
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

March 2018

Adverse Reaction Reports Analysis Tool
Cory M. Tapply
Worcester Polytechnic Institute

Daniel Yun
Worcester Polytechnic Institute

Derek Murphy
Worcester Polytechnic Institute

Oliver B. Spring
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Tapply, C. M., Yun, D., Murphy, D., & Spring, O. B. (2018). Adverse Reaction Reports Analysis Tool. Retrieved from
https://digitalcommons.wpi.edu/mqp-all/6651

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6651&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/6651?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F6651&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu

Faculty Code: EAR
Project Number: 1803

Adverse Reaction Reports Analysis Tool
A Major Qualifying Project Report:

Submitted to the Faculty of the
WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the
Degree of Bachelor of Science

Submitted by:

Derek Murphy
Oliver Spring
Cory Tapply
Daniel Yun

Date: March 22, 2018

Approved by:

Professor Elke A. Rundensteiner

Acknowledgements

We would like to express gratitude and acknowledge the following individuals for all

their help, support, and contributions to this project:

● WPI graduate students Tabassum Kakar and Xiao Qin who performed all the preliminary

research for this project as well as helped guide us through building the application

through the entire project by meeting with the team weekly and continuing to research

what features the FDA want the most.

● Professor Elke Rundensteiner from WPI for her assistance and guidance throughout the

entire project.

● We would like to acknowledge the FDA for providing the publicly available data used for

this project.

1

Abstract

The purpose of this project is to provide a working alternative to the FDA Drug Safety

Evaluator’s current medical error analysis workflow. By prioritizing a visualization-focused

application, investigators are able to easily identify trends and important reports. Using treemap

visualizations, bar charts, and area charts, an investigator is able to sift through medical error

reports by patient demographic, report statistics, and date, allowing specific reports to be found

easily. Specific reports have all of their metadata displayed in a tabular view and can be

interacted with to show the report’s narrative. The report narrative can be annotated with

highlights to point out significant information. The application allows for the evaluators to mark

and store significant reports in cases that provide further statistical analysis on the annotated

reports stored inside them. The application is incomplete but has the functionality for many

use-cases and will continue to be developed in the future.

2

Table of Contents

Acknowledgements 1

Abstract 2

Table of Contents 3

1. Introduction 7
1.1 The Problem 8
1.2 Goal of the MQP 8
1.3 Accomplishments 9

2. Background and Related Work 10
2.1 FDA DPV Analysis Process 10

Figure 2.1 Current FDA workflow flowchart 11
2.2 Visuals Background 11

Figure 2.2: Original Proposed Layout 12
2.3 Related Work 13

Figure 2.3: SellTrend System Interface 16

3. Improving Evaluator Workflow 16
Figure 3.1 New application workflow flowchart 16

4. Application Architecture 18
Figure 4.1: Application Stack Diagram 18

4.1 System Requirements 20
4.2 Technology Choices 21
4.3 Project Structure 23

Figure 4.2: Folder structure of the front-end 24
4.4 User Dashboard 24

4.4.1 Front-end 24
Figure 4.3: User Dashboard Basic Data 24
Figure 4.4: User Dashboard Case Details Listing 25

4.4.2 Back-end 25
Figure 4.5: Get case data from the ‘cases’ table 25
Figure 4.6: Get case data from the ‘cases’ table 26
Figure 4.7: Modify a case in the ‘cases’ table 26

3

4.4.3 Database 26
Figure 4.8: Cases Table in the database 26

4.5 Top Bar & Navigation 26
4.5.1 Front-end 26

Figure 4.9: Top Navigation Bar 27
Figure 4.10: Sidebar and List Components 28
Figure 4.11: About Page 29
Figure 4.12: Login Page 29

4.5.2 Back-end 29
Figure 4.13: Get user information from ‘users’ table 30
Figure 4.14: Save user email into ‘users’ table 30
Figure 4.15: Save user default trash bin for report view. 30

4.5.3 Database 30
Figure 4.16: Users table 31

4.6 Main Visualization 31
4.6.1 Front-end 31
4.6.1.1 Timeline 31

Figure 4.17: Calendar picker to select a range of dates 31
Figure 4.18: Area Chart picker to select a range of dates 32
Figure 4.19: Bar Chart picker to select a range of dates 32
Figure 4.20: Tooltip on mouseover 33

4.6.1.2 Demographics 33
Figure 4.21: Demographics panel 33
Figure 4.22: Tooltip on mouseover 34

4.6.1.3 Tree-Map 34
Figure 4.23: TreeMap 34
Figure 4.24: Tooltip on mouseover 35
Figure 4.25: Tree-Map with Minimized Demographics and Timeline 36

4.6.2 Back-end 36
Figure 4.26: Example getvis database query sent by the back-end 38

4.6.3 Database 38
4.7 Reports Listing 38

4.7.1 Front-end 38
Figure 4.27: DevExtreme React Grid in the reports listing view 39
Figure 4.28: Sample React Table 40

4.7.2 Back-end 41

4

Figure 2.29: getreports query that will return all the reports that took place between
the selected start and end dates 41

4.7.3 Database 41
Figure 4.30: Reports Table 42
Figure 4.31: Cases Table 42

4.8 Report Narrative Annotation 42
4.8.1 Front-end 42

Figure 4.32: Text Editor Text 43
Figure 4.33: What Quill Stores 44

4.7.2 Back-end 44
Figure 4.34: Retrieve Report Narrative Query for Report with id 130776901 45
Figure 4.35 Save Report Narrative Query for Report with id 130776901 45

4.8.3 Database 45
Figure 4.36: Database report_text and tags Columns for Report with id 130776901 45

4.9 Case Management 45
Figure 4.37: Default trash and read cases 46
Figure 4.38: Reports Listing with reports in the read case 46
Figure 4.39: Reports Listing with reports in the read case and advil 47
Figure 4.40: New Case Tab 48
Figure 4.41: Toggle for deactivating a case 48

4.10 Case Summary 49
4.10.1 Front-end 49

Figure 4.42: Floating button to open case summary 49
Figure 4.43: Case summary with closed expansion panels 50
Figure 4.44: Expanded Case Summary showing data about the case 51

4.10.2 Back-end 52
Figure 4.45: getcasetags query to get the highlighted text from all reports in a given
case and user 52
Figure 4.46: getreportsincases query with optional parameter to get reports from a
single case 53

4.10.3 Database 53

5. Evaluation Via User Studies 54
5.1 User Testing Procedure 54

5.1.1 Task 1- Familiarizing with the Filtering Methods 55
5.1.2 Task 2 - Creating and Adding to a Case 55
5.1.3 Task 3 - Annotating a Report 56
5.1.4 Task 4 - Finding a Specific Report 56

5

5.1.5 Task 5 - Case Management 57
5.2 Evaluation Results & Analysis 57

Figure 5.1 Results of post-task questions 62

6. Conclusion 62
6.1 Summary of Project and Contributions 62
6.2 Future Work 63

References 66

Appendix A: Technologies Used 68

Appendix B: User Study Consent Agreement 70

Appendix C: Application Guide 72

Appendix D: User Study Tasks 73

Appendix E: User Study Post-task Questions 75

Appendix F: Application Help Page 78

Appendix G: User Study Data Spreadsheet 86

Appendix H: User Study Application Comments 92

Appendix I: GitHub ReadMe and Redux Tutorial 94

6

1. Introduction

Pharmacovigilance is the practice of monitoring the effects of already-approved drugs to

identify and evaluate previously undescribed adverse reactions [1]. The Food and Drug

Administration’s (FDA) Division of Pharmacovigilance (DPV) documents and analyzes

unforeseen adverse reactions that may arise from drug usage. Since new drugs are constantly

released, it is important to carefully monitor and analyze any adverse reactions they may cause to

gain a clear understanding of what may have caused them.

The FDA currently has a database it uses to store adverse reaction data called the FDA

Adverse Event Reporting System (FAERS). It receives approximately one million reports each

year and is used to detect potential drug reaction patterns. The FAERS database currently holds

14 million records of reactions dating back to 1968, eight million of which classify as serious

and 1.4 million that resulted in death [2]. The FDA DPV prioritizes reports based on many

different criteria of the adverse events such as reaction type, cause, and event outcome. Finding

the most severe reports to quickly determine the cause of an adverse reaction is a complex

process. Adverse events can be unforeseeable, but they only account for one type of report that

the FAERS receives.

The other type of report is a Medical Error report. Medical errors, unlike adverse events,

are avoidable and deal with side effects, for example, that could arise due to the patients

receiving the wrong medication. The FDA’s Division of Medical Error Prevention and Analysis

(DMEPA) is responsible for handling these reports. Several factors can lead to medication errors.

Chief among them are drug name confusion and packaging-labeling similarities. For instance,

7

one could easily confuse the drugs Durezol, a prescription eye drop medication, and Durasal, a

prescription wart remover, because of their similar names and similarly shaped containers [3].

Medication errors that occur while prescribing, repackaging, dispensing, administering or

monitoring are all kept and carefully examined.

1.1 The Problem

Each report contains potentially important information and must be individually analyzed

through drug name, severity, patient outcome, and keywords that may be found in the report text

in order to detect trends. Medical errors can has serious consequences, including injury or death.

It is important that employees are able to detect the causation of widespread medical errors as

soon as possible.

With the importance of this data in mind, the development of a tool that allows the FDA

DPV to easily visualize trends by applying filters based on date, demographics, and medication

types and errors is of utmost importance. Once the FDA DPV has come to the conclusion that a

report is part of a trend, they can then add the report to that trend’s case. This provides a more

effective way of searching through reports based on key attributes in large quantities to narrow

down trends and come to conclusions.

1.2 Goal of the MQP

The goal of this MQP is to build a tool for the FDA DPV that allows its Drug Safety

Evaluators to analyze relevant data from the FAERS database quickly. For this a data analysis

and visualization tool must be created that:

8

● Facilitates the analysis of medication errors and adverse effects in pharmacovigilance

● Can display various representations of the data contained in the medication error database

● Can view and annotate narratives of specific reports

● Separated speed of system by adding a caching layer in application stack

● Provides a more structured interface than the FDA DPVs current tool

● Can consume input new report data in SQL database format.

● Is web-based to allow easy access by any employee on any type of operating system to

use.

● Can organize reports into groups to be further analyzed or to be used as evidence to

support a theory.

1.3 Accomplishments

The team’s primary accomplishment is the development of a working prototype of a

medication error and adverse reaction visualizer and organizer tool. Additionally, the team

performed a local user study in order to evaluate the usability of the application and determine

what future work should be done to continue the development of the tool. The application

prototype has functioning front-end, back-end, cache, and database layers hosted on WPI servers.

Detailed information on work finished for the application can be found below in Section 4.

Individually, each team member has learned individual coding and time management

skills as well as group teamwork skills. Everyone began the project with gaps of knowledge in

web development programming and has now learned how to develop with and implement all of

9

the technologies listed below in Section 4.1. Additionally, we all improved our teamwork skills

as consequence of working as a team for six months.

2. Background and Related Work

2.1 FDA DPV Analysis Process

The layout of this interface is designed to streamline the current process for identifying,

grouping, analyzing, and annotating reports. The system in place at the FDA is a spreadsheet

wherein each column contains information about that specific report. While this format keeps all

the reports in a structured format, there is no way to differentiate between a report that must be

prioritized and a report that does not contain any relevant information. There are no visual

components in the interface currently in place so implementing a treemap, timeline, and

demographics section can help pinpoint trends in the reports and speed up the task of processing

the important ones. Furthermore, the visualization allows investigators to filter reports into

smaller and more manageable groups that can reveal patterns for specific products, stages,

medication error types, etc.

The current workflow consists of four main steps. The first is to select and open a report

from a list of reports. After selecting a report, the investigator examines potential signals that

may be found in the report’s description and summary. If any relevant information is found, the

investigator then annotates the significant keywords. Once this is done, the user may share the

report and start analyzing a new report.

10

Figure 2.1 Current FDA workflow flowchart

2.2 Visuals Background

The Adverse Reaction Reports Analysis Tool compiles medication error and adverse

reaction reports and visualizes them in a way that is easy to analyze and manipulate. The

proposed layout by Tabassum Kakar for the interface is shown below.

11

Figure 2.2: Original Proposed Layout

The layout was designed through an iterative process of repeat meetings with FDA safety

evaluators about their work flow.

The layout consists of three main sections. The center portion of the interface contains

tree-mappings that display information about the selected reports. A majority of the interface is

dedicated to this visualization because it holds the most significant data, which investigators can

use to extrapolate trends. The tree-maps display data from report medication error type,

associated products, stage in which it was filed, and cause. Additionally, each tree-map contains

statistics on the occurrence of these attributes that display on mouse-over. The size of each box

in each tree-map is determined by the number of reports that contain that attribute. The color of

each box is determined by the average severity of all the reports that contain that attribute. This

allows the FDA DPV to filter the reports by report attribute as well as by report severity quickly.

12

On the left side of the interface is the demographics sidebar which contains visualizations

for the gender, age, and location breakdowns of selected reports. The data displayed here is the

summation of the demographic data associated with each report that is currently being filtered to.

Each demographic graph is interactable and acts as a filter to narrow down reports further.

The lower section of the layout consists of two time-based tools- the timeline and

calendar. The timeline displays how many reports were filed in a given week and changes color

depending on the severity of those reports. When a time frame is selected, the visualizations in

the timeline and demographics sections change accordingly to reflect the updated information.

All of the sections are interactive and update dynamically to changes made in other parts of the

interface.

2.3 Related Work

Several previous MQPs tackle problems similar are to those faced by the FDA DPV. The

first project, titled “Context,” focuses on creating a community-accessible database of an

assortment of statistics and providing a tool that can visualize multiple data sets over a given

timeframe. The most important component of the project was the database. After analyzing pros

and cons of relational and non-relational databases, they decided to use a relational database

because it offers a more structured approach and allows users to pull fewer tables when making a

query [4].

Another relevant project is titled “GRID Portal Application Visualization.” The goal of

this project is to develop a web interface that allows users to execute parallel parametric study

applications. Their application uses Java as the primary programming language and the User

13

Interface was made using Java Swing, a GUI toolkit. Swing was chosen over the Abstract

Window Toolkit (AWT) because AWT does not allow for cross-platform compatibility.

Cross-platform compatibility was essential for this project because it required that the interface

allow multiple users on completely different machines to access it at all once.

The approach for this FDA project is very similar to these other projects primarily

because the interface is meant to be designed for use across many platforms as a web application

but we do not need to support a mass of users since this is not meant to be a publicly accessible

tool.

One of the most important components of the application is the treemap visualization.

Much research has been conducted to evaluate the effectiveness and accessibility of the

treemap’s layout. One of the benefits of the treemap is that it eliminates whitespace because

every tile is part of and necessary for the visualization. Another benefit treemaps offer is that

they can display entire hierarchies in relatively small spaces so users have access to a view of all

levels in a hierarchy with a single visualization [9]. The layout of the treemap also facilitates the

process of detecting outliers or trends in the data because the investigators’ attention will

naturally be drawn to the larger containers in the visualization, which typically indicate

abnormalities or patterns [10].

The Adverse Reaction Reports Analysis Tool is not the first application to employ the use

of treemaps, timelines, and statistics panels to convey different aspects of a specified set of data.

One example of a previous interface with a similar structure is the SellTrend visual analysis tool,

a system for analyzing airline travel purchase requests [11]. The SellTrend layout is largely the

same as the ARRAT’s layout with a couple of key differences. The interface contains a table

14

view where the user can see a spreadsheet-like representation of individual records. This table

view is not present in the ARRAT. Instead, there is a separate page where all of the reports are

listed and the user can perform several actions such as adding to a case and annotating. The UI

Panel in the SellTrend interface is the equivalent of the Demographics bar in the ARRAT

although the Demographics bar is positioned at the top of the application to allow for additional

space for the treemap. Finally, the Timeline View in the SellTrend application is very similar to

that of the ARRAT but SellTrend provides more granularity by allowing the user to view

specific hours once a day has been selected. This functionality is not necessary for the ARRAT

because the reports are usually marked with a date but do not provide a specific time.

15

Figure 2.3: SellTrend System Interface

3. Improving Evaluator Workflow

In order to improve the workflow of FDA Drug Safety Evaluators, the team has

developed a Adverse Reaction Reports Analysis Tool web application. The application allows

investigators to filter and sort through reports and group relevant reports together to form cases.

Figure 3.1 New application workflow flowchart

When an investigator first arrives at the website landing page, they are prompted to create

an account as that will allow them to create and save cases of reports. Once logged in, the

investigator is directed to a filtering page containing many intractable visualizations. On this

filtering page, it is important that an investigator is able to filter by demographic and date as well

as by the type, product or drug, stage, and the cause of a adverse reaction. This allows

16

investigators to narrow down their search to a handful of highly relevant reports for them to

analyze.

Once an investigator has made their filter selections, they can navigate to a report listings

page. Here, all of the reports that the investigator has filtered down to are shown in list form

where each row is a unique report that shows that report’s metadata. At the top of the page, there

is a interface that lets the investigator change the contents of the report list from the filtered

reports to the contents of any active case they are working on. The investigator can sort the list

by any of the criteria mentioned before. While analyzing the reports, if an investigator finds an

irrelevant report, they can move it into a special trash case that prevents that report from showing

up again. If the investigator finds a relevant report, they can either move the report to an existing

active case or create a new case for the report to me moved to. Furthermore, the investigator can

open up the text of a report in order to add annotations. Annotations are not user-specific and can

be viewed and changed across all investigators.

After the investigator has analyzed all the reports on the report listing page, they can go

through the filtering process again or navigate to the dashboard page. The dashboard page shows

all active and archived cases as well as each of their metadata and reports. On this page the

investigator can view the details of each case, which includes a table of reports in that case,

toggle a case to be either “active” or “archived,” or edit that case. After finishing and archiving a

case, the investigator can create more cases and navigate back to the filter page, restarting the

whole process.

17

4. Application Architecture

Figure 4.1: Application Stack Diagram

The Adverse Reaction Reports Analysis Tool requires three core components built before

the development of visualizations: a front-end, back-end, and database client. The front-end

handles the visualizations and visual effects that make the user experience immersive and

18

dynamic. The back-end manages data retrieval from the FAERS database and passes that

information to the front-end where it is made accessible. The database stores FAERS data as well

as important user-specific data used by the front-end. The front-end and back-end use the same

runtime engine so they can communicate seamlessly with each other preventing hiccups during

implementation.

Both the front-end and back-end use NodeJS as their runtime environments and act as

event-driven servers that can send and receive GET and POST requests to communicate data

back and forth. In addition to the innate ability to support cross-origin scripting, NodeJS has an

extensive list of packages and libraries which allow developers to utilize a wide variety of

development tools. The back-end uses Node Express - a minimalist web framework built off of

NodeJS. Node Express includes the same capabilities as NodeJS and provides extra server-based

functionality that is easier to implement.

The database runs Postgres because it offers many benefits for the FAERS data as the

data is publicly available and formatted as relational tables. Additionally, Postgres is very

efficient when dealing under two terabytes of data. The FAERS data is comprised mostly of

short text values and integers and falls under that storage space threshold. Before accessing the

database, the back-end queries a Redis client, an in-memory data store, that saves database query

results to speed up large or repetitive queries.

The tool currently utilized by the FDA to analyze medication errors and adverse reaction

reports is unintuitive and slow. The FAERS database, as mentioned in the Background, presently

holds 14 million reports. This is a concern for a visualization application - considering

visualization has to account for any section of that data at any time and dynamically parsing

19

large data sets is slow. While displaying all 14 million reports concurrently is not a common

use-case, performance is still a concern. The separation of the back-end and front-end

environments allow more bandwidth across each server for its intended task.

4.1 System Requirements

The project uses the following technologies [see appendix A for sources] :

- NodeJS: An open-source web server framework that runs JavaScript.

- NodeJS-ExpressJS: A web framework built on top of NodeJS that provides easy-to-use

RESTful api.

- ReactJS: A JavaScript library used to build UIs.

- Redux: A state container that stores information that can be accessed by any layer of an

application.

- Redux-Thunk: Redux middleware that delays the execution of a function, used to create

global functions that alter the Redux state of the application.

- Redux-Persist: A Redux library that takes advantage of browser memory to persist the

redux state across browser refreshes and tabs.

- React-Prop-types: A React library that enforces specific data types to be passed through

specific prop variables to prevent runtime errors.

- React-router: A React library that handles URL parsing in order to deliver the correct

App view to the browser.

- React-quill: A React text editor built off QuillJS- an open-source text editor built in

JavaScript.

20

- D3: A Javascript library that processes and displays visualizations.

- D3-Recharts: A D3 module that contains powerful pre-built chart visualizations

- Lodash: A Javascript library that replaces and adds to many built in JavaScript functions

with higher-efficiency versions

- Bluebird: A high-performance JavaScript promise library

- JQuery: A JavaScript html traversal and editor library

- MomentJS: A data and time parser JavaScript library.

- Webpack: A framework that bundles and parses JavaScript modules to be runnable in all

browsers.

- Postgres: An open-source, relational database system.

- Redis: An in-memory key-value store that saves frequently fetched data or results of slow

database queries.

- ReJSON: A Redis module that allows redis to store json as a native data type.

- Bootstrap: A front-end framework that provides easy CSS and html formatting and

design

- Material-UI: A React UI library that has many built in custom elements.

4.2 Technology Choices

Throughout the development of the Adverse Reaction Reports Analysis Tool, the team

had to make decisions on which frameworks and libraries to utilize to store, select, visualize and

interact with the data.

21

The front-end of the application had to be a web-based solution. This gives the ability for

multiple investigators to view and interact with the data on page that is familiar to them. With a

three level structure in mind for the database, server, and web-page, the Model-View-Controller

(MVC) architecture was an obvious choice. ReactJS [6] and AngularJS [7] are the two most

common JavaScript frameworks with an MVC architecture implementation. While each option

has their own merits, namely React having a smaller package size for faster loading, shadow

DOM for reducing expensive screen re-renders, familiar syntax to HTML with JSX compiling,

and Angular having TypeScript, new templating syntax, great documentation, and a more

boilerplate structure etc. React was chosen as the best option. Much of this decision comes from

the flexibility and familiarity of JSX when using Redux as a state manager, this leads to a faster

learning curve when compared to Angular whose new ‘magic’ is foreign to developers at a first

glance.

To keep a consistent, clean and responsive theme to the application the Material-UI Next

styling library is used. This implements the Material Design Guidelines [8] created by Google

that give the investigator a responsive interface with similar behavior to many of the Google

apps. Using this library allows the developers to focus more on features and layout rather than

implementing custom CSS for each button or menu on the page. It is built for React applications

and integrates seamlessly with the architecture to serve as a tool for making a great user

interface.

When developing any application it is critical to keep a clean, maintainable and

understandable code-base. A tool used to set guidelines for code structure and style is ESLint.

22

This repository uses the AirBnB style guidelines to help all contributors write code in a

standardized format, while giving helpful hints about preferred practices along the way.

4.3 Project Structure

The project is comprised of three main components the front-end, back-end, and

database. The front-end has an outermost index component that houses the redux actions and

reducers, as well as every other page of the application.

|-back-end
|-front-end
 |---public
 |____src
 | |____resources
 | |____components
 | | |____visualization
 | | | |____components
 | | | | |____demographics
 | | | | | |____components
 | | | | | | |____components
 | | | | |____timeline
 | | | | | |____components
 | | | | | | |____components
 | | | | |____treeMap
 | | | | | |____components
 | | |____portal
 | | | |____images
 | | | |____userComponents
 | | |____cases
 | | |____components
 | | |____editor
 | | | |____images
 | | |____reports
 | | | |____components
 | |____actions
 | |____reducers

23

Figure 4.2: Folder structure of the front-end

The back-end is a series of RESTful endpoints that generate and execute SQL queries

then returns the json data. A REDIS cache is used to speed up the commonly used queries. These

queries are processed by the PostgreSQL database containing the FAERS data.

4.4 User Dashboard

4.4.1 Front-end

In the user dashboard, an investigator will be able to see basic user and case data. The

front-end development displays primarily Bootstrap-themed styling, with the help of some

Material-UI navigation to allow scrollable access to their case names. On the user dashboard,

investigators will be able to see who they are logged in as, how many active and inactive cases

the investigator may have present in the application. They will be able to see this basic data

underneath the page title ‘User Dashboard.’

Figure 4.3: User Dashboard Basic Data

In addition to basic user and case counts, an investigator has the option to customize

some of the already built cases that exist. In the next section of the dashboard, we will see the

Material-UI navigation system to toggle from case to case. By clicking a tab, you will be able to

see independent information about the case which is currently ‘active.’ The active tab which you

most recently click on will be the case which you are seeing the details for. Details for each case

include the case name, a button an option to edit the case, the case description and a non-editable

listing of all the reports which belong to the investigators case.

24

Figure 4.4: User Dashboard Case Details Listing

In addition to utilizing the Material-UI tabs component, their toggle component was used

to ensure fluid animation in a react environment to toggle a case active or inactive if the case is

not one of the two predefined ‘Read’ and ‘Trash’ cases.

In the report item itself, once the arrow to the left is clicked a panel will expand with the

options for the reports which exist in your case, investigators will only be allowed to read the

narrative for the report at hand and not move the reports from case to case nor will investigators

be able to annotate the report text like they would in the Reports Listing​ ​interface.

4.4.2 Back-end

The dashboard uses a database query to get all of the case information for the currently

logged in investigator that can be found in the Redux state.

SELECT DISTINCT name, case_id, description, active
FROM cases
WHERE user_id = 45 AND primaryid = -1

Figure 4.5: Get case data from the ‘cases’ table

The dashboard also makes a database query to update the status of a case when the

investigator wants to set it to be active or inactive.

25

UPDATE cases
SET active = 'false '
WHERE name = 'Advil' AND user_id = 45 AND primaryid = -1

Figure 4.6: Get case data from the ‘cases’ table

The dashboard makes a database query to update the description or name of a particular

case.

UPDATE cases
SET name = 'Advil', description = 'New Advil Description'
WHERE user_id = 45 AND name = 'Advil'

Figure 4.7: Modify a case in the ‘cases’ table

4.4.3 Database

The ‘Cases’ table is the only table used when displaying the user dashboard.

Figure 4.8: Cases Table in the database

4.5 Top Bar & Navigation

4.5.1 Front-end

The navigation bar utilizes the Bootstrap and Material-UI libraries and contains

application branding, active filters, and an expandable sidebar providing navigation throughout

26

the application. The top bar is built with Bootstrap using its Navigation component with default

styling to ensure responsiveness. The expandable sidebar is created with the Material-UI drawer

component because it has a less intrusive design and intuitive control scheme.

The sidebar component is made up of Material-UI list components. These components

provide default styling that adds padding around the list text so the elements to fit well visually.

Figure 4.9: Top Navigation Bar

27

Figure 4.10: Sidebar and List Components

In addition to top navigation and sidebar navigation, the portal has three additional views-

the About, Help and Login pages. The Help page contains a user manual to help investigators

learn the system and can be found in Appendix F. The About page is a simple bootstrap-themed

view which simply displays a page title, application title, and short project description.

28

Figure 4.11: About Page

The login page contains a page title, a Bootstrap form that displays an email label, a text

input field, and a “Sign In” button. User login data is sent to the Redux global state to be

accessed by other views on button press.

Figure 4.12: Login Page

4.5.2 Back-end

There are multiple fetch requests sent from the front-end to the back-end during a login.

The login form checks the different stored emails in the ‘users’ table in the database and if the

29

user-entered email does not exist, another back-end endpoint inserts a new row into the ‘users’

table with the entered email and an auto-generated user ID number.

SELECT user_id, email
FROM users WHERE email=’example@example.com’

Figure 4.13: Get user information from ‘users’ table

INSERT INTO users (email) VALUES (‘example@example.com’);

Figure 4.14: Save user email into ‘users’ table

On user creation, the back-end generates a default ‘trash’ case that every investigator

must have. The endpoint inserts a new ‘trash’ bin into the ‘bins’ table of our database that is

associated with the newly generated user ID.

INSERT INTO bins (user_id, name, primaryid)
VALUES (1, ‘trash’ , null);

Figure 4.15: Save user default trash bin for report view.

4.5.3 Database

The user portal uses two columns in the ‘user’ table of the database- user_id and email.

These columns identify investigators by email and tie the investigator’s email address to bins and

user dependent functionalities throughout the application.

30

Figure 4.16: Users table

4.6 Main Visualization

4.6.1 Front-end

The main visualization uses a preliminary filter on the FAERS dataset based on

parameters such as age, sex, date, cause, error type, etc. The main visualization is split up into

three subsections: Timeline, Demographics, and TreeMap.

4.6.1.1 Timeline

The timeline is an interface that allows an investigator to easily select a time range as a

data filter. It contains two methods of selecting a range.

Figure 4.17: Calendar picker to select a range of dates

The calendar date-picker is created with moment.js for the underlying calendar and

bootstrap + JQuery for the interface. The alternative interface is the area chart, created with

31

RechartsJS, that uses clicking and dragging to select the desired date range. The area chart has

custom-built zoom and pan functionality to let the investigator view data effectively. The chart

has two curves: the red curve represents the counts of the reports classified as serious, and the

blue curve represents the reports that are not serious. The height of each curve represents the

total number of reports for each date. This provides a visual representation of the amount and

classification of the data right away while selecting a date range and can help discover anomalies

or trends over time.

Figure 4.18: Area Chart picker to select a range of dates

Other options of charts for the Timeline are considered. For example, a bar chart is not as

visually clean as an area chart.

Figure 4.19: Bar Chart picker to select a range of dates

When the user hovers their mouse-over the chart they see a tooltip with exact counts of

severe and nonsevere reports for that date.

32

Figure 4.20: Tooltip on mouseover

4.6.1.2 Demographics

Figure 4.21: Demographics panel

The demographics panel gives the investigator the ability to see additional information

about the currently selected reports. These interactive bar charts are created using RechartsJS.

When a bar is clicked, the data is filtered to show reports matching that bar’s criteria. As many

filters as desired can be toggled on or off by clicking again on the bar itself or on the ‘Clear

Filter’ button at the top right of each chart. Mousing over a bar displays a tooltip containing the

number of reports for each different outcome code.

33

Figure 4.22: Tooltip on mouseover

4.6.1.3 Tree-Map

Figure 4.23: TreeMap

The TreeMap is built with RechartsJS and has four layers. From top to bottom, each

treemap represents medication error type, product, stage, and cause. Each sub-box in each

treemap can be clicked to filter out the other categories in that treemap. The color of each box

represents how severe reports in that category are. Categories that are mostly severe are more red

while categories with less severe outcomes are more blue. These filters can be cleared by either

clicking on the box again or by clicking the ‘Clear Filter’ button on the right side of each layer.

34

There is a familiar tooltip displayed with each of the outcome code counts for reports in that

category.

Figure 4.24: Tooltip on mouseover

To get a better view of the TreeMap, the investigator can choose to minimize the

Demographics and Timeline panels to allow the TreeMap to take up more of the screen. This can

be done by clicking on the circular blue minus (-) buttons on the respective panels. These

buttons change to be a plus (+) to expand the panel again.

35

Figure 4.25: Tree-Map with Minimized Demographics and Timeline

4.6.2 Back-end

All actions made by the investigator on the interface makes a RESTful HTTP request to

the NodeJS back-end. The front-end fetch request contains all of the currently selected filters to

use when querying for data. The back-end generates a SQL select statement programmatically

that includes all necessary filters by calling stringBuilder functions that when given a list of filter

strings generates the appropriate SQL WHERE statement. These front-end requests are sent to

‘getdemographicdata’ and ‘getvis’ back-end endpoints. The ‘getdemographicdata’ endpoint

returns database columns for generating the demographic charts. This data aggregates into each

categories for the bar charts in the demographics panel. The ‘getvis’ endpoint handles outcome

36

code counts for the treemap. In this SQL statement, the database does all of the data processing

and counting, increasing performance greatly. However, this process is not possible for the

demographic data due to the format of the data in the database.

SELECT me_type as name,

 count(*)::INTEGER as size,

 count(CASE WHEN outc_cod @> '{DE}' THEN 1 end)::INTEGER as "DE",

 count(CASE WHEN outc_cod @> '{CA}' THEN 1 end)::INTEGER as "CA",

 count(CASE WHEN outc_cod @> '{DS}' THEN 1 end)::INTEGER as "DS",

 count(CASE WHEN outc_cod @> '{HO}' THEN 1 end)::INTEGER as "HO",

 count(CASE WHEN outc_cod @> '{LT}' THEN 1 end)::INTEGER as "LT",

 count(CASE WHEN outc_cod @> '{RI}' THEN 1 end)::INTEGER as "RI",

 count(CASE WHEN outc_cod @> '{OT}' THEN 1 end)::INTEGER as "OT",

 count(CASE WHEN NOT outc_cod && '{DE, CA, DS, HO, LT, RI, OT}' THEN 1

end)::INTEGER as "UNK"

 FROM reports

 WHERE init_fda_dt BETWEEN 20170313

 AND 20170317

 AND (sex = 'M' OR sex = 'F')

 AND occr_country = 'US'

 AND age_year BETWEEN 60

 AND 69

 AND (occp_cod = 'CN' OR occp_cod = 'LW' OR occp_cod = 'OT')

 AND (me_type = 'Wrong Dosage Form' OR me_type = 'Wrong Technique' OR me_type =

'Accidental Exposure')

 AND (stage = 'Other' OR stage = 'Insufficient Information' OR stage = 'Prescribing')

 GROUP BY me_type

37

Figure 4.26: Example getvis database query sent by the back-end

4.6.3 Database

All of the data in the main visualization is in the ‘demo_outcome’ table. This table is a

precomputed FULL OUTER JOIN of the ‘demo’ and ‘outcome’ table to avoid calculating this

join for each query improving performance dramatically. PostgreSQL indices use primarily on

the ‘init_fda_dt’ column as well as the ‘sex,’ ‘age,’ ‘location’ and ‘occupation’ columns which

increase performance by up to 50 times.

4.7 Reports Listing

4.7.1 Front-end

The reports listing view uses DevExtreme React Grid, a component that displays data

from a local or remote source and supports paging, sorting, filtering, and grouping. The

DevExtreme React Grid comes with built in Material-UI theming, which complements the rest of

the application. Each of the rows represents one report in the database and the list of reports only

contains those that the investigator has filtered by in the main visualization. Each row has a

drop-down section where several components are housed. That section contains a button that

directs the investigator to that row’s specific report text in the narrative annotation view and a

button to move the report to the investigator’s trash bin. The investigator can sort by any of the

table’s columns by clicking any column. An arrow appears to tell the investigator that the table is

currently being sorted by the selected column. The table also contains all of the reports on the

same page all at once and uses scroll to navigate through them. The top of the reports listing

38

view displays the bin the user is currently in and can change by button press at the bottom of the

page.

Figure 4.27: DevExtreme React Grid in the reports listing view

Prior to using the DevExtreme React Grid, React Table was used. React Table has many

of the same features of the DevExtreme React Grid but one notable exception is the ability to

expand rows with a drop-down menu. Sorting by columns is also built in but is much slower than

the React Grid’s sorting. React Table is also capable of holding all of the reports the investigator

has filtered but they are divided into pages of fixed sizes so the investigator can never have all

the reports in one unified table.

39

Figure 4.28: Sample React Table

40

4.7.2 Back-end

There are two back-end endpoints that the front-end uses. The first one is ‘getreports,’

which gets the report data the investigator has filtered so that it can be displayed in the table. The

second endpoint is ‘binreport,’ which moves reports to different bins.

WITH bin_pids
AS (SELECT get_pid_from_bin as pids
 FROM get_pid_from_bin(user_id, ‘trash’))
SELECT *
FROM reports
WHERE (int_fda_dt BETWEEN init_fda_dt.start AND init_fda_dt.end);

Figure 2.29: getreports query that will return all the reports that took place between the selected start and end dates

4.7.3 Database

There are two tables in the database that the reports list view uses. The first one is the

reports table. The columns in the table are all of the fields the investigator needs to see when

looking at the reports list view. The wt_lb column is the weight reported converted to lbs. The

second table is the bins table, which contains a user id column, a bin name column, and a

primary id column. The primary key for this table is generated by combining the user id and the

name of the bin. Since every investigator has a different user id and no investigator’s bin can

have the same name, this ensures that no two bins will have the same primary key.

41

Figure 4.30: Reports Table

Figure 4.31: Cases Table

4.8 Report Narrative Annotation

4.8.1 Front-end

The narrative annotation view uses React-Quill to edit report text. The library provides

common text editor functionality including font size, bolding, italicizing, underlining,

42

strikethrough, font color, and text highlighting. Quill works with text in html format, which

makes the back-end processes straightforward. The alternative is using formatting offsets, which

can be very error-prone. While Quill does have built in history (undo/redo) functionality, it does

not have a built in autosave feature. To implement an autosave, the front-end react state holds

two versions of the text: one stores whatever is inside the text editor box in real time, and the

other stores the report text that exists in the database.

Figure 4.32: Text Editor Text

<p>This spontaneous report from a patient concerns a <span style="background-color:
gold;">71-year-old Caucasian <span style="background-color:
lightpink;">female from the United States: Local ID:
1-1878275180.</p><p>
</p><p>The patient's weight was <span
style="background-color: orchid;">160 pounds and height was 67.5
inches. Concurrent conditions included abdominal bloating, abdominal gas, abdominal
pain, allergy to trees, belching (abdominal), diabetic paresis (coded as diabetic gastroparesis),
no alcohol use, no smoking, and type 2 diabetes. Other medical history included no
history of drug abuse/illicit drug use. The patient had previously experienced allergy
when taking mycins (not otherwise specified or NOS) (antibacterials for systemic use) and
sulfa (sulfacetamide sodium). The patient was treated with <span
style="background-color: chartreuse;">canagliflozin (tablet, oral, batch unknown)
300 mg once a day, initiated on
06-AUG-2014, for type 2 diabetes and domperidone (unspecified, batch unknown) dose and
frequency unspecified, initiated on an unspecified date, for diabetic
gastroparesis. Concomitant medications were not reported. The patient was not

43

initially prescribed 100 mg dose of
canagliflozin. On 06-AUG-2014,
the patient experienced "worsening of pre-existing abdominal belching" (coded as increased
belching), "worsening of pre-existing abdominal pain" (coded as worsening of abdominal
pain), "worsening of pre-existing abdominal gassiness" (coded as very gaseous), and
"worsening of pre-existing abdominal bloating" (coded as worsening of bloating). In
AUG-2014, the patient contacted her physician about the events and was prescribed an
increased dosage of <span style="background-color:
chartreuse;">domperidone. The patient reported the increased dose of
domperidone had not relieved her worsening symptoms. On 13-AUG-2014, the patient
experienced not feeling well today. No laboratory findings were provided. The
dose of domperidone was increased and
the dose of canagliflozin was not
changed. The patient had not recovered from increased belching, worsening of
abdominal pain, very gaseous, worsening of bloating, and not feeling well
today. </p><p>
</p><p>This report was identified by the call center as a product
quality complaint: PQMS reference number 10000228235.</p><p>
</p><p>This
report was not serious.</p>

Figure 4.33: What Quill Stores

There is a timed loop that checks the equality of the last stored state in the database and

the current state of the report text to see if current text should be sent to the back-end. The save

button allows the investigator to accelerate this process. During the save process, the front-end

checks the tags of the report text html for highlighting and stores highlighted words separately

from the rest of the text as tags for that document in the database. The front-end pulls the report

id out of the URL in order to build the fetch request to the back-end for the initial report text. If

there is no id or an invalid non-number id, the front-end displays a user-friendly error.

4.7.2 Back-end

The queries for the narrative annotation are simple because each query only needs two

columns of one row in one table. The back-end has two endpoints for the front-end to make fetch

calls to. The ‘getreporttext’ endpoint queries the database for the report text of a specific report

id and the ‘savereporttext’ endpoint updates the report text and tags of a specific report id.

44

SELECT report_text, tags
FROM demo
WHERE primaryid = 130776901

Figure 4.34: Retrieve Report Narrative Query for Report with id 130776901

UPDATE demo SET report_text = $$<p>test report text</p>$$, tags = (null)
WHERE primaryid = 130776901

Figure 4.35 Save Report Narrative Query for Report with id 130776901

4.8.3 Database

The narrative annotation editor uses two columns of the ‘demo’ table in the database-

‘report_text’ and ‘tags.’ ‘Report_text’ contains an html formatted string or null if empty. Tags

contains a json object that holds any number of tag key-value attributes.

Figure 4.36: Database report_text and tags Columns for Report with id 130776901

4.9 Case Management

Case management is a large part of the ARRAT system. Cases are where investigators

can collect evidence towards a signal to be further analyzed as a group to discover meaningful

information. In the system each user account is given two default cases, trash and read.

45

Figure 4.37: Default trash and read cases

The trash case is used when the investigator determines a report has no meaningful

information that can be used for any signals. For example, this could mean the narrative was

ambiguous or is missing key information. When a report is sent to the trash, it is removed from

all other cases it is in and will no longer appear in the ‘All Reports’ table. When the investigator

comes across a report that may contain useful information, but is not relevant to the cases they

are currently investigating, that report is sent to the read case. This colors the report in the Report

Listing as a light grey to indicate it has already been looked at.

Figure 4.38: Reports Listing with reports in the read case

When a report is inside of any other case that is created by the investigator, the row in the

table is highlighted green to indicate this report is inside of a case already. This allows

46

investigators to quickly see what reports still need to be looked into further since they are still

white in the listing.

Figure 4.39: Reports Listing with reports in the read case and advil

Investigators can create a new case by clicking on the ‘NewCase’ tab at the top of the

Reports Listing

47

Figure 4.40: New Case Tab

For example, if there is some suspected problem with some drug, Advil. An investigator

can create an ‘Advil’ case and begin to collect evidence towards this suspicion. When enough

evidence has been collected and the case is complete, the investigator can choose to deactivate

this case in their Dashboard.

Figure 4.41: Toggle for deactivating a case

A deactivated case will no longer be shown in the Reports Listing or Case Summary

Listing. There is currently no option to delete a case entirely, but an investigator can rename and

change the description to repurpose a case if desired.

48

4.10 Case Summary

4.10.1 Front-end

The Case Summary Listing is accessed within the Reports Listing by clicking on the

floating action button on the bottom right of the screen.

Figure 4.42: Floating button to open case summary

A side panel will slide in and show all of the investigator’s active cases as collapsed

expansion panels.

49

Figure 4.43: Case summary with closed expansion panels

When these expansion panel are open information such as the count of each keyword

highlightings from the report narratives within the case. Also shown there is a pie chart to show

how many of the reports in the case are marked as primary or supportive evidence.

50

Figure 4.44: Expanded Case Summary showing data about the case

To see all of the reports inside of a particular case given the current state of the

application’s filters press the ‘View Case Reports’ button at the top of the case summary. This

has the same functionality as clicking on the tab corresponding to that case on the top of the

‘Reports Listing’.

51

4.10.2 Back-end

In order to get the data required for the Case Summary a new database query was needed

to get all of the highlighted words, called tags for reports that are within each of the investigators

cases.

SELECT tags
FROM (
 SELECT primaryid
 FROM (
 SELECT user_id, name
 FROM cases
 WHERE case_id='60'
 AND primaryid='-1' LIMIT 1
) as u
 INNER JOIN cases as c
 ON u.user_id = c.user_id
 AND u.name = c.name
 WHERE NOT primaryid='-1'
) as p
INNER JOIN reports as r
ON p.primaryid = r.primaryid
WHERE NOT tags IS NULL;

Figure 4.45: getcasetags query to get the highlighted text from all reports in a given case and user

Another query was needed to get all of the report information for the reports in the case.

The ‘/​getreportsincases’ ​endpoint accepts an optional parameter to specify a single case to get

reports for rather than getting reports in call cases when this parameter is left undefined.

SELECT DISTINCT name, *
FROM cases
WHERE user_id='351'
AND NOT primaryid='-1'
AND active=TRUE
AND name='advil';

52

Figure 4.46: getreportsincases query with optional parameter to get reports from a single case

4.10.3 Database

There was no new database infrastructure added to create this feature, all of the required

database structure can be found above in section 4.8.3.

53

5. Evaluation Via User Studies

After finalizing development, the team began to evaluate the application through the use

of user studies. The main goal of the evaluation was to compile feedback about the application’s

ease of use and intuitiveness.

5.1 User Testing Procedure

The user studies involved the investigators sitting down with the participants and reading

the consent form (Appendix B) and asking them to sign it. After the consent form was signed,

the investigators read the Adverse Reaction Reports Analysis Tool Introduction (Appendix C) to

the participants to explain the purpose and functionality of the system. The next step was to give

the participants five tasks (Appendix D) to complete using the ARRAT in order to evaluate the

different aspects of the application. The five tasks were:

● Part 1, Familiarizing with the Filtering Methods

● Part 2, Creating and adding to a case

● Part 3, Annotating a report

● Part 4, Finding a specific report

● Part 5, Case Management

Each task has clearly-delineated steps that the participant must take in order to complete that task

and the testers had questions to ask the participants to test their comprehension. After completing

each task, the participants were asked to answer questions regarding their experience completing

that specific task (Appendix E). The investigators recorded all of the responses in a User Study

Data ​spreadsheet (Appendix G) and the comments they provided are listed on Appendix H.

54

5.1.1 Task 1- ​Familiarizing with the Filtering Methods

The purpose of the first task of the user study is to get ​participants familiarized with the

different components in the main visualization page and how to interact with the data. Below is

the full list of steps the participants were asked to complete.

1. Navigate to the ​MEV​ visualization page at mev.wpi.edu:3001.
2. Log into the system using your email address.
3. Using the timeline visualization, select the month of data from ​1/15/2017 - 2/12/2017.

● What general trends do you see in this month of reports?
4. Now select the week of data from ​1/29/2017 - 2/04/2017​.

● Estimate the proportion of reports were ​severe​ during the week?
● Which ​drug(s)​ had the most number of reports?
● Which ​medical error​ (ME) has the most severe outcomes?

5. On the treemap visualization, select any ​one drug​ and any ​two medication error​ ​types​.
6. Using the demographics visualizations, select the ​gender​ with the most ​severe​ reports.

● What age group has the most total reports? How many?

[Ask participants questions related to Task 1]

5.1.2 Task 2 - ​Creating and Adding to a Case

The second task is designed to test another core function of the application: creating cases

and adding reports to the cases. The participants were asked to apply specific filters and navigate

to the reports listing page to create a new case and add five reports to that case. Below is the full

list of steps the participants were asked to complete.

1. Navigate to visualization page.
2. Clear all the filters
3. Filter the reports down to ​2/26/2017 - 3/04/2017​.

55

4. Filter to reports from the ​United States​ that contain ​‘CPD’ ​drug
● What is the cause with the most severe reports?
● Which age group has the most severe outcomes?

5. Navigate to the reports listing page.
6. Create a new case named ​CPD​.
7. Add 5 reports to your new case and 5 reports to the trash

[Ask participants questions related to Task 2]

5.1.3 Task 3 - ​Annotating a Report

The third task of the user study has the ​participant navigate to any report’s narrative

annotation page to select a report and annotate it and then move it to the case they created in task

2. Once they have annotated and moved the report, they must open the case summary and view

the information it contains. Below is the full list of steps the participants were asked to complete.

User Study Tasks: Part 3, Annotating a report

1. Navigate to any report’s text annotation page.
2. Highlight different text in three different colors​.
3. Close the text annotation page, add the report to your ​CPD​ case and navigate to the user

dashboard.
4. View the case summary of your ​CPD​ case.

● What is the most highlighted narrative keyword type in the case?

[Ask participants questions related to Task 3]

5.1.4 Task 4 - ​Finding a Specific Report

The purpose of the fourth task to combine the functionality of the three previous tasks to

assess the users’ understanding and the intuitiveness of the application. Below is the full list of

steps the participants were asked to complete.

56

1. Navigate to the Visualizations page.
2. Clear all filters
3. Use the filters to find a report where a ​75​ year old ​female​ patient has reported an error

with ​Perrigo Hydroquinone​ during ​Administration ​stage with a cause of ​Product
Quality Issue​ on ​12/27/2016​.

4. View this exact report inside of the reports listing page.
5. Highlight all mentions of a drug in the narrative.

[Ask participants questions related to Task 4]

5.1.5 Task 5 - ​Case Management

The fifth and final task has the ​participants log in with an account that has predetermined

cases, reports, and annotations to test how easily accessible and easy to understand the data about

each specific case is. Below is the full list of steps the participants were asked to complete.

1. Log in with the email ‘​mev.casestudy@wpi.edu​’
2. Find the case with highest number of reports as supporting evidence?

● What are 3 annotations from analysts on reports under the case ​Advil​?

[Ask participants questions related to Task 5]

5.2 Evaluation Results & Analysis

A total of 18 participants took part in the user testing process. The participants all came

from diverse backgrounds and had varying experience with computers, technology, and web

interfaces. The results of their answers to the tasks and post-task questions were recorded and

compiled. Below are the findings.

57

mailto:mev.casestudy@wpi.edu

The correct answer for question 3 of task 1 was “Silk and Malt”. The results show that

70.6% got the correct answer and an additional 11.8% got the answer partially correct. 17.7% of

participants​ gave incorrect answers.

58

The correct answer for question 1 of task 2 was “Name Confusion and Human Factors”.

After following the study’s steps, 55.6% of participants arrived at the correct answer and an

additional 33.3% gave a partially correct answer. Only 11.2% of participants did not give one of

the expected answers.

59

For the first question of task 5, 86.7% of participants gave the correct answer, which was

“Advil and Aspirin”. The remaining answers were “Tylenol and Aspirin” and are partially

correct because the participants listed Aspirin.

Most frequent comments about the application:

● Timeline is unintuitive and hard to use

● Trouble setting the selected date

● The report annotation process was not intuitive

The most common criticisms regarding the application’s interface were about the

timeline. Specifically, many ​participants experienced trouble scrolling through the timeline and

zooming in and out to select a specific date. Other participants noted that clicking and dragging

to select a date range was not intuitive and that clicking once to select a start date and clicking a

60

second time to select an end date would have made more sense. Many of the participants also

seemed to have trouble knowing that they needed to click the SET DATE button to apply the

time filter. When it came to annotating reports, several testers reported confusion when trying to

create or remove an annotation. One participant mentioned he would want the ability to “select a

highlight color then highlight instead of selecting then pressing the button”. To remove

annotations, a ​participant must select text that has already been highlighted and then press the

CLEAR button. Some participants did not think that was intuitive and suggested renaming it to

“Erase”.

As part of the user study, participants were asked to rate various facets of the interface.

The ratings were done on a scale ranging from 1 to 5, with 1 meaning not very

intuitive/challenging and 5 indicating the task was very intuitive/challenging. The data supports

many of the comments the participants had. For instance, questions 1 and 2 of task 2 ask about

how intuitive it was to create a new case and to move reports between cases. The averages of

those two categories were some of the highest at 3.667 and 3.389, indicating that ​participants for

the most part found it easy to interact with cases. Similarly, there were few comments

mentioning trouble using the treemap visualization and question 3 of task 1 supports this as it has

a 3.5 out of 5 rating in terms of intuitiveness. Finally, it is evident that the purpose of the

Adverse Reaction Reports Analysis Tool is clear even to first-time users as question 1 of task 1

had the single highest intuitiveness rating of the entire study, at 3.778.

61

Task, Question Average Rating

Task 1, Question 1 3.778

Task 1, Question 2 2.556

Task 1, Question 3 3.500

Task 1, Question 4 2.778

Task 2, Question 1 2.889

Task 2, Question 2 3.667

Task 2, Question 3 3.389

Task 3, Question 1 3.333

Task 3, Question 2 2.778

Task 4, Question 2 3.059

Task 5, Question 1 2.625

Figure 5.1 Results of post-task questions

6. Conclusion

6.1 Summary of Project and Contributions

This project ended with a working prototype of a medication error and adverse reaction

trend visualizer tool that will be continued to be worked on in the future. In its final state, the

system contained the entire workflow flowchart outlined in Section 3. The application currently

allows an investigator to:

● Filter reports from the FAERS database based on multiple different factors.

62

● Display and sort the filtered reports in a list view.

● View and highlight report narratives.

● Create or modify cases to organize reports into meaningful groups.

While the functionality for all these features exists in the application, the user study

evaluation points to necessary future development done to make the some of the features more

user-friendly.

The project was developed using agile development with one to two week development

cycles. The team would meet with graduate students Xiao Qin and Tabassum Kakar as well as

Professor Rundensteiner to go over development progress each week and propose the work that

would be completed for the following week. Because of the nature of agile development, most

features were created and then iterated on with multiple changes and major code refactors

making it hard to give singular credit for each part of the system. Keeping in mind that each team

member contributed to each part of the system, Cory is most responsible for the main

visualization page, Daniel is most responsible for the reports listing page, Derek is most

responsible for the user dashboard and portal view, and Oliver is most responsible for the

backend and narrative view.

6.2 Future Work

In the future there can be many helpful features added to the system. A key feature to be

added is the ability for the system to recommend reports similar to the ones within a case to help

an investigator build out a case. This could be paired with machine learning to help better

classify a report as supportive or primary evidence towards a case. If an investigator could search

63

through narratives by typing a keyword to easily find reports that pertain to their cases could

speed up workflow significantly.

Another feature is in the case summary, a case could have a series of bar charts to show

the frequency of specific highlighted words within the case report narratives to show the most

frequent keywords at a glance.

In the reports listing, a nice shortcut would be to allow a single click on the cell in the

table that contains the short preview of the narrative to pull up the full annotator for that reports

narrative. Along with this, the table on the left and the case summary views should be more

linked together. For example, when viewing the summary of a case, it is likely that an

investigator would be interested in viewing the reports within that case as well. If the system

would pull up these reports automatically when viewing the summaries, that would reduce the

number of clicks required by the investigators, thus enhancing the user experience.

A setback with the public dataset used in this system is that it lacked specific location

data of the reports. If this information could be more detailed this would allow the use of an

interactive heatmap of the United States to see which state reports are coming from to help

narrow down the filtering process by region in a more effective manner.

A feature that would help investigators better distinguish or understand the visualizations

page would be to offer customization on the colors of the system. Specifically if the investigator

could choose a color theme that they preferred most would be better than having a single theme

for all investigators. This project was proposed at first with the idea of having multiple forms of

visualizations with the TreeMap being just one option. This was put off to design and implement

the investigator workflow of viewing reports, annotating narratives and building cases. In the

64

future, having multiple different ways to filter down and understand these reports in the main

visualization could help find new interesting connections and insights on adverse reactions with

medication.

65

References

1. Pharmacovigilance, Oxford Dictionary.

https://en.oxforddictionaries.com/definition/pharmacovigilance​, 2018.

2. FAERS Public Dashboard.

https://fis.fda.gov/sense/app/777e9f4d-0cf8-448e-8068-f564c31baa25/sheet/7a47a261-d5

8b-4203-a8aa-6d3021737452/state/analysis​, 2018.

3. Durasal-Durezol Mix-Up. ​www.ismp.org/newsletters/acutecare/showarticle.aspx?id=5​,

2011.

4. Context MQP.

https://web.wpi.edu/Pubs/E-project/Available/E-project-052110-154850/unrestricted/MQ

P_Paper.pdf​, 2010.

5. GRID Portal Application Visualization MQP.

https://web.wpi.edu/Pubs/E-project/Available/E-project-042705-074945/unrestricted/CS-

GXS-0502.pdf​, 2005.

6. React Homepage. ​https://facebook.github.io/react/​, 2018.

7. Angular IO Homepage. ​https://angular.io/​, 2018.

8. Google Material UI Guidelines. ​https://material.io/guidelines/​, 2018.

9. TreeViz: treemap visualization of hierarchically structured information.

https://dl.acm.org/citation.cfm?id=142833​, 1992.

10. Nv: Nessus vulnerability visualization for the web.

http://www.cs.columbia.edu/~riley/pdfs/vizsec2012nv.pdf​, 2012.

66

https://en.oxforddictionaries.com/definition/pharmacovigilance
https://fis.fda.gov/sense/app/777e9f4d-0cf8-448e-8068-f564c31baa25/sheet/7a47a261-d58b-4203-a8aa-6d3021737452/state/analysis
https://fis.fda.gov/sense/app/777e9f4d-0cf8-448e-8068-f564c31baa25/sheet/7a47a261-d58b-4203-a8aa-6d3021737452/state/analysis
http://www.ismp.org/newsletters/acutecare/showarticle.aspx?id=5
https://web.wpi.edu/Pubs/E-project/Available/E-project-052110-154850/unrestricted/MQP_Paper.pdf
https://web.wpi.edu/Pubs/E-project/Available/E-project-052110-154850/unrestricted/MQP_Paper.pdf
https://web.wpi.edu/Pubs/E-project/Available/E-project-042705-074945/unrestricted/CS-GXS-0502.pdf
https://web.wpi.edu/Pubs/E-project/Available/E-project-042705-074945/unrestricted/CS-GXS-0502.pdf
https://facebook.github.io/react/
https://angular.io/
https://material.io/guidelines/
https://dl.acm.org/citation.cfm?id=142833
http://www.cs.columbia.edu/~riley/pdfs/vizsec2012nv.pdf

11. SellTrend: inter-attribute visual analysis of temporal transaction data.

https://www.ncbi.nlm.nih.gov/pubmed/19834168​, 2009.

12. NodeJS: ​https://nodejs.org/en/​, 2017.

13. NodeJS-ExpressJS: ​https://expressjs.com/​, 2017.

14. ReactJS: ​https://reactjs.org/​, 2017.

15. Redux: ​https://redux.js.org/​, 2017.

16. Redux-Thunk: ​https://www.npmjs.com/package/redux-thunk​, 2017.

17. Redux-Persist: ​https://www.npmjs.com/package/redux-persist-store​, 2017.

18. React-Prop-types: ​https://www.npmjs.com/package/prop-types​, 2017.

19. React-router: ​https://www.npmjs.com/package/react-router​, 2017.

20. React-quill: ​https://www.npmjs.com/package/react-quill​, 2017.

21. D3: ​https://d3js.org/​, 2017.

22. D3-Recharts: ​http://recharts.org/#/en-US/​, 2017.

23. Lodash: ​https://lodash.com/​, 2017.

24. Bluebird: ​http://bluebirdjs.com/docs/getting-started.html​, 2017.

25. JQuery: ​https://jquery.com/​, 2017.

26. MomentJS: ​https://momentjs.com/​, 2017.

27. Webpack: ​https://webpack.js.org/​, 2017.

28. Postgres: ​https://www.postgresql.org/​, 2017.

67

https://www.ncbi.nlm.nih.gov/pubmed/19834168
https://nodejs.org/en/
https://expressjs.com/
https://reactjs.org/
https://redux.js.org/
https://www.npmjs.com/package/redux-thunk
https://www.npmjs.com/package/redux-persist-store
https://www.npmjs.com/package/prop-types
https://www.npmjs.com/package/react-router
https://www.npmjs.com/package/react-quill
https://d3js.org/
http://recharts.org/#/en-US/
https://lodash.com/
http://bluebirdjs.com/docs/getting-started.html
https://jquery.com/
https://momentjs.com/
https://webpack.js.org/
https://www.postgresql.org/m

Appendix

Appendix A: Technologies Used

- NodeJS (8.4.0)

- NodeJS-ExpressJS (4.15.4)

- ReactJS (16.2.0)

- Redux (5.0.6)

- Redux-Thunk (2.2.0)

- Redux-Persist (5.3.5)

- React-Prop-types (15.5.10)

- React-router (4.2.0)

- React-quill (1.2.0)

- D3 (4.12.0)

- D3-Recharts (1.0.0-beta.7)

- Lodash (4.17.4)

- Bluebird (3.5.0)

- JQuery (3.2.1)

- MomentJS (2.19.1)

- Webpack (3.7.1)

- Postgres (9.6)

68

- Redis (4.0.2)

- ReJSON (1.0.1)

- Bootstrap (v3)

- Material-UI (1.0.0-beta.30)

69

Appendix B: User Study Consent Agreement

Informed Consent Agreement for Participation in a Research Study

Investigators: ​Derek Murphy, Oliver Spring, Cory Tapply, Daniel Yun, Xiao Qin, Tabassum
Kakar
Contact Information: ​Email at​ ​mevmqp@wpi.edu
Title of Research Study: ​MEV: Visualizing Medication Errors in Pharmacovigilance

Introduction: ​You are invited to participate in a research study to evaluate the usability and
functionality of a medication error visualization application. Before you agree, however, you
must be fully informed about the purpose of the study, the procedures to be followed, and any
benefits, risks or discomfort that you may experience as a result of your participation. This form
presents information about the study so that you may make a fully informed decision regarding
your participation.

Purpose of the study: ​With the rapid expansion of data becoming more publicly available, the
importance of ranking large content has never been more relevant. Many existing rankings target
general audience, yet cannot take into account individual preferences. ​We have developed a web
application to ​help users customize and interpret rankings to meet their own end goals​. The
purpose of this study is to evaluate the usability and functionality of our application and to get
feedback for improvement.

Procedures to be followed: ​Your participation will consist of a one-time session where you
will be asked to perform four tasks using our ranking application. After performing all tasks, you
will be asked to answer some questions regarding the experience of using the Medication Error
Visualizer.. There are no right or wrong answers.

Risks to study participants:​ This study involves the following risks: minimal fatigue and eye
strain from looking at a screen. There may be other risks that we cannot predict. In case of
discomfort, you may choose to discontinue your participation at any time without penalty.

Benefits to research participants and others: ​There are no direct benefits for you to participate
in this study, but you will be contributing to the creation of an intuitive and effective medication
error and trend visualizer application.

70

Record keeping and confidentiality: ​The questionnaire is completely anonymous and
individual answers will not be published. End results will be aggregated before publication.
Records of your participation in this study will be held confidential so far as permitted by law.
However, the study investigators, the sponsor or it’s designee and, under certain circumstances,
the Worcester Polytechnic Institute Institutional Review Board (WPI IRB) will be able to inspect
and have access to confidential data that identify you by name. Any publication or presentation
of the data will not identify you.

Compensation or treatment in the event of injury:​ ​No compensation will be made for injuries
resulting from participation in this study. ​You do not give up any of your legal rights by signing
this statement.

For more information about this research or about the rights of research participants, or in
case of research-related injury, contact:​ ​You can contact the team in writing an email at
mevmqp@wpi.edu​ or the Principal Investigator, Elke Rundensteiner, at ​rundenst@wpi.edu​. ​In
addition, you may also contact the chair of the WPI Institutional Review Board (Prof. Kent
Rissmiller, Tel. 508-831-5019, Email: ​kjr@wpi.edu​) or WPI’s University Compliance Officer
(Jon Bartelson, Tel. 508-831-5725, Email:​jonb@wpi.edu​).

Your participation in this research is voluntary.​ Your refusal to participate will not result in
any penalty to you or any loss of benefits to which you may otherwise be entitled. You may
decide to stop participating in the research at any time without penalty or loss of other benefits.
The project investigators retain the right to cancel or postpone the experimental procedures at
any time they see fit.

By signing below, ​you acknowledge that you have been informed about and consent to be a
participant in the study described above. Make sure that your questions are answered to your
satisfaction before signing. You are entitled to retain a copy of this consent agreement.

___________________________ Date: ___________________
Study Participant Signature

Study Participant Name (Please print)

____________________________________ Date: ___________________
Signature of Person who explained this study

71

Appendix C: Application Guide

Adverse Reaction Reports Analysis Tool Introduction:

The Main Visualization Page
Here we can see three main sections. At the bottom we have the Timeline, this is where we first
start the visualization. After we select a date range by clicking and dragging on the chart we can
see the rest of the graphs show the data.

We have the Demographics panel at the top for selecting information about the patient.

In the middle we have four separate TreeMap visualizations for Medication Error Type, Drug
Name, Stage, Cause.

All of the graphs on this page are interactive, if you click on any of the bars you will filter down
the reports to show only what you have clicked on to select.

The colors on the graphs show the severity of the outcome of the reports, the light blue color
means a non-severe outcome while the darker color means a severe outcome.

The Reports Listing Page

The reports listing page contains a list of the reports that match the applied filters. Clicking on
the drop-down arrow to the left of every report will open up that report’s options. Once there, the
user can view and annotate that specific report’s narrative. The user can also send the report to
any of the cases or to the trash bin.

The top of the reports listing page contains the user’s cases. There, the user has the option to
create new cases or to look at only the reports contained in a specific case.

Pressing the button on the bottom right will bring up the case summary side panel, which has
more details about all the cases.

User Dashboard Page
This page has more in-depth information about the user’s cases. The user can also set cases as
“inactive” if they no longer wish to make changes to that case.

72

Appendix D: User Study Tasks

Script for investigators:
[Read over the consent form and have the participants sign the form]
[Sign the consent form]
[Read over the introduction paragraph that explains the system]
[Start the survey]
[Guide participants as needed if they cannot find or understand any of the steps in the user study]

[Participants will be observed as they complete the tasks. The proctors will record]

● The time for how long it takes the participants to complete each task.
● The answer they provide to the questions.
● The level of guidance required from the proctor.
● State of the screen at the end of each task

User Study Tasks: Part 1, Familiarizing with the Filtering Methods

1. Navigate to the MEV visualization page at mev.wpi.edu:3001.
2. Log into the system using your email address.
3. Using the timeline visualization, select the month of data from ​1/15/2017 - 2/12/2017.

● What general trends do you see in this month of reports?
4. Now select the week of data from ​1/29/2017 - 2/04/2017​.

● Estimate the proportion of reports were ​severe​ during the week?
● Which ​drug(s)​ had the most number of reports?
● Which ​medical error​ (ME) has the most severe outcomes?

5. On the treemap visualization, select any ​one drug​ and any ​two medication error​ ​types​.
6. Using the demographics visualizations, select the ​gender​ with the most ​severe​ reports.

● What age group has the most total reports? How many?

[Ask participants questions related to Task 1]

User Study Tasks: Part 2, Creating and adding to a case

1. Navigate to visualization page.
2. Clear all the filters
3. Filter the reports down to ​2/26/2017 - 3/04/2017​.

73

4. Filter to reports from the ​United States​ that contain ​‘CPD’ ​drug
● What is the cause with the most severe reports?
● Which age group has the most severe outcomes?

5. Navigate to the reports listing page.
6. Create a new case named ​CPD​.
7. Add 5 reports to your new case and 5 reports to the trash

[Ask participants questions related to Task 2]

User Study Tasks: Part 3, Annotating a report

1. Navigate to any report’s text annotation page.
2. Highlight different text in three different colors​.
3. Close the text annotation page, add the report to your ​CPD​ case and navigate to the user

dashboard.
4. View the case summary of your ​CPD​ case.

● What is the most highlighted narrative keyword type in the case?

[Ask participants questions related to Task 3]

User Study Tasks: Part 4, Finding a specific report

1. Navigate to the Visualizations page.
2. Clear all filters
3. Use the filters to find a report where a ​75​ year old ​female​ patient has reported an error

with ​Perrigo Hydroquinone​ during ​Administration ​stage with a cause of ​Product
Quality Issue​ on ​12/27/2016​.

4. View this exact report inside of the reports listing page.
5. Highlight all mentions of a drug in the narrative.

[Ask participants questions related to Task 4]

User Study Tasks: Part 5, Case Management

1. Log in with the email ‘​mev.casestudy@wpi.edu​’
2. Find the case with highest number of reports as supporting evidence?

● What are 3 annotations from analysts on reports under the case ​Advil​?

[Ask participants questions related to Task 5]

74

mailto:mev.casestudy@wpi.edu

Appendix E: User Study Post-task Questions

User Study Tasks: Part 1, Familiarizing with the Build Tool Components

1. How clear is the purpose and function of the Medication Error Visualizer (MEV)?
●​ ​Extremely clear
●​ ​Very clear
●​ ​Moderately clear
●​ ​Slightly clear
●​ ​Not at all clear

2. How challenging was it to navigate to the visualizations page?
●​ ​Extremely challenging
●​ ​Very challenging
●​ ​Moderately challenging
●​ ​Slightly challenging
●​ ​Not at all challenging

3. How intuitive was it to filter down the reports by demographics (age and sex)?
●​ ​Extremely intuitive
●​ ​Very intuitive
●​ ​Moderately intuitive
●​ ​Slightly intuitive
●​ ​Not at all intuitive

4. How intuitive was it to select a drug and medication error type in the treemap visualization?
●​ ​Extremely intuitive
●​ ​Very intuitive
●​ ​Moderately intuitive
●​ ​Slightly intuitive
●​ ​Not at all intuitive

5. Did you have any problems applying the filters provided?
●​ ​Yes, I was not sure of how to apply the filters
●​ ​Yes, the visualization was slow

75

●​ ​Yes, the visualization did not apply the expected filters
●​ ​No problems

User Study Tasks: Part 2, Creating and adding to a case

1. How challenging was it to filter down reports a second time?
●​ ​Extremely challenging
●​ ​Very challenging
●​ ​Moderately challenging
●​ ​Slightly challenging
●​ ​Not at all challenging

2. How intuitive was it to create a new case?
●​ ​Extremely intuitive
●​ ​Very intuitive
●​ ​Moderately intuitive
●​ ​Slightly intuitive
●​ ​Not at all intuitive

3. How intuitive was it to add reports to your new case and to the trash?
●​ ​Extremely intuitive
●​ ​Very intuitive
●​ ​Moderately intuitive
●​ ​Slightly intuitive
●​ ​Not at all intuitive

User Study Tasks: Part 3, Annotating a report

1. How intuitive is the navigation to annotate a report?
●​ ​Extremely intuitive
●​ ​Very intuitive
●​ ​Moderately intuitive
●​ ​Slightly intuitive
●​ ​Not at all intuitive

2. How challenging was it to annotate the report?
●​ ​Extremely challenging
●​ ​Very challenging

76

●​ ​Moderately challenging
●​ ​Slightly challenging
●​ ​Not at all challenging

User Study Tasks: Part 4, Find a specific report

1. Did the UI help you find the report you were looking for?

●​ ​Yes
●​ ​No, the UI was difficult to use
●​ ​Optional: Elaborate more on why or why not

2. How challenging was it to find the report?
●​ ​Extremely challenging
●​ ​Very challenging
●​ ​Moderately challenging
●​ ​Slightly challenging
●​ ​Not at all challenging

User Study Tasks: Part 5, Case Management

1. How intuitive was it to find the case with the most supporting reports?
●​ ​Extremely intuitive
●​ ​Very intuitive
●​ ​Moderately intuitive
●​ ​Slightly intuitive
●​ ​Not at all intuitive

2. Do you have any additional comments on your overall experience with the Medication Error

Visualizer (MEV)?

●​ ​[open ended]

77

Appendix F: Application Help Page

78

79

80

81

82

83

84

85

Appendix G: User Study Data Spreadsheet

86

87

88

89

90

91

Appendix H: User Study Application Comments

Timeline is hard, scrolling should move in the opposite directions that it does, outcome breakdown
unclear, weird to have to hit the (x) in the corner of buttons, thought treemap went off screen bc no words,
Set date is hard to see, messed up the first task, Opening and closing each report sucks, Save button is
weird, didn’t realize report narrative was on another page, If you have everything open in the report listing
page it is hard to see things, View Case Summary was hard to navigate to, Things scroll off the screen
which is bad.

Sign in instead of create user, No ratio # in tooltip, Timeline is super hard to use, Tooltip for top bar dont
work (cant tell what filtering by), Case creation unclear, individually adding cases is bad, Unclear if text
saved (add save completed or something).

Trouble figuring out that you need to click and drag on the timeline.

Hard to reset date, Hard to tell differences between boxes, If timeline is too zoomed out, you skip dates,
when tried to add reports to case sometimes it didn’t go until clicked multiple, report listing page was
easiest to use viz page hardest.

Hard to use timeline, would like to be able to select highlight color then highlight instead of selecting then
pressing button.

timeline controls are bad, timeline is slow, timeline resets on scroll, checkboxes instead of individual
moves, annotate narrative should be another color than white not obv, only clicking on arrow is bad.

Application would be good workflow if trained on the system before.

No, I am not a computer person.

Impossible to tell the colors apart on treemap, legend not helpful, in vis not severe does not display 0,
Visual confirmation for moving a report to the trash.

Shift key didn’t work, names were too long and don’t show on treemap, didn’t use clear all button, adding
report to a case is slow, wanted to be able to just click the annotation color then highlight, Hard time to
understand the difference between a report and a case, if the case had its own tab from the navigation
that would be nice.

Had a hard time finding the case summary, did not know to press "Set Date" button.

Not a clear understanding of difference between a case and a report, Toggle was unclear for
primary/supportive, Clear filters should be a full size button.

Clear button in annotation should be renamed to Erase, Wish we could click the button then highlight the
text, Wished there was a checkmark to move many reports, Clear filter button should be an actual button,
Unsure where to find how to see the count of supportive reports in a case, Why did the filters stay when i
logged out.

No it looks good.

92

I don't like how the names don't fit in the boxes... thought they were blank.

Looks good, likes the colors.

Timeline scrolling was backwards, wish you could select a color before highlighting text in annotation.

Not sure what the middle graphs mean (treemap), too many reports all at once.

93

Appendix I: GitHub ReadMe and Redux Tutorial

94

95

96

97

98

	Worcester Polytechnic Institute
	Digital WPI
	March 2018

	Adverse Reaction Reports Analysis Tool
	Cory M. Tapply
	Daniel Yun
	Derek Murphy
	Oliver B. Spring
	Repository Citation

	tmp.1546543822.pdf.GMDe2

