacement 

0 in .000002 in 

Factor of Safety Max von Mises Stress 9.9719 2056.99 
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10.3 Linear Actuator Bracket Simulation 

Fixtures and Loads 

Fixture Image Fixture Details 

 

Entities: 1 face(s) 

Type: Fixed 

Geometry 

 (Fixture 

located on the 

underside of 

this part) 
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Load Image Load Details 

 

Entities: 1 face(s) 

Type: Apply 

normal force 

Value: 40 lbf 

 

 

 

 

 

 

Name Type Min Max 

Stress VON: von Mises 

Stress 

44.528 lb/ft^2 

 

162737.2 lb/ft^2 

Displacement URES: Resultant 

Displacement 

0 in .0003343 in 

Factor of Safety Max von Mises 

Stress 

7.078 25866.8 
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10.4 Y-Block Simulation 

Fixtures and Loads 

Fixture Image             Fixture Details 

 

Entities: 2 face(s) 

Type: Fixed 

Geometry 

 

Load Image Load Details 

 

Entities: 1 face(s) 

Type: Apply normal 

force 

Value: 17.5 lbf 

 

 

 

Name Type Min Max 

Stress VON: von Mises Stress 4929.33 lb/ft^2 1377805.7 lb/ft^2 

Displacement URES: Resultant 

Displacement 

0 in .00126 in 

Factor of Safety Max von Mises Stress .8356 233.662 
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11. Appendix E: TCR12 Program Flowcharts 

11.1 Climbing routine 

 

  

Start

Both grippers in 
contact?

Wait for user 
inptut

State 1

Open bottom gripper

State 2

Move servos:
-top wrist servo

-bottom wrist servo
-chassis servo-X

into straight position

State 3

Move servos:
-top wrist servo

-bottom wrist servo
-chassis servo-X

into curled position

Bottom gripper 
in contact?

State 4

Open top  gripper

Top gripper in 
contact?

Move servo
Chassis servo-X 

toward tree

State 5

Move servo:
-chassis servo-X

Top gripper in 
contact?

State 6

Move servo:
-chassis servo-X

Close top gripper

Move servo
Chassis servo-X 
away from tree

Close bottom 
gripper

Bottom gripper in 
contact?

No

Yes

Yes

No

Yes

No

Yes

No

Yes

No
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11.2 ISR1: Turning 

 

ISR1: Turning

Direction 
heading?

Bottom gripper 
in contact?

Open gripper, rotate 
chassis servo-X 

slightly away from 
tree

Enable direct 
manual control of 

chassis servo-Z

New command?

Entered ISR with 
gripper in 
contact?

Rotate chassis 
servo-X toward tree 

and close gripper

Exit ISR

Top gripper in 
contact?

Open top gripper, 
rotate chassis servo-

X away from tree

Yes

NoNo

Yes

No

Yes

No

Up Down
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11.3 ISR2: Rolling 

 

ISR2: Rolling

Direction 
heading?

Bottom gripper 
in contact?

Open gripper, rotate 
chassis servo-X 

slightly away from 
tree

Enable direct 
manual control of 

chassis servo-Y

New command?

Entered ISR with 
gripper in 
contact?

Rotate chassis 
servo-X toward tree 

and close gripper

Exit ISR

Top gripper in 
contact?

Open top gripper, 
rotate chassis servo-

X away from tree

DownUp
Yes Yes

No No

No

Yes

Yes

No



108 

 

11.4 Tree-Climbing Robot 2012-2013 Manual Control Program 

1. /* FILE:            TCRManualControl.pde  
2. // TITLE:           Tree-Climbing Robot 2012-2013 Manual Control  
3. // WRITTEN BY:      Eric Cobane  
4. // COMMENTED BY:    Ryan Giovacchini  
5. // DATE COMPLETED:  February 28, 2013  
6. //  
7. // PURPOSE:  
8. // This program allows the user to control the TCR12's motions using a   
9. // computer keyboard.  
10. //  
11. // FUNCTIONS:  
12. //  
13. // initialize  
14. //      will initialize the system, setting up the correct input and output   
15. //      ports on the Arduino   
16. //  
17. // main   
18. //      will continously loop waiting for user input from the computer   
19. //      keyboard  
20. //  
21. // startPosition  
22. //      will allow the user to get robot attached to the climbing surface   
23. //      in its starting position  
24. //  
25. // lowerStep  
26. //      will open the lower gripper, then will move lower chassis segment   
27. //      according to direction, then will close the lower gripper in it's   
28. //      new position   
29. //  
30. // upperStep  
31. //      will open the upper gripper, then will move upper chassis segment   
32. //      according to direction, then will close the upper gripper in it's   
33. //      new position   
34. //  
35. // turn  
36. //      will turn the robot left or right about the z-axis  
37. //  
38. // roll  
39. //      will turn the robot left or right about the y-axis  
40. //  
41. // activateGripper  
42. //      will open or close the gripper specified  
43. //  
44. // makeContact  
45. //      will rotate the chassis around the x-axis until the specified   
46. //      gripper is in contact with the tree's surface  
47. //  
48. // slowServo  
49. //      will control the speed of a specified servo from its current   
50. //      position to a desired position  
51. //  
52. // INCLUDED FILES:  
53. //  Servo.h  
54. */   
55.    
56. #include <Servo.h>   
57.    
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58. // Set up each of the five servos and two linear actuators:   
59. Servo upperGripperActuator;     // The linear actuator for upper gripper   
60. Servo lowerGripperActuator;     // The linear actuator for lower gripper   
61. Servo upperWristServo;          // The servo for rotating the upper gripper platform   
62. Servo lowerWristServo;          // The servo for rotating the lower gripper platform   
63. Servo chassisServoX;            // The chassis servo for rotation about the x-axis   
64. Servo chassisServoY;            // The chassis servo for rotation about the y-axis   
65. Servo chassisServoZ;            // The chassis servo for rotation about the z-axis   
66.    
67. // Define constants for upper and lower linear actuators boundries   
68. const int upperGripperOpen = 1300;      // Value to open upper gripper in Âµs   
69.                                         //(microseconds)   
70. const int upperGripperClosed = 1125;    // Value to close upper gripper in Âµs   
71.                                         //(microseconds)   
72. const int lowerGripperOpen = 1275;      // value to open lower gripper in Âµs   
73.                                         //(microseconds)   
74. const int lowerGripperClosed = 1100;    // value to close lower gripper in Âµs   
75.                                         //(microseconds)   
76.    
77. // Define constants for servo centers and boundaries   
78. const int xServoCenter = 1450;      // Value to center chassisServoX in Âµs   
79.                                     //(microseconds)   
80. const int yServoCenter = 1750;      // Value to center chassisServoY in Âµs   
81.                                     //(microseconds)   
82. const int zServoCenter = 1300;      // Value to center chassisServoX in Âµs   
83.                                     //(microseconds)   
84. const int upperServoCenter = 1500;  // Value to center upperWristServo in Âµs   
85.                                     //(microseconds)   
86. const int lowerServoCenter = 1650;  // Value to center lowerWristServo in Âµs   
87.                                     //(microseconds)   
88.    
89. // Define constants for servo positions for lower step   
90. const int xServoLS = 800;       // Value for chassisServoX to make Lower Step in Âµs   
91.                                 //(microseconds)   
92. const int lowerServoLS = 1450;  // Value to for bottomWristServo to make Lower Step in 
93.                                 // Âµs(microseconds)   
94. const int upperServoLS = 1100;  // Value to for topWristServo to make Lower Step in    
95.                                 // Âµs(microseconds)   
96.    
97. // Global variables to keep track of servos' current position   
98. int upperServoPos;  // Variable to hold position for upperWristServo in Âµs   
99.                     //(microseconds)   
100. int lowerServoPos;  // Variable to hold position for lowerWristServo in Âµs   
101.                     //(microseconds)   
102. int xServoPos;      // Variable to hold position for chassisServoX in Âµs   
103.                     //(microseconds)   
104. int yServoPos;      // Variable to hold position for chassisServoY in Âµs   
105.                     //(microseconds)   
106. int zServoPos;      // Variable to hold position for chassisServoZ in  
107.                     // Âµs(microseconds)   
108.    
109. // Variable used for speed control   
110. int lowerIncrement = 10;                        // Amount to increment  
111.                                                 // lowerWristServo   
112.                                                 // during slowServo()   
113. double upperIncrement = lowerIncrement * 2.2;   // Amount to increment  
114.                                                 // upperWristServo   
115.                                                 // during slowServo()   
116. double xIncrement = lowerIncrement * 3.5;       // Amount to increment  
117.                                                 // xWristServo during    
118.                                                 // slowServo()   
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119.    
120. // Constant values for program   
121. const int up = 1;       // Used to signify robot is climbing   
122. const int down = 0;     // Used to signify robot is descending   
123. const int upper = 1;    // Used as parameter to choose upper gripper to operate  
124.                         // on, in activateGripper() and makeContact()   
125. const int lower = 0;    // Used as parameter to choose lower gripper to operate  
126.                         // on, in activateGripper() and makeContact()   
127.    
128. // Variables used for program   
129. char userInput;         // Variable for reading serial data from user input   
130. int vertDirection = 1;  // Variable to store which direction the robot is going  
131.                         // vertically (used for turning and rolling functions)   
132.    
133. // Function prototypes   
134. void initialize();   
135. void startPosition();   
136. void lowerStep(int direction);   
137. void upperStep(int direction);   
138. void turn(char direction);   
139. void roll(char direction);   
140. void activateGripper(int gripper, int pos );   
141. void makeContact(int gripper);   
142. void slowServo(int servoSelect, int startPoint, int setPoint, int increment);   
143.    
144. void main() {   
145.     initialize();   
146.   // Wait for serial input   
147.   if (Serial.available() > 0) {   
148.     // Read the incoming byte:   
149.     userInput = Serial.read();   
150.   }   
151.   /*Serial input description:  
152.    *Key - Function  
153.    *'b' - enable user to attach robot to tree  
154.    *'w' - enable climbing gait  
155.    *'s' - enable descending gait  
156.    *'a' - turn chassis left about the z-axis  
157.    *'d' - turn chassis right about the z-axis  
158.    *'q' - roll chassis left about the y-axis  
159.    *'e' - roll chassis right about the y-axis  
160.    *ENTERING ANY OTHER KEY WILL STOP ALL MOTION  
161.    */   
162.   switch(userInput){    
163.   case 'b':   
164.     Serial.println("Attach Robot to Tree");   
165.     startPosition();    // Allows the user to attach robot to the tree in start  
166.                         // position   
167.     userInput = Serial.read();   
168.     break;   
169.   case 'w':   
170.     Serial.println("Climbing...");   
171.     // Climb upward until the user inputs a new command   
172.     while(userInput == 'w'){   
173.       lowerStep(up);  // Lifts the lower chassis segment to perform first half   
174.                       // of climbing sequence   
175.       upperStep(up);  // Lifts the upper chassis segment to perform second half  
176.                       // of climbing sequence    
177.       userInput = Serial.read();    
178.     }   
179.     break;   
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180.   case 's':   
181.     Serial.println("Descending...");   
182.     // Descends until the user inputs a new command   
183.     while(userInput == 's'){   
184.       upperStep(down);  // Lowers the upper chassis segment to perform first  
185.                         // half of descending sequence   
186.       lowerStep(down);  // Lowers the lower chassis segment to peroform second  
187.                         // half of descending sequence    
188.       userInput = Serial.read();    
189.     }   
190.     break;   
191.   case 'a':   
192.     Serial.println("Turning Left...");   
193.     // Turns the robot to the left until the user inputs a new command   
194.     turn('left');  // Turns the chassis to the left about z-axis   
195.     userInput = Serial.read();   
196.     break;   
197.   case 'd':    
198.     Serial.println("Turning Right...");   
199.     // Turns the robot to the right until the user inputs a new command   
200.     turn('right');  // Turns the chassis to the right about z-axis   
201.     userInput = Serial.read();   
202.     break;   
203.   case 'q':   
204.     Serial.println("Rolling Left...");         
205.     // Rolls the robot to the left until the user inputs a new command   
206.     roll('left');  // Turns the chassis to the left about y-axis   
207.     userInput = Serial.read();   
208.     break;   
209.   case 'e':   
210.     Serial.println("Rolling Right...");   
211.     // Rolls the robot to the right until the user inputs a new command   
212.     roll('right');  // Turns the chassis to the right about y-axis   
213.     userInput = Serial.read();   
214.     break;   
215.   default:   
216.     // If no button is pressed then the robot stops   
217.     Serial.println("Stopped");   
218.     delay(500);   
219.   }   
220. }   
221. /* name OF FUNCTION: initialize  
222. // CREDIT:  
223. // PURPOSE:  
224. //      Set desired pins on the Ardino to inputs and outputs, and start   
225. //      serial communication with the computer   
226. // PARAMETERS: none  
227. // RETURN VALUE: none  
228. // CALLS TO:   
229. //      attach()  
230. //      writeMicroseconds()  
231. //      Serial.begin()  
232. //      Serial.println()  
233. // CALLED FROM: main  
234. */   
235. void initialize() {   
236.    
237.   // Set pins as input   
238.   pinMode(36, INPUT);  // The pushbuttons on upper gripper    
239.   pinMode(38, INPUT);  // The pushbuttons on lower gripper   
240.    
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241.   // Set pins as outputs     
242.   upperGripperActuator.attach(7);   
243.   lowerGripperActuator.attach(8);   
244.   upperWristServo.attach(3);   
245.   lowerWristServo.attach(6);   
246.   chassisServoX.attach(9);   
247.   chassisServoY.attach(5);   
248.   chassisServoZ.attach(4);   
249.    
250.   // Actuate robot into it's starting configuration   
251.   upperWristServo.writeMicroseconds(upperServoCenter);   
252.   lowerWristServo.writeMicroseconds(lowerServoCenter);   
253.   chassisServoX.writeMicroseconds(xServoCenter);   
254.   chassisServoY.writeMicroseconds(yServoCenter);   
255.   chassisServoZ.writeMicroseconds(zServoCenter);    
256.   upperGripperActuator.writeMicroseconds(upperGripperOpen);   
257.   lowerGripperActuator.writeMicroseconds(lowerGripperOpen);   
258.    
259.   // Initiate serial communication   
260.   Serial.begin(9600);   
261.   Serial.println("Ready...");   
262.   Serial.println();   
263. }   
264. /* name OF FUNCTION: startPosition  
265. // CREDIT:  
266. // PURPOSE:  
267. //      To allow the user to get robot attached to the climbing surface   
268. //      in its starting position  
269. //  
270. // PARAMETERS: none  
271. // RETURN VALUE: none  
272. // CALLS TO:  
273. //      writeMicroseconds  
274. //      activateGripper  
275. // CALLED FROM: main  
276. */   
277. void startPosition(){   
278.    
279.   // Configure robot in it's starting position   
280.   upperWristServo.writeMicroseconds(upperServoCenter);   
281.   lowerWristServo.writeMicroseconds(lowerServoCenter);   
282.   chassisServoX.writeMicroseconds(xServoCenter);   
283.   chassisServoY.writeMicroseconds(yServoCenter);   
284.   chassisServoZ.writeMicroseconds(zServoCenter);    
285.   upperGripperActuator.writeMicroseconds(upperGripperOpen);   
286.   lowerGripperActuator.writeMicroseconds(lowerGripperOpen);   
287.    
288.   while(digitalRead(upperGripperButton) && digitalRead(lowerGripperButton)){   
289.     // Wait for both gripper to be in contact with tree's surface   
290.   }   
291.   // Once both grippers are in contact, close them   
292.   activateGripper(upper, upperGripperClosed);   
293.   activateGripper(lower, lowerGripperClosed);   
294. }   
295.  /* name OF FUNCTION: lowerStep  
296. // CREDIT:  
297. // PURPOSE:  
298. //      Will open the lower gripper, then will move lower chassis segment   
299. //      according to direction, then will close the lower gripper in it's   
300. //      new position   
301. //  
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302. // PARAMETERS:  
303. // name                 type       description  
304. // ---------------------------------------------------------------------  
305. // direction            int        Which direction the robot is going vertically 
306. //   
307. // RETURN VALUE: none  
308. // CALLS TO:  
309. //      writeMicroseconds  
310. //      activateGripper  
311. //      slowServo  
312. //      makeContact  
313. // CALLED FROM: main  
314. */   
315. void lowerStep(int direction){   
316.   activateGripper(lower, lowerGripperOpen);  // Open the lower gripper   
317.      
318.   // Determine if robot is climbing   
319.   if(direction == up){   
320.     // Rotate  the nessacary servos to raise bottom chassis segment and set    
321.     // position holder variables   
322.        
323.     // This while loop is used in conjunction with the slowServo function to    
324.     // allow for the speed of the servos to be controlled   
325.     while(upperServoPos != upperServoLS  || xServoPos != xServoLS || lowerServoP

os != lowerServoLS){   
326.       slowServo(1, upperServoPos, upperServoLS, upperIncrement);   
327.       upperWristServo.writeMicroseconds(upperServoPos);   
328.       slowServo(2, xServoPos, xServoLS, xIncrement);   
329.       chassisServoX.writeMicroseconds(xServoPos);   
330.       slowServo(3, lowerServoPos, lowerServoLS, lowerIncrement);   
331.       lowerWristServo.writeMicroseconds(lowerServoPos);   
332.       delay(50);   
333.     }   
334.     vertDirection = up;  //Set variable to remember robot is climbing  
335.     // (used for turning functions)   
336.   }   
337.   // Determine if robot is descending   
338.   if(direction == down){   
339.     // Rotate the nessacary servos to lower bottom chassis segment and set    
340.     // position holder variables   
341.        
342.     // This while loop is used in conjunction with the slowServo function to    
343.     // allow for the speed of the servos to be controlled   
344.     while(upperServoPos != upperServoCenter || xServoPos != xServoCenter || lowe

rServoPos != lowerServoCenter){   
345.       slowServo(1, upperServoPos, upperServoCenter, upperIncrement);   
346.       upperWristServo.writeMicroseconds(upperServoPos);   
347.       slowServo(2, xServoPos, xServoCenter, xIncrement);   
348.       chassisServoX.writeMicroseconds(xServoPos);   
349.       slowServo(3, lowerServoPos, lowerServoCenter, lowerIncrement);   
350.       bottomWristServo.writeMicroseconds(lowerServoPos);   
351.       delay(50);   
352.     }   
353.     vertDirection = down;   //Set variable to remember robot is descending  
354.                             // (used for turning functions)   
355.   }   
356.   delay(500);   
357.   // Hold the lower gripper open until it has made contact with the climbing    
358.   // surface   
359.   makeContact(lower);   
360. }   
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361. /* name OF FUNCTION: upperStep  
362. // CREDIT:  
363. // PURPOSE:  
364. //      Will open the upper gripper, then will move upper chassis segment   
365. //      according to direction, then will close the upper gripper in it's   
366. //      new position   
367. //  
368. // PARAMETERS:  
369. // name                 type     description  
370. // ---------------------------------------------------------------------  
371. // direction            int      Which direction the robot is going vertically  
372. //   
373. // RETURN VALUE: none  
374. // CALLS TO:  
375. //      writeMicroseconds  
376. //      activateGripper  
377. //      slowServo  
378. //      makeContact  
379. // CALLED FROM: main  
380. */   
381. void upperStep(int direction){   
382.   activateGripper(upper, upperGripperOpen);  // Open the upper gripper     
383.      
384.   // Determine if robot is climbing   
385.   if(direction == up){   
386.     // Rotate  the nessacary servos to raise upper chassis segment and set    
387.     // position holder variables   
388.        
389.     // This while loop is used in conjunction with the slowServo function to    
390.     // allow for the speed of the servos to be controlled   
391.     while(upperServoPos != upperServoCenter || xServoPos != xServoCenter || lowe

rServoPos != lowerServoCenter){   
392.       slowServo(1, upperServoPos, upperServoCenter, upperIncrement);   
393.       upperWristServo.writeMicroseconds(upperServoPos);   
394.       slowServo(2, xServoPos, xServoCenter, xIncrement);   
395.       chassisServoX.writeMicroseconds(xServoPos);   
396.       slowServo(3, lowerServoPos, lowerServoCenter, lowerIncrement);   
397.       lowerWristServo.writeMicroseconds(lowerServoPos);   
398.       delay(50);   
399.     }   
400.     vertDirection = up;  //Set variable to remember robot is climbing  
401.                          //(used for turning functions)   
402.   }     
403.   // Determine if robot is climbing   
404.   if(direction == down){   
405.     // Rotate the nessacary servos to lower upper chassis segment and set    
406.     // position holder variables   
407.        
408.     // This while loop is used in conjunction with the slowServo function to    
409.     // allow for the speed of the servos to be controlled   
410.     while(upperServoPos != upperServoLS || xServoPos != xServoLS || upperServoPo

s != upperServoLS){   
411.       slowServo(1, upperServoPos, upperServoLS, upperIncrement);   
412.       upperWristServo.writeMicroseconds(upperServoPos);   
413.       slowServo(2, xServoPos, xServoLS, xIncrement);   
414.       chassisServoX.writeMicroseconds(xServoPos);   
415.       slowServo(3, lowerServoPos, lowerServoLS, lowerIncrement);   
416.       lowerWristServo.writeMicroseconds(lowerServoPos);   
417.       delay(50);   
418.     }   
419.     vertDirection = down;  //Set variable to remember robot is descending (used  
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420.                            //for turning functions)     
421.   }   
422.   delay(500);   
423.   // Hold the upper gripper open until it has made contact with the climbing    
424.   // surface   
425.   makeContact(top);   
426. }   
427. /* name OF FUNCTION: turn  
428. // CREDIT:  
429. // PURPOSE:  
430. //      Will turn the robot left or right about the z-axis  
431. //  
432. // PARAMETERS:  
433. // name                 type     description  
434. // ---------------------------------------------------------------------  
435. // direction            int      Which direction the robot is going vertically  
436. //   
437. // RETURN VALUE: none  
438. // CALLS TO:  
439. //      writeMicroseconds  
440. //      activateGripper  
441. //      makeContact  
442. // CALLED FROM: main  
443. */   
444. void turn(char direction){   
445.   // Determine if the robot was previously climbing   
446.   if(vertDirection == up){   
447.     activateGripper(upper, upperGripperOpen);   // Open the upper gripper   
448.     delay(200);   
449.     xServoPos = xServoCenter + 100;             // Set position holder to value  
450.                                                 // that holds gripper slightly   
451.                                                 // off tree   
452.     chassisServoX.writeMicroseconds(xServoPos); // Set position   
453.   }   
454.   // Determine if the robot was previously descending   
455.   if(vertDirection == down){   
456.     activateGripper(lower, lowerGripperOpen);   // Open the lower gripper   
457.     delay(200);   
458.     xServoPos = xServoCenter -

 100;             // Set position holder to value    
459.                                                 // that holds gripper slightly   
460.                                                 // off tree   
461.     chassisServoX.writeMicroseconds(xServoPos); // Set position   
462.    
463.   }   
464.   // Determine if the robot needs to turn left and activate servo to turn left   
465.   if(direction == 'left'){   
466.     zServoPos = zServoPos -

 10;                 // Increment position holder by    
467.                                                 // small angle   
468.     chassisServoZ.writeMicroseconds(zServoPos); // Set position   
469.   }   
470.   // Determine if the robot needs to turn right and activate servo to turn right 
471.   if(direction == 'right'){   
472.     zServoPos = zServoPos + 10;                 // Increment position holder by  
473.                                                 // small angle   
474.     chassisServoZ.writeMicroseconds(zServoPos); // Set position   
475.   }   
476.   // Determine if a new turning commands been entered, if not make contact with  
477.   // the gripper   
478.   if(Serial.available() > 0 && Serial.read() != 'a' && Serial.read() != 'd'){   
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479.     if(vertDirection == up){   
480.       makeContact(upper);   
481.     }   
482.     else makeContact(lower);   
483.   }   
484. }   
485. /* name OF FUNCTION: roll  
486. // CREDIT:  
487. // PURPOSE:  
488. //      Will turn the robot left or right about the y-axis  
489. //  
490. // PARAMETERS:  
491. // name                 type     description  
492. // ---------------------------------------------------------------------  
493. // direction            int      Which direction the robot is going vertically  
494. //   
495. // RETURN VALUE: none  
496. // CALLS TO:  
497. //      writeMicroseconds  
498. //      activateGripper  
499. //      makeContact  
500. // CALLED FROM: main  
501. */   
502. void roll(char direction){   
503.   // Determine if the robot was previously climbing   
504.   if(vertDirection == up){   
505.     activateGripper(upper, upperGripperOpen);   // Open the upper gripper   
506.     delay(200);   
507.     xServoPos = xServoCenter + 100;             // Set position holder to value  
508.                                                 // that holds gripper slightly  
509.                                                 // off the tree   
510.     chassisServoX.writeMicroseconds(xServoPos); // Set position   
511.   }   
512.   // Determine if the robot was previously descending   
513.   if(vertDirection == down){   
514.     activateGripper(lower, lowerGripperOpen);   // Open the lower gripper   
515.     delay(200);   
516.     xServoPos = xServoCenter -

 100;             // Set position holder to value   
517.                                                 // that holds gripper slightly   
518.                                                 // off the tree   
519.     chassisServoX.writeMicroseconds(xServoPos); // Set position   
520.   }   
521.   // Determine if the robot needs to turn left and activate servo to turn left   
522.   if(direction == 'left'){   
523.     yServoPos = yServoPos + 10;                  // Increment position holder by 
524.                                                  // small angle   
525.     chassisServoY.writeMicroseconds(yServoPos);  // Set position   
526.   }   
527.   // Determine if the robot needs to turn right and activate servo to turn right 
528.   if(direction == 'right'){   
529.     yServoPos = yServoPos - 10;  //decrement position holder by small angle   
530.     chassisServoY.writeMicroseconds(yServoPos);  //set position   
531.   }   
532.   // Determine if a new turning commands been entered, if not make contact with  
533.   // the gripper   
534.   if(Serial.available() > 0 && Serial.read() != 'a' && Serial.read() != 'd'){   
535.     if(vertDirection == up){   
536.       makeContact(upper);   
537.     }   
538.     else makeContact(lower);   
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539.   }   
540. }   
541. /* name OF FUNCTION: activateGripper  
542. // CREDIT:  
543. // PURPOSE:  
544. //      Will open or close the selected gripper  
545. //  
546. // PARAMETERS:  
547. // name                 type        description  
548. // ---------------------------------------------------------------------  
549. // gripper          int         Which linear actuator is being selected  
550. // pos              int         The value the linear actuator is to be set to  
551. //  
552. // RETURN VALUE: none  
553. // CALLS TO:  
554. //      writeMicroseconds  
555. // CALLED FROM: makeContact  
556. */   
557. void activateGripper(int gripper, int pos ){   
558.    
559.   // Determine which linear actuator is being selected   
560.   if(gripper == upper){   
561.     upperGripperActuator.writeMicroseconds(pos);   
562.     delay(1500);  // Delay to ensure the gripper has time to open/close   
563.   }   
564.   // Determine which linear actuator is being selected   
565.   if(gripper == lower){   
566.     lowerGripperActuator.writeMicroseconds(pos);   
567.     delay(1500);  // Delay to ensure the gripper has time to open/close   
568.   }   
569. }   
570. /* name OF FUNCTION: makeContact  
571. // CREDIT:  
572. // PURPOSE:  
573. //      Will open the upper gripper, then will move upper chassis segment   
574. //      according to direction, then will close the upper gripper in it's   
575. //      new position   
576. //  
577. // PARAMETERS:  
578. // name                 type        description  
579. // ---------------------------------------------------------------------  
580. // gripper          int             Which gripper pushbutton is being monitored  
581. //  
582. // RETURN VALUE: none  
583. // CALLS TO:  
584. //      writeMicroseconds  
585. // CALLED FROM:  
586. //      lowerStep  
587. //      upperStep  
588. //      turn  
589. //      roll  
590. */   
591. void makeContact(int gripper){   
592.   // Determine the pushbutton is being monitored   
593.   if(gripper == upper){   
594.     //Check that the corresponding gripper is in contact before re-closing    
595.     // the gripper,   
596.     // while gripper is not in contact, slowly move gripper closer to the tree   
597.     while(digitalRead(upperGripperButton)){   
598.       upperServoPos = upperServoPos - 

5;                // Decrement position holder   
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599.                                                         // by small angle    
600.       xServoPos = xServoPos -

5;                        // Decrement position holder    
601.                                                         // by small angle    
602.       lowerServoPos = lowerServoPos -

 5;                // Decrement position holder    
603.                                                         // by small angle    
604.       upperWristServo.writeMicroseconds(upperServoPos); // Set position   
605.       chassisServoX.writeMicroseconds(xServoPos);       // Set position   
606.       lowerWristServo.writeMicroseconds(lowerServoPos); // Set position   
607.       delay(500);   
608.     }   
609.     // Increment the servos an additonal time to increase torque while closing   
610.     // the gripper   
611.     xServoPos = xServoPos -

 20;                         // Increment position holder    
612.                                                         // by small angle    
613.     lowerServoPos = lowerServoPos -

 10;                 // Increment position holder    
614.                                                         // by small angle    
615.     chassisServoX.writeMicroseconds(xServoPos);         // Set position   
616.     lowerWristServo.writeMicroseconds(lowerServoPos);   // Set position   
617.     activateGripper(upper, upperGripperClosed);         // Close upper gripper   
618.   }   
619.   if(gripper == lower){   
620.     //Check that the corresponding gripper is in contact before  
621.     // re-closing the gripper,   
622.     // while gripper is not in contact, slowly move gripper closer to the tree   
623.     while(digitalRead(lowerGripperButton)){   
624.       upperServoPos = upperServoPos + 5;                // Increment position  
625.                                                         // holder by  
626.                                                         // small angle    
627.       xServoPos = xServoPos + 5;                        // Increment position  
628.                                                         // holder by 
629.                                                         // small angle     
630.       lowerServoPos = lowerServoPos + 5;                // Increment position  
631.                                                         // holder by    
632.                                                         // small angle    
633.       upperWristServo.writeMicroseconds(upperServoPos); // Set position   
634.       chassisServoX.writeMicroseconds(xServoPos);       // Set position   
635.       lowerWristServo.writeMicroseconds(lowerServoPos); // Set position   
636.       delay(500);    
637.     }   
638.     // Increment the servos an additonal time to increase torque while closing  
639.     // gripper   
640.     xServoPos = xServoPos + 20;                         // Increment position  
641.                                                         // holder by 
642.                                                         // small angle    
643.     lowerServoPos = lowerServoPos + 10;                 // Increment position  
644.                                                         // holder by 
645.                                                         // small angle    
646.     chassisServoX.writeMicroseconds(xServoPos);         // Set position     
647.     lowerWristServo.writeMicroseconds(lowerServoPos);   // Set position   
648.     activateGripper(lower, lowerGripperClosed);         // Close lower gripper   
649.   }   
650. }   
651. /* name OF FUNCTION: slowServo  
652. // CREDIT:  
653. // PURPOSE:  
654. //      Will control the speed of a specified servo from its current   
655. //      position to a desired position by changing the value of global   
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656. //      variables  
657. //  
658. // PARAMETERS:  
659. // name                 type       description  
660. // ---------------------------------------------------------------------  
661. // servoSelect          int        Which servo is being selected  
662. // startPoint           int        The starting point for servo  
663. // setPoint             int        The new desired servo position   
664. // increment            int        How large of a step the servo positon changes 
665. //  
666. // RETURN VALUE: none  
667. // CALLS TO: none  
668. // CALLED FROM:   
669. //      lowerStep  
670. //      upperStep  
671. //      turn  
672. //      roll  
673. */   
674. void slowServo(int servoSelect, int startPoint, int setPoint, int increment){   
675.   // Determines if the startPoint is less then the setPoint and that the servo   
676.   //  won't overshoot the setPoint   
677.   if (startPoint < setPoint  && startPoint > (setPoint - increment)){   
678.     int difference = setPoint - startPoint;   
679.     startPoint += difference;   
680.   }    
681.   else{   
682.     startPoint +=increment;   
683.   }   
684.   // Determines if the startPoint is greater then the setPoint and that the  
685.   // servo won't overshoot the setPoint   
686.   if (startPoint > setPoint && startPoint < (setPoint + increment)){   
687.     int difference = startPoint - setPoint;   
688.     startPoint -=difference;   
689.   }   
690.   else{   
691.     startPoint -=increment;   
692.   }     
693.   // Selects the desired servo and sets the global variable for that servo's  
694.   // position   
695.   switch(servoSelect){   
696.     case 1:   
697.     upperServoPos = startPoint;   
698.     break;   
699.     case 2:   
700.     xServoPos = startPoint;   
701.     break;   
702.     case 3:   
703.     lowerServoPos = startPoint;   
704.     break;   
705.   }   
706. }     
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12. Appendix F: Solidworks Drawings 

12.1 Prototype Gripper  
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12.2 Prototype Robot Chassis 
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