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Abstract 
 

The industry of nanotechnology is growing faster than the understanding of nanoparticle’s long 

term health and environmental effects, which has brought about research regarding nanoparticle 

cytotoxicity. Our research focused on studying interactions between supported lipid bilayers with 

varying sized bare unconjugated gold nanoparticles. The interactions were monitored on an 

instrument, known as a Quartz crystal microbalance. From the results, size wasn’t a variable that 

governed how the bare gold nanoparticles affected the membrane. A major factor in the results 

was the lack of reproducibility. The existence of defects during the formation of the SLB is in 

itself a variable in the experiment and will need to be treated thusly in future nanoparticle-lipid 

bilayer research. 
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Executive Summary 
 

The significance of nanoparticles is growing every day due to incredible discoveries in a 

variety of fields ranging from bioengineering to consumer goods. With this rise of uses, the 

concentration of nanoparticles that finds its way into the body and the environment will increase 

likewise. Though the toxicity of bulk gold is known, not much is known regarding long term 

health and environmental effects of its nanosize equivalent. This has brought about the 

emergence of nanotoxicology, research centered on risk related research and development. The 

physical and biological properties that make gold nanoparticles advantageous can also pose a 

potential risk to consumers and the environment. Our research focuses on modeling a probable 

natural interaction that will occur as the applications of gold nanoparticles increase. This 

interaction is between varying sized (2,5,10, and 40 nm) bare spherical gold nanoparticles and 

lipid bilayer prepared of Phosphotidylcholine (PC). This research intended on observing the 

mechanisms of interaction of gold nanoparticles and possible cytotoxicity. 

Methodology 
 

  A Q-SENSE E4 system and silicon dioxide crystal sensors were used as the site for these 

interactions to take place. The gold nanoparticles of interest were developed through a reducing 

process and delivered as spherical colloid solutions ranging in concentrations from       

     Nanoparticles/ mL.  

The experiment procedure consisted of three main sections: forming the PC egg bilayer, 

establishing water-polymer baseline, and introduction of the gold nanoparticles. Early 

experiments did not include the water-polymer baseline and was instead just a water baseline. 

The polymer, polymethacrylic acid, was used to mimic naturally synthesized polymers in humic 



material.
1
 These interactions are constantly monitored and recorded with the Q-soft software that 

accompanies the QCM-D. The data was then studied in a plotting software, SigmaPlot, and then 

analyzed further by performing an overtone analysis on each of the graphs. The overtone 

analysis provides an understanding of the interactions at different distances into the bilayer.  

Results and Discussion 
 

Concluded from previous research, it was found that nanoparticles interact with lipid 

bilayers by three different mechanisms: membrane thinning, adhesion, and expanding of pre-

existing defects. In respect to our research, membrane thinning would be equivalent to an 

increase in frequency and therefore a decrease in mass of the bilayer. Expanding of pre-existing 

defects or adhesion would correlate to addition of mass and therefore a decrease in frequency on 

the data plots. Examples of mass loss and mass gain are shown in Figure-ES 1 and Figure-ES 2. 

These graphs are further described in our results section.  

 

Figure-ES 1: 2nm QCM-D Results for 2 nm gold nanoparticles; 
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Figure-ES 2:2nm QCM-D Results for 10 nm gold nanoparticles; 

 Blue Lines represent frequency and red lines represent dissipation 

Change in rigidity can be determined with the use of the overtone analysis. Mass loss was 

observed in three of the four gold nanoparticle sizes. The 2,10, and 40 nm gold nanoparticles 

also showed increased rigidity along with the loss of mass. The 5nm gold nanoparticle showed 

opposite results for both categories with a mass gain accompanied by a decrease in rigidity. 

Examples of the graphs are shown below by Figure-ES 3 and Figure-ES 4. These are explained 

in discussion. 
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Figure-ES 3: Overtone Analysis of 2nm nanoparticles showing an increase in frequency equivalent to a loss of mass 

 

Figure-ES 4: Overtone Analysis of 2 nm nanoparticles showing a decrease in frequency representing an addition of mass 

Conclusion 
 

This research set out to observe possible cytotoxicity of gold nanoparticles and has 

demonstrated destructive effect on the membrane for all sizes of bare gold nanoparticles. An 

association between mass change and rigidity change was also observed. These results had very 

low reproducibility due to different defects that can be created during membrane formation. The 
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defects, however, can be analogous to ones found in membranes of live cells; therefore the same 

interactions can occur. This means that the more nanoparticles waste finds its way into the 

environment, the more toxic it can potentially be to vital bacteria.  

To further understand the mechanism of interactions between the gold nanoparticles and 

the membrane, research should possibly concentrate on specific surface features in the hopes of 

identifying defects and using them or eliminating them.  

  



Introduction 
 

According to the ASTM standard, a nanoparticle is defined as any particle with at least 

two dimensions between approximately 1 and 100 nanometers (nm).
2
 Although some authors 

have recognized anything outside of that range as a nanoparticle as well, the formal definition 

excludes particles below 1 nm to avoid confusion with small clusters of atoms and larger 

aggregated particles. The importance of nanoparticles has been increasing significantly due to 

recent technological advances in a wide variety of fields, ranging from electronics to medicine. 

The number of applications will only increase as it is projected that the production of 

nanoparticles will increase from estimated 2,300 tons produced today to 58,000 tons by 2020.
3
 

The industry of nanotechnology is growing faster than the understanding of nanoparticle’s long 

term health and environmental effects. The U.S. National Nanotechnology Initiative reports only 

4% ($40 million) of funding in nanotechnology research is dedicated to R&D of nanoparticle 

risk.
4
 The number of nanoparticle applications will continue to rise and the need for a complete 

understanding of their cytotoxicity will do the same. This project will take a look at one 

interaction between gold nanoparticles and a supported lipid bilayer (SLB), in order to 

understand mechanisms of possible cytotoxicity.  

 As a relatively new technology, nanotechnology seems to have an endless number of 

applications in such fields as biomedical engineering, medicines, electronics, energy, and food. 

The advantages of nanoparticles range just as widely as their applications. Generally, advantages 

of nanoparticles are due to the property changes that occur as the size is brought to the nanoscale. 

These properties can include, but are not limited to, color, thermal and electrical conductivity, 

and strength. The surface area to volume ratio of nanoparticles allows for increased chemical 

reactivity, when compared to its regular sized equivalent.
5
 All these advantages can then be 



introduced within the body because of the nanoparticles ability to move easily throughout the 

body’s natural membranes and barriers.  

These general advantages have lead researchers to study applications of gold 

nanoparticles. Some consumer products currently on the market that use gold nanoparticles 

include, Nanorama – Gold Toothpaste, Nano Engine Oil, and Nano Gold Energizing Cream. 
6
 

More commonly, gold nanoparticle research is focused on biomedical applications and drug 

delivery. This includes a wide range of investigations in cancer nanotechnology
7
 and gene 

transfer.
8
 A chart describing some research topics in gold nanoparticle cancer technology can be 

found in Appendix A. An interesting example includes that of gold nanoparticles as an imaging 

sensor to highlight brain tumor during surgery where the treated nanoparticle preferentially 

attaches to a target cell.
9
 With all these advantages and current applications, long term health and 

environmental effects can easily be overlooked. The same biological and physical properties of 

nanoparticles that make them effective also pose a potential risk to both consumers and the 

environment.
10

   

It is not just the physical and biological properties that differ from the nanoscale material 

to its bulk form. For this reason, a new branch of toxicology known as nanotoxicology is taking 

place to better understand risks associated with nanoparticles. The material studied in this report 

is one of the key examples as bulk gold is typically inert but gold nanoparticles are not; thereby 

making them so useful in imaging and drug delivery.
11

 The nanoparticles ability to move easily 

throughout the body raises concerns of the possibility of nanoparticles crossing non-targeted 

biological barriers.  Research is currently taking place to understand any possible environmental 

or health and safety risks of nanoparticles but this is after the implementation of thousands of 

engineered nanoparticles in the fields mentioned above. 
12

 Rather than research cytotoxicity 



through classic methods like direct exposure or injection, both in vivo and in vitro, it was our 

intention to understand the interactions that occur between the membranes and nanoparticles.   

Our research focused on studying interactions between supported lipid bilayers (SLBs) 

with varying sizes of bare unconjugated gold nanoparticles. The use of SLB’s was essential to 

these experiments because it accurately modeled a biological system in terms of fluidity and 

impermeability to ions.
13

 A range of 2-40 nanometer gold particles was used, with interactions 

being monitored on an instrument, known as a Quartz crystal microbalance with dissipation 

monitoring (QCM-D). This would allow us to further explore any change in membrane 

properties, whether it is an increase in mass due to nanoparticle adsorption or mass loss caused 

by a breakdown of the membrane.
14

 To provide a more accurate model, it was also suggested by 

Dr. Camesano to use polymethacrylic acid (PMAA) in solution with water and nanoparticles.
15

 

This synthetic polymer closely resembles natural compounds found in humic material such as 

soil and water environments.
16

 To further understand these interactions, analysis of individual 

overtones  was done to build a mechanism that could describe how membranes and nanoparticles 

interact with one another.
17

  Knowledge of these interactions of the bilayer-bare gold 

nanoparticle interactions will allow for an understanding of cytotoxicity and provide a baseline 

for future research with gold nanoparticles.  

 

  



 

Background 

What is a Nanoparticle? 
 

According to the ASTM standard, a nanoparticle is defined as any particle with at least 

two dimensions between approximately 1 and 100 nanometers (nm).
18

 Although some authors 

have recognized anything outside of that range as a nanoparticle as well, the formal definition 

excludes particles below 1 nm to avoid confusion with small clusters of atoms and larger 

aggregated particles. In the past, the word has been used to describe a variety of materials from 

particulates in the air to ultrafine particles. But when referring to the relatively recent technology, 

nanoparticles are not just about size, but particles that have a “novel” trait that gives the 

researcher the ability to fabricate, characterize, and manipulate properties at the nanometer level, 

properties including strength, electrical and thermal conductivity, optical response, elasticity or 

wear-resistance. 
19

 These traits are considered “novel” because they are specific to the 

nanoparticle and cannot be displayed on the atomic level or the bulk material.   

Gold Nanoparticles 

Gold Nanoparticles Synthesis 

 

Gold nanoparticle colloid solution, the nanoparticles of interest in this paper, are made by 

placing gold in a reducing agent, allowing particles to form atom by atom over a period of twelve 

days. The accuracy of this patented process is highlighted in Table 2 in the appendix. The exact 

process of the gold nanoparticles used in this experiment is a proprietary method, but there are 

some well-known methods dating back to the 1950s. The oldest and simplest method is the 



Turkevich method which involves chloauric acid and sodium citrate as the reducing agent.
20

 

There are many methods that can produce a wide variety of shapes and sizes but all of which 

require a reducing agent to begin the process and a capping agent to stop the reaction at the 

respective physical dimensions.   

Use of Gold Nanoparticle as Model 

 

 Bulk gold is believed to be relatively inert and non-toxic. They are also considered to be one of 

the most stable metal nanoparticles.
21

 These traits have led to the use of gold nanoparticles in 

many bioengineering functions ranging from imaging to drug delivery.
22

 It is essential to 

understand every aspect of this developing, especially molecular interactions and possible 

cytotoxicity. To understand the effects of gold nanoparticles will also give insight into other rigid 

inorganic materials considered to be non-toxic at the nanoparticle level. 
23

   

Gold Nanoparticle Cytotoxicity 

   

Due to the use of gold colloids as far back as the 1920s, research in gold nanoparticle 

interactions has covered a wide range of gold particles to cell interactions
24

. The majority 

concentrating on medical applications by nuclear transfection and targeting, due to the ease at 

which a small nanoparticle enters a cell. The size of nanoparticles is similar to that of cellular 

components and proteins, allowing for bypass of natural mechanical barriers.
25

 Studies of 

interactions have included both that of in vivo and in vitro, with the majority in the latter.  

A particularly relevant research, done by Hillyer and Albrecht, studied the 

gastrointestinal uptake and distribution of metallic colloidal gold particles following oral 

administration to mice. Resulting in a confirmation of nanoparticle uptake in the Peyer’s patch 



regions and breaks in the tips of villi. Through the use of multiple sized nanoparticles, the 

research concluded that the gold nanoparticles, depending on size, could be persorbed through 

gaps created by extruding enterocytes.
26

 Size dependency will be a key variable in the future 

understanding of engineered nanoparticles interactions with biological cells.  Other studies have 

tried to understand possible cytotoxicity of gold nanoparticles. A group of researchers, Connor et 

al., examined the uptake and toxicity in human leukemia cells of three different sized 

nanoparticles with an assortment of surface modifiers. The in vitro continuous exposure assay 

determined that though rapid absorption of the particles takes place, the nanoparticles are not 

toxic to that specific human cell.
27

 Similar studies of functionalized gold nanoparticles and 

toxicity are summarized in Table 1, in Appendix A. These experiments can only give insight into 

the end result of the interactions and not the mechanism itself.  

Gold Nanoparticle-Supported Lipid Bilayers  (SLBs) Interactions 

Egg Phosphotidylcholine (PC) Lipid Bilayer 

 

Phosphotidylcholine (PC) was used to make the vesicle solution needed for these 

experiments. PC is a phospholipid widely used in experimentation to mimic the physical 

properties of natural biological membranes in order to complete studies without the need of live 

systems.
28

 This model membrane helped in establishing accurate information about the 

mechanics of metabolic transportation through membranes and led to various advancements in 

medicine. Phospholipids are normally extracted from byproducts of the manufacturing of organic 

oils.
29

 PC can be isolated and separated from chicken egg yolk then purified for pharmaceutical 

uses using several difference processes such as preparative high-performance liquid 

chromatography (HPLC) or gram-scale fractionation. These methods are further described in an 

article that can be found in the bibliography written by Tae ho Yoon and In Ho Kim.
30

 Previous 



research has been conducted to model and observe the interactions between gold nanoparticles 

and supported lipid bilayers. 

Previous Gold Nanoparticle- SLBs Research 

 

Researchers set out to develop a molecular dynamics simulation of gold nanoparticle and 

lipid bilayer interactions based off experimental data. They were able to observe penetration, 

both in a model and backed up experimentally, which increases the greater the charge density.
31

 

A molecular dynamic model can be seen in… in the appendix. Another group concluded that 

instead of the nanoparticle penetrating the surface, but instead diffuses into existing defects and 

consequently expands them.  This research team from the University of Michigan concluded that 

though many nanoparticles induce defects, both membrane thinning and pore formation, gold 

nanoparticles aggregate in the lipid at the site of an existing defect.
32

 With the use of quartz 

crystal microbalance with dissipation monitoring technology (QCM-D), specific mechanisms of 

interaction between gold nanoparticles and supported lipid bilayer can be detected. 

Quartz Crystal Microbalance with Dissipation 
 

The QCM-D has been an effective way of measuring changes in mass and properties of 

viscoelasticity of the medium being tested. The use of the QCM technology extends through 

several fields of study, including radioactivity, ultrasound and biomolecular interactions.   

QCM technology is based on the piezoelectric effect that describes the oscillations 

formed when pressure is applied to quartz crystals.
33

 These effects were first introduced by 

Pierre and Jacques Curie in the 1880’s when studying the relationship between mechanical 

stresses and electricity. Later pioneered research ranging from radioactivity to acoustics.
34

 



Specifically with the use of quartz crystals, the piezoelectric effect creates a dipole moment that 

vibrates the crystal at its resonance frequency. The addition of mass slows the vibrations, 

therefore decreasing the frequency reading. The direct relationship between frequency and mass 

is governed by the following equation: 

   
 

 
   

where n is the harmonic number given by the wavelength and C is defined by properties of the 

quartz crystal itself.
35

  

The realization of QCM’s ability to also monitor energy dissipation came well after 1980, 

when Shinshu University in Japan first used the machine for liquid applications rather than the 

usual gas phase or vacuum applications. When liquids are used, the crystals vibrations are 

dampened. This interferes with the equation above because the resonance frequency is changing. 

This along with frequency measurements allows the QCM-D to detect loss of mass along with 

changes in the properties such as viscoelasticity of the medium being tested.
36

  

Dissipation measurements opened up opportunities for countless biological studies. 

QCM-D technology helped provide real-time results of biomaterial interactions which allowed 

for the advancement in biomedical devices. For example, QCM-D can be used to see how well a 

material used for contact lenses is avoiding interactions with tear fluid hence keeping the lens 

free of buildup caused by the lipids, proteins, and salts found in tears. Another example is 

optimizing the interaction of implants with their surroundings while avoiding formation of scar 

tissue around the implant.
9
 Chalmers University of Technology and Göteborg University looked 

at how different macromolecules such as mono and multilayered protein and lipid films can be 

absorbed and detected by a QCM-D. This work played an important role in understanding the 



kinetics behind the interaction of these molecules with different surfaces such as titanium 

dioxide and oxidized gold. It was found that water being trapped in these structures greatly 

affected dissipation readings by decreasing the rigidity of the bilayer.
37

 Since then, much of the 

research has been using different lipids, proteins, and even DNA to further explore cellular 

membrane interactions.
8
  

Our research involved the formation of a stabilized lipid bilayer (SLB) as a model 

membrane on a quartz crystal. Rather than using metal sheets as described above, non-

functionalized gold nanoparticles of varying sizes were introduced in order to observe 

membrane-nanoparticle interaction and possible membrane destabilization or adsorption. 

  



Methodology 

Materials 
 

Gold nanoparticles were purchased from Nanocs. 2, 5, 10, and 40 nanometer particle 

sizes were used. These are bare and non-functionalized nanoparticles, which will allow a control 

for future experiments with other gold nanoparticles.  

Polymethacrylic acid (PMAA) was purchased from Polymer Source Inc. With a 

polydispersity index of 1.06, it is used to mimic naturally synthesized polymers in humic 

material. Humic material helps in stabilization and prevents aggregation of gold nanoparticles.
38

 

All chemicals mentioned in methodology, unless otherwise noted, were purchased from 

Sigma Aldrich.   

Setup 
The QCM-D used in these experiments was a Q-SENSE E4 with silicon dioxide sensors 

purchased from Q-SENSE. The sensors were placed inside the chambers, making sure a seal is 

formed. The chambers were then locked into place and the appropriate tubes were attached.  

Pre-experiment Cleaning Procedure  
 

With the pump set at 0.3 mL/min, ethanol was first used to clean the tubes, sensors, and 

chambers of any impurities. Water was then used to wash the ethanol away and prepare for 2% 

sodium dodecyl sulfate (SDS) to be introduced. This is a compound often used in detergents, and 

served to further clean the QCM-D. Water was then again used to remove any remaining SDS, 

and air was pumped to dry the chambers. A general rule of 2 mL per chamber was used to 

determine the amount of liquid needed. After the chambers were partially dried, the crystals were 



removed and properly rinsed with milli-q water. The crystals and the chambers were all 

completely dried using nitrogen gas.  The crystals will then move to the Plasma-Prep for the final 

stage of cleaning.  

Plasma Cleaning 

 

A SPI Plasma-Prep™ II Plasma Etcher was used to clean the silicon dioxide crystals 

prior to running the experiment. This process is used to remove a very thin layer of atoms from 

the surface of samples with the purpose of removing loosely held contaminants.  

First, AC power was turned on and allowed to warm up for about 2 minutes. About 10 

watts are used for this procedure, as higher power removes more layers from the surface. During 

warm-up, the dial on the oxygen tank to flow the gas through the machine, and the glass chamber 

was removed and the crystals were placed inside. The pump was turned on and the “VACUUM” 

switch was flipped up. The glass chamber was gently pushed in to allow for a perfect seal and a 

complete vacuum to form. The mesh door was then closed and the “ON” switch was flipped. The 

“LEVEL” dial was turned to about 50 %, then using the “TUNNING” dial, the instrument was 

tuned until there was a purple glow in the chamber. The level was then turned up all the way 

until a stronger glow. At this point, the crystals were being etched and a timer was set for 45 

seconds. To stop the etching, the level was turned all the way down and the “ON” and 

“VACUUM” switches were flipped down. This process was repeated again to ensure purity on 

the surface of the crystals. To remove the crystals, the pump was turned off. The mesh door was 

opened and the chamber was removed after pressure was returned to normal. The crystals were 

then reinstalled inside the chambers which were locked into place once again as previously 

described in the setup procedure.  



Making the Buffer 
 

The buffer was made by mixing 100mM of sodium chloride and 10mM of tris base (2-

Amino-2-hydroxymethyl-propane-1,3-diol). pH was adjusted to 7.8 using hydrochloric acid. 

Making the Vesicle Solution 
 

Concentrated PC solution was first made by dissolving 100mg per 1 mL of ethanol. This 

can be stored in a freezer for later use. To make the stock, 15 mL of the concentrate was placed 

in a vial where the ethanol was evaporated using nitrogen. Ethanol was further evaporated by 

placing the vial in a vacuum chamber over night. 6 mL of buffer was then added to the vial and a 

freeze thaw cycle was performed. This cycle involved placing the solution in a dry ice bath until 

thoroughly frozen, then thawed with warm water and vortexed for 15 seconds. This was repeated 

5 times and time at freezing and thawing were recorded. 

A Fisher Scientific sonicator was used to sonicate the vial on pulse mode on 30% duty 

cycle (on for 3 seconds, off for 7 seconds) for 30 minutes. The solution was then centrifuged for 

10 minutes at 15,000 rpm and 4 C. This left a concentrated solid mass at the bottom of the vial 

and the supernatant was removed using a pipette. 6mL of buffer was then added and the solution 

was stored in nitrogen gas at 7 C. 
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Making the Polymer Solution 
 

 PMAA was used in a concentration of 100 milligrams per 1 liter of milli-q water. This 

was done in batches of about 30-40 mL in order to get more accurate readings on the scale. 

Making the Nanoparticle Solution 
 



 The nanoparticle consists of 6.9 mL of the polymer solution and 0.1 mL of nanoparticle 

stock resulting in a concentration of           nanoparticles/mL. This was done with 2, 5, 10, 

and 40 nm stock solutions.  

Experimental Procedure 
 

With the instrument on, Q-soft software was used to set the temperature. In the 

“Acquisition” drop down menu, “Setup Acquisition” was selected. Then in the “Temperature” 

tab, the number was changed to 23 C. In the “Sensors” tab, “quick-check found resonances” and 

“auto-start measurement” were checked off. “Find and Run” was then selected. This was used to 

tune the crystals and make sure there were no defects or impurities.  

With the instruments ready, buffer was first run through the QCM-D in order to 

normalize the sensors and set the baseline frequency. Then the vesicle solution was introduced at 

a flow rate of .15 mL/min. After about 8 minutes, when the membrane had successfully formed 

and stabilized, buffer was reintroduced for 8 minutes at the same flow rate. This was followed by 

water for 8 min. The water polymer solution was then run for 8 min, this is the baseline where 

changes are monitored. The nanoparticle, polymer, and water solution was then ran for 10 

minutes followed by a second water and polymer for 8 min. Having these two water and polymer 

sections, with nanoparticles introduced in between, will allow for analysis of only one variable 

after the experiment. A water rinse was then added for 8 min to end the experiments.   

Cleaning Procedure – after the experiment 
 

This procedure was the same as the steps taken prior to the running the experiment; 

however, the ethanol was excluded along with the plasma etching.  



Plotting Frequency and Dissipation  
 

The images produced in Q-Soft by the QCM-D show two sets of overtones graphed over 

the duration of the experiment. Frequency was shown in blue lines and dissipation was graphed 

in red and orange lines. To allow for more accurate analysis, these graphs were transposed into 

SigmaPlot. Only the overtones of interest (3,5,7,9, and 11) were plotted. First, the data was 

transferred to Microsoft Excel to ease organization. Time was changed from seconds to minutes, 

and then the data was transferred to SigmaPlot using colors similar to those used in Q-Soft to 

avoid confusion.  

 

Overtone analysis  
 

In order to further understand interactions between nanoparticles and the bilayer, an 

analysis was done using each individual overtone. To do this, a point was taken just after 

nanoparticle introduction, at a time that the reading looked stable. Data from each overtone was 

transferred to excel and subtracted by data from a point just before nanoparticle introduction. 

This was done for all four chambers as long as the data was clean enough. The average 

frequency and dissipation changes were then calculated and plotted on a bar graph with error 

bars showing the standard deviation.
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Results  
 

For clarification purposes, each stage in the experiment has been assigned a number. 

 Stage 1: vesicle formation 

 Stage 2: buffer 

 Stage 3: water 

 Stage 4: water + polymer 

 Stage 5: water + polymer + nanoparticles 

 Stage 6: water + polymer 

 Stage 7: water 

Formation of the Bilayer 
 

Successful formation of the bilayer was characterized by Figure 1. In most cases, a rapid 

decrease of around 70 hz in frequency (in blue) was first witnessed roughly 2 minutes after the 

introduction of the vesicle solution. This was then followed by an increase of about 45 hz, ending 

with a constant value of the newly supported lipid bilayer -25 hz. The dissipation curve (in red) 

was close to the inverse of the frequency curve. The graph went up to 5e-6 then back down to 1e-

6 where it remained flat until the next step of the procedure. 

 

Figure 1: QCM-D graph showing successful vesicle formation and an illustration of an SLB 
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Dissipation  



2 nm Gold NanoparticlesQCM-D Results 
 

 Within the multiple experiments performed with 2 nm gold nanoparticles, three different 

interaction trends were witnessed. The first, shown in Figure 2 showed an increase in frequency 

as the nanoparticles were being introduced in stage 5. The frequency then remained the same in 

stage 6.  

 

Figure 2: chamber 1 results of a trial using 2nm particles 
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Figure 3 showed a decrease in frequency at stage 5, followed by a slight increase at stage 6.   

 

 

Figure 3: chamber 2 results of a trial using 2nm particles 

 The third result showed an increase similar to that in Figure 2, however there was a 

negative change in frequency between stage 4 and stage 6. This is shown in Figure 4. 

Additionally, all three results a decrease in rigidity that was constant from stage 4 to stage 6. 

These experiments should theoretical show the same results for interaction but were different due 

to an inconsistency from one experiment to another.  
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Figure 4: chamber 2 results of a trial using 2nm particles 
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5 nm Gold Nanoparticles QCM-D Results 
  

The nanoparticles that will be discussed in this section are 5nm spherical gold nanoparticles. 

QCM-D results generally showed a decrease of about 2 hz when the nanoparticles were 

introduced in stage 5. The frequency after nanoparticle interaction, however, varied with 

different trials. Figure 5 showed a higher frequency (-25 hz) during stage 6 than in stage 4 (-30 

hz). There was also an increase in dissipation from an average of -0.5 to 1e-6 simultaneous with 

the decrease in frequency caused by the nanoparticles. Figure 6 showed a frequency of -31 hz, a 

change from -28 hz seen at stage 4. Dissipation remained somewhat constant at -0.5 throughout 

these changes.   

 

 

Figure 5: chamber 1 results of a trial using 5nm particles 
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Figure 6: chamber 1 results of a trial using 5nm particles 
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10 nm Gold Nanoparticles QCM-D Results 
  

The nanoparticles that will be discussed in this section are 10nm spherical gold nanoparticles. 

We generally saw an increase of about 3 hz from stage 4 to stage 5. The frequency then slightly 

dropped (about 1 hz) when only water and polymer were flowing again during stage 6. This is 

illustrated in Figure 7. Dissipation seemed to have slightly decreased from stage 4 to stage 6.  

 

 

Figure 7: chamber 2 results of a trial using 10nm particles 
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40 nm Nanoparticles QCM-D Results 
 

The nanoparticles that will be discussed in this section are 40nm spherical gold 

nanoparticles. As in the 10 nm results, 40 nm nanoparticle interactions generally resulted in an 

increase of about 3 hz from stage 4 to stage 5 although the frequency slightly increased (about 1 

hz) when only water and polymer were flowing again during stage 6. This is illustrated in Figure 

8. Dissipation seemed to have slightly decreased from stage 4 to stage 6. 

 

 

Figure 8: chamber 2 results of a trial using 40nm particles 
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Discussion  

Formation of the Bilayer 
 

The first decrease in frequency, at step 1, shown in Figure 1 relates to an increase in mass 

due to the vesicles trapping fluid and expanding on the sensors. The dissipation increase, at step 

1, represents a low rigidity caused by the fluid. Consequently, the following increase in 

frequency, at step 2, is caused by the vesicles bursting and releasing the fluid (losing mass) to 

return to their lowest energy state and form a single, stabilized layer on the sensor. The stabilized 

frequency at step 3, with a negative frequency roughly ~-25 htz shows that the layer has 

remained on the crystal. The simultaneous decrease in dissipation is due to the increased rigidity 

of the bilayer as the molecules line up and form a single, fluid-free layer.  

  

Figure 9: QCM-D graph showing successful vesicle formation and an illustration of an SLB 
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Repeatability of Experiments 
 

 Throughout the research, there was an underlying problem with reproducing data from 

experiment to experiment. Reproducibility problems ranged from failed experiments, 

inconsistent data sets between experiments, and even contradictory data sets during the same 

experiment. The latter of three can occur do to the fact the Q-Sense E4 QCM-D has four 

chambers running four trials per experiment. All four chambers feed from the same vials, so the 

variable has to come from the formation of the lipid bilayer from the shared vesicle solution. 

Research has been done to better understand the vesicle formation into a bilayer and results show 

that a single uniform bilayer is not always the end result of this transformation. Bilayer defects 

are common and caused by improper assembly of the vesicle solution, especially during the 

freeze-thaw method.
41

 This could account for the problem between experiments which were 

performed with different vesicle solutions. Another study, completed with the use a QCM-D, 

showed that the dissipation at the end of bilayer formation can be correlated to possible defects 

in the system. Intact vesicles produce a higher change in dissipation than bilayer patches. 
42

 Our 

results show varying vesicle formations dissipations ranging from 2-0. These defects can exhibit 

results that are not consistent with the actual mechanism of the nanoparticle size.  

2 nm Results 
  

Figure 10 shows the overtone analysis done for 2nm interactions with an increase in 

frequency, as shown in Figure 2.  The increase in frequency here shows a mass loss occurring 

instantaneously at nanoparticle introduction. This could have been caused by the formation of 

holes throughout the bilayer as the nanoparticles pass the bilayer. Hole formation is a common 

mechanism of nanoparticle interactions
43

 and as the particles are uncharged is consistent with 



Figure 17 located in the appendix. Rigidity also seemed to slightly increase throughout the 

bilayer; however it was more prominent in the bottom layers than at the surface. As holes were 

being created, some polymer could have filled in the gaps. This would have accounted for the 

small increase in rigidity.  

 

Figure 10: Overtone analysis for 4 chambers using 2nm particles 

Figure 11 analyzes the results of 2nm decrease in frequency as illustrated by Figure 3 . 

This again showed mass loss but for a different reason. The mass loss occurred suddenly at the 

introduction of the water and polymer rinse. At the introduction of nanoparticles there was 

actually an increase in mass. This interaction is consistent with reports that nanoparticles will 

expand pre-existing defects. This research was done in vitro and a rinse did not occur to see if 

the nanoparticles adhered to the bilayer.
44

  The polymer again enters the bilayer adding some 

rigidity to the structure where the defects were expanded.  
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Figure 11: Overtone analysis for 4 chambers using 2nm particles 

Figure 12 clearly shows an increase in mass accompanied by higher rigidity throughout 

the membrane. This represents nanoparticle adsorption as shown by Figure 4, where particles 

adhered to the membrane and were too resilient to be washed away by the water and polymer 

solution. In addition, the particles are naturally more rigid than the membrane. This adds to the 

overall stiffness of the material, more so than the polymer. This interaction only occurred in two 

chambers during one experiment. The QCM-D chart in Figure 4 shows that the dissipation was 

highest in this experiment then any of the other 2nm results. As previously stated, this correlates 

to possible non-ruptured vesicles and therefore defects in the membrane.  
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Figure 12:Overtone analysis for 3 chambers using 2nm particles 
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5 nm Results 
 

 Just as with the first two 2 nm overtone bar graphs, 5nm nanoparticles show a definite 

mass loss when comparing the sample before and after nanoparticle introduction. This time we 

saw a very small decrease in rigidity at the surface, and an increase on the bottom layers as 

seenin Figure 13. This could be cause by water filling in the holes and destabilizing the 

membrane.  

 

Figure 13: Overtone analysis for 4 chambers using 5nm particles 

 

10 nm/40 nm Results 
 

 Once again, mass loss and an increase in rigidity were witnessed in a similar interaction 

of 2nm in Figure 2. The large molecules form holes that produce mass loss that is greatest at the 

surface as shown by Figure 14 and Figure 15.  
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Figure 14: Overtone analysis for 4 chambers using 10nm particles 

 

Figure 15: Overtone analysis for 4 chambers using 40nm particles 
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Effect of Nanoparticle Size on Membrane Interaction 
 

 Table 1 below shows the number of results that occurred for either mass loss or mass 

gained, at each size of the nanoparticle. Raw data can be found in the appendix. It is clear that 

the favored interaction caused a mass loss in the membrane along with an increase in rigidity. 

This shows that the uncharged bare gold nanoparticles interacted at the surface, damaged the 

membrane, and then left the system.
45

 This allows the polymer to fill in and possibly increase the 

rigidity. Results for the 5nm particles were different, however we believe that if given more trials 

and overcoming any problem with reproducibility, the results would eventually favor mass loss 

and rigidity increase.  

Table 1: cumulative results of all runs done in this experiment. All raw data can be found 

in the appendix 

SIZE (nm) MASS LOSS 

# of results 

MASS GAIN 

# of results 

Rigidity  

2 9 5 Increased Rigidity 

5 2 4 Decreased Rigidity 

10 11 2 Increased Rigidity 

40 6 2 Increased Rigidity 

 

The results do show that there is no effect due to size of these bare nanoparticles. Mass loss is 

occurring independently of size and no adherence is taking place with the bilayer and the bare 

nanoparticles.   



Conclusion and Recommendations 

 

From the results above, size wasn’t a variable that governed how the bare gold 

nanoparticles affected the membrane. All four sizes relatively acted the same way. Although 

results favored mass loss and an increase in rigidity, all interactions seem to have changed the 

structure of the SLB in some way, whether it was a degradation of the membrane or adsorption 

of nanoparticles to the membrane. We did not witness any cases of the bilayer not being affected 

by the introduction of nanoparticles.  

An important thing to consider is the lack of reproducibility in these experiments. The 

existence of defects during the formation of the SLB is in itself, a variable in the experiment. 

Future research should take these defects into consideration and inevitably strive to control them, 

either by completing removing them from the system to model a healthy lipid bilayer or to 

control the existence of them and represent a flawed bilayer.  

The defects in the model membrane are analogous to those that can be found in living 

cells. If nanoparticles are to be used more in industrial processes and bioengineering application, 

they will ultimately end up in either waste streams or within the body and interact with both 

healthy and damaged cells.   

  



Appendix 
 

APPENDIX A: Supplementary Background Information  
 

Table 2: Cytotoxicity of gold nanoparticles
3 

 

Table 3: Nanopartz technology comparison 

 

Nanopartz™Accurate™ 

Spherical Gold 

Nanoparticles 

Other 

Technologies 

Monodispersity High (<2%) Low (>15%) 

Size Accuracy High (+/-2nm) Low 

Linewidths Narrow Broad 

Storage 

lifetime 
Years 

6 months at 

4C 

Ability to 

ligand 

exchange 

Easy 
More 

difficult 

 



 

Figure 16: Some Applications of Gold Nanoparticles in Cancer Nanotechnology 

 

Figure 17: Penetration of Varied Charged Gold Nanoparticles
 

 

 

 

  



APPENDIX B: ALL QCM-D Data Graphs 

2 nm 2-17-2012 QCM-D Results 
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2 nm 2-21-2012 QCM-D Results 
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2 nm 2-23-2012 QCM-D Results 
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APPENDIX C: ALL Overtone Analysis Bar Graphs 
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